cdc_ncm: fix divide-by-zero caused by invalid wMaxPacketSize
[linux/fpc-iii.git] / kernel / time / hrtimer.c
blob0d4dc241c0fb498036c91a571e65cb00f5d19ba6
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 * High-resolution kernel timers
9 * In contrast to the low-resolution timeout API, aka timer wheel,
10 * hrtimers provide finer resolution and accuracy depending on system
11 * configuration and capabilities.
13 * Started by: Thomas Gleixner and Ingo Molnar
15 * Credits:
16 * Based on the original timer wheel code
18 * Help, testing, suggestions, bugfixes, improvements were
19 * provided by:
21 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
22 * et. al.
25 #include <linux/cpu.h>
26 #include <linux/export.h>
27 #include <linux/percpu.h>
28 #include <linux/hrtimer.h>
29 #include <linux/notifier.h>
30 #include <linux/syscalls.h>
31 #include <linux/interrupt.h>
32 #include <linux/tick.h>
33 #include <linux/err.h>
34 #include <linux/debugobjects.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/sched/rt.h>
38 #include <linux/sched/deadline.h>
39 #include <linux/sched/nohz.h>
40 #include <linux/sched/debug.h>
41 #include <linux/timer.h>
42 #include <linux/freezer.h>
43 #include <linux/compat.h>
45 #include <linux/uaccess.h>
47 #include <trace/events/timer.h>
49 #include "tick-internal.h"
52 * Masks for selecting the soft and hard context timers from
53 * cpu_base->active
55 #define MASK_SHIFT (HRTIMER_BASE_MONOTONIC_SOFT)
56 #define HRTIMER_ACTIVE_HARD ((1U << MASK_SHIFT) - 1)
57 #define HRTIMER_ACTIVE_SOFT (HRTIMER_ACTIVE_HARD << MASK_SHIFT)
58 #define HRTIMER_ACTIVE_ALL (HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)
61 * The timer bases:
63 * There are more clockids than hrtimer bases. Thus, we index
64 * into the timer bases by the hrtimer_base_type enum. When trying
65 * to reach a base using a clockid, hrtimer_clockid_to_base()
66 * is used to convert from clockid to the proper hrtimer_base_type.
68 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
70 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
71 .clock_base =
74 .index = HRTIMER_BASE_MONOTONIC,
75 .clockid = CLOCK_MONOTONIC,
76 .get_time = &ktime_get,
79 .index = HRTIMER_BASE_REALTIME,
80 .clockid = CLOCK_REALTIME,
81 .get_time = &ktime_get_real,
84 .index = HRTIMER_BASE_BOOTTIME,
85 .clockid = CLOCK_BOOTTIME,
86 .get_time = &ktime_get_boottime,
89 .index = HRTIMER_BASE_TAI,
90 .clockid = CLOCK_TAI,
91 .get_time = &ktime_get_clocktai,
94 .index = HRTIMER_BASE_MONOTONIC_SOFT,
95 .clockid = CLOCK_MONOTONIC,
96 .get_time = &ktime_get,
99 .index = HRTIMER_BASE_REALTIME_SOFT,
100 .clockid = CLOCK_REALTIME,
101 .get_time = &ktime_get_real,
104 .index = HRTIMER_BASE_BOOTTIME_SOFT,
105 .clockid = CLOCK_BOOTTIME,
106 .get_time = &ktime_get_boottime,
109 .index = HRTIMER_BASE_TAI_SOFT,
110 .clockid = CLOCK_TAI,
111 .get_time = &ktime_get_clocktai,
116 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
117 /* Make sure we catch unsupported clockids */
118 [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES,
120 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
121 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
122 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
123 [CLOCK_TAI] = HRTIMER_BASE_TAI,
127 * Functions and macros which are different for UP/SMP systems are kept in a
128 * single place
130 #ifdef CONFIG_SMP
133 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
134 * such that hrtimer_callback_running() can unconditionally dereference
135 * timer->base->cpu_base
137 static struct hrtimer_cpu_base migration_cpu_base = {
138 .clock_base = { { .cpu_base = &migration_cpu_base, }, },
141 #define migration_base migration_cpu_base.clock_base[0]
143 static inline bool is_migration_base(struct hrtimer_clock_base *base)
145 return base == &migration_base;
149 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
150 * means that all timers which are tied to this base via timer->base are
151 * locked, and the base itself is locked too.
153 * So __run_timers/migrate_timers can safely modify all timers which could
154 * be found on the lists/queues.
156 * When the timer's base is locked, and the timer removed from list, it is
157 * possible to set timer->base = &migration_base and drop the lock: the timer
158 * remains locked.
160 static
161 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
162 unsigned long *flags)
164 struct hrtimer_clock_base *base;
166 for (;;) {
167 base = timer->base;
168 if (likely(base != &migration_base)) {
169 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
170 if (likely(base == timer->base))
171 return base;
172 /* The timer has migrated to another CPU: */
173 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
175 cpu_relax();
180 * We do not migrate the timer when it is expiring before the next
181 * event on the target cpu. When high resolution is enabled, we cannot
182 * reprogram the target cpu hardware and we would cause it to fire
183 * late. To keep it simple, we handle the high resolution enabled and
184 * disabled case similar.
186 * Called with cpu_base->lock of target cpu held.
188 static int
189 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
191 ktime_t expires;
193 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
194 return expires < new_base->cpu_base->expires_next;
197 static inline
198 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
199 int pinned)
201 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
202 if (static_branch_likely(&timers_migration_enabled) && !pinned)
203 return &per_cpu(hrtimer_bases, get_nohz_timer_target());
204 #endif
205 return base;
209 * We switch the timer base to a power-optimized selected CPU target,
210 * if:
211 * - NO_HZ_COMMON is enabled
212 * - timer migration is enabled
213 * - the timer callback is not running
214 * - the timer is not the first expiring timer on the new target
216 * If one of the above requirements is not fulfilled we move the timer
217 * to the current CPU or leave it on the previously assigned CPU if
218 * the timer callback is currently running.
220 static inline struct hrtimer_clock_base *
221 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
222 int pinned)
224 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
225 struct hrtimer_clock_base *new_base;
226 int basenum = base->index;
228 this_cpu_base = this_cpu_ptr(&hrtimer_bases);
229 new_cpu_base = get_target_base(this_cpu_base, pinned);
230 again:
231 new_base = &new_cpu_base->clock_base[basenum];
233 if (base != new_base) {
235 * We are trying to move timer to new_base.
236 * However we can't change timer's base while it is running,
237 * so we keep it on the same CPU. No hassle vs. reprogramming
238 * the event source in the high resolution case. The softirq
239 * code will take care of this when the timer function has
240 * completed. There is no conflict as we hold the lock until
241 * the timer is enqueued.
243 if (unlikely(hrtimer_callback_running(timer)))
244 return base;
246 /* See the comment in lock_hrtimer_base() */
247 timer->base = &migration_base;
248 raw_spin_unlock(&base->cpu_base->lock);
249 raw_spin_lock(&new_base->cpu_base->lock);
251 if (new_cpu_base != this_cpu_base &&
252 hrtimer_check_target(timer, new_base)) {
253 raw_spin_unlock(&new_base->cpu_base->lock);
254 raw_spin_lock(&base->cpu_base->lock);
255 new_cpu_base = this_cpu_base;
256 timer->base = base;
257 goto again;
259 timer->base = new_base;
260 } else {
261 if (new_cpu_base != this_cpu_base &&
262 hrtimer_check_target(timer, new_base)) {
263 new_cpu_base = this_cpu_base;
264 goto again;
267 return new_base;
270 #else /* CONFIG_SMP */
272 static inline bool is_migration_base(struct hrtimer_clock_base *base)
274 return false;
277 static inline struct hrtimer_clock_base *
278 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
280 struct hrtimer_clock_base *base = timer->base;
282 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
284 return base;
287 # define switch_hrtimer_base(t, b, p) (b)
289 #endif /* !CONFIG_SMP */
292 * Functions for the union type storage format of ktime_t which are
293 * too large for inlining:
295 #if BITS_PER_LONG < 64
297 * Divide a ktime value by a nanosecond value
299 s64 __ktime_divns(const ktime_t kt, s64 div)
301 int sft = 0;
302 s64 dclc;
303 u64 tmp;
305 dclc = ktime_to_ns(kt);
306 tmp = dclc < 0 ? -dclc : dclc;
308 /* Make sure the divisor is less than 2^32: */
309 while (div >> 32) {
310 sft++;
311 div >>= 1;
313 tmp >>= sft;
314 do_div(tmp, (unsigned long) div);
315 return dclc < 0 ? -tmp : tmp;
317 EXPORT_SYMBOL_GPL(__ktime_divns);
318 #endif /* BITS_PER_LONG >= 64 */
321 * Add two ktime values and do a safety check for overflow:
323 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
325 ktime_t res = ktime_add_unsafe(lhs, rhs);
328 * We use KTIME_SEC_MAX here, the maximum timeout which we can
329 * return to user space in a timespec:
331 if (res < 0 || res < lhs || res < rhs)
332 res = ktime_set(KTIME_SEC_MAX, 0);
334 return res;
337 EXPORT_SYMBOL_GPL(ktime_add_safe);
339 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
341 static struct debug_obj_descr hrtimer_debug_descr;
343 static void *hrtimer_debug_hint(void *addr)
345 return ((struct hrtimer *) addr)->function;
349 * fixup_init is called when:
350 * - an active object is initialized
352 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
354 struct hrtimer *timer = addr;
356 switch (state) {
357 case ODEBUG_STATE_ACTIVE:
358 hrtimer_cancel(timer);
359 debug_object_init(timer, &hrtimer_debug_descr);
360 return true;
361 default:
362 return false;
367 * fixup_activate is called when:
368 * - an active object is activated
369 * - an unknown non-static object is activated
371 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
373 switch (state) {
374 case ODEBUG_STATE_ACTIVE:
375 WARN_ON(1);
376 /* fall through */
377 default:
378 return false;
383 * fixup_free is called when:
384 * - an active object is freed
386 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
388 struct hrtimer *timer = addr;
390 switch (state) {
391 case ODEBUG_STATE_ACTIVE:
392 hrtimer_cancel(timer);
393 debug_object_free(timer, &hrtimer_debug_descr);
394 return true;
395 default:
396 return false;
400 static struct debug_obj_descr hrtimer_debug_descr = {
401 .name = "hrtimer",
402 .debug_hint = hrtimer_debug_hint,
403 .fixup_init = hrtimer_fixup_init,
404 .fixup_activate = hrtimer_fixup_activate,
405 .fixup_free = hrtimer_fixup_free,
408 static inline void debug_hrtimer_init(struct hrtimer *timer)
410 debug_object_init(timer, &hrtimer_debug_descr);
413 static inline void debug_hrtimer_activate(struct hrtimer *timer,
414 enum hrtimer_mode mode)
416 debug_object_activate(timer, &hrtimer_debug_descr);
419 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
421 debug_object_deactivate(timer, &hrtimer_debug_descr);
424 static inline void debug_hrtimer_free(struct hrtimer *timer)
426 debug_object_free(timer, &hrtimer_debug_descr);
429 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
430 enum hrtimer_mode mode);
432 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
433 enum hrtimer_mode mode)
435 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
436 __hrtimer_init(timer, clock_id, mode);
438 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
440 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
441 clockid_t clock_id, enum hrtimer_mode mode);
443 void hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper *sl,
444 clockid_t clock_id, enum hrtimer_mode mode)
446 debug_object_init_on_stack(&sl->timer, &hrtimer_debug_descr);
447 __hrtimer_init_sleeper(sl, clock_id, mode);
449 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper_on_stack);
451 void destroy_hrtimer_on_stack(struct hrtimer *timer)
453 debug_object_free(timer, &hrtimer_debug_descr);
455 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
457 #else
459 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
460 static inline void debug_hrtimer_activate(struct hrtimer *timer,
461 enum hrtimer_mode mode) { }
462 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
463 #endif
465 static inline void
466 debug_init(struct hrtimer *timer, clockid_t clockid,
467 enum hrtimer_mode mode)
469 debug_hrtimer_init(timer);
470 trace_hrtimer_init(timer, clockid, mode);
473 static inline void debug_activate(struct hrtimer *timer,
474 enum hrtimer_mode mode)
476 debug_hrtimer_activate(timer, mode);
477 trace_hrtimer_start(timer, mode);
480 static inline void debug_deactivate(struct hrtimer *timer)
482 debug_hrtimer_deactivate(timer);
483 trace_hrtimer_cancel(timer);
486 static struct hrtimer_clock_base *
487 __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
489 unsigned int idx;
491 if (!*active)
492 return NULL;
494 idx = __ffs(*active);
495 *active &= ~(1U << idx);
497 return &cpu_base->clock_base[idx];
500 #define for_each_active_base(base, cpu_base, active) \
501 while ((base = __next_base((cpu_base), &(active))))
503 static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
504 const struct hrtimer *exclude,
505 unsigned int active,
506 ktime_t expires_next)
508 struct hrtimer_clock_base *base;
509 ktime_t expires;
511 for_each_active_base(base, cpu_base, active) {
512 struct timerqueue_node *next;
513 struct hrtimer *timer;
515 next = timerqueue_getnext(&base->active);
516 timer = container_of(next, struct hrtimer, node);
517 if (timer == exclude) {
518 /* Get to the next timer in the queue. */
519 next = timerqueue_iterate_next(next);
520 if (!next)
521 continue;
523 timer = container_of(next, struct hrtimer, node);
525 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
526 if (expires < expires_next) {
527 expires_next = expires;
529 /* Skip cpu_base update if a timer is being excluded. */
530 if (exclude)
531 continue;
533 if (timer->is_soft)
534 cpu_base->softirq_next_timer = timer;
535 else
536 cpu_base->next_timer = timer;
540 * clock_was_set() might have changed base->offset of any of
541 * the clock bases so the result might be negative. Fix it up
542 * to prevent a false positive in clockevents_program_event().
544 if (expires_next < 0)
545 expires_next = 0;
546 return expires_next;
550 * Recomputes cpu_base::*next_timer and returns the earliest expires_next but
551 * does not set cpu_base::*expires_next, that is done by hrtimer_reprogram.
553 * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
554 * those timers will get run whenever the softirq gets handled, at the end of
555 * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
557 * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
558 * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
559 * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
561 * @active_mask must be one of:
562 * - HRTIMER_ACTIVE_ALL,
563 * - HRTIMER_ACTIVE_SOFT, or
564 * - HRTIMER_ACTIVE_HARD.
566 static ktime_t
567 __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
569 unsigned int active;
570 struct hrtimer *next_timer = NULL;
571 ktime_t expires_next = KTIME_MAX;
573 if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
574 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
575 cpu_base->softirq_next_timer = NULL;
576 expires_next = __hrtimer_next_event_base(cpu_base, NULL,
577 active, KTIME_MAX);
579 next_timer = cpu_base->softirq_next_timer;
582 if (active_mask & HRTIMER_ACTIVE_HARD) {
583 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
584 cpu_base->next_timer = next_timer;
585 expires_next = __hrtimer_next_event_base(cpu_base, NULL, active,
586 expires_next);
589 return expires_next;
592 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
594 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
595 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
596 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
598 ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
599 offs_real, offs_boot, offs_tai);
601 base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
602 base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot;
603 base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;
605 return now;
609 * Is the high resolution mode active ?
611 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
613 return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
614 cpu_base->hres_active : 0;
617 static inline int hrtimer_hres_active(void)
619 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
623 * Reprogram the event source with checking both queues for the
624 * next event
625 * Called with interrupts disabled and base->lock held
627 static void
628 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
630 ktime_t expires_next;
633 * Find the current next expiration time.
635 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
637 if (cpu_base->next_timer && cpu_base->next_timer->is_soft) {
639 * When the softirq is activated, hrtimer has to be
640 * programmed with the first hard hrtimer because soft
641 * timer interrupt could occur too late.
643 if (cpu_base->softirq_activated)
644 expires_next = __hrtimer_get_next_event(cpu_base,
645 HRTIMER_ACTIVE_HARD);
646 else
647 cpu_base->softirq_expires_next = expires_next;
650 if (skip_equal && expires_next == cpu_base->expires_next)
651 return;
653 cpu_base->expires_next = expires_next;
656 * If hres is not active, hardware does not have to be
657 * reprogrammed yet.
659 * If a hang was detected in the last timer interrupt then we
660 * leave the hang delay active in the hardware. We want the
661 * system to make progress. That also prevents the following
662 * scenario:
663 * T1 expires 50ms from now
664 * T2 expires 5s from now
666 * T1 is removed, so this code is called and would reprogram
667 * the hardware to 5s from now. Any hrtimer_start after that
668 * will not reprogram the hardware due to hang_detected being
669 * set. So we'd effectivly block all timers until the T2 event
670 * fires.
672 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
673 return;
675 tick_program_event(cpu_base->expires_next, 1);
678 /* High resolution timer related functions */
679 #ifdef CONFIG_HIGH_RES_TIMERS
682 * High resolution timer enabled ?
684 static bool hrtimer_hres_enabled __read_mostly = true;
685 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
686 EXPORT_SYMBOL_GPL(hrtimer_resolution);
689 * Enable / Disable high resolution mode
691 static int __init setup_hrtimer_hres(char *str)
693 return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
696 __setup("highres=", setup_hrtimer_hres);
699 * hrtimer_high_res_enabled - query, if the highres mode is enabled
701 static inline int hrtimer_is_hres_enabled(void)
703 return hrtimer_hres_enabled;
707 * Retrigger next event is called after clock was set
709 * Called with interrupts disabled via on_each_cpu()
711 static void retrigger_next_event(void *arg)
713 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
715 if (!__hrtimer_hres_active(base))
716 return;
718 raw_spin_lock(&base->lock);
719 hrtimer_update_base(base);
720 hrtimer_force_reprogram(base, 0);
721 raw_spin_unlock(&base->lock);
725 * Switch to high resolution mode
727 static void hrtimer_switch_to_hres(void)
729 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
731 if (tick_init_highres()) {
732 pr_warn("Could not switch to high resolution mode on CPU %u\n",
733 base->cpu);
734 return;
736 base->hres_active = 1;
737 hrtimer_resolution = HIGH_RES_NSEC;
739 tick_setup_sched_timer();
740 /* "Retrigger" the interrupt to get things going */
741 retrigger_next_event(NULL);
744 static void clock_was_set_work(struct work_struct *work)
746 clock_was_set();
749 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
752 * Called from timekeeping and resume code to reprogram the hrtimer
753 * interrupt device on all cpus.
755 void clock_was_set_delayed(void)
757 schedule_work(&hrtimer_work);
760 #else
762 static inline int hrtimer_is_hres_enabled(void) { return 0; }
763 static inline void hrtimer_switch_to_hres(void) { }
764 static inline void retrigger_next_event(void *arg) { }
766 #endif /* CONFIG_HIGH_RES_TIMERS */
769 * When a timer is enqueued and expires earlier than the already enqueued
770 * timers, we have to check, whether it expires earlier than the timer for
771 * which the clock event device was armed.
773 * Called with interrupts disabled and base->cpu_base.lock held
775 static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
777 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
778 struct hrtimer_clock_base *base = timer->base;
779 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
781 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
784 * CLOCK_REALTIME timer might be requested with an absolute
785 * expiry time which is less than base->offset. Set it to 0.
787 if (expires < 0)
788 expires = 0;
790 if (timer->is_soft) {
792 * soft hrtimer could be started on a remote CPU. In this
793 * case softirq_expires_next needs to be updated on the
794 * remote CPU. The soft hrtimer will not expire before the
795 * first hard hrtimer on the remote CPU -
796 * hrtimer_check_target() prevents this case.
798 struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;
800 if (timer_cpu_base->softirq_activated)
801 return;
803 if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
804 return;
806 timer_cpu_base->softirq_next_timer = timer;
807 timer_cpu_base->softirq_expires_next = expires;
809 if (!ktime_before(expires, timer_cpu_base->expires_next) ||
810 !reprogram)
811 return;
815 * If the timer is not on the current cpu, we cannot reprogram
816 * the other cpus clock event device.
818 if (base->cpu_base != cpu_base)
819 return;
822 * If the hrtimer interrupt is running, then it will
823 * reevaluate the clock bases and reprogram the clock event
824 * device. The callbacks are always executed in hard interrupt
825 * context so we don't need an extra check for a running
826 * callback.
828 if (cpu_base->in_hrtirq)
829 return;
831 if (expires >= cpu_base->expires_next)
832 return;
834 /* Update the pointer to the next expiring timer */
835 cpu_base->next_timer = timer;
836 cpu_base->expires_next = expires;
839 * If hres is not active, hardware does not have to be
840 * programmed yet.
842 * If a hang was detected in the last timer interrupt then we
843 * do not schedule a timer which is earlier than the expiry
844 * which we enforced in the hang detection. We want the system
845 * to make progress.
847 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
848 return;
851 * Program the timer hardware. We enforce the expiry for
852 * events which are already in the past.
854 tick_program_event(expires, 1);
858 * Clock realtime was set
860 * Change the offset of the realtime clock vs. the monotonic
861 * clock.
863 * We might have to reprogram the high resolution timer interrupt. On
864 * SMP we call the architecture specific code to retrigger _all_ high
865 * resolution timer interrupts. On UP we just disable interrupts and
866 * call the high resolution interrupt code.
868 void clock_was_set(void)
870 #ifdef CONFIG_HIGH_RES_TIMERS
871 /* Retrigger the CPU local events everywhere */
872 on_each_cpu(retrigger_next_event, NULL, 1);
873 #endif
874 timerfd_clock_was_set();
878 * During resume we might have to reprogram the high resolution timer
879 * interrupt on all online CPUs. However, all other CPUs will be
880 * stopped with IRQs interrupts disabled so the clock_was_set() call
881 * must be deferred.
883 void hrtimers_resume(void)
885 lockdep_assert_irqs_disabled();
886 /* Retrigger on the local CPU */
887 retrigger_next_event(NULL);
888 /* And schedule a retrigger for all others */
889 clock_was_set_delayed();
893 * Counterpart to lock_hrtimer_base above:
895 static inline
896 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
898 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
902 * hrtimer_forward - forward the timer expiry
903 * @timer: hrtimer to forward
904 * @now: forward past this time
905 * @interval: the interval to forward
907 * Forward the timer expiry so it will expire in the future.
908 * Returns the number of overruns.
910 * Can be safely called from the callback function of @timer. If
911 * called from other contexts @timer must neither be enqueued nor
912 * running the callback and the caller needs to take care of
913 * serialization.
915 * Note: This only updates the timer expiry value and does not requeue
916 * the timer.
918 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
920 u64 orun = 1;
921 ktime_t delta;
923 delta = ktime_sub(now, hrtimer_get_expires(timer));
925 if (delta < 0)
926 return 0;
928 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
929 return 0;
931 if (interval < hrtimer_resolution)
932 interval = hrtimer_resolution;
934 if (unlikely(delta >= interval)) {
935 s64 incr = ktime_to_ns(interval);
937 orun = ktime_divns(delta, incr);
938 hrtimer_add_expires_ns(timer, incr * orun);
939 if (hrtimer_get_expires_tv64(timer) > now)
940 return orun;
942 * This (and the ktime_add() below) is the
943 * correction for exact:
945 orun++;
947 hrtimer_add_expires(timer, interval);
949 return orun;
951 EXPORT_SYMBOL_GPL(hrtimer_forward);
954 * enqueue_hrtimer - internal function to (re)start a timer
956 * The timer is inserted in expiry order. Insertion into the
957 * red black tree is O(log(n)). Must hold the base lock.
959 * Returns 1 when the new timer is the leftmost timer in the tree.
961 static int enqueue_hrtimer(struct hrtimer *timer,
962 struct hrtimer_clock_base *base,
963 enum hrtimer_mode mode)
965 debug_activate(timer, mode);
967 base->cpu_base->active_bases |= 1 << base->index;
969 timer->state = HRTIMER_STATE_ENQUEUED;
971 return timerqueue_add(&base->active, &timer->node);
975 * __remove_hrtimer - internal function to remove a timer
977 * Caller must hold the base lock.
979 * High resolution timer mode reprograms the clock event device when the
980 * timer is the one which expires next. The caller can disable this by setting
981 * reprogram to zero. This is useful, when the context does a reprogramming
982 * anyway (e.g. timer interrupt)
984 static void __remove_hrtimer(struct hrtimer *timer,
985 struct hrtimer_clock_base *base,
986 u8 newstate, int reprogram)
988 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
989 u8 state = timer->state;
991 timer->state = newstate;
992 if (!(state & HRTIMER_STATE_ENQUEUED))
993 return;
995 if (!timerqueue_del(&base->active, &timer->node))
996 cpu_base->active_bases &= ~(1 << base->index);
999 * Note: If reprogram is false we do not update
1000 * cpu_base->next_timer. This happens when we remove the first
1001 * timer on a remote cpu. No harm as we never dereference
1002 * cpu_base->next_timer. So the worst thing what can happen is
1003 * an superflous call to hrtimer_force_reprogram() on the
1004 * remote cpu later on if the same timer gets enqueued again.
1006 if (reprogram && timer == cpu_base->next_timer)
1007 hrtimer_force_reprogram(cpu_base, 1);
1011 * remove hrtimer, called with base lock held
1013 static inline int
1014 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
1016 if (hrtimer_is_queued(timer)) {
1017 u8 state = timer->state;
1018 int reprogram;
1021 * Remove the timer and force reprogramming when high
1022 * resolution mode is active and the timer is on the current
1023 * CPU. If we remove a timer on another CPU, reprogramming is
1024 * skipped. The interrupt event on this CPU is fired and
1025 * reprogramming happens in the interrupt handler. This is a
1026 * rare case and less expensive than a smp call.
1028 debug_deactivate(timer);
1029 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1031 if (!restart)
1032 state = HRTIMER_STATE_INACTIVE;
1034 __remove_hrtimer(timer, base, state, reprogram);
1035 return 1;
1037 return 0;
1040 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
1041 const enum hrtimer_mode mode)
1043 #ifdef CONFIG_TIME_LOW_RES
1045 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
1046 * granular time values. For relative timers we add hrtimer_resolution
1047 * (i.e. one jiffie) to prevent short timeouts.
1049 timer->is_rel = mode & HRTIMER_MODE_REL;
1050 if (timer->is_rel)
1051 tim = ktime_add_safe(tim, hrtimer_resolution);
1052 #endif
1053 return tim;
1056 static void
1057 hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
1059 ktime_t expires;
1062 * Find the next SOFT expiration.
1064 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
1067 * reprogramming needs to be triggered, even if the next soft
1068 * hrtimer expires at the same time than the next hard
1069 * hrtimer. cpu_base->softirq_expires_next needs to be updated!
1071 if (expires == KTIME_MAX)
1072 return;
1075 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
1076 * cpu_base->*expires_next is only set by hrtimer_reprogram()
1078 hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
1081 static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1082 u64 delta_ns, const enum hrtimer_mode mode,
1083 struct hrtimer_clock_base *base)
1085 struct hrtimer_clock_base *new_base;
1087 /* Remove an active timer from the queue: */
1088 remove_hrtimer(timer, base, true);
1090 if (mode & HRTIMER_MODE_REL)
1091 tim = ktime_add_safe(tim, base->get_time());
1093 tim = hrtimer_update_lowres(timer, tim, mode);
1095 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1097 /* Switch the timer base, if necessary: */
1098 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
1100 return enqueue_hrtimer(timer, new_base, mode);
1104 * hrtimer_start_range_ns - (re)start an hrtimer
1105 * @timer: the timer to be added
1106 * @tim: expiry time
1107 * @delta_ns: "slack" range for the timer
1108 * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or
1109 * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
1110 * softirq based mode is considered for debug purpose only!
1112 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1113 u64 delta_ns, const enum hrtimer_mode mode)
1115 struct hrtimer_clock_base *base;
1116 unsigned long flags;
1119 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
1120 * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard
1121 * expiry mode because unmarked timers are moved to softirq expiry.
1123 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1124 WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);
1125 else
1126 WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard);
1128 base = lock_hrtimer_base(timer, &flags);
1130 if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
1131 hrtimer_reprogram(timer, true);
1133 unlock_hrtimer_base(timer, &flags);
1135 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1138 * hrtimer_try_to_cancel - try to deactivate a timer
1139 * @timer: hrtimer to stop
1141 * Returns:
1143 * * 0 when the timer was not active
1144 * * 1 when the timer was active
1145 * * -1 when the timer is currently executing the callback function and
1146 * cannot be stopped
1148 int hrtimer_try_to_cancel(struct hrtimer *timer)
1150 struct hrtimer_clock_base *base;
1151 unsigned long flags;
1152 int ret = -1;
1155 * Check lockless first. If the timer is not active (neither
1156 * enqueued nor running the callback, nothing to do here. The
1157 * base lock does not serialize against a concurrent enqueue,
1158 * so we can avoid taking it.
1160 if (!hrtimer_active(timer))
1161 return 0;
1163 base = lock_hrtimer_base(timer, &flags);
1165 if (!hrtimer_callback_running(timer))
1166 ret = remove_hrtimer(timer, base, false);
1168 unlock_hrtimer_base(timer, &flags);
1170 return ret;
1173 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1175 #ifdef CONFIG_PREEMPT_RT
1176 static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base)
1178 spin_lock_init(&base->softirq_expiry_lock);
1181 static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base)
1183 spin_lock(&base->softirq_expiry_lock);
1186 static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base)
1188 spin_unlock(&base->softirq_expiry_lock);
1192 * The counterpart to hrtimer_cancel_wait_running().
1194 * If there is a waiter for cpu_base->expiry_lock, then it was waiting for
1195 * the timer callback to finish. Drop expiry_lock and reaquire it. That
1196 * allows the waiter to acquire the lock and make progress.
1198 static void hrtimer_sync_wait_running(struct hrtimer_cpu_base *cpu_base,
1199 unsigned long flags)
1201 if (atomic_read(&cpu_base->timer_waiters)) {
1202 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1203 spin_unlock(&cpu_base->softirq_expiry_lock);
1204 spin_lock(&cpu_base->softirq_expiry_lock);
1205 raw_spin_lock_irq(&cpu_base->lock);
1210 * This function is called on PREEMPT_RT kernels when the fast path
1211 * deletion of a timer failed because the timer callback function was
1212 * running.
1214 * This prevents priority inversion: if the soft irq thread is preempted
1215 * in the middle of a timer callback, then calling del_timer_sync() can
1216 * lead to two issues:
1218 * - If the caller is on a remote CPU then it has to spin wait for the timer
1219 * handler to complete. This can result in unbound priority inversion.
1221 * - If the caller originates from the task which preempted the timer
1222 * handler on the same CPU, then spin waiting for the timer handler to
1223 * complete is never going to end.
1225 void hrtimer_cancel_wait_running(const struct hrtimer *timer)
1227 /* Lockless read. Prevent the compiler from reloading it below */
1228 struct hrtimer_clock_base *base = READ_ONCE(timer->base);
1231 * Just relax if the timer expires in hard interrupt context or if
1232 * it is currently on the migration base.
1234 if (!timer->is_soft || is_migration_base(base)) {
1235 cpu_relax();
1236 return;
1240 * Mark the base as contended and grab the expiry lock, which is
1241 * held by the softirq across the timer callback. Drop the lock
1242 * immediately so the softirq can expire the next timer. In theory
1243 * the timer could already be running again, but that's more than
1244 * unlikely and just causes another wait loop.
1246 atomic_inc(&base->cpu_base->timer_waiters);
1247 spin_lock_bh(&base->cpu_base->softirq_expiry_lock);
1248 atomic_dec(&base->cpu_base->timer_waiters);
1249 spin_unlock_bh(&base->cpu_base->softirq_expiry_lock);
1251 #else
1252 static inline void
1253 hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { }
1254 static inline void
1255 hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) { }
1256 static inline void
1257 hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) { }
1258 static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base *base,
1259 unsigned long flags) { }
1260 #endif
1263 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1264 * @timer: the timer to be cancelled
1266 * Returns:
1267 * 0 when the timer was not active
1268 * 1 when the timer was active
1270 int hrtimer_cancel(struct hrtimer *timer)
1272 int ret;
1274 do {
1275 ret = hrtimer_try_to_cancel(timer);
1277 if (ret < 0)
1278 hrtimer_cancel_wait_running(timer);
1279 } while (ret < 0);
1280 return ret;
1282 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1285 * hrtimer_get_remaining - get remaining time for the timer
1286 * @timer: the timer to read
1287 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y
1289 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1291 unsigned long flags;
1292 ktime_t rem;
1294 lock_hrtimer_base(timer, &flags);
1295 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1296 rem = hrtimer_expires_remaining_adjusted(timer);
1297 else
1298 rem = hrtimer_expires_remaining(timer);
1299 unlock_hrtimer_base(timer, &flags);
1301 return rem;
1303 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1305 #ifdef CONFIG_NO_HZ_COMMON
1307 * hrtimer_get_next_event - get the time until next expiry event
1309 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1311 u64 hrtimer_get_next_event(void)
1313 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1314 u64 expires = KTIME_MAX;
1315 unsigned long flags;
1317 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1319 if (!__hrtimer_hres_active(cpu_base))
1320 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1322 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1324 return expires;
1328 * hrtimer_next_event_without - time until next expiry event w/o one timer
1329 * @exclude: timer to exclude
1331 * Returns the next expiry time over all timers except for the @exclude one or
1332 * KTIME_MAX if none of them is pending.
1334 u64 hrtimer_next_event_without(const struct hrtimer *exclude)
1336 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1337 u64 expires = KTIME_MAX;
1338 unsigned long flags;
1340 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1342 if (__hrtimer_hres_active(cpu_base)) {
1343 unsigned int active;
1345 if (!cpu_base->softirq_activated) {
1346 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
1347 expires = __hrtimer_next_event_base(cpu_base, exclude,
1348 active, KTIME_MAX);
1350 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
1351 expires = __hrtimer_next_event_base(cpu_base, exclude, active,
1352 expires);
1355 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1357 return expires;
1359 #endif
1361 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1363 if (likely(clock_id < MAX_CLOCKS)) {
1364 int base = hrtimer_clock_to_base_table[clock_id];
1366 if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1367 return base;
1369 WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1370 return HRTIMER_BASE_MONOTONIC;
1373 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1374 enum hrtimer_mode mode)
1376 bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
1377 struct hrtimer_cpu_base *cpu_base;
1378 int base;
1381 * On PREEMPT_RT enabled kernels hrtimers which are not explicitely
1382 * marked for hard interrupt expiry mode are moved into soft
1383 * interrupt context for latency reasons and because the callbacks
1384 * can invoke functions which might sleep on RT, e.g. spin_lock().
1386 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD))
1387 softtimer = true;
1389 memset(timer, 0, sizeof(struct hrtimer));
1391 cpu_base = raw_cpu_ptr(&hrtimer_bases);
1394 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1395 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1396 * ensure POSIX compliance.
1398 if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1399 clock_id = CLOCK_MONOTONIC;
1401 base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
1402 base += hrtimer_clockid_to_base(clock_id);
1403 timer->is_soft = softtimer;
1404 timer->is_hard = !softtimer;
1405 timer->base = &cpu_base->clock_base[base];
1406 timerqueue_init(&timer->node);
1410 * hrtimer_init - initialize a timer to the given clock
1411 * @timer: the timer to be initialized
1412 * @clock_id: the clock to be used
1413 * @mode: The modes which are relevant for intitialization:
1414 * HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1415 * HRTIMER_MODE_REL_SOFT
1417 * The PINNED variants of the above can be handed in,
1418 * but the PINNED bit is ignored as pinning happens
1419 * when the hrtimer is started
1421 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1422 enum hrtimer_mode mode)
1424 debug_init(timer, clock_id, mode);
1425 __hrtimer_init(timer, clock_id, mode);
1427 EXPORT_SYMBOL_GPL(hrtimer_init);
1430 * A timer is active, when it is enqueued into the rbtree or the
1431 * callback function is running or it's in the state of being migrated
1432 * to another cpu.
1434 * It is important for this function to not return a false negative.
1436 bool hrtimer_active(const struct hrtimer *timer)
1438 struct hrtimer_clock_base *base;
1439 unsigned int seq;
1441 do {
1442 base = READ_ONCE(timer->base);
1443 seq = raw_read_seqcount_begin(&base->seq);
1445 if (timer->state != HRTIMER_STATE_INACTIVE ||
1446 base->running == timer)
1447 return true;
1449 } while (read_seqcount_retry(&base->seq, seq) ||
1450 base != READ_ONCE(timer->base));
1452 return false;
1454 EXPORT_SYMBOL_GPL(hrtimer_active);
1457 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1458 * distinct sections:
1460 * - queued: the timer is queued
1461 * - callback: the timer is being ran
1462 * - post: the timer is inactive or (re)queued
1464 * On the read side we ensure we observe timer->state and cpu_base->running
1465 * from the same section, if anything changed while we looked at it, we retry.
1466 * This includes timer->base changing because sequence numbers alone are
1467 * insufficient for that.
1469 * The sequence numbers are required because otherwise we could still observe
1470 * a false negative if the read side got smeared over multiple consequtive
1471 * __run_hrtimer() invocations.
1474 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1475 struct hrtimer_clock_base *base,
1476 struct hrtimer *timer, ktime_t *now,
1477 unsigned long flags)
1479 enum hrtimer_restart (*fn)(struct hrtimer *);
1480 int restart;
1482 lockdep_assert_held(&cpu_base->lock);
1484 debug_deactivate(timer);
1485 base->running = timer;
1488 * Separate the ->running assignment from the ->state assignment.
1490 * As with a regular write barrier, this ensures the read side in
1491 * hrtimer_active() cannot observe base->running == NULL &&
1492 * timer->state == INACTIVE.
1494 raw_write_seqcount_barrier(&base->seq);
1496 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1497 fn = timer->function;
1500 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1501 * timer is restarted with a period then it becomes an absolute
1502 * timer. If its not restarted it does not matter.
1504 if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1505 timer->is_rel = false;
1508 * The timer is marked as running in the CPU base, so it is
1509 * protected against migration to a different CPU even if the lock
1510 * is dropped.
1512 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1513 trace_hrtimer_expire_entry(timer, now);
1514 restart = fn(timer);
1515 trace_hrtimer_expire_exit(timer);
1516 raw_spin_lock_irq(&cpu_base->lock);
1519 * Note: We clear the running state after enqueue_hrtimer and
1520 * we do not reprogram the event hardware. Happens either in
1521 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1523 * Note: Because we dropped the cpu_base->lock above,
1524 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1525 * for us already.
1527 if (restart != HRTIMER_NORESTART &&
1528 !(timer->state & HRTIMER_STATE_ENQUEUED))
1529 enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
1532 * Separate the ->running assignment from the ->state assignment.
1534 * As with a regular write barrier, this ensures the read side in
1535 * hrtimer_active() cannot observe base->running.timer == NULL &&
1536 * timer->state == INACTIVE.
1538 raw_write_seqcount_barrier(&base->seq);
1540 WARN_ON_ONCE(base->running != timer);
1541 base->running = NULL;
1544 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
1545 unsigned long flags, unsigned int active_mask)
1547 struct hrtimer_clock_base *base;
1548 unsigned int active = cpu_base->active_bases & active_mask;
1550 for_each_active_base(base, cpu_base, active) {
1551 struct timerqueue_node *node;
1552 ktime_t basenow;
1554 basenow = ktime_add(now, base->offset);
1556 while ((node = timerqueue_getnext(&base->active))) {
1557 struct hrtimer *timer;
1559 timer = container_of(node, struct hrtimer, node);
1562 * The immediate goal for using the softexpires is
1563 * minimizing wakeups, not running timers at the
1564 * earliest interrupt after their soft expiration.
1565 * This allows us to avoid using a Priority Search
1566 * Tree, which can answer a stabbing querry for
1567 * overlapping intervals and instead use the simple
1568 * BST we already have.
1569 * We don't add extra wakeups by delaying timers that
1570 * are right-of a not yet expired timer, because that
1571 * timer will have to trigger a wakeup anyway.
1573 if (basenow < hrtimer_get_softexpires_tv64(timer))
1574 break;
1576 __run_hrtimer(cpu_base, base, timer, &basenow, flags);
1577 if (active_mask == HRTIMER_ACTIVE_SOFT)
1578 hrtimer_sync_wait_running(cpu_base, flags);
1583 static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h)
1585 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1586 unsigned long flags;
1587 ktime_t now;
1589 hrtimer_cpu_base_lock_expiry(cpu_base);
1590 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1592 now = hrtimer_update_base(cpu_base);
1593 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);
1595 cpu_base->softirq_activated = 0;
1596 hrtimer_update_softirq_timer(cpu_base, true);
1598 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1599 hrtimer_cpu_base_unlock_expiry(cpu_base);
1602 #ifdef CONFIG_HIGH_RES_TIMERS
1605 * High resolution timer interrupt
1606 * Called with interrupts disabled
1608 void hrtimer_interrupt(struct clock_event_device *dev)
1610 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1611 ktime_t expires_next, now, entry_time, delta;
1612 unsigned long flags;
1613 int retries = 0;
1615 BUG_ON(!cpu_base->hres_active);
1616 cpu_base->nr_events++;
1617 dev->next_event = KTIME_MAX;
1619 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1620 entry_time = now = hrtimer_update_base(cpu_base);
1621 retry:
1622 cpu_base->in_hrtirq = 1;
1624 * We set expires_next to KTIME_MAX here with cpu_base->lock
1625 * held to prevent that a timer is enqueued in our queue via
1626 * the migration code. This does not affect enqueueing of
1627 * timers which run their callback and need to be requeued on
1628 * this CPU.
1630 cpu_base->expires_next = KTIME_MAX;
1632 if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1633 cpu_base->softirq_expires_next = KTIME_MAX;
1634 cpu_base->softirq_activated = 1;
1635 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1638 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1640 /* Reevaluate the clock bases for the next expiry */
1641 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1643 * Store the new expiry value so the migration code can verify
1644 * against it.
1646 cpu_base->expires_next = expires_next;
1647 cpu_base->in_hrtirq = 0;
1648 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1650 /* Reprogramming necessary ? */
1651 if (!tick_program_event(expires_next, 0)) {
1652 cpu_base->hang_detected = 0;
1653 return;
1657 * The next timer was already expired due to:
1658 * - tracing
1659 * - long lasting callbacks
1660 * - being scheduled away when running in a VM
1662 * We need to prevent that we loop forever in the hrtimer
1663 * interrupt routine. We give it 3 attempts to avoid
1664 * overreacting on some spurious event.
1666 * Acquire base lock for updating the offsets and retrieving
1667 * the current time.
1669 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1670 now = hrtimer_update_base(cpu_base);
1671 cpu_base->nr_retries++;
1672 if (++retries < 3)
1673 goto retry;
1675 * Give the system a chance to do something else than looping
1676 * here. We stored the entry time, so we know exactly how long
1677 * we spent here. We schedule the next event this amount of
1678 * time away.
1680 cpu_base->nr_hangs++;
1681 cpu_base->hang_detected = 1;
1682 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1684 delta = ktime_sub(now, entry_time);
1685 if ((unsigned int)delta > cpu_base->max_hang_time)
1686 cpu_base->max_hang_time = (unsigned int) delta;
1688 * Limit it to a sensible value as we enforce a longer
1689 * delay. Give the CPU at least 100ms to catch up.
1691 if (delta > 100 * NSEC_PER_MSEC)
1692 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1693 else
1694 expires_next = ktime_add(now, delta);
1695 tick_program_event(expires_next, 1);
1696 pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta));
1699 /* called with interrupts disabled */
1700 static inline void __hrtimer_peek_ahead_timers(void)
1702 struct tick_device *td;
1704 if (!hrtimer_hres_active())
1705 return;
1707 td = this_cpu_ptr(&tick_cpu_device);
1708 if (td && td->evtdev)
1709 hrtimer_interrupt(td->evtdev);
1712 #else /* CONFIG_HIGH_RES_TIMERS */
1714 static inline void __hrtimer_peek_ahead_timers(void) { }
1716 #endif /* !CONFIG_HIGH_RES_TIMERS */
1719 * Called from run_local_timers in hardirq context every jiffy
1721 void hrtimer_run_queues(void)
1723 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1724 unsigned long flags;
1725 ktime_t now;
1727 if (__hrtimer_hres_active(cpu_base))
1728 return;
1731 * This _is_ ugly: We have to check periodically, whether we
1732 * can switch to highres and / or nohz mode. The clocksource
1733 * switch happens with xtime_lock held. Notification from
1734 * there only sets the check bit in the tick_oneshot code,
1735 * otherwise we might deadlock vs. xtime_lock.
1737 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1738 hrtimer_switch_to_hres();
1739 return;
1742 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1743 now = hrtimer_update_base(cpu_base);
1745 if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1746 cpu_base->softirq_expires_next = KTIME_MAX;
1747 cpu_base->softirq_activated = 1;
1748 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1751 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1752 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1756 * Sleep related functions:
1758 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1760 struct hrtimer_sleeper *t =
1761 container_of(timer, struct hrtimer_sleeper, timer);
1762 struct task_struct *task = t->task;
1764 t->task = NULL;
1765 if (task)
1766 wake_up_process(task);
1768 return HRTIMER_NORESTART;
1772 * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer
1773 * @sl: sleeper to be started
1774 * @mode: timer mode abs/rel
1776 * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers
1777 * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context)
1779 void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl,
1780 enum hrtimer_mode mode)
1783 * Make the enqueue delivery mode check work on RT. If the sleeper
1784 * was initialized for hard interrupt delivery, force the mode bit.
1785 * This is a special case for hrtimer_sleepers because
1786 * hrtimer_init_sleeper() determines the delivery mode on RT so the
1787 * fiddling with this decision is avoided at the call sites.
1789 if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard)
1790 mode |= HRTIMER_MODE_HARD;
1792 hrtimer_start_expires(&sl->timer, mode);
1794 EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires);
1796 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
1797 clockid_t clock_id, enum hrtimer_mode mode)
1800 * On PREEMPT_RT enabled kernels hrtimers which are not explicitely
1801 * marked for hard interrupt expiry mode are moved into soft
1802 * interrupt context either for latency reasons or because the
1803 * hrtimer callback takes regular spinlocks or invokes other
1804 * functions which are not suitable for hard interrupt context on
1805 * PREEMPT_RT.
1807 * The hrtimer_sleeper callback is RT compatible in hard interrupt
1808 * context, but there is a latency concern: Untrusted userspace can
1809 * spawn many threads which arm timers for the same expiry time on
1810 * the same CPU. That causes a latency spike due to the wakeup of
1811 * a gazillion threads.
1813 * OTOH, priviledged real-time user space applications rely on the
1814 * low latency of hard interrupt wakeups. If the current task is in
1815 * a real-time scheduling class, mark the mode for hard interrupt
1816 * expiry.
1818 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
1819 if (task_is_realtime(current) && !(mode & HRTIMER_MODE_SOFT))
1820 mode |= HRTIMER_MODE_HARD;
1823 __hrtimer_init(&sl->timer, clock_id, mode);
1824 sl->timer.function = hrtimer_wakeup;
1825 sl->task = current;
1829 * hrtimer_init_sleeper - initialize sleeper to the given clock
1830 * @sl: sleeper to be initialized
1831 * @clock_id: the clock to be used
1832 * @mode: timer mode abs/rel
1834 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, clockid_t clock_id,
1835 enum hrtimer_mode mode)
1837 debug_init(&sl->timer, clock_id, mode);
1838 __hrtimer_init_sleeper(sl, clock_id, mode);
1841 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1843 int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
1845 switch(restart->nanosleep.type) {
1846 #ifdef CONFIG_COMPAT_32BIT_TIME
1847 case TT_COMPAT:
1848 if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp))
1849 return -EFAULT;
1850 break;
1851 #endif
1852 case TT_NATIVE:
1853 if (put_timespec64(ts, restart->nanosleep.rmtp))
1854 return -EFAULT;
1855 break;
1856 default:
1857 BUG();
1859 return -ERESTART_RESTARTBLOCK;
1862 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1864 struct restart_block *restart;
1866 do {
1867 set_current_state(TASK_INTERRUPTIBLE);
1868 hrtimer_sleeper_start_expires(t, mode);
1870 if (likely(t->task))
1871 freezable_schedule();
1873 hrtimer_cancel(&t->timer);
1874 mode = HRTIMER_MODE_ABS;
1876 } while (t->task && !signal_pending(current));
1878 __set_current_state(TASK_RUNNING);
1880 if (!t->task)
1881 return 0;
1883 restart = &current->restart_block;
1884 if (restart->nanosleep.type != TT_NONE) {
1885 ktime_t rem = hrtimer_expires_remaining(&t->timer);
1886 struct timespec64 rmt;
1888 if (rem <= 0)
1889 return 0;
1890 rmt = ktime_to_timespec64(rem);
1892 return nanosleep_copyout(restart, &rmt);
1894 return -ERESTART_RESTARTBLOCK;
1897 static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1899 struct hrtimer_sleeper t;
1900 int ret;
1902 hrtimer_init_sleeper_on_stack(&t, restart->nanosleep.clockid,
1903 HRTIMER_MODE_ABS);
1904 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1905 ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
1906 destroy_hrtimer_on_stack(&t.timer);
1907 return ret;
1910 long hrtimer_nanosleep(const struct timespec64 *rqtp,
1911 const enum hrtimer_mode mode, const clockid_t clockid)
1913 struct restart_block *restart;
1914 struct hrtimer_sleeper t;
1915 int ret = 0;
1916 u64 slack;
1918 slack = current->timer_slack_ns;
1919 if (dl_task(current) || rt_task(current))
1920 slack = 0;
1922 hrtimer_init_sleeper_on_stack(&t, clockid, mode);
1923 hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack);
1924 ret = do_nanosleep(&t, mode);
1925 if (ret != -ERESTART_RESTARTBLOCK)
1926 goto out;
1928 /* Absolute timers do not update the rmtp value and restart: */
1929 if (mode == HRTIMER_MODE_ABS) {
1930 ret = -ERESTARTNOHAND;
1931 goto out;
1934 restart = &current->restart_block;
1935 restart->fn = hrtimer_nanosleep_restart;
1936 restart->nanosleep.clockid = t.timer.base->clockid;
1937 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1938 out:
1939 destroy_hrtimer_on_stack(&t.timer);
1940 return ret;
1943 #if !defined(CONFIG_64BIT_TIME) || defined(CONFIG_64BIT)
1945 SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp,
1946 struct __kernel_timespec __user *, rmtp)
1948 struct timespec64 tu;
1950 if (get_timespec64(&tu, rqtp))
1951 return -EFAULT;
1953 if (!timespec64_valid(&tu))
1954 return -EINVAL;
1956 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1957 current->restart_block.nanosleep.rmtp = rmtp;
1958 return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1961 #endif
1963 #ifdef CONFIG_COMPAT_32BIT_TIME
1965 SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp,
1966 struct old_timespec32 __user *, rmtp)
1968 struct timespec64 tu;
1970 if (get_old_timespec32(&tu, rqtp))
1971 return -EFAULT;
1973 if (!timespec64_valid(&tu))
1974 return -EINVAL;
1976 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1977 current->restart_block.nanosleep.compat_rmtp = rmtp;
1978 return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1980 #endif
1983 * Functions related to boot-time initialization:
1985 int hrtimers_prepare_cpu(unsigned int cpu)
1987 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1988 int i;
1990 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1991 cpu_base->clock_base[i].cpu_base = cpu_base;
1992 timerqueue_init_head(&cpu_base->clock_base[i].active);
1995 cpu_base->cpu = cpu;
1996 cpu_base->active_bases = 0;
1997 cpu_base->hres_active = 0;
1998 cpu_base->hang_detected = 0;
1999 cpu_base->next_timer = NULL;
2000 cpu_base->softirq_next_timer = NULL;
2001 cpu_base->expires_next = KTIME_MAX;
2002 cpu_base->softirq_expires_next = KTIME_MAX;
2003 hrtimer_cpu_base_init_expiry_lock(cpu_base);
2004 return 0;
2007 #ifdef CONFIG_HOTPLUG_CPU
2009 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
2010 struct hrtimer_clock_base *new_base)
2012 struct hrtimer *timer;
2013 struct timerqueue_node *node;
2015 while ((node = timerqueue_getnext(&old_base->active))) {
2016 timer = container_of(node, struct hrtimer, node);
2017 BUG_ON(hrtimer_callback_running(timer));
2018 debug_deactivate(timer);
2021 * Mark it as ENQUEUED not INACTIVE otherwise the
2022 * timer could be seen as !active and just vanish away
2023 * under us on another CPU
2025 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
2026 timer->base = new_base;
2028 * Enqueue the timers on the new cpu. This does not
2029 * reprogram the event device in case the timer
2030 * expires before the earliest on this CPU, but we run
2031 * hrtimer_interrupt after we migrated everything to
2032 * sort out already expired timers and reprogram the
2033 * event device.
2035 enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
2039 int hrtimers_dead_cpu(unsigned int scpu)
2041 struct hrtimer_cpu_base *old_base, *new_base;
2042 int i;
2044 BUG_ON(cpu_online(scpu));
2045 tick_cancel_sched_timer(scpu);
2048 * this BH disable ensures that raise_softirq_irqoff() does
2049 * not wakeup ksoftirqd (and acquire the pi-lock) while
2050 * holding the cpu_base lock
2052 local_bh_disable();
2053 local_irq_disable();
2054 old_base = &per_cpu(hrtimer_bases, scpu);
2055 new_base = this_cpu_ptr(&hrtimer_bases);
2057 * The caller is globally serialized and nobody else
2058 * takes two locks at once, deadlock is not possible.
2060 raw_spin_lock(&new_base->lock);
2061 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
2063 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2064 migrate_hrtimer_list(&old_base->clock_base[i],
2065 &new_base->clock_base[i]);
2069 * The migration might have changed the first expiring softirq
2070 * timer on this CPU. Update it.
2072 hrtimer_update_softirq_timer(new_base, false);
2074 raw_spin_unlock(&old_base->lock);
2075 raw_spin_unlock(&new_base->lock);
2077 /* Check, if we got expired work to do */
2078 __hrtimer_peek_ahead_timers();
2079 local_irq_enable();
2080 local_bh_enable();
2081 return 0;
2084 #endif /* CONFIG_HOTPLUG_CPU */
2086 void __init hrtimers_init(void)
2088 hrtimers_prepare_cpu(smp_processor_id());
2089 open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
2093 * schedule_hrtimeout_range_clock - sleep until timeout
2094 * @expires: timeout value (ktime_t)
2095 * @delta: slack in expires timeout (ktime_t)
2096 * @mode: timer mode
2097 * @clock_id: timer clock to be used
2099 int __sched
2100 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
2101 const enum hrtimer_mode mode, clockid_t clock_id)
2103 struct hrtimer_sleeper t;
2106 * Optimize when a zero timeout value is given. It does not
2107 * matter whether this is an absolute or a relative time.
2109 if (expires && *expires == 0) {
2110 __set_current_state(TASK_RUNNING);
2111 return 0;
2115 * A NULL parameter means "infinite"
2117 if (!expires) {
2118 schedule();
2119 return -EINTR;
2122 hrtimer_init_sleeper_on_stack(&t, clock_id, mode);
2123 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
2124 hrtimer_sleeper_start_expires(&t, mode);
2126 if (likely(t.task))
2127 schedule();
2129 hrtimer_cancel(&t.timer);
2130 destroy_hrtimer_on_stack(&t.timer);
2132 __set_current_state(TASK_RUNNING);
2134 return !t.task ? 0 : -EINTR;
2138 * schedule_hrtimeout_range - sleep until timeout
2139 * @expires: timeout value (ktime_t)
2140 * @delta: slack in expires timeout (ktime_t)
2141 * @mode: timer mode
2143 * Make the current task sleep until the given expiry time has
2144 * elapsed. The routine will return immediately unless
2145 * the current task state has been set (see set_current_state()).
2147 * The @delta argument gives the kernel the freedom to schedule the
2148 * actual wakeup to a time that is both power and performance friendly.
2149 * The kernel give the normal best effort behavior for "@expires+@delta",
2150 * but may decide to fire the timer earlier, but no earlier than @expires.
2152 * You can set the task state as follows -
2154 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2155 * pass before the routine returns unless the current task is explicitly
2156 * woken up, (e.g. by wake_up_process()).
2158 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2159 * delivered to the current task or the current task is explicitly woken
2160 * up.
2162 * The current task state is guaranteed to be TASK_RUNNING when this
2163 * routine returns.
2165 * Returns 0 when the timer has expired. If the task was woken before the
2166 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2167 * by an explicit wakeup, it returns -EINTR.
2169 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
2170 const enum hrtimer_mode mode)
2172 return schedule_hrtimeout_range_clock(expires, delta, mode,
2173 CLOCK_MONOTONIC);
2175 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
2178 * schedule_hrtimeout - sleep until timeout
2179 * @expires: timeout value (ktime_t)
2180 * @mode: timer mode
2182 * Make the current task sleep until the given expiry time has
2183 * elapsed. The routine will return immediately unless
2184 * the current task state has been set (see set_current_state()).
2186 * You can set the task state as follows -
2188 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2189 * pass before the routine returns unless the current task is explicitly
2190 * woken up, (e.g. by wake_up_process()).
2192 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2193 * delivered to the current task or the current task is explicitly woken
2194 * up.
2196 * The current task state is guaranteed to be TASK_RUNNING when this
2197 * routine returns.
2199 * Returns 0 when the timer has expired. If the task was woken before the
2200 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2201 * by an explicit wakeup, it returns -EINTR.
2203 int __sched schedule_hrtimeout(ktime_t *expires,
2204 const enum hrtimer_mode mode)
2206 return schedule_hrtimeout_range(expires, 0, mode);
2208 EXPORT_SYMBOL_GPL(schedule_hrtimeout);