2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/iocontext.h>
24 #include <linux/capability.h>
25 #include <linux/ratelimit.h>
26 #include <linux/kthread.h>
27 #include <linux/raid/pq.h>
28 #include <linux/semaphore.h>
29 #include <linux/uuid.h>
30 #include <asm/div64.h>
32 #include "extent_map.h"
34 #include "transaction.h"
35 #include "print-tree.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
42 #include "dev-replace.h"
45 const struct btrfs_raid_attr btrfs_raid_array
[BTRFS_NR_RAID_TYPES
] = {
46 [BTRFS_RAID_RAID10
] = {
49 .devs_max
= 0, /* 0 == as many as possible */
51 .tolerated_failures
= 1,
55 [BTRFS_RAID_RAID1
] = {
60 .tolerated_failures
= 1,
69 .tolerated_failures
= 0,
73 [BTRFS_RAID_RAID0
] = {
78 .tolerated_failures
= 0,
82 [BTRFS_RAID_SINGLE
] = {
87 .tolerated_failures
= 0,
91 [BTRFS_RAID_RAID5
] = {
96 .tolerated_failures
= 1,
100 [BTRFS_RAID_RAID6
] = {
105 .tolerated_failures
= 2,
111 const u64 btrfs_raid_group
[BTRFS_NR_RAID_TYPES
] = {
112 [BTRFS_RAID_RAID10
] = BTRFS_BLOCK_GROUP_RAID10
,
113 [BTRFS_RAID_RAID1
] = BTRFS_BLOCK_GROUP_RAID1
,
114 [BTRFS_RAID_DUP
] = BTRFS_BLOCK_GROUP_DUP
,
115 [BTRFS_RAID_RAID0
] = BTRFS_BLOCK_GROUP_RAID0
,
116 [BTRFS_RAID_SINGLE
] = 0,
117 [BTRFS_RAID_RAID5
] = BTRFS_BLOCK_GROUP_RAID5
,
118 [BTRFS_RAID_RAID6
] = BTRFS_BLOCK_GROUP_RAID6
,
122 * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123 * condition is not met. Zero means there's no corresponding
124 * BTRFS_ERROR_DEV_*_NOT_MET value.
126 const int btrfs_raid_mindev_error
[BTRFS_NR_RAID_TYPES
] = {
127 [BTRFS_RAID_RAID10
] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET
,
128 [BTRFS_RAID_RAID1
] = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET
,
129 [BTRFS_RAID_DUP
] = 0,
130 [BTRFS_RAID_RAID0
] = 0,
131 [BTRFS_RAID_SINGLE
] = 0,
132 [BTRFS_RAID_RAID5
] = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET
,
133 [BTRFS_RAID_RAID6
] = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET
,
136 static int init_first_rw_device(struct btrfs_trans_handle
*trans
,
137 struct btrfs_fs_info
*fs_info
);
138 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info
*fs_info
);
139 static void __btrfs_reset_dev_stats(struct btrfs_device
*dev
);
140 static void btrfs_dev_stat_print_on_error(struct btrfs_device
*dev
);
141 static void btrfs_dev_stat_print_on_load(struct btrfs_device
*device
);
142 static int __btrfs_map_block(struct btrfs_fs_info
*fs_info
,
143 enum btrfs_map_op op
,
144 u64 logical
, u64
*length
,
145 struct btrfs_bio
**bbio_ret
,
146 int mirror_num
, int need_raid_map
);
152 * There are several mutexes that protect manipulation of devices and low-level
153 * structures like chunks but not block groups, extents or files
155 * uuid_mutex (global lock)
156 * ------------------------
157 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
158 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
159 * device) or requested by the device= mount option
161 * the mutex can be very coarse and can cover long-running operations
163 * protects: updates to fs_devices counters like missing devices, rw devices,
164 * seeding, structure cloning, openning/closing devices at mount/umount time
166 * global::fs_devs - add, remove, updates to the global list
168 * does not protect: manipulation of the fs_devices::devices list!
170 * btrfs_device::name - renames (write side), read is RCU
172 * fs_devices::device_list_mutex (per-fs, with RCU)
173 * ------------------------------------------------
174 * protects updates to fs_devices::devices, ie. adding and deleting
176 * simple list traversal with read-only actions can be done with RCU protection
178 * may be used to exclude some operations from running concurrently without any
179 * modifications to the list (see write_all_supers)
183 * coarse lock owned by a mounted filesystem; used to exclude some operations
184 * that cannot run in parallel and affect the higher-level properties of the
185 * filesystem like: device add/deleting/resize/replace, or balance
189 * protects balance structures (status, state) and context accessed from
190 * several places (internally, ioctl)
194 * protects chunks, adding or removing during allocation, trim or when a new
195 * device is added/removed
199 * a big lock that is held by the cleaner thread and prevents running subvolume
200 * cleaning together with relocation or delayed iputs
213 DEFINE_MUTEX(uuid_mutex
);
214 static LIST_HEAD(fs_uuids
);
215 struct list_head
*btrfs_get_fs_uuids(void)
221 * alloc_fs_devices - allocate struct btrfs_fs_devices
222 * @fsid: if not NULL, copy the uuid to fs_devices::fsid
224 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
225 * The returned struct is not linked onto any lists and can be destroyed with
226 * kfree() right away.
228 static struct btrfs_fs_devices
*alloc_fs_devices(const u8
*fsid
)
230 struct btrfs_fs_devices
*fs_devs
;
232 fs_devs
= kzalloc(sizeof(*fs_devs
), GFP_KERNEL
);
234 return ERR_PTR(-ENOMEM
);
236 mutex_init(&fs_devs
->device_list_mutex
);
238 INIT_LIST_HEAD(&fs_devs
->devices
);
239 INIT_LIST_HEAD(&fs_devs
->resized_devices
);
240 INIT_LIST_HEAD(&fs_devs
->alloc_list
);
241 INIT_LIST_HEAD(&fs_devs
->list
);
243 memcpy(fs_devs
->fsid
, fsid
, BTRFS_FSID_SIZE
);
248 static void free_device(struct btrfs_device
*device
)
250 rcu_string_free(device
->name
);
251 bio_put(device
->flush_bio
);
255 static void free_fs_devices(struct btrfs_fs_devices
*fs_devices
)
257 struct btrfs_device
*device
;
258 WARN_ON(fs_devices
->opened
);
259 while (!list_empty(&fs_devices
->devices
)) {
260 device
= list_entry(fs_devices
->devices
.next
,
261 struct btrfs_device
, dev_list
);
262 list_del(&device
->dev_list
);
268 static void btrfs_kobject_uevent(struct block_device
*bdev
,
269 enum kobject_action action
)
273 ret
= kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, action
);
275 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
277 kobject_name(&disk_to_dev(bdev
->bd_disk
)->kobj
),
278 &disk_to_dev(bdev
->bd_disk
)->kobj
);
281 void btrfs_cleanup_fs_uuids(void)
283 struct btrfs_fs_devices
*fs_devices
;
285 while (!list_empty(&fs_uuids
)) {
286 fs_devices
= list_entry(fs_uuids
.next
,
287 struct btrfs_fs_devices
, list
);
288 list_del(&fs_devices
->list
);
289 free_fs_devices(fs_devices
);
294 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
295 * Returned struct is not linked onto any lists and must be destroyed using
298 static struct btrfs_device
*__alloc_device(void)
300 struct btrfs_device
*dev
;
302 dev
= kzalloc(sizeof(*dev
), GFP_KERNEL
);
304 return ERR_PTR(-ENOMEM
);
307 * Preallocate a bio that's always going to be used for flushing device
308 * barriers and matches the device lifespan
310 dev
->flush_bio
= bio_alloc_bioset(GFP_KERNEL
, 0, NULL
);
311 if (!dev
->flush_bio
) {
313 return ERR_PTR(-ENOMEM
);
316 INIT_LIST_HEAD(&dev
->dev_list
);
317 INIT_LIST_HEAD(&dev
->dev_alloc_list
);
318 INIT_LIST_HEAD(&dev
->resized_list
);
320 spin_lock_init(&dev
->io_lock
);
322 spin_lock_init(&dev
->reada_lock
);
323 atomic_set(&dev
->reada_in_flight
, 0);
324 atomic_set(&dev
->dev_stats_ccnt
, 0);
325 btrfs_device_data_ordered_init(dev
);
326 INIT_RADIX_TREE(&dev
->reada_zones
, GFP_NOFS
& ~__GFP_DIRECT_RECLAIM
);
327 INIT_RADIX_TREE(&dev
->reada_extents
, GFP_NOFS
& ~__GFP_DIRECT_RECLAIM
);
333 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
336 * If devid and uuid are both specified, the match must be exact, otherwise
337 * only devid is used.
339 static struct btrfs_device
*find_device(struct btrfs_fs_devices
*fs_devices
,
340 u64 devid
, const u8
*uuid
)
342 struct list_head
*head
= &fs_devices
->devices
;
343 struct btrfs_device
*dev
;
345 list_for_each_entry(dev
, head
, dev_list
) {
346 if (dev
->devid
== devid
&&
347 (!uuid
|| !memcmp(dev
->uuid
, uuid
, BTRFS_UUID_SIZE
))) {
354 static noinline
struct btrfs_fs_devices
*find_fsid(u8
*fsid
)
356 struct btrfs_fs_devices
*fs_devices
;
358 list_for_each_entry(fs_devices
, &fs_uuids
, list
) {
359 if (memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
) == 0)
366 btrfs_get_bdev_and_sb(const char *device_path
, fmode_t flags
, void *holder
,
367 int flush
, struct block_device
**bdev
,
368 struct buffer_head
**bh
)
372 *bdev
= blkdev_get_by_path(device_path
, flags
, holder
);
375 ret
= PTR_ERR(*bdev
);
380 filemap_write_and_wait((*bdev
)->bd_inode
->i_mapping
);
381 ret
= set_blocksize(*bdev
, BTRFS_BDEV_BLOCKSIZE
);
383 blkdev_put(*bdev
, flags
);
386 invalidate_bdev(*bdev
);
387 *bh
= btrfs_read_dev_super(*bdev
);
390 blkdev_put(*bdev
, flags
);
402 static void requeue_list(struct btrfs_pending_bios
*pending_bios
,
403 struct bio
*head
, struct bio
*tail
)
406 struct bio
*old_head
;
408 old_head
= pending_bios
->head
;
409 pending_bios
->head
= head
;
410 if (pending_bios
->tail
)
411 tail
->bi_next
= old_head
;
413 pending_bios
->tail
= tail
;
417 * we try to collect pending bios for a device so we don't get a large
418 * number of procs sending bios down to the same device. This greatly
419 * improves the schedulers ability to collect and merge the bios.
421 * But, it also turns into a long list of bios to process and that is sure
422 * to eventually make the worker thread block. The solution here is to
423 * make some progress and then put this work struct back at the end of
424 * the list if the block device is congested. This way, multiple devices
425 * can make progress from a single worker thread.
427 static noinline
void run_scheduled_bios(struct btrfs_device
*device
)
429 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
431 struct backing_dev_info
*bdi
;
432 struct btrfs_pending_bios
*pending_bios
;
436 unsigned long num_run
;
437 unsigned long batch_run
= 0;
438 unsigned long last_waited
= 0;
440 int sync_pending
= 0;
441 struct blk_plug plug
;
444 * this function runs all the bios we've collected for
445 * a particular device. We don't want to wander off to
446 * another device without first sending all of these down.
447 * So, setup a plug here and finish it off before we return
449 blk_start_plug(&plug
);
451 bdi
= device
->bdev
->bd_bdi
;
454 spin_lock(&device
->io_lock
);
459 /* take all the bios off the list at once and process them
460 * later on (without the lock held). But, remember the
461 * tail and other pointers so the bios can be properly reinserted
462 * into the list if we hit congestion
464 if (!force_reg
&& device
->pending_sync_bios
.head
) {
465 pending_bios
= &device
->pending_sync_bios
;
468 pending_bios
= &device
->pending_bios
;
472 pending
= pending_bios
->head
;
473 tail
= pending_bios
->tail
;
474 WARN_ON(pending
&& !tail
);
477 * if pending was null this time around, no bios need processing
478 * at all and we can stop. Otherwise it'll loop back up again
479 * and do an additional check so no bios are missed.
481 * device->running_pending is used to synchronize with the
484 if (device
->pending_sync_bios
.head
== NULL
&&
485 device
->pending_bios
.head
== NULL
) {
487 device
->running_pending
= 0;
490 device
->running_pending
= 1;
493 pending_bios
->head
= NULL
;
494 pending_bios
->tail
= NULL
;
496 spin_unlock(&device
->io_lock
);
501 /* we want to work on both lists, but do more bios on the
502 * sync list than the regular list
505 pending_bios
!= &device
->pending_sync_bios
&&
506 device
->pending_sync_bios
.head
) ||
507 (num_run
> 64 && pending_bios
== &device
->pending_sync_bios
&&
508 device
->pending_bios
.head
)) {
509 spin_lock(&device
->io_lock
);
510 requeue_list(pending_bios
, pending
, tail
);
515 pending
= pending
->bi_next
;
518 BUG_ON(atomic_read(&cur
->__bi_cnt
) == 0);
521 * if we're doing the sync list, record that our
522 * plug has some sync requests on it
524 * If we're doing the regular list and there are
525 * sync requests sitting around, unplug before
528 if (pending_bios
== &device
->pending_sync_bios
) {
530 } else if (sync_pending
) {
531 blk_finish_plug(&plug
);
532 blk_start_plug(&plug
);
536 btrfsic_submit_bio(cur
);
543 * we made progress, there is more work to do and the bdi
544 * is now congested. Back off and let other work structs
547 if (pending
&& bdi_write_congested(bdi
) && batch_run
> 8 &&
548 fs_info
->fs_devices
->open_devices
> 1) {
549 struct io_context
*ioc
;
551 ioc
= current
->io_context
;
554 * the main goal here is that we don't want to
555 * block if we're going to be able to submit
556 * more requests without blocking.
558 * This code does two great things, it pokes into
559 * the elevator code from a filesystem _and_
560 * it makes assumptions about how batching works.
562 if (ioc
&& ioc
->nr_batch_requests
> 0 &&
563 time_before(jiffies
, ioc
->last_waited
+ HZ
/50UL) &&
565 ioc
->last_waited
== last_waited
)) {
567 * we want to go through our batch of
568 * requests and stop. So, we copy out
569 * the ioc->last_waited time and test
570 * against it before looping
572 last_waited
= ioc
->last_waited
;
576 spin_lock(&device
->io_lock
);
577 requeue_list(pending_bios
, pending
, tail
);
578 device
->running_pending
= 1;
580 spin_unlock(&device
->io_lock
);
581 btrfs_queue_work(fs_info
->submit_workers
,
591 spin_lock(&device
->io_lock
);
592 if (device
->pending_bios
.head
|| device
->pending_sync_bios
.head
)
594 spin_unlock(&device
->io_lock
);
597 blk_finish_plug(&plug
);
600 static void pending_bios_fn(struct btrfs_work
*work
)
602 struct btrfs_device
*device
;
604 device
= container_of(work
, struct btrfs_device
, work
);
605 run_scheduled_bios(device
);
609 static void btrfs_free_stale_device(struct btrfs_device
*cur_dev
)
611 struct btrfs_fs_devices
*fs_devs
;
612 struct btrfs_device
*dev
;
617 list_for_each_entry(fs_devs
, &fs_uuids
, list
) {
622 if (fs_devs
->seeding
)
625 list_for_each_entry(dev
, &fs_devs
->devices
, dev_list
) {
633 * Todo: This won't be enough. What if the same device
634 * comes back (with new uuid and) with its mapper path?
635 * But for now, this does help as mostly an admin will
636 * either use mapper or non mapper path throughout.
639 del
= strcmp(rcu_str_deref(dev
->name
),
640 rcu_str_deref(cur_dev
->name
));
647 /* delete the stale device */
648 if (fs_devs
->num_devices
== 1) {
649 btrfs_sysfs_remove_fsid(fs_devs
);
650 list_del(&fs_devs
->list
);
651 free_fs_devices(fs_devs
);
653 fs_devs
->num_devices
--;
654 list_del(&dev
->dev_list
);
662 static int btrfs_open_one_device(struct btrfs_fs_devices
*fs_devices
,
663 struct btrfs_device
*device
, fmode_t flags
,
666 struct request_queue
*q
;
667 struct block_device
*bdev
;
668 struct buffer_head
*bh
;
669 struct btrfs_super_block
*disk_super
;
678 ret
= btrfs_get_bdev_and_sb(device
->name
->str
, flags
, holder
, 1,
683 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
684 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
685 if (devid
!= device
->devid
)
688 if (memcmp(device
->uuid
, disk_super
->dev_item
.uuid
, BTRFS_UUID_SIZE
))
691 device
->generation
= btrfs_super_generation(disk_super
);
693 if (btrfs_super_flags(disk_super
) & BTRFS_SUPER_FLAG_SEEDING
) {
694 clear_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
);
695 fs_devices
->seeding
= 1;
697 if (bdev_read_only(bdev
))
698 clear_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
);
700 set_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
);
703 q
= bdev_get_queue(bdev
);
704 if (!blk_queue_nonrot(q
))
705 fs_devices
->rotating
= 1;
708 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &device
->dev_state
);
709 device
->mode
= flags
;
711 fs_devices
->open_devices
++;
712 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
) &&
713 device
->devid
!= BTRFS_DEV_REPLACE_DEVID
) {
714 fs_devices
->rw_devices
++;
715 list_add(&device
->dev_alloc_list
, &fs_devices
->alloc_list
);
723 blkdev_put(bdev
, flags
);
729 * Add new device to list of registered devices
732 * 1 - first time device is seen
733 * 0 - device already known
736 static noinline
int device_list_add(const char *path
,
737 struct btrfs_super_block
*disk_super
,
738 u64 devid
, struct btrfs_fs_devices
**fs_devices_ret
)
740 struct btrfs_device
*device
;
741 struct btrfs_fs_devices
*fs_devices
;
742 struct rcu_string
*name
;
744 u64 found_transid
= btrfs_super_generation(disk_super
);
746 fs_devices
= find_fsid(disk_super
->fsid
);
748 fs_devices
= alloc_fs_devices(disk_super
->fsid
);
749 if (IS_ERR(fs_devices
))
750 return PTR_ERR(fs_devices
);
752 list_add(&fs_devices
->list
, &fs_uuids
);
756 device
= find_device(fs_devices
, devid
,
757 disk_super
->dev_item
.uuid
);
761 if (fs_devices
->opened
)
764 device
= btrfs_alloc_device(NULL
, &devid
,
765 disk_super
->dev_item
.uuid
);
766 if (IS_ERR(device
)) {
767 /* we can safely leave the fs_devices entry around */
768 return PTR_ERR(device
);
771 name
= rcu_string_strdup(path
, GFP_NOFS
);
776 rcu_assign_pointer(device
->name
, name
);
778 mutex_lock(&fs_devices
->device_list_mutex
);
779 list_add_rcu(&device
->dev_list
, &fs_devices
->devices
);
780 fs_devices
->num_devices
++;
781 mutex_unlock(&fs_devices
->device_list_mutex
);
784 device
->fs_devices
= fs_devices
;
785 } else if (!device
->name
|| strcmp(device
->name
->str
, path
)) {
787 * When FS is already mounted.
788 * 1. If you are here and if the device->name is NULL that
789 * means this device was missing at time of FS mount.
790 * 2. If you are here and if the device->name is different
791 * from 'path' that means either
792 * a. The same device disappeared and reappeared with
794 * b. The missing-disk-which-was-replaced, has
797 * We must allow 1 and 2a above. But 2b would be a spurious
800 * Further in case of 1 and 2a above, the disk at 'path'
801 * would have missed some transaction when it was away and
802 * in case of 2a the stale bdev has to be updated as well.
803 * 2b must not be allowed at all time.
807 * For now, we do allow update to btrfs_fs_device through the
808 * btrfs dev scan cli after FS has been mounted. We're still
809 * tracking a problem where systems fail mount by subvolume id
810 * when we reject replacement on a mounted FS.
812 if (!fs_devices
->opened
&& found_transid
< device
->generation
) {
814 * That is if the FS is _not_ mounted and if you
815 * are here, that means there is more than one
816 * disk with same uuid and devid.We keep the one
817 * with larger generation number or the last-in if
818 * generation are equal.
823 name
= rcu_string_strdup(path
, GFP_NOFS
);
826 rcu_string_free(device
->name
);
827 rcu_assign_pointer(device
->name
, name
);
828 if (test_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
)) {
829 fs_devices
->missing_devices
--;
830 clear_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
);
835 * Unmount does not free the btrfs_device struct but would zero
836 * generation along with most of the other members. So just update
837 * it back. We need it to pick the disk with largest generation
840 if (!fs_devices
->opened
)
841 device
->generation
= found_transid
;
844 * if there is new btrfs on an already registered device,
845 * then remove the stale device entry.
848 btrfs_free_stale_device(device
);
850 *fs_devices_ret
= fs_devices
;
855 static struct btrfs_fs_devices
*clone_fs_devices(struct btrfs_fs_devices
*orig
)
857 struct btrfs_fs_devices
*fs_devices
;
858 struct btrfs_device
*device
;
859 struct btrfs_device
*orig_dev
;
861 fs_devices
= alloc_fs_devices(orig
->fsid
);
862 if (IS_ERR(fs_devices
))
865 mutex_lock(&orig
->device_list_mutex
);
866 fs_devices
->total_devices
= orig
->total_devices
;
868 /* We have held the volume lock, it is safe to get the devices. */
869 list_for_each_entry(orig_dev
, &orig
->devices
, dev_list
) {
870 struct rcu_string
*name
;
872 device
= btrfs_alloc_device(NULL
, &orig_dev
->devid
,
878 * This is ok to do without rcu read locked because we hold the
879 * uuid mutex so nothing we touch in here is going to disappear.
881 if (orig_dev
->name
) {
882 name
= rcu_string_strdup(orig_dev
->name
->str
,
888 rcu_assign_pointer(device
->name
, name
);
891 list_add(&device
->dev_list
, &fs_devices
->devices
);
892 device
->fs_devices
= fs_devices
;
893 fs_devices
->num_devices
++;
895 mutex_unlock(&orig
->device_list_mutex
);
898 mutex_unlock(&orig
->device_list_mutex
);
899 free_fs_devices(fs_devices
);
900 return ERR_PTR(-ENOMEM
);
903 void btrfs_close_extra_devices(struct btrfs_fs_devices
*fs_devices
, int step
)
905 struct btrfs_device
*device
, *next
;
906 struct btrfs_device
*latest_dev
= NULL
;
908 mutex_lock(&uuid_mutex
);
910 /* This is the initialized path, it is safe to release the devices. */
911 list_for_each_entry_safe(device
, next
, &fs_devices
->devices
, dev_list
) {
912 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
,
913 &device
->dev_state
)) {
914 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT
,
915 &device
->dev_state
) &&
917 device
->generation
> latest_dev
->generation
)) {
923 if (device
->devid
== BTRFS_DEV_REPLACE_DEVID
) {
925 * In the first step, keep the device which has
926 * the correct fsid and the devid that is used
927 * for the dev_replace procedure.
928 * In the second step, the dev_replace state is
929 * read from the device tree and it is known
930 * whether the procedure is really active or
931 * not, which means whether this device is
932 * used or whether it should be removed.
934 if (step
== 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT
,
935 &device
->dev_state
)) {
940 blkdev_put(device
->bdev
, device
->mode
);
942 fs_devices
->open_devices
--;
944 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
)) {
945 list_del_init(&device
->dev_alloc_list
);
946 clear_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
);
947 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT
,
949 fs_devices
->rw_devices
--;
951 list_del_init(&device
->dev_list
);
952 fs_devices
->num_devices
--;
956 if (fs_devices
->seed
) {
957 fs_devices
= fs_devices
->seed
;
961 fs_devices
->latest_bdev
= latest_dev
->bdev
;
963 mutex_unlock(&uuid_mutex
);
966 static void free_device_rcu(struct rcu_head
*head
)
968 struct btrfs_device
*device
;
970 device
= container_of(head
, struct btrfs_device
, rcu
);
974 static void btrfs_close_bdev(struct btrfs_device
*device
)
979 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
)) {
980 sync_blockdev(device
->bdev
);
981 invalidate_bdev(device
->bdev
);
984 blkdev_put(device
->bdev
, device
->mode
);
987 static void btrfs_prepare_close_one_device(struct btrfs_device
*device
)
989 struct btrfs_fs_devices
*fs_devices
= device
->fs_devices
;
990 struct btrfs_device
*new_device
;
991 struct rcu_string
*name
;
994 fs_devices
->open_devices
--;
996 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
) &&
997 device
->devid
!= BTRFS_DEV_REPLACE_DEVID
) {
998 list_del_init(&device
->dev_alloc_list
);
999 fs_devices
->rw_devices
--;
1002 if (test_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
))
1003 fs_devices
->missing_devices
--;
1005 new_device
= btrfs_alloc_device(NULL
, &device
->devid
,
1007 BUG_ON(IS_ERR(new_device
)); /* -ENOMEM */
1009 /* Safe because we are under uuid_mutex */
1011 name
= rcu_string_strdup(device
->name
->str
, GFP_NOFS
);
1012 BUG_ON(!name
); /* -ENOMEM */
1013 rcu_assign_pointer(new_device
->name
, name
);
1016 list_replace_rcu(&device
->dev_list
, &new_device
->dev_list
);
1017 new_device
->fs_devices
= device
->fs_devices
;
1020 static int __btrfs_close_devices(struct btrfs_fs_devices
*fs_devices
)
1022 struct btrfs_device
*device
, *tmp
;
1023 struct list_head pending_put
;
1025 INIT_LIST_HEAD(&pending_put
);
1027 if (--fs_devices
->opened
> 0)
1030 mutex_lock(&fs_devices
->device_list_mutex
);
1031 list_for_each_entry_safe(device
, tmp
, &fs_devices
->devices
, dev_list
) {
1032 btrfs_prepare_close_one_device(device
);
1033 list_add(&device
->dev_list
, &pending_put
);
1035 mutex_unlock(&fs_devices
->device_list_mutex
);
1038 * btrfs_show_devname() is using the device_list_mutex,
1039 * sometimes call to blkdev_put() leads vfs calling
1040 * into this func. So do put outside of device_list_mutex,
1043 while (!list_empty(&pending_put
)) {
1044 device
= list_first_entry(&pending_put
,
1045 struct btrfs_device
, dev_list
);
1046 list_del(&device
->dev_list
);
1047 btrfs_close_bdev(device
);
1048 call_rcu(&device
->rcu
, free_device_rcu
);
1051 WARN_ON(fs_devices
->open_devices
);
1052 WARN_ON(fs_devices
->rw_devices
);
1053 fs_devices
->opened
= 0;
1054 fs_devices
->seeding
= 0;
1059 int btrfs_close_devices(struct btrfs_fs_devices
*fs_devices
)
1061 struct btrfs_fs_devices
*seed_devices
= NULL
;
1064 mutex_lock(&uuid_mutex
);
1065 ret
= __btrfs_close_devices(fs_devices
);
1066 if (!fs_devices
->opened
) {
1067 seed_devices
= fs_devices
->seed
;
1068 fs_devices
->seed
= NULL
;
1070 mutex_unlock(&uuid_mutex
);
1072 while (seed_devices
) {
1073 fs_devices
= seed_devices
;
1074 seed_devices
= fs_devices
->seed
;
1075 __btrfs_close_devices(fs_devices
);
1076 free_fs_devices(fs_devices
);
1081 static int __btrfs_open_devices(struct btrfs_fs_devices
*fs_devices
,
1082 fmode_t flags
, void *holder
)
1084 struct list_head
*head
= &fs_devices
->devices
;
1085 struct btrfs_device
*device
;
1086 struct btrfs_device
*latest_dev
= NULL
;
1089 flags
|= FMODE_EXCL
;
1091 list_for_each_entry(device
, head
, dev_list
) {
1092 /* Just open everything we can; ignore failures here */
1093 if (btrfs_open_one_device(fs_devices
, device
, flags
, holder
))
1097 device
->generation
> latest_dev
->generation
)
1098 latest_dev
= device
;
1100 if (fs_devices
->open_devices
== 0) {
1104 fs_devices
->opened
= 1;
1105 fs_devices
->latest_bdev
= latest_dev
->bdev
;
1106 fs_devices
->total_rw_bytes
= 0;
1111 int btrfs_open_devices(struct btrfs_fs_devices
*fs_devices
,
1112 fmode_t flags
, void *holder
)
1116 mutex_lock(&uuid_mutex
);
1117 if (fs_devices
->opened
) {
1118 fs_devices
->opened
++;
1121 ret
= __btrfs_open_devices(fs_devices
, flags
, holder
);
1123 mutex_unlock(&uuid_mutex
);
1127 static void btrfs_release_disk_super(struct page
*page
)
1133 static int btrfs_read_disk_super(struct block_device
*bdev
, u64 bytenr
,
1135 struct btrfs_super_block
**disk_super
)
1140 /* make sure our super fits in the device */
1141 if (bytenr
+ PAGE_SIZE
>= i_size_read(bdev
->bd_inode
))
1144 /* make sure our super fits in the page */
1145 if (sizeof(**disk_super
) > PAGE_SIZE
)
1148 /* make sure our super doesn't straddle pages on disk */
1149 index
= bytenr
>> PAGE_SHIFT
;
1150 if ((bytenr
+ sizeof(**disk_super
) - 1) >> PAGE_SHIFT
!= index
)
1153 /* pull in the page with our super */
1154 *page
= read_cache_page_gfp(bdev
->bd_inode
->i_mapping
,
1157 if (IS_ERR_OR_NULL(*page
))
1162 /* align our pointer to the offset of the super block */
1163 *disk_super
= p
+ (bytenr
& ~PAGE_MASK
);
1165 if (btrfs_super_bytenr(*disk_super
) != bytenr
||
1166 btrfs_super_magic(*disk_super
) != BTRFS_MAGIC
) {
1167 btrfs_release_disk_super(*page
);
1171 if ((*disk_super
)->label
[0] &&
1172 (*disk_super
)->label
[BTRFS_LABEL_SIZE
- 1])
1173 (*disk_super
)->label
[BTRFS_LABEL_SIZE
- 1] = '\0';
1179 * Look for a btrfs signature on a device. This may be called out of the mount path
1180 * and we are not allowed to call set_blocksize during the scan. The superblock
1181 * is read via pagecache
1183 int btrfs_scan_one_device(const char *path
, fmode_t flags
, void *holder
,
1184 struct btrfs_fs_devices
**fs_devices_ret
)
1186 struct btrfs_super_block
*disk_super
;
1187 struct block_device
*bdev
;
1196 * we would like to check all the supers, but that would make
1197 * a btrfs mount succeed after a mkfs from a different FS.
1198 * So, we need to add a special mount option to scan for
1199 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1201 bytenr
= btrfs_sb_offset(0);
1202 flags
|= FMODE_EXCL
;
1203 mutex_lock(&uuid_mutex
);
1205 bdev
= blkdev_get_by_path(path
, flags
, holder
);
1207 ret
= PTR_ERR(bdev
);
1211 if (btrfs_read_disk_super(bdev
, bytenr
, &page
, &disk_super
))
1212 goto error_bdev_put
;
1214 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
1215 transid
= btrfs_super_generation(disk_super
);
1216 total_devices
= btrfs_super_num_devices(disk_super
);
1218 ret
= device_list_add(path
, disk_super
, devid
, fs_devices_ret
);
1220 if (disk_super
->label
[0]) {
1221 pr_info("BTRFS: device label %s ", disk_super
->label
);
1223 pr_info("BTRFS: device fsid %pU ", disk_super
->fsid
);
1226 pr_cont("devid %llu transid %llu %s\n", devid
, transid
, path
);
1229 if (!ret
&& fs_devices_ret
)
1230 (*fs_devices_ret
)->total_devices
= total_devices
;
1232 btrfs_release_disk_super(page
);
1235 blkdev_put(bdev
, flags
);
1237 mutex_unlock(&uuid_mutex
);
1241 /* helper to account the used device space in the range */
1242 int btrfs_account_dev_extents_size(struct btrfs_device
*device
, u64 start
,
1243 u64 end
, u64
*length
)
1245 struct btrfs_key key
;
1246 struct btrfs_root
*root
= device
->fs_info
->dev_root
;
1247 struct btrfs_dev_extent
*dev_extent
;
1248 struct btrfs_path
*path
;
1252 struct extent_buffer
*l
;
1256 if (start
>= device
->total_bytes
||
1257 test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
))
1260 path
= btrfs_alloc_path();
1263 path
->reada
= READA_FORWARD
;
1265 key
.objectid
= device
->devid
;
1267 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1269 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1273 ret
= btrfs_previous_item(root
, path
, key
.objectid
, key
.type
);
1280 slot
= path
->slots
[0];
1281 if (slot
>= btrfs_header_nritems(l
)) {
1282 ret
= btrfs_next_leaf(root
, path
);
1290 btrfs_item_key_to_cpu(l
, &key
, slot
);
1292 if (key
.objectid
< device
->devid
)
1295 if (key
.objectid
> device
->devid
)
1298 if (key
.type
!= BTRFS_DEV_EXTENT_KEY
)
1301 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
1302 extent_end
= key
.offset
+ btrfs_dev_extent_length(l
,
1304 if (key
.offset
<= start
&& extent_end
> end
) {
1305 *length
= end
- start
+ 1;
1307 } else if (key
.offset
<= start
&& extent_end
> start
)
1308 *length
+= extent_end
- start
;
1309 else if (key
.offset
> start
&& extent_end
<= end
)
1310 *length
+= extent_end
- key
.offset
;
1311 else if (key
.offset
> start
&& key
.offset
<= end
) {
1312 *length
+= end
- key
.offset
+ 1;
1314 } else if (key
.offset
> end
)
1322 btrfs_free_path(path
);
1326 static int contains_pending_extent(struct btrfs_transaction
*transaction
,
1327 struct btrfs_device
*device
,
1328 u64
*start
, u64 len
)
1330 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
1331 struct extent_map
*em
;
1332 struct list_head
*search_list
= &fs_info
->pinned_chunks
;
1334 u64 physical_start
= *start
;
1337 search_list
= &transaction
->pending_chunks
;
1339 list_for_each_entry(em
, search_list
, list
) {
1340 struct map_lookup
*map
;
1343 map
= em
->map_lookup
;
1344 for (i
= 0; i
< map
->num_stripes
; i
++) {
1347 if (map
->stripes
[i
].dev
!= device
)
1349 if (map
->stripes
[i
].physical
>= physical_start
+ len
||
1350 map
->stripes
[i
].physical
+ em
->orig_block_len
<=
1354 * Make sure that while processing the pinned list we do
1355 * not override our *start with a lower value, because
1356 * we can have pinned chunks that fall within this
1357 * device hole and that have lower physical addresses
1358 * than the pending chunks we processed before. If we
1359 * do not take this special care we can end up getting
1360 * 2 pending chunks that start at the same physical
1361 * device offsets because the end offset of a pinned
1362 * chunk can be equal to the start offset of some
1365 end
= map
->stripes
[i
].physical
+ em
->orig_block_len
;
1372 if (search_list
!= &fs_info
->pinned_chunks
) {
1373 search_list
= &fs_info
->pinned_chunks
;
1382 * find_free_dev_extent_start - find free space in the specified device
1383 * @device: the device which we search the free space in
1384 * @num_bytes: the size of the free space that we need
1385 * @search_start: the position from which to begin the search
1386 * @start: store the start of the free space.
1387 * @len: the size of the free space. that we find, or the size
1388 * of the max free space if we don't find suitable free space
1390 * this uses a pretty simple search, the expectation is that it is
1391 * called very infrequently and that a given device has a small number
1394 * @start is used to store the start of the free space if we find. But if we
1395 * don't find suitable free space, it will be used to store the start position
1396 * of the max free space.
1398 * @len is used to store the size of the free space that we find.
1399 * But if we don't find suitable free space, it is used to store the size of
1400 * the max free space.
1402 int find_free_dev_extent_start(struct btrfs_transaction
*transaction
,
1403 struct btrfs_device
*device
, u64 num_bytes
,
1404 u64 search_start
, u64
*start
, u64
*len
)
1406 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
1407 struct btrfs_root
*root
= fs_info
->dev_root
;
1408 struct btrfs_key key
;
1409 struct btrfs_dev_extent
*dev_extent
;
1410 struct btrfs_path
*path
;
1415 u64 search_end
= device
->total_bytes
;
1418 struct extent_buffer
*l
;
1421 * We don't want to overwrite the superblock on the drive nor any area
1422 * used by the boot loader (grub for example), so we make sure to start
1423 * at an offset of at least 1MB.
1425 search_start
= max_t(u64
, search_start
, SZ_1M
);
1427 path
= btrfs_alloc_path();
1431 max_hole_start
= search_start
;
1435 if (search_start
>= search_end
||
1436 test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
)) {
1441 path
->reada
= READA_FORWARD
;
1442 path
->search_commit_root
= 1;
1443 path
->skip_locking
= 1;
1445 key
.objectid
= device
->devid
;
1446 key
.offset
= search_start
;
1447 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1449 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1453 ret
= btrfs_previous_item(root
, path
, key
.objectid
, key
.type
);
1460 slot
= path
->slots
[0];
1461 if (slot
>= btrfs_header_nritems(l
)) {
1462 ret
= btrfs_next_leaf(root
, path
);
1470 btrfs_item_key_to_cpu(l
, &key
, slot
);
1472 if (key
.objectid
< device
->devid
)
1475 if (key
.objectid
> device
->devid
)
1478 if (key
.type
!= BTRFS_DEV_EXTENT_KEY
)
1481 if (key
.offset
> search_start
) {
1482 hole_size
= key
.offset
- search_start
;
1485 * Have to check before we set max_hole_start, otherwise
1486 * we could end up sending back this offset anyway.
1488 if (contains_pending_extent(transaction
, device
,
1491 if (key
.offset
>= search_start
) {
1492 hole_size
= key
.offset
- search_start
;
1499 if (hole_size
> max_hole_size
) {
1500 max_hole_start
= search_start
;
1501 max_hole_size
= hole_size
;
1505 * If this free space is greater than which we need,
1506 * it must be the max free space that we have found
1507 * until now, so max_hole_start must point to the start
1508 * of this free space and the length of this free space
1509 * is stored in max_hole_size. Thus, we return
1510 * max_hole_start and max_hole_size and go back to the
1513 if (hole_size
>= num_bytes
) {
1519 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
1520 extent_end
= key
.offset
+ btrfs_dev_extent_length(l
,
1522 if (extent_end
> search_start
)
1523 search_start
= extent_end
;
1530 * At this point, search_start should be the end of
1531 * allocated dev extents, and when shrinking the device,
1532 * search_end may be smaller than search_start.
1534 if (search_end
> search_start
) {
1535 hole_size
= search_end
- search_start
;
1537 if (contains_pending_extent(transaction
, device
, &search_start
,
1539 btrfs_release_path(path
);
1543 if (hole_size
> max_hole_size
) {
1544 max_hole_start
= search_start
;
1545 max_hole_size
= hole_size
;
1550 if (max_hole_size
< num_bytes
)
1556 btrfs_free_path(path
);
1557 *start
= max_hole_start
;
1559 *len
= max_hole_size
;
1563 int find_free_dev_extent(struct btrfs_trans_handle
*trans
,
1564 struct btrfs_device
*device
, u64 num_bytes
,
1565 u64
*start
, u64
*len
)
1567 /* FIXME use last free of some kind */
1568 return find_free_dev_extent_start(trans
->transaction
, device
,
1569 num_bytes
, 0, start
, len
);
1572 static int btrfs_free_dev_extent(struct btrfs_trans_handle
*trans
,
1573 struct btrfs_device
*device
,
1574 u64 start
, u64
*dev_extent_len
)
1576 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
1577 struct btrfs_root
*root
= fs_info
->dev_root
;
1579 struct btrfs_path
*path
;
1580 struct btrfs_key key
;
1581 struct btrfs_key found_key
;
1582 struct extent_buffer
*leaf
= NULL
;
1583 struct btrfs_dev_extent
*extent
= NULL
;
1585 path
= btrfs_alloc_path();
1589 key
.objectid
= device
->devid
;
1591 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1593 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1595 ret
= btrfs_previous_item(root
, path
, key
.objectid
,
1596 BTRFS_DEV_EXTENT_KEY
);
1599 leaf
= path
->nodes
[0];
1600 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1601 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1602 struct btrfs_dev_extent
);
1603 BUG_ON(found_key
.offset
> start
|| found_key
.offset
+
1604 btrfs_dev_extent_length(leaf
, extent
) < start
);
1606 btrfs_release_path(path
);
1608 } else if (ret
== 0) {
1609 leaf
= path
->nodes
[0];
1610 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1611 struct btrfs_dev_extent
);
1613 btrfs_handle_fs_error(fs_info
, ret
, "Slot search failed");
1617 *dev_extent_len
= btrfs_dev_extent_length(leaf
, extent
);
1619 ret
= btrfs_del_item(trans
, root
, path
);
1621 btrfs_handle_fs_error(fs_info
, ret
,
1622 "Failed to remove dev extent item");
1624 set_bit(BTRFS_TRANS_HAVE_FREE_BGS
, &trans
->transaction
->flags
);
1627 btrfs_free_path(path
);
1631 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle
*trans
,
1632 struct btrfs_device
*device
,
1633 u64 chunk_offset
, u64 start
, u64 num_bytes
)
1636 struct btrfs_path
*path
;
1637 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
1638 struct btrfs_root
*root
= fs_info
->dev_root
;
1639 struct btrfs_dev_extent
*extent
;
1640 struct extent_buffer
*leaf
;
1641 struct btrfs_key key
;
1643 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &device
->dev_state
));
1644 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
));
1645 path
= btrfs_alloc_path();
1649 key
.objectid
= device
->devid
;
1651 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1652 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1657 leaf
= path
->nodes
[0];
1658 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1659 struct btrfs_dev_extent
);
1660 btrfs_set_dev_extent_chunk_tree(leaf
, extent
,
1661 BTRFS_CHUNK_TREE_OBJECTID
);
1662 btrfs_set_dev_extent_chunk_objectid(leaf
, extent
,
1663 BTRFS_FIRST_CHUNK_TREE_OBJECTID
);
1664 btrfs_set_dev_extent_chunk_offset(leaf
, extent
, chunk_offset
);
1666 btrfs_set_dev_extent_length(leaf
, extent
, num_bytes
);
1667 btrfs_mark_buffer_dirty(leaf
);
1669 btrfs_free_path(path
);
1673 static u64
find_next_chunk(struct btrfs_fs_info
*fs_info
)
1675 struct extent_map_tree
*em_tree
;
1676 struct extent_map
*em
;
1680 em_tree
= &fs_info
->mapping_tree
.map_tree
;
1681 read_lock(&em_tree
->lock
);
1682 n
= rb_last(&em_tree
->map
);
1684 em
= rb_entry(n
, struct extent_map
, rb_node
);
1685 ret
= em
->start
+ em
->len
;
1687 read_unlock(&em_tree
->lock
);
1692 static noinline
int find_next_devid(struct btrfs_fs_info
*fs_info
,
1696 struct btrfs_key key
;
1697 struct btrfs_key found_key
;
1698 struct btrfs_path
*path
;
1700 path
= btrfs_alloc_path();
1704 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1705 key
.type
= BTRFS_DEV_ITEM_KEY
;
1706 key
.offset
= (u64
)-1;
1708 ret
= btrfs_search_slot(NULL
, fs_info
->chunk_root
, &key
, path
, 0, 0);
1712 BUG_ON(ret
== 0); /* Corruption */
1714 ret
= btrfs_previous_item(fs_info
->chunk_root
, path
,
1715 BTRFS_DEV_ITEMS_OBJECTID
,
1716 BTRFS_DEV_ITEM_KEY
);
1720 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
1722 *devid_ret
= found_key
.offset
+ 1;
1726 btrfs_free_path(path
);
1731 * the device information is stored in the chunk root
1732 * the btrfs_device struct should be fully filled in
1734 static int btrfs_add_dev_item(struct btrfs_trans_handle
*trans
,
1735 struct btrfs_fs_info
*fs_info
,
1736 struct btrfs_device
*device
)
1738 struct btrfs_root
*root
= fs_info
->chunk_root
;
1740 struct btrfs_path
*path
;
1741 struct btrfs_dev_item
*dev_item
;
1742 struct extent_buffer
*leaf
;
1743 struct btrfs_key key
;
1746 path
= btrfs_alloc_path();
1750 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1751 key
.type
= BTRFS_DEV_ITEM_KEY
;
1752 key
.offset
= device
->devid
;
1754 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1759 leaf
= path
->nodes
[0];
1760 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
1762 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
1763 btrfs_set_device_generation(leaf
, dev_item
, 0);
1764 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
1765 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
1766 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
1767 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
1768 btrfs_set_device_total_bytes(leaf
, dev_item
,
1769 btrfs_device_get_disk_total_bytes(device
));
1770 btrfs_set_device_bytes_used(leaf
, dev_item
,
1771 btrfs_device_get_bytes_used(device
));
1772 btrfs_set_device_group(leaf
, dev_item
, 0);
1773 btrfs_set_device_seek_speed(leaf
, dev_item
, 0);
1774 btrfs_set_device_bandwidth(leaf
, dev_item
, 0);
1775 btrfs_set_device_start_offset(leaf
, dev_item
, 0);
1777 ptr
= btrfs_device_uuid(dev_item
);
1778 write_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
1779 ptr
= btrfs_device_fsid(dev_item
);
1780 write_extent_buffer(leaf
, fs_info
->fsid
, ptr
, BTRFS_FSID_SIZE
);
1781 btrfs_mark_buffer_dirty(leaf
);
1785 btrfs_free_path(path
);
1790 * Function to update ctime/mtime for a given device path.
1791 * Mainly used for ctime/mtime based probe like libblkid.
1793 static void update_dev_time(const char *path_name
)
1797 filp
= filp_open(path_name
, O_RDWR
, 0);
1800 file_update_time(filp
);
1801 filp_close(filp
, NULL
);
1804 static int btrfs_rm_dev_item(struct btrfs_fs_info
*fs_info
,
1805 struct btrfs_device
*device
)
1807 struct btrfs_root
*root
= fs_info
->chunk_root
;
1809 struct btrfs_path
*path
;
1810 struct btrfs_key key
;
1811 struct btrfs_trans_handle
*trans
;
1813 path
= btrfs_alloc_path();
1817 trans
= btrfs_start_transaction(root
, 0);
1818 if (IS_ERR(trans
)) {
1819 btrfs_free_path(path
);
1820 return PTR_ERR(trans
);
1822 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1823 key
.type
= BTRFS_DEV_ITEM_KEY
;
1824 key
.offset
= device
->devid
;
1826 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1830 btrfs_abort_transaction(trans
, ret
);
1831 btrfs_end_transaction(trans
);
1835 ret
= btrfs_del_item(trans
, root
, path
);
1837 btrfs_abort_transaction(trans
, ret
);
1838 btrfs_end_transaction(trans
);
1842 btrfs_free_path(path
);
1844 ret
= btrfs_commit_transaction(trans
);
1849 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1850 * filesystem. It's up to the caller to adjust that number regarding eg. device
1853 static int btrfs_check_raid_min_devices(struct btrfs_fs_info
*fs_info
,
1861 seq
= read_seqbegin(&fs_info
->profiles_lock
);
1863 all_avail
= fs_info
->avail_data_alloc_bits
|
1864 fs_info
->avail_system_alloc_bits
|
1865 fs_info
->avail_metadata_alloc_bits
;
1866 } while (read_seqretry(&fs_info
->profiles_lock
, seq
));
1868 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++) {
1869 if (!(all_avail
& btrfs_raid_group
[i
]))
1872 if (num_devices
< btrfs_raid_array
[i
].devs_min
) {
1873 int ret
= btrfs_raid_mindev_error
[i
];
1883 static struct btrfs_device
* btrfs_find_next_active_device(
1884 struct btrfs_fs_devices
*fs_devs
, struct btrfs_device
*device
)
1886 struct btrfs_device
*next_device
;
1888 list_for_each_entry(next_device
, &fs_devs
->devices
, dev_list
) {
1889 if (next_device
!= device
&&
1890 !test_bit(BTRFS_DEV_STATE_MISSING
, &next_device
->dev_state
)
1891 && next_device
->bdev
)
1899 * Helper function to check if the given device is part of s_bdev / latest_bdev
1900 * and replace it with the provided or the next active device, in the context
1901 * where this function called, there should be always be another device (or
1902 * this_dev) which is active.
1904 void btrfs_assign_next_active_device(struct btrfs_fs_info
*fs_info
,
1905 struct btrfs_device
*device
, struct btrfs_device
*this_dev
)
1907 struct btrfs_device
*next_device
;
1910 next_device
= this_dev
;
1912 next_device
= btrfs_find_next_active_device(fs_info
->fs_devices
,
1914 ASSERT(next_device
);
1916 if (fs_info
->sb
->s_bdev
&&
1917 (fs_info
->sb
->s_bdev
== device
->bdev
))
1918 fs_info
->sb
->s_bdev
= next_device
->bdev
;
1920 if (fs_info
->fs_devices
->latest_bdev
== device
->bdev
)
1921 fs_info
->fs_devices
->latest_bdev
= next_device
->bdev
;
1924 int btrfs_rm_device(struct btrfs_fs_info
*fs_info
, const char *device_path
,
1927 struct btrfs_device
*device
;
1928 struct btrfs_fs_devices
*cur_devices
;
1932 mutex_lock(&fs_info
->volume_mutex
);
1933 mutex_lock(&uuid_mutex
);
1935 num_devices
= fs_info
->fs_devices
->num_devices
;
1936 btrfs_dev_replace_lock(&fs_info
->dev_replace
, 0);
1937 if (btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
)) {
1938 WARN_ON(num_devices
< 1);
1941 btrfs_dev_replace_unlock(&fs_info
->dev_replace
, 0);
1943 ret
= btrfs_check_raid_min_devices(fs_info
, num_devices
- 1);
1947 ret
= btrfs_find_device_by_devspec(fs_info
, devid
, device_path
,
1952 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
)) {
1953 ret
= BTRFS_ERROR_DEV_TGT_REPLACE
;
1957 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
) &&
1958 fs_info
->fs_devices
->rw_devices
== 1) {
1959 ret
= BTRFS_ERROR_DEV_ONLY_WRITABLE
;
1963 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
)) {
1964 mutex_lock(&fs_info
->chunk_mutex
);
1965 list_del_init(&device
->dev_alloc_list
);
1966 device
->fs_devices
->rw_devices
--;
1967 mutex_unlock(&fs_info
->chunk_mutex
);
1970 mutex_unlock(&uuid_mutex
);
1971 ret
= btrfs_shrink_device(device
, 0);
1972 mutex_lock(&uuid_mutex
);
1977 * TODO: the superblock still includes this device in its num_devices
1978 * counter although write_all_supers() is not locked out. This
1979 * could give a filesystem state which requires a degraded mount.
1981 ret
= btrfs_rm_dev_item(fs_info
, device
);
1985 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &device
->dev_state
);
1986 btrfs_scrub_cancel_dev(fs_info
, device
);
1989 * the device list mutex makes sure that we don't change
1990 * the device list while someone else is writing out all
1991 * the device supers. Whoever is writing all supers, should
1992 * lock the device list mutex before getting the number of
1993 * devices in the super block (super_copy). Conversely,
1994 * whoever updates the number of devices in the super block
1995 * (super_copy) should hold the device list mutex.
1998 cur_devices
= device
->fs_devices
;
1999 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
2000 list_del_rcu(&device
->dev_list
);
2002 device
->fs_devices
->num_devices
--;
2003 device
->fs_devices
->total_devices
--;
2005 if (test_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
))
2006 device
->fs_devices
->missing_devices
--;
2008 btrfs_assign_next_active_device(fs_info
, device
, NULL
);
2011 device
->fs_devices
->open_devices
--;
2012 /* remove sysfs entry */
2013 btrfs_sysfs_rm_device_link(fs_info
->fs_devices
, device
);
2016 num_devices
= btrfs_super_num_devices(fs_info
->super_copy
) - 1;
2017 btrfs_set_super_num_devices(fs_info
->super_copy
, num_devices
);
2018 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2021 * at this point, the device is zero sized and detached from
2022 * the devices list. All that's left is to zero out the old
2023 * supers and free the device.
2025 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
))
2026 btrfs_scratch_superblocks(device
->bdev
, device
->name
->str
);
2028 btrfs_close_bdev(device
);
2029 call_rcu(&device
->rcu
, free_device_rcu
);
2031 if (cur_devices
->open_devices
== 0) {
2032 struct btrfs_fs_devices
*fs_devices
;
2033 fs_devices
= fs_info
->fs_devices
;
2034 while (fs_devices
) {
2035 if (fs_devices
->seed
== cur_devices
) {
2036 fs_devices
->seed
= cur_devices
->seed
;
2039 fs_devices
= fs_devices
->seed
;
2041 cur_devices
->seed
= NULL
;
2042 __btrfs_close_devices(cur_devices
);
2043 free_fs_devices(cur_devices
);
2047 mutex_unlock(&uuid_mutex
);
2048 mutex_unlock(&fs_info
->volume_mutex
);
2052 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
)) {
2053 mutex_lock(&fs_info
->chunk_mutex
);
2054 list_add(&device
->dev_alloc_list
,
2055 &fs_info
->fs_devices
->alloc_list
);
2056 device
->fs_devices
->rw_devices
++;
2057 mutex_unlock(&fs_info
->chunk_mutex
);
2062 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info
*fs_info
,
2063 struct btrfs_device
*srcdev
)
2065 struct btrfs_fs_devices
*fs_devices
;
2067 WARN_ON(!mutex_is_locked(&fs_info
->fs_devices
->device_list_mutex
));
2070 * in case of fs with no seed, srcdev->fs_devices will point
2071 * to fs_devices of fs_info. However when the dev being replaced is
2072 * a seed dev it will point to the seed's local fs_devices. In short
2073 * srcdev will have its correct fs_devices in both the cases.
2075 fs_devices
= srcdev
->fs_devices
;
2077 list_del_rcu(&srcdev
->dev_list
);
2078 list_del(&srcdev
->dev_alloc_list
);
2079 fs_devices
->num_devices
--;
2080 if (test_bit(BTRFS_DEV_STATE_MISSING
, &srcdev
->dev_state
))
2081 fs_devices
->missing_devices
--;
2083 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &srcdev
->dev_state
))
2084 fs_devices
->rw_devices
--;
2087 fs_devices
->open_devices
--;
2090 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info
*fs_info
,
2091 struct btrfs_device
*srcdev
)
2093 struct btrfs_fs_devices
*fs_devices
= srcdev
->fs_devices
;
2095 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &srcdev
->dev_state
)) {
2096 /* zero out the old super if it is writable */
2097 btrfs_scratch_superblocks(srcdev
->bdev
, srcdev
->name
->str
);
2100 btrfs_close_bdev(srcdev
);
2101 call_rcu(&srcdev
->rcu
, free_device_rcu
);
2103 /* if this is no devs we rather delete the fs_devices */
2104 if (!fs_devices
->num_devices
) {
2105 struct btrfs_fs_devices
*tmp_fs_devices
;
2108 * On a mounted FS, num_devices can't be zero unless it's a
2109 * seed. In case of a seed device being replaced, the replace
2110 * target added to the sprout FS, so there will be no more
2111 * device left under the seed FS.
2113 ASSERT(fs_devices
->seeding
);
2115 tmp_fs_devices
= fs_info
->fs_devices
;
2116 while (tmp_fs_devices
) {
2117 if (tmp_fs_devices
->seed
== fs_devices
) {
2118 tmp_fs_devices
->seed
= fs_devices
->seed
;
2121 tmp_fs_devices
= tmp_fs_devices
->seed
;
2123 fs_devices
->seed
= NULL
;
2124 __btrfs_close_devices(fs_devices
);
2125 free_fs_devices(fs_devices
);
2129 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info
*fs_info
,
2130 struct btrfs_device
*tgtdev
)
2132 mutex_lock(&uuid_mutex
);
2134 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
2136 btrfs_sysfs_rm_device_link(fs_info
->fs_devices
, tgtdev
);
2139 fs_info
->fs_devices
->open_devices
--;
2141 fs_info
->fs_devices
->num_devices
--;
2143 btrfs_assign_next_active_device(fs_info
, tgtdev
, NULL
);
2145 list_del_rcu(&tgtdev
->dev_list
);
2147 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2148 mutex_unlock(&uuid_mutex
);
2151 * The update_dev_time() with in btrfs_scratch_superblocks()
2152 * may lead to a call to btrfs_show_devname() which will try
2153 * to hold device_list_mutex. And here this device
2154 * is already out of device list, so we don't have to hold
2155 * the device_list_mutex lock.
2157 btrfs_scratch_superblocks(tgtdev
->bdev
, tgtdev
->name
->str
);
2159 btrfs_close_bdev(tgtdev
);
2160 call_rcu(&tgtdev
->rcu
, free_device_rcu
);
2163 static int btrfs_find_device_by_path(struct btrfs_fs_info
*fs_info
,
2164 const char *device_path
,
2165 struct btrfs_device
**device
)
2168 struct btrfs_super_block
*disk_super
;
2171 struct block_device
*bdev
;
2172 struct buffer_head
*bh
;
2175 ret
= btrfs_get_bdev_and_sb(device_path
, FMODE_READ
,
2176 fs_info
->bdev_holder
, 0, &bdev
, &bh
);
2179 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
2180 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
2181 dev_uuid
= disk_super
->dev_item
.uuid
;
2182 *device
= btrfs_find_device(fs_info
, devid
, dev_uuid
, disk_super
->fsid
);
2186 blkdev_put(bdev
, FMODE_READ
);
2190 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info
*fs_info
,
2191 const char *device_path
,
2192 struct btrfs_device
**device
)
2195 if (strcmp(device_path
, "missing") == 0) {
2196 struct list_head
*devices
;
2197 struct btrfs_device
*tmp
;
2199 devices
= &fs_info
->fs_devices
->devices
;
2201 * It is safe to read the devices since the volume_mutex
2202 * is held by the caller.
2204 list_for_each_entry(tmp
, devices
, dev_list
) {
2205 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
,
2206 &tmp
->dev_state
) && !tmp
->bdev
) {
2213 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND
;
2217 return btrfs_find_device_by_path(fs_info
, device_path
, device
);
2222 * Lookup a device given by device id, or the path if the id is 0.
2224 int btrfs_find_device_by_devspec(struct btrfs_fs_info
*fs_info
, u64 devid
,
2225 const char *devpath
,
2226 struct btrfs_device
**device
)
2232 *device
= btrfs_find_device(fs_info
, devid
, NULL
, NULL
);
2236 if (!devpath
|| !devpath
[0])
2239 ret
= btrfs_find_device_missing_or_by_path(fs_info
, devpath
,
2246 * does all the dirty work required for changing file system's UUID.
2248 static int btrfs_prepare_sprout(struct btrfs_fs_info
*fs_info
)
2250 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
2251 struct btrfs_fs_devices
*old_devices
;
2252 struct btrfs_fs_devices
*seed_devices
;
2253 struct btrfs_super_block
*disk_super
= fs_info
->super_copy
;
2254 struct btrfs_device
*device
;
2257 BUG_ON(!mutex_is_locked(&uuid_mutex
));
2258 if (!fs_devices
->seeding
)
2261 seed_devices
= alloc_fs_devices(NULL
);
2262 if (IS_ERR(seed_devices
))
2263 return PTR_ERR(seed_devices
);
2265 old_devices
= clone_fs_devices(fs_devices
);
2266 if (IS_ERR(old_devices
)) {
2267 kfree(seed_devices
);
2268 return PTR_ERR(old_devices
);
2271 list_add(&old_devices
->list
, &fs_uuids
);
2273 memcpy(seed_devices
, fs_devices
, sizeof(*seed_devices
));
2274 seed_devices
->opened
= 1;
2275 INIT_LIST_HEAD(&seed_devices
->devices
);
2276 INIT_LIST_HEAD(&seed_devices
->alloc_list
);
2277 mutex_init(&seed_devices
->device_list_mutex
);
2279 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
2280 list_splice_init_rcu(&fs_devices
->devices
, &seed_devices
->devices
,
2282 list_for_each_entry(device
, &seed_devices
->devices
, dev_list
)
2283 device
->fs_devices
= seed_devices
;
2285 mutex_lock(&fs_info
->chunk_mutex
);
2286 list_splice_init(&fs_devices
->alloc_list
, &seed_devices
->alloc_list
);
2287 mutex_unlock(&fs_info
->chunk_mutex
);
2289 fs_devices
->seeding
= 0;
2290 fs_devices
->num_devices
= 0;
2291 fs_devices
->open_devices
= 0;
2292 fs_devices
->missing_devices
= 0;
2293 fs_devices
->rotating
= 0;
2294 fs_devices
->seed
= seed_devices
;
2296 generate_random_uuid(fs_devices
->fsid
);
2297 memcpy(fs_info
->fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
2298 memcpy(disk_super
->fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
2299 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2301 super_flags
= btrfs_super_flags(disk_super
) &
2302 ~BTRFS_SUPER_FLAG_SEEDING
;
2303 btrfs_set_super_flags(disk_super
, super_flags
);
2309 * Store the expected generation for seed devices in device items.
2311 static int btrfs_finish_sprout(struct btrfs_trans_handle
*trans
,
2312 struct btrfs_fs_info
*fs_info
)
2314 struct btrfs_root
*root
= fs_info
->chunk_root
;
2315 struct btrfs_path
*path
;
2316 struct extent_buffer
*leaf
;
2317 struct btrfs_dev_item
*dev_item
;
2318 struct btrfs_device
*device
;
2319 struct btrfs_key key
;
2320 u8 fs_uuid
[BTRFS_FSID_SIZE
];
2321 u8 dev_uuid
[BTRFS_UUID_SIZE
];
2325 path
= btrfs_alloc_path();
2329 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
2331 key
.type
= BTRFS_DEV_ITEM_KEY
;
2334 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2338 leaf
= path
->nodes
[0];
2340 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
2341 ret
= btrfs_next_leaf(root
, path
);
2346 leaf
= path
->nodes
[0];
2347 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2348 btrfs_release_path(path
);
2352 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2353 if (key
.objectid
!= BTRFS_DEV_ITEMS_OBJECTID
||
2354 key
.type
!= BTRFS_DEV_ITEM_KEY
)
2357 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2358 struct btrfs_dev_item
);
2359 devid
= btrfs_device_id(leaf
, dev_item
);
2360 read_extent_buffer(leaf
, dev_uuid
, btrfs_device_uuid(dev_item
),
2362 read_extent_buffer(leaf
, fs_uuid
, btrfs_device_fsid(dev_item
),
2364 device
= btrfs_find_device(fs_info
, devid
, dev_uuid
, fs_uuid
);
2365 BUG_ON(!device
); /* Logic error */
2367 if (device
->fs_devices
->seeding
) {
2368 btrfs_set_device_generation(leaf
, dev_item
,
2369 device
->generation
);
2370 btrfs_mark_buffer_dirty(leaf
);
2378 btrfs_free_path(path
);
2382 int btrfs_init_new_device(struct btrfs_fs_info
*fs_info
, const char *device_path
)
2384 struct btrfs_root
*root
= fs_info
->dev_root
;
2385 struct request_queue
*q
;
2386 struct btrfs_trans_handle
*trans
;
2387 struct btrfs_device
*device
;
2388 struct block_device
*bdev
;
2389 struct list_head
*devices
;
2390 struct super_block
*sb
= fs_info
->sb
;
2391 struct rcu_string
*name
;
2393 int seeding_dev
= 0;
2395 bool unlocked
= false;
2397 if (sb_rdonly(sb
) && !fs_info
->fs_devices
->seeding
)
2400 bdev
= blkdev_get_by_path(device_path
, FMODE_WRITE
| FMODE_EXCL
,
2401 fs_info
->bdev_holder
);
2403 return PTR_ERR(bdev
);
2405 if (fs_info
->fs_devices
->seeding
) {
2407 down_write(&sb
->s_umount
);
2408 mutex_lock(&uuid_mutex
);
2411 filemap_write_and_wait(bdev
->bd_inode
->i_mapping
);
2413 devices
= &fs_info
->fs_devices
->devices
;
2415 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
2416 list_for_each_entry(device
, devices
, dev_list
) {
2417 if (device
->bdev
== bdev
) {
2420 &fs_info
->fs_devices
->device_list_mutex
);
2424 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2426 device
= btrfs_alloc_device(fs_info
, NULL
, NULL
);
2427 if (IS_ERR(device
)) {
2428 /* we can safely leave the fs_devices entry around */
2429 ret
= PTR_ERR(device
);
2433 name
= rcu_string_strdup(device_path
, GFP_KERNEL
);
2436 goto error_free_device
;
2438 rcu_assign_pointer(device
->name
, name
);
2440 trans
= btrfs_start_transaction(root
, 0);
2441 if (IS_ERR(trans
)) {
2442 ret
= PTR_ERR(trans
);
2443 goto error_free_device
;
2446 q
= bdev_get_queue(bdev
);
2447 set_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
);
2448 device
->generation
= trans
->transid
;
2449 device
->io_width
= fs_info
->sectorsize
;
2450 device
->io_align
= fs_info
->sectorsize
;
2451 device
->sector_size
= fs_info
->sectorsize
;
2452 device
->total_bytes
= round_down(i_size_read(bdev
->bd_inode
),
2453 fs_info
->sectorsize
);
2454 device
->disk_total_bytes
= device
->total_bytes
;
2455 device
->commit_total_bytes
= device
->total_bytes
;
2456 device
->fs_info
= fs_info
;
2457 device
->bdev
= bdev
;
2458 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &device
->dev_state
);
2459 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
);
2460 device
->mode
= FMODE_EXCL
;
2461 device
->dev_stats_valid
= 1;
2462 set_blocksize(device
->bdev
, BTRFS_BDEV_BLOCKSIZE
);
2465 sb
->s_flags
&= ~SB_RDONLY
;
2466 ret
= btrfs_prepare_sprout(fs_info
);
2468 btrfs_abort_transaction(trans
, ret
);
2473 device
->fs_devices
= fs_info
->fs_devices
;
2475 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
2476 mutex_lock(&fs_info
->chunk_mutex
);
2477 list_add_rcu(&device
->dev_list
, &fs_info
->fs_devices
->devices
);
2478 list_add(&device
->dev_alloc_list
,
2479 &fs_info
->fs_devices
->alloc_list
);
2480 fs_info
->fs_devices
->num_devices
++;
2481 fs_info
->fs_devices
->open_devices
++;
2482 fs_info
->fs_devices
->rw_devices
++;
2483 fs_info
->fs_devices
->total_devices
++;
2484 fs_info
->fs_devices
->total_rw_bytes
+= device
->total_bytes
;
2486 atomic64_add(device
->total_bytes
, &fs_info
->free_chunk_space
);
2488 if (!blk_queue_nonrot(q
))
2489 fs_info
->fs_devices
->rotating
= 1;
2491 tmp
= btrfs_super_total_bytes(fs_info
->super_copy
);
2492 btrfs_set_super_total_bytes(fs_info
->super_copy
,
2493 round_down(tmp
+ device
->total_bytes
, fs_info
->sectorsize
));
2495 tmp
= btrfs_super_num_devices(fs_info
->super_copy
);
2496 btrfs_set_super_num_devices(fs_info
->super_copy
, tmp
+ 1);
2498 /* add sysfs device entry */
2499 btrfs_sysfs_add_device_link(fs_info
->fs_devices
, device
);
2502 * we've got more storage, clear any full flags on the space
2505 btrfs_clear_space_info_full(fs_info
);
2507 mutex_unlock(&fs_info
->chunk_mutex
);
2508 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2511 mutex_lock(&fs_info
->chunk_mutex
);
2512 ret
= init_first_rw_device(trans
, fs_info
);
2513 mutex_unlock(&fs_info
->chunk_mutex
);
2515 btrfs_abort_transaction(trans
, ret
);
2520 ret
= btrfs_add_dev_item(trans
, fs_info
, device
);
2522 btrfs_abort_transaction(trans
, ret
);
2527 char fsid_buf
[BTRFS_UUID_UNPARSED_SIZE
];
2529 ret
= btrfs_finish_sprout(trans
, fs_info
);
2531 btrfs_abort_transaction(trans
, ret
);
2535 /* Sprouting would change fsid of the mounted root,
2536 * so rename the fsid on the sysfs
2538 snprintf(fsid_buf
, BTRFS_UUID_UNPARSED_SIZE
, "%pU",
2540 if (kobject_rename(&fs_info
->fs_devices
->fsid_kobj
, fsid_buf
))
2542 "sysfs: failed to create fsid for sprout");
2545 ret
= btrfs_commit_transaction(trans
);
2548 mutex_unlock(&uuid_mutex
);
2549 up_write(&sb
->s_umount
);
2552 if (ret
) /* transaction commit */
2555 ret
= btrfs_relocate_sys_chunks(fs_info
);
2557 btrfs_handle_fs_error(fs_info
, ret
,
2558 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2559 trans
= btrfs_attach_transaction(root
);
2560 if (IS_ERR(trans
)) {
2561 if (PTR_ERR(trans
) == -ENOENT
)
2563 ret
= PTR_ERR(trans
);
2567 ret
= btrfs_commit_transaction(trans
);
2570 /* Update ctime/mtime for libblkid */
2571 update_dev_time(device_path
);
2575 btrfs_sysfs_rm_device_link(fs_info
->fs_devices
, device
);
2578 sb
->s_flags
|= SB_RDONLY
;
2580 btrfs_end_transaction(trans
);
2582 free_device(device
);
2584 blkdev_put(bdev
, FMODE_EXCL
);
2585 if (seeding_dev
&& !unlocked
) {
2586 mutex_unlock(&uuid_mutex
);
2587 up_write(&sb
->s_umount
);
2592 int btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info
*fs_info
,
2593 const char *device_path
,
2594 struct btrfs_device
*srcdev
,
2595 struct btrfs_device
**device_out
)
2597 struct btrfs_device
*device
;
2598 struct block_device
*bdev
;
2599 struct list_head
*devices
;
2600 struct rcu_string
*name
;
2601 u64 devid
= BTRFS_DEV_REPLACE_DEVID
;
2605 if (fs_info
->fs_devices
->seeding
) {
2606 btrfs_err(fs_info
, "the filesystem is a seed filesystem!");
2610 bdev
= blkdev_get_by_path(device_path
, FMODE_WRITE
| FMODE_EXCL
,
2611 fs_info
->bdev_holder
);
2613 btrfs_err(fs_info
, "target device %s is invalid!", device_path
);
2614 return PTR_ERR(bdev
);
2617 filemap_write_and_wait(bdev
->bd_inode
->i_mapping
);
2619 devices
= &fs_info
->fs_devices
->devices
;
2620 list_for_each_entry(device
, devices
, dev_list
) {
2621 if (device
->bdev
== bdev
) {
2623 "target device is in the filesystem!");
2630 if (i_size_read(bdev
->bd_inode
) <
2631 btrfs_device_get_total_bytes(srcdev
)) {
2633 "target device is smaller than source device!");
2639 device
= btrfs_alloc_device(NULL
, &devid
, NULL
);
2640 if (IS_ERR(device
)) {
2641 ret
= PTR_ERR(device
);
2645 name
= rcu_string_strdup(device_path
, GFP_KERNEL
);
2647 free_device(device
);
2651 rcu_assign_pointer(device
->name
, name
);
2653 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
2654 set_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
);
2655 device
->generation
= 0;
2656 device
->io_width
= fs_info
->sectorsize
;
2657 device
->io_align
= fs_info
->sectorsize
;
2658 device
->sector_size
= fs_info
->sectorsize
;
2659 device
->total_bytes
= btrfs_device_get_total_bytes(srcdev
);
2660 device
->disk_total_bytes
= btrfs_device_get_disk_total_bytes(srcdev
);
2661 device
->bytes_used
= btrfs_device_get_bytes_used(srcdev
);
2662 ASSERT(list_empty(&srcdev
->resized_list
));
2663 device
->commit_total_bytes
= srcdev
->commit_total_bytes
;
2664 device
->commit_bytes_used
= device
->bytes_used
;
2665 device
->fs_info
= fs_info
;
2666 device
->bdev
= bdev
;
2667 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &device
->dev_state
);
2668 set_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
);
2669 device
->mode
= FMODE_EXCL
;
2670 device
->dev_stats_valid
= 1;
2671 set_blocksize(device
->bdev
, BTRFS_BDEV_BLOCKSIZE
);
2672 device
->fs_devices
= fs_info
->fs_devices
;
2673 list_add(&device
->dev_list
, &fs_info
->fs_devices
->devices
);
2674 fs_info
->fs_devices
->num_devices
++;
2675 fs_info
->fs_devices
->open_devices
++;
2676 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2678 *device_out
= device
;
2682 blkdev_put(bdev
, FMODE_EXCL
);
2686 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info
*fs_info
,
2687 struct btrfs_device
*tgtdev
)
2689 u32 sectorsize
= fs_info
->sectorsize
;
2691 WARN_ON(fs_info
->fs_devices
->rw_devices
== 0);
2692 tgtdev
->io_width
= sectorsize
;
2693 tgtdev
->io_align
= sectorsize
;
2694 tgtdev
->sector_size
= sectorsize
;
2695 tgtdev
->fs_info
= fs_info
;
2696 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &tgtdev
->dev_state
);
2699 static noinline
int btrfs_update_device(struct btrfs_trans_handle
*trans
,
2700 struct btrfs_device
*device
)
2703 struct btrfs_path
*path
;
2704 struct btrfs_root
*root
= device
->fs_info
->chunk_root
;
2705 struct btrfs_dev_item
*dev_item
;
2706 struct extent_buffer
*leaf
;
2707 struct btrfs_key key
;
2709 path
= btrfs_alloc_path();
2713 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
2714 key
.type
= BTRFS_DEV_ITEM_KEY
;
2715 key
.offset
= device
->devid
;
2717 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2726 leaf
= path
->nodes
[0];
2727 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
2729 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
2730 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
2731 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
2732 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
2733 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
2734 btrfs_set_device_total_bytes(leaf
, dev_item
,
2735 btrfs_device_get_disk_total_bytes(device
));
2736 btrfs_set_device_bytes_used(leaf
, dev_item
,
2737 btrfs_device_get_bytes_used(device
));
2738 btrfs_mark_buffer_dirty(leaf
);
2741 btrfs_free_path(path
);
2745 int btrfs_grow_device(struct btrfs_trans_handle
*trans
,
2746 struct btrfs_device
*device
, u64 new_size
)
2748 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
2749 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
2750 struct btrfs_fs_devices
*fs_devices
;
2754 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
))
2757 new_size
= round_down(new_size
, fs_info
->sectorsize
);
2759 mutex_lock(&fs_info
->chunk_mutex
);
2760 old_total
= btrfs_super_total_bytes(super_copy
);
2761 diff
= round_down(new_size
- device
->total_bytes
, fs_info
->sectorsize
);
2763 if (new_size
<= device
->total_bytes
||
2764 test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
)) {
2765 mutex_unlock(&fs_info
->chunk_mutex
);
2769 fs_devices
= fs_info
->fs_devices
;
2771 btrfs_set_super_total_bytes(super_copy
,
2772 round_down(old_total
+ diff
, fs_info
->sectorsize
));
2773 device
->fs_devices
->total_rw_bytes
+= diff
;
2775 btrfs_device_set_total_bytes(device
, new_size
);
2776 btrfs_device_set_disk_total_bytes(device
, new_size
);
2777 btrfs_clear_space_info_full(device
->fs_info
);
2778 if (list_empty(&device
->resized_list
))
2779 list_add_tail(&device
->resized_list
,
2780 &fs_devices
->resized_devices
);
2781 mutex_unlock(&fs_info
->chunk_mutex
);
2783 return btrfs_update_device(trans
, device
);
2786 static int btrfs_free_chunk(struct btrfs_trans_handle
*trans
,
2787 struct btrfs_fs_info
*fs_info
, u64 chunk_offset
)
2789 struct btrfs_root
*root
= fs_info
->chunk_root
;
2791 struct btrfs_path
*path
;
2792 struct btrfs_key key
;
2794 path
= btrfs_alloc_path();
2798 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
2799 key
.offset
= chunk_offset
;
2800 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
2802 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
2805 else if (ret
> 0) { /* Logic error or corruption */
2806 btrfs_handle_fs_error(fs_info
, -ENOENT
,
2807 "Failed lookup while freeing chunk.");
2812 ret
= btrfs_del_item(trans
, root
, path
);
2814 btrfs_handle_fs_error(fs_info
, ret
,
2815 "Failed to delete chunk item.");
2817 btrfs_free_path(path
);
2821 static int btrfs_del_sys_chunk(struct btrfs_fs_info
*fs_info
, u64 chunk_offset
)
2823 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
2824 struct btrfs_disk_key
*disk_key
;
2825 struct btrfs_chunk
*chunk
;
2832 struct btrfs_key key
;
2834 mutex_lock(&fs_info
->chunk_mutex
);
2835 array_size
= btrfs_super_sys_array_size(super_copy
);
2837 ptr
= super_copy
->sys_chunk_array
;
2840 while (cur
< array_size
) {
2841 disk_key
= (struct btrfs_disk_key
*)ptr
;
2842 btrfs_disk_key_to_cpu(&key
, disk_key
);
2844 len
= sizeof(*disk_key
);
2846 if (key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
2847 chunk
= (struct btrfs_chunk
*)(ptr
+ len
);
2848 num_stripes
= btrfs_stack_chunk_num_stripes(chunk
);
2849 len
+= btrfs_chunk_item_size(num_stripes
);
2854 if (key
.objectid
== BTRFS_FIRST_CHUNK_TREE_OBJECTID
&&
2855 key
.offset
== chunk_offset
) {
2856 memmove(ptr
, ptr
+ len
, array_size
- (cur
+ len
));
2858 btrfs_set_super_sys_array_size(super_copy
, array_size
);
2864 mutex_unlock(&fs_info
->chunk_mutex
);
2868 static struct extent_map
*get_chunk_map(struct btrfs_fs_info
*fs_info
,
2869 u64 logical
, u64 length
)
2871 struct extent_map_tree
*em_tree
;
2872 struct extent_map
*em
;
2874 em_tree
= &fs_info
->mapping_tree
.map_tree
;
2875 read_lock(&em_tree
->lock
);
2876 em
= lookup_extent_mapping(em_tree
, logical
, length
);
2877 read_unlock(&em_tree
->lock
);
2880 btrfs_crit(fs_info
, "unable to find logical %llu length %llu",
2882 return ERR_PTR(-EINVAL
);
2885 if (em
->start
> logical
|| em
->start
+ em
->len
< logical
) {
2887 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2888 logical
, length
, em
->start
, em
->start
+ em
->len
);
2889 free_extent_map(em
);
2890 return ERR_PTR(-EINVAL
);
2893 /* callers are responsible for dropping em's ref. */
2897 int btrfs_remove_chunk(struct btrfs_trans_handle
*trans
,
2898 struct btrfs_fs_info
*fs_info
, u64 chunk_offset
)
2900 struct extent_map
*em
;
2901 struct map_lookup
*map
;
2902 u64 dev_extent_len
= 0;
2904 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
2906 em
= get_chunk_map(fs_info
, chunk_offset
, 1);
2909 * This is a logic error, but we don't want to just rely on the
2910 * user having built with ASSERT enabled, so if ASSERT doesn't
2911 * do anything we still error out.
2916 map
= em
->map_lookup
;
2917 mutex_lock(&fs_info
->chunk_mutex
);
2918 check_system_chunk(trans
, fs_info
, map
->type
);
2919 mutex_unlock(&fs_info
->chunk_mutex
);
2922 * Take the device list mutex to prevent races with the final phase of
2923 * a device replace operation that replaces the device object associated
2924 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2926 mutex_lock(&fs_devices
->device_list_mutex
);
2927 for (i
= 0; i
< map
->num_stripes
; i
++) {
2928 struct btrfs_device
*device
= map
->stripes
[i
].dev
;
2929 ret
= btrfs_free_dev_extent(trans
, device
,
2930 map
->stripes
[i
].physical
,
2933 mutex_unlock(&fs_devices
->device_list_mutex
);
2934 btrfs_abort_transaction(trans
, ret
);
2938 if (device
->bytes_used
> 0) {
2939 mutex_lock(&fs_info
->chunk_mutex
);
2940 btrfs_device_set_bytes_used(device
,
2941 device
->bytes_used
- dev_extent_len
);
2942 atomic64_add(dev_extent_len
, &fs_info
->free_chunk_space
);
2943 btrfs_clear_space_info_full(fs_info
);
2944 mutex_unlock(&fs_info
->chunk_mutex
);
2947 if (map
->stripes
[i
].dev
) {
2948 ret
= btrfs_update_device(trans
, map
->stripes
[i
].dev
);
2950 mutex_unlock(&fs_devices
->device_list_mutex
);
2951 btrfs_abort_transaction(trans
, ret
);
2956 mutex_unlock(&fs_devices
->device_list_mutex
);
2958 ret
= btrfs_free_chunk(trans
, fs_info
, chunk_offset
);
2960 btrfs_abort_transaction(trans
, ret
);
2964 trace_btrfs_chunk_free(fs_info
, map
, chunk_offset
, em
->len
);
2966 if (map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
2967 ret
= btrfs_del_sys_chunk(fs_info
, chunk_offset
);
2969 btrfs_abort_transaction(trans
, ret
);
2974 ret
= btrfs_remove_block_group(trans
, fs_info
, chunk_offset
, em
);
2976 btrfs_abort_transaction(trans
, ret
);
2982 free_extent_map(em
);
2986 static int btrfs_relocate_chunk(struct btrfs_fs_info
*fs_info
, u64 chunk_offset
)
2988 struct btrfs_root
*root
= fs_info
->chunk_root
;
2989 struct btrfs_trans_handle
*trans
;
2993 * Prevent races with automatic removal of unused block groups.
2994 * After we relocate and before we remove the chunk with offset
2995 * chunk_offset, automatic removal of the block group can kick in,
2996 * resulting in a failure when calling btrfs_remove_chunk() below.
2998 * Make sure to acquire this mutex before doing a tree search (dev
2999 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3000 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3001 * we release the path used to search the chunk/dev tree and before
3002 * the current task acquires this mutex and calls us.
3004 ASSERT(mutex_is_locked(&fs_info
->delete_unused_bgs_mutex
));
3006 ret
= btrfs_can_relocate(fs_info
, chunk_offset
);
3010 /* step one, relocate all the extents inside this chunk */
3011 btrfs_scrub_pause(fs_info
);
3012 ret
= btrfs_relocate_block_group(fs_info
, chunk_offset
);
3013 btrfs_scrub_continue(fs_info
);
3017 trans
= btrfs_start_trans_remove_block_group(root
->fs_info
,
3019 if (IS_ERR(trans
)) {
3020 ret
= PTR_ERR(trans
);
3021 btrfs_handle_fs_error(root
->fs_info
, ret
, NULL
);
3026 * step two, delete the device extents and the
3027 * chunk tree entries
3029 ret
= btrfs_remove_chunk(trans
, fs_info
, chunk_offset
);
3030 btrfs_end_transaction(trans
);
3034 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info
*fs_info
)
3036 struct btrfs_root
*chunk_root
= fs_info
->chunk_root
;
3037 struct btrfs_path
*path
;
3038 struct extent_buffer
*leaf
;
3039 struct btrfs_chunk
*chunk
;
3040 struct btrfs_key key
;
3041 struct btrfs_key found_key
;
3043 bool retried
= false;
3047 path
= btrfs_alloc_path();
3052 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
3053 key
.offset
= (u64
)-1;
3054 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
3057 mutex_lock(&fs_info
->delete_unused_bgs_mutex
);
3058 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
3060 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3063 BUG_ON(ret
== 0); /* Corruption */
3065 ret
= btrfs_previous_item(chunk_root
, path
, key
.objectid
,
3068 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3074 leaf
= path
->nodes
[0];
3075 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
3077 chunk
= btrfs_item_ptr(leaf
, path
->slots
[0],
3078 struct btrfs_chunk
);
3079 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
3080 btrfs_release_path(path
);
3082 if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
3083 ret
= btrfs_relocate_chunk(fs_info
, found_key
.offset
);
3089 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3091 if (found_key
.offset
== 0)
3093 key
.offset
= found_key
.offset
- 1;
3096 if (failed
&& !retried
) {
3100 } else if (WARN_ON(failed
&& retried
)) {
3104 btrfs_free_path(path
);
3108 static int insert_balance_item(struct btrfs_fs_info
*fs_info
,
3109 struct btrfs_balance_control
*bctl
)
3111 struct btrfs_root
*root
= fs_info
->tree_root
;
3112 struct btrfs_trans_handle
*trans
;
3113 struct btrfs_balance_item
*item
;
3114 struct btrfs_disk_balance_args disk_bargs
;
3115 struct btrfs_path
*path
;
3116 struct extent_buffer
*leaf
;
3117 struct btrfs_key key
;
3120 path
= btrfs_alloc_path();
3124 trans
= btrfs_start_transaction(root
, 0);
3125 if (IS_ERR(trans
)) {
3126 btrfs_free_path(path
);
3127 return PTR_ERR(trans
);
3130 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
3131 key
.type
= BTRFS_TEMPORARY_ITEM_KEY
;
3134 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
3139 leaf
= path
->nodes
[0];
3140 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_balance_item
);
3142 memzero_extent_buffer(leaf
, (unsigned long)item
, sizeof(*item
));
3144 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->data
);
3145 btrfs_set_balance_data(leaf
, item
, &disk_bargs
);
3146 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->meta
);
3147 btrfs_set_balance_meta(leaf
, item
, &disk_bargs
);
3148 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->sys
);
3149 btrfs_set_balance_sys(leaf
, item
, &disk_bargs
);
3151 btrfs_set_balance_flags(leaf
, item
, bctl
->flags
);
3153 btrfs_mark_buffer_dirty(leaf
);
3155 btrfs_free_path(path
);
3156 err
= btrfs_commit_transaction(trans
);
3162 static int del_balance_item(struct btrfs_fs_info
*fs_info
)
3164 struct btrfs_root
*root
= fs_info
->tree_root
;
3165 struct btrfs_trans_handle
*trans
;
3166 struct btrfs_path
*path
;
3167 struct btrfs_key key
;
3170 path
= btrfs_alloc_path();
3174 trans
= btrfs_start_transaction(root
, 0);
3175 if (IS_ERR(trans
)) {
3176 btrfs_free_path(path
);
3177 return PTR_ERR(trans
);
3180 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
3181 key
.type
= BTRFS_TEMPORARY_ITEM_KEY
;
3184 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
3192 ret
= btrfs_del_item(trans
, root
, path
);
3194 btrfs_free_path(path
);
3195 err
= btrfs_commit_transaction(trans
);
3202 * This is a heuristic used to reduce the number of chunks balanced on
3203 * resume after balance was interrupted.
3205 static void update_balance_args(struct btrfs_balance_control
*bctl
)
3208 * Turn on soft mode for chunk types that were being converted.
3210 if (bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
3211 bctl
->data
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
3212 if (bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
3213 bctl
->sys
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
3214 if (bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
3215 bctl
->meta
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
3218 * Turn on usage filter if is not already used. The idea is
3219 * that chunks that we have already balanced should be
3220 * reasonably full. Don't do it for chunks that are being
3221 * converted - that will keep us from relocating unconverted
3222 * (albeit full) chunks.
3224 if (!(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3225 !(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3226 !(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
3227 bctl
->data
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
3228 bctl
->data
.usage
= 90;
3230 if (!(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3231 !(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3232 !(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
3233 bctl
->sys
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
3234 bctl
->sys
.usage
= 90;
3236 if (!(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3237 !(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3238 !(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
3239 bctl
->meta
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
3240 bctl
->meta
.usage
= 90;
3245 * Should be called with both balance and volume mutexes held to
3246 * serialize other volume operations (add_dev/rm_dev/resize) with
3247 * restriper. Same goes for unset_balance_control.
3249 static void set_balance_control(struct btrfs_balance_control
*bctl
)
3251 struct btrfs_fs_info
*fs_info
= bctl
->fs_info
;
3253 BUG_ON(fs_info
->balance_ctl
);
3255 spin_lock(&fs_info
->balance_lock
);
3256 fs_info
->balance_ctl
= bctl
;
3257 spin_unlock(&fs_info
->balance_lock
);
3260 static void unset_balance_control(struct btrfs_fs_info
*fs_info
)
3262 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3264 BUG_ON(!fs_info
->balance_ctl
);
3266 spin_lock(&fs_info
->balance_lock
);
3267 fs_info
->balance_ctl
= NULL
;
3268 spin_unlock(&fs_info
->balance_lock
);
3274 * Balance filters. Return 1 if chunk should be filtered out
3275 * (should not be balanced).
3277 static int chunk_profiles_filter(u64 chunk_type
,
3278 struct btrfs_balance_args
*bargs
)
3280 chunk_type
= chunk_to_extended(chunk_type
) &
3281 BTRFS_EXTENDED_PROFILE_MASK
;
3283 if (bargs
->profiles
& chunk_type
)
3289 static int chunk_usage_range_filter(struct btrfs_fs_info
*fs_info
, u64 chunk_offset
,
3290 struct btrfs_balance_args
*bargs
)
3292 struct btrfs_block_group_cache
*cache
;
3294 u64 user_thresh_min
;
3295 u64 user_thresh_max
;
3298 cache
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
3299 chunk_used
= btrfs_block_group_used(&cache
->item
);
3301 if (bargs
->usage_min
== 0)
3302 user_thresh_min
= 0;
3304 user_thresh_min
= div_factor_fine(cache
->key
.offset
,
3307 if (bargs
->usage_max
== 0)
3308 user_thresh_max
= 1;
3309 else if (bargs
->usage_max
> 100)
3310 user_thresh_max
= cache
->key
.offset
;
3312 user_thresh_max
= div_factor_fine(cache
->key
.offset
,
3315 if (user_thresh_min
<= chunk_used
&& chunk_used
< user_thresh_max
)
3318 btrfs_put_block_group(cache
);
3322 static int chunk_usage_filter(struct btrfs_fs_info
*fs_info
,
3323 u64 chunk_offset
, struct btrfs_balance_args
*bargs
)
3325 struct btrfs_block_group_cache
*cache
;
3326 u64 chunk_used
, user_thresh
;
3329 cache
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
3330 chunk_used
= btrfs_block_group_used(&cache
->item
);
3332 if (bargs
->usage_min
== 0)
3334 else if (bargs
->usage
> 100)
3335 user_thresh
= cache
->key
.offset
;
3337 user_thresh
= div_factor_fine(cache
->key
.offset
,
3340 if (chunk_used
< user_thresh
)
3343 btrfs_put_block_group(cache
);
3347 static int chunk_devid_filter(struct extent_buffer
*leaf
,
3348 struct btrfs_chunk
*chunk
,
3349 struct btrfs_balance_args
*bargs
)
3351 struct btrfs_stripe
*stripe
;
3352 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3355 for (i
= 0; i
< num_stripes
; i
++) {
3356 stripe
= btrfs_stripe_nr(chunk
, i
);
3357 if (btrfs_stripe_devid(leaf
, stripe
) == bargs
->devid
)
3364 /* [pstart, pend) */
3365 static int chunk_drange_filter(struct extent_buffer
*leaf
,
3366 struct btrfs_chunk
*chunk
,
3367 struct btrfs_balance_args
*bargs
)
3369 struct btrfs_stripe
*stripe
;
3370 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3376 if (!(bargs
->flags
& BTRFS_BALANCE_ARGS_DEVID
))
3379 if (btrfs_chunk_type(leaf
, chunk
) & (BTRFS_BLOCK_GROUP_DUP
|
3380 BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID10
)) {
3381 factor
= num_stripes
/ 2;
3382 } else if (btrfs_chunk_type(leaf
, chunk
) & BTRFS_BLOCK_GROUP_RAID5
) {
3383 factor
= num_stripes
- 1;
3384 } else if (btrfs_chunk_type(leaf
, chunk
) & BTRFS_BLOCK_GROUP_RAID6
) {
3385 factor
= num_stripes
- 2;
3387 factor
= num_stripes
;
3390 for (i
= 0; i
< num_stripes
; i
++) {
3391 stripe
= btrfs_stripe_nr(chunk
, i
);
3392 if (btrfs_stripe_devid(leaf
, stripe
) != bargs
->devid
)
3395 stripe_offset
= btrfs_stripe_offset(leaf
, stripe
);
3396 stripe_length
= btrfs_chunk_length(leaf
, chunk
);
3397 stripe_length
= div_u64(stripe_length
, factor
);
3399 if (stripe_offset
< bargs
->pend
&&
3400 stripe_offset
+ stripe_length
> bargs
->pstart
)
3407 /* [vstart, vend) */
3408 static int chunk_vrange_filter(struct extent_buffer
*leaf
,
3409 struct btrfs_chunk
*chunk
,
3411 struct btrfs_balance_args
*bargs
)
3413 if (chunk_offset
< bargs
->vend
&&
3414 chunk_offset
+ btrfs_chunk_length(leaf
, chunk
) > bargs
->vstart
)
3415 /* at least part of the chunk is inside this vrange */
3421 static int chunk_stripes_range_filter(struct extent_buffer
*leaf
,
3422 struct btrfs_chunk
*chunk
,
3423 struct btrfs_balance_args
*bargs
)
3425 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3427 if (bargs
->stripes_min
<= num_stripes
3428 && num_stripes
<= bargs
->stripes_max
)
3434 static int chunk_soft_convert_filter(u64 chunk_type
,
3435 struct btrfs_balance_args
*bargs
)
3437 if (!(bargs
->flags
& BTRFS_BALANCE_ARGS_CONVERT
))
3440 chunk_type
= chunk_to_extended(chunk_type
) &
3441 BTRFS_EXTENDED_PROFILE_MASK
;
3443 if (bargs
->target
== chunk_type
)
3449 static int should_balance_chunk(struct btrfs_fs_info
*fs_info
,
3450 struct extent_buffer
*leaf
,
3451 struct btrfs_chunk
*chunk
, u64 chunk_offset
)
3453 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3454 struct btrfs_balance_args
*bargs
= NULL
;
3455 u64 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
3458 if (!((chunk_type
& BTRFS_BLOCK_GROUP_TYPE_MASK
) &
3459 (bctl
->flags
& BTRFS_BALANCE_TYPE_MASK
))) {
3463 if (chunk_type
& BTRFS_BLOCK_GROUP_DATA
)
3464 bargs
= &bctl
->data
;
3465 else if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
)
3467 else if (chunk_type
& BTRFS_BLOCK_GROUP_METADATA
)
3468 bargs
= &bctl
->meta
;
3470 /* profiles filter */
3471 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_PROFILES
) &&
3472 chunk_profiles_filter(chunk_type
, bargs
)) {
3477 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3478 chunk_usage_filter(fs_info
, chunk_offset
, bargs
)) {
3480 } else if ((bargs
->flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3481 chunk_usage_range_filter(fs_info
, chunk_offset
, bargs
)) {
3486 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_DEVID
) &&
3487 chunk_devid_filter(leaf
, chunk
, bargs
)) {
3491 /* drange filter, makes sense only with devid filter */
3492 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_DRANGE
) &&
3493 chunk_drange_filter(leaf
, chunk
, bargs
)) {
3498 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_VRANGE
) &&
3499 chunk_vrange_filter(leaf
, chunk
, chunk_offset
, bargs
)) {
3503 /* stripes filter */
3504 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_STRIPES_RANGE
) &&
3505 chunk_stripes_range_filter(leaf
, chunk
, bargs
)) {
3509 /* soft profile changing mode */
3510 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_SOFT
) &&
3511 chunk_soft_convert_filter(chunk_type
, bargs
)) {
3516 * limited by count, must be the last filter
3518 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_LIMIT
)) {
3519 if (bargs
->limit
== 0)
3523 } else if ((bargs
->flags
& BTRFS_BALANCE_ARGS_LIMIT_RANGE
)) {
3525 * Same logic as the 'limit' filter; the minimum cannot be
3526 * determined here because we do not have the global information
3527 * about the count of all chunks that satisfy the filters.
3529 if (bargs
->limit_max
== 0)
3538 static int __btrfs_balance(struct btrfs_fs_info
*fs_info
)
3540 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3541 struct btrfs_root
*chunk_root
= fs_info
->chunk_root
;
3542 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
3543 struct list_head
*devices
;
3544 struct btrfs_device
*device
;
3548 struct btrfs_chunk
*chunk
;
3549 struct btrfs_path
*path
= NULL
;
3550 struct btrfs_key key
;
3551 struct btrfs_key found_key
;
3552 struct btrfs_trans_handle
*trans
;
3553 struct extent_buffer
*leaf
;
3556 int enospc_errors
= 0;
3557 bool counting
= true;
3558 /* The single value limit and min/max limits use the same bytes in the */
3559 u64 limit_data
= bctl
->data
.limit
;
3560 u64 limit_meta
= bctl
->meta
.limit
;
3561 u64 limit_sys
= bctl
->sys
.limit
;
3565 int chunk_reserved
= 0;
3568 /* step one make some room on all the devices */
3569 devices
= &fs_info
->fs_devices
->devices
;
3570 list_for_each_entry(device
, devices
, dev_list
) {
3571 old_size
= btrfs_device_get_total_bytes(device
);
3572 size_to_free
= div_factor(old_size
, 1);
3573 size_to_free
= min_t(u64
, size_to_free
, SZ_1M
);
3574 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
) ||
3575 btrfs_device_get_total_bytes(device
) -
3576 btrfs_device_get_bytes_used(device
) > size_to_free
||
3577 test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
))
3580 ret
= btrfs_shrink_device(device
, old_size
- size_to_free
);
3584 /* btrfs_shrink_device never returns ret > 0 */
3589 trans
= btrfs_start_transaction(dev_root
, 0);
3590 if (IS_ERR(trans
)) {
3591 ret
= PTR_ERR(trans
);
3592 btrfs_info_in_rcu(fs_info
,
3593 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3594 rcu_str_deref(device
->name
), ret
,
3595 old_size
, old_size
- size_to_free
);
3599 ret
= btrfs_grow_device(trans
, device
, old_size
);
3601 btrfs_end_transaction(trans
);
3602 /* btrfs_grow_device never returns ret > 0 */
3604 btrfs_info_in_rcu(fs_info
,
3605 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3606 rcu_str_deref(device
->name
), ret
,
3607 old_size
, old_size
- size_to_free
);
3611 btrfs_end_transaction(trans
);
3614 /* step two, relocate all the chunks */
3615 path
= btrfs_alloc_path();
3621 /* zero out stat counters */
3622 spin_lock(&fs_info
->balance_lock
);
3623 memset(&bctl
->stat
, 0, sizeof(bctl
->stat
));
3624 spin_unlock(&fs_info
->balance_lock
);
3628 * The single value limit and min/max limits use the same bytes
3631 bctl
->data
.limit
= limit_data
;
3632 bctl
->meta
.limit
= limit_meta
;
3633 bctl
->sys
.limit
= limit_sys
;
3635 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
3636 key
.offset
= (u64
)-1;
3637 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
3640 if ((!counting
&& atomic_read(&fs_info
->balance_pause_req
)) ||
3641 atomic_read(&fs_info
->balance_cancel_req
)) {
3646 mutex_lock(&fs_info
->delete_unused_bgs_mutex
);
3647 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
3649 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3654 * this shouldn't happen, it means the last relocate
3658 BUG(); /* FIXME break ? */
3660 ret
= btrfs_previous_item(chunk_root
, path
, 0,
3661 BTRFS_CHUNK_ITEM_KEY
);
3663 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3668 leaf
= path
->nodes
[0];
3669 slot
= path
->slots
[0];
3670 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3672 if (found_key
.objectid
!= key
.objectid
) {
3673 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3677 chunk
= btrfs_item_ptr(leaf
, slot
, struct btrfs_chunk
);
3678 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
3681 spin_lock(&fs_info
->balance_lock
);
3682 bctl
->stat
.considered
++;
3683 spin_unlock(&fs_info
->balance_lock
);
3686 ret
= should_balance_chunk(fs_info
, leaf
, chunk
,
3689 btrfs_release_path(path
);
3691 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3696 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3697 spin_lock(&fs_info
->balance_lock
);
3698 bctl
->stat
.expected
++;
3699 spin_unlock(&fs_info
->balance_lock
);
3701 if (chunk_type
& BTRFS_BLOCK_GROUP_DATA
)
3703 else if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
)
3705 else if (chunk_type
& BTRFS_BLOCK_GROUP_METADATA
)
3712 * Apply limit_min filter, no need to check if the LIMITS
3713 * filter is used, limit_min is 0 by default
3715 if (((chunk_type
& BTRFS_BLOCK_GROUP_DATA
) &&
3716 count_data
< bctl
->data
.limit_min
)
3717 || ((chunk_type
& BTRFS_BLOCK_GROUP_METADATA
) &&
3718 count_meta
< bctl
->meta
.limit_min
)
3719 || ((chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
) &&
3720 count_sys
< bctl
->sys
.limit_min
)) {
3721 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3725 ASSERT(fs_info
->data_sinfo
);
3726 spin_lock(&fs_info
->data_sinfo
->lock
);
3727 bytes_used
= fs_info
->data_sinfo
->bytes_used
;
3728 spin_unlock(&fs_info
->data_sinfo
->lock
);
3730 if ((chunk_type
& BTRFS_BLOCK_GROUP_DATA
) &&
3731 !chunk_reserved
&& !bytes_used
) {
3732 trans
= btrfs_start_transaction(chunk_root
, 0);
3733 if (IS_ERR(trans
)) {
3734 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3735 ret
= PTR_ERR(trans
);
3739 ret
= btrfs_force_chunk_alloc(trans
, fs_info
,
3740 BTRFS_BLOCK_GROUP_DATA
);
3741 btrfs_end_transaction(trans
);
3743 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3749 ret
= btrfs_relocate_chunk(fs_info
, found_key
.offset
);
3750 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3751 if (ret
&& ret
!= -ENOSPC
)
3753 if (ret
== -ENOSPC
) {
3756 spin_lock(&fs_info
->balance_lock
);
3757 bctl
->stat
.completed
++;
3758 spin_unlock(&fs_info
->balance_lock
);
3761 if (found_key
.offset
== 0)
3763 key
.offset
= found_key
.offset
- 1;
3767 btrfs_release_path(path
);
3772 btrfs_free_path(path
);
3773 if (enospc_errors
) {
3774 btrfs_info(fs_info
, "%d enospc errors during balance",
3784 * alloc_profile_is_valid - see if a given profile is valid and reduced
3785 * @flags: profile to validate
3786 * @extended: if true @flags is treated as an extended profile
3788 static int alloc_profile_is_valid(u64 flags
, int extended
)
3790 u64 mask
= (extended
? BTRFS_EXTENDED_PROFILE_MASK
:
3791 BTRFS_BLOCK_GROUP_PROFILE_MASK
);
3793 flags
&= ~BTRFS_BLOCK_GROUP_TYPE_MASK
;
3795 /* 1) check that all other bits are zeroed */
3799 /* 2) see if profile is reduced */
3801 return !extended
; /* "0" is valid for usual profiles */
3803 /* true if exactly one bit set */
3804 return (flags
& (flags
- 1)) == 0;
3807 static inline int balance_need_close(struct btrfs_fs_info
*fs_info
)
3809 /* cancel requested || normal exit path */
3810 return atomic_read(&fs_info
->balance_cancel_req
) ||
3811 (atomic_read(&fs_info
->balance_pause_req
) == 0 &&
3812 atomic_read(&fs_info
->balance_cancel_req
) == 0);
3815 static void __cancel_balance(struct btrfs_fs_info
*fs_info
)
3819 unset_balance_control(fs_info
);
3820 ret
= del_balance_item(fs_info
);
3822 btrfs_handle_fs_error(fs_info
, ret
, NULL
);
3824 clear_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
);
3827 /* Non-zero return value signifies invalidity */
3828 static inline int validate_convert_profile(struct btrfs_balance_args
*bctl_arg
,
3831 return ((bctl_arg
->flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3832 (!alloc_profile_is_valid(bctl_arg
->target
, 1) ||
3833 (bctl_arg
->target
& ~allowed
)));
3837 * Should be called with both balance and volume mutexes held
3839 int btrfs_balance(struct btrfs_balance_control
*bctl
,
3840 struct btrfs_ioctl_balance_args
*bargs
)
3842 struct btrfs_fs_info
*fs_info
= bctl
->fs_info
;
3843 u64 meta_target
, data_target
;
3850 if (btrfs_fs_closing(fs_info
) ||
3851 atomic_read(&fs_info
->balance_pause_req
) ||
3852 atomic_read(&fs_info
->balance_cancel_req
)) {
3857 allowed
= btrfs_super_incompat_flags(fs_info
->super_copy
);
3858 if (allowed
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
)
3862 * In case of mixed groups both data and meta should be picked,
3863 * and identical options should be given for both of them.
3865 allowed
= BTRFS_BALANCE_DATA
| BTRFS_BALANCE_METADATA
;
3866 if (mixed
&& (bctl
->flags
& allowed
)) {
3867 if (!(bctl
->flags
& BTRFS_BALANCE_DATA
) ||
3868 !(bctl
->flags
& BTRFS_BALANCE_METADATA
) ||
3869 memcmp(&bctl
->data
, &bctl
->meta
, sizeof(bctl
->data
))) {
3871 "with mixed groups data and metadata balance options must be the same");
3877 num_devices
= fs_info
->fs_devices
->num_devices
;
3878 btrfs_dev_replace_lock(&fs_info
->dev_replace
, 0);
3879 if (btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
)) {
3880 BUG_ON(num_devices
< 1);
3883 btrfs_dev_replace_unlock(&fs_info
->dev_replace
, 0);
3884 allowed
= BTRFS_AVAIL_ALLOC_BIT_SINGLE
| BTRFS_BLOCK_GROUP_DUP
;
3885 if (num_devices
> 1)
3886 allowed
|= (BTRFS_BLOCK_GROUP_RAID0
| BTRFS_BLOCK_GROUP_RAID1
);
3887 if (num_devices
> 2)
3888 allowed
|= BTRFS_BLOCK_GROUP_RAID5
;
3889 if (num_devices
> 3)
3890 allowed
|= (BTRFS_BLOCK_GROUP_RAID10
|
3891 BTRFS_BLOCK_GROUP_RAID6
);
3892 if (validate_convert_profile(&bctl
->data
, allowed
)) {
3894 "unable to start balance with target data profile %llu",
3899 if (validate_convert_profile(&bctl
->meta
, allowed
)) {
3901 "unable to start balance with target metadata profile %llu",
3906 if (validate_convert_profile(&bctl
->sys
, allowed
)) {
3908 "unable to start balance with target system profile %llu",
3914 /* allow to reduce meta or sys integrity only if force set */
3915 allowed
= BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
|
3916 BTRFS_BLOCK_GROUP_RAID10
|
3917 BTRFS_BLOCK_GROUP_RAID5
|
3918 BTRFS_BLOCK_GROUP_RAID6
;
3920 seq
= read_seqbegin(&fs_info
->profiles_lock
);
3922 if (((bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3923 (fs_info
->avail_system_alloc_bits
& allowed
) &&
3924 !(bctl
->sys
.target
& allowed
)) ||
3925 ((bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3926 (fs_info
->avail_metadata_alloc_bits
& allowed
) &&
3927 !(bctl
->meta
.target
& allowed
))) {
3928 if (bctl
->flags
& BTRFS_BALANCE_FORCE
) {
3930 "force reducing metadata integrity");
3933 "balance will reduce metadata integrity, use force if you want this");
3938 } while (read_seqretry(&fs_info
->profiles_lock
, seq
));
3940 /* if we're not converting, the target field is uninitialized */
3941 meta_target
= (bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) ?
3942 bctl
->meta
.target
: fs_info
->avail_metadata_alloc_bits
;
3943 data_target
= (bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) ?
3944 bctl
->data
.target
: fs_info
->avail_data_alloc_bits
;
3945 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target
) <
3946 btrfs_get_num_tolerated_disk_barrier_failures(data_target
)) {
3948 "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3949 meta_target
, data_target
);
3952 ret
= insert_balance_item(fs_info
, bctl
);
3953 if (ret
&& ret
!= -EEXIST
)
3956 if (!(bctl
->flags
& BTRFS_BALANCE_RESUME
)) {
3957 BUG_ON(ret
== -EEXIST
);
3958 set_balance_control(bctl
);
3960 BUG_ON(ret
!= -EEXIST
);
3961 spin_lock(&fs_info
->balance_lock
);
3962 update_balance_args(bctl
);
3963 spin_unlock(&fs_info
->balance_lock
);
3966 atomic_inc(&fs_info
->balance_running
);
3967 mutex_unlock(&fs_info
->balance_mutex
);
3969 ret
= __btrfs_balance(fs_info
);
3971 mutex_lock(&fs_info
->balance_mutex
);
3972 atomic_dec(&fs_info
->balance_running
);
3975 memset(bargs
, 0, sizeof(*bargs
));
3976 update_ioctl_balance_args(fs_info
, 0, bargs
);
3979 if ((ret
&& ret
!= -ECANCELED
&& ret
!= -ENOSPC
) ||
3980 balance_need_close(fs_info
)) {
3981 __cancel_balance(fs_info
);
3984 wake_up(&fs_info
->balance_wait_q
);
3988 if (bctl
->flags
& BTRFS_BALANCE_RESUME
)
3989 __cancel_balance(fs_info
);
3992 clear_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
);
3997 static int balance_kthread(void *data
)
3999 struct btrfs_fs_info
*fs_info
= data
;
4002 mutex_lock(&fs_info
->volume_mutex
);
4003 mutex_lock(&fs_info
->balance_mutex
);
4005 if (fs_info
->balance_ctl
) {
4006 btrfs_info(fs_info
, "continuing balance");
4007 ret
= btrfs_balance(fs_info
->balance_ctl
, NULL
);
4010 mutex_unlock(&fs_info
->balance_mutex
);
4011 mutex_unlock(&fs_info
->volume_mutex
);
4016 int btrfs_resume_balance_async(struct btrfs_fs_info
*fs_info
)
4018 struct task_struct
*tsk
;
4020 spin_lock(&fs_info
->balance_lock
);
4021 if (!fs_info
->balance_ctl
) {
4022 spin_unlock(&fs_info
->balance_lock
);
4025 spin_unlock(&fs_info
->balance_lock
);
4027 if (btrfs_test_opt(fs_info
, SKIP_BALANCE
)) {
4028 btrfs_info(fs_info
, "force skipping balance");
4032 tsk
= kthread_run(balance_kthread
, fs_info
, "btrfs-balance");
4033 return PTR_ERR_OR_ZERO(tsk
);
4036 int btrfs_recover_balance(struct btrfs_fs_info
*fs_info
)
4038 struct btrfs_balance_control
*bctl
;
4039 struct btrfs_balance_item
*item
;
4040 struct btrfs_disk_balance_args disk_bargs
;
4041 struct btrfs_path
*path
;
4042 struct extent_buffer
*leaf
;
4043 struct btrfs_key key
;
4046 path
= btrfs_alloc_path();
4050 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
4051 key
.type
= BTRFS_TEMPORARY_ITEM_KEY
;
4054 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
4057 if (ret
> 0) { /* ret = -ENOENT; */
4062 bctl
= kzalloc(sizeof(*bctl
), GFP_NOFS
);
4068 leaf
= path
->nodes
[0];
4069 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_balance_item
);
4071 bctl
->fs_info
= fs_info
;
4072 bctl
->flags
= btrfs_balance_flags(leaf
, item
);
4073 bctl
->flags
|= BTRFS_BALANCE_RESUME
;
4075 btrfs_balance_data(leaf
, item
, &disk_bargs
);
4076 btrfs_disk_balance_args_to_cpu(&bctl
->data
, &disk_bargs
);
4077 btrfs_balance_meta(leaf
, item
, &disk_bargs
);
4078 btrfs_disk_balance_args_to_cpu(&bctl
->meta
, &disk_bargs
);
4079 btrfs_balance_sys(leaf
, item
, &disk_bargs
);
4080 btrfs_disk_balance_args_to_cpu(&bctl
->sys
, &disk_bargs
);
4082 WARN_ON(test_and_set_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
));
4084 mutex_lock(&fs_info
->volume_mutex
);
4085 mutex_lock(&fs_info
->balance_mutex
);
4087 set_balance_control(bctl
);
4089 mutex_unlock(&fs_info
->balance_mutex
);
4090 mutex_unlock(&fs_info
->volume_mutex
);
4092 btrfs_free_path(path
);
4096 int btrfs_pause_balance(struct btrfs_fs_info
*fs_info
)
4100 mutex_lock(&fs_info
->balance_mutex
);
4101 if (!fs_info
->balance_ctl
) {
4102 mutex_unlock(&fs_info
->balance_mutex
);
4106 if (atomic_read(&fs_info
->balance_running
)) {
4107 atomic_inc(&fs_info
->balance_pause_req
);
4108 mutex_unlock(&fs_info
->balance_mutex
);
4110 wait_event(fs_info
->balance_wait_q
,
4111 atomic_read(&fs_info
->balance_running
) == 0);
4113 mutex_lock(&fs_info
->balance_mutex
);
4114 /* we are good with balance_ctl ripped off from under us */
4115 BUG_ON(atomic_read(&fs_info
->balance_running
));
4116 atomic_dec(&fs_info
->balance_pause_req
);
4121 mutex_unlock(&fs_info
->balance_mutex
);
4125 int btrfs_cancel_balance(struct btrfs_fs_info
*fs_info
)
4127 if (sb_rdonly(fs_info
->sb
))
4130 mutex_lock(&fs_info
->balance_mutex
);
4131 if (!fs_info
->balance_ctl
) {
4132 mutex_unlock(&fs_info
->balance_mutex
);
4136 atomic_inc(&fs_info
->balance_cancel_req
);
4138 * if we are running just wait and return, balance item is
4139 * deleted in btrfs_balance in this case
4141 if (atomic_read(&fs_info
->balance_running
)) {
4142 mutex_unlock(&fs_info
->balance_mutex
);
4143 wait_event(fs_info
->balance_wait_q
,
4144 atomic_read(&fs_info
->balance_running
) == 0);
4145 mutex_lock(&fs_info
->balance_mutex
);
4147 /* __cancel_balance needs volume_mutex */
4148 mutex_unlock(&fs_info
->balance_mutex
);
4149 mutex_lock(&fs_info
->volume_mutex
);
4150 mutex_lock(&fs_info
->balance_mutex
);
4152 if (fs_info
->balance_ctl
)
4153 __cancel_balance(fs_info
);
4155 mutex_unlock(&fs_info
->volume_mutex
);
4158 BUG_ON(fs_info
->balance_ctl
|| atomic_read(&fs_info
->balance_running
));
4159 atomic_dec(&fs_info
->balance_cancel_req
);
4160 mutex_unlock(&fs_info
->balance_mutex
);
4164 static int btrfs_uuid_scan_kthread(void *data
)
4166 struct btrfs_fs_info
*fs_info
= data
;
4167 struct btrfs_root
*root
= fs_info
->tree_root
;
4168 struct btrfs_key key
;
4169 struct btrfs_path
*path
= NULL
;
4171 struct extent_buffer
*eb
;
4173 struct btrfs_root_item root_item
;
4175 struct btrfs_trans_handle
*trans
= NULL
;
4177 path
= btrfs_alloc_path();
4184 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4188 ret
= btrfs_search_forward(root
, &key
, path
, 0);
4195 if (key
.type
!= BTRFS_ROOT_ITEM_KEY
||
4196 (key
.objectid
< BTRFS_FIRST_FREE_OBJECTID
&&
4197 key
.objectid
!= BTRFS_FS_TREE_OBJECTID
) ||
4198 key
.objectid
> BTRFS_LAST_FREE_OBJECTID
)
4201 eb
= path
->nodes
[0];
4202 slot
= path
->slots
[0];
4203 item_size
= btrfs_item_size_nr(eb
, slot
);
4204 if (item_size
< sizeof(root_item
))
4207 read_extent_buffer(eb
, &root_item
,
4208 btrfs_item_ptr_offset(eb
, slot
),
4209 (int)sizeof(root_item
));
4210 if (btrfs_root_refs(&root_item
) == 0)
4213 if (!btrfs_is_empty_uuid(root_item
.uuid
) ||
4214 !btrfs_is_empty_uuid(root_item
.received_uuid
)) {
4218 btrfs_release_path(path
);
4220 * 1 - subvol uuid item
4221 * 1 - received_subvol uuid item
4223 trans
= btrfs_start_transaction(fs_info
->uuid_root
, 2);
4224 if (IS_ERR(trans
)) {
4225 ret
= PTR_ERR(trans
);
4233 if (!btrfs_is_empty_uuid(root_item
.uuid
)) {
4234 ret
= btrfs_uuid_tree_add(trans
, fs_info
,
4236 BTRFS_UUID_KEY_SUBVOL
,
4239 btrfs_warn(fs_info
, "uuid_tree_add failed %d",
4245 if (!btrfs_is_empty_uuid(root_item
.received_uuid
)) {
4246 ret
= btrfs_uuid_tree_add(trans
, fs_info
,
4247 root_item
.received_uuid
,
4248 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
4251 btrfs_warn(fs_info
, "uuid_tree_add failed %d",
4259 ret
= btrfs_end_transaction(trans
);
4265 btrfs_release_path(path
);
4266 if (key
.offset
< (u64
)-1) {
4268 } else if (key
.type
< BTRFS_ROOT_ITEM_KEY
) {
4270 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4271 } else if (key
.objectid
< (u64
)-1) {
4273 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4282 btrfs_free_path(path
);
4283 if (trans
&& !IS_ERR(trans
))
4284 btrfs_end_transaction(trans
);
4286 btrfs_warn(fs_info
, "btrfs_uuid_scan_kthread failed %d", ret
);
4288 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN
, &fs_info
->flags
);
4289 up(&fs_info
->uuid_tree_rescan_sem
);
4294 * Callback for btrfs_uuid_tree_iterate().
4296 * 0 check succeeded, the entry is not outdated.
4297 * < 0 if an error occurred.
4298 * > 0 if the check failed, which means the caller shall remove the entry.
4300 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info
*fs_info
,
4301 u8
*uuid
, u8 type
, u64 subid
)
4303 struct btrfs_key key
;
4305 struct btrfs_root
*subvol_root
;
4307 if (type
!= BTRFS_UUID_KEY_SUBVOL
&&
4308 type
!= BTRFS_UUID_KEY_RECEIVED_SUBVOL
)
4311 key
.objectid
= subid
;
4312 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4313 key
.offset
= (u64
)-1;
4314 subvol_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
4315 if (IS_ERR(subvol_root
)) {
4316 ret
= PTR_ERR(subvol_root
);
4323 case BTRFS_UUID_KEY_SUBVOL
:
4324 if (memcmp(uuid
, subvol_root
->root_item
.uuid
, BTRFS_UUID_SIZE
))
4327 case BTRFS_UUID_KEY_RECEIVED_SUBVOL
:
4328 if (memcmp(uuid
, subvol_root
->root_item
.received_uuid
,
4338 static int btrfs_uuid_rescan_kthread(void *data
)
4340 struct btrfs_fs_info
*fs_info
= (struct btrfs_fs_info
*)data
;
4344 * 1st step is to iterate through the existing UUID tree and
4345 * to delete all entries that contain outdated data.
4346 * 2nd step is to add all missing entries to the UUID tree.
4348 ret
= btrfs_uuid_tree_iterate(fs_info
, btrfs_check_uuid_tree_entry
);
4350 btrfs_warn(fs_info
, "iterating uuid_tree failed %d", ret
);
4351 up(&fs_info
->uuid_tree_rescan_sem
);
4354 return btrfs_uuid_scan_kthread(data
);
4357 int btrfs_create_uuid_tree(struct btrfs_fs_info
*fs_info
)
4359 struct btrfs_trans_handle
*trans
;
4360 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
4361 struct btrfs_root
*uuid_root
;
4362 struct task_struct
*task
;
4369 trans
= btrfs_start_transaction(tree_root
, 2);
4371 return PTR_ERR(trans
);
4373 uuid_root
= btrfs_create_tree(trans
, fs_info
,
4374 BTRFS_UUID_TREE_OBJECTID
);
4375 if (IS_ERR(uuid_root
)) {
4376 ret
= PTR_ERR(uuid_root
);
4377 btrfs_abort_transaction(trans
, ret
);
4378 btrfs_end_transaction(trans
);
4382 fs_info
->uuid_root
= uuid_root
;
4384 ret
= btrfs_commit_transaction(trans
);
4388 down(&fs_info
->uuid_tree_rescan_sem
);
4389 task
= kthread_run(btrfs_uuid_scan_kthread
, fs_info
, "btrfs-uuid");
4391 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4392 btrfs_warn(fs_info
, "failed to start uuid_scan task");
4393 up(&fs_info
->uuid_tree_rescan_sem
);
4394 return PTR_ERR(task
);
4400 int btrfs_check_uuid_tree(struct btrfs_fs_info
*fs_info
)
4402 struct task_struct
*task
;
4404 down(&fs_info
->uuid_tree_rescan_sem
);
4405 task
= kthread_run(btrfs_uuid_rescan_kthread
, fs_info
, "btrfs-uuid");
4407 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4408 btrfs_warn(fs_info
, "failed to start uuid_rescan task");
4409 up(&fs_info
->uuid_tree_rescan_sem
);
4410 return PTR_ERR(task
);
4417 * shrinking a device means finding all of the device extents past
4418 * the new size, and then following the back refs to the chunks.
4419 * The chunk relocation code actually frees the device extent
4421 int btrfs_shrink_device(struct btrfs_device
*device
, u64 new_size
)
4423 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
4424 struct btrfs_root
*root
= fs_info
->dev_root
;
4425 struct btrfs_trans_handle
*trans
;
4426 struct btrfs_dev_extent
*dev_extent
= NULL
;
4427 struct btrfs_path
*path
;
4433 bool retried
= false;
4434 bool checked_pending_chunks
= false;
4435 struct extent_buffer
*l
;
4436 struct btrfs_key key
;
4437 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
4438 u64 old_total
= btrfs_super_total_bytes(super_copy
);
4439 u64 old_size
= btrfs_device_get_total_bytes(device
);
4442 new_size
= round_down(new_size
, fs_info
->sectorsize
);
4443 diff
= round_down(old_size
- new_size
, fs_info
->sectorsize
);
4445 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
))
4448 path
= btrfs_alloc_path();
4452 path
->reada
= READA_FORWARD
;
4454 mutex_lock(&fs_info
->chunk_mutex
);
4456 btrfs_device_set_total_bytes(device
, new_size
);
4457 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
)) {
4458 device
->fs_devices
->total_rw_bytes
-= diff
;
4459 atomic64_sub(diff
, &fs_info
->free_chunk_space
);
4461 mutex_unlock(&fs_info
->chunk_mutex
);
4464 key
.objectid
= device
->devid
;
4465 key
.offset
= (u64
)-1;
4466 key
.type
= BTRFS_DEV_EXTENT_KEY
;
4469 mutex_lock(&fs_info
->delete_unused_bgs_mutex
);
4470 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4472 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4476 ret
= btrfs_previous_item(root
, path
, 0, key
.type
);
4478 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4483 btrfs_release_path(path
);
4488 slot
= path
->slots
[0];
4489 btrfs_item_key_to_cpu(l
, &key
, path
->slots
[0]);
4491 if (key
.objectid
!= device
->devid
) {
4492 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4493 btrfs_release_path(path
);
4497 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
4498 length
= btrfs_dev_extent_length(l
, dev_extent
);
4500 if (key
.offset
+ length
<= new_size
) {
4501 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4502 btrfs_release_path(path
);
4506 chunk_offset
= btrfs_dev_extent_chunk_offset(l
, dev_extent
);
4507 btrfs_release_path(path
);
4509 ret
= btrfs_relocate_chunk(fs_info
, chunk_offset
);
4510 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4511 if (ret
&& ret
!= -ENOSPC
)
4515 } while (key
.offset
-- > 0);
4517 if (failed
&& !retried
) {
4521 } else if (failed
&& retried
) {
4526 /* Shrinking succeeded, else we would be at "done". */
4527 trans
= btrfs_start_transaction(root
, 0);
4528 if (IS_ERR(trans
)) {
4529 ret
= PTR_ERR(trans
);
4533 mutex_lock(&fs_info
->chunk_mutex
);
4536 * We checked in the above loop all device extents that were already in
4537 * the device tree. However before we have updated the device's
4538 * total_bytes to the new size, we might have had chunk allocations that
4539 * have not complete yet (new block groups attached to transaction
4540 * handles), and therefore their device extents were not yet in the
4541 * device tree and we missed them in the loop above. So if we have any
4542 * pending chunk using a device extent that overlaps the device range
4543 * that we can not use anymore, commit the current transaction and
4544 * repeat the search on the device tree - this way we guarantee we will
4545 * not have chunks using device extents that end beyond 'new_size'.
4547 if (!checked_pending_chunks
) {
4548 u64 start
= new_size
;
4549 u64 len
= old_size
- new_size
;
4551 if (contains_pending_extent(trans
->transaction
, device
,
4553 mutex_unlock(&fs_info
->chunk_mutex
);
4554 checked_pending_chunks
= true;
4557 ret
= btrfs_commit_transaction(trans
);
4564 btrfs_device_set_disk_total_bytes(device
, new_size
);
4565 if (list_empty(&device
->resized_list
))
4566 list_add_tail(&device
->resized_list
,
4567 &fs_info
->fs_devices
->resized_devices
);
4569 WARN_ON(diff
> old_total
);
4570 btrfs_set_super_total_bytes(super_copy
,
4571 round_down(old_total
- diff
, fs_info
->sectorsize
));
4572 mutex_unlock(&fs_info
->chunk_mutex
);
4574 /* Now btrfs_update_device() will change the on-disk size. */
4575 ret
= btrfs_update_device(trans
, device
);
4576 btrfs_end_transaction(trans
);
4578 btrfs_free_path(path
);
4580 mutex_lock(&fs_info
->chunk_mutex
);
4581 btrfs_device_set_total_bytes(device
, old_size
);
4582 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
))
4583 device
->fs_devices
->total_rw_bytes
+= diff
;
4584 atomic64_add(diff
, &fs_info
->free_chunk_space
);
4585 mutex_unlock(&fs_info
->chunk_mutex
);
4590 static int btrfs_add_system_chunk(struct btrfs_fs_info
*fs_info
,
4591 struct btrfs_key
*key
,
4592 struct btrfs_chunk
*chunk
, int item_size
)
4594 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
4595 struct btrfs_disk_key disk_key
;
4599 mutex_lock(&fs_info
->chunk_mutex
);
4600 array_size
= btrfs_super_sys_array_size(super_copy
);
4601 if (array_size
+ item_size
+ sizeof(disk_key
)
4602 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
) {
4603 mutex_unlock(&fs_info
->chunk_mutex
);
4607 ptr
= super_copy
->sys_chunk_array
+ array_size
;
4608 btrfs_cpu_key_to_disk(&disk_key
, key
);
4609 memcpy(ptr
, &disk_key
, sizeof(disk_key
));
4610 ptr
+= sizeof(disk_key
);
4611 memcpy(ptr
, chunk
, item_size
);
4612 item_size
+= sizeof(disk_key
);
4613 btrfs_set_super_sys_array_size(super_copy
, array_size
+ item_size
);
4614 mutex_unlock(&fs_info
->chunk_mutex
);
4620 * sort the devices in descending order by max_avail, total_avail
4622 static int btrfs_cmp_device_info(const void *a
, const void *b
)
4624 const struct btrfs_device_info
*di_a
= a
;
4625 const struct btrfs_device_info
*di_b
= b
;
4627 if (di_a
->max_avail
> di_b
->max_avail
)
4629 if (di_a
->max_avail
< di_b
->max_avail
)
4631 if (di_a
->total_avail
> di_b
->total_avail
)
4633 if (di_a
->total_avail
< di_b
->total_avail
)
4638 static void check_raid56_incompat_flag(struct btrfs_fs_info
*info
, u64 type
)
4640 if (!(type
& BTRFS_BLOCK_GROUP_RAID56_MASK
))
4643 btrfs_set_fs_incompat(info
, RAID56
);
4646 #define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r->fs_info) \
4647 - sizeof(struct btrfs_chunk)) \
4648 / sizeof(struct btrfs_stripe) + 1)
4650 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4651 - 2 * sizeof(struct btrfs_disk_key) \
4652 - 2 * sizeof(struct btrfs_chunk)) \
4653 / sizeof(struct btrfs_stripe) + 1)
4655 static int __btrfs_alloc_chunk(struct btrfs_trans_handle
*trans
,
4656 u64 start
, u64 type
)
4658 struct btrfs_fs_info
*info
= trans
->fs_info
;
4659 struct btrfs_fs_devices
*fs_devices
= info
->fs_devices
;
4660 struct btrfs_device
*device
;
4661 struct map_lookup
*map
= NULL
;
4662 struct extent_map_tree
*em_tree
;
4663 struct extent_map
*em
;
4664 struct btrfs_device_info
*devices_info
= NULL
;
4666 int num_stripes
; /* total number of stripes to allocate */
4667 int data_stripes
; /* number of stripes that count for
4669 int sub_stripes
; /* sub_stripes info for map */
4670 int dev_stripes
; /* stripes per dev */
4671 int devs_max
; /* max devs to use */
4672 int devs_min
; /* min devs needed */
4673 int devs_increment
; /* ndevs has to be a multiple of this */
4674 int ncopies
; /* how many copies to data has */
4676 u64 max_stripe_size
;
4685 BUG_ON(!alloc_profile_is_valid(type
, 0));
4687 if (list_empty(&fs_devices
->alloc_list
))
4690 index
= __get_raid_index(type
);
4692 sub_stripes
= btrfs_raid_array
[index
].sub_stripes
;
4693 dev_stripes
= btrfs_raid_array
[index
].dev_stripes
;
4694 devs_max
= btrfs_raid_array
[index
].devs_max
;
4695 devs_min
= btrfs_raid_array
[index
].devs_min
;
4696 devs_increment
= btrfs_raid_array
[index
].devs_increment
;
4697 ncopies
= btrfs_raid_array
[index
].ncopies
;
4699 if (type
& BTRFS_BLOCK_GROUP_DATA
) {
4700 max_stripe_size
= SZ_1G
;
4701 max_chunk_size
= 10 * max_stripe_size
;
4703 devs_max
= BTRFS_MAX_DEVS(info
->chunk_root
);
4704 } else if (type
& BTRFS_BLOCK_GROUP_METADATA
) {
4705 /* for larger filesystems, use larger metadata chunks */
4706 if (fs_devices
->total_rw_bytes
> 50ULL * SZ_1G
)
4707 max_stripe_size
= SZ_1G
;
4709 max_stripe_size
= SZ_256M
;
4710 max_chunk_size
= max_stripe_size
;
4712 devs_max
= BTRFS_MAX_DEVS(info
->chunk_root
);
4713 } else if (type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
4714 max_stripe_size
= SZ_32M
;
4715 max_chunk_size
= 2 * max_stripe_size
;
4717 devs_max
= BTRFS_MAX_DEVS_SYS_CHUNK
;
4719 btrfs_err(info
, "invalid chunk type 0x%llx requested",
4724 /* we don't want a chunk larger than 10% of writeable space */
4725 max_chunk_size
= min(div_factor(fs_devices
->total_rw_bytes
, 1),
4728 devices_info
= kcalloc(fs_devices
->rw_devices
, sizeof(*devices_info
),
4734 * in the first pass through the devices list, we gather information
4735 * about the available holes on each device.
4738 list_for_each_entry(device
, &fs_devices
->alloc_list
, dev_alloc_list
) {
4742 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
)) {
4744 "BTRFS: read-only device in alloc_list\n");
4748 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
,
4749 &device
->dev_state
) ||
4750 test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
))
4753 if (device
->total_bytes
> device
->bytes_used
)
4754 total_avail
= device
->total_bytes
- device
->bytes_used
;
4758 /* If there is no space on this device, skip it. */
4759 if (total_avail
== 0)
4762 ret
= find_free_dev_extent(trans
, device
,
4763 max_stripe_size
* dev_stripes
,
4764 &dev_offset
, &max_avail
);
4765 if (ret
&& ret
!= -ENOSPC
)
4769 max_avail
= max_stripe_size
* dev_stripes
;
4771 if (max_avail
< BTRFS_STRIPE_LEN
* dev_stripes
)
4774 if (ndevs
== fs_devices
->rw_devices
) {
4775 WARN(1, "%s: found more than %llu devices\n",
4776 __func__
, fs_devices
->rw_devices
);
4779 devices_info
[ndevs
].dev_offset
= dev_offset
;
4780 devices_info
[ndevs
].max_avail
= max_avail
;
4781 devices_info
[ndevs
].total_avail
= total_avail
;
4782 devices_info
[ndevs
].dev
= device
;
4787 * now sort the devices by hole size / available space
4789 sort(devices_info
, ndevs
, sizeof(struct btrfs_device_info
),
4790 btrfs_cmp_device_info
, NULL
);
4792 /* round down to number of usable stripes */
4793 ndevs
= round_down(ndevs
, devs_increment
);
4795 if (ndevs
< devs_increment
* sub_stripes
|| ndevs
< devs_min
) {
4800 ndevs
= min(ndevs
, devs_max
);
4803 * the primary goal is to maximize the number of stripes, so use as many
4804 * devices as possible, even if the stripes are not maximum sized.
4806 stripe_size
= devices_info
[ndevs
-1].max_avail
;
4807 num_stripes
= ndevs
* dev_stripes
;
4810 * this will have to be fixed for RAID1 and RAID10 over
4813 data_stripes
= num_stripes
/ ncopies
;
4815 if (type
& BTRFS_BLOCK_GROUP_RAID5
)
4816 data_stripes
= num_stripes
- 1;
4818 if (type
& BTRFS_BLOCK_GROUP_RAID6
)
4819 data_stripes
= num_stripes
- 2;
4822 * Use the number of data stripes to figure out how big this chunk
4823 * is really going to be in terms of logical address space,
4824 * and compare that answer with the max chunk size
4826 if (stripe_size
* data_stripes
> max_chunk_size
) {
4827 u64 mask
= (1ULL << 24) - 1;
4829 stripe_size
= div_u64(max_chunk_size
, data_stripes
);
4831 /* bump the answer up to a 16MB boundary */
4832 stripe_size
= (stripe_size
+ mask
) & ~mask
;
4834 /* but don't go higher than the limits we found
4835 * while searching for free extents
4837 if (stripe_size
> devices_info
[ndevs
-1].max_avail
)
4838 stripe_size
= devices_info
[ndevs
-1].max_avail
;
4841 stripe_size
= div_u64(stripe_size
, dev_stripes
);
4843 /* align to BTRFS_STRIPE_LEN */
4844 stripe_size
= round_down(stripe_size
, BTRFS_STRIPE_LEN
);
4846 map
= kmalloc(map_lookup_size(num_stripes
), GFP_NOFS
);
4851 map
->num_stripes
= num_stripes
;
4853 for (i
= 0; i
< ndevs
; ++i
) {
4854 for (j
= 0; j
< dev_stripes
; ++j
) {
4855 int s
= i
* dev_stripes
+ j
;
4856 map
->stripes
[s
].dev
= devices_info
[i
].dev
;
4857 map
->stripes
[s
].physical
= devices_info
[i
].dev_offset
+
4861 map
->stripe_len
= BTRFS_STRIPE_LEN
;
4862 map
->io_align
= BTRFS_STRIPE_LEN
;
4863 map
->io_width
= BTRFS_STRIPE_LEN
;
4865 map
->sub_stripes
= sub_stripes
;
4867 num_bytes
= stripe_size
* data_stripes
;
4869 trace_btrfs_chunk_alloc(info
, map
, start
, num_bytes
);
4871 em
= alloc_extent_map();
4877 set_bit(EXTENT_FLAG_FS_MAPPING
, &em
->flags
);
4878 em
->map_lookup
= map
;
4880 em
->len
= num_bytes
;
4881 em
->block_start
= 0;
4882 em
->block_len
= em
->len
;
4883 em
->orig_block_len
= stripe_size
;
4885 em_tree
= &info
->mapping_tree
.map_tree
;
4886 write_lock(&em_tree
->lock
);
4887 ret
= add_extent_mapping(em_tree
, em
, 0);
4889 write_unlock(&em_tree
->lock
);
4890 free_extent_map(em
);
4894 list_add_tail(&em
->list
, &trans
->transaction
->pending_chunks
);
4895 refcount_inc(&em
->refs
);
4896 write_unlock(&em_tree
->lock
);
4898 ret
= btrfs_make_block_group(trans
, info
, 0, type
, start
, num_bytes
);
4900 goto error_del_extent
;
4902 for (i
= 0; i
< map
->num_stripes
; i
++) {
4903 num_bytes
= map
->stripes
[i
].dev
->bytes_used
+ stripe_size
;
4904 btrfs_device_set_bytes_used(map
->stripes
[i
].dev
, num_bytes
);
4907 atomic64_sub(stripe_size
* map
->num_stripes
, &info
->free_chunk_space
);
4909 free_extent_map(em
);
4910 check_raid56_incompat_flag(info
, type
);
4912 kfree(devices_info
);
4916 write_lock(&em_tree
->lock
);
4917 remove_extent_mapping(em_tree
, em
);
4918 write_unlock(&em_tree
->lock
);
4920 /* One for our allocation */
4921 free_extent_map(em
);
4922 /* One for the tree reference */
4923 free_extent_map(em
);
4924 /* One for the pending_chunks list reference */
4925 free_extent_map(em
);
4927 kfree(devices_info
);
4931 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle
*trans
,
4932 struct btrfs_fs_info
*fs_info
,
4933 u64 chunk_offset
, u64 chunk_size
)
4935 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
4936 struct btrfs_root
*chunk_root
= fs_info
->chunk_root
;
4937 struct btrfs_key key
;
4938 struct btrfs_device
*device
;
4939 struct btrfs_chunk
*chunk
;
4940 struct btrfs_stripe
*stripe
;
4941 struct extent_map
*em
;
4942 struct map_lookup
*map
;
4949 em
= get_chunk_map(fs_info
, chunk_offset
, chunk_size
);
4953 map
= em
->map_lookup
;
4954 item_size
= btrfs_chunk_item_size(map
->num_stripes
);
4955 stripe_size
= em
->orig_block_len
;
4957 chunk
= kzalloc(item_size
, GFP_NOFS
);
4964 * Take the device list mutex to prevent races with the final phase of
4965 * a device replace operation that replaces the device object associated
4966 * with the map's stripes, because the device object's id can change
4967 * at any time during that final phase of the device replace operation
4968 * (dev-replace.c:btrfs_dev_replace_finishing()).
4970 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
4971 for (i
= 0; i
< map
->num_stripes
; i
++) {
4972 device
= map
->stripes
[i
].dev
;
4973 dev_offset
= map
->stripes
[i
].physical
;
4975 ret
= btrfs_update_device(trans
, device
);
4978 ret
= btrfs_alloc_dev_extent(trans
, device
, chunk_offset
,
4979 dev_offset
, stripe_size
);
4984 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
4988 stripe
= &chunk
->stripe
;
4989 for (i
= 0; i
< map
->num_stripes
; i
++) {
4990 device
= map
->stripes
[i
].dev
;
4991 dev_offset
= map
->stripes
[i
].physical
;
4993 btrfs_set_stack_stripe_devid(stripe
, device
->devid
);
4994 btrfs_set_stack_stripe_offset(stripe
, dev_offset
);
4995 memcpy(stripe
->dev_uuid
, device
->uuid
, BTRFS_UUID_SIZE
);
4998 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
5000 btrfs_set_stack_chunk_length(chunk
, chunk_size
);
5001 btrfs_set_stack_chunk_owner(chunk
, extent_root
->root_key
.objectid
);
5002 btrfs_set_stack_chunk_stripe_len(chunk
, map
->stripe_len
);
5003 btrfs_set_stack_chunk_type(chunk
, map
->type
);
5004 btrfs_set_stack_chunk_num_stripes(chunk
, map
->num_stripes
);
5005 btrfs_set_stack_chunk_io_align(chunk
, map
->stripe_len
);
5006 btrfs_set_stack_chunk_io_width(chunk
, map
->stripe_len
);
5007 btrfs_set_stack_chunk_sector_size(chunk
, fs_info
->sectorsize
);
5008 btrfs_set_stack_chunk_sub_stripes(chunk
, map
->sub_stripes
);
5010 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
5011 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
5012 key
.offset
= chunk_offset
;
5014 ret
= btrfs_insert_item(trans
, chunk_root
, &key
, chunk
, item_size
);
5015 if (ret
== 0 && map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
5017 * TODO: Cleanup of inserted chunk root in case of
5020 ret
= btrfs_add_system_chunk(fs_info
, &key
, chunk
, item_size
);
5025 free_extent_map(em
);
5030 * Chunk allocation falls into two parts. The first part does works
5031 * that make the new allocated chunk useable, but not do any operation
5032 * that modifies the chunk tree. The second part does the works that
5033 * require modifying the chunk tree. This division is important for the
5034 * bootstrap process of adding storage to a seed btrfs.
5036 int btrfs_alloc_chunk(struct btrfs_trans_handle
*trans
,
5037 struct btrfs_fs_info
*fs_info
, u64 type
)
5041 ASSERT(mutex_is_locked(&fs_info
->chunk_mutex
));
5042 chunk_offset
= find_next_chunk(fs_info
);
5043 return __btrfs_alloc_chunk(trans
, chunk_offset
, type
);
5046 static noinline
int init_first_rw_device(struct btrfs_trans_handle
*trans
,
5047 struct btrfs_fs_info
*fs_info
)
5050 u64 sys_chunk_offset
;
5054 chunk_offset
= find_next_chunk(fs_info
);
5055 alloc_profile
= btrfs_metadata_alloc_profile(fs_info
);
5056 ret
= __btrfs_alloc_chunk(trans
, chunk_offset
, alloc_profile
);
5060 sys_chunk_offset
= find_next_chunk(fs_info
);
5061 alloc_profile
= btrfs_system_alloc_profile(fs_info
);
5062 ret
= __btrfs_alloc_chunk(trans
, sys_chunk_offset
, alloc_profile
);
5066 static inline int btrfs_chunk_max_errors(struct map_lookup
*map
)
5070 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID1
|
5071 BTRFS_BLOCK_GROUP_RAID10
|
5072 BTRFS_BLOCK_GROUP_RAID5
|
5073 BTRFS_BLOCK_GROUP_DUP
)) {
5075 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
) {
5084 int btrfs_chunk_readonly(struct btrfs_fs_info
*fs_info
, u64 chunk_offset
)
5086 struct extent_map
*em
;
5087 struct map_lookup
*map
;
5092 em
= get_chunk_map(fs_info
, chunk_offset
, 1);
5096 map
= em
->map_lookup
;
5097 for (i
= 0; i
< map
->num_stripes
; i
++) {
5098 if (test_bit(BTRFS_DEV_STATE_MISSING
,
5099 &map
->stripes
[i
].dev
->dev_state
)) {
5103 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE
,
5104 &map
->stripes
[i
].dev
->dev_state
)) {
5111 * If the number of missing devices is larger than max errors,
5112 * we can not write the data into that chunk successfully, so
5115 if (miss_ndevs
> btrfs_chunk_max_errors(map
))
5118 free_extent_map(em
);
5122 void btrfs_mapping_init(struct btrfs_mapping_tree
*tree
)
5124 extent_map_tree_init(&tree
->map_tree
);
5127 void btrfs_mapping_tree_free(struct btrfs_mapping_tree
*tree
)
5129 struct extent_map
*em
;
5132 write_lock(&tree
->map_tree
.lock
);
5133 em
= lookup_extent_mapping(&tree
->map_tree
, 0, (u64
)-1);
5135 remove_extent_mapping(&tree
->map_tree
, em
);
5136 write_unlock(&tree
->map_tree
.lock
);
5140 free_extent_map(em
);
5141 /* once for the tree */
5142 free_extent_map(em
);
5146 int btrfs_num_copies(struct btrfs_fs_info
*fs_info
, u64 logical
, u64 len
)
5148 struct extent_map
*em
;
5149 struct map_lookup
*map
;
5152 em
= get_chunk_map(fs_info
, logical
, len
);
5155 * We could return errors for these cases, but that could get
5156 * ugly and we'd probably do the same thing which is just not do
5157 * anything else and exit, so return 1 so the callers don't try
5158 * to use other copies.
5162 map
= em
->map_lookup
;
5163 if (map
->type
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
))
5164 ret
= map
->num_stripes
;
5165 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
5166 ret
= map
->sub_stripes
;
5167 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID5
)
5169 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
)
5173 free_extent_map(em
);
5175 btrfs_dev_replace_lock(&fs_info
->dev_replace
, 0);
5176 if (btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
) &&
5177 fs_info
->dev_replace
.tgtdev
)
5179 btrfs_dev_replace_unlock(&fs_info
->dev_replace
, 0);
5184 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info
*fs_info
,
5187 struct extent_map
*em
;
5188 struct map_lookup
*map
;
5189 unsigned long len
= fs_info
->sectorsize
;
5191 em
= get_chunk_map(fs_info
, logical
, len
);
5193 if (!WARN_ON(IS_ERR(em
))) {
5194 map
= em
->map_lookup
;
5195 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
)
5196 len
= map
->stripe_len
* nr_data_stripes(map
);
5197 free_extent_map(em
);
5202 int btrfs_is_parity_mirror(struct btrfs_fs_info
*fs_info
, u64 logical
, u64 len
)
5204 struct extent_map
*em
;
5205 struct map_lookup
*map
;
5208 em
= get_chunk_map(fs_info
, logical
, len
);
5210 if(!WARN_ON(IS_ERR(em
))) {
5211 map
= em
->map_lookup
;
5212 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
)
5214 free_extent_map(em
);
5219 static int find_live_mirror(struct btrfs_fs_info
*fs_info
,
5220 struct map_lookup
*map
, int first
, int num
,
5221 int optimal
, int dev_replace_is_ongoing
)
5225 struct btrfs_device
*srcdev
;
5227 if (dev_replace_is_ongoing
&&
5228 fs_info
->dev_replace
.cont_reading_from_srcdev_mode
==
5229 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID
)
5230 srcdev
= fs_info
->dev_replace
.srcdev
;
5235 * try to avoid the drive that is the source drive for a
5236 * dev-replace procedure, only choose it if no other non-missing
5237 * mirror is available
5239 for (tolerance
= 0; tolerance
< 2; tolerance
++) {
5240 if (map
->stripes
[optimal
].dev
->bdev
&&
5241 (tolerance
|| map
->stripes
[optimal
].dev
!= srcdev
))
5243 for (i
= first
; i
< first
+ num
; i
++) {
5244 if (map
->stripes
[i
].dev
->bdev
&&
5245 (tolerance
|| map
->stripes
[i
].dev
!= srcdev
))
5250 /* we couldn't find one that doesn't fail. Just return something
5251 * and the io error handling code will clean up eventually
5256 static inline int parity_smaller(u64 a
, u64 b
)
5261 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5262 static void sort_parity_stripes(struct btrfs_bio
*bbio
, int num_stripes
)
5264 struct btrfs_bio_stripe s
;
5271 for (i
= 0; i
< num_stripes
- 1; i
++) {
5272 if (parity_smaller(bbio
->raid_map
[i
],
5273 bbio
->raid_map
[i
+1])) {
5274 s
= bbio
->stripes
[i
];
5275 l
= bbio
->raid_map
[i
];
5276 bbio
->stripes
[i
] = bbio
->stripes
[i
+1];
5277 bbio
->raid_map
[i
] = bbio
->raid_map
[i
+1];
5278 bbio
->stripes
[i
+1] = s
;
5279 bbio
->raid_map
[i
+1] = l
;
5287 static struct btrfs_bio
*alloc_btrfs_bio(int total_stripes
, int real_stripes
)
5289 struct btrfs_bio
*bbio
= kzalloc(
5290 /* the size of the btrfs_bio */
5291 sizeof(struct btrfs_bio
) +
5292 /* plus the variable array for the stripes */
5293 sizeof(struct btrfs_bio_stripe
) * (total_stripes
) +
5294 /* plus the variable array for the tgt dev */
5295 sizeof(int) * (real_stripes
) +
5297 * plus the raid_map, which includes both the tgt dev
5300 sizeof(u64
) * (total_stripes
),
5301 GFP_NOFS
|__GFP_NOFAIL
);
5303 atomic_set(&bbio
->error
, 0);
5304 refcount_set(&bbio
->refs
, 1);
5309 void btrfs_get_bbio(struct btrfs_bio
*bbio
)
5311 WARN_ON(!refcount_read(&bbio
->refs
));
5312 refcount_inc(&bbio
->refs
);
5315 void btrfs_put_bbio(struct btrfs_bio
*bbio
)
5319 if (refcount_dec_and_test(&bbio
->refs
))
5323 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5325 * Please note that, discard won't be sent to target device of device
5328 static int __btrfs_map_block_for_discard(struct btrfs_fs_info
*fs_info
,
5329 u64 logical
, u64 length
,
5330 struct btrfs_bio
**bbio_ret
)
5332 struct extent_map
*em
;
5333 struct map_lookup
*map
;
5334 struct btrfs_bio
*bbio
;
5338 u64 stripe_end_offset
;
5345 u32 sub_stripes
= 0;
5346 u64 stripes_per_dev
= 0;
5347 u32 remaining_stripes
= 0;
5348 u32 last_stripe
= 0;
5352 /* discard always return a bbio */
5355 em
= get_chunk_map(fs_info
, logical
, length
);
5359 map
= em
->map_lookup
;
5360 /* we don't discard raid56 yet */
5361 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5366 offset
= logical
- em
->start
;
5367 length
= min_t(u64
, em
->len
- offset
, length
);
5369 stripe_len
= map
->stripe_len
;
5371 * stripe_nr counts the total number of stripes we have to stride
5372 * to get to this block
5374 stripe_nr
= div64_u64(offset
, stripe_len
);
5376 /* stripe_offset is the offset of this block in its stripe */
5377 stripe_offset
= offset
- stripe_nr
* stripe_len
;
5379 stripe_nr_end
= round_up(offset
+ length
, map
->stripe_len
);
5380 stripe_nr_end
= div64_u64(stripe_nr_end
, map
->stripe_len
);
5381 stripe_cnt
= stripe_nr_end
- stripe_nr
;
5382 stripe_end_offset
= stripe_nr_end
* map
->stripe_len
-
5385 * after this, stripe_nr is the number of stripes on this
5386 * device we have to walk to find the data, and stripe_index is
5387 * the number of our device in the stripe array
5391 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID0
|
5392 BTRFS_BLOCK_GROUP_RAID10
)) {
5393 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
)
5396 sub_stripes
= map
->sub_stripes
;
5398 factor
= map
->num_stripes
/ sub_stripes
;
5399 num_stripes
= min_t(u64
, map
->num_stripes
,
5400 sub_stripes
* stripe_cnt
);
5401 stripe_nr
= div_u64_rem(stripe_nr
, factor
, &stripe_index
);
5402 stripe_index
*= sub_stripes
;
5403 stripes_per_dev
= div_u64_rem(stripe_cnt
, factor
,
5404 &remaining_stripes
);
5405 div_u64_rem(stripe_nr_end
- 1, factor
, &last_stripe
);
5406 last_stripe
*= sub_stripes
;
5407 } else if (map
->type
& (BTRFS_BLOCK_GROUP_RAID1
|
5408 BTRFS_BLOCK_GROUP_DUP
)) {
5409 num_stripes
= map
->num_stripes
;
5411 stripe_nr
= div_u64_rem(stripe_nr
, map
->num_stripes
,
5415 bbio
= alloc_btrfs_bio(num_stripes
, 0);
5421 for (i
= 0; i
< num_stripes
; i
++) {
5422 bbio
->stripes
[i
].physical
=
5423 map
->stripes
[stripe_index
].physical
+
5424 stripe_offset
+ stripe_nr
* map
->stripe_len
;
5425 bbio
->stripes
[i
].dev
= map
->stripes
[stripe_index
].dev
;
5427 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID0
|
5428 BTRFS_BLOCK_GROUP_RAID10
)) {
5429 bbio
->stripes
[i
].length
= stripes_per_dev
*
5432 if (i
/ sub_stripes
< remaining_stripes
)
5433 bbio
->stripes
[i
].length
+=
5437 * Special for the first stripe and
5440 * |-------|...|-------|
5444 if (i
< sub_stripes
)
5445 bbio
->stripes
[i
].length
-=
5448 if (stripe_index
>= last_stripe
&&
5449 stripe_index
<= (last_stripe
+
5451 bbio
->stripes
[i
].length
-=
5454 if (i
== sub_stripes
- 1)
5457 bbio
->stripes
[i
].length
= length
;
5461 if (stripe_index
== map
->num_stripes
) {
5468 bbio
->map_type
= map
->type
;
5469 bbio
->num_stripes
= num_stripes
;
5471 free_extent_map(em
);
5476 * In dev-replace case, for repair case (that's the only case where the mirror
5477 * is selected explicitly when calling btrfs_map_block), blocks left of the
5478 * left cursor can also be read from the target drive.
5480 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5482 * For READ, it also needs to be supported using the same mirror number.
5484 * If the requested block is not left of the left cursor, EIO is returned. This
5485 * can happen because btrfs_num_copies() returns one more in the dev-replace
5488 static int get_extra_mirror_from_replace(struct btrfs_fs_info
*fs_info
,
5489 u64 logical
, u64 length
,
5490 u64 srcdev_devid
, int *mirror_num
,
5493 struct btrfs_bio
*bbio
= NULL
;
5495 int index_srcdev
= 0;
5497 u64 physical_of_found
= 0;
5501 ret
= __btrfs_map_block(fs_info
, BTRFS_MAP_GET_READ_MIRRORS
,
5502 logical
, &length
, &bbio
, 0, 0);
5504 ASSERT(bbio
== NULL
);
5508 num_stripes
= bbio
->num_stripes
;
5509 if (*mirror_num
> num_stripes
) {
5511 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5512 * that means that the requested area is not left of the left
5515 btrfs_put_bbio(bbio
);
5520 * process the rest of the function using the mirror_num of the source
5521 * drive. Therefore look it up first. At the end, patch the device
5522 * pointer to the one of the target drive.
5524 for (i
= 0; i
< num_stripes
; i
++) {
5525 if (bbio
->stripes
[i
].dev
->devid
!= srcdev_devid
)
5529 * In case of DUP, in order to keep it simple, only add the
5530 * mirror with the lowest physical address
5533 physical_of_found
<= bbio
->stripes
[i
].physical
)
5538 physical_of_found
= bbio
->stripes
[i
].physical
;
5541 btrfs_put_bbio(bbio
);
5547 *mirror_num
= index_srcdev
+ 1;
5548 *physical
= physical_of_found
;
5552 static void handle_ops_on_dev_replace(enum btrfs_map_op op
,
5553 struct btrfs_bio
**bbio_ret
,
5554 struct btrfs_dev_replace
*dev_replace
,
5555 int *num_stripes_ret
, int *max_errors_ret
)
5557 struct btrfs_bio
*bbio
= *bbio_ret
;
5558 u64 srcdev_devid
= dev_replace
->srcdev
->devid
;
5559 int tgtdev_indexes
= 0;
5560 int num_stripes
= *num_stripes_ret
;
5561 int max_errors
= *max_errors_ret
;
5564 if (op
== BTRFS_MAP_WRITE
) {
5565 int index_where_to_add
;
5568 * duplicate the write operations while the dev replace
5569 * procedure is running. Since the copying of the old disk to
5570 * the new disk takes place at run time while the filesystem is
5571 * mounted writable, the regular write operations to the old
5572 * disk have to be duplicated to go to the new disk as well.
5574 * Note that device->missing is handled by the caller, and that
5575 * the write to the old disk is already set up in the stripes
5578 index_where_to_add
= num_stripes
;
5579 for (i
= 0; i
< num_stripes
; i
++) {
5580 if (bbio
->stripes
[i
].dev
->devid
== srcdev_devid
) {
5581 /* write to new disk, too */
5582 struct btrfs_bio_stripe
*new =
5583 bbio
->stripes
+ index_where_to_add
;
5584 struct btrfs_bio_stripe
*old
=
5587 new->physical
= old
->physical
;
5588 new->length
= old
->length
;
5589 new->dev
= dev_replace
->tgtdev
;
5590 bbio
->tgtdev_map
[i
] = index_where_to_add
;
5591 index_where_to_add
++;
5596 num_stripes
= index_where_to_add
;
5597 } else if (op
== BTRFS_MAP_GET_READ_MIRRORS
) {
5598 int index_srcdev
= 0;
5600 u64 physical_of_found
= 0;
5603 * During the dev-replace procedure, the target drive can also
5604 * be used to read data in case it is needed to repair a corrupt
5605 * block elsewhere. This is possible if the requested area is
5606 * left of the left cursor. In this area, the target drive is a
5607 * full copy of the source drive.
5609 for (i
= 0; i
< num_stripes
; i
++) {
5610 if (bbio
->stripes
[i
].dev
->devid
== srcdev_devid
) {
5612 * In case of DUP, in order to keep it simple,
5613 * only add the mirror with the lowest physical
5617 physical_of_found
<=
5618 bbio
->stripes
[i
].physical
)
5622 physical_of_found
= bbio
->stripes
[i
].physical
;
5626 struct btrfs_bio_stripe
*tgtdev_stripe
=
5627 bbio
->stripes
+ num_stripes
;
5629 tgtdev_stripe
->physical
= physical_of_found
;
5630 tgtdev_stripe
->length
=
5631 bbio
->stripes
[index_srcdev
].length
;
5632 tgtdev_stripe
->dev
= dev_replace
->tgtdev
;
5633 bbio
->tgtdev_map
[index_srcdev
] = num_stripes
;
5640 *num_stripes_ret
= num_stripes
;
5641 *max_errors_ret
= max_errors
;
5642 bbio
->num_tgtdevs
= tgtdev_indexes
;
5646 static bool need_full_stripe(enum btrfs_map_op op
)
5648 return (op
== BTRFS_MAP_WRITE
|| op
== BTRFS_MAP_GET_READ_MIRRORS
);
5651 static int __btrfs_map_block(struct btrfs_fs_info
*fs_info
,
5652 enum btrfs_map_op op
,
5653 u64 logical
, u64
*length
,
5654 struct btrfs_bio
**bbio_ret
,
5655 int mirror_num
, int need_raid_map
)
5657 struct extent_map
*em
;
5658 struct map_lookup
*map
;
5668 int tgtdev_indexes
= 0;
5669 struct btrfs_bio
*bbio
= NULL
;
5670 struct btrfs_dev_replace
*dev_replace
= &fs_info
->dev_replace
;
5671 int dev_replace_is_ongoing
= 0;
5672 int num_alloc_stripes
;
5673 int patch_the_first_stripe_for_dev_replace
= 0;
5674 u64 physical_to_patch_in_first_stripe
= 0;
5675 u64 raid56_full_stripe_start
= (u64
)-1;
5677 if (op
== BTRFS_MAP_DISCARD
)
5678 return __btrfs_map_block_for_discard(fs_info
, logical
,
5681 em
= get_chunk_map(fs_info
, logical
, *length
);
5685 map
= em
->map_lookup
;
5686 offset
= logical
- em
->start
;
5688 stripe_len
= map
->stripe_len
;
5691 * stripe_nr counts the total number of stripes we have to stride
5692 * to get to this block
5694 stripe_nr
= div64_u64(stripe_nr
, stripe_len
);
5696 stripe_offset
= stripe_nr
* stripe_len
;
5697 if (offset
< stripe_offset
) {
5699 "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5700 stripe_offset
, offset
, em
->start
, logical
,
5702 free_extent_map(em
);
5706 /* stripe_offset is the offset of this block in its stripe*/
5707 stripe_offset
= offset
- stripe_offset
;
5709 /* if we're here for raid56, we need to know the stripe aligned start */
5710 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5711 unsigned long full_stripe_len
= stripe_len
* nr_data_stripes(map
);
5712 raid56_full_stripe_start
= offset
;
5714 /* allow a write of a full stripe, but make sure we don't
5715 * allow straddling of stripes
5717 raid56_full_stripe_start
= div64_u64(raid56_full_stripe_start
,
5719 raid56_full_stripe_start
*= full_stripe_len
;
5722 if (map
->type
& BTRFS_BLOCK_GROUP_PROFILE_MASK
) {
5724 /* For writes to RAID[56], allow a full stripeset across all disks.
5725 For other RAID types and for RAID[56] reads, just allow a single
5726 stripe (on a single disk). */
5727 if ((map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) &&
5728 (op
== BTRFS_MAP_WRITE
)) {
5729 max_len
= stripe_len
* nr_data_stripes(map
) -
5730 (offset
- raid56_full_stripe_start
);
5732 /* we limit the length of each bio to what fits in a stripe */
5733 max_len
= stripe_len
- stripe_offset
;
5735 *length
= min_t(u64
, em
->len
- offset
, max_len
);
5737 *length
= em
->len
- offset
;
5740 /* This is for when we're called from btrfs_merge_bio_hook() and all
5741 it cares about is the length */
5745 btrfs_dev_replace_lock(dev_replace
, 0);
5746 dev_replace_is_ongoing
= btrfs_dev_replace_is_ongoing(dev_replace
);
5747 if (!dev_replace_is_ongoing
)
5748 btrfs_dev_replace_unlock(dev_replace
, 0);
5750 btrfs_dev_replace_set_lock_blocking(dev_replace
);
5752 if (dev_replace_is_ongoing
&& mirror_num
== map
->num_stripes
+ 1 &&
5753 !need_full_stripe(op
) && dev_replace
->tgtdev
!= NULL
) {
5754 ret
= get_extra_mirror_from_replace(fs_info
, logical
, *length
,
5755 dev_replace
->srcdev
->devid
,
5757 &physical_to_patch_in_first_stripe
);
5761 patch_the_first_stripe_for_dev_replace
= 1;
5762 } else if (mirror_num
> map
->num_stripes
) {
5768 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
5769 stripe_nr
= div_u64_rem(stripe_nr
, map
->num_stripes
,
5771 if (!need_full_stripe(op
))
5773 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID1
) {
5774 if (need_full_stripe(op
))
5775 num_stripes
= map
->num_stripes
;
5776 else if (mirror_num
)
5777 stripe_index
= mirror_num
- 1;
5779 stripe_index
= find_live_mirror(fs_info
, map
, 0,
5781 current
->pid
% map
->num_stripes
,
5782 dev_replace_is_ongoing
);
5783 mirror_num
= stripe_index
+ 1;
5786 } else if (map
->type
& BTRFS_BLOCK_GROUP_DUP
) {
5787 if (need_full_stripe(op
)) {
5788 num_stripes
= map
->num_stripes
;
5789 } else if (mirror_num
) {
5790 stripe_index
= mirror_num
- 1;
5795 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
5796 u32 factor
= map
->num_stripes
/ map
->sub_stripes
;
5798 stripe_nr
= div_u64_rem(stripe_nr
, factor
, &stripe_index
);
5799 stripe_index
*= map
->sub_stripes
;
5801 if (need_full_stripe(op
))
5802 num_stripes
= map
->sub_stripes
;
5803 else if (mirror_num
)
5804 stripe_index
+= mirror_num
- 1;
5806 int old_stripe_index
= stripe_index
;
5807 stripe_index
= find_live_mirror(fs_info
, map
,
5809 map
->sub_stripes
, stripe_index
+
5810 current
->pid
% map
->sub_stripes
,
5811 dev_replace_is_ongoing
);
5812 mirror_num
= stripe_index
- old_stripe_index
+ 1;
5815 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5816 if (need_raid_map
&& (need_full_stripe(op
) || mirror_num
> 1)) {
5817 /* push stripe_nr back to the start of the full stripe */
5818 stripe_nr
= div64_u64(raid56_full_stripe_start
,
5819 stripe_len
* nr_data_stripes(map
));
5821 /* RAID[56] write or recovery. Return all stripes */
5822 num_stripes
= map
->num_stripes
;
5823 max_errors
= nr_parity_stripes(map
);
5825 *length
= map
->stripe_len
;
5830 * Mirror #0 or #1 means the original data block.
5831 * Mirror #2 is RAID5 parity block.
5832 * Mirror #3 is RAID6 Q block.
5834 stripe_nr
= div_u64_rem(stripe_nr
,
5835 nr_data_stripes(map
), &stripe_index
);
5837 stripe_index
= nr_data_stripes(map
) +
5840 /* We distribute the parity blocks across stripes */
5841 div_u64_rem(stripe_nr
+ stripe_index
, map
->num_stripes
,
5843 if (!need_full_stripe(op
) && mirror_num
<= 1)
5848 * after this, stripe_nr is the number of stripes on this
5849 * device we have to walk to find the data, and stripe_index is
5850 * the number of our device in the stripe array
5852 stripe_nr
= div_u64_rem(stripe_nr
, map
->num_stripes
,
5854 mirror_num
= stripe_index
+ 1;
5856 if (stripe_index
>= map
->num_stripes
) {
5858 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5859 stripe_index
, map
->num_stripes
);
5864 num_alloc_stripes
= num_stripes
;
5865 if (dev_replace_is_ongoing
&& dev_replace
->tgtdev
!= NULL
) {
5866 if (op
== BTRFS_MAP_WRITE
)
5867 num_alloc_stripes
<<= 1;
5868 if (op
== BTRFS_MAP_GET_READ_MIRRORS
)
5869 num_alloc_stripes
++;
5870 tgtdev_indexes
= num_stripes
;
5873 bbio
= alloc_btrfs_bio(num_alloc_stripes
, tgtdev_indexes
);
5878 if (dev_replace_is_ongoing
&& dev_replace
->tgtdev
!= NULL
)
5879 bbio
->tgtdev_map
= (int *)(bbio
->stripes
+ num_alloc_stripes
);
5881 /* build raid_map */
5882 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
&& need_raid_map
&&
5883 (need_full_stripe(op
) || mirror_num
> 1)) {
5887 bbio
->raid_map
= (u64
*)((void *)bbio
->stripes
+
5888 sizeof(struct btrfs_bio_stripe
) *
5890 sizeof(int) * tgtdev_indexes
);
5892 /* Work out the disk rotation on this stripe-set */
5893 div_u64_rem(stripe_nr
, num_stripes
, &rot
);
5895 /* Fill in the logical address of each stripe */
5896 tmp
= stripe_nr
* nr_data_stripes(map
);
5897 for (i
= 0; i
< nr_data_stripes(map
); i
++)
5898 bbio
->raid_map
[(i
+rot
) % num_stripes
] =
5899 em
->start
+ (tmp
+ i
) * map
->stripe_len
;
5901 bbio
->raid_map
[(i
+rot
) % map
->num_stripes
] = RAID5_P_STRIPE
;
5902 if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
)
5903 bbio
->raid_map
[(i
+rot
+1) % num_stripes
] =
5908 for (i
= 0; i
< num_stripes
; i
++) {
5909 bbio
->stripes
[i
].physical
=
5910 map
->stripes
[stripe_index
].physical
+
5912 stripe_nr
* map
->stripe_len
;
5913 bbio
->stripes
[i
].dev
=
5914 map
->stripes
[stripe_index
].dev
;
5918 if (need_full_stripe(op
))
5919 max_errors
= btrfs_chunk_max_errors(map
);
5922 sort_parity_stripes(bbio
, num_stripes
);
5924 if (dev_replace_is_ongoing
&& dev_replace
->tgtdev
!= NULL
&&
5925 need_full_stripe(op
)) {
5926 handle_ops_on_dev_replace(op
, &bbio
, dev_replace
, &num_stripes
,
5931 bbio
->map_type
= map
->type
;
5932 bbio
->num_stripes
= num_stripes
;
5933 bbio
->max_errors
= max_errors
;
5934 bbio
->mirror_num
= mirror_num
;
5937 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5938 * mirror_num == num_stripes + 1 && dev_replace target drive is
5939 * available as a mirror
5941 if (patch_the_first_stripe_for_dev_replace
&& num_stripes
> 0) {
5942 WARN_ON(num_stripes
> 1);
5943 bbio
->stripes
[0].dev
= dev_replace
->tgtdev
;
5944 bbio
->stripes
[0].physical
= physical_to_patch_in_first_stripe
;
5945 bbio
->mirror_num
= map
->num_stripes
+ 1;
5948 if (dev_replace_is_ongoing
) {
5949 btrfs_dev_replace_clear_lock_blocking(dev_replace
);
5950 btrfs_dev_replace_unlock(dev_replace
, 0);
5952 free_extent_map(em
);
5956 int btrfs_map_block(struct btrfs_fs_info
*fs_info
, enum btrfs_map_op op
,
5957 u64 logical
, u64
*length
,
5958 struct btrfs_bio
**bbio_ret
, int mirror_num
)
5960 return __btrfs_map_block(fs_info
, op
, logical
, length
, bbio_ret
,
5964 /* For Scrub/replace */
5965 int btrfs_map_sblock(struct btrfs_fs_info
*fs_info
, enum btrfs_map_op op
,
5966 u64 logical
, u64
*length
,
5967 struct btrfs_bio
**bbio_ret
)
5969 return __btrfs_map_block(fs_info
, op
, logical
, length
, bbio_ret
, 0, 1);
5972 int btrfs_rmap_block(struct btrfs_fs_info
*fs_info
,
5973 u64 chunk_start
, u64 physical
, u64 devid
,
5974 u64
**logical
, int *naddrs
, int *stripe_len
)
5976 struct extent_map
*em
;
5977 struct map_lookup
*map
;
5985 em
= get_chunk_map(fs_info
, chunk_start
, 1);
5989 map
= em
->map_lookup
;
5991 rmap_len
= map
->stripe_len
;
5993 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
5994 length
= div_u64(length
, map
->num_stripes
/ map
->sub_stripes
);
5995 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
)
5996 length
= div_u64(length
, map
->num_stripes
);
5997 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5998 length
= div_u64(length
, nr_data_stripes(map
));
5999 rmap_len
= map
->stripe_len
* nr_data_stripes(map
);
6002 buf
= kcalloc(map
->num_stripes
, sizeof(u64
), GFP_NOFS
);
6003 BUG_ON(!buf
); /* -ENOMEM */
6005 for (i
= 0; i
< map
->num_stripes
; i
++) {
6006 if (devid
&& map
->stripes
[i
].dev
->devid
!= devid
)
6008 if (map
->stripes
[i
].physical
> physical
||
6009 map
->stripes
[i
].physical
+ length
<= physical
)
6012 stripe_nr
= physical
- map
->stripes
[i
].physical
;
6013 stripe_nr
= div64_u64(stripe_nr
, map
->stripe_len
);
6015 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
6016 stripe_nr
= stripe_nr
* map
->num_stripes
+ i
;
6017 stripe_nr
= div_u64(stripe_nr
, map
->sub_stripes
);
6018 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
6019 stripe_nr
= stripe_nr
* map
->num_stripes
+ i
;
6020 } /* else if RAID[56], multiply by nr_data_stripes().
6021 * Alternatively, just use rmap_len below instead of
6022 * map->stripe_len */
6024 bytenr
= chunk_start
+ stripe_nr
* rmap_len
;
6025 WARN_ON(nr
>= map
->num_stripes
);
6026 for (j
= 0; j
< nr
; j
++) {
6027 if (buf
[j
] == bytenr
)
6031 WARN_ON(nr
>= map
->num_stripes
);
6038 *stripe_len
= rmap_len
;
6040 free_extent_map(em
);
6044 static inline void btrfs_end_bbio(struct btrfs_bio
*bbio
, struct bio
*bio
)
6046 bio
->bi_private
= bbio
->private;
6047 bio
->bi_end_io
= bbio
->end_io
;
6050 btrfs_put_bbio(bbio
);
6053 static void btrfs_end_bio(struct bio
*bio
)
6055 struct btrfs_bio
*bbio
= bio
->bi_private
;
6056 int is_orig_bio
= 0;
6058 if (bio
->bi_status
) {
6059 atomic_inc(&bbio
->error
);
6060 if (bio
->bi_status
== BLK_STS_IOERR
||
6061 bio
->bi_status
== BLK_STS_TARGET
) {
6062 unsigned int stripe_index
=
6063 btrfs_io_bio(bio
)->stripe_index
;
6064 struct btrfs_device
*dev
;
6066 BUG_ON(stripe_index
>= bbio
->num_stripes
);
6067 dev
= bbio
->stripes
[stripe_index
].dev
;
6069 if (bio_op(bio
) == REQ_OP_WRITE
)
6070 btrfs_dev_stat_inc_and_print(dev
,
6071 BTRFS_DEV_STAT_WRITE_ERRS
);
6073 btrfs_dev_stat_inc_and_print(dev
,
6074 BTRFS_DEV_STAT_READ_ERRS
);
6075 if (bio
->bi_opf
& REQ_PREFLUSH
)
6076 btrfs_dev_stat_inc_and_print(dev
,
6077 BTRFS_DEV_STAT_FLUSH_ERRS
);
6082 if (bio
== bbio
->orig_bio
)
6085 btrfs_bio_counter_dec(bbio
->fs_info
);
6087 if (atomic_dec_and_test(&bbio
->stripes_pending
)) {
6090 bio
= bbio
->orig_bio
;
6093 btrfs_io_bio(bio
)->mirror_num
= bbio
->mirror_num
;
6094 /* only send an error to the higher layers if it is
6095 * beyond the tolerance of the btrfs bio
6097 if (atomic_read(&bbio
->error
) > bbio
->max_errors
) {
6098 bio
->bi_status
= BLK_STS_IOERR
;
6101 * this bio is actually up to date, we didn't
6102 * go over the max number of errors
6104 bio
->bi_status
= BLK_STS_OK
;
6107 btrfs_end_bbio(bbio
, bio
);
6108 } else if (!is_orig_bio
) {
6114 * see run_scheduled_bios for a description of why bios are collected for
6117 * This will add one bio to the pending list for a device and make sure
6118 * the work struct is scheduled.
6120 static noinline
void btrfs_schedule_bio(struct btrfs_device
*device
,
6123 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
6124 int should_queue
= 1;
6125 struct btrfs_pending_bios
*pending_bios
;
6127 if (test_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
) ||
6133 /* don't bother with additional async steps for reads, right now */
6134 if (bio_op(bio
) == REQ_OP_READ
) {
6136 btrfsic_submit_bio(bio
);
6141 WARN_ON(bio
->bi_next
);
6142 bio
->bi_next
= NULL
;
6144 spin_lock(&device
->io_lock
);
6145 if (op_is_sync(bio
->bi_opf
))
6146 pending_bios
= &device
->pending_sync_bios
;
6148 pending_bios
= &device
->pending_bios
;
6150 if (pending_bios
->tail
)
6151 pending_bios
->tail
->bi_next
= bio
;
6153 pending_bios
->tail
= bio
;
6154 if (!pending_bios
->head
)
6155 pending_bios
->head
= bio
;
6156 if (device
->running_pending
)
6159 spin_unlock(&device
->io_lock
);
6162 btrfs_queue_work(fs_info
->submit_workers
, &device
->work
);
6165 static void submit_stripe_bio(struct btrfs_bio
*bbio
, struct bio
*bio
,
6166 u64 physical
, int dev_nr
, int async
)
6168 struct btrfs_device
*dev
= bbio
->stripes
[dev_nr
].dev
;
6169 struct btrfs_fs_info
*fs_info
= bbio
->fs_info
;
6171 bio
->bi_private
= bbio
;
6172 btrfs_io_bio(bio
)->stripe_index
= dev_nr
;
6173 bio
->bi_end_io
= btrfs_end_bio
;
6174 bio
->bi_iter
.bi_sector
= physical
>> 9;
6177 struct rcu_string
*name
;
6180 name
= rcu_dereference(dev
->name
);
6181 btrfs_debug(fs_info
,
6182 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6183 bio_op(bio
), bio
->bi_opf
,
6184 (u64
)bio
->bi_iter
.bi_sector
,
6185 (u_long
)dev
->bdev
->bd_dev
, name
->str
, dev
->devid
,
6186 bio
->bi_iter
.bi_size
);
6190 bio_set_dev(bio
, dev
->bdev
);
6192 btrfs_bio_counter_inc_noblocked(fs_info
);
6195 btrfs_schedule_bio(dev
, bio
);
6197 btrfsic_submit_bio(bio
);
6200 static void bbio_error(struct btrfs_bio
*bbio
, struct bio
*bio
, u64 logical
)
6202 atomic_inc(&bbio
->error
);
6203 if (atomic_dec_and_test(&bbio
->stripes_pending
)) {
6204 /* Should be the original bio. */
6205 WARN_ON(bio
!= bbio
->orig_bio
);
6207 btrfs_io_bio(bio
)->mirror_num
= bbio
->mirror_num
;
6208 bio
->bi_iter
.bi_sector
= logical
>> 9;
6209 if (atomic_read(&bbio
->error
) > bbio
->max_errors
)
6210 bio
->bi_status
= BLK_STS_IOERR
;
6212 bio
->bi_status
= BLK_STS_OK
;
6213 btrfs_end_bbio(bbio
, bio
);
6217 blk_status_t
btrfs_map_bio(struct btrfs_fs_info
*fs_info
, struct bio
*bio
,
6218 int mirror_num
, int async_submit
)
6220 struct btrfs_device
*dev
;
6221 struct bio
*first_bio
= bio
;
6222 u64 logical
= (u64
)bio
->bi_iter
.bi_sector
<< 9;
6228 struct btrfs_bio
*bbio
= NULL
;
6230 length
= bio
->bi_iter
.bi_size
;
6231 map_length
= length
;
6233 btrfs_bio_counter_inc_blocked(fs_info
);
6234 ret
= __btrfs_map_block(fs_info
, btrfs_op(bio
), logical
,
6235 &map_length
, &bbio
, mirror_num
, 1);
6237 btrfs_bio_counter_dec(fs_info
);
6238 return errno_to_blk_status(ret
);
6241 total_devs
= bbio
->num_stripes
;
6242 bbio
->orig_bio
= first_bio
;
6243 bbio
->private = first_bio
->bi_private
;
6244 bbio
->end_io
= first_bio
->bi_end_io
;
6245 bbio
->fs_info
= fs_info
;
6246 atomic_set(&bbio
->stripes_pending
, bbio
->num_stripes
);
6248 if ((bbio
->map_type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) &&
6249 ((bio_op(bio
) == REQ_OP_WRITE
) || (mirror_num
> 1))) {
6250 /* In this case, map_length has been set to the length of
6251 a single stripe; not the whole write */
6252 if (bio_op(bio
) == REQ_OP_WRITE
) {
6253 ret
= raid56_parity_write(fs_info
, bio
, bbio
,
6256 ret
= raid56_parity_recover(fs_info
, bio
, bbio
,
6257 map_length
, mirror_num
, 1);
6260 btrfs_bio_counter_dec(fs_info
);
6261 return errno_to_blk_status(ret
);
6264 if (map_length
< length
) {
6266 "mapping failed logical %llu bio len %llu len %llu",
6267 logical
, length
, map_length
);
6271 for (dev_nr
= 0; dev_nr
< total_devs
; dev_nr
++) {
6272 dev
= bbio
->stripes
[dev_nr
].dev
;
6273 if (!dev
|| !dev
->bdev
||
6274 (bio_op(first_bio
) == REQ_OP_WRITE
&&
6275 !test_bit(BTRFS_DEV_STATE_WRITEABLE
, &dev
->dev_state
))) {
6276 bbio_error(bbio
, first_bio
, logical
);
6280 if (dev_nr
< total_devs
- 1)
6281 bio
= btrfs_bio_clone(first_bio
);
6285 submit_stripe_bio(bbio
, bio
, bbio
->stripes
[dev_nr
].physical
,
6286 dev_nr
, async_submit
);
6288 btrfs_bio_counter_dec(fs_info
);
6292 struct btrfs_device
*btrfs_find_device(struct btrfs_fs_info
*fs_info
, u64 devid
,
6295 struct btrfs_device
*device
;
6296 struct btrfs_fs_devices
*cur_devices
;
6298 cur_devices
= fs_info
->fs_devices
;
6299 while (cur_devices
) {
6301 !memcmp(cur_devices
->fsid
, fsid
, BTRFS_FSID_SIZE
)) {
6302 device
= find_device(cur_devices
, devid
, uuid
);
6306 cur_devices
= cur_devices
->seed
;
6311 static struct btrfs_device
*add_missing_dev(struct btrfs_fs_devices
*fs_devices
,
6312 u64 devid
, u8
*dev_uuid
)
6314 struct btrfs_device
*device
;
6316 device
= btrfs_alloc_device(NULL
, &devid
, dev_uuid
);
6320 list_add(&device
->dev_list
, &fs_devices
->devices
);
6321 device
->fs_devices
= fs_devices
;
6322 fs_devices
->num_devices
++;
6324 set_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
);
6325 fs_devices
->missing_devices
++;
6331 * btrfs_alloc_device - allocate struct btrfs_device
6332 * @fs_info: used only for generating a new devid, can be NULL if
6333 * devid is provided (i.e. @devid != NULL).
6334 * @devid: a pointer to devid for this device. If NULL a new devid
6336 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6339 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6340 * on error. Returned struct is not linked onto any lists and must be
6341 * destroyed with free_device.
6343 struct btrfs_device
*btrfs_alloc_device(struct btrfs_fs_info
*fs_info
,
6347 struct btrfs_device
*dev
;
6350 if (WARN_ON(!devid
&& !fs_info
))
6351 return ERR_PTR(-EINVAL
);
6353 dev
= __alloc_device();
6362 ret
= find_next_devid(fs_info
, &tmp
);
6365 return ERR_PTR(ret
);
6371 memcpy(dev
->uuid
, uuid
, BTRFS_UUID_SIZE
);
6373 generate_random_uuid(dev
->uuid
);
6375 btrfs_init_work(&dev
->work
, btrfs_submit_helper
,
6376 pending_bios_fn
, NULL
, NULL
);
6381 /* Return -EIO if any error, otherwise return 0. */
6382 static int btrfs_check_chunk_valid(struct btrfs_fs_info
*fs_info
,
6383 struct extent_buffer
*leaf
,
6384 struct btrfs_chunk
*chunk
, u64 logical
)
6392 length
= btrfs_chunk_length(leaf
, chunk
);
6393 stripe_len
= btrfs_chunk_stripe_len(leaf
, chunk
);
6394 num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
6395 sub_stripes
= btrfs_chunk_sub_stripes(leaf
, chunk
);
6396 type
= btrfs_chunk_type(leaf
, chunk
);
6399 btrfs_err(fs_info
, "invalid chunk num_stripes: %u",
6403 if (!IS_ALIGNED(logical
, fs_info
->sectorsize
)) {
6404 btrfs_err(fs_info
, "invalid chunk logical %llu", logical
);
6407 if (btrfs_chunk_sector_size(leaf
, chunk
) != fs_info
->sectorsize
) {
6408 btrfs_err(fs_info
, "invalid chunk sectorsize %u",
6409 btrfs_chunk_sector_size(leaf
, chunk
));
6412 if (!length
|| !IS_ALIGNED(length
, fs_info
->sectorsize
)) {
6413 btrfs_err(fs_info
, "invalid chunk length %llu", length
);
6416 if (!is_power_of_2(stripe_len
) || stripe_len
!= BTRFS_STRIPE_LEN
) {
6417 btrfs_err(fs_info
, "invalid chunk stripe length: %llu",
6421 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK
| BTRFS_BLOCK_GROUP_PROFILE_MASK
) &
6423 btrfs_err(fs_info
, "unrecognized chunk type: %llu",
6424 ~(BTRFS_BLOCK_GROUP_TYPE_MASK
|
6425 BTRFS_BLOCK_GROUP_PROFILE_MASK
) &
6426 btrfs_chunk_type(leaf
, chunk
));
6429 if ((type
& BTRFS_BLOCK_GROUP_RAID10
&& sub_stripes
!= 2) ||
6430 (type
& BTRFS_BLOCK_GROUP_RAID1
&& num_stripes
< 1) ||
6431 (type
& BTRFS_BLOCK_GROUP_RAID5
&& num_stripes
< 2) ||
6432 (type
& BTRFS_BLOCK_GROUP_RAID6
&& num_stripes
< 3) ||
6433 (type
& BTRFS_BLOCK_GROUP_DUP
&& num_stripes
> 2) ||
6434 ((type
& BTRFS_BLOCK_GROUP_PROFILE_MASK
) == 0 &&
6435 num_stripes
!= 1)) {
6437 "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6438 num_stripes
, sub_stripes
,
6439 type
& BTRFS_BLOCK_GROUP_PROFILE_MASK
);
6446 static void btrfs_report_missing_device(struct btrfs_fs_info
*fs_info
,
6447 u64 devid
, u8
*uuid
, bool error
)
6450 btrfs_err_rl(fs_info
, "devid %llu uuid %pU is missing",
6453 btrfs_warn_rl(fs_info
, "devid %llu uuid %pU is missing",
6457 static int read_one_chunk(struct btrfs_fs_info
*fs_info
, struct btrfs_key
*key
,
6458 struct extent_buffer
*leaf
,
6459 struct btrfs_chunk
*chunk
)
6461 struct btrfs_mapping_tree
*map_tree
= &fs_info
->mapping_tree
;
6462 struct map_lookup
*map
;
6463 struct extent_map
*em
;
6467 u8 uuid
[BTRFS_UUID_SIZE
];
6472 logical
= key
->offset
;
6473 length
= btrfs_chunk_length(leaf
, chunk
);
6474 num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
6476 ret
= btrfs_check_chunk_valid(fs_info
, leaf
, chunk
, logical
);
6480 read_lock(&map_tree
->map_tree
.lock
);
6481 em
= lookup_extent_mapping(&map_tree
->map_tree
, logical
, 1);
6482 read_unlock(&map_tree
->map_tree
.lock
);
6484 /* already mapped? */
6485 if (em
&& em
->start
<= logical
&& em
->start
+ em
->len
> logical
) {
6486 free_extent_map(em
);
6489 free_extent_map(em
);
6492 em
= alloc_extent_map();
6495 map
= kmalloc(map_lookup_size(num_stripes
), GFP_NOFS
);
6497 free_extent_map(em
);
6501 set_bit(EXTENT_FLAG_FS_MAPPING
, &em
->flags
);
6502 em
->map_lookup
= map
;
6503 em
->start
= logical
;
6506 em
->block_start
= 0;
6507 em
->block_len
= em
->len
;
6509 map
->num_stripes
= num_stripes
;
6510 map
->io_width
= btrfs_chunk_io_width(leaf
, chunk
);
6511 map
->io_align
= btrfs_chunk_io_align(leaf
, chunk
);
6512 map
->stripe_len
= btrfs_chunk_stripe_len(leaf
, chunk
);
6513 map
->type
= btrfs_chunk_type(leaf
, chunk
);
6514 map
->sub_stripes
= btrfs_chunk_sub_stripes(leaf
, chunk
);
6515 for (i
= 0; i
< num_stripes
; i
++) {
6516 map
->stripes
[i
].physical
=
6517 btrfs_stripe_offset_nr(leaf
, chunk
, i
);
6518 devid
= btrfs_stripe_devid_nr(leaf
, chunk
, i
);
6519 read_extent_buffer(leaf
, uuid
, (unsigned long)
6520 btrfs_stripe_dev_uuid_nr(chunk
, i
),
6522 map
->stripes
[i
].dev
= btrfs_find_device(fs_info
, devid
,
6524 if (!map
->stripes
[i
].dev
&&
6525 !btrfs_test_opt(fs_info
, DEGRADED
)) {
6526 free_extent_map(em
);
6527 btrfs_report_missing_device(fs_info
, devid
, uuid
, true);
6530 if (!map
->stripes
[i
].dev
) {
6531 map
->stripes
[i
].dev
=
6532 add_missing_dev(fs_info
->fs_devices
, devid
,
6534 if (IS_ERR(map
->stripes
[i
].dev
)) {
6535 free_extent_map(em
);
6537 "failed to init missing dev %llu: %ld",
6538 devid
, PTR_ERR(map
->stripes
[i
].dev
));
6539 return PTR_ERR(map
->stripes
[i
].dev
);
6541 btrfs_report_missing_device(fs_info
, devid
, uuid
, false);
6543 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA
,
6544 &(map
->stripes
[i
].dev
->dev_state
));
6548 write_lock(&map_tree
->map_tree
.lock
);
6549 ret
= add_extent_mapping(&map_tree
->map_tree
, em
, 0);
6550 write_unlock(&map_tree
->map_tree
.lock
);
6551 BUG_ON(ret
); /* Tree corruption */
6552 free_extent_map(em
);
6557 static void fill_device_from_item(struct extent_buffer
*leaf
,
6558 struct btrfs_dev_item
*dev_item
,
6559 struct btrfs_device
*device
)
6563 device
->devid
= btrfs_device_id(leaf
, dev_item
);
6564 device
->disk_total_bytes
= btrfs_device_total_bytes(leaf
, dev_item
);
6565 device
->total_bytes
= device
->disk_total_bytes
;
6566 device
->commit_total_bytes
= device
->disk_total_bytes
;
6567 device
->bytes_used
= btrfs_device_bytes_used(leaf
, dev_item
);
6568 device
->commit_bytes_used
= device
->bytes_used
;
6569 device
->type
= btrfs_device_type(leaf
, dev_item
);
6570 device
->io_align
= btrfs_device_io_align(leaf
, dev_item
);
6571 device
->io_width
= btrfs_device_io_width(leaf
, dev_item
);
6572 device
->sector_size
= btrfs_device_sector_size(leaf
, dev_item
);
6573 WARN_ON(device
->devid
== BTRFS_DEV_REPLACE_DEVID
);
6574 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
);
6576 ptr
= btrfs_device_uuid(dev_item
);
6577 read_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
6580 static struct btrfs_fs_devices
*open_seed_devices(struct btrfs_fs_info
*fs_info
,
6583 struct btrfs_fs_devices
*fs_devices
;
6586 BUG_ON(!mutex_is_locked(&uuid_mutex
));
6589 fs_devices
= fs_info
->fs_devices
->seed
;
6590 while (fs_devices
) {
6591 if (!memcmp(fs_devices
->fsid
, fsid
, BTRFS_FSID_SIZE
))
6594 fs_devices
= fs_devices
->seed
;
6597 fs_devices
= find_fsid(fsid
);
6599 if (!btrfs_test_opt(fs_info
, DEGRADED
))
6600 return ERR_PTR(-ENOENT
);
6602 fs_devices
= alloc_fs_devices(fsid
);
6603 if (IS_ERR(fs_devices
))
6606 fs_devices
->seeding
= 1;
6607 fs_devices
->opened
= 1;
6611 fs_devices
= clone_fs_devices(fs_devices
);
6612 if (IS_ERR(fs_devices
))
6615 ret
= __btrfs_open_devices(fs_devices
, FMODE_READ
,
6616 fs_info
->bdev_holder
);
6618 free_fs_devices(fs_devices
);
6619 fs_devices
= ERR_PTR(ret
);
6623 if (!fs_devices
->seeding
) {
6624 __btrfs_close_devices(fs_devices
);
6625 free_fs_devices(fs_devices
);
6626 fs_devices
= ERR_PTR(-EINVAL
);
6630 fs_devices
->seed
= fs_info
->fs_devices
->seed
;
6631 fs_info
->fs_devices
->seed
= fs_devices
;
6636 static int read_one_dev(struct btrfs_fs_info
*fs_info
,
6637 struct extent_buffer
*leaf
,
6638 struct btrfs_dev_item
*dev_item
)
6640 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
6641 struct btrfs_device
*device
;
6644 u8 fs_uuid
[BTRFS_FSID_SIZE
];
6645 u8 dev_uuid
[BTRFS_UUID_SIZE
];
6647 devid
= btrfs_device_id(leaf
, dev_item
);
6648 read_extent_buffer(leaf
, dev_uuid
, btrfs_device_uuid(dev_item
),
6650 read_extent_buffer(leaf
, fs_uuid
, btrfs_device_fsid(dev_item
),
6653 if (memcmp(fs_uuid
, fs_info
->fsid
, BTRFS_FSID_SIZE
)) {
6654 fs_devices
= open_seed_devices(fs_info
, fs_uuid
);
6655 if (IS_ERR(fs_devices
))
6656 return PTR_ERR(fs_devices
);
6659 device
= btrfs_find_device(fs_info
, devid
, dev_uuid
, fs_uuid
);
6661 if (!btrfs_test_opt(fs_info
, DEGRADED
)) {
6662 btrfs_report_missing_device(fs_info
, devid
,
6667 device
= add_missing_dev(fs_devices
, devid
, dev_uuid
);
6668 if (IS_ERR(device
)) {
6670 "failed to add missing dev %llu: %ld",
6671 devid
, PTR_ERR(device
));
6672 return PTR_ERR(device
);
6674 btrfs_report_missing_device(fs_info
, devid
, dev_uuid
, false);
6676 if (!device
->bdev
) {
6677 if (!btrfs_test_opt(fs_info
, DEGRADED
)) {
6678 btrfs_report_missing_device(fs_info
,
6679 devid
, dev_uuid
, true);
6682 btrfs_report_missing_device(fs_info
, devid
,
6686 if (!device
->bdev
&&
6687 !test_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
)) {
6689 * this happens when a device that was properly setup
6690 * in the device info lists suddenly goes bad.
6691 * device->bdev is NULL, and so we have to set
6692 * device->missing to one here
6694 device
->fs_devices
->missing_devices
++;
6695 set_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
);
6698 /* Move the device to its own fs_devices */
6699 if (device
->fs_devices
!= fs_devices
) {
6700 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING
,
6701 &device
->dev_state
));
6703 list_move(&device
->dev_list
, &fs_devices
->devices
);
6704 device
->fs_devices
->num_devices
--;
6705 fs_devices
->num_devices
++;
6707 device
->fs_devices
->missing_devices
--;
6708 fs_devices
->missing_devices
++;
6710 device
->fs_devices
= fs_devices
;
6714 if (device
->fs_devices
!= fs_info
->fs_devices
) {
6715 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
));
6716 if (device
->generation
!=
6717 btrfs_device_generation(leaf
, dev_item
))
6721 fill_device_from_item(leaf
, dev_item
, device
);
6722 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &device
->dev_state
);
6723 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
) &&
6724 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
)) {
6725 device
->fs_devices
->total_rw_bytes
+= device
->total_bytes
;
6726 atomic64_add(device
->total_bytes
- device
->bytes_used
,
6727 &fs_info
->free_chunk_space
);
6733 int btrfs_read_sys_array(struct btrfs_fs_info
*fs_info
)
6735 struct btrfs_root
*root
= fs_info
->tree_root
;
6736 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
6737 struct extent_buffer
*sb
;
6738 struct btrfs_disk_key
*disk_key
;
6739 struct btrfs_chunk
*chunk
;
6741 unsigned long sb_array_offset
;
6748 struct btrfs_key key
;
6750 ASSERT(BTRFS_SUPER_INFO_SIZE
<= fs_info
->nodesize
);
6752 * This will create extent buffer of nodesize, superblock size is
6753 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6754 * overallocate but we can keep it as-is, only the first page is used.
6756 sb
= btrfs_find_create_tree_block(fs_info
, BTRFS_SUPER_INFO_OFFSET
);
6759 set_extent_buffer_uptodate(sb
);
6760 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, sb
, 0);
6762 * The sb extent buffer is artificial and just used to read the system array.
6763 * set_extent_buffer_uptodate() call does not properly mark all it's
6764 * pages up-to-date when the page is larger: extent does not cover the
6765 * whole page and consequently check_page_uptodate does not find all
6766 * the page's extents up-to-date (the hole beyond sb),
6767 * write_extent_buffer then triggers a WARN_ON.
6769 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6770 * but sb spans only this function. Add an explicit SetPageUptodate call
6771 * to silence the warning eg. on PowerPC 64.
6773 if (PAGE_SIZE
> BTRFS_SUPER_INFO_SIZE
)
6774 SetPageUptodate(sb
->pages
[0]);
6776 write_extent_buffer(sb
, super_copy
, 0, BTRFS_SUPER_INFO_SIZE
);
6777 array_size
= btrfs_super_sys_array_size(super_copy
);
6779 array_ptr
= super_copy
->sys_chunk_array
;
6780 sb_array_offset
= offsetof(struct btrfs_super_block
, sys_chunk_array
);
6783 while (cur_offset
< array_size
) {
6784 disk_key
= (struct btrfs_disk_key
*)array_ptr
;
6785 len
= sizeof(*disk_key
);
6786 if (cur_offset
+ len
> array_size
)
6787 goto out_short_read
;
6789 btrfs_disk_key_to_cpu(&key
, disk_key
);
6792 sb_array_offset
+= len
;
6795 if (key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
6796 chunk
= (struct btrfs_chunk
*)sb_array_offset
;
6798 * At least one btrfs_chunk with one stripe must be
6799 * present, exact stripe count check comes afterwards
6801 len
= btrfs_chunk_item_size(1);
6802 if (cur_offset
+ len
> array_size
)
6803 goto out_short_read
;
6805 num_stripes
= btrfs_chunk_num_stripes(sb
, chunk
);
6808 "invalid number of stripes %u in sys_array at offset %u",
6809 num_stripes
, cur_offset
);
6814 type
= btrfs_chunk_type(sb
, chunk
);
6815 if ((type
& BTRFS_BLOCK_GROUP_SYSTEM
) == 0) {
6817 "invalid chunk type %llu in sys_array at offset %u",
6823 len
= btrfs_chunk_item_size(num_stripes
);
6824 if (cur_offset
+ len
> array_size
)
6825 goto out_short_read
;
6827 ret
= read_one_chunk(fs_info
, &key
, sb
, chunk
);
6832 "unexpected item type %u in sys_array at offset %u",
6833 (u32
)key
.type
, cur_offset
);
6838 sb_array_offset
+= len
;
6841 clear_extent_buffer_uptodate(sb
);
6842 free_extent_buffer_stale(sb
);
6846 btrfs_err(fs_info
, "sys_array too short to read %u bytes at offset %u",
6848 clear_extent_buffer_uptodate(sb
);
6849 free_extent_buffer_stale(sb
);
6854 * Check if all chunks in the fs are OK for read-write degraded mount
6856 * Return true if all chunks meet the minimal RW mount requirements.
6857 * Return false if any chunk doesn't meet the minimal RW mount requirements.
6859 bool btrfs_check_rw_degradable(struct btrfs_fs_info
*fs_info
)
6861 struct btrfs_mapping_tree
*map_tree
= &fs_info
->mapping_tree
;
6862 struct extent_map
*em
;
6866 read_lock(&map_tree
->map_tree
.lock
);
6867 em
= lookup_extent_mapping(&map_tree
->map_tree
, 0, (u64
)-1);
6868 read_unlock(&map_tree
->map_tree
.lock
);
6869 /* No chunk at all? Return false anyway */
6875 struct map_lookup
*map
;
6880 map
= em
->map_lookup
;
6882 btrfs_get_num_tolerated_disk_barrier_failures(
6884 for (i
= 0; i
< map
->num_stripes
; i
++) {
6885 struct btrfs_device
*dev
= map
->stripes
[i
].dev
;
6887 if (!dev
|| !dev
->bdev
||
6888 test_bit(BTRFS_DEV_STATE_MISSING
, &dev
->dev_state
) ||
6889 dev
->last_flush_error
)
6892 if (missing
> max_tolerated
) {
6894 "chunk %llu missing %d devices, max tolerance is %d for writeable mount",
6895 em
->start
, missing
, max_tolerated
);
6896 free_extent_map(em
);
6900 next_start
= extent_map_end(em
);
6901 free_extent_map(em
);
6903 read_lock(&map_tree
->map_tree
.lock
);
6904 em
= lookup_extent_mapping(&map_tree
->map_tree
, next_start
,
6905 (u64
)(-1) - next_start
);
6906 read_unlock(&map_tree
->map_tree
.lock
);
6912 int btrfs_read_chunk_tree(struct btrfs_fs_info
*fs_info
)
6914 struct btrfs_root
*root
= fs_info
->chunk_root
;
6915 struct btrfs_path
*path
;
6916 struct extent_buffer
*leaf
;
6917 struct btrfs_key key
;
6918 struct btrfs_key found_key
;
6923 path
= btrfs_alloc_path();
6927 mutex_lock(&uuid_mutex
);
6928 mutex_lock(&fs_info
->chunk_mutex
);
6931 * Read all device items, and then all the chunk items. All
6932 * device items are found before any chunk item (their object id
6933 * is smaller than the lowest possible object id for a chunk
6934 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6936 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
6939 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
6943 leaf
= path
->nodes
[0];
6944 slot
= path
->slots
[0];
6945 if (slot
>= btrfs_header_nritems(leaf
)) {
6946 ret
= btrfs_next_leaf(root
, path
);
6953 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
6954 if (found_key
.type
== BTRFS_DEV_ITEM_KEY
) {
6955 struct btrfs_dev_item
*dev_item
;
6956 dev_item
= btrfs_item_ptr(leaf
, slot
,
6957 struct btrfs_dev_item
);
6958 ret
= read_one_dev(fs_info
, leaf
, dev_item
);
6962 } else if (found_key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
6963 struct btrfs_chunk
*chunk
;
6964 chunk
= btrfs_item_ptr(leaf
, slot
, struct btrfs_chunk
);
6965 ret
= read_one_chunk(fs_info
, &found_key
, leaf
, chunk
);
6973 * After loading chunk tree, we've got all device information,
6974 * do another round of validation checks.
6976 if (total_dev
!= fs_info
->fs_devices
->total_devices
) {
6978 "super_num_devices %llu mismatch with num_devices %llu found here",
6979 btrfs_super_num_devices(fs_info
->super_copy
),
6984 if (btrfs_super_total_bytes(fs_info
->super_copy
) <
6985 fs_info
->fs_devices
->total_rw_bytes
) {
6987 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
6988 btrfs_super_total_bytes(fs_info
->super_copy
),
6989 fs_info
->fs_devices
->total_rw_bytes
);
6995 mutex_unlock(&fs_info
->chunk_mutex
);
6996 mutex_unlock(&uuid_mutex
);
6998 btrfs_free_path(path
);
7002 void btrfs_init_devices_late(struct btrfs_fs_info
*fs_info
)
7004 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7005 struct btrfs_device
*device
;
7007 while (fs_devices
) {
7008 mutex_lock(&fs_devices
->device_list_mutex
);
7009 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
)
7010 device
->fs_info
= fs_info
;
7011 mutex_unlock(&fs_devices
->device_list_mutex
);
7013 fs_devices
= fs_devices
->seed
;
7017 static void __btrfs_reset_dev_stats(struct btrfs_device
*dev
)
7021 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
7022 btrfs_dev_stat_reset(dev
, i
);
7025 int btrfs_init_dev_stats(struct btrfs_fs_info
*fs_info
)
7027 struct btrfs_key key
;
7028 struct btrfs_key found_key
;
7029 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
7030 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7031 struct extent_buffer
*eb
;
7034 struct btrfs_device
*device
;
7035 struct btrfs_path
*path
= NULL
;
7038 path
= btrfs_alloc_path();
7044 mutex_lock(&fs_devices
->device_list_mutex
);
7045 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
7047 struct btrfs_dev_stats_item
*ptr
;
7049 key
.objectid
= BTRFS_DEV_STATS_OBJECTID
;
7050 key
.type
= BTRFS_PERSISTENT_ITEM_KEY
;
7051 key
.offset
= device
->devid
;
7052 ret
= btrfs_search_slot(NULL
, dev_root
, &key
, path
, 0, 0);
7054 __btrfs_reset_dev_stats(device
);
7055 device
->dev_stats_valid
= 1;
7056 btrfs_release_path(path
);
7059 slot
= path
->slots
[0];
7060 eb
= path
->nodes
[0];
7061 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
7062 item_size
= btrfs_item_size_nr(eb
, slot
);
7064 ptr
= btrfs_item_ptr(eb
, slot
,
7065 struct btrfs_dev_stats_item
);
7067 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++) {
7068 if (item_size
>= (1 + i
) * sizeof(__le64
))
7069 btrfs_dev_stat_set(device
, i
,
7070 btrfs_dev_stats_value(eb
, ptr
, i
));
7072 btrfs_dev_stat_reset(device
, i
);
7075 device
->dev_stats_valid
= 1;
7076 btrfs_dev_stat_print_on_load(device
);
7077 btrfs_release_path(path
);
7079 mutex_unlock(&fs_devices
->device_list_mutex
);
7082 btrfs_free_path(path
);
7083 return ret
< 0 ? ret
: 0;
7086 static int update_dev_stat_item(struct btrfs_trans_handle
*trans
,
7087 struct btrfs_fs_info
*fs_info
,
7088 struct btrfs_device
*device
)
7090 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
7091 struct btrfs_path
*path
;
7092 struct btrfs_key key
;
7093 struct extent_buffer
*eb
;
7094 struct btrfs_dev_stats_item
*ptr
;
7098 key
.objectid
= BTRFS_DEV_STATS_OBJECTID
;
7099 key
.type
= BTRFS_PERSISTENT_ITEM_KEY
;
7100 key
.offset
= device
->devid
;
7102 path
= btrfs_alloc_path();
7105 ret
= btrfs_search_slot(trans
, dev_root
, &key
, path
, -1, 1);
7107 btrfs_warn_in_rcu(fs_info
,
7108 "error %d while searching for dev_stats item for device %s",
7109 ret
, rcu_str_deref(device
->name
));
7114 btrfs_item_size_nr(path
->nodes
[0], path
->slots
[0]) < sizeof(*ptr
)) {
7115 /* need to delete old one and insert a new one */
7116 ret
= btrfs_del_item(trans
, dev_root
, path
);
7118 btrfs_warn_in_rcu(fs_info
,
7119 "delete too small dev_stats item for device %s failed %d",
7120 rcu_str_deref(device
->name
), ret
);
7127 /* need to insert a new item */
7128 btrfs_release_path(path
);
7129 ret
= btrfs_insert_empty_item(trans
, dev_root
, path
,
7130 &key
, sizeof(*ptr
));
7132 btrfs_warn_in_rcu(fs_info
,
7133 "insert dev_stats item for device %s failed %d",
7134 rcu_str_deref(device
->name
), ret
);
7139 eb
= path
->nodes
[0];
7140 ptr
= btrfs_item_ptr(eb
, path
->slots
[0], struct btrfs_dev_stats_item
);
7141 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
7142 btrfs_set_dev_stats_value(eb
, ptr
, i
,
7143 btrfs_dev_stat_read(device
, i
));
7144 btrfs_mark_buffer_dirty(eb
);
7147 btrfs_free_path(path
);
7152 * called from commit_transaction. Writes all changed device stats to disk.
7154 int btrfs_run_dev_stats(struct btrfs_trans_handle
*trans
,
7155 struct btrfs_fs_info
*fs_info
)
7157 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7158 struct btrfs_device
*device
;
7162 mutex_lock(&fs_devices
->device_list_mutex
);
7163 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
7164 stats_cnt
= atomic_read(&device
->dev_stats_ccnt
);
7165 if (!device
->dev_stats_valid
|| stats_cnt
== 0)
7170 * There is a LOAD-LOAD control dependency between the value of
7171 * dev_stats_ccnt and updating the on-disk values which requires
7172 * reading the in-memory counters. Such control dependencies
7173 * require explicit read memory barriers.
7175 * This memory barriers pairs with smp_mb__before_atomic in
7176 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7177 * barrier implied by atomic_xchg in
7178 * btrfs_dev_stats_read_and_reset
7182 ret
= update_dev_stat_item(trans
, fs_info
, device
);
7184 atomic_sub(stats_cnt
, &device
->dev_stats_ccnt
);
7186 mutex_unlock(&fs_devices
->device_list_mutex
);
7191 void btrfs_dev_stat_inc_and_print(struct btrfs_device
*dev
, int index
)
7193 btrfs_dev_stat_inc(dev
, index
);
7194 btrfs_dev_stat_print_on_error(dev
);
7197 static void btrfs_dev_stat_print_on_error(struct btrfs_device
*dev
)
7199 if (!dev
->dev_stats_valid
)
7201 btrfs_err_rl_in_rcu(dev
->fs_info
,
7202 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7203 rcu_str_deref(dev
->name
),
7204 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_WRITE_ERRS
),
7205 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_READ_ERRS
),
7206 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_FLUSH_ERRS
),
7207 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_CORRUPTION_ERRS
),
7208 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_GENERATION_ERRS
));
7211 static void btrfs_dev_stat_print_on_load(struct btrfs_device
*dev
)
7215 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
7216 if (btrfs_dev_stat_read(dev
, i
) != 0)
7218 if (i
== BTRFS_DEV_STAT_VALUES_MAX
)
7219 return; /* all values == 0, suppress message */
7221 btrfs_info_in_rcu(dev
->fs_info
,
7222 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7223 rcu_str_deref(dev
->name
),
7224 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_WRITE_ERRS
),
7225 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_READ_ERRS
),
7226 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_FLUSH_ERRS
),
7227 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_CORRUPTION_ERRS
),
7228 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_GENERATION_ERRS
));
7231 int btrfs_get_dev_stats(struct btrfs_fs_info
*fs_info
,
7232 struct btrfs_ioctl_get_dev_stats
*stats
)
7234 struct btrfs_device
*dev
;
7235 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7238 mutex_lock(&fs_devices
->device_list_mutex
);
7239 dev
= btrfs_find_device(fs_info
, stats
->devid
, NULL
, NULL
);
7240 mutex_unlock(&fs_devices
->device_list_mutex
);
7243 btrfs_warn(fs_info
, "get dev_stats failed, device not found");
7245 } else if (!dev
->dev_stats_valid
) {
7246 btrfs_warn(fs_info
, "get dev_stats failed, not yet valid");
7248 } else if (stats
->flags
& BTRFS_DEV_STATS_RESET
) {
7249 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++) {
7250 if (stats
->nr_items
> i
)
7252 btrfs_dev_stat_read_and_reset(dev
, i
);
7254 btrfs_dev_stat_reset(dev
, i
);
7257 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
7258 if (stats
->nr_items
> i
)
7259 stats
->values
[i
] = btrfs_dev_stat_read(dev
, i
);
7261 if (stats
->nr_items
> BTRFS_DEV_STAT_VALUES_MAX
)
7262 stats
->nr_items
= BTRFS_DEV_STAT_VALUES_MAX
;
7266 void btrfs_scratch_superblocks(struct block_device
*bdev
, const char *device_path
)
7268 struct buffer_head
*bh
;
7269 struct btrfs_super_block
*disk_super
;
7275 for (copy_num
= 0; copy_num
< BTRFS_SUPER_MIRROR_MAX
;
7278 if (btrfs_read_dev_one_super(bdev
, copy_num
, &bh
))
7281 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
7283 memset(&disk_super
->magic
, 0, sizeof(disk_super
->magic
));
7284 set_buffer_dirty(bh
);
7285 sync_dirty_buffer(bh
);
7289 /* Notify udev that device has changed */
7290 btrfs_kobject_uevent(bdev
, KOBJ_CHANGE
);
7292 /* Update ctime/mtime for device path for libblkid */
7293 update_dev_time(device_path
);
7297 * Update the size of all devices, which is used for writing out the
7300 void btrfs_update_commit_device_size(struct btrfs_fs_info
*fs_info
)
7302 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7303 struct btrfs_device
*curr
, *next
;
7305 if (list_empty(&fs_devices
->resized_devices
))
7308 mutex_lock(&fs_devices
->device_list_mutex
);
7309 mutex_lock(&fs_info
->chunk_mutex
);
7310 list_for_each_entry_safe(curr
, next
, &fs_devices
->resized_devices
,
7312 list_del_init(&curr
->resized_list
);
7313 curr
->commit_total_bytes
= curr
->disk_total_bytes
;
7315 mutex_unlock(&fs_info
->chunk_mutex
);
7316 mutex_unlock(&fs_devices
->device_list_mutex
);
7319 /* Must be invoked during the transaction commit */
7320 void btrfs_update_commit_device_bytes_used(struct btrfs_fs_info
*fs_info
,
7321 struct btrfs_transaction
*transaction
)
7323 struct extent_map
*em
;
7324 struct map_lookup
*map
;
7325 struct btrfs_device
*dev
;
7328 if (list_empty(&transaction
->pending_chunks
))
7331 /* In order to kick the device replace finish process */
7332 mutex_lock(&fs_info
->chunk_mutex
);
7333 list_for_each_entry(em
, &transaction
->pending_chunks
, list
) {
7334 map
= em
->map_lookup
;
7336 for (i
= 0; i
< map
->num_stripes
; i
++) {
7337 dev
= map
->stripes
[i
].dev
;
7338 dev
->commit_bytes_used
= dev
->bytes_used
;
7341 mutex_unlock(&fs_info
->chunk_mutex
);
7344 void btrfs_set_fs_info_ptr(struct btrfs_fs_info
*fs_info
)
7346 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7347 while (fs_devices
) {
7348 fs_devices
->fs_info
= fs_info
;
7349 fs_devices
= fs_devices
->seed
;
7353 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info
*fs_info
)
7355 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7356 while (fs_devices
) {
7357 fs_devices
->fs_info
= NULL
;
7358 fs_devices
= fs_devices
->seed
;