1 // SPDX-License-Identifier: GPL-2.0+
3 * 2002-10-15 Posix Clocks & timers
4 * by George Anzinger george@mvista.com
5 * Copyright (C) 2002 2003 by MontaVista Software.
7 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
8 * Copyright (C) 2004 Boris Hu
10 * These are all the functions necessary to implement POSIX clocks & timers
13 #include <linux/interrupt.h>
14 #include <linux/slab.h>
15 #include <linux/time.h>
16 #include <linux/mutex.h>
17 #include <linux/sched/task.h>
19 #include <linux/uaccess.h>
20 #include <linux/list.h>
21 #include <linux/init.h>
22 #include <linux/compiler.h>
23 #include <linux/hash.h>
24 #include <linux/posix-clock.h>
25 #include <linux/posix-timers.h>
26 #include <linux/syscalls.h>
27 #include <linux/wait.h>
28 #include <linux/workqueue.h>
29 #include <linux/export.h>
30 #include <linux/hashtable.h>
31 #include <linux/compat.h>
32 #include <linux/nospec.h>
34 #include "timekeeping.h"
35 #include "posix-timers.h"
38 * Management arrays for POSIX timers. Timers are now kept in static hash table
40 * Timer ids are allocated by local routine, which selects proper hash head by
41 * key, constructed from current->signal address and per signal struct counter.
42 * This keeps timer ids unique per process, but now they can intersect between
47 * Lets keep our timers in a slab cache :-)
49 static struct kmem_cache
*posix_timers_cache
;
51 static DEFINE_HASHTABLE(posix_timers_hashtable
, 9);
52 static DEFINE_SPINLOCK(hash_lock
);
54 static const struct k_clock
* const posix_clocks
[];
55 static const struct k_clock
*clockid_to_kclock(const clockid_t id
);
56 static const struct k_clock clock_realtime
, clock_monotonic
;
59 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
60 * SIGEV values. Here we put out an error if this assumption fails.
62 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
63 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
64 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
68 * The timer ID is turned into a timer address by idr_find().
69 * Verifying a valid ID consists of:
71 * a) checking that idr_find() returns other than -1.
72 * b) checking that the timer id matches the one in the timer itself.
73 * c) that the timer owner is in the callers thread group.
77 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
78 * to implement others. This structure defines the various
81 * RESOLUTION: Clock resolution is used to round up timer and interval
82 * times, NOT to report clock times, which are reported with as
83 * much resolution as the system can muster. In some cases this
84 * resolution may depend on the underlying clock hardware and
85 * may not be quantifiable until run time, and only then is the
86 * necessary code is written. The standard says we should say
87 * something about this issue in the documentation...
89 * FUNCTIONS: The CLOCKs structure defines possible functions to
90 * handle various clock functions.
92 * The standard POSIX timer management code assumes the
93 * following: 1.) The k_itimer struct (sched.h) is used for
94 * the timer. 2.) The list, it_lock, it_clock, it_id and
95 * it_pid fields are not modified by timer code.
97 * Permissions: It is assumed that the clock_settime() function defined
98 * for each clock will take care of permission checks. Some
99 * clocks may be set able by any user (i.e. local process
100 * clocks) others not. Currently the only set able clock we
101 * have is CLOCK_REALTIME and its high res counter part, both of
102 * which we beg off on and pass to do_sys_settimeofday().
104 static struct k_itimer
*__lock_timer(timer_t timer_id
, unsigned long *flags
);
106 #define lock_timer(tid, flags) \
107 ({ struct k_itimer *__timr; \
108 __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \
112 static int hash(struct signal_struct
*sig
, unsigned int nr
)
114 return hash_32(hash32_ptr(sig
) ^ nr
, HASH_BITS(posix_timers_hashtable
));
117 static struct k_itimer
*__posix_timers_find(struct hlist_head
*head
,
118 struct signal_struct
*sig
,
121 struct k_itimer
*timer
;
123 hlist_for_each_entry_rcu(timer
, head
, t_hash
) {
124 if ((timer
->it_signal
== sig
) && (timer
->it_id
== id
))
130 static struct k_itimer
*posix_timer_by_id(timer_t id
)
132 struct signal_struct
*sig
= current
->signal
;
133 struct hlist_head
*head
= &posix_timers_hashtable
[hash(sig
, id
)];
135 return __posix_timers_find(head
, sig
, id
);
138 static int posix_timer_add(struct k_itimer
*timer
)
140 struct signal_struct
*sig
= current
->signal
;
141 int first_free_id
= sig
->posix_timer_id
;
142 struct hlist_head
*head
;
146 spin_lock(&hash_lock
);
147 head
= &posix_timers_hashtable
[hash(sig
, sig
->posix_timer_id
)];
148 if (!__posix_timers_find(head
, sig
, sig
->posix_timer_id
)) {
149 hlist_add_head_rcu(&timer
->t_hash
, head
);
150 ret
= sig
->posix_timer_id
;
152 if (++sig
->posix_timer_id
< 0)
153 sig
->posix_timer_id
= 0;
154 if ((sig
->posix_timer_id
== first_free_id
) && (ret
== -ENOENT
))
155 /* Loop over all possible ids completed */
157 spin_unlock(&hash_lock
);
158 } while (ret
== -ENOENT
);
162 static inline void unlock_timer(struct k_itimer
*timr
, unsigned long flags
)
164 spin_unlock_irqrestore(&timr
->it_lock
, flags
);
167 /* Get clock_realtime */
168 static int posix_clock_realtime_get(clockid_t which_clock
, struct timespec64
*tp
)
170 ktime_get_real_ts64(tp
);
174 /* Set clock_realtime */
175 static int posix_clock_realtime_set(const clockid_t which_clock
,
176 const struct timespec64
*tp
)
178 return do_sys_settimeofday64(tp
, NULL
);
181 static int posix_clock_realtime_adj(const clockid_t which_clock
,
182 struct __kernel_timex
*t
)
184 return do_adjtimex(t
);
188 * Get monotonic time for posix timers
190 static int posix_ktime_get_ts(clockid_t which_clock
, struct timespec64
*tp
)
197 * Get monotonic-raw time for posix timers
199 static int posix_get_monotonic_raw(clockid_t which_clock
, struct timespec64
*tp
)
201 ktime_get_raw_ts64(tp
);
206 static int posix_get_realtime_coarse(clockid_t which_clock
, struct timespec64
*tp
)
208 ktime_get_coarse_real_ts64(tp
);
212 static int posix_get_monotonic_coarse(clockid_t which_clock
,
213 struct timespec64
*tp
)
215 ktime_get_coarse_ts64(tp
);
219 static int posix_get_coarse_res(const clockid_t which_clock
, struct timespec64
*tp
)
221 *tp
= ktime_to_timespec64(KTIME_LOW_RES
);
225 static int posix_get_boottime(const clockid_t which_clock
, struct timespec64
*tp
)
227 ktime_get_boottime_ts64(tp
);
231 static int posix_get_tai(clockid_t which_clock
, struct timespec64
*tp
)
233 ktime_get_clocktai_ts64(tp
);
237 static int posix_get_hrtimer_res(clockid_t which_clock
, struct timespec64
*tp
)
240 tp
->tv_nsec
= hrtimer_resolution
;
245 * Initialize everything, well, just everything in Posix clocks/timers ;)
247 static __init
int init_posix_timers(void)
249 posix_timers_cache
= kmem_cache_create("posix_timers_cache",
250 sizeof (struct k_itimer
), 0, SLAB_PANIC
,
254 __initcall(init_posix_timers
);
257 * The siginfo si_overrun field and the return value of timer_getoverrun(2)
258 * are of type int. Clamp the overrun value to INT_MAX
260 static inline int timer_overrun_to_int(struct k_itimer
*timr
, int baseval
)
262 s64 sum
= timr
->it_overrun_last
+ (s64
)baseval
;
264 return sum
> (s64
)INT_MAX
? INT_MAX
: (int)sum
;
267 static void common_hrtimer_rearm(struct k_itimer
*timr
)
269 struct hrtimer
*timer
= &timr
->it
.real
.timer
;
271 timr
->it_overrun
+= hrtimer_forward(timer
, timer
->base
->get_time(),
273 hrtimer_restart(timer
);
277 * This function is exported for use by the signal deliver code. It is
278 * called just prior to the info block being released and passes that
279 * block to us. It's function is to update the overrun entry AND to
280 * restart the timer. It should only be called if the timer is to be
281 * restarted (i.e. we have flagged this in the sys_private entry of the
284 * To protect against the timer going away while the interrupt is queued,
285 * we require that the it_requeue_pending flag be set.
287 void posixtimer_rearm(struct kernel_siginfo
*info
)
289 struct k_itimer
*timr
;
292 timr
= lock_timer(info
->si_tid
, &flags
);
296 if (timr
->it_interval
&& timr
->it_requeue_pending
== info
->si_sys_private
) {
297 timr
->kclock
->timer_rearm(timr
);
300 timr
->it_overrun_last
= timr
->it_overrun
;
301 timr
->it_overrun
= -1LL;
302 ++timr
->it_requeue_pending
;
304 info
->si_overrun
= timer_overrun_to_int(timr
, info
->si_overrun
);
307 unlock_timer(timr
, flags
);
310 int posix_timer_event(struct k_itimer
*timr
, int si_private
)
315 * FIXME: if ->sigq is queued we can race with
316 * dequeue_signal()->posixtimer_rearm().
318 * If dequeue_signal() sees the "right" value of
319 * si_sys_private it calls posixtimer_rearm().
320 * We re-queue ->sigq and drop ->it_lock().
321 * posixtimer_rearm() locks the timer
322 * and re-schedules it while ->sigq is pending.
323 * Not really bad, but not that we want.
325 timr
->sigq
->info
.si_sys_private
= si_private
;
327 type
= !(timr
->it_sigev_notify
& SIGEV_THREAD_ID
) ? PIDTYPE_TGID
: PIDTYPE_PID
;
328 ret
= send_sigqueue(timr
->sigq
, timr
->it_pid
, type
);
329 /* If we failed to send the signal the timer stops. */
334 * This function gets called when a POSIX.1b interval timer expires. It
335 * is used as a callback from the kernel internal timer. The
336 * run_timer_list code ALWAYS calls with interrupts on.
338 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
340 static enum hrtimer_restart
posix_timer_fn(struct hrtimer
*timer
)
342 struct k_itimer
*timr
;
345 enum hrtimer_restart ret
= HRTIMER_NORESTART
;
347 timr
= container_of(timer
, struct k_itimer
, it
.real
.timer
);
348 spin_lock_irqsave(&timr
->it_lock
, flags
);
351 if (timr
->it_interval
!= 0)
352 si_private
= ++timr
->it_requeue_pending
;
354 if (posix_timer_event(timr
, si_private
)) {
356 * signal was not sent because of sig_ignor
357 * we will not get a call back to restart it AND
358 * it should be restarted.
360 if (timr
->it_interval
!= 0) {
361 ktime_t now
= hrtimer_cb_get_time(timer
);
364 * FIXME: What we really want, is to stop this
365 * timer completely and restart it in case the
366 * SIG_IGN is removed. This is a non trivial
367 * change which involves sighand locking
368 * (sigh !), which we don't want to do late in
371 * For now we just let timers with an interval
372 * less than a jiffie expire every jiffie to
373 * avoid softirq starvation in case of SIG_IGN
374 * and a very small interval, which would put
375 * the timer right back on the softirq pending
376 * list. By moving now ahead of time we trick
377 * hrtimer_forward() to expire the timer
378 * later, while we still maintain the overrun
379 * accuracy, but have some inconsistency in
380 * the timer_gettime() case. This is at least
381 * better than a starved softirq. A more
382 * complex fix which solves also another related
383 * inconsistency is already in the pipeline.
385 #ifdef CONFIG_HIGH_RES_TIMERS
387 ktime_t kj
= NSEC_PER_SEC
/ HZ
;
389 if (timr
->it_interval
< kj
)
390 now
= ktime_add(now
, kj
);
393 timr
->it_overrun
+= hrtimer_forward(timer
, now
,
395 ret
= HRTIMER_RESTART
;
396 ++timr
->it_requeue_pending
;
401 unlock_timer(timr
, flags
);
405 static struct pid
*good_sigevent(sigevent_t
* event
)
407 struct pid
*pid
= task_tgid(current
);
408 struct task_struct
*rtn
;
410 switch (event
->sigev_notify
) {
411 case SIGEV_SIGNAL
| SIGEV_THREAD_ID
:
412 pid
= find_vpid(event
->sigev_notify_thread_id
);
413 rtn
= pid_task(pid
, PIDTYPE_PID
);
414 if (!rtn
|| !same_thread_group(rtn
, current
))
419 if (event
->sigev_signo
<= 0 || event
->sigev_signo
> SIGRTMAX
)
429 static struct k_itimer
* alloc_posix_timer(void)
431 struct k_itimer
*tmr
;
432 tmr
= kmem_cache_zalloc(posix_timers_cache
, GFP_KERNEL
);
435 if (unlikely(!(tmr
->sigq
= sigqueue_alloc()))) {
436 kmem_cache_free(posix_timers_cache
, tmr
);
439 clear_siginfo(&tmr
->sigq
->info
);
443 static void k_itimer_rcu_free(struct rcu_head
*head
)
445 struct k_itimer
*tmr
= container_of(head
, struct k_itimer
, rcu
);
447 kmem_cache_free(posix_timers_cache
, tmr
);
451 #define IT_ID_NOT_SET 0
452 static void release_posix_timer(struct k_itimer
*tmr
, int it_id_set
)
456 spin_lock_irqsave(&hash_lock
, flags
);
457 hlist_del_rcu(&tmr
->t_hash
);
458 spin_unlock_irqrestore(&hash_lock
, flags
);
460 put_pid(tmr
->it_pid
);
461 sigqueue_free(tmr
->sigq
);
462 call_rcu(&tmr
->rcu
, k_itimer_rcu_free
);
465 static int common_timer_create(struct k_itimer
*new_timer
)
467 hrtimer_init(&new_timer
->it
.real
.timer
, new_timer
->it_clock
, 0);
471 /* Create a POSIX.1b interval timer. */
472 static int do_timer_create(clockid_t which_clock
, struct sigevent
*event
,
473 timer_t __user
*created_timer_id
)
475 const struct k_clock
*kc
= clockid_to_kclock(which_clock
);
476 struct k_itimer
*new_timer
;
477 int error
, new_timer_id
;
478 int it_id_set
= IT_ID_NOT_SET
;
482 if (!kc
->timer_create
)
485 new_timer
= alloc_posix_timer();
486 if (unlikely(!new_timer
))
489 spin_lock_init(&new_timer
->it_lock
);
490 new_timer_id
= posix_timer_add(new_timer
);
491 if (new_timer_id
< 0) {
492 error
= new_timer_id
;
496 it_id_set
= IT_ID_SET
;
497 new_timer
->it_id
= (timer_t
) new_timer_id
;
498 new_timer
->it_clock
= which_clock
;
499 new_timer
->kclock
= kc
;
500 new_timer
->it_overrun
= -1LL;
504 new_timer
->it_pid
= get_pid(good_sigevent(event
));
506 if (!new_timer
->it_pid
) {
510 new_timer
->it_sigev_notify
= event
->sigev_notify
;
511 new_timer
->sigq
->info
.si_signo
= event
->sigev_signo
;
512 new_timer
->sigq
->info
.si_value
= event
->sigev_value
;
514 new_timer
->it_sigev_notify
= SIGEV_SIGNAL
;
515 new_timer
->sigq
->info
.si_signo
= SIGALRM
;
516 memset(&new_timer
->sigq
->info
.si_value
, 0, sizeof(sigval_t
));
517 new_timer
->sigq
->info
.si_value
.sival_int
= new_timer
->it_id
;
518 new_timer
->it_pid
= get_pid(task_tgid(current
));
521 new_timer
->sigq
->info
.si_tid
= new_timer
->it_id
;
522 new_timer
->sigq
->info
.si_code
= SI_TIMER
;
524 if (copy_to_user(created_timer_id
,
525 &new_timer_id
, sizeof (new_timer_id
))) {
530 error
= kc
->timer_create(new_timer
);
534 spin_lock_irq(¤t
->sighand
->siglock
);
535 new_timer
->it_signal
= current
->signal
;
536 list_add(&new_timer
->list
, ¤t
->signal
->posix_timers
);
537 spin_unlock_irq(¤t
->sighand
->siglock
);
541 * In the case of the timer belonging to another task, after
542 * the task is unlocked, the timer is owned by the other task
543 * and may cease to exist at any time. Don't use or modify
544 * new_timer after the unlock call.
547 release_posix_timer(new_timer
, it_id_set
);
551 SYSCALL_DEFINE3(timer_create
, const clockid_t
, which_clock
,
552 struct sigevent __user
*, timer_event_spec
,
553 timer_t __user
*, created_timer_id
)
555 if (timer_event_spec
) {
558 if (copy_from_user(&event
, timer_event_spec
, sizeof (event
)))
560 return do_timer_create(which_clock
, &event
, created_timer_id
);
562 return do_timer_create(which_clock
, NULL
, created_timer_id
);
566 COMPAT_SYSCALL_DEFINE3(timer_create
, clockid_t
, which_clock
,
567 struct compat_sigevent __user
*, timer_event_spec
,
568 timer_t __user
*, created_timer_id
)
570 if (timer_event_spec
) {
573 if (get_compat_sigevent(&event
, timer_event_spec
))
575 return do_timer_create(which_clock
, &event
, created_timer_id
);
577 return do_timer_create(which_clock
, NULL
, created_timer_id
);
582 * Locking issues: We need to protect the result of the id look up until
583 * we get the timer locked down so it is not deleted under us. The
584 * removal is done under the idr spinlock so we use that here to bridge
585 * the find to the timer lock. To avoid a dead lock, the timer id MUST
586 * be release with out holding the timer lock.
588 static struct k_itimer
*__lock_timer(timer_t timer_id
, unsigned long *flags
)
590 struct k_itimer
*timr
;
593 * timer_t could be any type >= int and we want to make sure any
594 * @timer_id outside positive int range fails lookup.
596 if ((unsigned long long)timer_id
> INT_MAX
)
600 timr
= posix_timer_by_id(timer_id
);
602 spin_lock_irqsave(&timr
->it_lock
, *flags
);
603 if (timr
->it_signal
== current
->signal
) {
607 spin_unlock_irqrestore(&timr
->it_lock
, *flags
);
614 static ktime_t
common_hrtimer_remaining(struct k_itimer
*timr
, ktime_t now
)
616 struct hrtimer
*timer
= &timr
->it
.real
.timer
;
618 return __hrtimer_expires_remaining_adjusted(timer
, now
);
621 static s64
common_hrtimer_forward(struct k_itimer
*timr
, ktime_t now
)
623 struct hrtimer
*timer
= &timr
->it
.real
.timer
;
625 return hrtimer_forward(timer
, now
, timr
->it_interval
);
629 * Get the time remaining on a POSIX.1b interval timer. This function
630 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
633 * We have a couple of messes to clean up here. First there is the case
634 * of a timer that has a requeue pending. These timers should appear to
635 * be in the timer list with an expiry as if we were to requeue them
638 * The second issue is the SIGEV_NONE timer which may be active but is
639 * not really ever put in the timer list (to save system resources).
640 * This timer may be expired, and if so, we will do it here. Otherwise
641 * it is the same as a requeue pending timer WRT to what we should
644 void common_timer_get(struct k_itimer
*timr
, struct itimerspec64
*cur_setting
)
646 const struct k_clock
*kc
= timr
->kclock
;
647 ktime_t now
, remaining
, iv
;
648 struct timespec64 ts64
;
651 sig_none
= timr
->it_sigev_notify
== SIGEV_NONE
;
652 iv
= timr
->it_interval
;
654 /* interval timer ? */
656 cur_setting
->it_interval
= ktime_to_timespec64(iv
);
657 } else if (!timr
->it_active
) {
659 * SIGEV_NONE oneshot timers are never queued. Check them
667 * The timespec64 based conversion is suboptimal, but it's not
668 * worth to implement yet another callback.
670 kc
->clock_get(timr
->it_clock
, &ts64
);
671 now
= timespec64_to_ktime(ts64
);
674 * When a requeue is pending or this is a SIGEV_NONE timer move the
675 * expiry time forward by intervals, so expiry is > now.
677 if (iv
&& (timr
->it_requeue_pending
& REQUEUE_PENDING
|| sig_none
))
678 timr
->it_overrun
+= kc
->timer_forward(timr
, now
);
680 remaining
= kc
->timer_remaining(timr
, now
);
681 /* Return 0 only, when the timer is expired and not pending */
682 if (remaining
<= 0) {
684 * A single shot SIGEV_NONE timer must return 0, when
688 cur_setting
->it_value
.tv_nsec
= 1;
690 cur_setting
->it_value
= ktime_to_timespec64(remaining
);
694 /* Get the time remaining on a POSIX.1b interval timer. */
695 static int do_timer_gettime(timer_t timer_id
, struct itimerspec64
*setting
)
697 struct k_itimer
*timr
;
698 const struct k_clock
*kc
;
702 timr
= lock_timer(timer_id
, &flags
);
706 memset(setting
, 0, sizeof(*setting
));
708 if (WARN_ON_ONCE(!kc
|| !kc
->timer_get
))
711 kc
->timer_get(timr
, setting
);
713 unlock_timer(timr
, flags
);
717 /* Get the time remaining on a POSIX.1b interval timer. */
718 SYSCALL_DEFINE2(timer_gettime
, timer_t
, timer_id
,
719 struct __kernel_itimerspec __user
*, setting
)
721 struct itimerspec64 cur_setting
;
723 int ret
= do_timer_gettime(timer_id
, &cur_setting
);
725 if (put_itimerspec64(&cur_setting
, setting
))
731 #ifdef CONFIG_COMPAT_32BIT_TIME
733 SYSCALL_DEFINE2(timer_gettime32
, timer_t
, timer_id
,
734 struct old_itimerspec32 __user
*, setting
)
736 struct itimerspec64 cur_setting
;
738 int ret
= do_timer_gettime(timer_id
, &cur_setting
);
740 if (put_old_itimerspec32(&cur_setting
, setting
))
749 * Get the number of overruns of a POSIX.1b interval timer. This is to
750 * be the overrun of the timer last delivered. At the same time we are
751 * accumulating overruns on the next timer. The overrun is frozen when
752 * the signal is delivered, either at the notify time (if the info block
753 * is not queued) or at the actual delivery time (as we are informed by
754 * the call back to posixtimer_rearm(). So all we need to do is
755 * to pick up the frozen overrun.
757 SYSCALL_DEFINE1(timer_getoverrun
, timer_t
, timer_id
)
759 struct k_itimer
*timr
;
763 timr
= lock_timer(timer_id
, &flags
);
767 overrun
= timer_overrun_to_int(timr
, 0);
768 unlock_timer(timr
, flags
);
773 static void common_hrtimer_arm(struct k_itimer
*timr
, ktime_t expires
,
774 bool absolute
, bool sigev_none
)
776 struct hrtimer
*timer
= &timr
->it
.real
.timer
;
777 enum hrtimer_mode mode
;
779 mode
= absolute
? HRTIMER_MODE_ABS
: HRTIMER_MODE_REL
;
781 * Posix magic: Relative CLOCK_REALTIME timers are not affected by
782 * clock modifications, so they become CLOCK_MONOTONIC based under the
783 * hood. See hrtimer_init(). Update timr->kclock, so the generic
784 * functions which use timr->kclock->clock_get() work.
786 * Note: it_clock stays unmodified, because the next timer_set() might
787 * use ABSTIME, so it needs to switch back.
789 if (timr
->it_clock
== CLOCK_REALTIME
)
790 timr
->kclock
= absolute
? &clock_realtime
: &clock_monotonic
;
792 hrtimer_init(&timr
->it
.real
.timer
, timr
->it_clock
, mode
);
793 timr
->it
.real
.timer
.function
= posix_timer_fn
;
796 expires
= ktime_add_safe(expires
, timer
->base
->get_time());
797 hrtimer_set_expires(timer
, expires
);
800 hrtimer_start_expires(timer
, HRTIMER_MODE_ABS
);
803 static int common_hrtimer_try_to_cancel(struct k_itimer
*timr
)
805 return hrtimer_try_to_cancel(&timr
->it
.real
.timer
);
808 static void common_timer_wait_running(struct k_itimer
*timer
)
810 hrtimer_cancel_wait_running(&timer
->it
.real
.timer
);
814 * On PREEMPT_RT this prevent priority inversion against softirq kthread in
815 * case it gets preempted while executing a timer callback. See comments in
816 * hrtimer_cancel_wait_running. For PREEMPT_RT=n this just results in a
819 static struct k_itimer
*timer_wait_running(struct k_itimer
*timer
,
820 unsigned long *flags
)
822 const struct k_clock
*kc
= READ_ONCE(timer
->kclock
);
823 timer_t timer_id
= READ_ONCE(timer
->it_id
);
825 /* Prevent kfree(timer) after dropping the lock */
827 unlock_timer(timer
, *flags
);
829 if (!WARN_ON_ONCE(!kc
->timer_wait_running
))
830 kc
->timer_wait_running(timer
);
833 /* Relock the timer. It might be not longer hashed. */
834 return lock_timer(timer_id
, flags
);
837 /* Set a POSIX.1b interval timer. */
838 int common_timer_set(struct k_itimer
*timr
, int flags
,
839 struct itimerspec64
*new_setting
,
840 struct itimerspec64
*old_setting
)
842 const struct k_clock
*kc
= timr
->kclock
;
847 common_timer_get(timr
, old_setting
);
849 /* Prevent rearming by clearing the interval */
850 timr
->it_interval
= 0;
852 * Careful here. On SMP systems the timer expiry function could be
853 * active and spinning on timr->it_lock.
855 if (kc
->timer_try_to_cancel(timr
) < 0)
859 timr
->it_requeue_pending
= (timr
->it_requeue_pending
+ 2) &
861 timr
->it_overrun_last
= 0;
863 /* Switch off the timer when it_value is zero */
864 if (!new_setting
->it_value
.tv_sec
&& !new_setting
->it_value
.tv_nsec
)
867 timr
->it_interval
= timespec64_to_ktime(new_setting
->it_interval
);
868 expires
= timespec64_to_ktime(new_setting
->it_value
);
869 sigev_none
= timr
->it_sigev_notify
== SIGEV_NONE
;
871 kc
->timer_arm(timr
, expires
, flags
& TIMER_ABSTIME
, sigev_none
);
872 timr
->it_active
= !sigev_none
;
876 static int do_timer_settime(timer_t timer_id
, int tmr_flags
,
877 struct itimerspec64
*new_spec64
,
878 struct itimerspec64
*old_spec64
)
880 const struct k_clock
*kc
;
881 struct k_itimer
*timr
;
885 if (!timespec64_valid(&new_spec64
->it_interval
) ||
886 !timespec64_valid(&new_spec64
->it_value
))
890 memset(old_spec64
, 0, sizeof(*old_spec64
));
892 timr
= lock_timer(timer_id
, &flags
);
898 if (WARN_ON_ONCE(!kc
|| !kc
->timer_set
))
901 error
= kc
->timer_set(timr
, tmr_flags
, new_spec64
, old_spec64
);
903 if (error
== TIMER_RETRY
) {
904 // We already got the old time...
906 /* Unlocks and relocks the timer if it still exists */
907 timr
= timer_wait_running(timr
, &flags
);
910 unlock_timer(timr
, flags
);
915 /* Set a POSIX.1b interval timer */
916 SYSCALL_DEFINE4(timer_settime
, timer_t
, timer_id
, int, flags
,
917 const struct __kernel_itimerspec __user
*, new_setting
,
918 struct __kernel_itimerspec __user
*, old_setting
)
920 struct itimerspec64 new_spec
, old_spec
;
921 struct itimerspec64
*rtn
= old_setting
? &old_spec
: NULL
;
927 if (get_itimerspec64(&new_spec
, new_setting
))
930 error
= do_timer_settime(timer_id
, flags
, &new_spec
, rtn
);
931 if (!error
&& old_setting
) {
932 if (put_itimerspec64(&old_spec
, old_setting
))
938 #ifdef CONFIG_COMPAT_32BIT_TIME
939 SYSCALL_DEFINE4(timer_settime32
, timer_t
, timer_id
, int, flags
,
940 struct old_itimerspec32 __user
*, new,
941 struct old_itimerspec32 __user
*, old
)
943 struct itimerspec64 new_spec
, old_spec
;
944 struct itimerspec64
*rtn
= old
? &old_spec
: NULL
;
949 if (get_old_itimerspec32(&new_spec
, new))
952 error
= do_timer_settime(timer_id
, flags
, &new_spec
, rtn
);
954 if (put_old_itimerspec32(&old_spec
, old
))
961 int common_timer_del(struct k_itimer
*timer
)
963 const struct k_clock
*kc
= timer
->kclock
;
965 timer
->it_interval
= 0;
966 if (kc
->timer_try_to_cancel(timer
) < 0)
968 timer
->it_active
= 0;
972 static inline int timer_delete_hook(struct k_itimer
*timer
)
974 const struct k_clock
*kc
= timer
->kclock
;
976 if (WARN_ON_ONCE(!kc
|| !kc
->timer_del
))
978 return kc
->timer_del(timer
);
981 /* Delete a POSIX.1b interval timer. */
982 SYSCALL_DEFINE1(timer_delete
, timer_t
, timer_id
)
984 struct k_itimer
*timer
;
987 timer
= lock_timer(timer_id
, &flags
);
993 if (unlikely(timer_delete_hook(timer
) == TIMER_RETRY
)) {
994 /* Unlocks and relocks the timer if it still exists */
995 timer
= timer_wait_running(timer
, &flags
);
999 spin_lock(¤t
->sighand
->siglock
);
1000 list_del(&timer
->list
);
1001 spin_unlock(¤t
->sighand
->siglock
);
1003 * This keeps any tasks waiting on the spin lock from thinking
1004 * they got something (see the lock code above).
1006 timer
->it_signal
= NULL
;
1008 unlock_timer(timer
, flags
);
1009 release_posix_timer(timer
, IT_ID_SET
);
1014 * return timer owned by the process, used by exit_itimers
1016 static void itimer_delete(struct k_itimer
*timer
)
1019 spin_lock_irq(&timer
->it_lock
);
1021 if (timer_delete_hook(timer
) == TIMER_RETRY
) {
1022 spin_unlock_irq(&timer
->it_lock
);
1025 list_del(&timer
->list
);
1027 spin_unlock_irq(&timer
->it_lock
);
1028 release_posix_timer(timer
, IT_ID_SET
);
1032 * This is called by do_exit or de_thread, only when there are no more
1033 * references to the shared signal_struct.
1035 void exit_itimers(struct signal_struct
*sig
)
1037 struct k_itimer
*tmr
;
1039 while (!list_empty(&sig
->posix_timers
)) {
1040 tmr
= list_entry(sig
->posix_timers
.next
, struct k_itimer
, list
);
1045 SYSCALL_DEFINE2(clock_settime
, const clockid_t
, which_clock
,
1046 const struct __kernel_timespec __user
*, tp
)
1048 const struct k_clock
*kc
= clockid_to_kclock(which_clock
);
1049 struct timespec64 new_tp
;
1051 if (!kc
|| !kc
->clock_set
)
1054 if (get_timespec64(&new_tp
, tp
))
1057 return kc
->clock_set(which_clock
, &new_tp
);
1060 SYSCALL_DEFINE2(clock_gettime
, const clockid_t
, which_clock
,
1061 struct __kernel_timespec __user
*, tp
)
1063 const struct k_clock
*kc
= clockid_to_kclock(which_clock
);
1064 struct timespec64 kernel_tp
;
1070 error
= kc
->clock_get(which_clock
, &kernel_tp
);
1072 if (!error
&& put_timespec64(&kernel_tp
, tp
))
1078 int do_clock_adjtime(const clockid_t which_clock
, struct __kernel_timex
* ktx
)
1080 const struct k_clock
*kc
= clockid_to_kclock(which_clock
);
1087 return kc
->clock_adj(which_clock
, ktx
);
1090 SYSCALL_DEFINE2(clock_adjtime
, const clockid_t
, which_clock
,
1091 struct __kernel_timex __user
*, utx
)
1093 struct __kernel_timex ktx
;
1096 if (copy_from_user(&ktx
, utx
, sizeof(ktx
)))
1099 err
= do_clock_adjtime(which_clock
, &ktx
);
1101 if (err
>= 0 && copy_to_user(utx
, &ktx
, sizeof(ktx
)))
1107 SYSCALL_DEFINE2(clock_getres
, const clockid_t
, which_clock
,
1108 struct __kernel_timespec __user
*, tp
)
1110 const struct k_clock
*kc
= clockid_to_kclock(which_clock
);
1111 struct timespec64 rtn_tp
;
1117 error
= kc
->clock_getres(which_clock
, &rtn_tp
);
1119 if (!error
&& tp
&& put_timespec64(&rtn_tp
, tp
))
1125 #ifdef CONFIG_COMPAT_32BIT_TIME
1127 SYSCALL_DEFINE2(clock_settime32
, clockid_t
, which_clock
,
1128 struct old_timespec32 __user
*, tp
)
1130 const struct k_clock
*kc
= clockid_to_kclock(which_clock
);
1131 struct timespec64 ts
;
1133 if (!kc
|| !kc
->clock_set
)
1136 if (get_old_timespec32(&ts
, tp
))
1139 return kc
->clock_set(which_clock
, &ts
);
1142 SYSCALL_DEFINE2(clock_gettime32
, clockid_t
, which_clock
,
1143 struct old_timespec32 __user
*, tp
)
1145 const struct k_clock
*kc
= clockid_to_kclock(which_clock
);
1146 struct timespec64 ts
;
1152 err
= kc
->clock_get(which_clock
, &ts
);
1154 if (!err
&& put_old_timespec32(&ts
, tp
))
1160 SYSCALL_DEFINE2(clock_adjtime32
, clockid_t
, which_clock
,
1161 struct old_timex32 __user
*, utp
)
1163 struct __kernel_timex ktx
;
1166 err
= get_old_timex32(&ktx
, utp
);
1170 err
= do_clock_adjtime(which_clock
, &ktx
);
1173 err
= put_old_timex32(utp
, &ktx
);
1178 SYSCALL_DEFINE2(clock_getres_time32
, clockid_t
, which_clock
,
1179 struct old_timespec32 __user
*, tp
)
1181 const struct k_clock
*kc
= clockid_to_kclock(which_clock
);
1182 struct timespec64 ts
;
1188 err
= kc
->clock_getres(which_clock
, &ts
);
1189 if (!err
&& tp
&& put_old_timespec32(&ts
, tp
))
1198 * nanosleep for monotonic and realtime clocks
1200 static int common_nsleep(const clockid_t which_clock
, int flags
,
1201 const struct timespec64
*rqtp
)
1203 return hrtimer_nanosleep(rqtp
, flags
& TIMER_ABSTIME
?
1204 HRTIMER_MODE_ABS
: HRTIMER_MODE_REL
,
1208 SYSCALL_DEFINE4(clock_nanosleep
, const clockid_t
, which_clock
, int, flags
,
1209 const struct __kernel_timespec __user
*, rqtp
,
1210 struct __kernel_timespec __user
*, rmtp
)
1212 const struct k_clock
*kc
= clockid_to_kclock(which_clock
);
1213 struct timespec64 t
;
1220 if (get_timespec64(&t
, rqtp
))
1223 if (!timespec64_valid(&t
))
1225 if (flags
& TIMER_ABSTIME
)
1227 current
->restart_block
.nanosleep
.type
= rmtp
? TT_NATIVE
: TT_NONE
;
1228 current
->restart_block
.nanosleep
.rmtp
= rmtp
;
1230 return kc
->nsleep(which_clock
, flags
, &t
);
1233 #ifdef CONFIG_COMPAT_32BIT_TIME
1235 SYSCALL_DEFINE4(clock_nanosleep_time32
, clockid_t
, which_clock
, int, flags
,
1236 struct old_timespec32 __user
*, rqtp
,
1237 struct old_timespec32 __user
*, rmtp
)
1239 const struct k_clock
*kc
= clockid_to_kclock(which_clock
);
1240 struct timespec64 t
;
1247 if (get_old_timespec32(&t
, rqtp
))
1250 if (!timespec64_valid(&t
))
1252 if (flags
& TIMER_ABSTIME
)
1254 current
->restart_block
.nanosleep
.type
= rmtp
? TT_COMPAT
: TT_NONE
;
1255 current
->restart_block
.nanosleep
.compat_rmtp
= rmtp
;
1257 return kc
->nsleep(which_clock
, flags
, &t
);
1262 static const struct k_clock clock_realtime
= {
1263 .clock_getres
= posix_get_hrtimer_res
,
1264 .clock_get
= posix_clock_realtime_get
,
1265 .clock_set
= posix_clock_realtime_set
,
1266 .clock_adj
= posix_clock_realtime_adj
,
1267 .nsleep
= common_nsleep
,
1268 .timer_create
= common_timer_create
,
1269 .timer_set
= common_timer_set
,
1270 .timer_get
= common_timer_get
,
1271 .timer_del
= common_timer_del
,
1272 .timer_rearm
= common_hrtimer_rearm
,
1273 .timer_forward
= common_hrtimer_forward
,
1274 .timer_remaining
= common_hrtimer_remaining
,
1275 .timer_try_to_cancel
= common_hrtimer_try_to_cancel
,
1276 .timer_wait_running
= common_timer_wait_running
,
1277 .timer_arm
= common_hrtimer_arm
,
1280 static const struct k_clock clock_monotonic
= {
1281 .clock_getres
= posix_get_hrtimer_res
,
1282 .clock_get
= posix_ktime_get_ts
,
1283 .nsleep
= common_nsleep
,
1284 .timer_create
= common_timer_create
,
1285 .timer_set
= common_timer_set
,
1286 .timer_get
= common_timer_get
,
1287 .timer_del
= common_timer_del
,
1288 .timer_rearm
= common_hrtimer_rearm
,
1289 .timer_forward
= common_hrtimer_forward
,
1290 .timer_remaining
= common_hrtimer_remaining
,
1291 .timer_try_to_cancel
= common_hrtimer_try_to_cancel
,
1292 .timer_wait_running
= common_timer_wait_running
,
1293 .timer_arm
= common_hrtimer_arm
,
1296 static const struct k_clock clock_monotonic_raw
= {
1297 .clock_getres
= posix_get_hrtimer_res
,
1298 .clock_get
= posix_get_monotonic_raw
,
1301 static const struct k_clock clock_realtime_coarse
= {
1302 .clock_getres
= posix_get_coarse_res
,
1303 .clock_get
= posix_get_realtime_coarse
,
1306 static const struct k_clock clock_monotonic_coarse
= {
1307 .clock_getres
= posix_get_coarse_res
,
1308 .clock_get
= posix_get_monotonic_coarse
,
1311 static const struct k_clock clock_tai
= {
1312 .clock_getres
= posix_get_hrtimer_res
,
1313 .clock_get
= posix_get_tai
,
1314 .nsleep
= common_nsleep
,
1315 .timer_create
= common_timer_create
,
1316 .timer_set
= common_timer_set
,
1317 .timer_get
= common_timer_get
,
1318 .timer_del
= common_timer_del
,
1319 .timer_rearm
= common_hrtimer_rearm
,
1320 .timer_forward
= common_hrtimer_forward
,
1321 .timer_remaining
= common_hrtimer_remaining
,
1322 .timer_try_to_cancel
= common_hrtimer_try_to_cancel
,
1323 .timer_wait_running
= common_timer_wait_running
,
1324 .timer_arm
= common_hrtimer_arm
,
1327 static const struct k_clock clock_boottime
= {
1328 .clock_getres
= posix_get_hrtimer_res
,
1329 .clock_get
= posix_get_boottime
,
1330 .nsleep
= common_nsleep
,
1331 .timer_create
= common_timer_create
,
1332 .timer_set
= common_timer_set
,
1333 .timer_get
= common_timer_get
,
1334 .timer_del
= common_timer_del
,
1335 .timer_rearm
= common_hrtimer_rearm
,
1336 .timer_forward
= common_hrtimer_forward
,
1337 .timer_remaining
= common_hrtimer_remaining
,
1338 .timer_try_to_cancel
= common_hrtimer_try_to_cancel
,
1339 .timer_wait_running
= common_timer_wait_running
,
1340 .timer_arm
= common_hrtimer_arm
,
1343 static const struct k_clock
* const posix_clocks
[] = {
1344 [CLOCK_REALTIME
] = &clock_realtime
,
1345 [CLOCK_MONOTONIC
] = &clock_monotonic
,
1346 [CLOCK_PROCESS_CPUTIME_ID
] = &clock_process
,
1347 [CLOCK_THREAD_CPUTIME_ID
] = &clock_thread
,
1348 [CLOCK_MONOTONIC_RAW
] = &clock_monotonic_raw
,
1349 [CLOCK_REALTIME_COARSE
] = &clock_realtime_coarse
,
1350 [CLOCK_MONOTONIC_COARSE
] = &clock_monotonic_coarse
,
1351 [CLOCK_BOOTTIME
] = &clock_boottime
,
1352 [CLOCK_REALTIME_ALARM
] = &alarm_clock
,
1353 [CLOCK_BOOTTIME_ALARM
] = &alarm_clock
,
1354 [CLOCK_TAI
] = &clock_tai
,
1357 static const struct k_clock
*clockid_to_kclock(const clockid_t id
)
1362 return (id
& CLOCKFD_MASK
) == CLOCKFD
?
1363 &clock_posix_dynamic
: &clock_posix_cpu
;
1366 if (id
>= ARRAY_SIZE(posix_clocks
))
1369 return posix_clocks
[array_index_nospec(idx
, ARRAY_SIZE(posix_clocks
))];