btrfs: cleanup device states define BTRFS_DEV_STATE_REPLACE_TGT
[linux/fpc-iii.git] / fs / btrfs / volumes.c
blob3690822d469a8410e50c31742fac9258c9d0618d
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/iocontext.h>
24 #include <linux/capability.h>
25 #include <linux/ratelimit.h>
26 #include <linux/kthread.h>
27 #include <linux/raid/pq.h>
28 #include <linux/semaphore.h>
29 #include <linux/uuid.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 [BTRFS_RAID_RAID10] = {
47 .sub_stripes = 2,
48 .dev_stripes = 1,
49 .devs_max = 0, /* 0 == as many as possible */
50 .devs_min = 4,
51 .tolerated_failures = 1,
52 .devs_increment = 2,
53 .ncopies = 2,
55 [BTRFS_RAID_RAID1] = {
56 .sub_stripes = 1,
57 .dev_stripes = 1,
58 .devs_max = 2,
59 .devs_min = 2,
60 .tolerated_failures = 1,
61 .devs_increment = 2,
62 .ncopies = 2,
64 [BTRFS_RAID_DUP] = {
65 .sub_stripes = 1,
66 .dev_stripes = 2,
67 .devs_max = 1,
68 .devs_min = 1,
69 .tolerated_failures = 0,
70 .devs_increment = 1,
71 .ncopies = 2,
73 [BTRFS_RAID_RAID0] = {
74 .sub_stripes = 1,
75 .dev_stripes = 1,
76 .devs_max = 0,
77 .devs_min = 2,
78 .tolerated_failures = 0,
79 .devs_increment = 1,
80 .ncopies = 1,
82 [BTRFS_RAID_SINGLE] = {
83 .sub_stripes = 1,
84 .dev_stripes = 1,
85 .devs_max = 1,
86 .devs_min = 1,
87 .tolerated_failures = 0,
88 .devs_increment = 1,
89 .ncopies = 1,
91 [BTRFS_RAID_RAID5] = {
92 .sub_stripes = 1,
93 .dev_stripes = 1,
94 .devs_max = 0,
95 .devs_min = 2,
96 .tolerated_failures = 1,
97 .devs_increment = 1,
98 .ncopies = 2,
100 [BTRFS_RAID_RAID6] = {
101 .sub_stripes = 1,
102 .dev_stripes = 1,
103 .devs_max = 0,
104 .devs_min = 3,
105 .tolerated_failures = 2,
106 .devs_increment = 1,
107 .ncopies = 3,
111 const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
112 [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 [BTRFS_RAID_RAID1] = BTRFS_BLOCK_GROUP_RAID1,
114 [BTRFS_RAID_DUP] = BTRFS_BLOCK_GROUP_DUP,
115 [BTRFS_RAID_RAID0] = BTRFS_BLOCK_GROUP_RAID0,
116 [BTRFS_RAID_SINGLE] = 0,
117 [BTRFS_RAID_RAID5] = BTRFS_BLOCK_GROUP_RAID5,
118 [BTRFS_RAID_RAID6] = BTRFS_BLOCK_GROUP_RAID6,
122 * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123 * condition is not met. Zero means there's no corresponding
124 * BTRFS_ERROR_DEV_*_NOT_MET value.
126 const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
127 [BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
128 [BTRFS_RAID_RAID1] = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
129 [BTRFS_RAID_DUP] = 0,
130 [BTRFS_RAID_RAID0] = 0,
131 [BTRFS_RAID_SINGLE] = 0,
132 [BTRFS_RAID_RAID5] = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
133 [BTRFS_RAID_RAID6] = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
136 static int init_first_rw_device(struct btrfs_trans_handle *trans,
137 struct btrfs_fs_info *fs_info);
138 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
139 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
140 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
141 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
142 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
143 enum btrfs_map_op op,
144 u64 logical, u64 *length,
145 struct btrfs_bio **bbio_ret,
146 int mirror_num, int need_raid_map);
149 * Device locking
150 * ==============
152 * There are several mutexes that protect manipulation of devices and low-level
153 * structures like chunks but not block groups, extents or files
155 * uuid_mutex (global lock)
156 * ------------------------
157 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
158 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
159 * device) or requested by the device= mount option
161 * the mutex can be very coarse and can cover long-running operations
163 * protects: updates to fs_devices counters like missing devices, rw devices,
164 * seeding, structure cloning, openning/closing devices at mount/umount time
166 * global::fs_devs - add, remove, updates to the global list
168 * does not protect: manipulation of the fs_devices::devices list!
170 * btrfs_device::name - renames (write side), read is RCU
172 * fs_devices::device_list_mutex (per-fs, with RCU)
173 * ------------------------------------------------
174 * protects updates to fs_devices::devices, ie. adding and deleting
176 * simple list traversal with read-only actions can be done with RCU protection
178 * may be used to exclude some operations from running concurrently without any
179 * modifications to the list (see write_all_supers)
181 * volume_mutex
182 * ------------
183 * coarse lock owned by a mounted filesystem; used to exclude some operations
184 * that cannot run in parallel and affect the higher-level properties of the
185 * filesystem like: device add/deleting/resize/replace, or balance
187 * balance_mutex
188 * -------------
189 * protects balance structures (status, state) and context accessed from
190 * several places (internally, ioctl)
192 * chunk_mutex
193 * -----------
194 * protects chunks, adding or removing during allocation, trim or when a new
195 * device is added/removed
197 * cleaner_mutex
198 * -------------
199 * a big lock that is held by the cleaner thread and prevents running subvolume
200 * cleaning together with relocation or delayed iputs
203 * Lock nesting
204 * ============
206 * uuid_mutex
207 * volume_mutex
208 * device_list_mutex
209 * chunk_mutex
210 * balance_mutex
213 DEFINE_MUTEX(uuid_mutex);
214 static LIST_HEAD(fs_uuids);
215 struct list_head *btrfs_get_fs_uuids(void)
217 return &fs_uuids;
221 * alloc_fs_devices - allocate struct btrfs_fs_devices
222 * @fsid: if not NULL, copy the uuid to fs_devices::fsid
224 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
225 * The returned struct is not linked onto any lists and can be destroyed with
226 * kfree() right away.
228 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
230 struct btrfs_fs_devices *fs_devs;
232 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
233 if (!fs_devs)
234 return ERR_PTR(-ENOMEM);
236 mutex_init(&fs_devs->device_list_mutex);
238 INIT_LIST_HEAD(&fs_devs->devices);
239 INIT_LIST_HEAD(&fs_devs->resized_devices);
240 INIT_LIST_HEAD(&fs_devs->alloc_list);
241 INIT_LIST_HEAD(&fs_devs->list);
242 if (fsid)
243 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
245 return fs_devs;
248 static void free_device(struct btrfs_device *device)
250 rcu_string_free(device->name);
251 bio_put(device->flush_bio);
252 kfree(device);
255 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
257 struct btrfs_device *device;
258 WARN_ON(fs_devices->opened);
259 while (!list_empty(&fs_devices->devices)) {
260 device = list_entry(fs_devices->devices.next,
261 struct btrfs_device, dev_list);
262 list_del(&device->dev_list);
263 free_device(device);
265 kfree(fs_devices);
268 static void btrfs_kobject_uevent(struct block_device *bdev,
269 enum kobject_action action)
271 int ret;
273 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
274 if (ret)
275 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
276 action,
277 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
278 &disk_to_dev(bdev->bd_disk)->kobj);
281 void btrfs_cleanup_fs_uuids(void)
283 struct btrfs_fs_devices *fs_devices;
285 while (!list_empty(&fs_uuids)) {
286 fs_devices = list_entry(fs_uuids.next,
287 struct btrfs_fs_devices, list);
288 list_del(&fs_devices->list);
289 free_fs_devices(fs_devices);
294 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
295 * Returned struct is not linked onto any lists and must be destroyed using
296 * free_device.
298 static struct btrfs_device *__alloc_device(void)
300 struct btrfs_device *dev;
302 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
303 if (!dev)
304 return ERR_PTR(-ENOMEM);
307 * Preallocate a bio that's always going to be used for flushing device
308 * barriers and matches the device lifespan
310 dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
311 if (!dev->flush_bio) {
312 kfree(dev);
313 return ERR_PTR(-ENOMEM);
316 INIT_LIST_HEAD(&dev->dev_list);
317 INIT_LIST_HEAD(&dev->dev_alloc_list);
318 INIT_LIST_HEAD(&dev->resized_list);
320 spin_lock_init(&dev->io_lock);
322 spin_lock_init(&dev->reada_lock);
323 atomic_set(&dev->reada_in_flight, 0);
324 atomic_set(&dev->dev_stats_ccnt, 0);
325 btrfs_device_data_ordered_init(dev);
326 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
327 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
329 return dev;
333 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
334 * return NULL.
336 * If devid and uuid are both specified, the match must be exact, otherwise
337 * only devid is used.
339 static struct btrfs_device *find_device(struct btrfs_fs_devices *fs_devices,
340 u64 devid, const u8 *uuid)
342 struct list_head *head = &fs_devices->devices;
343 struct btrfs_device *dev;
345 list_for_each_entry(dev, head, dev_list) {
346 if (dev->devid == devid &&
347 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
348 return dev;
351 return NULL;
354 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
356 struct btrfs_fs_devices *fs_devices;
358 list_for_each_entry(fs_devices, &fs_uuids, list) {
359 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
360 return fs_devices;
362 return NULL;
365 static int
366 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
367 int flush, struct block_device **bdev,
368 struct buffer_head **bh)
370 int ret;
372 *bdev = blkdev_get_by_path(device_path, flags, holder);
374 if (IS_ERR(*bdev)) {
375 ret = PTR_ERR(*bdev);
376 goto error;
379 if (flush)
380 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
381 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
382 if (ret) {
383 blkdev_put(*bdev, flags);
384 goto error;
386 invalidate_bdev(*bdev);
387 *bh = btrfs_read_dev_super(*bdev);
388 if (IS_ERR(*bh)) {
389 ret = PTR_ERR(*bh);
390 blkdev_put(*bdev, flags);
391 goto error;
394 return 0;
396 error:
397 *bdev = NULL;
398 *bh = NULL;
399 return ret;
402 static void requeue_list(struct btrfs_pending_bios *pending_bios,
403 struct bio *head, struct bio *tail)
406 struct bio *old_head;
408 old_head = pending_bios->head;
409 pending_bios->head = head;
410 if (pending_bios->tail)
411 tail->bi_next = old_head;
412 else
413 pending_bios->tail = tail;
417 * we try to collect pending bios for a device so we don't get a large
418 * number of procs sending bios down to the same device. This greatly
419 * improves the schedulers ability to collect and merge the bios.
421 * But, it also turns into a long list of bios to process and that is sure
422 * to eventually make the worker thread block. The solution here is to
423 * make some progress and then put this work struct back at the end of
424 * the list if the block device is congested. This way, multiple devices
425 * can make progress from a single worker thread.
427 static noinline void run_scheduled_bios(struct btrfs_device *device)
429 struct btrfs_fs_info *fs_info = device->fs_info;
430 struct bio *pending;
431 struct backing_dev_info *bdi;
432 struct btrfs_pending_bios *pending_bios;
433 struct bio *tail;
434 struct bio *cur;
435 int again = 0;
436 unsigned long num_run;
437 unsigned long batch_run = 0;
438 unsigned long last_waited = 0;
439 int force_reg = 0;
440 int sync_pending = 0;
441 struct blk_plug plug;
444 * this function runs all the bios we've collected for
445 * a particular device. We don't want to wander off to
446 * another device without first sending all of these down.
447 * So, setup a plug here and finish it off before we return
449 blk_start_plug(&plug);
451 bdi = device->bdev->bd_bdi;
453 loop:
454 spin_lock(&device->io_lock);
456 loop_lock:
457 num_run = 0;
459 /* take all the bios off the list at once and process them
460 * later on (without the lock held). But, remember the
461 * tail and other pointers so the bios can be properly reinserted
462 * into the list if we hit congestion
464 if (!force_reg && device->pending_sync_bios.head) {
465 pending_bios = &device->pending_sync_bios;
466 force_reg = 1;
467 } else {
468 pending_bios = &device->pending_bios;
469 force_reg = 0;
472 pending = pending_bios->head;
473 tail = pending_bios->tail;
474 WARN_ON(pending && !tail);
477 * if pending was null this time around, no bios need processing
478 * at all and we can stop. Otherwise it'll loop back up again
479 * and do an additional check so no bios are missed.
481 * device->running_pending is used to synchronize with the
482 * schedule_bio code.
484 if (device->pending_sync_bios.head == NULL &&
485 device->pending_bios.head == NULL) {
486 again = 0;
487 device->running_pending = 0;
488 } else {
489 again = 1;
490 device->running_pending = 1;
493 pending_bios->head = NULL;
494 pending_bios->tail = NULL;
496 spin_unlock(&device->io_lock);
498 while (pending) {
500 rmb();
501 /* we want to work on both lists, but do more bios on the
502 * sync list than the regular list
504 if ((num_run > 32 &&
505 pending_bios != &device->pending_sync_bios &&
506 device->pending_sync_bios.head) ||
507 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
508 device->pending_bios.head)) {
509 spin_lock(&device->io_lock);
510 requeue_list(pending_bios, pending, tail);
511 goto loop_lock;
514 cur = pending;
515 pending = pending->bi_next;
516 cur->bi_next = NULL;
518 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
521 * if we're doing the sync list, record that our
522 * plug has some sync requests on it
524 * If we're doing the regular list and there are
525 * sync requests sitting around, unplug before
526 * we add more
528 if (pending_bios == &device->pending_sync_bios) {
529 sync_pending = 1;
530 } else if (sync_pending) {
531 blk_finish_plug(&plug);
532 blk_start_plug(&plug);
533 sync_pending = 0;
536 btrfsic_submit_bio(cur);
537 num_run++;
538 batch_run++;
540 cond_resched();
543 * we made progress, there is more work to do and the bdi
544 * is now congested. Back off and let other work structs
545 * run instead
547 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
548 fs_info->fs_devices->open_devices > 1) {
549 struct io_context *ioc;
551 ioc = current->io_context;
554 * the main goal here is that we don't want to
555 * block if we're going to be able to submit
556 * more requests without blocking.
558 * This code does two great things, it pokes into
559 * the elevator code from a filesystem _and_
560 * it makes assumptions about how batching works.
562 if (ioc && ioc->nr_batch_requests > 0 &&
563 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
564 (last_waited == 0 ||
565 ioc->last_waited == last_waited)) {
567 * we want to go through our batch of
568 * requests and stop. So, we copy out
569 * the ioc->last_waited time and test
570 * against it before looping
572 last_waited = ioc->last_waited;
573 cond_resched();
574 continue;
576 spin_lock(&device->io_lock);
577 requeue_list(pending_bios, pending, tail);
578 device->running_pending = 1;
580 spin_unlock(&device->io_lock);
581 btrfs_queue_work(fs_info->submit_workers,
582 &device->work);
583 goto done;
587 cond_resched();
588 if (again)
589 goto loop;
591 spin_lock(&device->io_lock);
592 if (device->pending_bios.head || device->pending_sync_bios.head)
593 goto loop_lock;
594 spin_unlock(&device->io_lock);
596 done:
597 blk_finish_plug(&plug);
600 static void pending_bios_fn(struct btrfs_work *work)
602 struct btrfs_device *device;
604 device = container_of(work, struct btrfs_device, work);
605 run_scheduled_bios(device);
609 static void btrfs_free_stale_device(struct btrfs_device *cur_dev)
611 struct btrfs_fs_devices *fs_devs;
612 struct btrfs_device *dev;
614 if (!cur_dev->name)
615 return;
617 list_for_each_entry(fs_devs, &fs_uuids, list) {
618 int del = 1;
620 if (fs_devs->opened)
621 continue;
622 if (fs_devs->seeding)
623 continue;
625 list_for_each_entry(dev, &fs_devs->devices, dev_list) {
627 if (dev == cur_dev)
628 continue;
629 if (!dev->name)
630 continue;
633 * Todo: This won't be enough. What if the same device
634 * comes back (with new uuid and) with its mapper path?
635 * But for now, this does help as mostly an admin will
636 * either use mapper or non mapper path throughout.
638 rcu_read_lock();
639 del = strcmp(rcu_str_deref(dev->name),
640 rcu_str_deref(cur_dev->name));
641 rcu_read_unlock();
642 if (!del)
643 break;
646 if (!del) {
647 /* delete the stale device */
648 if (fs_devs->num_devices == 1) {
649 btrfs_sysfs_remove_fsid(fs_devs);
650 list_del(&fs_devs->list);
651 free_fs_devices(fs_devs);
652 } else {
653 fs_devs->num_devices--;
654 list_del(&dev->dev_list);
655 free_device(dev);
657 break;
662 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
663 struct btrfs_device *device, fmode_t flags,
664 void *holder)
666 struct request_queue *q;
667 struct block_device *bdev;
668 struct buffer_head *bh;
669 struct btrfs_super_block *disk_super;
670 u64 devid;
671 int ret;
673 if (device->bdev)
674 return -EINVAL;
675 if (!device->name)
676 return -EINVAL;
678 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
679 &bdev, &bh);
680 if (ret)
681 return ret;
683 disk_super = (struct btrfs_super_block *)bh->b_data;
684 devid = btrfs_stack_device_id(&disk_super->dev_item);
685 if (devid != device->devid)
686 goto error_brelse;
688 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
689 goto error_brelse;
691 device->generation = btrfs_super_generation(disk_super);
693 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
694 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
695 fs_devices->seeding = 1;
696 } else {
697 if (bdev_read_only(bdev))
698 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
699 else
700 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
703 q = bdev_get_queue(bdev);
704 if (!blk_queue_nonrot(q))
705 fs_devices->rotating = 1;
707 device->bdev = bdev;
708 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
709 device->mode = flags;
711 fs_devices->open_devices++;
712 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
713 device->devid != BTRFS_DEV_REPLACE_DEVID) {
714 fs_devices->rw_devices++;
715 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
717 brelse(bh);
719 return 0;
721 error_brelse:
722 brelse(bh);
723 blkdev_put(bdev, flags);
725 return -EINVAL;
729 * Add new device to list of registered devices
731 * Returns:
732 * 1 - first time device is seen
733 * 0 - device already known
734 * < 0 - error
736 static noinline int device_list_add(const char *path,
737 struct btrfs_super_block *disk_super,
738 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
740 struct btrfs_device *device;
741 struct btrfs_fs_devices *fs_devices;
742 struct rcu_string *name;
743 int ret = 0;
744 u64 found_transid = btrfs_super_generation(disk_super);
746 fs_devices = find_fsid(disk_super->fsid);
747 if (!fs_devices) {
748 fs_devices = alloc_fs_devices(disk_super->fsid);
749 if (IS_ERR(fs_devices))
750 return PTR_ERR(fs_devices);
752 list_add(&fs_devices->list, &fs_uuids);
754 device = NULL;
755 } else {
756 device = find_device(fs_devices, devid,
757 disk_super->dev_item.uuid);
760 if (!device) {
761 if (fs_devices->opened)
762 return -EBUSY;
764 device = btrfs_alloc_device(NULL, &devid,
765 disk_super->dev_item.uuid);
766 if (IS_ERR(device)) {
767 /* we can safely leave the fs_devices entry around */
768 return PTR_ERR(device);
771 name = rcu_string_strdup(path, GFP_NOFS);
772 if (!name) {
773 free_device(device);
774 return -ENOMEM;
776 rcu_assign_pointer(device->name, name);
778 mutex_lock(&fs_devices->device_list_mutex);
779 list_add_rcu(&device->dev_list, &fs_devices->devices);
780 fs_devices->num_devices++;
781 mutex_unlock(&fs_devices->device_list_mutex);
783 ret = 1;
784 device->fs_devices = fs_devices;
785 } else if (!device->name || strcmp(device->name->str, path)) {
787 * When FS is already mounted.
788 * 1. If you are here and if the device->name is NULL that
789 * means this device was missing at time of FS mount.
790 * 2. If you are here and if the device->name is different
791 * from 'path' that means either
792 * a. The same device disappeared and reappeared with
793 * different name. or
794 * b. The missing-disk-which-was-replaced, has
795 * reappeared now.
797 * We must allow 1 and 2a above. But 2b would be a spurious
798 * and unintentional.
800 * Further in case of 1 and 2a above, the disk at 'path'
801 * would have missed some transaction when it was away and
802 * in case of 2a the stale bdev has to be updated as well.
803 * 2b must not be allowed at all time.
807 * For now, we do allow update to btrfs_fs_device through the
808 * btrfs dev scan cli after FS has been mounted. We're still
809 * tracking a problem where systems fail mount by subvolume id
810 * when we reject replacement on a mounted FS.
812 if (!fs_devices->opened && found_transid < device->generation) {
814 * That is if the FS is _not_ mounted and if you
815 * are here, that means there is more than one
816 * disk with same uuid and devid.We keep the one
817 * with larger generation number or the last-in if
818 * generation are equal.
820 return -EEXIST;
823 name = rcu_string_strdup(path, GFP_NOFS);
824 if (!name)
825 return -ENOMEM;
826 rcu_string_free(device->name);
827 rcu_assign_pointer(device->name, name);
828 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
829 fs_devices->missing_devices--;
830 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
835 * Unmount does not free the btrfs_device struct but would zero
836 * generation along with most of the other members. So just update
837 * it back. We need it to pick the disk with largest generation
838 * (as above).
840 if (!fs_devices->opened)
841 device->generation = found_transid;
844 * if there is new btrfs on an already registered device,
845 * then remove the stale device entry.
847 if (ret > 0)
848 btrfs_free_stale_device(device);
850 *fs_devices_ret = fs_devices;
852 return ret;
855 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
857 struct btrfs_fs_devices *fs_devices;
858 struct btrfs_device *device;
859 struct btrfs_device *orig_dev;
861 fs_devices = alloc_fs_devices(orig->fsid);
862 if (IS_ERR(fs_devices))
863 return fs_devices;
865 mutex_lock(&orig->device_list_mutex);
866 fs_devices->total_devices = orig->total_devices;
868 /* We have held the volume lock, it is safe to get the devices. */
869 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
870 struct rcu_string *name;
872 device = btrfs_alloc_device(NULL, &orig_dev->devid,
873 orig_dev->uuid);
874 if (IS_ERR(device))
875 goto error;
878 * This is ok to do without rcu read locked because we hold the
879 * uuid mutex so nothing we touch in here is going to disappear.
881 if (orig_dev->name) {
882 name = rcu_string_strdup(orig_dev->name->str,
883 GFP_KERNEL);
884 if (!name) {
885 free_device(device);
886 goto error;
888 rcu_assign_pointer(device->name, name);
891 list_add(&device->dev_list, &fs_devices->devices);
892 device->fs_devices = fs_devices;
893 fs_devices->num_devices++;
895 mutex_unlock(&orig->device_list_mutex);
896 return fs_devices;
897 error:
898 mutex_unlock(&orig->device_list_mutex);
899 free_fs_devices(fs_devices);
900 return ERR_PTR(-ENOMEM);
903 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
905 struct btrfs_device *device, *next;
906 struct btrfs_device *latest_dev = NULL;
908 mutex_lock(&uuid_mutex);
909 again:
910 /* This is the initialized path, it is safe to release the devices. */
911 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
912 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
913 &device->dev_state)) {
914 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
915 &device->dev_state) &&
916 (!latest_dev ||
917 device->generation > latest_dev->generation)) {
918 latest_dev = device;
920 continue;
923 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
925 * In the first step, keep the device which has
926 * the correct fsid and the devid that is used
927 * for the dev_replace procedure.
928 * In the second step, the dev_replace state is
929 * read from the device tree and it is known
930 * whether the procedure is really active or
931 * not, which means whether this device is
932 * used or whether it should be removed.
934 if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
935 &device->dev_state)) {
936 continue;
939 if (device->bdev) {
940 blkdev_put(device->bdev, device->mode);
941 device->bdev = NULL;
942 fs_devices->open_devices--;
944 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
945 list_del_init(&device->dev_alloc_list);
946 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
947 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
948 &device->dev_state))
949 fs_devices->rw_devices--;
951 list_del_init(&device->dev_list);
952 fs_devices->num_devices--;
953 free_device(device);
956 if (fs_devices->seed) {
957 fs_devices = fs_devices->seed;
958 goto again;
961 fs_devices->latest_bdev = latest_dev->bdev;
963 mutex_unlock(&uuid_mutex);
966 static void free_device_rcu(struct rcu_head *head)
968 struct btrfs_device *device;
970 device = container_of(head, struct btrfs_device, rcu);
971 free_device(device);
974 static void btrfs_close_bdev(struct btrfs_device *device)
976 if (!device->bdev)
977 return;
979 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
980 sync_blockdev(device->bdev);
981 invalidate_bdev(device->bdev);
984 blkdev_put(device->bdev, device->mode);
987 static void btrfs_prepare_close_one_device(struct btrfs_device *device)
989 struct btrfs_fs_devices *fs_devices = device->fs_devices;
990 struct btrfs_device *new_device;
991 struct rcu_string *name;
993 if (device->bdev)
994 fs_devices->open_devices--;
996 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
997 device->devid != BTRFS_DEV_REPLACE_DEVID) {
998 list_del_init(&device->dev_alloc_list);
999 fs_devices->rw_devices--;
1002 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1003 fs_devices->missing_devices--;
1005 new_device = btrfs_alloc_device(NULL, &device->devid,
1006 device->uuid);
1007 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
1009 /* Safe because we are under uuid_mutex */
1010 if (device->name) {
1011 name = rcu_string_strdup(device->name->str, GFP_NOFS);
1012 BUG_ON(!name); /* -ENOMEM */
1013 rcu_assign_pointer(new_device->name, name);
1016 list_replace_rcu(&device->dev_list, &new_device->dev_list);
1017 new_device->fs_devices = device->fs_devices;
1020 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1022 struct btrfs_device *device, *tmp;
1023 struct list_head pending_put;
1025 INIT_LIST_HEAD(&pending_put);
1027 if (--fs_devices->opened > 0)
1028 return 0;
1030 mutex_lock(&fs_devices->device_list_mutex);
1031 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1032 btrfs_prepare_close_one_device(device);
1033 list_add(&device->dev_list, &pending_put);
1035 mutex_unlock(&fs_devices->device_list_mutex);
1038 * btrfs_show_devname() is using the device_list_mutex,
1039 * sometimes call to blkdev_put() leads vfs calling
1040 * into this func. So do put outside of device_list_mutex,
1041 * as of now.
1043 while (!list_empty(&pending_put)) {
1044 device = list_first_entry(&pending_put,
1045 struct btrfs_device, dev_list);
1046 list_del(&device->dev_list);
1047 btrfs_close_bdev(device);
1048 call_rcu(&device->rcu, free_device_rcu);
1051 WARN_ON(fs_devices->open_devices);
1052 WARN_ON(fs_devices->rw_devices);
1053 fs_devices->opened = 0;
1054 fs_devices->seeding = 0;
1056 return 0;
1059 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1061 struct btrfs_fs_devices *seed_devices = NULL;
1062 int ret;
1064 mutex_lock(&uuid_mutex);
1065 ret = __btrfs_close_devices(fs_devices);
1066 if (!fs_devices->opened) {
1067 seed_devices = fs_devices->seed;
1068 fs_devices->seed = NULL;
1070 mutex_unlock(&uuid_mutex);
1072 while (seed_devices) {
1073 fs_devices = seed_devices;
1074 seed_devices = fs_devices->seed;
1075 __btrfs_close_devices(fs_devices);
1076 free_fs_devices(fs_devices);
1078 return ret;
1081 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1082 fmode_t flags, void *holder)
1084 struct list_head *head = &fs_devices->devices;
1085 struct btrfs_device *device;
1086 struct btrfs_device *latest_dev = NULL;
1087 int ret = 0;
1089 flags |= FMODE_EXCL;
1091 list_for_each_entry(device, head, dev_list) {
1092 /* Just open everything we can; ignore failures here */
1093 if (btrfs_open_one_device(fs_devices, device, flags, holder))
1094 continue;
1096 if (!latest_dev ||
1097 device->generation > latest_dev->generation)
1098 latest_dev = device;
1100 if (fs_devices->open_devices == 0) {
1101 ret = -EINVAL;
1102 goto out;
1104 fs_devices->opened = 1;
1105 fs_devices->latest_bdev = latest_dev->bdev;
1106 fs_devices->total_rw_bytes = 0;
1107 out:
1108 return ret;
1111 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1112 fmode_t flags, void *holder)
1114 int ret;
1116 mutex_lock(&uuid_mutex);
1117 if (fs_devices->opened) {
1118 fs_devices->opened++;
1119 ret = 0;
1120 } else {
1121 ret = __btrfs_open_devices(fs_devices, flags, holder);
1123 mutex_unlock(&uuid_mutex);
1124 return ret;
1127 static void btrfs_release_disk_super(struct page *page)
1129 kunmap(page);
1130 put_page(page);
1133 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1134 struct page **page,
1135 struct btrfs_super_block **disk_super)
1137 void *p;
1138 pgoff_t index;
1140 /* make sure our super fits in the device */
1141 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1142 return 1;
1144 /* make sure our super fits in the page */
1145 if (sizeof(**disk_super) > PAGE_SIZE)
1146 return 1;
1148 /* make sure our super doesn't straddle pages on disk */
1149 index = bytenr >> PAGE_SHIFT;
1150 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1151 return 1;
1153 /* pull in the page with our super */
1154 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1155 index, GFP_KERNEL);
1157 if (IS_ERR_OR_NULL(*page))
1158 return 1;
1160 p = kmap(*page);
1162 /* align our pointer to the offset of the super block */
1163 *disk_super = p + (bytenr & ~PAGE_MASK);
1165 if (btrfs_super_bytenr(*disk_super) != bytenr ||
1166 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1167 btrfs_release_disk_super(*page);
1168 return 1;
1171 if ((*disk_super)->label[0] &&
1172 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1173 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1175 return 0;
1179 * Look for a btrfs signature on a device. This may be called out of the mount path
1180 * and we are not allowed to call set_blocksize during the scan. The superblock
1181 * is read via pagecache
1183 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
1184 struct btrfs_fs_devices **fs_devices_ret)
1186 struct btrfs_super_block *disk_super;
1187 struct block_device *bdev;
1188 struct page *page;
1189 int ret = -EINVAL;
1190 u64 devid;
1191 u64 transid;
1192 u64 total_devices;
1193 u64 bytenr;
1196 * we would like to check all the supers, but that would make
1197 * a btrfs mount succeed after a mkfs from a different FS.
1198 * So, we need to add a special mount option to scan for
1199 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1201 bytenr = btrfs_sb_offset(0);
1202 flags |= FMODE_EXCL;
1203 mutex_lock(&uuid_mutex);
1205 bdev = blkdev_get_by_path(path, flags, holder);
1206 if (IS_ERR(bdev)) {
1207 ret = PTR_ERR(bdev);
1208 goto error;
1211 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super))
1212 goto error_bdev_put;
1214 devid = btrfs_stack_device_id(&disk_super->dev_item);
1215 transid = btrfs_super_generation(disk_super);
1216 total_devices = btrfs_super_num_devices(disk_super);
1218 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
1219 if (ret > 0) {
1220 if (disk_super->label[0]) {
1221 pr_info("BTRFS: device label %s ", disk_super->label);
1222 } else {
1223 pr_info("BTRFS: device fsid %pU ", disk_super->fsid);
1226 pr_cont("devid %llu transid %llu %s\n", devid, transid, path);
1227 ret = 0;
1229 if (!ret && fs_devices_ret)
1230 (*fs_devices_ret)->total_devices = total_devices;
1232 btrfs_release_disk_super(page);
1234 error_bdev_put:
1235 blkdev_put(bdev, flags);
1236 error:
1237 mutex_unlock(&uuid_mutex);
1238 return ret;
1241 /* helper to account the used device space in the range */
1242 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1243 u64 end, u64 *length)
1245 struct btrfs_key key;
1246 struct btrfs_root *root = device->fs_info->dev_root;
1247 struct btrfs_dev_extent *dev_extent;
1248 struct btrfs_path *path;
1249 u64 extent_end;
1250 int ret;
1251 int slot;
1252 struct extent_buffer *l;
1254 *length = 0;
1256 if (start >= device->total_bytes ||
1257 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1258 return 0;
1260 path = btrfs_alloc_path();
1261 if (!path)
1262 return -ENOMEM;
1263 path->reada = READA_FORWARD;
1265 key.objectid = device->devid;
1266 key.offset = start;
1267 key.type = BTRFS_DEV_EXTENT_KEY;
1269 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1270 if (ret < 0)
1271 goto out;
1272 if (ret > 0) {
1273 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1274 if (ret < 0)
1275 goto out;
1278 while (1) {
1279 l = path->nodes[0];
1280 slot = path->slots[0];
1281 if (slot >= btrfs_header_nritems(l)) {
1282 ret = btrfs_next_leaf(root, path);
1283 if (ret == 0)
1284 continue;
1285 if (ret < 0)
1286 goto out;
1288 break;
1290 btrfs_item_key_to_cpu(l, &key, slot);
1292 if (key.objectid < device->devid)
1293 goto next;
1295 if (key.objectid > device->devid)
1296 break;
1298 if (key.type != BTRFS_DEV_EXTENT_KEY)
1299 goto next;
1301 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1302 extent_end = key.offset + btrfs_dev_extent_length(l,
1303 dev_extent);
1304 if (key.offset <= start && extent_end > end) {
1305 *length = end - start + 1;
1306 break;
1307 } else if (key.offset <= start && extent_end > start)
1308 *length += extent_end - start;
1309 else if (key.offset > start && extent_end <= end)
1310 *length += extent_end - key.offset;
1311 else if (key.offset > start && key.offset <= end) {
1312 *length += end - key.offset + 1;
1313 break;
1314 } else if (key.offset > end)
1315 break;
1317 next:
1318 path->slots[0]++;
1320 ret = 0;
1321 out:
1322 btrfs_free_path(path);
1323 return ret;
1326 static int contains_pending_extent(struct btrfs_transaction *transaction,
1327 struct btrfs_device *device,
1328 u64 *start, u64 len)
1330 struct btrfs_fs_info *fs_info = device->fs_info;
1331 struct extent_map *em;
1332 struct list_head *search_list = &fs_info->pinned_chunks;
1333 int ret = 0;
1334 u64 physical_start = *start;
1336 if (transaction)
1337 search_list = &transaction->pending_chunks;
1338 again:
1339 list_for_each_entry(em, search_list, list) {
1340 struct map_lookup *map;
1341 int i;
1343 map = em->map_lookup;
1344 for (i = 0; i < map->num_stripes; i++) {
1345 u64 end;
1347 if (map->stripes[i].dev != device)
1348 continue;
1349 if (map->stripes[i].physical >= physical_start + len ||
1350 map->stripes[i].physical + em->orig_block_len <=
1351 physical_start)
1352 continue;
1354 * Make sure that while processing the pinned list we do
1355 * not override our *start with a lower value, because
1356 * we can have pinned chunks that fall within this
1357 * device hole and that have lower physical addresses
1358 * than the pending chunks we processed before. If we
1359 * do not take this special care we can end up getting
1360 * 2 pending chunks that start at the same physical
1361 * device offsets because the end offset of a pinned
1362 * chunk can be equal to the start offset of some
1363 * pending chunk.
1365 end = map->stripes[i].physical + em->orig_block_len;
1366 if (end > *start) {
1367 *start = end;
1368 ret = 1;
1372 if (search_list != &fs_info->pinned_chunks) {
1373 search_list = &fs_info->pinned_chunks;
1374 goto again;
1377 return ret;
1382 * find_free_dev_extent_start - find free space in the specified device
1383 * @device: the device which we search the free space in
1384 * @num_bytes: the size of the free space that we need
1385 * @search_start: the position from which to begin the search
1386 * @start: store the start of the free space.
1387 * @len: the size of the free space. that we find, or the size
1388 * of the max free space if we don't find suitable free space
1390 * this uses a pretty simple search, the expectation is that it is
1391 * called very infrequently and that a given device has a small number
1392 * of extents
1394 * @start is used to store the start of the free space if we find. But if we
1395 * don't find suitable free space, it will be used to store the start position
1396 * of the max free space.
1398 * @len is used to store the size of the free space that we find.
1399 * But if we don't find suitable free space, it is used to store the size of
1400 * the max free space.
1402 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1403 struct btrfs_device *device, u64 num_bytes,
1404 u64 search_start, u64 *start, u64 *len)
1406 struct btrfs_fs_info *fs_info = device->fs_info;
1407 struct btrfs_root *root = fs_info->dev_root;
1408 struct btrfs_key key;
1409 struct btrfs_dev_extent *dev_extent;
1410 struct btrfs_path *path;
1411 u64 hole_size;
1412 u64 max_hole_start;
1413 u64 max_hole_size;
1414 u64 extent_end;
1415 u64 search_end = device->total_bytes;
1416 int ret;
1417 int slot;
1418 struct extent_buffer *l;
1421 * We don't want to overwrite the superblock on the drive nor any area
1422 * used by the boot loader (grub for example), so we make sure to start
1423 * at an offset of at least 1MB.
1425 search_start = max_t(u64, search_start, SZ_1M);
1427 path = btrfs_alloc_path();
1428 if (!path)
1429 return -ENOMEM;
1431 max_hole_start = search_start;
1432 max_hole_size = 0;
1434 again:
1435 if (search_start >= search_end ||
1436 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1437 ret = -ENOSPC;
1438 goto out;
1441 path->reada = READA_FORWARD;
1442 path->search_commit_root = 1;
1443 path->skip_locking = 1;
1445 key.objectid = device->devid;
1446 key.offset = search_start;
1447 key.type = BTRFS_DEV_EXTENT_KEY;
1449 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1450 if (ret < 0)
1451 goto out;
1452 if (ret > 0) {
1453 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1454 if (ret < 0)
1455 goto out;
1458 while (1) {
1459 l = path->nodes[0];
1460 slot = path->slots[0];
1461 if (slot >= btrfs_header_nritems(l)) {
1462 ret = btrfs_next_leaf(root, path);
1463 if (ret == 0)
1464 continue;
1465 if (ret < 0)
1466 goto out;
1468 break;
1470 btrfs_item_key_to_cpu(l, &key, slot);
1472 if (key.objectid < device->devid)
1473 goto next;
1475 if (key.objectid > device->devid)
1476 break;
1478 if (key.type != BTRFS_DEV_EXTENT_KEY)
1479 goto next;
1481 if (key.offset > search_start) {
1482 hole_size = key.offset - search_start;
1485 * Have to check before we set max_hole_start, otherwise
1486 * we could end up sending back this offset anyway.
1488 if (contains_pending_extent(transaction, device,
1489 &search_start,
1490 hole_size)) {
1491 if (key.offset >= search_start) {
1492 hole_size = key.offset - search_start;
1493 } else {
1494 WARN_ON_ONCE(1);
1495 hole_size = 0;
1499 if (hole_size > max_hole_size) {
1500 max_hole_start = search_start;
1501 max_hole_size = hole_size;
1505 * If this free space is greater than which we need,
1506 * it must be the max free space that we have found
1507 * until now, so max_hole_start must point to the start
1508 * of this free space and the length of this free space
1509 * is stored in max_hole_size. Thus, we return
1510 * max_hole_start and max_hole_size and go back to the
1511 * caller.
1513 if (hole_size >= num_bytes) {
1514 ret = 0;
1515 goto out;
1519 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1520 extent_end = key.offset + btrfs_dev_extent_length(l,
1521 dev_extent);
1522 if (extent_end > search_start)
1523 search_start = extent_end;
1524 next:
1525 path->slots[0]++;
1526 cond_resched();
1530 * At this point, search_start should be the end of
1531 * allocated dev extents, and when shrinking the device,
1532 * search_end may be smaller than search_start.
1534 if (search_end > search_start) {
1535 hole_size = search_end - search_start;
1537 if (contains_pending_extent(transaction, device, &search_start,
1538 hole_size)) {
1539 btrfs_release_path(path);
1540 goto again;
1543 if (hole_size > max_hole_size) {
1544 max_hole_start = search_start;
1545 max_hole_size = hole_size;
1549 /* See above. */
1550 if (max_hole_size < num_bytes)
1551 ret = -ENOSPC;
1552 else
1553 ret = 0;
1555 out:
1556 btrfs_free_path(path);
1557 *start = max_hole_start;
1558 if (len)
1559 *len = max_hole_size;
1560 return ret;
1563 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1564 struct btrfs_device *device, u64 num_bytes,
1565 u64 *start, u64 *len)
1567 /* FIXME use last free of some kind */
1568 return find_free_dev_extent_start(trans->transaction, device,
1569 num_bytes, 0, start, len);
1572 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1573 struct btrfs_device *device,
1574 u64 start, u64 *dev_extent_len)
1576 struct btrfs_fs_info *fs_info = device->fs_info;
1577 struct btrfs_root *root = fs_info->dev_root;
1578 int ret;
1579 struct btrfs_path *path;
1580 struct btrfs_key key;
1581 struct btrfs_key found_key;
1582 struct extent_buffer *leaf = NULL;
1583 struct btrfs_dev_extent *extent = NULL;
1585 path = btrfs_alloc_path();
1586 if (!path)
1587 return -ENOMEM;
1589 key.objectid = device->devid;
1590 key.offset = start;
1591 key.type = BTRFS_DEV_EXTENT_KEY;
1592 again:
1593 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1594 if (ret > 0) {
1595 ret = btrfs_previous_item(root, path, key.objectid,
1596 BTRFS_DEV_EXTENT_KEY);
1597 if (ret)
1598 goto out;
1599 leaf = path->nodes[0];
1600 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1601 extent = btrfs_item_ptr(leaf, path->slots[0],
1602 struct btrfs_dev_extent);
1603 BUG_ON(found_key.offset > start || found_key.offset +
1604 btrfs_dev_extent_length(leaf, extent) < start);
1605 key = found_key;
1606 btrfs_release_path(path);
1607 goto again;
1608 } else if (ret == 0) {
1609 leaf = path->nodes[0];
1610 extent = btrfs_item_ptr(leaf, path->slots[0],
1611 struct btrfs_dev_extent);
1612 } else {
1613 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1614 goto out;
1617 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1619 ret = btrfs_del_item(trans, root, path);
1620 if (ret) {
1621 btrfs_handle_fs_error(fs_info, ret,
1622 "Failed to remove dev extent item");
1623 } else {
1624 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1626 out:
1627 btrfs_free_path(path);
1628 return ret;
1631 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1632 struct btrfs_device *device,
1633 u64 chunk_offset, u64 start, u64 num_bytes)
1635 int ret;
1636 struct btrfs_path *path;
1637 struct btrfs_fs_info *fs_info = device->fs_info;
1638 struct btrfs_root *root = fs_info->dev_root;
1639 struct btrfs_dev_extent *extent;
1640 struct extent_buffer *leaf;
1641 struct btrfs_key key;
1643 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1644 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1645 path = btrfs_alloc_path();
1646 if (!path)
1647 return -ENOMEM;
1649 key.objectid = device->devid;
1650 key.offset = start;
1651 key.type = BTRFS_DEV_EXTENT_KEY;
1652 ret = btrfs_insert_empty_item(trans, root, path, &key,
1653 sizeof(*extent));
1654 if (ret)
1655 goto out;
1657 leaf = path->nodes[0];
1658 extent = btrfs_item_ptr(leaf, path->slots[0],
1659 struct btrfs_dev_extent);
1660 btrfs_set_dev_extent_chunk_tree(leaf, extent,
1661 BTRFS_CHUNK_TREE_OBJECTID);
1662 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1663 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1664 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1666 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1667 btrfs_mark_buffer_dirty(leaf);
1668 out:
1669 btrfs_free_path(path);
1670 return ret;
1673 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1675 struct extent_map_tree *em_tree;
1676 struct extent_map *em;
1677 struct rb_node *n;
1678 u64 ret = 0;
1680 em_tree = &fs_info->mapping_tree.map_tree;
1681 read_lock(&em_tree->lock);
1682 n = rb_last(&em_tree->map);
1683 if (n) {
1684 em = rb_entry(n, struct extent_map, rb_node);
1685 ret = em->start + em->len;
1687 read_unlock(&em_tree->lock);
1689 return ret;
1692 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1693 u64 *devid_ret)
1695 int ret;
1696 struct btrfs_key key;
1697 struct btrfs_key found_key;
1698 struct btrfs_path *path;
1700 path = btrfs_alloc_path();
1701 if (!path)
1702 return -ENOMEM;
1704 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1705 key.type = BTRFS_DEV_ITEM_KEY;
1706 key.offset = (u64)-1;
1708 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1709 if (ret < 0)
1710 goto error;
1712 BUG_ON(ret == 0); /* Corruption */
1714 ret = btrfs_previous_item(fs_info->chunk_root, path,
1715 BTRFS_DEV_ITEMS_OBJECTID,
1716 BTRFS_DEV_ITEM_KEY);
1717 if (ret) {
1718 *devid_ret = 1;
1719 } else {
1720 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1721 path->slots[0]);
1722 *devid_ret = found_key.offset + 1;
1724 ret = 0;
1725 error:
1726 btrfs_free_path(path);
1727 return ret;
1731 * the device information is stored in the chunk root
1732 * the btrfs_device struct should be fully filled in
1734 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1735 struct btrfs_fs_info *fs_info,
1736 struct btrfs_device *device)
1738 struct btrfs_root *root = fs_info->chunk_root;
1739 int ret;
1740 struct btrfs_path *path;
1741 struct btrfs_dev_item *dev_item;
1742 struct extent_buffer *leaf;
1743 struct btrfs_key key;
1744 unsigned long ptr;
1746 path = btrfs_alloc_path();
1747 if (!path)
1748 return -ENOMEM;
1750 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1751 key.type = BTRFS_DEV_ITEM_KEY;
1752 key.offset = device->devid;
1754 ret = btrfs_insert_empty_item(trans, root, path, &key,
1755 sizeof(*dev_item));
1756 if (ret)
1757 goto out;
1759 leaf = path->nodes[0];
1760 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1762 btrfs_set_device_id(leaf, dev_item, device->devid);
1763 btrfs_set_device_generation(leaf, dev_item, 0);
1764 btrfs_set_device_type(leaf, dev_item, device->type);
1765 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1766 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1767 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1768 btrfs_set_device_total_bytes(leaf, dev_item,
1769 btrfs_device_get_disk_total_bytes(device));
1770 btrfs_set_device_bytes_used(leaf, dev_item,
1771 btrfs_device_get_bytes_used(device));
1772 btrfs_set_device_group(leaf, dev_item, 0);
1773 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1774 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1775 btrfs_set_device_start_offset(leaf, dev_item, 0);
1777 ptr = btrfs_device_uuid(dev_item);
1778 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1779 ptr = btrfs_device_fsid(dev_item);
1780 write_extent_buffer(leaf, fs_info->fsid, ptr, BTRFS_FSID_SIZE);
1781 btrfs_mark_buffer_dirty(leaf);
1783 ret = 0;
1784 out:
1785 btrfs_free_path(path);
1786 return ret;
1790 * Function to update ctime/mtime for a given device path.
1791 * Mainly used for ctime/mtime based probe like libblkid.
1793 static void update_dev_time(const char *path_name)
1795 struct file *filp;
1797 filp = filp_open(path_name, O_RDWR, 0);
1798 if (IS_ERR(filp))
1799 return;
1800 file_update_time(filp);
1801 filp_close(filp, NULL);
1804 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
1805 struct btrfs_device *device)
1807 struct btrfs_root *root = fs_info->chunk_root;
1808 int ret;
1809 struct btrfs_path *path;
1810 struct btrfs_key key;
1811 struct btrfs_trans_handle *trans;
1813 path = btrfs_alloc_path();
1814 if (!path)
1815 return -ENOMEM;
1817 trans = btrfs_start_transaction(root, 0);
1818 if (IS_ERR(trans)) {
1819 btrfs_free_path(path);
1820 return PTR_ERR(trans);
1822 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1823 key.type = BTRFS_DEV_ITEM_KEY;
1824 key.offset = device->devid;
1826 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1827 if (ret) {
1828 if (ret > 0)
1829 ret = -ENOENT;
1830 btrfs_abort_transaction(trans, ret);
1831 btrfs_end_transaction(trans);
1832 goto out;
1835 ret = btrfs_del_item(trans, root, path);
1836 if (ret) {
1837 btrfs_abort_transaction(trans, ret);
1838 btrfs_end_transaction(trans);
1841 out:
1842 btrfs_free_path(path);
1843 if (!ret)
1844 ret = btrfs_commit_transaction(trans);
1845 return ret;
1849 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1850 * filesystem. It's up to the caller to adjust that number regarding eg. device
1851 * replace.
1853 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1854 u64 num_devices)
1856 u64 all_avail;
1857 unsigned seq;
1858 int i;
1860 do {
1861 seq = read_seqbegin(&fs_info->profiles_lock);
1863 all_avail = fs_info->avail_data_alloc_bits |
1864 fs_info->avail_system_alloc_bits |
1865 fs_info->avail_metadata_alloc_bits;
1866 } while (read_seqretry(&fs_info->profiles_lock, seq));
1868 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1869 if (!(all_avail & btrfs_raid_group[i]))
1870 continue;
1872 if (num_devices < btrfs_raid_array[i].devs_min) {
1873 int ret = btrfs_raid_mindev_error[i];
1875 if (ret)
1876 return ret;
1880 return 0;
1883 static struct btrfs_device * btrfs_find_next_active_device(
1884 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1886 struct btrfs_device *next_device;
1888 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1889 if (next_device != device &&
1890 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1891 && next_device->bdev)
1892 return next_device;
1895 return NULL;
1899 * Helper function to check if the given device is part of s_bdev / latest_bdev
1900 * and replace it with the provided or the next active device, in the context
1901 * where this function called, there should be always be another device (or
1902 * this_dev) which is active.
1904 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1905 struct btrfs_device *device, struct btrfs_device *this_dev)
1907 struct btrfs_device *next_device;
1909 if (this_dev)
1910 next_device = this_dev;
1911 else
1912 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1913 device);
1914 ASSERT(next_device);
1916 if (fs_info->sb->s_bdev &&
1917 (fs_info->sb->s_bdev == device->bdev))
1918 fs_info->sb->s_bdev = next_device->bdev;
1920 if (fs_info->fs_devices->latest_bdev == device->bdev)
1921 fs_info->fs_devices->latest_bdev = next_device->bdev;
1924 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1925 u64 devid)
1927 struct btrfs_device *device;
1928 struct btrfs_fs_devices *cur_devices;
1929 u64 num_devices;
1930 int ret = 0;
1932 mutex_lock(&fs_info->volume_mutex);
1933 mutex_lock(&uuid_mutex);
1935 num_devices = fs_info->fs_devices->num_devices;
1936 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
1937 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1938 WARN_ON(num_devices < 1);
1939 num_devices--;
1941 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
1943 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
1944 if (ret)
1945 goto out;
1947 ret = btrfs_find_device_by_devspec(fs_info, devid, device_path,
1948 &device);
1949 if (ret)
1950 goto out;
1952 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1953 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1954 goto out;
1957 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1958 fs_info->fs_devices->rw_devices == 1) {
1959 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1960 goto out;
1963 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1964 mutex_lock(&fs_info->chunk_mutex);
1965 list_del_init(&device->dev_alloc_list);
1966 device->fs_devices->rw_devices--;
1967 mutex_unlock(&fs_info->chunk_mutex);
1970 mutex_unlock(&uuid_mutex);
1971 ret = btrfs_shrink_device(device, 0);
1972 mutex_lock(&uuid_mutex);
1973 if (ret)
1974 goto error_undo;
1977 * TODO: the superblock still includes this device in its num_devices
1978 * counter although write_all_supers() is not locked out. This
1979 * could give a filesystem state which requires a degraded mount.
1981 ret = btrfs_rm_dev_item(fs_info, device);
1982 if (ret)
1983 goto error_undo;
1985 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
1986 btrfs_scrub_cancel_dev(fs_info, device);
1989 * the device list mutex makes sure that we don't change
1990 * the device list while someone else is writing out all
1991 * the device supers. Whoever is writing all supers, should
1992 * lock the device list mutex before getting the number of
1993 * devices in the super block (super_copy). Conversely,
1994 * whoever updates the number of devices in the super block
1995 * (super_copy) should hold the device list mutex.
1998 cur_devices = device->fs_devices;
1999 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2000 list_del_rcu(&device->dev_list);
2002 device->fs_devices->num_devices--;
2003 device->fs_devices->total_devices--;
2005 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2006 device->fs_devices->missing_devices--;
2008 btrfs_assign_next_active_device(fs_info, device, NULL);
2010 if (device->bdev) {
2011 device->fs_devices->open_devices--;
2012 /* remove sysfs entry */
2013 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
2016 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2017 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2018 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2021 * at this point, the device is zero sized and detached from
2022 * the devices list. All that's left is to zero out the old
2023 * supers and free the device.
2025 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2026 btrfs_scratch_superblocks(device->bdev, device->name->str);
2028 btrfs_close_bdev(device);
2029 call_rcu(&device->rcu, free_device_rcu);
2031 if (cur_devices->open_devices == 0) {
2032 struct btrfs_fs_devices *fs_devices;
2033 fs_devices = fs_info->fs_devices;
2034 while (fs_devices) {
2035 if (fs_devices->seed == cur_devices) {
2036 fs_devices->seed = cur_devices->seed;
2037 break;
2039 fs_devices = fs_devices->seed;
2041 cur_devices->seed = NULL;
2042 __btrfs_close_devices(cur_devices);
2043 free_fs_devices(cur_devices);
2046 out:
2047 mutex_unlock(&uuid_mutex);
2048 mutex_unlock(&fs_info->volume_mutex);
2049 return ret;
2051 error_undo:
2052 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2053 mutex_lock(&fs_info->chunk_mutex);
2054 list_add(&device->dev_alloc_list,
2055 &fs_info->fs_devices->alloc_list);
2056 device->fs_devices->rw_devices++;
2057 mutex_unlock(&fs_info->chunk_mutex);
2059 goto out;
2062 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
2063 struct btrfs_device *srcdev)
2065 struct btrfs_fs_devices *fs_devices;
2067 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
2070 * in case of fs with no seed, srcdev->fs_devices will point
2071 * to fs_devices of fs_info. However when the dev being replaced is
2072 * a seed dev it will point to the seed's local fs_devices. In short
2073 * srcdev will have its correct fs_devices in both the cases.
2075 fs_devices = srcdev->fs_devices;
2077 list_del_rcu(&srcdev->dev_list);
2078 list_del(&srcdev->dev_alloc_list);
2079 fs_devices->num_devices--;
2080 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2081 fs_devices->missing_devices--;
2083 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2084 fs_devices->rw_devices--;
2086 if (srcdev->bdev)
2087 fs_devices->open_devices--;
2090 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2091 struct btrfs_device *srcdev)
2093 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2095 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
2096 /* zero out the old super if it is writable */
2097 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2100 btrfs_close_bdev(srcdev);
2101 call_rcu(&srcdev->rcu, free_device_rcu);
2103 /* if this is no devs we rather delete the fs_devices */
2104 if (!fs_devices->num_devices) {
2105 struct btrfs_fs_devices *tmp_fs_devices;
2108 * On a mounted FS, num_devices can't be zero unless it's a
2109 * seed. In case of a seed device being replaced, the replace
2110 * target added to the sprout FS, so there will be no more
2111 * device left under the seed FS.
2113 ASSERT(fs_devices->seeding);
2115 tmp_fs_devices = fs_info->fs_devices;
2116 while (tmp_fs_devices) {
2117 if (tmp_fs_devices->seed == fs_devices) {
2118 tmp_fs_devices->seed = fs_devices->seed;
2119 break;
2121 tmp_fs_devices = tmp_fs_devices->seed;
2123 fs_devices->seed = NULL;
2124 __btrfs_close_devices(fs_devices);
2125 free_fs_devices(fs_devices);
2129 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2130 struct btrfs_device *tgtdev)
2132 mutex_lock(&uuid_mutex);
2133 WARN_ON(!tgtdev);
2134 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2136 btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2138 if (tgtdev->bdev)
2139 fs_info->fs_devices->open_devices--;
2141 fs_info->fs_devices->num_devices--;
2143 btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
2145 list_del_rcu(&tgtdev->dev_list);
2147 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2148 mutex_unlock(&uuid_mutex);
2151 * The update_dev_time() with in btrfs_scratch_superblocks()
2152 * may lead to a call to btrfs_show_devname() which will try
2153 * to hold device_list_mutex. And here this device
2154 * is already out of device list, so we don't have to hold
2155 * the device_list_mutex lock.
2157 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2159 btrfs_close_bdev(tgtdev);
2160 call_rcu(&tgtdev->rcu, free_device_rcu);
2163 static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info,
2164 const char *device_path,
2165 struct btrfs_device **device)
2167 int ret = 0;
2168 struct btrfs_super_block *disk_super;
2169 u64 devid;
2170 u8 *dev_uuid;
2171 struct block_device *bdev;
2172 struct buffer_head *bh;
2174 *device = NULL;
2175 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2176 fs_info->bdev_holder, 0, &bdev, &bh);
2177 if (ret)
2178 return ret;
2179 disk_super = (struct btrfs_super_block *)bh->b_data;
2180 devid = btrfs_stack_device_id(&disk_super->dev_item);
2181 dev_uuid = disk_super->dev_item.uuid;
2182 *device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid);
2183 brelse(bh);
2184 if (!*device)
2185 ret = -ENOENT;
2186 blkdev_put(bdev, FMODE_READ);
2187 return ret;
2190 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
2191 const char *device_path,
2192 struct btrfs_device **device)
2194 *device = NULL;
2195 if (strcmp(device_path, "missing") == 0) {
2196 struct list_head *devices;
2197 struct btrfs_device *tmp;
2199 devices = &fs_info->fs_devices->devices;
2201 * It is safe to read the devices since the volume_mutex
2202 * is held by the caller.
2204 list_for_each_entry(tmp, devices, dev_list) {
2205 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2206 &tmp->dev_state) && !tmp->bdev) {
2207 *device = tmp;
2208 break;
2212 if (!*device)
2213 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2215 return 0;
2216 } else {
2217 return btrfs_find_device_by_path(fs_info, device_path, device);
2222 * Lookup a device given by device id, or the path if the id is 0.
2224 int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
2225 const char *devpath,
2226 struct btrfs_device **device)
2228 int ret;
2230 if (devid) {
2231 ret = 0;
2232 *device = btrfs_find_device(fs_info, devid, NULL, NULL);
2233 if (!*device)
2234 ret = -ENOENT;
2235 } else {
2236 if (!devpath || !devpath[0])
2237 return -EINVAL;
2239 ret = btrfs_find_device_missing_or_by_path(fs_info, devpath,
2240 device);
2242 return ret;
2246 * does all the dirty work required for changing file system's UUID.
2248 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2250 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2251 struct btrfs_fs_devices *old_devices;
2252 struct btrfs_fs_devices *seed_devices;
2253 struct btrfs_super_block *disk_super = fs_info->super_copy;
2254 struct btrfs_device *device;
2255 u64 super_flags;
2257 BUG_ON(!mutex_is_locked(&uuid_mutex));
2258 if (!fs_devices->seeding)
2259 return -EINVAL;
2261 seed_devices = alloc_fs_devices(NULL);
2262 if (IS_ERR(seed_devices))
2263 return PTR_ERR(seed_devices);
2265 old_devices = clone_fs_devices(fs_devices);
2266 if (IS_ERR(old_devices)) {
2267 kfree(seed_devices);
2268 return PTR_ERR(old_devices);
2271 list_add(&old_devices->list, &fs_uuids);
2273 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2274 seed_devices->opened = 1;
2275 INIT_LIST_HEAD(&seed_devices->devices);
2276 INIT_LIST_HEAD(&seed_devices->alloc_list);
2277 mutex_init(&seed_devices->device_list_mutex);
2279 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2280 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2281 synchronize_rcu);
2282 list_for_each_entry(device, &seed_devices->devices, dev_list)
2283 device->fs_devices = seed_devices;
2285 mutex_lock(&fs_info->chunk_mutex);
2286 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2287 mutex_unlock(&fs_info->chunk_mutex);
2289 fs_devices->seeding = 0;
2290 fs_devices->num_devices = 0;
2291 fs_devices->open_devices = 0;
2292 fs_devices->missing_devices = 0;
2293 fs_devices->rotating = 0;
2294 fs_devices->seed = seed_devices;
2296 generate_random_uuid(fs_devices->fsid);
2297 memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2298 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2299 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2301 super_flags = btrfs_super_flags(disk_super) &
2302 ~BTRFS_SUPER_FLAG_SEEDING;
2303 btrfs_set_super_flags(disk_super, super_flags);
2305 return 0;
2309 * Store the expected generation for seed devices in device items.
2311 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2312 struct btrfs_fs_info *fs_info)
2314 struct btrfs_root *root = fs_info->chunk_root;
2315 struct btrfs_path *path;
2316 struct extent_buffer *leaf;
2317 struct btrfs_dev_item *dev_item;
2318 struct btrfs_device *device;
2319 struct btrfs_key key;
2320 u8 fs_uuid[BTRFS_FSID_SIZE];
2321 u8 dev_uuid[BTRFS_UUID_SIZE];
2322 u64 devid;
2323 int ret;
2325 path = btrfs_alloc_path();
2326 if (!path)
2327 return -ENOMEM;
2329 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2330 key.offset = 0;
2331 key.type = BTRFS_DEV_ITEM_KEY;
2333 while (1) {
2334 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2335 if (ret < 0)
2336 goto error;
2338 leaf = path->nodes[0];
2339 next_slot:
2340 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2341 ret = btrfs_next_leaf(root, path);
2342 if (ret > 0)
2343 break;
2344 if (ret < 0)
2345 goto error;
2346 leaf = path->nodes[0];
2347 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2348 btrfs_release_path(path);
2349 continue;
2352 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2353 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2354 key.type != BTRFS_DEV_ITEM_KEY)
2355 break;
2357 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2358 struct btrfs_dev_item);
2359 devid = btrfs_device_id(leaf, dev_item);
2360 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2361 BTRFS_UUID_SIZE);
2362 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2363 BTRFS_FSID_SIZE);
2364 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
2365 BUG_ON(!device); /* Logic error */
2367 if (device->fs_devices->seeding) {
2368 btrfs_set_device_generation(leaf, dev_item,
2369 device->generation);
2370 btrfs_mark_buffer_dirty(leaf);
2373 path->slots[0]++;
2374 goto next_slot;
2376 ret = 0;
2377 error:
2378 btrfs_free_path(path);
2379 return ret;
2382 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2384 struct btrfs_root *root = fs_info->dev_root;
2385 struct request_queue *q;
2386 struct btrfs_trans_handle *trans;
2387 struct btrfs_device *device;
2388 struct block_device *bdev;
2389 struct list_head *devices;
2390 struct super_block *sb = fs_info->sb;
2391 struct rcu_string *name;
2392 u64 tmp;
2393 int seeding_dev = 0;
2394 int ret = 0;
2395 bool unlocked = false;
2397 if (sb_rdonly(sb) && !fs_info->fs_devices->seeding)
2398 return -EROFS;
2400 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2401 fs_info->bdev_holder);
2402 if (IS_ERR(bdev))
2403 return PTR_ERR(bdev);
2405 if (fs_info->fs_devices->seeding) {
2406 seeding_dev = 1;
2407 down_write(&sb->s_umount);
2408 mutex_lock(&uuid_mutex);
2411 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2413 devices = &fs_info->fs_devices->devices;
2415 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2416 list_for_each_entry(device, devices, dev_list) {
2417 if (device->bdev == bdev) {
2418 ret = -EEXIST;
2419 mutex_unlock(
2420 &fs_info->fs_devices->device_list_mutex);
2421 goto error;
2424 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2426 device = btrfs_alloc_device(fs_info, NULL, NULL);
2427 if (IS_ERR(device)) {
2428 /* we can safely leave the fs_devices entry around */
2429 ret = PTR_ERR(device);
2430 goto error;
2433 name = rcu_string_strdup(device_path, GFP_KERNEL);
2434 if (!name) {
2435 ret = -ENOMEM;
2436 goto error_free_device;
2438 rcu_assign_pointer(device->name, name);
2440 trans = btrfs_start_transaction(root, 0);
2441 if (IS_ERR(trans)) {
2442 ret = PTR_ERR(trans);
2443 goto error_free_device;
2446 q = bdev_get_queue(bdev);
2447 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2448 device->generation = trans->transid;
2449 device->io_width = fs_info->sectorsize;
2450 device->io_align = fs_info->sectorsize;
2451 device->sector_size = fs_info->sectorsize;
2452 device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2453 fs_info->sectorsize);
2454 device->disk_total_bytes = device->total_bytes;
2455 device->commit_total_bytes = device->total_bytes;
2456 device->fs_info = fs_info;
2457 device->bdev = bdev;
2458 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2459 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2460 device->mode = FMODE_EXCL;
2461 device->dev_stats_valid = 1;
2462 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2464 if (seeding_dev) {
2465 sb->s_flags &= ~SB_RDONLY;
2466 ret = btrfs_prepare_sprout(fs_info);
2467 if (ret) {
2468 btrfs_abort_transaction(trans, ret);
2469 goto error_trans;
2473 device->fs_devices = fs_info->fs_devices;
2475 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2476 mutex_lock(&fs_info->chunk_mutex);
2477 list_add_rcu(&device->dev_list, &fs_info->fs_devices->devices);
2478 list_add(&device->dev_alloc_list,
2479 &fs_info->fs_devices->alloc_list);
2480 fs_info->fs_devices->num_devices++;
2481 fs_info->fs_devices->open_devices++;
2482 fs_info->fs_devices->rw_devices++;
2483 fs_info->fs_devices->total_devices++;
2484 fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2486 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2488 if (!blk_queue_nonrot(q))
2489 fs_info->fs_devices->rotating = 1;
2491 tmp = btrfs_super_total_bytes(fs_info->super_copy);
2492 btrfs_set_super_total_bytes(fs_info->super_copy,
2493 round_down(tmp + device->total_bytes, fs_info->sectorsize));
2495 tmp = btrfs_super_num_devices(fs_info->super_copy);
2496 btrfs_set_super_num_devices(fs_info->super_copy, tmp + 1);
2498 /* add sysfs device entry */
2499 btrfs_sysfs_add_device_link(fs_info->fs_devices, device);
2502 * we've got more storage, clear any full flags on the space
2503 * infos
2505 btrfs_clear_space_info_full(fs_info);
2507 mutex_unlock(&fs_info->chunk_mutex);
2508 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2510 if (seeding_dev) {
2511 mutex_lock(&fs_info->chunk_mutex);
2512 ret = init_first_rw_device(trans, fs_info);
2513 mutex_unlock(&fs_info->chunk_mutex);
2514 if (ret) {
2515 btrfs_abort_transaction(trans, ret);
2516 goto error_sysfs;
2520 ret = btrfs_add_dev_item(trans, fs_info, device);
2521 if (ret) {
2522 btrfs_abort_transaction(trans, ret);
2523 goto error_sysfs;
2526 if (seeding_dev) {
2527 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2529 ret = btrfs_finish_sprout(trans, fs_info);
2530 if (ret) {
2531 btrfs_abort_transaction(trans, ret);
2532 goto error_sysfs;
2535 /* Sprouting would change fsid of the mounted root,
2536 * so rename the fsid on the sysfs
2538 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2539 fs_info->fsid);
2540 if (kobject_rename(&fs_info->fs_devices->fsid_kobj, fsid_buf))
2541 btrfs_warn(fs_info,
2542 "sysfs: failed to create fsid for sprout");
2545 ret = btrfs_commit_transaction(trans);
2547 if (seeding_dev) {
2548 mutex_unlock(&uuid_mutex);
2549 up_write(&sb->s_umount);
2550 unlocked = true;
2552 if (ret) /* transaction commit */
2553 return ret;
2555 ret = btrfs_relocate_sys_chunks(fs_info);
2556 if (ret < 0)
2557 btrfs_handle_fs_error(fs_info, ret,
2558 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2559 trans = btrfs_attach_transaction(root);
2560 if (IS_ERR(trans)) {
2561 if (PTR_ERR(trans) == -ENOENT)
2562 return 0;
2563 ret = PTR_ERR(trans);
2564 trans = NULL;
2565 goto error_sysfs;
2567 ret = btrfs_commit_transaction(trans);
2570 /* Update ctime/mtime for libblkid */
2571 update_dev_time(device_path);
2572 return ret;
2574 error_sysfs:
2575 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
2576 error_trans:
2577 if (seeding_dev)
2578 sb->s_flags |= SB_RDONLY;
2579 if (trans)
2580 btrfs_end_transaction(trans);
2581 error_free_device:
2582 free_device(device);
2583 error:
2584 blkdev_put(bdev, FMODE_EXCL);
2585 if (seeding_dev && !unlocked) {
2586 mutex_unlock(&uuid_mutex);
2587 up_write(&sb->s_umount);
2589 return ret;
2592 int btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2593 const char *device_path,
2594 struct btrfs_device *srcdev,
2595 struct btrfs_device **device_out)
2597 struct btrfs_device *device;
2598 struct block_device *bdev;
2599 struct list_head *devices;
2600 struct rcu_string *name;
2601 u64 devid = BTRFS_DEV_REPLACE_DEVID;
2602 int ret = 0;
2604 *device_out = NULL;
2605 if (fs_info->fs_devices->seeding) {
2606 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2607 return -EINVAL;
2610 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2611 fs_info->bdev_holder);
2612 if (IS_ERR(bdev)) {
2613 btrfs_err(fs_info, "target device %s is invalid!", device_path);
2614 return PTR_ERR(bdev);
2617 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2619 devices = &fs_info->fs_devices->devices;
2620 list_for_each_entry(device, devices, dev_list) {
2621 if (device->bdev == bdev) {
2622 btrfs_err(fs_info,
2623 "target device is in the filesystem!");
2624 ret = -EEXIST;
2625 goto error;
2630 if (i_size_read(bdev->bd_inode) <
2631 btrfs_device_get_total_bytes(srcdev)) {
2632 btrfs_err(fs_info,
2633 "target device is smaller than source device!");
2634 ret = -EINVAL;
2635 goto error;
2639 device = btrfs_alloc_device(NULL, &devid, NULL);
2640 if (IS_ERR(device)) {
2641 ret = PTR_ERR(device);
2642 goto error;
2645 name = rcu_string_strdup(device_path, GFP_KERNEL);
2646 if (!name) {
2647 free_device(device);
2648 ret = -ENOMEM;
2649 goto error;
2651 rcu_assign_pointer(device->name, name);
2653 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2654 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2655 device->generation = 0;
2656 device->io_width = fs_info->sectorsize;
2657 device->io_align = fs_info->sectorsize;
2658 device->sector_size = fs_info->sectorsize;
2659 device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2660 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2661 device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2662 ASSERT(list_empty(&srcdev->resized_list));
2663 device->commit_total_bytes = srcdev->commit_total_bytes;
2664 device->commit_bytes_used = device->bytes_used;
2665 device->fs_info = fs_info;
2666 device->bdev = bdev;
2667 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2668 set_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2669 device->mode = FMODE_EXCL;
2670 device->dev_stats_valid = 1;
2671 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2672 device->fs_devices = fs_info->fs_devices;
2673 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2674 fs_info->fs_devices->num_devices++;
2675 fs_info->fs_devices->open_devices++;
2676 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2678 *device_out = device;
2679 return ret;
2681 error:
2682 blkdev_put(bdev, FMODE_EXCL);
2683 return ret;
2686 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2687 struct btrfs_device *tgtdev)
2689 u32 sectorsize = fs_info->sectorsize;
2691 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2692 tgtdev->io_width = sectorsize;
2693 tgtdev->io_align = sectorsize;
2694 tgtdev->sector_size = sectorsize;
2695 tgtdev->fs_info = fs_info;
2696 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &tgtdev->dev_state);
2699 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2700 struct btrfs_device *device)
2702 int ret;
2703 struct btrfs_path *path;
2704 struct btrfs_root *root = device->fs_info->chunk_root;
2705 struct btrfs_dev_item *dev_item;
2706 struct extent_buffer *leaf;
2707 struct btrfs_key key;
2709 path = btrfs_alloc_path();
2710 if (!path)
2711 return -ENOMEM;
2713 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2714 key.type = BTRFS_DEV_ITEM_KEY;
2715 key.offset = device->devid;
2717 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2718 if (ret < 0)
2719 goto out;
2721 if (ret > 0) {
2722 ret = -ENOENT;
2723 goto out;
2726 leaf = path->nodes[0];
2727 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2729 btrfs_set_device_id(leaf, dev_item, device->devid);
2730 btrfs_set_device_type(leaf, dev_item, device->type);
2731 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2732 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2733 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2734 btrfs_set_device_total_bytes(leaf, dev_item,
2735 btrfs_device_get_disk_total_bytes(device));
2736 btrfs_set_device_bytes_used(leaf, dev_item,
2737 btrfs_device_get_bytes_used(device));
2738 btrfs_mark_buffer_dirty(leaf);
2740 out:
2741 btrfs_free_path(path);
2742 return ret;
2745 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2746 struct btrfs_device *device, u64 new_size)
2748 struct btrfs_fs_info *fs_info = device->fs_info;
2749 struct btrfs_super_block *super_copy = fs_info->super_copy;
2750 struct btrfs_fs_devices *fs_devices;
2751 u64 old_total;
2752 u64 diff;
2754 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2755 return -EACCES;
2757 new_size = round_down(new_size, fs_info->sectorsize);
2759 mutex_lock(&fs_info->chunk_mutex);
2760 old_total = btrfs_super_total_bytes(super_copy);
2761 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2763 if (new_size <= device->total_bytes ||
2764 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2765 mutex_unlock(&fs_info->chunk_mutex);
2766 return -EINVAL;
2769 fs_devices = fs_info->fs_devices;
2771 btrfs_set_super_total_bytes(super_copy,
2772 round_down(old_total + diff, fs_info->sectorsize));
2773 device->fs_devices->total_rw_bytes += diff;
2775 btrfs_device_set_total_bytes(device, new_size);
2776 btrfs_device_set_disk_total_bytes(device, new_size);
2777 btrfs_clear_space_info_full(device->fs_info);
2778 if (list_empty(&device->resized_list))
2779 list_add_tail(&device->resized_list,
2780 &fs_devices->resized_devices);
2781 mutex_unlock(&fs_info->chunk_mutex);
2783 return btrfs_update_device(trans, device);
2786 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2787 struct btrfs_fs_info *fs_info, u64 chunk_offset)
2789 struct btrfs_root *root = fs_info->chunk_root;
2790 int ret;
2791 struct btrfs_path *path;
2792 struct btrfs_key key;
2794 path = btrfs_alloc_path();
2795 if (!path)
2796 return -ENOMEM;
2798 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2799 key.offset = chunk_offset;
2800 key.type = BTRFS_CHUNK_ITEM_KEY;
2802 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2803 if (ret < 0)
2804 goto out;
2805 else if (ret > 0) { /* Logic error or corruption */
2806 btrfs_handle_fs_error(fs_info, -ENOENT,
2807 "Failed lookup while freeing chunk.");
2808 ret = -ENOENT;
2809 goto out;
2812 ret = btrfs_del_item(trans, root, path);
2813 if (ret < 0)
2814 btrfs_handle_fs_error(fs_info, ret,
2815 "Failed to delete chunk item.");
2816 out:
2817 btrfs_free_path(path);
2818 return ret;
2821 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2823 struct btrfs_super_block *super_copy = fs_info->super_copy;
2824 struct btrfs_disk_key *disk_key;
2825 struct btrfs_chunk *chunk;
2826 u8 *ptr;
2827 int ret = 0;
2828 u32 num_stripes;
2829 u32 array_size;
2830 u32 len = 0;
2831 u32 cur;
2832 struct btrfs_key key;
2834 mutex_lock(&fs_info->chunk_mutex);
2835 array_size = btrfs_super_sys_array_size(super_copy);
2837 ptr = super_copy->sys_chunk_array;
2838 cur = 0;
2840 while (cur < array_size) {
2841 disk_key = (struct btrfs_disk_key *)ptr;
2842 btrfs_disk_key_to_cpu(&key, disk_key);
2844 len = sizeof(*disk_key);
2846 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2847 chunk = (struct btrfs_chunk *)(ptr + len);
2848 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2849 len += btrfs_chunk_item_size(num_stripes);
2850 } else {
2851 ret = -EIO;
2852 break;
2854 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2855 key.offset == chunk_offset) {
2856 memmove(ptr, ptr + len, array_size - (cur + len));
2857 array_size -= len;
2858 btrfs_set_super_sys_array_size(super_copy, array_size);
2859 } else {
2860 ptr += len;
2861 cur += len;
2864 mutex_unlock(&fs_info->chunk_mutex);
2865 return ret;
2868 static struct extent_map *get_chunk_map(struct btrfs_fs_info *fs_info,
2869 u64 logical, u64 length)
2871 struct extent_map_tree *em_tree;
2872 struct extent_map *em;
2874 em_tree = &fs_info->mapping_tree.map_tree;
2875 read_lock(&em_tree->lock);
2876 em = lookup_extent_mapping(em_tree, logical, length);
2877 read_unlock(&em_tree->lock);
2879 if (!em) {
2880 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2881 logical, length);
2882 return ERR_PTR(-EINVAL);
2885 if (em->start > logical || em->start + em->len < logical) {
2886 btrfs_crit(fs_info,
2887 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2888 logical, length, em->start, em->start + em->len);
2889 free_extent_map(em);
2890 return ERR_PTR(-EINVAL);
2893 /* callers are responsible for dropping em's ref. */
2894 return em;
2897 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2898 struct btrfs_fs_info *fs_info, u64 chunk_offset)
2900 struct extent_map *em;
2901 struct map_lookup *map;
2902 u64 dev_extent_len = 0;
2903 int i, ret = 0;
2904 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2906 em = get_chunk_map(fs_info, chunk_offset, 1);
2907 if (IS_ERR(em)) {
2909 * This is a logic error, but we don't want to just rely on the
2910 * user having built with ASSERT enabled, so if ASSERT doesn't
2911 * do anything we still error out.
2913 ASSERT(0);
2914 return PTR_ERR(em);
2916 map = em->map_lookup;
2917 mutex_lock(&fs_info->chunk_mutex);
2918 check_system_chunk(trans, fs_info, map->type);
2919 mutex_unlock(&fs_info->chunk_mutex);
2922 * Take the device list mutex to prevent races with the final phase of
2923 * a device replace operation that replaces the device object associated
2924 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2926 mutex_lock(&fs_devices->device_list_mutex);
2927 for (i = 0; i < map->num_stripes; i++) {
2928 struct btrfs_device *device = map->stripes[i].dev;
2929 ret = btrfs_free_dev_extent(trans, device,
2930 map->stripes[i].physical,
2931 &dev_extent_len);
2932 if (ret) {
2933 mutex_unlock(&fs_devices->device_list_mutex);
2934 btrfs_abort_transaction(trans, ret);
2935 goto out;
2938 if (device->bytes_used > 0) {
2939 mutex_lock(&fs_info->chunk_mutex);
2940 btrfs_device_set_bytes_used(device,
2941 device->bytes_used - dev_extent_len);
2942 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2943 btrfs_clear_space_info_full(fs_info);
2944 mutex_unlock(&fs_info->chunk_mutex);
2947 if (map->stripes[i].dev) {
2948 ret = btrfs_update_device(trans, map->stripes[i].dev);
2949 if (ret) {
2950 mutex_unlock(&fs_devices->device_list_mutex);
2951 btrfs_abort_transaction(trans, ret);
2952 goto out;
2956 mutex_unlock(&fs_devices->device_list_mutex);
2958 ret = btrfs_free_chunk(trans, fs_info, chunk_offset);
2959 if (ret) {
2960 btrfs_abort_transaction(trans, ret);
2961 goto out;
2964 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2966 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2967 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2968 if (ret) {
2969 btrfs_abort_transaction(trans, ret);
2970 goto out;
2974 ret = btrfs_remove_block_group(trans, fs_info, chunk_offset, em);
2975 if (ret) {
2976 btrfs_abort_transaction(trans, ret);
2977 goto out;
2980 out:
2981 /* once for us */
2982 free_extent_map(em);
2983 return ret;
2986 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2988 struct btrfs_root *root = fs_info->chunk_root;
2989 struct btrfs_trans_handle *trans;
2990 int ret;
2993 * Prevent races with automatic removal of unused block groups.
2994 * After we relocate and before we remove the chunk with offset
2995 * chunk_offset, automatic removal of the block group can kick in,
2996 * resulting in a failure when calling btrfs_remove_chunk() below.
2998 * Make sure to acquire this mutex before doing a tree search (dev
2999 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3000 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3001 * we release the path used to search the chunk/dev tree and before
3002 * the current task acquires this mutex and calls us.
3004 ASSERT(mutex_is_locked(&fs_info->delete_unused_bgs_mutex));
3006 ret = btrfs_can_relocate(fs_info, chunk_offset);
3007 if (ret)
3008 return -ENOSPC;
3010 /* step one, relocate all the extents inside this chunk */
3011 btrfs_scrub_pause(fs_info);
3012 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3013 btrfs_scrub_continue(fs_info);
3014 if (ret)
3015 return ret;
3017 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3018 chunk_offset);
3019 if (IS_ERR(trans)) {
3020 ret = PTR_ERR(trans);
3021 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3022 return ret;
3026 * step two, delete the device extents and the
3027 * chunk tree entries
3029 ret = btrfs_remove_chunk(trans, fs_info, chunk_offset);
3030 btrfs_end_transaction(trans);
3031 return ret;
3034 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3036 struct btrfs_root *chunk_root = fs_info->chunk_root;
3037 struct btrfs_path *path;
3038 struct extent_buffer *leaf;
3039 struct btrfs_chunk *chunk;
3040 struct btrfs_key key;
3041 struct btrfs_key found_key;
3042 u64 chunk_type;
3043 bool retried = false;
3044 int failed = 0;
3045 int ret;
3047 path = btrfs_alloc_path();
3048 if (!path)
3049 return -ENOMEM;
3051 again:
3052 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3053 key.offset = (u64)-1;
3054 key.type = BTRFS_CHUNK_ITEM_KEY;
3056 while (1) {
3057 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3058 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3059 if (ret < 0) {
3060 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3061 goto error;
3063 BUG_ON(ret == 0); /* Corruption */
3065 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3066 key.type);
3067 if (ret)
3068 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3069 if (ret < 0)
3070 goto error;
3071 if (ret > 0)
3072 break;
3074 leaf = path->nodes[0];
3075 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3077 chunk = btrfs_item_ptr(leaf, path->slots[0],
3078 struct btrfs_chunk);
3079 chunk_type = btrfs_chunk_type(leaf, chunk);
3080 btrfs_release_path(path);
3082 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3083 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3084 if (ret == -ENOSPC)
3085 failed++;
3086 else
3087 BUG_ON(ret);
3089 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3091 if (found_key.offset == 0)
3092 break;
3093 key.offset = found_key.offset - 1;
3095 ret = 0;
3096 if (failed && !retried) {
3097 failed = 0;
3098 retried = true;
3099 goto again;
3100 } else if (WARN_ON(failed && retried)) {
3101 ret = -ENOSPC;
3103 error:
3104 btrfs_free_path(path);
3105 return ret;
3108 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3109 struct btrfs_balance_control *bctl)
3111 struct btrfs_root *root = fs_info->tree_root;
3112 struct btrfs_trans_handle *trans;
3113 struct btrfs_balance_item *item;
3114 struct btrfs_disk_balance_args disk_bargs;
3115 struct btrfs_path *path;
3116 struct extent_buffer *leaf;
3117 struct btrfs_key key;
3118 int ret, err;
3120 path = btrfs_alloc_path();
3121 if (!path)
3122 return -ENOMEM;
3124 trans = btrfs_start_transaction(root, 0);
3125 if (IS_ERR(trans)) {
3126 btrfs_free_path(path);
3127 return PTR_ERR(trans);
3130 key.objectid = BTRFS_BALANCE_OBJECTID;
3131 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3132 key.offset = 0;
3134 ret = btrfs_insert_empty_item(trans, root, path, &key,
3135 sizeof(*item));
3136 if (ret)
3137 goto out;
3139 leaf = path->nodes[0];
3140 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3142 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3144 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3145 btrfs_set_balance_data(leaf, item, &disk_bargs);
3146 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3147 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3148 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3149 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3151 btrfs_set_balance_flags(leaf, item, bctl->flags);
3153 btrfs_mark_buffer_dirty(leaf);
3154 out:
3155 btrfs_free_path(path);
3156 err = btrfs_commit_transaction(trans);
3157 if (err && !ret)
3158 ret = err;
3159 return ret;
3162 static int del_balance_item(struct btrfs_fs_info *fs_info)
3164 struct btrfs_root *root = fs_info->tree_root;
3165 struct btrfs_trans_handle *trans;
3166 struct btrfs_path *path;
3167 struct btrfs_key key;
3168 int ret, err;
3170 path = btrfs_alloc_path();
3171 if (!path)
3172 return -ENOMEM;
3174 trans = btrfs_start_transaction(root, 0);
3175 if (IS_ERR(trans)) {
3176 btrfs_free_path(path);
3177 return PTR_ERR(trans);
3180 key.objectid = BTRFS_BALANCE_OBJECTID;
3181 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3182 key.offset = 0;
3184 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3185 if (ret < 0)
3186 goto out;
3187 if (ret > 0) {
3188 ret = -ENOENT;
3189 goto out;
3192 ret = btrfs_del_item(trans, root, path);
3193 out:
3194 btrfs_free_path(path);
3195 err = btrfs_commit_transaction(trans);
3196 if (err && !ret)
3197 ret = err;
3198 return ret;
3202 * This is a heuristic used to reduce the number of chunks balanced on
3203 * resume after balance was interrupted.
3205 static void update_balance_args(struct btrfs_balance_control *bctl)
3208 * Turn on soft mode for chunk types that were being converted.
3210 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3211 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3212 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3213 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3214 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3215 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3218 * Turn on usage filter if is not already used. The idea is
3219 * that chunks that we have already balanced should be
3220 * reasonably full. Don't do it for chunks that are being
3221 * converted - that will keep us from relocating unconverted
3222 * (albeit full) chunks.
3224 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3225 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3226 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3227 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3228 bctl->data.usage = 90;
3230 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3231 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3232 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3233 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3234 bctl->sys.usage = 90;
3236 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3237 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3238 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3239 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3240 bctl->meta.usage = 90;
3245 * Should be called with both balance and volume mutexes held to
3246 * serialize other volume operations (add_dev/rm_dev/resize) with
3247 * restriper. Same goes for unset_balance_control.
3249 static void set_balance_control(struct btrfs_balance_control *bctl)
3251 struct btrfs_fs_info *fs_info = bctl->fs_info;
3253 BUG_ON(fs_info->balance_ctl);
3255 spin_lock(&fs_info->balance_lock);
3256 fs_info->balance_ctl = bctl;
3257 spin_unlock(&fs_info->balance_lock);
3260 static void unset_balance_control(struct btrfs_fs_info *fs_info)
3262 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3264 BUG_ON(!fs_info->balance_ctl);
3266 spin_lock(&fs_info->balance_lock);
3267 fs_info->balance_ctl = NULL;
3268 spin_unlock(&fs_info->balance_lock);
3270 kfree(bctl);
3274 * Balance filters. Return 1 if chunk should be filtered out
3275 * (should not be balanced).
3277 static int chunk_profiles_filter(u64 chunk_type,
3278 struct btrfs_balance_args *bargs)
3280 chunk_type = chunk_to_extended(chunk_type) &
3281 BTRFS_EXTENDED_PROFILE_MASK;
3283 if (bargs->profiles & chunk_type)
3284 return 0;
3286 return 1;
3289 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3290 struct btrfs_balance_args *bargs)
3292 struct btrfs_block_group_cache *cache;
3293 u64 chunk_used;
3294 u64 user_thresh_min;
3295 u64 user_thresh_max;
3296 int ret = 1;
3298 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3299 chunk_used = btrfs_block_group_used(&cache->item);
3301 if (bargs->usage_min == 0)
3302 user_thresh_min = 0;
3303 else
3304 user_thresh_min = div_factor_fine(cache->key.offset,
3305 bargs->usage_min);
3307 if (bargs->usage_max == 0)
3308 user_thresh_max = 1;
3309 else if (bargs->usage_max > 100)
3310 user_thresh_max = cache->key.offset;
3311 else
3312 user_thresh_max = div_factor_fine(cache->key.offset,
3313 bargs->usage_max);
3315 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3316 ret = 0;
3318 btrfs_put_block_group(cache);
3319 return ret;
3322 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3323 u64 chunk_offset, struct btrfs_balance_args *bargs)
3325 struct btrfs_block_group_cache *cache;
3326 u64 chunk_used, user_thresh;
3327 int ret = 1;
3329 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3330 chunk_used = btrfs_block_group_used(&cache->item);
3332 if (bargs->usage_min == 0)
3333 user_thresh = 1;
3334 else if (bargs->usage > 100)
3335 user_thresh = cache->key.offset;
3336 else
3337 user_thresh = div_factor_fine(cache->key.offset,
3338 bargs->usage);
3340 if (chunk_used < user_thresh)
3341 ret = 0;
3343 btrfs_put_block_group(cache);
3344 return ret;
3347 static int chunk_devid_filter(struct extent_buffer *leaf,
3348 struct btrfs_chunk *chunk,
3349 struct btrfs_balance_args *bargs)
3351 struct btrfs_stripe *stripe;
3352 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3353 int i;
3355 for (i = 0; i < num_stripes; i++) {
3356 stripe = btrfs_stripe_nr(chunk, i);
3357 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3358 return 0;
3361 return 1;
3364 /* [pstart, pend) */
3365 static int chunk_drange_filter(struct extent_buffer *leaf,
3366 struct btrfs_chunk *chunk,
3367 struct btrfs_balance_args *bargs)
3369 struct btrfs_stripe *stripe;
3370 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3371 u64 stripe_offset;
3372 u64 stripe_length;
3373 int factor;
3374 int i;
3376 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3377 return 0;
3379 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3380 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3381 factor = num_stripes / 2;
3382 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3383 factor = num_stripes - 1;
3384 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3385 factor = num_stripes - 2;
3386 } else {
3387 factor = num_stripes;
3390 for (i = 0; i < num_stripes; i++) {
3391 stripe = btrfs_stripe_nr(chunk, i);
3392 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3393 continue;
3395 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3396 stripe_length = btrfs_chunk_length(leaf, chunk);
3397 stripe_length = div_u64(stripe_length, factor);
3399 if (stripe_offset < bargs->pend &&
3400 stripe_offset + stripe_length > bargs->pstart)
3401 return 0;
3404 return 1;
3407 /* [vstart, vend) */
3408 static int chunk_vrange_filter(struct extent_buffer *leaf,
3409 struct btrfs_chunk *chunk,
3410 u64 chunk_offset,
3411 struct btrfs_balance_args *bargs)
3413 if (chunk_offset < bargs->vend &&
3414 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3415 /* at least part of the chunk is inside this vrange */
3416 return 0;
3418 return 1;
3421 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3422 struct btrfs_chunk *chunk,
3423 struct btrfs_balance_args *bargs)
3425 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3427 if (bargs->stripes_min <= num_stripes
3428 && num_stripes <= bargs->stripes_max)
3429 return 0;
3431 return 1;
3434 static int chunk_soft_convert_filter(u64 chunk_type,
3435 struct btrfs_balance_args *bargs)
3437 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3438 return 0;
3440 chunk_type = chunk_to_extended(chunk_type) &
3441 BTRFS_EXTENDED_PROFILE_MASK;
3443 if (bargs->target == chunk_type)
3444 return 1;
3446 return 0;
3449 static int should_balance_chunk(struct btrfs_fs_info *fs_info,
3450 struct extent_buffer *leaf,
3451 struct btrfs_chunk *chunk, u64 chunk_offset)
3453 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3454 struct btrfs_balance_args *bargs = NULL;
3455 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3457 /* type filter */
3458 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3459 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3460 return 0;
3463 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3464 bargs = &bctl->data;
3465 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3466 bargs = &bctl->sys;
3467 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3468 bargs = &bctl->meta;
3470 /* profiles filter */
3471 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3472 chunk_profiles_filter(chunk_type, bargs)) {
3473 return 0;
3476 /* usage filter */
3477 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3478 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3479 return 0;
3480 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3481 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3482 return 0;
3485 /* devid filter */
3486 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3487 chunk_devid_filter(leaf, chunk, bargs)) {
3488 return 0;
3491 /* drange filter, makes sense only with devid filter */
3492 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3493 chunk_drange_filter(leaf, chunk, bargs)) {
3494 return 0;
3497 /* vrange filter */
3498 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3499 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3500 return 0;
3503 /* stripes filter */
3504 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3505 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3506 return 0;
3509 /* soft profile changing mode */
3510 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3511 chunk_soft_convert_filter(chunk_type, bargs)) {
3512 return 0;
3516 * limited by count, must be the last filter
3518 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3519 if (bargs->limit == 0)
3520 return 0;
3521 else
3522 bargs->limit--;
3523 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3525 * Same logic as the 'limit' filter; the minimum cannot be
3526 * determined here because we do not have the global information
3527 * about the count of all chunks that satisfy the filters.
3529 if (bargs->limit_max == 0)
3530 return 0;
3531 else
3532 bargs->limit_max--;
3535 return 1;
3538 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3540 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3541 struct btrfs_root *chunk_root = fs_info->chunk_root;
3542 struct btrfs_root *dev_root = fs_info->dev_root;
3543 struct list_head *devices;
3544 struct btrfs_device *device;
3545 u64 old_size;
3546 u64 size_to_free;
3547 u64 chunk_type;
3548 struct btrfs_chunk *chunk;
3549 struct btrfs_path *path = NULL;
3550 struct btrfs_key key;
3551 struct btrfs_key found_key;
3552 struct btrfs_trans_handle *trans;
3553 struct extent_buffer *leaf;
3554 int slot;
3555 int ret;
3556 int enospc_errors = 0;
3557 bool counting = true;
3558 /* The single value limit and min/max limits use the same bytes in the */
3559 u64 limit_data = bctl->data.limit;
3560 u64 limit_meta = bctl->meta.limit;
3561 u64 limit_sys = bctl->sys.limit;
3562 u32 count_data = 0;
3563 u32 count_meta = 0;
3564 u32 count_sys = 0;
3565 int chunk_reserved = 0;
3566 u64 bytes_used = 0;
3568 /* step one make some room on all the devices */
3569 devices = &fs_info->fs_devices->devices;
3570 list_for_each_entry(device, devices, dev_list) {
3571 old_size = btrfs_device_get_total_bytes(device);
3572 size_to_free = div_factor(old_size, 1);
3573 size_to_free = min_t(u64, size_to_free, SZ_1M);
3574 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) ||
3575 btrfs_device_get_total_bytes(device) -
3576 btrfs_device_get_bytes_used(device) > size_to_free ||
3577 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
3578 continue;
3580 ret = btrfs_shrink_device(device, old_size - size_to_free);
3581 if (ret == -ENOSPC)
3582 break;
3583 if (ret) {
3584 /* btrfs_shrink_device never returns ret > 0 */
3585 WARN_ON(ret > 0);
3586 goto error;
3589 trans = btrfs_start_transaction(dev_root, 0);
3590 if (IS_ERR(trans)) {
3591 ret = PTR_ERR(trans);
3592 btrfs_info_in_rcu(fs_info,
3593 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3594 rcu_str_deref(device->name), ret,
3595 old_size, old_size - size_to_free);
3596 goto error;
3599 ret = btrfs_grow_device(trans, device, old_size);
3600 if (ret) {
3601 btrfs_end_transaction(trans);
3602 /* btrfs_grow_device never returns ret > 0 */
3603 WARN_ON(ret > 0);
3604 btrfs_info_in_rcu(fs_info,
3605 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3606 rcu_str_deref(device->name), ret,
3607 old_size, old_size - size_to_free);
3608 goto error;
3611 btrfs_end_transaction(trans);
3614 /* step two, relocate all the chunks */
3615 path = btrfs_alloc_path();
3616 if (!path) {
3617 ret = -ENOMEM;
3618 goto error;
3621 /* zero out stat counters */
3622 spin_lock(&fs_info->balance_lock);
3623 memset(&bctl->stat, 0, sizeof(bctl->stat));
3624 spin_unlock(&fs_info->balance_lock);
3625 again:
3626 if (!counting) {
3628 * The single value limit and min/max limits use the same bytes
3629 * in the
3631 bctl->data.limit = limit_data;
3632 bctl->meta.limit = limit_meta;
3633 bctl->sys.limit = limit_sys;
3635 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3636 key.offset = (u64)-1;
3637 key.type = BTRFS_CHUNK_ITEM_KEY;
3639 while (1) {
3640 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3641 atomic_read(&fs_info->balance_cancel_req)) {
3642 ret = -ECANCELED;
3643 goto error;
3646 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3647 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3648 if (ret < 0) {
3649 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3650 goto error;
3654 * this shouldn't happen, it means the last relocate
3655 * failed
3657 if (ret == 0)
3658 BUG(); /* FIXME break ? */
3660 ret = btrfs_previous_item(chunk_root, path, 0,
3661 BTRFS_CHUNK_ITEM_KEY);
3662 if (ret) {
3663 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3664 ret = 0;
3665 break;
3668 leaf = path->nodes[0];
3669 slot = path->slots[0];
3670 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3672 if (found_key.objectid != key.objectid) {
3673 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3674 break;
3677 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3678 chunk_type = btrfs_chunk_type(leaf, chunk);
3680 if (!counting) {
3681 spin_lock(&fs_info->balance_lock);
3682 bctl->stat.considered++;
3683 spin_unlock(&fs_info->balance_lock);
3686 ret = should_balance_chunk(fs_info, leaf, chunk,
3687 found_key.offset);
3689 btrfs_release_path(path);
3690 if (!ret) {
3691 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3692 goto loop;
3695 if (counting) {
3696 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3697 spin_lock(&fs_info->balance_lock);
3698 bctl->stat.expected++;
3699 spin_unlock(&fs_info->balance_lock);
3701 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3702 count_data++;
3703 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3704 count_sys++;
3705 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3706 count_meta++;
3708 goto loop;
3712 * Apply limit_min filter, no need to check if the LIMITS
3713 * filter is used, limit_min is 0 by default
3715 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3716 count_data < bctl->data.limit_min)
3717 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3718 count_meta < bctl->meta.limit_min)
3719 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3720 count_sys < bctl->sys.limit_min)) {
3721 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3722 goto loop;
3725 ASSERT(fs_info->data_sinfo);
3726 spin_lock(&fs_info->data_sinfo->lock);
3727 bytes_used = fs_info->data_sinfo->bytes_used;
3728 spin_unlock(&fs_info->data_sinfo->lock);
3730 if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3731 !chunk_reserved && !bytes_used) {
3732 trans = btrfs_start_transaction(chunk_root, 0);
3733 if (IS_ERR(trans)) {
3734 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3735 ret = PTR_ERR(trans);
3736 goto error;
3739 ret = btrfs_force_chunk_alloc(trans, fs_info,
3740 BTRFS_BLOCK_GROUP_DATA);
3741 btrfs_end_transaction(trans);
3742 if (ret < 0) {
3743 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3744 goto error;
3746 chunk_reserved = 1;
3749 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3750 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3751 if (ret && ret != -ENOSPC)
3752 goto error;
3753 if (ret == -ENOSPC) {
3754 enospc_errors++;
3755 } else {
3756 spin_lock(&fs_info->balance_lock);
3757 bctl->stat.completed++;
3758 spin_unlock(&fs_info->balance_lock);
3760 loop:
3761 if (found_key.offset == 0)
3762 break;
3763 key.offset = found_key.offset - 1;
3766 if (counting) {
3767 btrfs_release_path(path);
3768 counting = false;
3769 goto again;
3771 error:
3772 btrfs_free_path(path);
3773 if (enospc_errors) {
3774 btrfs_info(fs_info, "%d enospc errors during balance",
3775 enospc_errors);
3776 if (!ret)
3777 ret = -ENOSPC;
3780 return ret;
3784 * alloc_profile_is_valid - see if a given profile is valid and reduced
3785 * @flags: profile to validate
3786 * @extended: if true @flags is treated as an extended profile
3788 static int alloc_profile_is_valid(u64 flags, int extended)
3790 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3791 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3793 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3795 /* 1) check that all other bits are zeroed */
3796 if (flags & ~mask)
3797 return 0;
3799 /* 2) see if profile is reduced */
3800 if (flags == 0)
3801 return !extended; /* "0" is valid for usual profiles */
3803 /* true if exactly one bit set */
3804 return (flags & (flags - 1)) == 0;
3807 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3809 /* cancel requested || normal exit path */
3810 return atomic_read(&fs_info->balance_cancel_req) ||
3811 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3812 atomic_read(&fs_info->balance_cancel_req) == 0);
3815 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3817 int ret;
3819 unset_balance_control(fs_info);
3820 ret = del_balance_item(fs_info);
3821 if (ret)
3822 btrfs_handle_fs_error(fs_info, ret, NULL);
3824 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3827 /* Non-zero return value signifies invalidity */
3828 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3829 u64 allowed)
3831 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3832 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3833 (bctl_arg->target & ~allowed)));
3837 * Should be called with both balance and volume mutexes held
3839 int btrfs_balance(struct btrfs_balance_control *bctl,
3840 struct btrfs_ioctl_balance_args *bargs)
3842 struct btrfs_fs_info *fs_info = bctl->fs_info;
3843 u64 meta_target, data_target;
3844 u64 allowed;
3845 int mixed = 0;
3846 int ret;
3847 u64 num_devices;
3848 unsigned seq;
3850 if (btrfs_fs_closing(fs_info) ||
3851 atomic_read(&fs_info->balance_pause_req) ||
3852 atomic_read(&fs_info->balance_cancel_req)) {
3853 ret = -EINVAL;
3854 goto out;
3857 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3858 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3859 mixed = 1;
3862 * In case of mixed groups both data and meta should be picked,
3863 * and identical options should be given for both of them.
3865 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3866 if (mixed && (bctl->flags & allowed)) {
3867 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3868 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3869 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3870 btrfs_err(fs_info,
3871 "with mixed groups data and metadata balance options must be the same");
3872 ret = -EINVAL;
3873 goto out;
3877 num_devices = fs_info->fs_devices->num_devices;
3878 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
3879 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3880 BUG_ON(num_devices < 1);
3881 num_devices--;
3883 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3884 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3885 if (num_devices > 1)
3886 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3887 if (num_devices > 2)
3888 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3889 if (num_devices > 3)
3890 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3891 BTRFS_BLOCK_GROUP_RAID6);
3892 if (validate_convert_profile(&bctl->data, allowed)) {
3893 btrfs_err(fs_info,
3894 "unable to start balance with target data profile %llu",
3895 bctl->data.target);
3896 ret = -EINVAL;
3897 goto out;
3899 if (validate_convert_profile(&bctl->meta, allowed)) {
3900 btrfs_err(fs_info,
3901 "unable to start balance with target metadata profile %llu",
3902 bctl->meta.target);
3903 ret = -EINVAL;
3904 goto out;
3906 if (validate_convert_profile(&bctl->sys, allowed)) {
3907 btrfs_err(fs_info,
3908 "unable to start balance with target system profile %llu",
3909 bctl->sys.target);
3910 ret = -EINVAL;
3911 goto out;
3914 /* allow to reduce meta or sys integrity only if force set */
3915 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3916 BTRFS_BLOCK_GROUP_RAID10 |
3917 BTRFS_BLOCK_GROUP_RAID5 |
3918 BTRFS_BLOCK_GROUP_RAID6;
3919 do {
3920 seq = read_seqbegin(&fs_info->profiles_lock);
3922 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3923 (fs_info->avail_system_alloc_bits & allowed) &&
3924 !(bctl->sys.target & allowed)) ||
3925 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3926 (fs_info->avail_metadata_alloc_bits & allowed) &&
3927 !(bctl->meta.target & allowed))) {
3928 if (bctl->flags & BTRFS_BALANCE_FORCE) {
3929 btrfs_info(fs_info,
3930 "force reducing metadata integrity");
3931 } else {
3932 btrfs_err(fs_info,
3933 "balance will reduce metadata integrity, use force if you want this");
3934 ret = -EINVAL;
3935 goto out;
3938 } while (read_seqretry(&fs_info->profiles_lock, seq));
3940 /* if we're not converting, the target field is uninitialized */
3941 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3942 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
3943 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3944 bctl->data.target : fs_info->avail_data_alloc_bits;
3945 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
3946 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
3947 btrfs_warn(fs_info,
3948 "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3949 meta_target, data_target);
3952 ret = insert_balance_item(fs_info, bctl);
3953 if (ret && ret != -EEXIST)
3954 goto out;
3956 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3957 BUG_ON(ret == -EEXIST);
3958 set_balance_control(bctl);
3959 } else {
3960 BUG_ON(ret != -EEXIST);
3961 spin_lock(&fs_info->balance_lock);
3962 update_balance_args(bctl);
3963 spin_unlock(&fs_info->balance_lock);
3966 atomic_inc(&fs_info->balance_running);
3967 mutex_unlock(&fs_info->balance_mutex);
3969 ret = __btrfs_balance(fs_info);
3971 mutex_lock(&fs_info->balance_mutex);
3972 atomic_dec(&fs_info->balance_running);
3974 if (bargs) {
3975 memset(bargs, 0, sizeof(*bargs));
3976 update_ioctl_balance_args(fs_info, 0, bargs);
3979 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3980 balance_need_close(fs_info)) {
3981 __cancel_balance(fs_info);
3984 wake_up(&fs_info->balance_wait_q);
3986 return ret;
3987 out:
3988 if (bctl->flags & BTRFS_BALANCE_RESUME)
3989 __cancel_balance(fs_info);
3990 else {
3991 kfree(bctl);
3992 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3994 return ret;
3997 static int balance_kthread(void *data)
3999 struct btrfs_fs_info *fs_info = data;
4000 int ret = 0;
4002 mutex_lock(&fs_info->volume_mutex);
4003 mutex_lock(&fs_info->balance_mutex);
4005 if (fs_info->balance_ctl) {
4006 btrfs_info(fs_info, "continuing balance");
4007 ret = btrfs_balance(fs_info->balance_ctl, NULL);
4010 mutex_unlock(&fs_info->balance_mutex);
4011 mutex_unlock(&fs_info->volume_mutex);
4013 return ret;
4016 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4018 struct task_struct *tsk;
4020 spin_lock(&fs_info->balance_lock);
4021 if (!fs_info->balance_ctl) {
4022 spin_unlock(&fs_info->balance_lock);
4023 return 0;
4025 spin_unlock(&fs_info->balance_lock);
4027 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4028 btrfs_info(fs_info, "force skipping balance");
4029 return 0;
4032 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4033 return PTR_ERR_OR_ZERO(tsk);
4036 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4038 struct btrfs_balance_control *bctl;
4039 struct btrfs_balance_item *item;
4040 struct btrfs_disk_balance_args disk_bargs;
4041 struct btrfs_path *path;
4042 struct extent_buffer *leaf;
4043 struct btrfs_key key;
4044 int ret;
4046 path = btrfs_alloc_path();
4047 if (!path)
4048 return -ENOMEM;
4050 key.objectid = BTRFS_BALANCE_OBJECTID;
4051 key.type = BTRFS_TEMPORARY_ITEM_KEY;
4052 key.offset = 0;
4054 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4055 if (ret < 0)
4056 goto out;
4057 if (ret > 0) { /* ret = -ENOENT; */
4058 ret = 0;
4059 goto out;
4062 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4063 if (!bctl) {
4064 ret = -ENOMEM;
4065 goto out;
4068 leaf = path->nodes[0];
4069 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4071 bctl->fs_info = fs_info;
4072 bctl->flags = btrfs_balance_flags(leaf, item);
4073 bctl->flags |= BTRFS_BALANCE_RESUME;
4075 btrfs_balance_data(leaf, item, &disk_bargs);
4076 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4077 btrfs_balance_meta(leaf, item, &disk_bargs);
4078 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4079 btrfs_balance_sys(leaf, item, &disk_bargs);
4080 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4082 WARN_ON(test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
4084 mutex_lock(&fs_info->volume_mutex);
4085 mutex_lock(&fs_info->balance_mutex);
4087 set_balance_control(bctl);
4089 mutex_unlock(&fs_info->balance_mutex);
4090 mutex_unlock(&fs_info->volume_mutex);
4091 out:
4092 btrfs_free_path(path);
4093 return ret;
4096 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4098 int ret = 0;
4100 mutex_lock(&fs_info->balance_mutex);
4101 if (!fs_info->balance_ctl) {
4102 mutex_unlock(&fs_info->balance_mutex);
4103 return -ENOTCONN;
4106 if (atomic_read(&fs_info->balance_running)) {
4107 atomic_inc(&fs_info->balance_pause_req);
4108 mutex_unlock(&fs_info->balance_mutex);
4110 wait_event(fs_info->balance_wait_q,
4111 atomic_read(&fs_info->balance_running) == 0);
4113 mutex_lock(&fs_info->balance_mutex);
4114 /* we are good with balance_ctl ripped off from under us */
4115 BUG_ON(atomic_read(&fs_info->balance_running));
4116 atomic_dec(&fs_info->balance_pause_req);
4117 } else {
4118 ret = -ENOTCONN;
4121 mutex_unlock(&fs_info->balance_mutex);
4122 return ret;
4125 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4127 if (sb_rdonly(fs_info->sb))
4128 return -EROFS;
4130 mutex_lock(&fs_info->balance_mutex);
4131 if (!fs_info->balance_ctl) {
4132 mutex_unlock(&fs_info->balance_mutex);
4133 return -ENOTCONN;
4136 atomic_inc(&fs_info->balance_cancel_req);
4138 * if we are running just wait and return, balance item is
4139 * deleted in btrfs_balance in this case
4141 if (atomic_read(&fs_info->balance_running)) {
4142 mutex_unlock(&fs_info->balance_mutex);
4143 wait_event(fs_info->balance_wait_q,
4144 atomic_read(&fs_info->balance_running) == 0);
4145 mutex_lock(&fs_info->balance_mutex);
4146 } else {
4147 /* __cancel_balance needs volume_mutex */
4148 mutex_unlock(&fs_info->balance_mutex);
4149 mutex_lock(&fs_info->volume_mutex);
4150 mutex_lock(&fs_info->balance_mutex);
4152 if (fs_info->balance_ctl)
4153 __cancel_balance(fs_info);
4155 mutex_unlock(&fs_info->volume_mutex);
4158 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
4159 atomic_dec(&fs_info->balance_cancel_req);
4160 mutex_unlock(&fs_info->balance_mutex);
4161 return 0;
4164 static int btrfs_uuid_scan_kthread(void *data)
4166 struct btrfs_fs_info *fs_info = data;
4167 struct btrfs_root *root = fs_info->tree_root;
4168 struct btrfs_key key;
4169 struct btrfs_path *path = NULL;
4170 int ret = 0;
4171 struct extent_buffer *eb;
4172 int slot;
4173 struct btrfs_root_item root_item;
4174 u32 item_size;
4175 struct btrfs_trans_handle *trans = NULL;
4177 path = btrfs_alloc_path();
4178 if (!path) {
4179 ret = -ENOMEM;
4180 goto out;
4183 key.objectid = 0;
4184 key.type = BTRFS_ROOT_ITEM_KEY;
4185 key.offset = 0;
4187 while (1) {
4188 ret = btrfs_search_forward(root, &key, path, 0);
4189 if (ret) {
4190 if (ret > 0)
4191 ret = 0;
4192 break;
4195 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4196 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4197 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4198 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4199 goto skip;
4201 eb = path->nodes[0];
4202 slot = path->slots[0];
4203 item_size = btrfs_item_size_nr(eb, slot);
4204 if (item_size < sizeof(root_item))
4205 goto skip;
4207 read_extent_buffer(eb, &root_item,
4208 btrfs_item_ptr_offset(eb, slot),
4209 (int)sizeof(root_item));
4210 if (btrfs_root_refs(&root_item) == 0)
4211 goto skip;
4213 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4214 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4215 if (trans)
4216 goto update_tree;
4218 btrfs_release_path(path);
4220 * 1 - subvol uuid item
4221 * 1 - received_subvol uuid item
4223 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4224 if (IS_ERR(trans)) {
4225 ret = PTR_ERR(trans);
4226 break;
4228 continue;
4229 } else {
4230 goto skip;
4232 update_tree:
4233 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4234 ret = btrfs_uuid_tree_add(trans, fs_info,
4235 root_item.uuid,
4236 BTRFS_UUID_KEY_SUBVOL,
4237 key.objectid);
4238 if (ret < 0) {
4239 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4240 ret);
4241 break;
4245 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4246 ret = btrfs_uuid_tree_add(trans, fs_info,
4247 root_item.received_uuid,
4248 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4249 key.objectid);
4250 if (ret < 0) {
4251 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4252 ret);
4253 break;
4257 skip:
4258 if (trans) {
4259 ret = btrfs_end_transaction(trans);
4260 trans = NULL;
4261 if (ret)
4262 break;
4265 btrfs_release_path(path);
4266 if (key.offset < (u64)-1) {
4267 key.offset++;
4268 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4269 key.offset = 0;
4270 key.type = BTRFS_ROOT_ITEM_KEY;
4271 } else if (key.objectid < (u64)-1) {
4272 key.offset = 0;
4273 key.type = BTRFS_ROOT_ITEM_KEY;
4274 key.objectid++;
4275 } else {
4276 break;
4278 cond_resched();
4281 out:
4282 btrfs_free_path(path);
4283 if (trans && !IS_ERR(trans))
4284 btrfs_end_transaction(trans);
4285 if (ret)
4286 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4287 else
4288 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4289 up(&fs_info->uuid_tree_rescan_sem);
4290 return 0;
4294 * Callback for btrfs_uuid_tree_iterate().
4295 * returns:
4296 * 0 check succeeded, the entry is not outdated.
4297 * < 0 if an error occurred.
4298 * > 0 if the check failed, which means the caller shall remove the entry.
4300 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4301 u8 *uuid, u8 type, u64 subid)
4303 struct btrfs_key key;
4304 int ret = 0;
4305 struct btrfs_root *subvol_root;
4307 if (type != BTRFS_UUID_KEY_SUBVOL &&
4308 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4309 goto out;
4311 key.objectid = subid;
4312 key.type = BTRFS_ROOT_ITEM_KEY;
4313 key.offset = (u64)-1;
4314 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4315 if (IS_ERR(subvol_root)) {
4316 ret = PTR_ERR(subvol_root);
4317 if (ret == -ENOENT)
4318 ret = 1;
4319 goto out;
4322 switch (type) {
4323 case BTRFS_UUID_KEY_SUBVOL:
4324 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4325 ret = 1;
4326 break;
4327 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4328 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4329 BTRFS_UUID_SIZE))
4330 ret = 1;
4331 break;
4334 out:
4335 return ret;
4338 static int btrfs_uuid_rescan_kthread(void *data)
4340 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4341 int ret;
4344 * 1st step is to iterate through the existing UUID tree and
4345 * to delete all entries that contain outdated data.
4346 * 2nd step is to add all missing entries to the UUID tree.
4348 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4349 if (ret < 0) {
4350 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4351 up(&fs_info->uuid_tree_rescan_sem);
4352 return ret;
4354 return btrfs_uuid_scan_kthread(data);
4357 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4359 struct btrfs_trans_handle *trans;
4360 struct btrfs_root *tree_root = fs_info->tree_root;
4361 struct btrfs_root *uuid_root;
4362 struct task_struct *task;
4363 int ret;
4366 * 1 - root node
4367 * 1 - root item
4369 trans = btrfs_start_transaction(tree_root, 2);
4370 if (IS_ERR(trans))
4371 return PTR_ERR(trans);
4373 uuid_root = btrfs_create_tree(trans, fs_info,
4374 BTRFS_UUID_TREE_OBJECTID);
4375 if (IS_ERR(uuid_root)) {
4376 ret = PTR_ERR(uuid_root);
4377 btrfs_abort_transaction(trans, ret);
4378 btrfs_end_transaction(trans);
4379 return ret;
4382 fs_info->uuid_root = uuid_root;
4384 ret = btrfs_commit_transaction(trans);
4385 if (ret)
4386 return ret;
4388 down(&fs_info->uuid_tree_rescan_sem);
4389 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4390 if (IS_ERR(task)) {
4391 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4392 btrfs_warn(fs_info, "failed to start uuid_scan task");
4393 up(&fs_info->uuid_tree_rescan_sem);
4394 return PTR_ERR(task);
4397 return 0;
4400 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4402 struct task_struct *task;
4404 down(&fs_info->uuid_tree_rescan_sem);
4405 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4406 if (IS_ERR(task)) {
4407 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4408 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4409 up(&fs_info->uuid_tree_rescan_sem);
4410 return PTR_ERR(task);
4413 return 0;
4417 * shrinking a device means finding all of the device extents past
4418 * the new size, and then following the back refs to the chunks.
4419 * The chunk relocation code actually frees the device extent
4421 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4423 struct btrfs_fs_info *fs_info = device->fs_info;
4424 struct btrfs_root *root = fs_info->dev_root;
4425 struct btrfs_trans_handle *trans;
4426 struct btrfs_dev_extent *dev_extent = NULL;
4427 struct btrfs_path *path;
4428 u64 length;
4429 u64 chunk_offset;
4430 int ret;
4431 int slot;
4432 int failed = 0;
4433 bool retried = false;
4434 bool checked_pending_chunks = false;
4435 struct extent_buffer *l;
4436 struct btrfs_key key;
4437 struct btrfs_super_block *super_copy = fs_info->super_copy;
4438 u64 old_total = btrfs_super_total_bytes(super_copy);
4439 u64 old_size = btrfs_device_get_total_bytes(device);
4440 u64 diff;
4442 new_size = round_down(new_size, fs_info->sectorsize);
4443 diff = round_down(old_size - new_size, fs_info->sectorsize);
4445 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4446 return -EINVAL;
4448 path = btrfs_alloc_path();
4449 if (!path)
4450 return -ENOMEM;
4452 path->reada = READA_FORWARD;
4454 mutex_lock(&fs_info->chunk_mutex);
4456 btrfs_device_set_total_bytes(device, new_size);
4457 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4458 device->fs_devices->total_rw_bytes -= diff;
4459 atomic64_sub(diff, &fs_info->free_chunk_space);
4461 mutex_unlock(&fs_info->chunk_mutex);
4463 again:
4464 key.objectid = device->devid;
4465 key.offset = (u64)-1;
4466 key.type = BTRFS_DEV_EXTENT_KEY;
4468 do {
4469 mutex_lock(&fs_info->delete_unused_bgs_mutex);
4470 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4471 if (ret < 0) {
4472 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4473 goto done;
4476 ret = btrfs_previous_item(root, path, 0, key.type);
4477 if (ret)
4478 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4479 if (ret < 0)
4480 goto done;
4481 if (ret) {
4482 ret = 0;
4483 btrfs_release_path(path);
4484 break;
4487 l = path->nodes[0];
4488 slot = path->slots[0];
4489 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4491 if (key.objectid != device->devid) {
4492 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4493 btrfs_release_path(path);
4494 break;
4497 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4498 length = btrfs_dev_extent_length(l, dev_extent);
4500 if (key.offset + length <= new_size) {
4501 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4502 btrfs_release_path(path);
4503 break;
4506 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4507 btrfs_release_path(path);
4509 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4510 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4511 if (ret && ret != -ENOSPC)
4512 goto done;
4513 if (ret == -ENOSPC)
4514 failed++;
4515 } while (key.offset-- > 0);
4517 if (failed && !retried) {
4518 failed = 0;
4519 retried = true;
4520 goto again;
4521 } else if (failed && retried) {
4522 ret = -ENOSPC;
4523 goto done;
4526 /* Shrinking succeeded, else we would be at "done". */
4527 trans = btrfs_start_transaction(root, 0);
4528 if (IS_ERR(trans)) {
4529 ret = PTR_ERR(trans);
4530 goto done;
4533 mutex_lock(&fs_info->chunk_mutex);
4536 * We checked in the above loop all device extents that were already in
4537 * the device tree. However before we have updated the device's
4538 * total_bytes to the new size, we might have had chunk allocations that
4539 * have not complete yet (new block groups attached to transaction
4540 * handles), and therefore their device extents were not yet in the
4541 * device tree and we missed them in the loop above. So if we have any
4542 * pending chunk using a device extent that overlaps the device range
4543 * that we can not use anymore, commit the current transaction and
4544 * repeat the search on the device tree - this way we guarantee we will
4545 * not have chunks using device extents that end beyond 'new_size'.
4547 if (!checked_pending_chunks) {
4548 u64 start = new_size;
4549 u64 len = old_size - new_size;
4551 if (contains_pending_extent(trans->transaction, device,
4552 &start, len)) {
4553 mutex_unlock(&fs_info->chunk_mutex);
4554 checked_pending_chunks = true;
4555 failed = 0;
4556 retried = false;
4557 ret = btrfs_commit_transaction(trans);
4558 if (ret)
4559 goto done;
4560 goto again;
4564 btrfs_device_set_disk_total_bytes(device, new_size);
4565 if (list_empty(&device->resized_list))
4566 list_add_tail(&device->resized_list,
4567 &fs_info->fs_devices->resized_devices);
4569 WARN_ON(diff > old_total);
4570 btrfs_set_super_total_bytes(super_copy,
4571 round_down(old_total - diff, fs_info->sectorsize));
4572 mutex_unlock(&fs_info->chunk_mutex);
4574 /* Now btrfs_update_device() will change the on-disk size. */
4575 ret = btrfs_update_device(trans, device);
4576 btrfs_end_transaction(trans);
4577 done:
4578 btrfs_free_path(path);
4579 if (ret) {
4580 mutex_lock(&fs_info->chunk_mutex);
4581 btrfs_device_set_total_bytes(device, old_size);
4582 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4583 device->fs_devices->total_rw_bytes += diff;
4584 atomic64_add(diff, &fs_info->free_chunk_space);
4585 mutex_unlock(&fs_info->chunk_mutex);
4587 return ret;
4590 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4591 struct btrfs_key *key,
4592 struct btrfs_chunk *chunk, int item_size)
4594 struct btrfs_super_block *super_copy = fs_info->super_copy;
4595 struct btrfs_disk_key disk_key;
4596 u32 array_size;
4597 u8 *ptr;
4599 mutex_lock(&fs_info->chunk_mutex);
4600 array_size = btrfs_super_sys_array_size(super_copy);
4601 if (array_size + item_size + sizeof(disk_key)
4602 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4603 mutex_unlock(&fs_info->chunk_mutex);
4604 return -EFBIG;
4607 ptr = super_copy->sys_chunk_array + array_size;
4608 btrfs_cpu_key_to_disk(&disk_key, key);
4609 memcpy(ptr, &disk_key, sizeof(disk_key));
4610 ptr += sizeof(disk_key);
4611 memcpy(ptr, chunk, item_size);
4612 item_size += sizeof(disk_key);
4613 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4614 mutex_unlock(&fs_info->chunk_mutex);
4616 return 0;
4620 * sort the devices in descending order by max_avail, total_avail
4622 static int btrfs_cmp_device_info(const void *a, const void *b)
4624 const struct btrfs_device_info *di_a = a;
4625 const struct btrfs_device_info *di_b = b;
4627 if (di_a->max_avail > di_b->max_avail)
4628 return -1;
4629 if (di_a->max_avail < di_b->max_avail)
4630 return 1;
4631 if (di_a->total_avail > di_b->total_avail)
4632 return -1;
4633 if (di_a->total_avail < di_b->total_avail)
4634 return 1;
4635 return 0;
4638 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4640 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4641 return;
4643 btrfs_set_fs_incompat(info, RAID56);
4646 #define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r->fs_info) \
4647 - sizeof(struct btrfs_chunk)) \
4648 / sizeof(struct btrfs_stripe) + 1)
4650 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4651 - 2 * sizeof(struct btrfs_disk_key) \
4652 - 2 * sizeof(struct btrfs_chunk)) \
4653 / sizeof(struct btrfs_stripe) + 1)
4655 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4656 u64 start, u64 type)
4658 struct btrfs_fs_info *info = trans->fs_info;
4659 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4660 struct btrfs_device *device;
4661 struct map_lookup *map = NULL;
4662 struct extent_map_tree *em_tree;
4663 struct extent_map *em;
4664 struct btrfs_device_info *devices_info = NULL;
4665 u64 total_avail;
4666 int num_stripes; /* total number of stripes to allocate */
4667 int data_stripes; /* number of stripes that count for
4668 block group size */
4669 int sub_stripes; /* sub_stripes info for map */
4670 int dev_stripes; /* stripes per dev */
4671 int devs_max; /* max devs to use */
4672 int devs_min; /* min devs needed */
4673 int devs_increment; /* ndevs has to be a multiple of this */
4674 int ncopies; /* how many copies to data has */
4675 int ret;
4676 u64 max_stripe_size;
4677 u64 max_chunk_size;
4678 u64 stripe_size;
4679 u64 num_bytes;
4680 int ndevs;
4681 int i;
4682 int j;
4683 int index;
4685 BUG_ON(!alloc_profile_is_valid(type, 0));
4687 if (list_empty(&fs_devices->alloc_list))
4688 return -ENOSPC;
4690 index = __get_raid_index(type);
4692 sub_stripes = btrfs_raid_array[index].sub_stripes;
4693 dev_stripes = btrfs_raid_array[index].dev_stripes;
4694 devs_max = btrfs_raid_array[index].devs_max;
4695 devs_min = btrfs_raid_array[index].devs_min;
4696 devs_increment = btrfs_raid_array[index].devs_increment;
4697 ncopies = btrfs_raid_array[index].ncopies;
4699 if (type & BTRFS_BLOCK_GROUP_DATA) {
4700 max_stripe_size = SZ_1G;
4701 max_chunk_size = 10 * max_stripe_size;
4702 if (!devs_max)
4703 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4704 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4705 /* for larger filesystems, use larger metadata chunks */
4706 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4707 max_stripe_size = SZ_1G;
4708 else
4709 max_stripe_size = SZ_256M;
4710 max_chunk_size = max_stripe_size;
4711 if (!devs_max)
4712 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4713 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4714 max_stripe_size = SZ_32M;
4715 max_chunk_size = 2 * max_stripe_size;
4716 if (!devs_max)
4717 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4718 } else {
4719 btrfs_err(info, "invalid chunk type 0x%llx requested",
4720 type);
4721 BUG_ON(1);
4724 /* we don't want a chunk larger than 10% of writeable space */
4725 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4726 max_chunk_size);
4728 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4729 GFP_NOFS);
4730 if (!devices_info)
4731 return -ENOMEM;
4734 * in the first pass through the devices list, we gather information
4735 * about the available holes on each device.
4737 ndevs = 0;
4738 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4739 u64 max_avail;
4740 u64 dev_offset;
4742 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4743 WARN(1, KERN_ERR
4744 "BTRFS: read-only device in alloc_list\n");
4745 continue;
4748 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
4749 &device->dev_state) ||
4750 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4751 continue;
4753 if (device->total_bytes > device->bytes_used)
4754 total_avail = device->total_bytes - device->bytes_used;
4755 else
4756 total_avail = 0;
4758 /* If there is no space on this device, skip it. */
4759 if (total_avail == 0)
4760 continue;
4762 ret = find_free_dev_extent(trans, device,
4763 max_stripe_size * dev_stripes,
4764 &dev_offset, &max_avail);
4765 if (ret && ret != -ENOSPC)
4766 goto error;
4768 if (ret == 0)
4769 max_avail = max_stripe_size * dev_stripes;
4771 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4772 continue;
4774 if (ndevs == fs_devices->rw_devices) {
4775 WARN(1, "%s: found more than %llu devices\n",
4776 __func__, fs_devices->rw_devices);
4777 break;
4779 devices_info[ndevs].dev_offset = dev_offset;
4780 devices_info[ndevs].max_avail = max_avail;
4781 devices_info[ndevs].total_avail = total_avail;
4782 devices_info[ndevs].dev = device;
4783 ++ndevs;
4787 * now sort the devices by hole size / available space
4789 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4790 btrfs_cmp_device_info, NULL);
4792 /* round down to number of usable stripes */
4793 ndevs = round_down(ndevs, devs_increment);
4795 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4796 ret = -ENOSPC;
4797 goto error;
4800 ndevs = min(ndevs, devs_max);
4803 * the primary goal is to maximize the number of stripes, so use as many
4804 * devices as possible, even if the stripes are not maximum sized.
4806 stripe_size = devices_info[ndevs-1].max_avail;
4807 num_stripes = ndevs * dev_stripes;
4810 * this will have to be fixed for RAID1 and RAID10 over
4811 * more drives
4813 data_stripes = num_stripes / ncopies;
4815 if (type & BTRFS_BLOCK_GROUP_RAID5)
4816 data_stripes = num_stripes - 1;
4818 if (type & BTRFS_BLOCK_GROUP_RAID6)
4819 data_stripes = num_stripes - 2;
4822 * Use the number of data stripes to figure out how big this chunk
4823 * is really going to be in terms of logical address space,
4824 * and compare that answer with the max chunk size
4826 if (stripe_size * data_stripes > max_chunk_size) {
4827 u64 mask = (1ULL << 24) - 1;
4829 stripe_size = div_u64(max_chunk_size, data_stripes);
4831 /* bump the answer up to a 16MB boundary */
4832 stripe_size = (stripe_size + mask) & ~mask;
4834 /* but don't go higher than the limits we found
4835 * while searching for free extents
4837 if (stripe_size > devices_info[ndevs-1].max_avail)
4838 stripe_size = devices_info[ndevs-1].max_avail;
4841 stripe_size = div_u64(stripe_size, dev_stripes);
4843 /* align to BTRFS_STRIPE_LEN */
4844 stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
4846 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4847 if (!map) {
4848 ret = -ENOMEM;
4849 goto error;
4851 map->num_stripes = num_stripes;
4853 for (i = 0; i < ndevs; ++i) {
4854 for (j = 0; j < dev_stripes; ++j) {
4855 int s = i * dev_stripes + j;
4856 map->stripes[s].dev = devices_info[i].dev;
4857 map->stripes[s].physical = devices_info[i].dev_offset +
4858 j * stripe_size;
4861 map->stripe_len = BTRFS_STRIPE_LEN;
4862 map->io_align = BTRFS_STRIPE_LEN;
4863 map->io_width = BTRFS_STRIPE_LEN;
4864 map->type = type;
4865 map->sub_stripes = sub_stripes;
4867 num_bytes = stripe_size * data_stripes;
4869 trace_btrfs_chunk_alloc(info, map, start, num_bytes);
4871 em = alloc_extent_map();
4872 if (!em) {
4873 kfree(map);
4874 ret = -ENOMEM;
4875 goto error;
4877 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4878 em->map_lookup = map;
4879 em->start = start;
4880 em->len = num_bytes;
4881 em->block_start = 0;
4882 em->block_len = em->len;
4883 em->orig_block_len = stripe_size;
4885 em_tree = &info->mapping_tree.map_tree;
4886 write_lock(&em_tree->lock);
4887 ret = add_extent_mapping(em_tree, em, 0);
4888 if (ret) {
4889 write_unlock(&em_tree->lock);
4890 free_extent_map(em);
4891 goto error;
4894 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4895 refcount_inc(&em->refs);
4896 write_unlock(&em_tree->lock);
4898 ret = btrfs_make_block_group(trans, info, 0, type, start, num_bytes);
4899 if (ret)
4900 goto error_del_extent;
4902 for (i = 0; i < map->num_stripes; i++) {
4903 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4904 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4907 atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
4909 free_extent_map(em);
4910 check_raid56_incompat_flag(info, type);
4912 kfree(devices_info);
4913 return 0;
4915 error_del_extent:
4916 write_lock(&em_tree->lock);
4917 remove_extent_mapping(em_tree, em);
4918 write_unlock(&em_tree->lock);
4920 /* One for our allocation */
4921 free_extent_map(em);
4922 /* One for the tree reference */
4923 free_extent_map(em);
4924 /* One for the pending_chunks list reference */
4925 free_extent_map(em);
4926 error:
4927 kfree(devices_info);
4928 return ret;
4931 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4932 struct btrfs_fs_info *fs_info,
4933 u64 chunk_offset, u64 chunk_size)
4935 struct btrfs_root *extent_root = fs_info->extent_root;
4936 struct btrfs_root *chunk_root = fs_info->chunk_root;
4937 struct btrfs_key key;
4938 struct btrfs_device *device;
4939 struct btrfs_chunk *chunk;
4940 struct btrfs_stripe *stripe;
4941 struct extent_map *em;
4942 struct map_lookup *map;
4943 size_t item_size;
4944 u64 dev_offset;
4945 u64 stripe_size;
4946 int i = 0;
4947 int ret = 0;
4949 em = get_chunk_map(fs_info, chunk_offset, chunk_size);
4950 if (IS_ERR(em))
4951 return PTR_ERR(em);
4953 map = em->map_lookup;
4954 item_size = btrfs_chunk_item_size(map->num_stripes);
4955 stripe_size = em->orig_block_len;
4957 chunk = kzalloc(item_size, GFP_NOFS);
4958 if (!chunk) {
4959 ret = -ENOMEM;
4960 goto out;
4964 * Take the device list mutex to prevent races with the final phase of
4965 * a device replace operation that replaces the device object associated
4966 * with the map's stripes, because the device object's id can change
4967 * at any time during that final phase of the device replace operation
4968 * (dev-replace.c:btrfs_dev_replace_finishing()).
4970 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4971 for (i = 0; i < map->num_stripes; i++) {
4972 device = map->stripes[i].dev;
4973 dev_offset = map->stripes[i].physical;
4975 ret = btrfs_update_device(trans, device);
4976 if (ret)
4977 break;
4978 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
4979 dev_offset, stripe_size);
4980 if (ret)
4981 break;
4983 if (ret) {
4984 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4985 goto out;
4988 stripe = &chunk->stripe;
4989 for (i = 0; i < map->num_stripes; i++) {
4990 device = map->stripes[i].dev;
4991 dev_offset = map->stripes[i].physical;
4993 btrfs_set_stack_stripe_devid(stripe, device->devid);
4994 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4995 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4996 stripe++;
4998 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5000 btrfs_set_stack_chunk_length(chunk, chunk_size);
5001 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5002 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5003 btrfs_set_stack_chunk_type(chunk, map->type);
5004 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5005 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5006 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5007 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5008 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5010 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5011 key.type = BTRFS_CHUNK_ITEM_KEY;
5012 key.offset = chunk_offset;
5014 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5015 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5017 * TODO: Cleanup of inserted chunk root in case of
5018 * failure.
5020 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5023 out:
5024 kfree(chunk);
5025 free_extent_map(em);
5026 return ret;
5030 * Chunk allocation falls into two parts. The first part does works
5031 * that make the new allocated chunk useable, but not do any operation
5032 * that modifies the chunk tree. The second part does the works that
5033 * require modifying the chunk tree. This division is important for the
5034 * bootstrap process of adding storage to a seed btrfs.
5036 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
5037 struct btrfs_fs_info *fs_info, u64 type)
5039 u64 chunk_offset;
5041 ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
5042 chunk_offset = find_next_chunk(fs_info);
5043 return __btrfs_alloc_chunk(trans, chunk_offset, type);
5046 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
5047 struct btrfs_fs_info *fs_info)
5049 u64 chunk_offset;
5050 u64 sys_chunk_offset;
5051 u64 alloc_profile;
5052 int ret;
5054 chunk_offset = find_next_chunk(fs_info);
5055 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5056 ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
5057 if (ret)
5058 return ret;
5060 sys_chunk_offset = find_next_chunk(fs_info);
5061 alloc_profile = btrfs_system_alloc_profile(fs_info);
5062 ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
5063 return ret;
5066 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5068 int max_errors;
5070 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5071 BTRFS_BLOCK_GROUP_RAID10 |
5072 BTRFS_BLOCK_GROUP_RAID5 |
5073 BTRFS_BLOCK_GROUP_DUP)) {
5074 max_errors = 1;
5075 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5076 max_errors = 2;
5077 } else {
5078 max_errors = 0;
5081 return max_errors;
5084 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5086 struct extent_map *em;
5087 struct map_lookup *map;
5088 int readonly = 0;
5089 int miss_ndevs = 0;
5090 int i;
5092 em = get_chunk_map(fs_info, chunk_offset, 1);
5093 if (IS_ERR(em))
5094 return 1;
5096 map = em->map_lookup;
5097 for (i = 0; i < map->num_stripes; i++) {
5098 if (test_bit(BTRFS_DEV_STATE_MISSING,
5099 &map->stripes[i].dev->dev_state)) {
5100 miss_ndevs++;
5101 continue;
5103 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5104 &map->stripes[i].dev->dev_state)) {
5105 readonly = 1;
5106 goto end;
5111 * If the number of missing devices is larger than max errors,
5112 * we can not write the data into that chunk successfully, so
5113 * set it readonly.
5115 if (miss_ndevs > btrfs_chunk_max_errors(map))
5116 readonly = 1;
5117 end:
5118 free_extent_map(em);
5119 return readonly;
5122 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5124 extent_map_tree_init(&tree->map_tree);
5127 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5129 struct extent_map *em;
5131 while (1) {
5132 write_lock(&tree->map_tree.lock);
5133 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5134 if (em)
5135 remove_extent_mapping(&tree->map_tree, em);
5136 write_unlock(&tree->map_tree.lock);
5137 if (!em)
5138 break;
5139 /* once for us */
5140 free_extent_map(em);
5141 /* once for the tree */
5142 free_extent_map(em);
5146 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5148 struct extent_map *em;
5149 struct map_lookup *map;
5150 int ret;
5152 em = get_chunk_map(fs_info, logical, len);
5153 if (IS_ERR(em))
5155 * We could return errors for these cases, but that could get
5156 * ugly and we'd probably do the same thing which is just not do
5157 * anything else and exit, so return 1 so the callers don't try
5158 * to use other copies.
5160 return 1;
5162 map = em->map_lookup;
5163 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5164 ret = map->num_stripes;
5165 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5166 ret = map->sub_stripes;
5167 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5168 ret = 2;
5169 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5170 ret = 3;
5171 else
5172 ret = 1;
5173 free_extent_map(em);
5175 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
5176 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5177 fs_info->dev_replace.tgtdev)
5178 ret++;
5179 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
5181 return ret;
5184 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5185 u64 logical)
5187 struct extent_map *em;
5188 struct map_lookup *map;
5189 unsigned long len = fs_info->sectorsize;
5191 em = get_chunk_map(fs_info, logical, len);
5193 if (!WARN_ON(IS_ERR(em))) {
5194 map = em->map_lookup;
5195 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5196 len = map->stripe_len * nr_data_stripes(map);
5197 free_extent_map(em);
5199 return len;
5202 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5204 struct extent_map *em;
5205 struct map_lookup *map;
5206 int ret = 0;
5208 em = get_chunk_map(fs_info, logical, len);
5210 if(!WARN_ON(IS_ERR(em))) {
5211 map = em->map_lookup;
5212 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5213 ret = 1;
5214 free_extent_map(em);
5216 return ret;
5219 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5220 struct map_lookup *map, int first, int num,
5221 int optimal, int dev_replace_is_ongoing)
5223 int i;
5224 int tolerance;
5225 struct btrfs_device *srcdev;
5227 if (dev_replace_is_ongoing &&
5228 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5229 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5230 srcdev = fs_info->dev_replace.srcdev;
5231 else
5232 srcdev = NULL;
5235 * try to avoid the drive that is the source drive for a
5236 * dev-replace procedure, only choose it if no other non-missing
5237 * mirror is available
5239 for (tolerance = 0; tolerance < 2; tolerance++) {
5240 if (map->stripes[optimal].dev->bdev &&
5241 (tolerance || map->stripes[optimal].dev != srcdev))
5242 return optimal;
5243 for (i = first; i < first + num; i++) {
5244 if (map->stripes[i].dev->bdev &&
5245 (tolerance || map->stripes[i].dev != srcdev))
5246 return i;
5250 /* we couldn't find one that doesn't fail. Just return something
5251 * and the io error handling code will clean up eventually
5253 return optimal;
5256 static inline int parity_smaller(u64 a, u64 b)
5258 return a > b;
5261 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5262 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5264 struct btrfs_bio_stripe s;
5265 int i;
5266 u64 l;
5267 int again = 1;
5269 while (again) {
5270 again = 0;
5271 for (i = 0; i < num_stripes - 1; i++) {
5272 if (parity_smaller(bbio->raid_map[i],
5273 bbio->raid_map[i+1])) {
5274 s = bbio->stripes[i];
5275 l = bbio->raid_map[i];
5276 bbio->stripes[i] = bbio->stripes[i+1];
5277 bbio->raid_map[i] = bbio->raid_map[i+1];
5278 bbio->stripes[i+1] = s;
5279 bbio->raid_map[i+1] = l;
5281 again = 1;
5287 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5289 struct btrfs_bio *bbio = kzalloc(
5290 /* the size of the btrfs_bio */
5291 sizeof(struct btrfs_bio) +
5292 /* plus the variable array for the stripes */
5293 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5294 /* plus the variable array for the tgt dev */
5295 sizeof(int) * (real_stripes) +
5297 * plus the raid_map, which includes both the tgt dev
5298 * and the stripes
5300 sizeof(u64) * (total_stripes),
5301 GFP_NOFS|__GFP_NOFAIL);
5303 atomic_set(&bbio->error, 0);
5304 refcount_set(&bbio->refs, 1);
5306 return bbio;
5309 void btrfs_get_bbio(struct btrfs_bio *bbio)
5311 WARN_ON(!refcount_read(&bbio->refs));
5312 refcount_inc(&bbio->refs);
5315 void btrfs_put_bbio(struct btrfs_bio *bbio)
5317 if (!bbio)
5318 return;
5319 if (refcount_dec_and_test(&bbio->refs))
5320 kfree(bbio);
5323 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5325 * Please note that, discard won't be sent to target device of device
5326 * replace.
5328 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5329 u64 logical, u64 length,
5330 struct btrfs_bio **bbio_ret)
5332 struct extent_map *em;
5333 struct map_lookup *map;
5334 struct btrfs_bio *bbio;
5335 u64 offset;
5336 u64 stripe_nr;
5337 u64 stripe_nr_end;
5338 u64 stripe_end_offset;
5339 u64 stripe_cnt;
5340 u64 stripe_len;
5341 u64 stripe_offset;
5342 u64 num_stripes;
5343 u32 stripe_index;
5344 u32 factor = 0;
5345 u32 sub_stripes = 0;
5346 u64 stripes_per_dev = 0;
5347 u32 remaining_stripes = 0;
5348 u32 last_stripe = 0;
5349 int ret = 0;
5350 int i;
5352 /* discard always return a bbio */
5353 ASSERT(bbio_ret);
5355 em = get_chunk_map(fs_info, logical, length);
5356 if (IS_ERR(em))
5357 return PTR_ERR(em);
5359 map = em->map_lookup;
5360 /* we don't discard raid56 yet */
5361 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5362 ret = -EOPNOTSUPP;
5363 goto out;
5366 offset = logical - em->start;
5367 length = min_t(u64, em->len - offset, length);
5369 stripe_len = map->stripe_len;
5371 * stripe_nr counts the total number of stripes we have to stride
5372 * to get to this block
5374 stripe_nr = div64_u64(offset, stripe_len);
5376 /* stripe_offset is the offset of this block in its stripe */
5377 stripe_offset = offset - stripe_nr * stripe_len;
5379 stripe_nr_end = round_up(offset + length, map->stripe_len);
5380 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5381 stripe_cnt = stripe_nr_end - stripe_nr;
5382 stripe_end_offset = stripe_nr_end * map->stripe_len -
5383 (offset + length);
5385 * after this, stripe_nr is the number of stripes on this
5386 * device we have to walk to find the data, and stripe_index is
5387 * the number of our device in the stripe array
5389 num_stripes = 1;
5390 stripe_index = 0;
5391 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5392 BTRFS_BLOCK_GROUP_RAID10)) {
5393 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5394 sub_stripes = 1;
5395 else
5396 sub_stripes = map->sub_stripes;
5398 factor = map->num_stripes / sub_stripes;
5399 num_stripes = min_t(u64, map->num_stripes,
5400 sub_stripes * stripe_cnt);
5401 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5402 stripe_index *= sub_stripes;
5403 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5404 &remaining_stripes);
5405 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5406 last_stripe *= sub_stripes;
5407 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5408 BTRFS_BLOCK_GROUP_DUP)) {
5409 num_stripes = map->num_stripes;
5410 } else {
5411 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5412 &stripe_index);
5415 bbio = alloc_btrfs_bio(num_stripes, 0);
5416 if (!bbio) {
5417 ret = -ENOMEM;
5418 goto out;
5421 for (i = 0; i < num_stripes; i++) {
5422 bbio->stripes[i].physical =
5423 map->stripes[stripe_index].physical +
5424 stripe_offset + stripe_nr * map->stripe_len;
5425 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5427 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5428 BTRFS_BLOCK_GROUP_RAID10)) {
5429 bbio->stripes[i].length = stripes_per_dev *
5430 map->stripe_len;
5432 if (i / sub_stripes < remaining_stripes)
5433 bbio->stripes[i].length +=
5434 map->stripe_len;
5437 * Special for the first stripe and
5438 * the last stripe:
5440 * |-------|...|-------|
5441 * |----------|
5442 * off end_off
5444 if (i < sub_stripes)
5445 bbio->stripes[i].length -=
5446 stripe_offset;
5448 if (stripe_index >= last_stripe &&
5449 stripe_index <= (last_stripe +
5450 sub_stripes - 1))
5451 bbio->stripes[i].length -=
5452 stripe_end_offset;
5454 if (i == sub_stripes - 1)
5455 stripe_offset = 0;
5456 } else {
5457 bbio->stripes[i].length = length;
5460 stripe_index++;
5461 if (stripe_index == map->num_stripes) {
5462 stripe_index = 0;
5463 stripe_nr++;
5467 *bbio_ret = bbio;
5468 bbio->map_type = map->type;
5469 bbio->num_stripes = num_stripes;
5470 out:
5471 free_extent_map(em);
5472 return ret;
5476 * In dev-replace case, for repair case (that's the only case where the mirror
5477 * is selected explicitly when calling btrfs_map_block), blocks left of the
5478 * left cursor can also be read from the target drive.
5480 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5481 * array of stripes.
5482 * For READ, it also needs to be supported using the same mirror number.
5484 * If the requested block is not left of the left cursor, EIO is returned. This
5485 * can happen because btrfs_num_copies() returns one more in the dev-replace
5486 * case.
5488 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5489 u64 logical, u64 length,
5490 u64 srcdev_devid, int *mirror_num,
5491 u64 *physical)
5493 struct btrfs_bio *bbio = NULL;
5494 int num_stripes;
5495 int index_srcdev = 0;
5496 int found = 0;
5497 u64 physical_of_found = 0;
5498 int i;
5499 int ret = 0;
5501 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5502 logical, &length, &bbio, 0, 0);
5503 if (ret) {
5504 ASSERT(bbio == NULL);
5505 return ret;
5508 num_stripes = bbio->num_stripes;
5509 if (*mirror_num > num_stripes) {
5511 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5512 * that means that the requested area is not left of the left
5513 * cursor
5515 btrfs_put_bbio(bbio);
5516 return -EIO;
5520 * process the rest of the function using the mirror_num of the source
5521 * drive. Therefore look it up first. At the end, patch the device
5522 * pointer to the one of the target drive.
5524 for (i = 0; i < num_stripes; i++) {
5525 if (bbio->stripes[i].dev->devid != srcdev_devid)
5526 continue;
5529 * In case of DUP, in order to keep it simple, only add the
5530 * mirror with the lowest physical address
5532 if (found &&
5533 physical_of_found <= bbio->stripes[i].physical)
5534 continue;
5536 index_srcdev = i;
5537 found = 1;
5538 physical_of_found = bbio->stripes[i].physical;
5541 btrfs_put_bbio(bbio);
5543 ASSERT(found);
5544 if (!found)
5545 return -EIO;
5547 *mirror_num = index_srcdev + 1;
5548 *physical = physical_of_found;
5549 return ret;
5552 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5553 struct btrfs_bio **bbio_ret,
5554 struct btrfs_dev_replace *dev_replace,
5555 int *num_stripes_ret, int *max_errors_ret)
5557 struct btrfs_bio *bbio = *bbio_ret;
5558 u64 srcdev_devid = dev_replace->srcdev->devid;
5559 int tgtdev_indexes = 0;
5560 int num_stripes = *num_stripes_ret;
5561 int max_errors = *max_errors_ret;
5562 int i;
5564 if (op == BTRFS_MAP_WRITE) {
5565 int index_where_to_add;
5568 * duplicate the write operations while the dev replace
5569 * procedure is running. Since the copying of the old disk to
5570 * the new disk takes place at run time while the filesystem is
5571 * mounted writable, the regular write operations to the old
5572 * disk have to be duplicated to go to the new disk as well.
5574 * Note that device->missing is handled by the caller, and that
5575 * the write to the old disk is already set up in the stripes
5576 * array.
5578 index_where_to_add = num_stripes;
5579 for (i = 0; i < num_stripes; i++) {
5580 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5581 /* write to new disk, too */
5582 struct btrfs_bio_stripe *new =
5583 bbio->stripes + index_where_to_add;
5584 struct btrfs_bio_stripe *old =
5585 bbio->stripes + i;
5587 new->physical = old->physical;
5588 new->length = old->length;
5589 new->dev = dev_replace->tgtdev;
5590 bbio->tgtdev_map[i] = index_where_to_add;
5591 index_where_to_add++;
5592 max_errors++;
5593 tgtdev_indexes++;
5596 num_stripes = index_where_to_add;
5597 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5598 int index_srcdev = 0;
5599 int found = 0;
5600 u64 physical_of_found = 0;
5603 * During the dev-replace procedure, the target drive can also
5604 * be used to read data in case it is needed to repair a corrupt
5605 * block elsewhere. This is possible if the requested area is
5606 * left of the left cursor. In this area, the target drive is a
5607 * full copy of the source drive.
5609 for (i = 0; i < num_stripes; i++) {
5610 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5612 * In case of DUP, in order to keep it simple,
5613 * only add the mirror with the lowest physical
5614 * address
5616 if (found &&
5617 physical_of_found <=
5618 bbio->stripes[i].physical)
5619 continue;
5620 index_srcdev = i;
5621 found = 1;
5622 physical_of_found = bbio->stripes[i].physical;
5625 if (found) {
5626 struct btrfs_bio_stripe *tgtdev_stripe =
5627 bbio->stripes + num_stripes;
5629 tgtdev_stripe->physical = physical_of_found;
5630 tgtdev_stripe->length =
5631 bbio->stripes[index_srcdev].length;
5632 tgtdev_stripe->dev = dev_replace->tgtdev;
5633 bbio->tgtdev_map[index_srcdev] = num_stripes;
5635 tgtdev_indexes++;
5636 num_stripes++;
5640 *num_stripes_ret = num_stripes;
5641 *max_errors_ret = max_errors;
5642 bbio->num_tgtdevs = tgtdev_indexes;
5643 *bbio_ret = bbio;
5646 static bool need_full_stripe(enum btrfs_map_op op)
5648 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5651 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5652 enum btrfs_map_op op,
5653 u64 logical, u64 *length,
5654 struct btrfs_bio **bbio_ret,
5655 int mirror_num, int need_raid_map)
5657 struct extent_map *em;
5658 struct map_lookup *map;
5659 u64 offset;
5660 u64 stripe_offset;
5661 u64 stripe_nr;
5662 u64 stripe_len;
5663 u32 stripe_index;
5664 int i;
5665 int ret = 0;
5666 int num_stripes;
5667 int max_errors = 0;
5668 int tgtdev_indexes = 0;
5669 struct btrfs_bio *bbio = NULL;
5670 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5671 int dev_replace_is_ongoing = 0;
5672 int num_alloc_stripes;
5673 int patch_the_first_stripe_for_dev_replace = 0;
5674 u64 physical_to_patch_in_first_stripe = 0;
5675 u64 raid56_full_stripe_start = (u64)-1;
5677 if (op == BTRFS_MAP_DISCARD)
5678 return __btrfs_map_block_for_discard(fs_info, logical,
5679 *length, bbio_ret);
5681 em = get_chunk_map(fs_info, logical, *length);
5682 if (IS_ERR(em))
5683 return PTR_ERR(em);
5685 map = em->map_lookup;
5686 offset = logical - em->start;
5688 stripe_len = map->stripe_len;
5689 stripe_nr = offset;
5691 * stripe_nr counts the total number of stripes we have to stride
5692 * to get to this block
5694 stripe_nr = div64_u64(stripe_nr, stripe_len);
5696 stripe_offset = stripe_nr * stripe_len;
5697 if (offset < stripe_offset) {
5698 btrfs_crit(fs_info,
5699 "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5700 stripe_offset, offset, em->start, logical,
5701 stripe_len);
5702 free_extent_map(em);
5703 return -EINVAL;
5706 /* stripe_offset is the offset of this block in its stripe*/
5707 stripe_offset = offset - stripe_offset;
5709 /* if we're here for raid56, we need to know the stripe aligned start */
5710 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5711 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5712 raid56_full_stripe_start = offset;
5714 /* allow a write of a full stripe, but make sure we don't
5715 * allow straddling of stripes
5717 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5718 full_stripe_len);
5719 raid56_full_stripe_start *= full_stripe_len;
5722 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5723 u64 max_len;
5724 /* For writes to RAID[56], allow a full stripeset across all disks.
5725 For other RAID types and for RAID[56] reads, just allow a single
5726 stripe (on a single disk). */
5727 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5728 (op == BTRFS_MAP_WRITE)) {
5729 max_len = stripe_len * nr_data_stripes(map) -
5730 (offset - raid56_full_stripe_start);
5731 } else {
5732 /* we limit the length of each bio to what fits in a stripe */
5733 max_len = stripe_len - stripe_offset;
5735 *length = min_t(u64, em->len - offset, max_len);
5736 } else {
5737 *length = em->len - offset;
5740 /* This is for when we're called from btrfs_merge_bio_hook() and all
5741 it cares about is the length */
5742 if (!bbio_ret)
5743 goto out;
5745 btrfs_dev_replace_lock(dev_replace, 0);
5746 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5747 if (!dev_replace_is_ongoing)
5748 btrfs_dev_replace_unlock(dev_replace, 0);
5749 else
5750 btrfs_dev_replace_set_lock_blocking(dev_replace);
5752 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5753 !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5754 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
5755 dev_replace->srcdev->devid,
5756 &mirror_num,
5757 &physical_to_patch_in_first_stripe);
5758 if (ret)
5759 goto out;
5760 else
5761 patch_the_first_stripe_for_dev_replace = 1;
5762 } else if (mirror_num > map->num_stripes) {
5763 mirror_num = 0;
5766 num_stripes = 1;
5767 stripe_index = 0;
5768 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5769 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5770 &stripe_index);
5771 if (!need_full_stripe(op))
5772 mirror_num = 1;
5773 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5774 if (need_full_stripe(op))
5775 num_stripes = map->num_stripes;
5776 else if (mirror_num)
5777 stripe_index = mirror_num - 1;
5778 else {
5779 stripe_index = find_live_mirror(fs_info, map, 0,
5780 map->num_stripes,
5781 current->pid % map->num_stripes,
5782 dev_replace_is_ongoing);
5783 mirror_num = stripe_index + 1;
5786 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5787 if (need_full_stripe(op)) {
5788 num_stripes = map->num_stripes;
5789 } else if (mirror_num) {
5790 stripe_index = mirror_num - 1;
5791 } else {
5792 mirror_num = 1;
5795 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5796 u32 factor = map->num_stripes / map->sub_stripes;
5798 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5799 stripe_index *= map->sub_stripes;
5801 if (need_full_stripe(op))
5802 num_stripes = map->sub_stripes;
5803 else if (mirror_num)
5804 stripe_index += mirror_num - 1;
5805 else {
5806 int old_stripe_index = stripe_index;
5807 stripe_index = find_live_mirror(fs_info, map,
5808 stripe_index,
5809 map->sub_stripes, stripe_index +
5810 current->pid % map->sub_stripes,
5811 dev_replace_is_ongoing);
5812 mirror_num = stripe_index - old_stripe_index + 1;
5815 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5816 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
5817 /* push stripe_nr back to the start of the full stripe */
5818 stripe_nr = div64_u64(raid56_full_stripe_start,
5819 stripe_len * nr_data_stripes(map));
5821 /* RAID[56] write or recovery. Return all stripes */
5822 num_stripes = map->num_stripes;
5823 max_errors = nr_parity_stripes(map);
5825 *length = map->stripe_len;
5826 stripe_index = 0;
5827 stripe_offset = 0;
5828 } else {
5830 * Mirror #0 or #1 means the original data block.
5831 * Mirror #2 is RAID5 parity block.
5832 * Mirror #3 is RAID6 Q block.
5834 stripe_nr = div_u64_rem(stripe_nr,
5835 nr_data_stripes(map), &stripe_index);
5836 if (mirror_num > 1)
5837 stripe_index = nr_data_stripes(map) +
5838 mirror_num - 2;
5840 /* We distribute the parity blocks across stripes */
5841 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5842 &stripe_index);
5843 if (!need_full_stripe(op) && mirror_num <= 1)
5844 mirror_num = 1;
5846 } else {
5848 * after this, stripe_nr is the number of stripes on this
5849 * device we have to walk to find the data, and stripe_index is
5850 * the number of our device in the stripe array
5852 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5853 &stripe_index);
5854 mirror_num = stripe_index + 1;
5856 if (stripe_index >= map->num_stripes) {
5857 btrfs_crit(fs_info,
5858 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5859 stripe_index, map->num_stripes);
5860 ret = -EINVAL;
5861 goto out;
5864 num_alloc_stripes = num_stripes;
5865 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
5866 if (op == BTRFS_MAP_WRITE)
5867 num_alloc_stripes <<= 1;
5868 if (op == BTRFS_MAP_GET_READ_MIRRORS)
5869 num_alloc_stripes++;
5870 tgtdev_indexes = num_stripes;
5873 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5874 if (!bbio) {
5875 ret = -ENOMEM;
5876 goto out;
5878 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
5879 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5881 /* build raid_map */
5882 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
5883 (need_full_stripe(op) || mirror_num > 1)) {
5884 u64 tmp;
5885 unsigned rot;
5887 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5888 sizeof(struct btrfs_bio_stripe) *
5889 num_alloc_stripes +
5890 sizeof(int) * tgtdev_indexes);
5892 /* Work out the disk rotation on this stripe-set */
5893 div_u64_rem(stripe_nr, num_stripes, &rot);
5895 /* Fill in the logical address of each stripe */
5896 tmp = stripe_nr * nr_data_stripes(map);
5897 for (i = 0; i < nr_data_stripes(map); i++)
5898 bbio->raid_map[(i+rot) % num_stripes] =
5899 em->start + (tmp + i) * map->stripe_len;
5901 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5902 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5903 bbio->raid_map[(i+rot+1) % num_stripes] =
5904 RAID6_Q_STRIPE;
5908 for (i = 0; i < num_stripes; i++) {
5909 bbio->stripes[i].physical =
5910 map->stripes[stripe_index].physical +
5911 stripe_offset +
5912 stripe_nr * map->stripe_len;
5913 bbio->stripes[i].dev =
5914 map->stripes[stripe_index].dev;
5915 stripe_index++;
5918 if (need_full_stripe(op))
5919 max_errors = btrfs_chunk_max_errors(map);
5921 if (bbio->raid_map)
5922 sort_parity_stripes(bbio, num_stripes);
5924 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
5925 need_full_stripe(op)) {
5926 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
5927 &max_errors);
5930 *bbio_ret = bbio;
5931 bbio->map_type = map->type;
5932 bbio->num_stripes = num_stripes;
5933 bbio->max_errors = max_errors;
5934 bbio->mirror_num = mirror_num;
5937 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5938 * mirror_num == num_stripes + 1 && dev_replace target drive is
5939 * available as a mirror
5941 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5942 WARN_ON(num_stripes > 1);
5943 bbio->stripes[0].dev = dev_replace->tgtdev;
5944 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5945 bbio->mirror_num = map->num_stripes + 1;
5947 out:
5948 if (dev_replace_is_ongoing) {
5949 btrfs_dev_replace_clear_lock_blocking(dev_replace);
5950 btrfs_dev_replace_unlock(dev_replace, 0);
5952 free_extent_map(em);
5953 return ret;
5956 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5957 u64 logical, u64 *length,
5958 struct btrfs_bio **bbio_ret, int mirror_num)
5960 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5961 mirror_num, 0);
5964 /* For Scrub/replace */
5965 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5966 u64 logical, u64 *length,
5967 struct btrfs_bio **bbio_ret)
5969 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
5972 int btrfs_rmap_block(struct btrfs_fs_info *fs_info,
5973 u64 chunk_start, u64 physical, u64 devid,
5974 u64 **logical, int *naddrs, int *stripe_len)
5976 struct extent_map *em;
5977 struct map_lookup *map;
5978 u64 *buf;
5979 u64 bytenr;
5980 u64 length;
5981 u64 stripe_nr;
5982 u64 rmap_len;
5983 int i, j, nr = 0;
5985 em = get_chunk_map(fs_info, chunk_start, 1);
5986 if (IS_ERR(em))
5987 return -EIO;
5989 map = em->map_lookup;
5990 length = em->len;
5991 rmap_len = map->stripe_len;
5993 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5994 length = div_u64(length, map->num_stripes / map->sub_stripes);
5995 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5996 length = div_u64(length, map->num_stripes);
5997 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5998 length = div_u64(length, nr_data_stripes(map));
5999 rmap_len = map->stripe_len * nr_data_stripes(map);
6002 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
6003 BUG_ON(!buf); /* -ENOMEM */
6005 for (i = 0; i < map->num_stripes; i++) {
6006 if (devid && map->stripes[i].dev->devid != devid)
6007 continue;
6008 if (map->stripes[i].physical > physical ||
6009 map->stripes[i].physical + length <= physical)
6010 continue;
6012 stripe_nr = physical - map->stripes[i].physical;
6013 stripe_nr = div64_u64(stripe_nr, map->stripe_len);
6015 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6016 stripe_nr = stripe_nr * map->num_stripes + i;
6017 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
6018 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6019 stripe_nr = stripe_nr * map->num_stripes + i;
6020 } /* else if RAID[56], multiply by nr_data_stripes().
6021 * Alternatively, just use rmap_len below instead of
6022 * map->stripe_len */
6024 bytenr = chunk_start + stripe_nr * rmap_len;
6025 WARN_ON(nr >= map->num_stripes);
6026 for (j = 0; j < nr; j++) {
6027 if (buf[j] == bytenr)
6028 break;
6030 if (j == nr) {
6031 WARN_ON(nr >= map->num_stripes);
6032 buf[nr++] = bytenr;
6036 *logical = buf;
6037 *naddrs = nr;
6038 *stripe_len = rmap_len;
6040 free_extent_map(em);
6041 return 0;
6044 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6046 bio->bi_private = bbio->private;
6047 bio->bi_end_io = bbio->end_io;
6048 bio_endio(bio);
6050 btrfs_put_bbio(bbio);
6053 static void btrfs_end_bio(struct bio *bio)
6055 struct btrfs_bio *bbio = bio->bi_private;
6056 int is_orig_bio = 0;
6058 if (bio->bi_status) {
6059 atomic_inc(&bbio->error);
6060 if (bio->bi_status == BLK_STS_IOERR ||
6061 bio->bi_status == BLK_STS_TARGET) {
6062 unsigned int stripe_index =
6063 btrfs_io_bio(bio)->stripe_index;
6064 struct btrfs_device *dev;
6066 BUG_ON(stripe_index >= bbio->num_stripes);
6067 dev = bbio->stripes[stripe_index].dev;
6068 if (dev->bdev) {
6069 if (bio_op(bio) == REQ_OP_WRITE)
6070 btrfs_dev_stat_inc_and_print(dev,
6071 BTRFS_DEV_STAT_WRITE_ERRS);
6072 else
6073 btrfs_dev_stat_inc_and_print(dev,
6074 BTRFS_DEV_STAT_READ_ERRS);
6075 if (bio->bi_opf & REQ_PREFLUSH)
6076 btrfs_dev_stat_inc_and_print(dev,
6077 BTRFS_DEV_STAT_FLUSH_ERRS);
6082 if (bio == bbio->orig_bio)
6083 is_orig_bio = 1;
6085 btrfs_bio_counter_dec(bbio->fs_info);
6087 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6088 if (!is_orig_bio) {
6089 bio_put(bio);
6090 bio = bbio->orig_bio;
6093 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6094 /* only send an error to the higher layers if it is
6095 * beyond the tolerance of the btrfs bio
6097 if (atomic_read(&bbio->error) > bbio->max_errors) {
6098 bio->bi_status = BLK_STS_IOERR;
6099 } else {
6101 * this bio is actually up to date, we didn't
6102 * go over the max number of errors
6104 bio->bi_status = BLK_STS_OK;
6107 btrfs_end_bbio(bbio, bio);
6108 } else if (!is_orig_bio) {
6109 bio_put(bio);
6114 * see run_scheduled_bios for a description of why bios are collected for
6115 * async submit.
6117 * This will add one bio to the pending list for a device and make sure
6118 * the work struct is scheduled.
6120 static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6121 struct bio *bio)
6123 struct btrfs_fs_info *fs_info = device->fs_info;
6124 int should_queue = 1;
6125 struct btrfs_pending_bios *pending_bios;
6127 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state) ||
6128 !device->bdev) {
6129 bio_io_error(bio);
6130 return;
6133 /* don't bother with additional async steps for reads, right now */
6134 if (bio_op(bio) == REQ_OP_READ) {
6135 bio_get(bio);
6136 btrfsic_submit_bio(bio);
6137 bio_put(bio);
6138 return;
6141 WARN_ON(bio->bi_next);
6142 bio->bi_next = NULL;
6144 spin_lock(&device->io_lock);
6145 if (op_is_sync(bio->bi_opf))
6146 pending_bios = &device->pending_sync_bios;
6147 else
6148 pending_bios = &device->pending_bios;
6150 if (pending_bios->tail)
6151 pending_bios->tail->bi_next = bio;
6153 pending_bios->tail = bio;
6154 if (!pending_bios->head)
6155 pending_bios->head = bio;
6156 if (device->running_pending)
6157 should_queue = 0;
6159 spin_unlock(&device->io_lock);
6161 if (should_queue)
6162 btrfs_queue_work(fs_info->submit_workers, &device->work);
6165 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6166 u64 physical, int dev_nr, int async)
6168 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6169 struct btrfs_fs_info *fs_info = bbio->fs_info;
6171 bio->bi_private = bbio;
6172 btrfs_io_bio(bio)->stripe_index = dev_nr;
6173 bio->bi_end_io = btrfs_end_bio;
6174 bio->bi_iter.bi_sector = physical >> 9;
6175 #ifdef DEBUG
6177 struct rcu_string *name;
6179 rcu_read_lock();
6180 name = rcu_dereference(dev->name);
6181 btrfs_debug(fs_info,
6182 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6183 bio_op(bio), bio->bi_opf,
6184 (u64)bio->bi_iter.bi_sector,
6185 (u_long)dev->bdev->bd_dev, name->str, dev->devid,
6186 bio->bi_iter.bi_size);
6187 rcu_read_unlock();
6189 #endif
6190 bio_set_dev(bio, dev->bdev);
6192 btrfs_bio_counter_inc_noblocked(fs_info);
6194 if (async)
6195 btrfs_schedule_bio(dev, bio);
6196 else
6197 btrfsic_submit_bio(bio);
6200 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6202 atomic_inc(&bbio->error);
6203 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6204 /* Should be the original bio. */
6205 WARN_ON(bio != bbio->orig_bio);
6207 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6208 bio->bi_iter.bi_sector = logical >> 9;
6209 if (atomic_read(&bbio->error) > bbio->max_errors)
6210 bio->bi_status = BLK_STS_IOERR;
6211 else
6212 bio->bi_status = BLK_STS_OK;
6213 btrfs_end_bbio(bbio, bio);
6217 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6218 int mirror_num, int async_submit)
6220 struct btrfs_device *dev;
6221 struct bio *first_bio = bio;
6222 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6223 u64 length = 0;
6224 u64 map_length;
6225 int ret;
6226 int dev_nr;
6227 int total_devs;
6228 struct btrfs_bio *bbio = NULL;
6230 length = bio->bi_iter.bi_size;
6231 map_length = length;
6233 btrfs_bio_counter_inc_blocked(fs_info);
6234 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6235 &map_length, &bbio, mirror_num, 1);
6236 if (ret) {
6237 btrfs_bio_counter_dec(fs_info);
6238 return errno_to_blk_status(ret);
6241 total_devs = bbio->num_stripes;
6242 bbio->orig_bio = first_bio;
6243 bbio->private = first_bio->bi_private;
6244 bbio->end_io = first_bio->bi_end_io;
6245 bbio->fs_info = fs_info;
6246 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6248 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6249 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6250 /* In this case, map_length has been set to the length of
6251 a single stripe; not the whole write */
6252 if (bio_op(bio) == REQ_OP_WRITE) {
6253 ret = raid56_parity_write(fs_info, bio, bbio,
6254 map_length);
6255 } else {
6256 ret = raid56_parity_recover(fs_info, bio, bbio,
6257 map_length, mirror_num, 1);
6260 btrfs_bio_counter_dec(fs_info);
6261 return errno_to_blk_status(ret);
6264 if (map_length < length) {
6265 btrfs_crit(fs_info,
6266 "mapping failed logical %llu bio len %llu len %llu",
6267 logical, length, map_length);
6268 BUG();
6271 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6272 dev = bbio->stripes[dev_nr].dev;
6273 if (!dev || !dev->bdev ||
6274 (bio_op(first_bio) == REQ_OP_WRITE &&
6275 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6276 bbio_error(bbio, first_bio, logical);
6277 continue;
6280 if (dev_nr < total_devs - 1)
6281 bio = btrfs_bio_clone(first_bio);
6282 else
6283 bio = first_bio;
6285 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6286 dev_nr, async_submit);
6288 btrfs_bio_counter_dec(fs_info);
6289 return BLK_STS_OK;
6292 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6293 u8 *uuid, u8 *fsid)
6295 struct btrfs_device *device;
6296 struct btrfs_fs_devices *cur_devices;
6298 cur_devices = fs_info->fs_devices;
6299 while (cur_devices) {
6300 if (!fsid ||
6301 !memcmp(cur_devices->fsid, fsid, BTRFS_FSID_SIZE)) {
6302 device = find_device(cur_devices, devid, uuid);
6303 if (device)
6304 return device;
6306 cur_devices = cur_devices->seed;
6308 return NULL;
6311 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6312 u64 devid, u8 *dev_uuid)
6314 struct btrfs_device *device;
6316 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6317 if (IS_ERR(device))
6318 return device;
6320 list_add(&device->dev_list, &fs_devices->devices);
6321 device->fs_devices = fs_devices;
6322 fs_devices->num_devices++;
6324 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6325 fs_devices->missing_devices++;
6327 return device;
6331 * btrfs_alloc_device - allocate struct btrfs_device
6332 * @fs_info: used only for generating a new devid, can be NULL if
6333 * devid is provided (i.e. @devid != NULL).
6334 * @devid: a pointer to devid for this device. If NULL a new devid
6335 * is generated.
6336 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6337 * is generated.
6339 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6340 * on error. Returned struct is not linked onto any lists and must be
6341 * destroyed with free_device.
6343 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6344 const u64 *devid,
6345 const u8 *uuid)
6347 struct btrfs_device *dev;
6348 u64 tmp;
6350 if (WARN_ON(!devid && !fs_info))
6351 return ERR_PTR(-EINVAL);
6353 dev = __alloc_device();
6354 if (IS_ERR(dev))
6355 return dev;
6357 if (devid)
6358 tmp = *devid;
6359 else {
6360 int ret;
6362 ret = find_next_devid(fs_info, &tmp);
6363 if (ret) {
6364 free_device(dev);
6365 return ERR_PTR(ret);
6368 dev->devid = tmp;
6370 if (uuid)
6371 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6372 else
6373 generate_random_uuid(dev->uuid);
6375 btrfs_init_work(&dev->work, btrfs_submit_helper,
6376 pending_bios_fn, NULL, NULL);
6378 return dev;
6381 /* Return -EIO if any error, otherwise return 0. */
6382 static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
6383 struct extent_buffer *leaf,
6384 struct btrfs_chunk *chunk, u64 logical)
6386 u64 length;
6387 u64 stripe_len;
6388 u16 num_stripes;
6389 u16 sub_stripes;
6390 u64 type;
6392 length = btrfs_chunk_length(leaf, chunk);
6393 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6394 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6395 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6396 type = btrfs_chunk_type(leaf, chunk);
6398 if (!num_stripes) {
6399 btrfs_err(fs_info, "invalid chunk num_stripes: %u",
6400 num_stripes);
6401 return -EIO;
6403 if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6404 btrfs_err(fs_info, "invalid chunk logical %llu", logical);
6405 return -EIO;
6407 if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6408 btrfs_err(fs_info, "invalid chunk sectorsize %u",
6409 btrfs_chunk_sector_size(leaf, chunk));
6410 return -EIO;
6412 if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6413 btrfs_err(fs_info, "invalid chunk length %llu", length);
6414 return -EIO;
6416 if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6417 btrfs_err(fs_info, "invalid chunk stripe length: %llu",
6418 stripe_len);
6419 return -EIO;
6421 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6422 type) {
6423 btrfs_err(fs_info, "unrecognized chunk type: %llu",
6424 ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6425 BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6426 btrfs_chunk_type(leaf, chunk));
6427 return -EIO;
6429 if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6430 (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6431 (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6432 (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6433 (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6434 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6435 num_stripes != 1)) {
6436 btrfs_err(fs_info,
6437 "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6438 num_stripes, sub_stripes,
6439 type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6440 return -EIO;
6443 return 0;
6446 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6447 u64 devid, u8 *uuid, bool error)
6449 if (error)
6450 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6451 devid, uuid);
6452 else
6453 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6454 devid, uuid);
6457 static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
6458 struct extent_buffer *leaf,
6459 struct btrfs_chunk *chunk)
6461 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6462 struct map_lookup *map;
6463 struct extent_map *em;
6464 u64 logical;
6465 u64 length;
6466 u64 devid;
6467 u8 uuid[BTRFS_UUID_SIZE];
6468 int num_stripes;
6469 int ret;
6470 int i;
6472 logical = key->offset;
6473 length = btrfs_chunk_length(leaf, chunk);
6474 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6476 ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
6477 if (ret)
6478 return ret;
6480 read_lock(&map_tree->map_tree.lock);
6481 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6482 read_unlock(&map_tree->map_tree.lock);
6484 /* already mapped? */
6485 if (em && em->start <= logical && em->start + em->len > logical) {
6486 free_extent_map(em);
6487 return 0;
6488 } else if (em) {
6489 free_extent_map(em);
6492 em = alloc_extent_map();
6493 if (!em)
6494 return -ENOMEM;
6495 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6496 if (!map) {
6497 free_extent_map(em);
6498 return -ENOMEM;
6501 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6502 em->map_lookup = map;
6503 em->start = logical;
6504 em->len = length;
6505 em->orig_start = 0;
6506 em->block_start = 0;
6507 em->block_len = em->len;
6509 map->num_stripes = num_stripes;
6510 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6511 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6512 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6513 map->type = btrfs_chunk_type(leaf, chunk);
6514 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6515 for (i = 0; i < num_stripes; i++) {
6516 map->stripes[i].physical =
6517 btrfs_stripe_offset_nr(leaf, chunk, i);
6518 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6519 read_extent_buffer(leaf, uuid, (unsigned long)
6520 btrfs_stripe_dev_uuid_nr(chunk, i),
6521 BTRFS_UUID_SIZE);
6522 map->stripes[i].dev = btrfs_find_device(fs_info, devid,
6523 uuid, NULL);
6524 if (!map->stripes[i].dev &&
6525 !btrfs_test_opt(fs_info, DEGRADED)) {
6526 free_extent_map(em);
6527 btrfs_report_missing_device(fs_info, devid, uuid, true);
6528 return -ENOENT;
6530 if (!map->stripes[i].dev) {
6531 map->stripes[i].dev =
6532 add_missing_dev(fs_info->fs_devices, devid,
6533 uuid);
6534 if (IS_ERR(map->stripes[i].dev)) {
6535 free_extent_map(em);
6536 btrfs_err(fs_info,
6537 "failed to init missing dev %llu: %ld",
6538 devid, PTR_ERR(map->stripes[i].dev));
6539 return PTR_ERR(map->stripes[i].dev);
6541 btrfs_report_missing_device(fs_info, devid, uuid, false);
6543 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6544 &(map->stripes[i].dev->dev_state));
6548 write_lock(&map_tree->map_tree.lock);
6549 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6550 write_unlock(&map_tree->map_tree.lock);
6551 BUG_ON(ret); /* Tree corruption */
6552 free_extent_map(em);
6554 return 0;
6557 static void fill_device_from_item(struct extent_buffer *leaf,
6558 struct btrfs_dev_item *dev_item,
6559 struct btrfs_device *device)
6561 unsigned long ptr;
6563 device->devid = btrfs_device_id(leaf, dev_item);
6564 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6565 device->total_bytes = device->disk_total_bytes;
6566 device->commit_total_bytes = device->disk_total_bytes;
6567 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6568 device->commit_bytes_used = device->bytes_used;
6569 device->type = btrfs_device_type(leaf, dev_item);
6570 device->io_align = btrfs_device_io_align(leaf, dev_item);
6571 device->io_width = btrfs_device_io_width(leaf, dev_item);
6572 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6573 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6574 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6576 ptr = btrfs_device_uuid(dev_item);
6577 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6580 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6581 u8 *fsid)
6583 struct btrfs_fs_devices *fs_devices;
6584 int ret;
6586 BUG_ON(!mutex_is_locked(&uuid_mutex));
6587 ASSERT(fsid);
6589 fs_devices = fs_info->fs_devices->seed;
6590 while (fs_devices) {
6591 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6592 return fs_devices;
6594 fs_devices = fs_devices->seed;
6597 fs_devices = find_fsid(fsid);
6598 if (!fs_devices) {
6599 if (!btrfs_test_opt(fs_info, DEGRADED))
6600 return ERR_PTR(-ENOENT);
6602 fs_devices = alloc_fs_devices(fsid);
6603 if (IS_ERR(fs_devices))
6604 return fs_devices;
6606 fs_devices->seeding = 1;
6607 fs_devices->opened = 1;
6608 return fs_devices;
6611 fs_devices = clone_fs_devices(fs_devices);
6612 if (IS_ERR(fs_devices))
6613 return fs_devices;
6615 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6616 fs_info->bdev_holder);
6617 if (ret) {
6618 free_fs_devices(fs_devices);
6619 fs_devices = ERR_PTR(ret);
6620 goto out;
6623 if (!fs_devices->seeding) {
6624 __btrfs_close_devices(fs_devices);
6625 free_fs_devices(fs_devices);
6626 fs_devices = ERR_PTR(-EINVAL);
6627 goto out;
6630 fs_devices->seed = fs_info->fs_devices->seed;
6631 fs_info->fs_devices->seed = fs_devices;
6632 out:
6633 return fs_devices;
6636 static int read_one_dev(struct btrfs_fs_info *fs_info,
6637 struct extent_buffer *leaf,
6638 struct btrfs_dev_item *dev_item)
6640 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6641 struct btrfs_device *device;
6642 u64 devid;
6643 int ret;
6644 u8 fs_uuid[BTRFS_FSID_SIZE];
6645 u8 dev_uuid[BTRFS_UUID_SIZE];
6647 devid = btrfs_device_id(leaf, dev_item);
6648 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6649 BTRFS_UUID_SIZE);
6650 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6651 BTRFS_FSID_SIZE);
6653 if (memcmp(fs_uuid, fs_info->fsid, BTRFS_FSID_SIZE)) {
6654 fs_devices = open_seed_devices(fs_info, fs_uuid);
6655 if (IS_ERR(fs_devices))
6656 return PTR_ERR(fs_devices);
6659 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
6660 if (!device) {
6661 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6662 btrfs_report_missing_device(fs_info, devid,
6663 dev_uuid, true);
6664 return -ENOENT;
6667 device = add_missing_dev(fs_devices, devid, dev_uuid);
6668 if (IS_ERR(device)) {
6669 btrfs_err(fs_info,
6670 "failed to add missing dev %llu: %ld",
6671 devid, PTR_ERR(device));
6672 return PTR_ERR(device);
6674 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6675 } else {
6676 if (!device->bdev) {
6677 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6678 btrfs_report_missing_device(fs_info,
6679 devid, dev_uuid, true);
6680 return -ENOENT;
6682 btrfs_report_missing_device(fs_info, devid,
6683 dev_uuid, false);
6686 if (!device->bdev &&
6687 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6689 * this happens when a device that was properly setup
6690 * in the device info lists suddenly goes bad.
6691 * device->bdev is NULL, and so we have to set
6692 * device->missing to one here
6694 device->fs_devices->missing_devices++;
6695 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6698 /* Move the device to its own fs_devices */
6699 if (device->fs_devices != fs_devices) {
6700 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6701 &device->dev_state));
6703 list_move(&device->dev_list, &fs_devices->devices);
6704 device->fs_devices->num_devices--;
6705 fs_devices->num_devices++;
6707 device->fs_devices->missing_devices--;
6708 fs_devices->missing_devices++;
6710 device->fs_devices = fs_devices;
6714 if (device->fs_devices != fs_info->fs_devices) {
6715 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
6716 if (device->generation !=
6717 btrfs_device_generation(leaf, dev_item))
6718 return -EINVAL;
6721 fill_device_from_item(leaf, dev_item, device);
6722 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6723 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6724 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6725 device->fs_devices->total_rw_bytes += device->total_bytes;
6726 atomic64_add(device->total_bytes - device->bytes_used,
6727 &fs_info->free_chunk_space);
6729 ret = 0;
6730 return ret;
6733 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6735 struct btrfs_root *root = fs_info->tree_root;
6736 struct btrfs_super_block *super_copy = fs_info->super_copy;
6737 struct extent_buffer *sb;
6738 struct btrfs_disk_key *disk_key;
6739 struct btrfs_chunk *chunk;
6740 u8 *array_ptr;
6741 unsigned long sb_array_offset;
6742 int ret = 0;
6743 u32 num_stripes;
6744 u32 array_size;
6745 u32 len = 0;
6746 u32 cur_offset;
6747 u64 type;
6748 struct btrfs_key key;
6750 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6752 * This will create extent buffer of nodesize, superblock size is
6753 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6754 * overallocate but we can keep it as-is, only the first page is used.
6756 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6757 if (IS_ERR(sb))
6758 return PTR_ERR(sb);
6759 set_extent_buffer_uptodate(sb);
6760 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6762 * The sb extent buffer is artificial and just used to read the system array.
6763 * set_extent_buffer_uptodate() call does not properly mark all it's
6764 * pages up-to-date when the page is larger: extent does not cover the
6765 * whole page and consequently check_page_uptodate does not find all
6766 * the page's extents up-to-date (the hole beyond sb),
6767 * write_extent_buffer then triggers a WARN_ON.
6769 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6770 * but sb spans only this function. Add an explicit SetPageUptodate call
6771 * to silence the warning eg. on PowerPC 64.
6773 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6774 SetPageUptodate(sb->pages[0]);
6776 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6777 array_size = btrfs_super_sys_array_size(super_copy);
6779 array_ptr = super_copy->sys_chunk_array;
6780 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6781 cur_offset = 0;
6783 while (cur_offset < array_size) {
6784 disk_key = (struct btrfs_disk_key *)array_ptr;
6785 len = sizeof(*disk_key);
6786 if (cur_offset + len > array_size)
6787 goto out_short_read;
6789 btrfs_disk_key_to_cpu(&key, disk_key);
6791 array_ptr += len;
6792 sb_array_offset += len;
6793 cur_offset += len;
6795 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6796 chunk = (struct btrfs_chunk *)sb_array_offset;
6798 * At least one btrfs_chunk with one stripe must be
6799 * present, exact stripe count check comes afterwards
6801 len = btrfs_chunk_item_size(1);
6802 if (cur_offset + len > array_size)
6803 goto out_short_read;
6805 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6806 if (!num_stripes) {
6807 btrfs_err(fs_info,
6808 "invalid number of stripes %u in sys_array at offset %u",
6809 num_stripes, cur_offset);
6810 ret = -EIO;
6811 break;
6814 type = btrfs_chunk_type(sb, chunk);
6815 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6816 btrfs_err(fs_info,
6817 "invalid chunk type %llu in sys_array at offset %u",
6818 type, cur_offset);
6819 ret = -EIO;
6820 break;
6823 len = btrfs_chunk_item_size(num_stripes);
6824 if (cur_offset + len > array_size)
6825 goto out_short_read;
6827 ret = read_one_chunk(fs_info, &key, sb, chunk);
6828 if (ret)
6829 break;
6830 } else {
6831 btrfs_err(fs_info,
6832 "unexpected item type %u in sys_array at offset %u",
6833 (u32)key.type, cur_offset);
6834 ret = -EIO;
6835 break;
6837 array_ptr += len;
6838 sb_array_offset += len;
6839 cur_offset += len;
6841 clear_extent_buffer_uptodate(sb);
6842 free_extent_buffer_stale(sb);
6843 return ret;
6845 out_short_read:
6846 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6847 len, cur_offset);
6848 clear_extent_buffer_uptodate(sb);
6849 free_extent_buffer_stale(sb);
6850 return -EIO;
6854 * Check if all chunks in the fs are OK for read-write degraded mount
6856 * Return true if all chunks meet the minimal RW mount requirements.
6857 * Return false if any chunk doesn't meet the minimal RW mount requirements.
6859 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info)
6861 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6862 struct extent_map *em;
6863 u64 next_start = 0;
6864 bool ret = true;
6866 read_lock(&map_tree->map_tree.lock);
6867 em = lookup_extent_mapping(&map_tree->map_tree, 0, (u64)-1);
6868 read_unlock(&map_tree->map_tree.lock);
6869 /* No chunk at all? Return false anyway */
6870 if (!em) {
6871 ret = false;
6872 goto out;
6874 while (em) {
6875 struct map_lookup *map;
6876 int missing = 0;
6877 int max_tolerated;
6878 int i;
6880 map = em->map_lookup;
6881 max_tolerated =
6882 btrfs_get_num_tolerated_disk_barrier_failures(
6883 map->type);
6884 for (i = 0; i < map->num_stripes; i++) {
6885 struct btrfs_device *dev = map->stripes[i].dev;
6887 if (!dev || !dev->bdev ||
6888 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
6889 dev->last_flush_error)
6890 missing++;
6892 if (missing > max_tolerated) {
6893 btrfs_warn(fs_info,
6894 "chunk %llu missing %d devices, max tolerance is %d for writeable mount",
6895 em->start, missing, max_tolerated);
6896 free_extent_map(em);
6897 ret = false;
6898 goto out;
6900 next_start = extent_map_end(em);
6901 free_extent_map(em);
6903 read_lock(&map_tree->map_tree.lock);
6904 em = lookup_extent_mapping(&map_tree->map_tree, next_start,
6905 (u64)(-1) - next_start);
6906 read_unlock(&map_tree->map_tree.lock);
6908 out:
6909 return ret;
6912 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
6914 struct btrfs_root *root = fs_info->chunk_root;
6915 struct btrfs_path *path;
6916 struct extent_buffer *leaf;
6917 struct btrfs_key key;
6918 struct btrfs_key found_key;
6919 int ret;
6920 int slot;
6921 u64 total_dev = 0;
6923 path = btrfs_alloc_path();
6924 if (!path)
6925 return -ENOMEM;
6927 mutex_lock(&uuid_mutex);
6928 mutex_lock(&fs_info->chunk_mutex);
6931 * Read all device items, and then all the chunk items. All
6932 * device items are found before any chunk item (their object id
6933 * is smaller than the lowest possible object id for a chunk
6934 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6936 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6937 key.offset = 0;
6938 key.type = 0;
6939 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6940 if (ret < 0)
6941 goto error;
6942 while (1) {
6943 leaf = path->nodes[0];
6944 slot = path->slots[0];
6945 if (slot >= btrfs_header_nritems(leaf)) {
6946 ret = btrfs_next_leaf(root, path);
6947 if (ret == 0)
6948 continue;
6949 if (ret < 0)
6950 goto error;
6951 break;
6953 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6954 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6955 struct btrfs_dev_item *dev_item;
6956 dev_item = btrfs_item_ptr(leaf, slot,
6957 struct btrfs_dev_item);
6958 ret = read_one_dev(fs_info, leaf, dev_item);
6959 if (ret)
6960 goto error;
6961 total_dev++;
6962 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6963 struct btrfs_chunk *chunk;
6964 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6965 ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
6966 if (ret)
6967 goto error;
6969 path->slots[0]++;
6973 * After loading chunk tree, we've got all device information,
6974 * do another round of validation checks.
6976 if (total_dev != fs_info->fs_devices->total_devices) {
6977 btrfs_err(fs_info,
6978 "super_num_devices %llu mismatch with num_devices %llu found here",
6979 btrfs_super_num_devices(fs_info->super_copy),
6980 total_dev);
6981 ret = -EINVAL;
6982 goto error;
6984 if (btrfs_super_total_bytes(fs_info->super_copy) <
6985 fs_info->fs_devices->total_rw_bytes) {
6986 btrfs_err(fs_info,
6987 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
6988 btrfs_super_total_bytes(fs_info->super_copy),
6989 fs_info->fs_devices->total_rw_bytes);
6990 ret = -EINVAL;
6991 goto error;
6993 ret = 0;
6994 error:
6995 mutex_unlock(&fs_info->chunk_mutex);
6996 mutex_unlock(&uuid_mutex);
6998 btrfs_free_path(path);
6999 return ret;
7002 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7004 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7005 struct btrfs_device *device;
7007 while (fs_devices) {
7008 mutex_lock(&fs_devices->device_list_mutex);
7009 list_for_each_entry(device, &fs_devices->devices, dev_list)
7010 device->fs_info = fs_info;
7011 mutex_unlock(&fs_devices->device_list_mutex);
7013 fs_devices = fs_devices->seed;
7017 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
7019 int i;
7021 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7022 btrfs_dev_stat_reset(dev, i);
7025 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7027 struct btrfs_key key;
7028 struct btrfs_key found_key;
7029 struct btrfs_root *dev_root = fs_info->dev_root;
7030 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7031 struct extent_buffer *eb;
7032 int slot;
7033 int ret = 0;
7034 struct btrfs_device *device;
7035 struct btrfs_path *path = NULL;
7036 int i;
7038 path = btrfs_alloc_path();
7039 if (!path) {
7040 ret = -ENOMEM;
7041 goto out;
7044 mutex_lock(&fs_devices->device_list_mutex);
7045 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7046 int item_size;
7047 struct btrfs_dev_stats_item *ptr;
7049 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7050 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7051 key.offset = device->devid;
7052 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
7053 if (ret) {
7054 __btrfs_reset_dev_stats(device);
7055 device->dev_stats_valid = 1;
7056 btrfs_release_path(path);
7057 continue;
7059 slot = path->slots[0];
7060 eb = path->nodes[0];
7061 btrfs_item_key_to_cpu(eb, &found_key, slot);
7062 item_size = btrfs_item_size_nr(eb, slot);
7064 ptr = btrfs_item_ptr(eb, slot,
7065 struct btrfs_dev_stats_item);
7067 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7068 if (item_size >= (1 + i) * sizeof(__le64))
7069 btrfs_dev_stat_set(device, i,
7070 btrfs_dev_stats_value(eb, ptr, i));
7071 else
7072 btrfs_dev_stat_reset(device, i);
7075 device->dev_stats_valid = 1;
7076 btrfs_dev_stat_print_on_load(device);
7077 btrfs_release_path(path);
7079 mutex_unlock(&fs_devices->device_list_mutex);
7081 out:
7082 btrfs_free_path(path);
7083 return ret < 0 ? ret : 0;
7086 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7087 struct btrfs_fs_info *fs_info,
7088 struct btrfs_device *device)
7090 struct btrfs_root *dev_root = fs_info->dev_root;
7091 struct btrfs_path *path;
7092 struct btrfs_key key;
7093 struct extent_buffer *eb;
7094 struct btrfs_dev_stats_item *ptr;
7095 int ret;
7096 int i;
7098 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7099 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7100 key.offset = device->devid;
7102 path = btrfs_alloc_path();
7103 if (!path)
7104 return -ENOMEM;
7105 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7106 if (ret < 0) {
7107 btrfs_warn_in_rcu(fs_info,
7108 "error %d while searching for dev_stats item for device %s",
7109 ret, rcu_str_deref(device->name));
7110 goto out;
7113 if (ret == 0 &&
7114 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7115 /* need to delete old one and insert a new one */
7116 ret = btrfs_del_item(trans, dev_root, path);
7117 if (ret != 0) {
7118 btrfs_warn_in_rcu(fs_info,
7119 "delete too small dev_stats item for device %s failed %d",
7120 rcu_str_deref(device->name), ret);
7121 goto out;
7123 ret = 1;
7126 if (ret == 1) {
7127 /* need to insert a new item */
7128 btrfs_release_path(path);
7129 ret = btrfs_insert_empty_item(trans, dev_root, path,
7130 &key, sizeof(*ptr));
7131 if (ret < 0) {
7132 btrfs_warn_in_rcu(fs_info,
7133 "insert dev_stats item for device %s failed %d",
7134 rcu_str_deref(device->name), ret);
7135 goto out;
7139 eb = path->nodes[0];
7140 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7141 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7142 btrfs_set_dev_stats_value(eb, ptr, i,
7143 btrfs_dev_stat_read(device, i));
7144 btrfs_mark_buffer_dirty(eb);
7146 out:
7147 btrfs_free_path(path);
7148 return ret;
7152 * called from commit_transaction. Writes all changed device stats to disk.
7154 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7155 struct btrfs_fs_info *fs_info)
7157 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7158 struct btrfs_device *device;
7159 int stats_cnt;
7160 int ret = 0;
7162 mutex_lock(&fs_devices->device_list_mutex);
7163 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7164 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7165 if (!device->dev_stats_valid || stats_cnt == 0)
7166 continue;
7170 * There is a LOAD-LOAD control dependency between the value of
7171 * dev_stats_ccnt and updating the on-disk values which requires
7172 * reading the in-memory counters. Such control dependencies
7173 * require explicit read memory barriers.
7175 * This memory barriers pairs with smp_mb__before_atomic in
7176 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7177 * barrier implied by atomic_xchg in
7178 * btrfs_dev_stats_read_and_reset
7180 smp_rmb();
7182 ret = update_dev_stat_item(trans, fs_info, device);
7183 if (!ret)
7184 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7186 mutex_unlock(&fs_devices->device_list_mutex);
7188 return ret;
7191 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7193 btrfs_dev_stat_inc(dev, index);
7194 btrfs_dev_stat_print_on_error(dev);
7197 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7199 if (!dev->dev_stats_valid)
7200 return;
7201 btrfs_err_rl_in_rcu(dev->fs_info,
7202 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7203 rcu_str_deref(dev->name),
7204 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7205 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7206 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7207 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7208 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7211 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7213 int i;
7215 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7216 if (btrfs_dev_stat_read(dev, i) != 0)
7217 break;
7218 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7219 return; /* all values == 0, suppress message */
7221 btrfs_info_in_rcu(dev->fs_info,
7222 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7223 rcu_str_deref(dev->name),
7224 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7225 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7226 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7227 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7228 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7231 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7232 struct btrfs_ioctl_get_dev_stats *stats)
7234 struct btrfs_device *dev;
7235 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7236 int i;
7238 mutex_lock(&fs_devices->device_list_mutex);
7239 dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL);
7240 mutex_unlock(&fs_devices->device_list_mutex);
7242 if (!dev) {
7243 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7244 return -ENODEV;
7245 } else if (!dev->dev_stats_valid) {
7246 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7247 return -ENODEV;
7248 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7249 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7250 if (stats->nr_items > i)
7251 stats->values[i] =
7252 btrfs_dev_stat_read_and_reset(dev, i);
7253 else
7254 btrfs_dev_stat_reset(dev, i);
7256 } else {
7257 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7258 if (stats->nr_items > i)
7259 stats->values[i] = btrfs_dev_stat_read(dev, i);
7261 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7262 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7263 return 0;
7266 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7268 struct buffer_head *bh;
7269 struct btrfs_super_block *disk_super;
7270 int copy_num;
7272 if (!bdev)
7273 return;
7275 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7276 copy_num++) {
7278 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7279 continue;
7281 disk_super = (struct btrfs_super_block *)bh->b_data;
7283 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7284 set_buffer_dirty(bh);
7285 sync_dirty_buffer(bh);
7286 brelse(bh);
7289 /* Notify udev that device has changed */
7290 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7292 /* Update ctime/mtime for device path for libblkid */
7293 update_dev_time(device_path);
7297 * Update the size of all devices, which is used for writing out the
7298 * super blocks.
7300 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7302 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7303 struct btrfs_device *curr, *next;
7305 if (list_empty(&fs_devices->resized_devices))
7306 return;
7308 mutex_lock(&fs_devices->device_list_mutex);
7309 mutex_lock(&fs_info->chunk_mutex);
7310 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7311 resized_list) {
7312 list_del_init(&curr->resized_list);
7313 curr->commit_total_bytes = curr->disk_total_bytes;
7315 mutex_unlock(&fs_info->chunk_mutex);
7316 mutex_unlock(&fs_devices->device_list_mutex);
7319 /* Must be invoked during the transaction commit */
7320 void btrfs_update_commit_device_bytes_used(struct btrfs_fs_info *fs_info,
7321 struct btrfs_transaction *transaction)
7323 struct extent_map *em;
7324 struct map_lookup *map;
7325 struct btrfs_device *dev;
7326 int i;
7328 if (list_empty(&transaction->pending_chunks))
7329 return;
7331 /* In order to kick the device replace finish process */
7332 mutex_lock(&fs_info->chunk_mutex);
7333 list_for_each_entry(em, &transaction->pending_chunks, list) {
7334 map = em->map_lookup;
7336 for (i = 0; i < map->num_stripes; i++) {
7337 dev = map->stripes[i].dev;
7338 dev->commit_bytes_used = dev->bytes_used;
7341 mutex_unlock(&fs_info->chunk_mutex);
7344 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7346 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7347 while (fs_devices) {
7348 fs_devices->fs_info = fs_info;
7349 fs_devices = fs_devices->seed;
7353 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7355 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7356 while (fs_devices) {
7357 fs_devices->fs_info = NULL;
7358 fs_devices = fs_devices->seed;