2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
28 * Targeted preemption latency for CPU-bound tasks:
29 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
31 * NOTE: this latency value is not the same as the concept of
32 * 'timeslice length' - timeslices in CFS are of variable length
33 * and have no persistent notion like in traditional, time-slice
34 * based scheduling concepts.
36 * (to see the precise effective timeslice length of your workload,
37 * run vmstat and monitor the context-switches (cs) field)
39 unsigned int sysctl_sched_latency
= 6000000ULL;
40 unsigned int normalized_sysctl_sched_latency
= 6000000ULL;
43 * The initial- and re-scaling of tunables is configurable
44 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
47 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
48 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
49 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
51 enum sched_tunable_scaling sysctl_sched_tunable_scaling
52 = SCHED_TUNABLESCALING_LOG
;
55 * Minimal preemption granularity for CPU-bound tasks:
56 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
58 unsigned int sysctl_sched_min_granularity
= 750000ULL;
59 unsigned int normalized_sysctl_sched_min_granularity
= 750000ULL;
62 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
64 static unsigned int sched_nr_latency
= 8;
67 * After fork, child runs first. If set to 0 (default) then
68 * parent will (try to) run first.
70 unsigned int sysctl_sched_child_runs_first __read_mostly
;
73 * SCHED_OTHER wake-up granularity.
74 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
76 * This option delays the preemption effects of decoupled workloads
77 * and reduces their over-scheduling. Synchronous workloads will still
78 * have immediate wakeup/sleep latencies.
80 unsigned int sysctl_sched_wakeup_granularity
= 1000000UL;
81 unsigned int normalized_sysctl_sched_wakeup_granularity
= 1000000UL;
83 const_debug
unsigned int sysctl_sched_migration_cost
= 500000UL;
86 * The exponential sliding window over which load is averaged for shares
90 unsigned int __read_mostly sysctl_sched_shares_window
= 10000000UL;
92 static const struct sched_class fair_sched_class
;
94 /**************************************************************
95 * CFS operations on generic schedulable entities:
98 #ifdef CONFIG_FAIR_GROUP_SCHED
100 /* cpu runqueue to which this cfs_rq is attached */
101 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
106 /* An entity is a task if it doesn't "own" a runqueue */
107 #define entity_is_task(se) (!se->my_q)
109 static inline struct task_struct
*task_of(struct sched_entity
*se
)
111 #ifdef CONFIG_SCHED_DEBUG
112 WARN_ON_ONCE(!entity_is_task(se
));
114 return container_of(se
, struct task_struct
, se
);
117 /* Walk up scheduling entities hierarchy */
118 #define for_each_sched_entity(se) \
119 for (; se; se = se->parent)
121 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
126 /* runqueue on which this entity is (to be) queued */
127 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
132 /* runqueue "owned" by this group */
133 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
138 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
139 * another cpu ('this_cpu')
141 static inline struct cfs_rq
*cpu_cfs_rq(struct cfs_rq
*cfs_rq
, int this_cpu
)
143 return cfs_rq
->tg
->cfs_rq
[this_cpu
];
146 static inline void list_add_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
148 if (!cfs_rq
->on_list
) {
150 * Ensure we either appear before our parent (if already
151 * enqueued) or force our parent to appear after us when it is
152 * enqueued. The fact that we always enqueue bottom-up
153 * reduces this to two cases.
155 if (cfs_rq
->tg
->parent
&&
156 cfs_rq
->tg
->parent
->cfs_rq
[cpu_of(rq_of(cfs_rq
))]->on_list
) {
157 list_add_rcu(&cfs_rq
->leaf_cfs_rq_list
,
158 &rq_of(cfs_rq
)->leaf_cfs_rq_list
);
160 list_add_tail_rcu(&cfs_rq
->leaf_cfs_rq_list
,
161 &rq_of(cfs_rq
)->leaf_cfs_rq_list
);
168 static inline void list_del_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
170 if (cfs_rq
->on_list
) {
171 list_del_rcu(&cfs_rq
->leaf_cfs_rq_list
);
176 /* Iterate thr' all leaf cfs_rq's on a runqueue */
177 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
178 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
180 /* Do the two (enqueued) entities belong to the same group ? */
182 is_same_group(struct sched_entity
*se
, struct sched_entity
*pse
)
184 if (se
->cfs_rq
== pse
->cfs_rq
)
190 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
195 /* return depth at which a sched entity is present in the hierarchy */
196 static inline int depth_se(struct sched_entity
*se
)
200 for_each_sched_entity(se
)
207 find_matching_se(struct sched_entity
**se
, struct sched_entity
**pse
)
209 int se_depth
, pse_depth
;
212 * preemption test can be made between sibling entities who are in the
213 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
214 * both tasks until we find their ancestors who are siblings of common
218 /* First walk up until both entities are at same depth */
219 se_depth
= depth_se(*se
);
220 pse_depth
= depth_se(*pse
);
222 while (se_depth
> pse_depth
) {
224 *se
= parent_entity(*se
);
227 while (pse_depth
> se_depth
) {
229 *pse
= parent_entity(*pse
);
232 while (!is_same_group(*se
, *pse
)) {
233 *se
= parent_entity(*se
);
234 *pse
= parent_entity(*pse
);
238 #else /* !CONFIG_FAIR_GROUP_SCHED */
240 static inline struct task_struct
*task_of(struct sched_entity
*se
)
242 return container_of(se
, struct task_struct
, se
);
245 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
247 return container_of(cfs_rq
, struct rq
, cfs
);
250 #define entity_is_task(se) 1
252 #define for_each_sched_entity(se) \
253 for (; se; se = NULL)
255 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
257 return &task_rq(p
)->cfs
;
260 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
262 struct task_struct
*p
= task_of(se
);
263 struct rq
*rq
= task_rq(p
);
268 /* runqueue "owned" by this group */
269 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
274 static inline struct cfs_rq
*cpu_cfs_rq(struct cfs_rq
*cfs_rq
, int this_cpu
)
276 return &cpu_rq(this_cpu
)->cfs
;
279 static inline void list_add_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
283 static inline void list_del_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
287 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
288 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
291 is_same_group(struct sched_entity
*se
, struct sched_entity
*pse
)
296 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
302 find_matching_se(struct sched_entity
**se
, struct sched_entity
**pse
)
306 #endif /* CONFIG_FAIR_GROUP_SCHED */
309 /**************************************************************
310 * Scheduling class tree data structure manipulation methods:
313 static inline u64
max_vruntime(u64 min_vruntime
, u64 vruntime
)
315 s64 delta
= (s64
)(vruntime
- min_vruntime
);
317 min_vruntime
= vruntime
;
322 static inline u64
min_vruntime(u64 min_vruntime
, u64 vruntime
)
324 s64 delta
= (s64
)(vruntime
- min_vruntime
);
326 min_vruntime
= vruntime
;
331 static inline int entity_before(struct sched_entity
*a
,
332 struct sched_entity
*b
)
334 return (s64
)(a
->vruntime
- b
->vruntime
) < 0;
337 static inline s64
entity_key(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
339 return se
->vruntime
- cfs_rq
->min_vruntime
;
342 static void update_min_vruntime(struct cfs_rq
*cfs_rq
)
344 u64 vruntime
= cfs_rq
->min_vruntime
;
347 vruntime
= cfs_rq
->curr
->vruntime
;
349 if (cfs_rq
->rb_leftmost
) {
350 struct sched_entity
*se
= rb_entry(cfs_rq
->rb_leftmost
,
355 vruntime
= se
->vruntime
;
357 vruntime
= min_vruntime(vruntime
, se
->vruntime
);
360 cfs_rq
->min_vruntime
= max_vruntime(cfs_rq
->min_vruntime
, vruntime
);
363 cfs_rq
->min_vruntime_copy
= cfs_rq
->min_vruntime
;
368 * Enqueue an entity into the rb-tree:
370 static void __enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
372 struct rb_node
**link
= &cfs_rq
->tasks_timeline
.rb_node
;
373 struct rb_node
*parent
= NULL
;
374 struct sched_entity
*entry
;
375 s64 key
= entity_key(cfs_rq
, se
);
379 * Find the right place in the rbtree:
383 entry
= rb_entry(parent
, struct sched_entity
, run_node
);
385 * We dont care about collisions. Nodes with
386 * the same key stay together.
388 if (key
< entity_key(cfs_rq
, entry
)) {
389 link
= &parent
->rb_left
;
391 link
= &parent
->rb_right
;
397 * Maintain a cache of leftmost tree entries (it is frequently
401 cfs_rq
->rb_leftmost
= &se
->run_node
;
403 rb_link_node(&se
->run_node
, parent
, link
);
404 rb_insert_color(&se
->run_node
, &cfs_rq
->tasks_timeline
);
407 static void __dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
409 if (cfs_rq
->rb_leftmost
== &se
->run_node
) {
410 struct rb_node
*next_node
;
412 next_node
= rb_next(&se
->run_node
);
413 cfs_rq
->rb_leftmost
= next_node
;
416 rb_erase(&se
->run_node
, &cfs_rq
->tasks_timeline
);
419 static struct sched_entity
*__pick_first_entity(struct cfs_rq
*cfs_rq
)
421 struct rb_node
*left
= cfs_rq
->rb_leftmost
;
426 return rb_entry(left
, struct sched_entity
, run_node
);
429 static struct sched_entity
*__pick_next_entity(struct sched_entity
*se
)
431 struct rb_node
*next
= rb_next(&se
->run_node
);
436 return rb_entry(next
, struct sched_entity
, run_node
);
439 #ifdef CONFIG_SCHED_DEBUG
440 static struct sched_entity
*__pick_last_entity(struct cfs_rq
*cfs_rq
)
442 struct rb_node
*last
= rb_last(&cfs_rq
->tasks_timeline
);
447 return rb_entry(last
, struct sched_entity
, run_node
);
450 /**************************************************************
451 * Scheduling class statistics methods:
454 int sched_proc_update_handler(struct ctl_table
*table
, int write
,
455 void __user
*buffer
, size_t *lenp
,
458 int ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
459 int factor
= get_update_sysctl_factor();
464 sched_nr_latency
= DIV_ROUND_UP(sysctl_sched_latency
,
465 sysctl_sched_min_granularity
);
467 #define WRT_SYSCTL(name) \
468 (normalized_sysctl_##name = sysctl_##name / (factor))
469 WRT_SYSCTL(sched_min_granularity
);
470 WRT_SYSCTL(sched_latency
);
471 WRT_SYSCTL(sched_wakeup_granularity
);
481 static inline unsigned long
482 calc_delta_fair(unsigned long delta
, struct sched_entity
*se
)
484 if (unlikely(se
->load
.weight
!= NICE_0_LOAD
))
485 delta
= calc_delta_mine(delta
, NICE_0_LOAD
, &se
->load
);
491 * The idea is to set a period in which each task runs once.
493 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
494 * this period because otherwise the slices get too small.
496 * p = (nr <= nl) ? l : l*nr/nl
498 static u64
__sched_period(unsigned long nr_running
)
500 u64 period
= sysctl_sched_latency
;
501 unsigned long nr_latency
= sched_nr_latency
;
503 if (unlikely(nr_running
> nr_latency
)) {
504 period
= sysctl_sched_min_granularity
;
505 period
*= nr_running
;
512 * We calculate the wall-time slice from the period by taking a part
513 * proportional to the weight.
517 static u64
sched_slice(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
519 u64 slice
= __sched_period(cfs_rq
->nr_running
+ !se
->on_rq
);
521 for_each_sched_entity(se
) {
522 struct load_weight
*load
;
523 struct load_weight lw
;
525 cfs_rq
= cfs_rq_of(se
);
526 load
= &cfs_rq
->load
;
528 if (unlikely(!se
->on_rq
)) {
531 update_load_add(&lw
, se
->load
.weight
);
534 slice
= calc_delta_mine(slice
, se
->load
.weight
, load
);
540 * We calculate the vruntime slice of a to be inserted task
544 static u64
sched_vslice(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
546 return calc_delta_fair(sched_slice(cfs_rq
, se
), se
);
549 static void update_cfs_load(struct cfs_rq
*cfs_rq
, int global_update
);
550 static void update_cfs_shares(struct cfs_rq
*cfs_rq
);
553 * Update the current task's runtime statistics. Skip current tasks that
554 * are not in our scheduling class.
557 __update_curr(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
,
558 unsigned long delta_exec
)
560 unsigned long delta_exec_weighted
;
562 schedstat_set(curr
->statistics
.exec_max
,
563 max((u64
)delta_exec
, curr
->statistics
.exec_max
));
565 curr
->sum_exec_runtime
+= delta_exec
;
566 schedstat_add(cfs_rq
, exec_clock
, delta_exec
);
567 delta_exec_weighted
= calc_delta_fair(delta_exec
, curr
);
569 curr
->vruntime
+= delta_exec_weighted
;
570 update_min_vruntime(cfs_rq
);
572 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
573 cfs_rq
->load_unacc_exec_time
+= delta_exec
;
577 static void update_curr(struct cfs_rq
*cfs_rq
)
579 struct sched_entity
*curr
= cfs_rq
->curr
;
580 u64 now
= rq_of(cfs_rq
)->clock_task
;
581 unsigned long delta_exec
;
587 * Get the amount of time the current task was running
588 * since the last time we changed load (this cannot
589 * overflow on 32 bits):
591 delta_exec
= (unsigned long)(now
- curr
->exec_start
);
595 __update_curr(cfs_rq
, curr
, delta_exec
);
596 curr
->exec_start
= now
;
598 if (entity_is_task(curr
)) {
599 struct task_struct
*curtask
= task_of(curr
);
601 trace_sched_stat_runtime(curtask
, delta_exec
, curr
->vruntime
);
602 cpuacct_charge(curtask
, delta_exec
);
603 account_group_exec_runtime(curtask
, delta_exec
);
608 update_stats_wait_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
610 schedstat_set(se
->statistics
.wait_start
, rq_of(cfs_rq
)->clock
);
614 * Task is being enqueued - update stats:
616 static void update_stats_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
619 * Are we enqueueing a waiting task? (for current tasks
620 * a dequeue/enqueue event is a NOP)
622 if (se
!= cfs_rq
->curr
)
623 update_stats_wait_start(cfs_rq
, se
);
627 update_stats_wait_end(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
629 schedstat_set(se
->statistics
.wait_max
, max(se
->statistics
.wait_max
,
630 rq_of(cfs_rq
)->clock
- se
->statistics
.wait_start
));
631 schedstat_set(se
->statistics
.wait_count
, se
->statistics
.wait_count
+ 1);
632 schedstat_set(se
->statistics
.wait_sum
, se
->statistics
.wait_sum
+
633 rq_of(cfs_rq
)->clock
- se
->statistics
.wait_start
);
634 #ifdef CONFIG_SCHEDSTATS
635 if (entity_is_task(se
)) {
636 trace_sched_stat_wait(task_of(se
),
637 rq_of(cfs_rq
)->clock
- se
->statistics
.wait_start
);
640 schedstat_set(se
->statistics
.wait_start
, 0);
644 update_stats_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
647 * Mark the end of the wait period if dequeueing a
650 if (se
!= cfs_rq
->curr
)
651 update_stats_wait_end(cfs_rq
, se
);
655 * We are picking a new current task - update its stats:
658 update_stats_curr_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
661 * We are starting a new run period:
663 se
->exec_start
= rq_of(cfs_rq
)->clock_task
;
666 /**************************************************
667 * Scheduling class queueing methods:
670 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
672 add_cfs_task_weight(struct cfs_rq
*cfs_rq
, unsigned long weight
)
674 cfs_rq
->task_weight
+= weight
;
678 add_cfs_task_weight(struct cfs_rq
*cfs_rq
, unsigned long weight
)
684 account_entity_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
686 update_load_add(&cfs_rq
->load
, se
->load
.weight
);
687 if (!parent_entity(se
))
688 inc_cpu_load(rq_of(cfs_rq
), se
->load
.weight
);
689 if (entity_is_task(se
)) {
690 add_cfs_task_weight(cfs_rq
, se
->load
.weight
);
691 list_add(&se
->group_node
, &cfs_rq
->tasks
);
693 cfs_rq
->nr_running
++;
697 account_entity_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
699 update_load_sub(&cfs_rq
->load
, se
->load
.weight
);
700 if (!parent_entity(se
))
701 dec_cpu_load(rq_of(cfs_rq
), se
->load
.weight
);
702 if (entity_is_task(se
)) {
703 add_cfs_task_weight(cfs_rq
, -se
->load
.weight
);
704 list_del_init(&se
->group_node
);
706 cfs_rq
->nr_running
--;
709 #ifdef CONFIG_FAIR_GROUP_SCHED
711 static void update_cfs_rq_load_contribution(struct cfs_rq
*cfs_rq
,
714 struct task_group
*tg
= cfs_rq
->tg
;
717 load_avg
= div64_u64(cfs_rq
->load_avg
, cfs_rq
->load_period
+1);
718 load_avg
-= cfs_rq
->load_contribution
;
720 if (global_update
|| abs(load_avg
) > cfs_rq
->load_contribution
/ 8) {
721 atomic_add(load_avg
, &tg
->load_weight
);
722 cfs_rq
->load_contribution
+= load_avg
;
726 static void update_cfs_load(struct cfs_rq
*cfs_rq
, int global_update
)
728 u64 period
= sysctl_sched_shares_window
;
730 unsigned long load
= cfs_rq
->load
.weight
;
732 if (cfs_rq
->tg
== &root_task_group
)
735 now
= rq_of(cfs_rq
)->clock_task
;
736 delta
= now
- cfs_rq
->load_stamp
;
738 /* truncate load history at 4 idle periods */
739 if (cfs_rq
->load_stamp
> cfs_rq
->load_last
&&
740 now
- cfs_rq
->load_last
> 4 * period
) {
741 cfs_rq
->load_period
= 0;
742 cfs_rq
->load_avg
= 0;
746 cfs_rq
->load_stamp
= now
;
747 cfs_rq
->load_unacc_exec_time
= 0;
748 cfs_rq
->load_period
+= delta
;
750 cfs_rq
->load_last
= now
;
751 cfs_rq
->load_avg
+= delta
* load
;
754 /* consider updating load contribution on each fold or truncate */
755 if (global_update
|| cfs_rq
->load_period
> period
756 || !cfs_rq
->load_period
)
757 update_cfs_rq_load_contribution(cfs_rq
, global_update
);
759 while (cfs_rq
->load_period
> period
) {
761 * Inline assembly required to prevent the compiler
762 * optimising this loop into a divmod call.
763 * See __iter_div_u64_rem() for another example of this.
765 asm("" : "+rm" (cfs_rq
->load_period
));
766 cfs_rq
->load_period
/= 2;
767 cfs_rq
->load_avg
/= 2;
770 if (!cfs_rq
->curr
&& !cfs_rq
->nr_running
&& !cfs_rq
->load_avg
)
771 list_del_leaf_cfs_rq(cfs_rq
);
774 static long calc_cfs_shares(struct cfs_rq
*cfs_rq
, struct task_group
*tg
)
776 long load_weight
, load
, shares
;
778 load
= cfs_rq
->load
.weight
;
780 load_weight
= atomic_read(&tg
->load_weight
);
782 load_weight
-= cfs_rq
->load_contribution
;
784 shares
= (tg
->shares
* load
);
786 shares
/= load_weight
;
788 if (shares
< MIN_SHARES
)
790 if (shares
> tg
->shares
)
796 static void update_entity_shares_tick(struct cfs_rq
*cfs_rq
)
798 if (cfs_rq
->load_unacc_exec_time
> sysctl_sched_shares_window
) {
799 update_cfs_load(cfs_rq
, 0);
800 update_cfs_shares(cfs_rq
);
803 # else /* CONFIG_SMP */
804 static void update_cfs_load(struct cfs_rq
*cfs_rq
, int global_update
)
808 static inline long calc_cfs_shares(struct cfs_rq
*cfs_rq
, struct task_group
*tg
)
813 static inline void update_entity_shares_tick(struct cfs_rq
*cfs_rq
)
816 # endif /* CONFIG_SMP */
817 static void reweight_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
,
818 unsigned long weight
)
821 /* commit outstanding execution time */
822 if (cfs_rq
->curr
== se
)
824 account_entity_dequeue(cfs_rq
, se
);
827 update_load_set(&se
->load
, weight
);
830 account_entity_enqueue(cfs_rq
, se
);
833 static void update_cfs_shares(struct cfs_rq
*cfs_rq
)
835 struct task_group
*tg
;
836 struct sched_entity
*se
;
840 se
= tg
->se
[cpu_of(rq_of(cfs_rq
))];
844 if (likely(se
->load
.weight
== tg
->shares
))
847 shares
= calc_cfs_shares(cfs_rq
, tg
);
849 reweight_entity(cfs_rq_of(se
), se
, shares
);
851 #else /* CONFIG_FAIR_GROUP_SCHED */
852 static void update_cfs_load(struct cfs_rq
*cfs_rq
, int global_update
)
856 static inline void update_cfs_shares(struct cfs_rq
*cfs_rq
)
860 static inline void update_entity_shares_tick(struct cfs_rq
*cfs_rq
)
863 #endif /* CONFIG_FAIR_GROUP_SCHED */
865 static void enqueue_sleeper(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
867 #ifdef CONFIG_SCHEDSTATS
868 struct task_struct
*tsk
= NULL
;
870 if (entity_is_task(se
))
873 if (se
->statistics
.sleep_start
) {
874 u64 delta
= rq_of(cfs_rq
)->clock
- se
->statistics
.sleep_start
;
879 if (unlikely(delta
> se
->statistics
.sleep_max
))
880 se
->statistics
.sleep_max
= delta
;
882 se
->statistics
.sleep_start
= 0;
883 se
->statistics
.sum_sleep_runtime
+= delta
;
886 account_scheduler_latency(tsk
, delta
>> 10, 1);
887 trace_sched_stat_sleep(tsk
, delta
);
890 if (se
->statistics
.block_start
) {
891 u64 delta
= rq_of(cfs_rq
)->clock
- se
->statistics
.block_start
;
896 if (unlikely(delta
> se
->statistics
.block_max
))
897 se
->statistics
.block_max
= delta
;
899 se
->statistics
.block_start
= 0;
900 se
->statistics
.sum_sleep_runtime
+= delta
;
903 if (tsk
->in_iowait
) {
904 se
->statistics
.iowait_sum
+= delta
;
905 se
->statistics
.iowait_count
++;
906 trace_sched_stat_iowait(tsk
, delta
);
910 * Blocking time is in units of nanosecs, so shift by
911 * 20 to get a milliseconds-range estimation of the
912 * amount of time that the task spent sleeping:
914 if (unlikely(prof_on
== SLEEP_PROFILING
)) {
915 profile_hits(SLEEP_PROFILING
,
916 (void *)get_wchan(tsk
),
919 account_scheduler_latency(tsk
, delta
>> 10, 0);
925 static void check_spread(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
927 #ifdef CONFIG_SCHED_DEBUG
928 s64 d
= se
->vruntime
- cfs_rq
->min_vruntime
;
933 if (d
> 3*sysctl_sched_latency
)
934 schedstat_inc(cfs_rq
, nr_spread_over
);
939 place_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int initial
)
941 u64 vruntime
= cfs_rq
->min_vruntime
;
944 * The 'current' period is already promised to the current tasks,
945 * however the extra weight of the new task will slow them down a
946 * little, place the new task so that it fits in the slot that
947 * stays open at the end.
949 if (initial
&& sched_feat(START_DEBIT
))
950 vruntime
+= sched_vslice(cfs_rq
, se
);
952 /* sleeps up to a single latency don't count. */
954 unsigned long thresh
= sysctl_sched_latency
;
957 * Halve their sleep time's effect, to allow
958 * for a gentler effect of sleepers:
960 if (sched_feat(GENTLE_FAIR_SLEEPERS
))
966 /* ensure we never gain time by being placed backwards. */
967 vruntime
= max_vruntime(se
->vruntime
, vruntime
);
969 se
->vruntime
= vruntime
;
973 enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
976 * Update the normalized vruntime before updating min_vruntime
977 * through callig update_curr().
979 if (!(flags
& ENQUEUE_WAKEUP
) || (flags
& ENQUEUE_WAKING
))
980 se
->vruntime
+= cfs_rq
->min_vruntime
;
983 * Update run-time statistics of the 'current'.
986 update_cfs_load(cfs_rq
, 0);
987 account_entity_enqueue(cfs_rq
, se
);
988 update_cfs_shares(cfs_rq
);
990 if (flags
& ENQUEUE_WAKEUP
) {
991 place_entity(cfs_rq
, se
, 0);
992 enqueue_sleeper(cfs_rq
, se
);
995 update_stats_enqueue(cfs_rq
, se
);
996 check_spread(cfs_rq
, se
);
997 if (se
!= cfs_rq
->curr
)
998 __enqueue_entity(cfs_rq
, se
);
1001 if (cfs_rq
->nr_running
== 1)
1002 list_add_leaf_cfs_rq(cfs_rq
);
1005 static void __clear_buddies_last(struct sched_entity
*se
)
1007 for_each_sched_entity(se
) {
1008 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
1009 if (cfs_rq
->last
== se
)
1010 cfs_rq
->last
= NULL
;
1016 static void __clear_buddies_next(struct sched_entity
*se
)
1018 for_each_sched_entity(se
) {
1019 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
1020 if (cfs_rq
->next
== se
)
1021 cfs_rq
->next
= NULL
;
1027 static void __clear_buddies_skip(struct sched_entity
*se
)
1029 for_each_sched_entity(se
) {
1030 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
1031 if (cfs_rq
->skip
== se
)
1032 cfs_rq
->skip
= NULL
;
1038 static void clear_buddies(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
1040 if (cfs_rq
->last
== se
)
1041 __clear_buddies_last(se
);
1043 if (cfs_rq
->next
== se
)
1044 __clear_buddies_next(se
);
1046 if (cfs_rq
->skip
== se
)
1047 __clear_buddies_skip(se
);
1051 dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
1054 * Update run-time statistics of the 'current'.
1056 update_curr(cfs_rq
);
1058 update_stats_dequeue(cfs_rq
, se
);
1059 if (flags
& DEQUEUE_SLEEP
) {
1060 #ifdef CONFIG_SCHEDSTATS
1061 if (entity_is_task(se
)) {
1062 struct task_struct
*tsk
= task_of(se
);
1064 if (tsk
->state
& TASK_INTERRUPTIBLE
)
1065 se
->statistics
.sleep_start
= rq_of(cfs_rq
)->clock
;
1066 if (tsk
->state
& TASK_UNINTERRUPTIBLE
)
1067 se
->statistics
.block_start
= rq_of(cfs_rq
)->clock
;
1072 clear_buddies(cfs_rq
, se
);
1074 if (se
!= cfs_rq
->curr
)
1075 __dequeue_entity(cfs_rq
, se
);
1077 update_cfs_load(cfs_rq
, 0);
1078 account_entity_dequeue(cfs_rq
, se
);
1079 update_min_vruntime(cfs_rq
);
1080 update_cfs_shares(cfs_rq
);
1083 * Normalize the entity after updating the min_vruntime because the
1084 * update can refer to the ->curr item and we need to reflect this
1085 * movement in our normalized position.
1087 if (!(flags
& DEQUEUE_SLEEP
))
1088 se
->vruntime
-= cfs_rq
->min_vruntime
;
1092 * Preempt the current task with a newly woken task if needed:
1095 check_preempt_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
)
1097 unsigned long ideal_runtime
, delta_exec
;
1099 ideal_runtime
= sched_slice(cfs_rq
, curr
);
1100 delta_exec
= curr
->sum_exec_runtime
- curr
->prev_sum_exec_runtime
;
1101 if (delta_exec
> ideal_runtime
) {
1102 resched_task(rq_of(cfs_rq
)->curr
);
1104 * The current task ran long enough, ensure it doesn't get
1105 * re-elected due to buddy favours.
1107 clear_buddies(cfs_rq
, curr
);
1112 * Ensure that a task that missed wakeup preemption by a
1113 * narrow margin doesn't have to wait for a full slice.
1114 * This also mitigates buddy induced latencies under load.
1116 if (!sched_feat(WAKEUP_PREEMPT
))
1119 if (delta_exec
< sysctl_sched_min_granularity
)
1122 if (cfs_rq
->nr_running
> 1) {
1123 struct sched_entity
*se
= __pick_first_entity(cfs_rq
);
1124 s64 delta
= curr
->vruntime
- se
->vruntime
;
1129 if (delta
> ideal_runtime
)
1130 resched_task(rq_of(cfs_rq
)->curr
);
1135 set_next_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
1137 /* 'current' is not kept within the tree. */
1140 * Any task has to be enqueued before it get to execute on
1141 * a CPU. So account for the time it spent waiting on the
1144 update_stats_wait_end(cfs_rq
, se
);
1145 __dequeue_entity(cfs_rq
, se
);
1148 update_stats_curr_start(cfs_rq
, se
);
1150 #ifdef CONFIG_SCHEDSTATS
1152 * Track our maximum slice length, if the CPU's load is at
1153 * least twice that of our own weight (i.e. dont track it
1154 * when there are only lesser-weight tasks around):
1156 if (rq_of(cfs_rq
)->load
.weight
>= 2*se
->load
.weight
) {
1157 se
->statistics
.slice_max
= max(se
->statistics
.slice_max
,
1158 se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
);
1161 se
->prev_sum_exec_runtime
= se
->sum_exec_runtime
;
1165 wakeup_preempt_entity(struct sched_entity
*curr
, struct sched_entity
*se
);
1168 * Pick the next process, keeping these things in mind, in this order:
1169 * 1) keep things fair between processes/task groups
1170 * 2) pick the "next" process, since someone really wants that to run
1171 * 3) pick the "last" process, for cache locality
1172 * 4) do not run the "skip" process, if something else is available
1174 static struct sched_entity
*pick_next_entity(struct cfs_rq
*cfs_rq
)
1176 struct sched_entity
*se
= __pick_first_entity(cfs_rq
);
1177 struct sched_entity
*left
= se
;
1180 * Avoid running the skip buddy, if running something else can
1181 * be done without getting too unfair.
1183 if (cfs_rq
->skip
== se
) {
1184 struct sched_entity
*second
= __pick_next_entity(se
);
1185 if (second
&& wakeup_preempt_entity(second
, left
) < 1)
1190 * Prefer last buddy, try to return the CPU to a preempted task.
1192 if (cfs_rq
->last
&& wakeup_preempt_entity(cfs_rq
->last
, left
) < 1)
1196 * Someone really wants this to run. If it's not unfair, run it.
1198 if (cfs_rq
->next
&& wakeup_preempt_entity(cfs_rq
->next
, left
) < 1)
1201 clear_buddies(cfs_rq
, se
);
1206 static void put_prev_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*prev
)
1209 * If still on the runqueue then deactivate_task()
1210 * was not called and update_curr() has to be done:
1213 update_curr(cfs_rq
);
1215 check_spread(cfs_rq
, prev
);
1217 update_stats_wait_start(cfs_rq
, prev
);
1218 /* Put 'current' back into the tree. */
1219 __enqueue_entity(cfs_rq
, prev
);
1221 cfs_rq
->curr
= NULL
;
1225 entity_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
, int queued
)
1228 * Update run-time statistics of the 'current'.
1230 update_curr(cfs_rq
);
1233 * Update share accounting for long-running entities.
1235 update_entity_shares_tick(cfs_rq
);
1237 #ifdef CONFIG_SCHED_HRTICK
1239 * queued ticks are scheduled to match the slice, so don't bother
1240 * validating it and just reschedule.
1243 resched_task(rq_of(cfs_rq
)->curr
);
1247 * don't let the period tick interfere with the hrtick preemption
1249 if (!sched_feat(DOUBLE_TICK
) &&
1250 hrtimer_active(&rq_of(cfs_rq
)->hrtick_timer
))
1254 if (cfs_rq
->nr_running
> 1 || !sched_feat(WAKEUP_PREEMPT
))
1255 check_preempt_tick(cfs_rq
, curr
);
1258 /**************************************************
1259 * CFS operations on tasks:
1262 #ifdef CONFIG_SCHED_HRTICK
1263 static void hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
1265 struct sched_entity
*se
= &p
->se
;
1266 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
1268 WARN_ON(task_rq(p
) != rq
);
1270 if (hrtick_enabled(rq
) && cfs_rq
->nr_running
> 1) {
1271 u64 slice
= sched_slice(cfs_rq
, se
);
1272 u64 ran
= se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
;
1273 s64 delta
= slice
- ran
;
1282 * Don't schedule slices shorter than 10000ns, that just
1283 * doesn't make sense. Rely on vruntime for fairness.
1286 delta
= max_t(s64
, 10000LL, delta
);
1288 hrtick_start(rq
, delta
);
1293 * called from enqueue/dequeue and updates the hrtick when the
1294 * current task is from our class and nr_running is low enough
1297 static void hrtick_update(struct rq
*rq
)
1299 struct task_struct
*curr
= rq
->curr
;
1301 if (curr
->sched_class
!= &fair_sched_class
)
1304 if (cfs_rq_of(&curr
->se
)->nr_running
< sched_nr_latency
)
1305 hrtick_start_fair(rq
, curr
);
1307 #else /* !CONFIG_SCHED_HRTICK */
1309 hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
1313 static inline void hrtick_update(struct rq
*rq
)
1319 * The enqueue_task method is called before nr_running is
1320 * increased. Here we update the fair scheduling stats and
1321 * then put the task into the rbtree:
1324 enqueue_task_fair(struct rq
*rq
, struct task_struct
*p
, int flags
)
1326 struct cfs_rq
*cfs_rq
;
1327 struct sched_entity
*se
= &p
->se
;
1329 for_each_sched_entity(se
) {
1332 cfs_rq
= cfs_rq_of(se
);
1333 enqueue_entity(cfs_rq
, se
, flags
);
1334 flags
= ENQUEUE_WAKEUP
;
1337 for_each_sched_entity(se
) {
1338 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
1340 update_cfs_load(cfs_rq
, 0);
1341 update_cfs_shares(cfs_rq
);
1347 static void set_next_buddy(struct sched_entity
*se
);
1350 * The dequeue_task method is called before nr_running is
1351 * decreased. We remove the task from the rbtree and
1352 * update the fair scheduling stats:
1354 static void dequeue_task_fair(struct rq
*rq
, struct task_struct
*p
, int flags
)
1356 struct cfs_rq
*cfs_rq
;
1357 struct sched_entity
*se
= &p
->se
;
1358 int task_sleep
= flags
& DEQUEUE_SLEEP
;
1360 for_each_sched_entity(se
) {
1361 cfs_rq
= cfs_rq_of(se
);
1362 dequeue_entity(cfs_rq
, se
, flags
);
1364 /* Don't dequeue parent if it has other entities besides us */
1365 if (cfs_rq
->load
.weight
) {
1367 * Bias pick_next to pick a task from this cfs_rq, as
1368 * p is sleeping when it is within its sched_slice.
1370 if (task_sleep
&& parent_entity(se
))
1371 set_next_buddy(parent_entity(se
));
1374 flags
|= DEQUEUE_SLEEP
;
1377 for_each_sched_entity(se
) {
1378 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
1380 update_cfs_load(cfs_rq
, 0);
1381 update_cfs_shares(cfs_rq
);
1389 static void task_waking_fair(struct task_struct
*p
)
1391 struct sched_entity
*se
= &p
->se
;
1392 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
1395 #ifndef CONFIG_64BIT
1396 u64 min_vruntime_copy
;
1399 min_vruntime_copy
= cfs_rq
->min_vruntime_copy
;
1401 min_vruntime
= cfs_rq
->min_vruntime
;
1402 } while (min_vruntime
!= min_vruntime_copy
);
1404 min_vruntime
= cfs_rq
->min_vruntime
;
1407 se
->vruntime
-= min_vruntime
;
1410 #ifdef CONFIG_FAIR_GROUP_SCHED
1412 * effective_load() calculates the load change as seen from the root_task_group
1414 * Adding load to a group doesn't make a group heavier, but can cause movement
1415 * of group shares between cpus. Assuming the shares were perfectly aligned one
1416 * can calculate the shift in shares.
1418 static long effective_load(struct task_group
*tg
, int cpu
, long wl
, long wg
)
1420 struct sched_entity
*se
= tg
->se
[cpu
];
1425 for_each_sched_entity(se
) {
1429 w
= se
->my_q
->load
.weight
;
1431 /* use this cpu's instantaneous contribution */
1432 lw
= atomic_read(&tg
->load_weight
);
1433 lw
-= se
->my_q
->load_contribution
;
1438 if (lw
> 0 && wl
< lw
)
1439 wl
= (wl
* tg
->shares
) / lw
;
1443 /* zero point is MIN_SHARES */
1444 if (wl
< MIN_SHARES
)
1446 wl
-= se
->load
.weight
;
1455 static inline unsigned long effective_load(struct task_group
*tg
, int cpu
,
1456 unsigned long wl
, unsigned long wg
)
1463 static int wake_affine(struct sched_domain
*sd
, struct task_struct
*p
, int sync
)
1465 s64 this_load
, load
;
1466 int idx
, this_cpu
, prev_cpu
;
1467 unsigned long tl_per_task
;
1468 struct task_group
*tg
;
1469 unsigned long weight
;
1473 this_cpu
= smp_processor_id();
1474 prev_cpu
= task_cpu(p
);
1475 load
= source_load(prev_cpu
, idx
);
1476 this_load
= target_load(this_cpu
, idx
);
1479 * If sync wakeup then subtract the (maximum possible)
1480 * effect of the currently running task from the load
1481 * of the current CPU:
1485 tg
= task_group(current
);
1486 weight
= current
->se
.load
.weight
;
1488 this_load
+= effective_load(tg
, this_cpu
, -weight
, -weight
);
1489 load
+= effective_load(tg
, prev_cpu
, 0, -weight
);
1493 weight
= p
->se
.load
.weight
;
1496 * In low-load situations, where prev_cpu is idle and this_cpu is idle
1497 * due to the sync cause above having dropped this_load to 0, we'll
1498 * always have an imbalance, but there's really nothing you can do
1499 * about that, so that's good too.
1501 * Otherwise check if either cpus are near enough in load to allow this
1502 * task to be woken on this_cpu.
1504 if (this_load
> 0) {
1505 s64 this_eff_load
, prev_eff_load
;
1507 this_eff_load
= 100;
1508 this_eff_load
*= power_of(prev_cpu
);
1509 this_eff_load
*= this_load
+
1510 effective_load(tg
, this_cpu
, weight
, weight
);
1512 prev_eff_load
= 100 + (sd
->imbalance_pct
- 100) / 2;
1513 prev_eff_load
*= power_of(this_cpu
);
1514 prev_eff_load
*= load
+ effective_load(tg
, prev_cpu
, 0, weight
);
1516 balanced
= this_eff_load
<= prev_eff_load
;
1522 * If the currently running task will sleep within
1523 * a reasonable amount of time then attract this newly
1526 if (sync
&& balanced
)
1529 schedstat_inc(p
, se
.statistics
.nr_wakeups_affine_attempts
);
1530 tl_per_task
= cpu_avg_load_per_task(this_cpu
);
1533 (this_load
<= load
&&
1534 this_load
+ target_load(prev_cpu
, idx
) <= tl_per_task
)) {
1536 * This domain has SD_WAKE_AFFINE and
1537 * p is cache cold in this domain, and
1538 * there is no bad imbalance.
1540 schedstat_inc(sd
, ttwu_move_affine
);
1541 schedstat_inc(p
, se
.statistics
.nr_wakeups_affine
);
1549 * find_idlest_group finds and returns the least busy CPU group within the
1552 static struct sched_group
*
1553 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
,
1554 int this_cpu
, int load_idx
)
1556 struct sched_group
*idlest
= NULL
, *group
= sd
->groups
;
1557 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
1558 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
1561 unsigned long load
, avg_load
;
1565 /* Skip over this group if it has no CPUs allowed */
1566 if (!cpumask_intersects(sched_group_cpus(group
),
1570 local_group
= cpumask_test_cpu(this_cpu
,
1571 sched_group_cpus(group
));
1573 /* Tally up the load of all CPUs in the group */
1576 for_each_cpu(i
, sched_group_cpus(group
)) {
1577 /* Bias balancing toward cpus of our domain */
1579 load
= source_load(i
, load_idx
);
1581 load
= target_load(i
, load_idx
);
1586 /* Adjust by relative CPU power of the group */
1587 avg_load
= (avg_load
* SCHED_LOAD_SCALE
) / group
->cpu_power
;
1590 this_load
= avg_load
;
1591 } else if (avg_load
< min_load
) {
1592 min_load
= avg_load
;
1595 } while (group
= group
->next
, group
!= sd
->groups
);
1597 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
1603 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1606 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
1608 unsigned long load
, min_load
= ULONG_MAX
;
1612 /* Traverse only the allowed CPUs */
1613 for_each_cpu_and(i
, sched_group_cpus(group
), &p
->cpus_allowed
) {
1614 load
= weighted_cpuload(i
);
1616 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
1626 * Try and locate an idle CPU in the sched_domain.
1628 static int select_idle_sibling(struct task_struct
*p
, int target
)
1630 int cpu
= smp_processor_id();
1631 int prev_cpu
= task_cpu(p
);
1632 struct sched_domain
*sd
;
1636 * If the task is going to be woken-up on this cpu and if it is
1637 * already idle, then it is the right target.
1639 if (target
== cpu
&& idle_cpu(cpu
))
1643 * If the task is going to be woken-up on the cpu where it previously
1644 * ran and if it is currently idle, then it the right target.
1646 if (target
== prev_cpu
&& idle_cpu(prev_cpu
))
1650 * Otherwise, iterate the domains and find an elegible idle cpu.
1653 for_each_domain(target
, sd
) {
1654 if (!(sd
->flags
& SD_SHARE_PKG_RESOURCES
))
1657 for_each_cpu_and(i
, sched_domain_span(sd
), &p
->cpus_allowed
) {
1665 * Lets stop looking for an idle sibling when we reached
1666 * the domain that spans the current cpu and prev_cpu.
1668 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
)) &&
1669 cpumask_test_cpu(prev_cpu
, sched_domain_span(sd
)))
1678 * sched_balance_self: balance the current task (running on cpu) in domains
1679 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1682 * Balance, ie. select the least loaded group.
1684 * Returns the target CPU number, or the same CPU if no balancing is needed.
1686 * preempt must be disabled.
1689 select_task_rq_fair(struct task_struct
*p
, int sd_flag
, int wake_flags
)
1691 struct sched_domain
*tmp
, *affine_sd
= NULL
, *sd
= NULL
;
1692 int cpu
= smp_processor_id();
1693 int prev_cpu
= task_cpu(p
);
1695 int want_affine
= 0;
1697 int sync
= wake_flags
& WF_SYNC
;
1699 if (sd_flag
& SD_BALANCE_WAKE
) {
1700 if (cpumask_test_cpu(cpu
, &p
->cpus_allowed
))
1706 for_each_domain(cpu
, tmp
) {
1707 if (!(tmp
->flags
& SD_LOAD_BALANCE
))
1711 * If power savings logic is enabled for a domain, see if we
1712 * are not overloaded, if so, don't balance wider.
1714 if (tmp
->flags
& (SD_POWERSAVINGS_BALANCE
|SD_PREFER_LOCAL
)) {
1715 unsigned long power
= 0;
1716 unsigned long nr_running
= 0;
1717 unsigned long capacity
;
1720 for_each_cpu(i
, sched_domain_span(tmp
)) {
1721 power
+= power_of(i
);
1722 nr_running
+= cpu_rq(i
)->cfs
.nr_running
;
1725 capacity
= DIV_ROUND_CLOSEST(power
, SCHED_LOAD_SCALE
);
1727 if (tmp
->flags
& SD_POWERSAVINGS_BALANCE
)
1730 if (nr_running
< capacity
)
1735 * If both cpu and prev_cpu are part of this domain,
1736 * cpu is a valid SD_WAKE_AFFINE target.
1738 if (want_affine
&& (tmp
->flags
& SD_WAKE_AFFINE
) &&
1739 cpumask_test_cpu(prev_cpu
, sched_domain_span(tmp
))) {
1744 if (!want_sd
&& !want_affine
)
1747 if (!(tmp
->flags
& sd_flag
))
1755 if (cpu
== prev_cpu
|| wake_affine(affine_sd
, p
, sync
))
1758 new_cpu
= select_idle_sibling(p
, prev_cpu
);
1763 int load_idx
= sd
->forkexec_idx
;
1764 struct sched_group
*group
;
1767 if (!(sd
->flags
& sd_flag
)) {
1772 if (sd_flag
& SD_BALANCE_WAKE
)
1773 load_idx
= sd
->wake_idx
;
1775 group
= find_idlest_group(sd
, p
, cpu
, load_idx
);
1781 new_cpu
= find_idlest_cpu(group
, p
, cpu
);
1782 if (new_cpu
== -1 || new_cpu
== cpu
) {
1783 /* Now try balancing at a lower domain level of cpu */
1788 /* Now try balancing at a lower domain level of new_cpu */
1790 weight
= sd
->span_weight
;
1792 for_each_domain(cpu
, tmp
) {
1793 if (weight
<= tmp
->span_weight
)
1795 if (tmp
->flags
& sd_flag
)
1798 /* while loop will break here if sd == NULL */
1805 #endif /* CONFIG_SMP */
1807 static unsigned long
1808 wakeup_gran(struct sched_entity
*curr
, struct sched_entity
*se
)
1810 unsigned long gran
= sysctl_sched_wakeup_granularity
;
1813 * Since its curr running now, convert the gran from real-time
1814 * to virtual-time in his units.
1816 * By using 'se' instead of 'curr' we penalize light tasks, so
1817 * they get preempted easier. That is, if 'se' < 'curr' then
1818 * the resulting gran will be larger, therefore penalizing the
1819 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1820 * be smaller, again penalizing the lighter task.
1822 * This is especially important for buddies when the leftmost
1823 * task is higher priority than the buddy.
1825 return calc_delta_fair(gran
, se
);
1829 * Should 'se' preempt 'curr'.
1843 wakeup_preempt_entity(struct sched_entity
*curr
, struct sched_entity
*se
)
1845 s64 gran
, vdiff
= curr
->vruntime
- se
->vruntime
;
1850 gran
= wakeup_gran(curr
, se
);
1857 static void set_last_buddy(struct sched_entity
*se
)
1859 if (entity_is_task(se
) && unlikely(task_of(se
)->policy
== SCHED_IDLE
))
1862 for_each_sched_entity(se
)
1863 cfs_rq_of(se
)->last
= se
;
1866 static void set_next_buddy(struct sched_entity
*se
)
1868 if (entity_is_task(se
) && unlikely(task_of(se
)->policy
== SCHED_IDLE
))
1871 for_each_sched_entity(se
)
1872 cfs_rq_of(se
)->next
= se
;
1875 static void set_skip_buddy(struct sched_entity
*se
)
1877 for_each_sched_entity(se
)
1878 cfs_rq_of(se
)->skip
= se
;
1882 * Preempt the current task with a newly woken task if needed:
1884 static void check_preempt_wakeup(struct rq
*rq
, struct task_struct
*p
, int wake_flags
)
1886 struct task_struct
*curr
= rq
->curr
;
1887 struct sched_entity
*se
= &curr
->se
, *pse
= &p
->se
;
1888 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
1889 int scale
= cfs_rq
->nr_running
>= sched_nr_latency
;
1890 int next_buddy_marked
= 0;
1892 if (unlikely(se
== pse
))
1895 if (sched_feat(NEXT_BUDDY
) && scale
&& !(wake_flags
& WF_FORK
)) {
1896 set_next_buddy(pse
);
1897 next_buddy_marked
= 1;
1901 * We can come here with TIF_NEED_RESCHED already set from new task
1904 if (test_tsk_need_resched(curr
))
1907 /* Idle tasks are by definition preempted by non-idle tasks. */
1908 if (unlikely(curr
->policy
== SCHED_IDLE
) &&
1909 likely(p
->policy
!= SCHED_IDLE
))
1913 * Batch and idle tasks do not preempt non-idle tasks (their preemption
1914 * is driven by the tick):
1916 if (unlikely(p
->policy
!= SCHED_NORMAL
))
1920 if (!sched_feat(WAKEUP_PREEMPT
))
1923 update_curr(cfs_rq
);
1924 find_matching_se(&se
, &pse
);
1926 if (wakeup_preempt_entity(se
, pse
) == 1) {
1928 * Bias pick_next to pick the sched entity that is
1929 * triggering this preemption.
1931 if (!next_buddy_marked
)
1932 set_next_buddy(pse
);
1941 * Only set the backward buddy when the current task is still
1942 * on the rq. This can happen when a wakeup gets interleaved
1943 * with schedule on the ->pre_schedule() or idle_balance()
1944 * point, either of which can * drop the rq lock.
1946 * Also, during early boot the idle thread is in the fair class,
1947 * for obvious reasons its a bad idea to schedule back to it.
1949 if (unlikely(!se
->on_rq
|| curr
== rq
->idle
))
1952 if (sched_feat(LAST_BUDDY
) && scale
&& entity_is_task(se
))
1956 static struct task_struct
*pick_next_task_fair(struct rq
*rq
)
1958 struct task_struct
*p
;
1959 struct cfs_rq
*cfs_rq
= &rq
->cfs
;
1960 struct sched_entity
*se
;
1962 if (!cfs_rq
->nr_running
)
1966 se
= pick_next_entity(cfs_rq
);
1967 set_next_entity(cfs_rq
, se
);
1968 cfs_rq
= group_cfs_rq(se
);
1972 hrtick_start_fair(rq
, p
);
1978 * Account for a descheduled task:
1980 static void put_prev_task_fair(struct rq
*rq
, struct task_struct
*prev
)
1982 struct sched_entity
*se
= &prev
->se
;
1983 struct cfs_rq
*cfs_rq
;
1985 for_each_sched_entity(se
) {
1986 cfs_rq
= cfs_rq_of(se
);
1987 put_prev_entity(cfs_rq
, se
);
1992 * sched_yield() is very simple
1994 * The magic of dealing with the ->skip buddy is in pick_next_entity.
1996 static void yield_task_fair(struct rq
*rq
)
1998 struct task_struct
*curr
= rq
->curr
;
1999 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
2000 struct sched_entity
*se
= &curr
->se
;
2003 * Are we the only task in the tree?
2005 if (unlikely(rq
->nr_running
== 1))
2008 clear_buddies(cfs_rq
, se
);
2010 if (curr
->policy
!= SCHED_BATCH
) {
2011 update_rq_clock(rq
);
2013 * Update run-time statistics of the 'current'.
2015 update_curr(cfs_rq
);
2021 static bool yield_to_task_fair(struct rq
*rq
, struct task_struct
*p
, bool preempt
)
2023 struct sched_entity
*se
= &p
->se
;
2028 /* Tell the scheduler that we'd really like pse to run next. */
2031 yield_task_fair(rq
);
2037 /**************************************************
2038 * Fair scheduling class load-balancing methods:
2042 * pull_task - move a task from a remote runqueue to the local runqueue.
2043 * Both runqueues must be locked.
2045 static void pull_task(struct rq
*src_rq
, struct task_struct
*p
,
2046 struct rq
*this_rq
, int this_cpu
)
2048 deactivate_task(src_rq
, p
, 0);
2049 set_task_cpu(p
, this_cpu
);
2050 activate_task(this_rq
, p
, 0);
2051 check_preempt_curr(this_rq
, p
, 0);
2055 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2058 int can_migrate_task(struct task_struct
*p
, struct rq
*rq
, int this_cpu
,
2059 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2062 int tsk_cache_hot
= 0;
2064 * We do not migrate tasks that are:
2065 * 1) running (obviously), or
2066 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2067 * 3) are cache-hot on their current CPU.
2069 if (!cpumask_test_cpu(this_cpu
, &p
->cpus_allowed
)) {
2070 schedstat_inc(p
, se
.statistics
.nr_failed_migrations_affine
);
2075 if (task_running(rq
, p
)) {
2076 schedstat_inc(p
, se
.statistics
.nr_failed_migrations_running
);
2081 * Aggressive migration if:
2082 * 1) task is cache cold, or
2083 * 2) too many balance attempts have failed.
2086 tsk_cache_hot
= task_hot(p
, rq
->clock_task
, sd
);
2087 if (!tsk_cache_hot
||
2088 sd
->nr_balance_failed
> sd
->cache_nice_tries
) {
2089 #ifdef CONFIG_SCHEDSTATS
2090 if (tsk_cache_hot
) {
2091 schedstat_inc(sd
, lb_hot_gained
[idle
]);
2092 schedstat_inc(p
, se
.statistics
.nr_forced_migrations
);
2098 if (tsk_cache_hot
) {
2099 schedstat_inc(p
, se
.statistics
.nr_failed_migrations_hot
);
2106 * move_one_task tries to move exactly one task from busiest to this_rq, as
2107 * part of active balancing operations within "domain".
2108 * Returns 1 if successful and 0 otherwise.
2110 * Called with both runqueues locked.
2113 move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2114 struct sched_domain
*sd
, enum cpu_idle_type idle
)
2116 struct task_struct
*p
, *n
;
2117 struct cfs_rq
*cfs_rq
;
2120 for_each_leaf_cfs_rq(busiest
, cfs_rq
) {
2121 list_for_each_entry_safe(p
, n
, &cfs_rq
->tasks
, se
.group_node
) {
2123 if (!can_migrate_task(p
, busiest
, this_cpu
,
2127 pull_task(busiest
, p
, this_rq
, this_cpu
);
2129 * Right now, this is only the second place pull_task()
2130 * is called, so we can safely collect pull_task()
2131 * stats here rather than inside pull_task().
2133 schedstat_inc(sd
, lb_gained
[idle
]);
2141 static unsigned long
2142 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2143 unsigned long max_load_move
, struct sched_domain
*sd
,
2144 enum cpu_idle_type idle
, int *all_pinned
,
2145 struct cfs_rq
*busiest_cfs_rq
)
2147 int loops
= 0, pulled
= 0;
2148 long rem_load_move
= max_load_move
;
2149 struct task_struct
*p
, *n
;
2151 if (max_load_move
== 0)
2154 list_for_each_entry_safe(p
, n
, &busiest_cfs_rq
->tasks
, se
.group_node
) {
2155 if (loops
++ > sysctl_sched_nr_migrate
)
2158 if ((p
->se
.load
.weight
>> 1) > rem_load_move
||
2159 !can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
,
2163 pull_task(busiest
, p
, this_rq
, this_cpu
);
2165 rem_load_move
-= p
->se
.load
.weight
;
2167 #ifdef CONFIG_PREEMPT
2169 * NEWIDLE balancing is a source of latency, so preemptible
2170 * kernels will stop after the first task is pulled to minimize
2171 * the critical section.
2173 if (idle
== CPU_NEWLY_IDLE
)
2178 * We only want to steal up to the prescribed amount of
2181 if (rem_load_move
<= 0)
2186 * Right now, this is one of only two places pull_task() is called,
2187 * so we can safely collect pull_task() stats here rather than
2188 * inside pull_task().
2190 schedstat_add(sd
, lb_gained
[idle
], pulled
);
2192 return max_load_move
- rem_load_move
;
2195 #ifdef CONFIG_FAIR_GROUP_SCHED
2197 * update tg->load_weight by folding this cpu's load_avg
2199 static int update_shares_cpu(struct task_group
*tg
, int cpu
)
2201 struct cfs_rq
*cfs_rq
;
2202 unsigned long flags
;
2209 cfs_rq
= tg
->cfs_rq
[cpu
];
2211 raw_spin_lock_irqsave(&rq
->lock
, flags
);
2213 update_rq_clock(rq
);
2214 update_cfs_load(cfs_rq
, 1);
2217 * We need to update shares after updating tg->load_weight in
2218 * order to adjust the weight of groups with long running tasks.
2220 update_cfs_shares(cfs_rq
);
2222 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
2227 static void update_shares(int cpu
)
2229 struct cfs_rq
*cfs_rq
;
2230 struct rq
*rq
= cpu_rq(cpu
);
2233 for_each_leaf_cfs_rq(rq
, cfs_rq
)
2234 update_shares_cpu(cfs_rq
->tg
, cpu
);
2238 static unsigned long
2239 load_balance_fair(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2240 unsigned long max_load_move
,
2241 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2244 long rem_load_move
= max_load_move
;
2245 int busiest_cpu
= cpu_of(busiest
);
2246 struct task_group
*tg
;
2249 update_h_load(busiest_cpu
);
2251 list_for_each_entry_rcu(tg
, &task_groups
, list
) {
2252 struct cfs_rq
*busiest_cfs_rq
= tg
->cfs_rq
[busiest_cpu
];
2253 unsigned long busiest_h_load
= busiest_cfs_rq
->h_load
;
2254 unsigned long busiest_weight
= busiest_cfs_rq
->load
.weight
;
2255 u64 rem_load
, moved_load
;
2260 if (!busiest_cfs_rq
->task_weight
)
2263 rem_load
= (u64
)rem_load_move
* busiest_weight
;
2264 rem_load
= div_u64(rem_load
, busiest_h_load
+ 1);
2266 moved_load
= balance_tasks(this_rq
, this_cpu
, busiest
,
2267 rem_load
, sd
, idle
, all_pinned
,
2273 moved_load
*= busiest_h_load
;
2274 moved_load
= div_u64(moved_load
, busiest_weight
+ 1);
2276 rem_load_move
-= moved_load
;
2277 if (rem_load_move
< 0)
2282 return max_load_move
- rem_load_move
;
2285 static inline void update_shares(int cpu
)
2289 static unsigned long
2290 load_balance_fair(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2291 unsigned long max_load_move
,
2292 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2295 return balance_tasks(this_rq
, this_cpu
, busiest
,
2296 max_load_move
, sd
, idle
, all_pinned
,
2302 * move_tasks tries to move up to max_load_move weighted load from busiest to
2303 * this_rq, as part of a balancing operation within domain "sd".
2304 * Returns 1 if successful and 0 otherwise.
2306 * Called with both runqueues locked.
2308 static int move_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2309 unsigned long max_load_move
,
2310 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2313 unsigned long total_load_moved
= 0, load_moved
;
2316 load_moved
= load_balance_fair(this_rq
, this_cpu
, busiest
,
2317 max_load_move
- total_load_moved
,
2318 sd
, idle
, all_pinned
);
2320 total_load_moved
+= load_moved
;
2322 #ifdef CONFIG_PREEMPT
2324 * NEWIDLE balancing is a source of latency, so preemptible
2325 * kernels will stop after the first task is pulled to minimize
2326 * the critical section.
2328 if (idle
== CPU_NEWLY_IDLE
&& this_rq
->nr_running
)
2331 if (raw_spin_is_contended(&this_rq
->lock
) ||
2332 raw_spin_is_contended(&busiest
->lock
))
2335 } while (load_moved
&& max_load_move
> total_load_moved
);
2337 return total_load_moved
> 0;
2340 /********** Helpers for find_busiest_group ************************/
2342 * sd_lb_stats - Structure to store the statistics of a sched_domain
2343 * during load balancing.
2345 struct sd_lb_stats
{
2346 struct sched_group
*busiest
; /* Busiest group in this sd */
2347 struct sched_group
*this; /* Local group in this sd */
2348 unsigned long total_load
; /* Total load of all groups in sd */
2349 unsigned long total_pwr
; /* Total power of all groups in sd */
2350 unsigned long avg_load
; /* Average load across all groups in sd */
2352 /** Statistics of this group */
2353 unsigned long this_load
;
2354 unsigned long this_load_per_task
;
2355 unsigned long this_nr_running
;
2356 unsigned long this_has_capacity
;
2357 unsigned int this_idle_cpus
;
2359 /* Statistics of the busiest group */
2360 unsigned int busiest_idle_cpus
;
2361 unsigned long max_load
;
2362 unsigned long busiest_load_per_task
;
2363 unsigned long busiest_nr_running
;
2364 unsigned long busiest_group_capacity
;
2365 unsigned long busiest_has_capacity
;
2366 unsigned int busiest_group_weight
;
2368 int group_imb
; /* Is there imbalance in this sd */
2369 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2370 int power_savings_balance
; /* Is powersave balance needed for this sd */
2371 struct sched_group
*group_min
; /* Least loaded group in sd */
2372 struct sched_group
*group_leader
; /* Group which relieves group_min */
2373 unsigned long min_load_per_task
; /* load_per_task in group_min */
2374 unsigned long leader_nr_running
; /* Nr running of group_leader */
2375 unsigned long min_nr_running
; /* Nr running of group_min */
2380 * sg_lb_stats - stats of a sched_group required for load_balancing
2382 struct sg_lb_stats
{
2383 unsigned long avg_load
; /*Avg load across the CPUs of the group */
2384 unsigned long group_load
; /* Total load over the CPUs of the group */
2385 unsigned long sum_nr_running
; /* Nr tasks running in the group */
2386 unsigned long sum_weighted_load
; /* Weighted load of group's tasks */
2387 unsigned long group_capacity
;
2388 unsigned long idle_cpus
;
2389 unsigned long group_weight
;
2390 int group_imb
; /* Is there an imbalance in the group ? */
2391 int group_has_capacity
; /* Is there extra capacity in the group? */
2395 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
2396 * @group: The group whose first cpu is to be returned.
2398 static inline unsigned int group_first_cpu(struct sched_group
*group
)
2400 return cpumask_first(sched_group_cpus(group
));
2404 * get_sd_load_idx - Obtain the load index for a given sched domain.
2405 * @sd: The sched_domain whose load_idx is to be obtained.
2406 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
2408 static inline int get_sd_load_idx(struct sched_domain
*sd
,
2409 enum cpu_idle_type idle
)
2415 load_idx
= sd
->busy_idx
;
2418 case CPU_NEWLY_IDLE
:
2419 load_idx
= sd
->newidle_idx
;
2422 load_idx
= sd
->idle_idx
;
2430 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2432 * init_sd_power_savings_stats - Initialize power savings statistics for
2433 * the given sched_domain, during load balancing.
2435 * @sd: Sched domain whose power-savings statistics are to be initialized.
2436 * @sds: Variable containing the statistics for sd.
2437 * @idle: Idle status of the CPU at which we're performing load-balancing.
2439 static inline void init_sd_power_savings_stats(struct sched_domain
*sd
,
2440 struct sd_lb_stats
*sds
, enum cpu_idle_type idle
)
2443 * Busy processors will not participate in power savings
2446 if (idle
== CPU_NOT_IDLE
|| !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
2447 sds
->power_savings_balance
= 0;
2449 sds
->power_savings_balance
= 1;
2450 sds
->min_nr_running
= ULONG_MAX
;
2451 sds
->leader_nr_running
= 0;
2456 * update_sd_power_savings_stats - Update the power saving stats for a
2457 * sched_domain while performing load balancing.
2459 * @group: sched_group belonging to the sched_domain under consideration.
2460 * @sds: Variable containing the statistics of the sched_domain
2461 * @local_group: Does group contain the CPU for which we're performing
2463 * @sgs: Variable containing the statistics of the group.
2465 static inline void update_sd_power_savings_stats(struct sched_group
*group
,
2466 struct sd_lb_stats
*sds
, int local_group
, struct sg_lb_stats
*sgs
)
2469 if (!sds
->power_savings_balance
)
2473 * If the local group is idle or completely loaded
2474 * no need to do power savings balance at this domain
2476 if (local_group
&& (sds
->this_nr_running
>= sgs
->group_capacity
||
2477 !sds
->this_nr_running
))
2478 sds
->power_savings_balance
= 0;
2481 * If a group is already running at full capacity or idle,
2482 * don't include that group in power savings calculations
2484 if (!sds
->power_savings_balance
||
2485 sgs
->sum_nr_running
>= sgs
->group_capacity
||
2486 !sgs
->sum_nr_running
)
2490 * Calculate the group which has the least non-idle load.
2491 * This is the group from where we need to pick up the load
2494 if ((sgs
->sum_nr_running
< sds
->min_nr_running
) ||
2495 (sgs
->sum_nr_running
== sds
->min_nr_running
&&
2496 group_first_cpu(group
) > group_first_cpu(sds
->group_min
))) {
2497 sds
->group_min
= group
;
2498 sds
->min_nr_running
= sgs
->sum_nr_running
;
2499 sds
->min_load_per_task
= sgs
->sum_weighted_load
/
2500 sgs
->sum_nr_running
;
2504 * Calculate the group which is almost near its
2505 * capacity but still has some space to pick up some load
2506 * from other group and save more power
2508 if (sgs
->sum_nr_running
+ 1 > sgs
->group_capacity
)
2511 if (sgs
->sum_nr_running
> sds
->leader_nr_running
||
2512 (sgs
->sum_nr_running
== sds
->leader_nr_running
&&
2513 group_first_cpu(group
) < group_first_cpu(sds
->group_leader
))) {
2514 sds
->group_leader
= group
;
2515 sds
->leader_nr_running
= sgs
->sum_nr_running
;
2520 * check_power_save_busiest_group - see if there is potential for some power-savings balance
2521 * @sds: Variable containing the statistics of the sched_domain
2522 * under consideration.
2523 * @this_cpu: Cpu at which we're currently performing load-balancing.
2524 * @imbalance: Variable to store the imbalance.
2527 * Check if we have potential to perform some power-savings balance.
2528 * If yes, set the busiest group to be the least loaded group in the
2529 * sched_domain, so that it's CPUs can be put to idle.
2531 * Returns 1 if there is potential to perform power-savings balance.
2534 static inline int check_power_save_busiest_group(struct sd_lb_stats
*sds
,
2535 int this_cpu
, unsigned long *imbalance
)
2537 if (!sds
->power_savings_balance
)
2540 if (sds
->this != sds
->group_leader
||
2541 sds
->group_leader
== sds
->group_min
)
2544 *imbalance
= sds
->min_load_per_task
;
2545 sds
->busiest
= sds
->group_min
;
2550 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2551 static inline void init_sd_power_savings_stats(struct sched_domain
*sd
,
2552 struct sd_lb_stats
*sds
, enum cpu_idle_type idle
)
2557 static inline void update_sd_power_savings_stats(struct sched_group
*group
,
2558 struct sd_lb_stats
*sds
, int local_group
, struct sg_lb_stats
*sgs
)
2563 static inline int check_power_save_busiest_group(struct sd_lb_stats
*sds
,
2564 int this_cpu
, unsigned long *imbalance
)
2568 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2571 unsigned long default_scale_freq_power(struct sched_domain
*sd
, int cpu
)
2573 return SCHED_LOAD_SCALE
;
2576 unsigned long __weak
arch_scale_freq_power(struct sched_domain
*sd
, int cpu
)
2578 return default_scale_freq_power(sd
, cpu
);
2581 unsigned long default_scale_smt_power(struct sched_domain
*sd
, int cpu
)
2583 unsigned long weight
= sd
->span_weight
;
2584 unsigned long smt_gain
= sd
->smt_gain
;
2591 unsigned long __weak
arch_scale_smt_power(struct sched_domain
*sd
, int cpu
)
2593 return default_scale_smt_power(sd
, cpu
);
2596 unsigned long scale_rt_power(int cpu
)
2598 struct rq
*rq
= cpu_rq(cpu
);
2599 u64 total
, available
;
2601 total
= sched_avg_period() + (rq
->clock
- rq
->age_stamp
);
2603 if (unlikely(total
< rq
->rt_avg
)) {
2604 /* Ensures that power won't end up being negative */
2607 available
= total
- rq
->rt_avg
;
2610 if (unlikely((s64
)total
< SCHED_LOAD_SCALE
))
2611 total
= SCHED_LOAD_SCALE
;
2613 total
>>= SCHED_LOAD_SHIFT
;
2615 return div_u64(available
, total
);
2618 static void update_cpu_power(struct sched_domain
*sd
, int cpu
)
2620 unsigned long weight
= sd
->span_weight
;
2621 unsigned long power
= SCHED_LOAD_SCALE
;
2622 struct sched_group
*sdg
= sd
->groups
;
2624 if ((sd
->flags
& SD_SHARE_CPUPOWER
) && weight
> 1) {
2625 if (sched_feat(ARCH_POWER
))
2626 power
*= arch_scale_smt_power(sd
, cpu
);
2628 power
*= default_scale_smt_power(sd
, cpu
);
2630 power
>>= SCHED_LOAD_SHIFT
;
2633 sdg
->cpu_power_orig
= power
;
2635 if (sched_feat(ARCH_POWER
))
2636 power
*= arch_scale_freq_power(sd
, cpu
);
2638 power
*= default_scale_freq_power(sd
, cpu
);
2640 power
>>= SCHED_LOAD_SHIFT
;
2642 power
*= scale_rt_power(cpu
);
2643 power
>>= SCHED_LOAD_SHIFT
;
2648 cpu_rq(cpu
)->cpu_power
= power
;
2649 sdg
->cpu_power
= power
;
2652 static void update_group_power(struct sched_domain
*sd
, int cpu
)
2654 struct sched_domain
*child
= sd
->child
;
2655 struct sched_group
*group
, *sdg
= sd
->groups
;
2656 unsigned long power
;
2659 update_cpu_power(sd
, cpu
);
2665 group
= child
->groups
;
2667 power
+= group
->cpu_power
;
2668 group
= group
->next
;
2669 } while (group
!= child
->groups
);
2671 sdg
->cpu_power
= power
;
2675 * Try and fix up capacity for tiny siblings, this is needed when
2676 * things like SD_ASYM_PACKING need f_b_g to select another sibling
2677 * which on its own isn't powerful enough.
2679 * See update_sd_pick_busiest() and check_asym_packing().
2682 fix_small_capacity(struct sched_domain
*sd
, struct sched_group
*group
)
2685 * Only siblings can have significantly less than SCHED_LOAD_SCALE
2687 if (!(sd
->flags
& SD_SHARE_CPUPOWER
))
2691 * If ~90% of the cpu_power is still there, we're good.
2693 if (group
->cpu_power
* 32 > group
->cpu_power_orig
* 29)
2700 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
2701 * @sd: The sched_domain whose statistics are to be updated.
2702 * @group: sched_group whose statistics are to be updated.
2703 * @this_cpu: Cpu for which load balance is currently performed.
2704 * @idle: Idle status of this_cpu
2705 * @load_idx: Load index of sched_domain of this_cpu for load calc.
2706 * @local_group: Does group contain this_cpu.
2707 * @cpus: Set of cpus considered for load balancing.
2708 * @balance: Should we balance.
2709 * @sgs: variable to hold the statistics for this group.
2711 static inline void update_sg_lb_stats(struct sched_domain
*sd
,
2712 struct sched_group
*group
, int this_cpu
,
2713 enum cpu_idle_type idle
, int load_idx
,
2714 int local_group
, const struct cpumask
*cpus
,
2715 int *balance
, struct sg_lb_stats
*sgs
)
2717 unsigned long load
, max_cpu_load
, min_cpu_load
, max_nr_running
;
2719 unsigned int balance_cpu
= -1, first_idle_cpu
= 0;
2720 unsigned long avg_load_per_task
= 0;
2723 balance_cpu
= group_first_cpu(group
);
2725 /* Tally up the load of all CPUs in the group */
2727 min_cpu_load
= ~0UL;
2730 for_each_cpu_and(i
, sched_group_cpus(group
), cpus
) {
2731 struct rq
*rq
= cpu_rq(i
);
2733 /* Bias balancing toward cpus of our domain */
2735 if (idle_cpu(i
) && !first_idle_cpu
) {
2740 load
= target_load(i
, load_idx
);
2742 load
= source_load(i
, load_idx
);
2743 if (load
> max_cpu_load
) {
2744 max_cpu_load
= load
;
2745 max_nr_running
= rq
->nr_running
;
2747 if (min_cpu_load
> load
)
2748 min_cpu_load
= load
;
2751 sgs
->group_load
+= load
;
2752 sgs
->sum_nr_running
+= rq
->nr_running
;
2753 sgs
->sum_weighted_load
+= weighted_cpuload(i
);
2759 * First idle cpu or the first cpu(busiest) in this sched group
2760 * is eligible for doing load balancing at this and above
2761 * domains. In the newly idle case, we will allow all the cpu's
2762 * to do the newly idle load balance.
2764 if (idle
!= CPU_NEWLY_IDLE
&& local_group
) {
2765 if (balance_cpu
!= this_cpu
) {
2769 update_group_power(sd
, this_cpu
);
2772 /* Adjust by relative CPU power of the group */
2773 sgs
->avg_load
= (sgs
->group_load
* SCHED_LOAD_SCALE
) / group
->cpu_power
;
2776 * Consider the group unbalanced when the imbalance is larger
2777 * than the average weight of a task.
2779 * APZ: with cgroup the avg task weight can vary wildly and
2780 * might not be a suitable number - should we keep a
2781 * normalized nr_running number somewhere that negates
2784 if (sgs
->sum_nr_running
)
2785 avg_load_per_task
= sgs
->sum_weighted_load
/ sgs
->sum_nr_running
;
2787 if ((max_cpu_load
- min_cpu_load
) >= avg_load_per_task
&& max_nr_running
> 1)
2790 sgs
->group_capacity
= DIV_ROUND_CLOSEST(group
->cpu_power
, SCHED_LOAD_SCALE
);
2791 if (!sgs
->group_capacity
)
2792 sgs
->group_capacity
= fix_small_capacity(sd
, group
);
2793 sgs
->group_weight
= group
->group_weight
;
2795 if (sgs
->group_capacity
> sgs
->sum_nr_running
)
2796 sgs
->group_has_capacity
= 1;
2800 * update_sd_pick_busiest - return 1 on busiest group
2801 * @sd: sched_domain whose statistics are to be checked
2802 * @sds: sched_domain statistics
2803 * @sg: sched_group candidate to be checked for being the busiest
2804 * @sgs: sched_group statistics
2805 * @this_cpu: the current cpu
2807 * Determine if @sg is a busier group than the previously selected
2810 static bool update_sd_pick_busiest(struct sched_domain
*sd
,
2811 struct sd_lb_stats
*sds
,
2812 struct sched_group
*sg
,
2813 struct sg_lb_stats
*sgs
,
2816 if (sgs
->avg_load
<= sds
->max_load
)
2819 if (sgs
->sum_nr_running
> sgs
->group_capacity
)
2826 * ASYM_PACKING needs to move all the work to the lowest
2827 * numbered CPUs in the group, therefore mark all groups
2828 * higher than ourself as busy.
2830 if ((sd
->flags
& SD_ASYM_PACKING
) && sgs
->sum_nr_running
&&
2831 this_cpu
< group_first_cpu(sg
)) {
2835 if (group_first_cpu(sds
->busiest
) > group_first_cpu(sg
))
2843 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
2844 * @sd: sched_domain whose statistics are to be updated.
2845 * @this_cpu: Cpu for which load balance is currently performed.
2846 * @idle: Idle status of this_cpu
2847 * @cpus: Set of cpus considered for load balancing.
2848 * @balance: Should we balance.
2849 * @sds: variable to hold the statistics for this sched_domain.
2851 static inline void update_sd_lb_stats(struct sched_domain
*sd
, int this_cpu
,
2852 enum cpu_idle_type idle
, const struct cpumask
*cpus
,
2853 int *balance
, struct sd_lb_stats
*sds
)
2855 struct sched_domain
*child
= sd
->child
;
2856 struct sched_group
*sg
= sd
->groups
;
2857 struct sg_lb_stats sgs
;
2858 int load_idx
, prefer_sibling
= 0;
2860 if (child
&& child
->flags
& SD_PREFER_SIBLING
)
2863 init_sd_power_savings_stats(sd
, sds
, idle
);
2864 load_idx
= get_sd_load_idx(sd
, idle
);
2869 local_group
= cpumask_test_cpu(this_cpu
, sched_group_cpus(sg
));
2870 memset(&sgs
, 0, sizeof(sgs
));
2871 update_sg_lb_stats(sd
, sg
, this_cpu
, idle
, load_idx
,
2872 local_group
, cpus
, balance
, &sgs
);
2874 if (local_group
&& !(*balance
))
2877 sds
->total_load
+= sgs
.group_load
;
2878 sds
->total_pwr
+= sg
->cpu_power
;
2881 * In case the child domain prefers tasks go to siblings
2882 * first, lower the sg capacity to one so that we'll try
2883 * and move all the excess tasks away. We lower the capacity
2884 * of a group only if the local group has the capacity to fit
2885 * these excess tasks, i.e. nr_running < group_capacity. The
2886 * extra check prevents the case where you always pull from the
2887 * heaviest group when it is already under-utilized (possible
2888 * with a large weight task outweighs the tasks on the system).
2890 if (prefer_sibling
&& !local_group
&& sds
->this_has_capacity
)
2891 sgs
.group_capacity
= min(sgs
.group_capacity
, 1UL);
2894 sds
->this_load
= sgs
.avg_load
;
2896 sds
->this_nr_running
= sgs
.sum_nr_running
;
2897 sds
->this_load_per_task
= sgs
.sum_weighted_load
;
2898 sds
->this_has_capacity
= sgs
.group_has_capacity
;
2899 sds
->this_idle_cpus
= sgs
.idle_cpus
;
2900 } else if (update_sd_pick_busiest(sd
, sds
, sg
, &sgs
, this_cpu
)) {
2901 sds
->max_load
= sgs
.avg_load
;
2903 sds
->busiest_nr_running
= sgs
.sum_nr_running
;
2904 sds
->busiest_idle_cpus
= sgs
.idle_cpus
;
2905 sds
->busiest_group_capacity
= sgs
.group_capacity
;
2906 sds
->busiest_load_per_task
= sgs
.sum_weighted_load
;
2907 sds
->busiest_has_capacity
= sgs
.group_has_capacity
;
2908 sds
->busiest_group_weight
= sgs
.group_weight
;
2909 sds
->group_imb
= sgs
.group_imb
;
2912 update_sd_power_savings_stats(sg
, sds
, local_group
, &sgs
);
2914 } while (sg
!= sd
->groups
);
2917 int __weak
arch_sd_sibling_asym_packing(void)
2919 return 0*SD_ASYM_PACKING
;
2923 * check_asym_packing - Check to see if the group is packed into the
2926 * This is primarily intended to used at the sibling level. Some
2927 * cores like POWER7 prefer to use lower numbered SMT threads. In the
2928 * case of POWER7, it can move to lower SMT modes only when higher
2929 * threads are idle. When in lower SMT modes, the threads will
2930 * perform better since they share less core resources. Hence when we
2931 * have idle threads, we want them to be the higher ones.
2933 * This packing function is run on idle threads. It checks to see if
2934 * the busiest CPU in this domain (core in the P7 case) has a higher
2935 * CPU number than the packing function is being run on. Here we are
2936 * assuming lower CPU number will be equivalent to lower a SMT thread
2939 * Returns 1 when packing is required and a task should be moved to
2940 * this CPU. The amount of the imbalance is returned in *imbalance.
2942 * @sd: The sched_domain whose packing is to be checked.
2943 * @sds: Statistics of the sched_domain which is to be packed
2944 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2945 * @imbalance: returns amount of imbalanced due to packing.
2947 static int check_asym_packing(struct sched_domain
*sd
,
2948 struct sd_lb_stats
*sds
,
2949 int this_cpu
, unsigned long *imbalance
)
2953 if (!(sd
->flags
& SD_ASYM_PACKING
))
2959 busiest_cpu
= group_first_cpu(sds
->busiest
);
2960 if (this_cpu
> busiest_cpu
)
2963 *imbalance
= DIV_ROUND_CLOSEST(sds
->max_load
* sds
->busiest
->cpu_power
,
2969 * fix_small_imbalance - Calculate the minor imbalance that exists
2970 * amongst the groups of a sched_domain, during
2972 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
2973 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2974 * @imbalance: Variable to store the imbalance.
2976 static inline void fix_small_imbalance(struct sd_lb_stats
*sds
,
2977 int this_cpu
, unsigned long *imbalance
)
2979 unsigned long tmp
, pwr_now
= 0, pwr_move
= 0;
2980 unsigned int imbn
= 2;
2981 unsigned long scaled_busy_load_per_task
;
2983 if (sds
->this_nr_running
) {
2984 sds
->this_load_per_task
/= sds
->this_nr_running
;
2985 if (sds
->busiest_load_per_task
>
2986 sds
->this_load_per_task
)
2989 sds
->this_load_per_task
=
2990 cpu_avg_load_per_task(this_cpu
);
2992 scaled_busy_load_per_task
= sds
->busiest_load_per_task
2994 scaled_busy_load_per_task
/= sds
->busiest
->cpu_power
;
2996 if (sds
->max_load
- sds
->this_load
+ scaled_busy_load_per_task
>=
2997 (scaled_busy_load_per_task
* imbn
)) {
2998 *imbalance
= sds
->busiest_load_per_task
;
3003 * OK, we don't have enough imbalance to justify moving tasks,
3004 * however we may be able to increase total CPU power used by
3008 pwr_now
+= sds
->busiest
->cpu_power
*
3009 min(sds
->busiest_load_per_task
, sds
->max_load
);
3010 pwr_now
+= sds
->this->cpu_power
*
3011 min(sds
->this_load_per_task
, sds
->this_load
);
3012 pwr_now
/= SCHED_LOAD_SCALE
;
3014 /* Amount of load we'd subtract */
3015 tmp
= (sds
->busiest_load_per_task
* SCHED_LOAD_SCALE
) /
3016 sds
->busiest
->cpu_power
;
3017 if (sds
->max_load
> tmp
)
3018 pwr_move
+= sds
->busiest
->cpu_power
*
3019 min(sds
->busiest_load_per_task
, sds
->max_load
- tmp
);
3021 /* Amount of load we'd add */
3022 if (sds
->max_load
* sds
->busiest
->cpu_power
<
3023 sds
->busiest_load_per_task
* SCHED_LOAD_SCALE
)
3024 tmp
= (sds
->max_load
* sds
->busiest
->cpu_power
) /
3025 sds
->this->cpu_power
;
3027 tmp
= (sds
->busiest_load_per_task
* SCHED_LOAD_SCALE
) /
3028 sds
->this->cpu_power
;
3029 pwr_move
+= sds
->this->cpu_power
*
3030 min(sds
->this_load_per_task
, sds
->this_load
+ tmp
);
3031 pwr_move
/= SCHED_LOAD_SCALE
;
3033 /* Move if we gain throughput */
3034 if (pwr_move
> pwr_now
)
3035 *imbalance
= sds
->busiest_load_per_task
;
3039 * calculate_imbalance - Calculate the amount of imbalance present within the
3040 * groups of a given sched_domain during load balance.
3041 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3042 * @this_cpu: Cpu for which currently load balance is being performed.
3043 * @imbalance: The variable to store the imbalance.
3045 static inline void calculate_imbalance(struct sd_lb_stats
*sds
, int this_cpu
,
3046 unsigned long *imbalance
)
3048 unsigned long max_pull
, load_above_capacity
= ~0UL;
3050 sds
->busiest_load_per_task
/= sds
->busiest_nr_running
;
3051 if (sds
->group_imb
) {
3052 sds
->busiest_load_per_task
=
3053 min(sds
->busiest_load_per_task
, sds
->avg_load
);
3057 * In the presence of smp nice balancing, certain scenarios can have
3058 * max load less than avg load(as we skip the groups at or below
3059 * its cpu_power, while calculating max_load..)
3061 if (sds
->max_load
< sds
->avg_load
) {
3063 return fix_small_imbalance(sds
, this_cpu
, imbalance
);
3066 if (!sds
->group_imb
) {
3068 * Don't want to pull so many tasks that a group would go idle.
3070 load_above_capacity
= (sds
->busiest_nr_running
-
3071 sds
->busiest_group_capacity
);
3073 load_above_capacity
*= (SCHED_LOAD_SCALE
* SCHED_LOAD_SCALE
);
3075 load_above_capacity
/= sds
->busiest
->cpu_power
;
3079 * We're trying to get all the cpus to the average_load, so we don't
3080 * want to push ourselves above the average load, nor do we wish to
3081 * reduce the max loaded cpu below the average load. At the same time,
3082 * we also don't want to reduce the group load below the group capacity
3083 * (so that we can implement power-savings policies etc). Thus we look
3084 * for the minimum possible imbalance.
3085 * Be careful of negative numbers as they'll appear as very large values
3086 * with unsigned longs.
3088 max_pull
= min(sds
->max_load
- sds
->avg_load
, load_above_capacity
);
3090 /* How much load to actually move to equalise the imbalance */
3091 *imbalance
= min(max_pull
* sds
->busiest
->cpu_power
,
3092 (sds
->avg_load
- sds
->this_load
) * sds
->this->cpu_power
)
3096 * if *imbalance is less than the average load per runnable task
3097 * there is no guarantee that any tasks will be moved so we'll have
3098 * a think about bumping its value to force at least one task to be
3101 if (*imbalance
< sds
->busiest_load_per_task
)
3102 return fix_small_imbalance(sds
, this_cpu
, imbalance
);
3106 /******* find_busiest_group() helpers end here *********************/
3109 * find_busiest_group - Returns the busiest group within the sched_domain
3110 * if there is an imbalance. If there isn't an imbalance, and
3111 * the user has opted for power-savings, it returns a group whose
3112 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3113 * such a group exists.
3115 * Also calculates the amount of weighted load which should be moved
3116 * to restore balance.
3118 * @sd: The sched_domain whose busiest group is to be returned.
3119 * @this_cpu: The cpu for which load balancing is currently being performed.
3120 * @imbalance: Variable which stores amount of weighted load which should
3121 * be moved to restore balance/put a group to idle.
3122 * @idle: The idle status of this_cpu.
3123 * @cpus: The set of CPUs under consideration for load-balancing.
3124 * @balance: Pointer to a variable indicating if this_cpu
3125 * is the appropriate cpu to perform load balancing at this_level.
3127 * Returns: - the busiest group if imbalance exists.
3128 * - If no imbalance and user has opted for power-savings balance,
3129 * return the least loaded group whose CPUs can be
3130 * put to idle by rebalancing its tasks onto our group.
3132 static struct sched_group
*
3133 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
3134 unsigned long *imbalance
, enum cpu_idle_type idle
,
3135 const struct cpumask
*cpus
, int *balance
)
3137 struct sd_lb_stats sds
;
3139 memset(&sds
, 0, sizeof(sds
));
3142 * Compute the various statistics relavent for load balancing at
3145 update_sd_lb_stats(sd
, this_cpu
, idle
, cpus
, balance
, &sds
);
3148 * this_cpu is not the appropriate cpu to perform load balancing at
3154 if ((idle
== CPU_IDLE
|| idle
== CPU_NEWLY_IDLE
) &&
3155 check_asym_packing(sd
, &sds
, this_cpu
, imbalance
))
3158 /* There is no busy sibling group to pull tasks from */
3159 if (!sds
.busiest
|| sds
.busiest_nr_running
== 0)
3162 sds
.avg_load
= (SCHED_LOAD_SCALE
* sds
.total_load
) / sds
.total_pwr
;
3165 * If the busiest group is imbalanced the below checks don't
3166 * work because they assumes all things are equal, which typically
3167 * isn't true due to cpus_allowed constraints and the like.
3172 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
3173 if (idle
== CPU_NEWLY_IDLE
&& sds
.this_has_capacity
&&
3174 !sds
.busiest_has_capacity
)
3178 * If the local group is more busy than the selected busiest group
3179 * don't try and pull any tasks.
3181 if (sds
.this_load
>= sds
.max_load
)
3185 * Don't pull any tasks if this group is already above the domain
3188 if (sds
.this_load
>= sds
.avg_load
)
3191 if (idle
== CPU_IDLE
) {
3193 * This cpu is idle. If the busiest group load doesn't
3194 * have more tasks than the number of available cpu's and
3195 * there is no imbalance between this and busiest group
3196 * wrt to idle cpu's, it is balanced.
3198 if ((sds
.this_idle_cpus
<= sds
.busiest_idle_cpus
+ 1) &&
3199 sds
.busiest_nr_running
<= sds
.busiest_group_weight
)
3203 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
3204 * imbalance_pct to be conservative.
3206 if (100 * sds
.max_load
<= sd
->imbalance_pct
* sds
.this_load
)
3211 /* Looks like there is an imbalance. Compute it */
3212 calculate_imbalance(&sds
, this_cpu
, imbalance
);
3217 * There is no obvious imbalance. But check if we can do some balancing
3220 if (check_power_save_busiest_group(&sds
, this_cpu
, imbalance
))
3228 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3231 find_busiest_queue(struct sched_domain
*sd
, struct sched_group
*group
,
3232 enum cpu_idle_type idle
, unsigned long imbalance
,
3233 const struct cpumask
*cpus
)
3235 struct rq
*busiest
= NULL
, *rq
;
3236 unsigned long max_load
= 0;
3239 for_each_cpu(i
, sched_group_cpus(group
)) {
3240 unsigned long power
= power_of(i
);
3241 unsigned long capacity
= DIV_ROUND_CLOSEST(power
, SCHED_LOAD_SCALE
);
3245 capacity
= fix_small_capacity(sd
, group
);
3247 if (!cpumask_test_cpu(i
, cpus
))
3251 wl
= weighted_cpuload(i
);
3254 * When comparing with imbalance, use weighted_cpuload()
3255 * which is not scaled with the cpu power.
3257 if (capacity
&& rq
->nr_running
== 1 && wl
> imbalance
)
3261 * For the load comparisons with the other cpu's, consider
3262 * the weighted_cpuload() scaled with the cpu power, so that
3263 * the load can be moved away from the cpu that is potentially
3264 * running at a lower capacity.
3266 wl
= (wl
* SCHED_LOAD_SCALE
) / power
;
3268 if (wl
> max_load
) {
3278 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3279 * so long as it is large enough.
3281 #define MAX_PINNED_INTERVAL 512
3283 /* Working cpumask for load_balance and load_balance_newidle. */
3284 static DEFINE_PER_CPU(cpumask_var_t
, load_balance_tmpmask
);
3286 static int need_active_balance(struct sched_domain
*sd
, int idle
,
3287 int busiest_cpu
, int this_cpu
)
3289 if (idle
== CPU_NEWLY_IDLE
) {
3292 * ASYM_PACKING needs to force migrate tasks from busy but
3293 * higher numbered CPUs in order to pack all tasks in the
3294 * lowest numbered CPUs.
3296 if ((sd
->flags
& SD_ASYM_PACKING
) && busiest_cpu
> this_cpu
)
3300 * The only task running in a non-idle cpu can be moved to this
3301 * cpu in an attempt to completely freeup the other CPU
3304 * The package power saving logic comes from
3305 * find_busiest_group(). If there are no imbalance, then
3306 * f_b_g() will return NULL. However when sched_mc={1,2} then
3307 * f_b_g() will select a group from which a running task may be
3308 * pulled to this cpu in order to make the other package idle.
3309 * If there is no opportunity to make a package idle and if
3310 * there are no imbalance, then f_b_g() will return NULL and no
3311 * action will be taken in load_balance_newidle().
3313 * Under normal task pull operation due to imbalance, there
3314 * will be more than one task in the source run queue and
3315 * move_tasks() will succeed. ld_moved will be true and this
3316 * active balance code will not be triggered.
3318 if (sched_mc_power_savings
< POWERSAVINGS_BALANCE_WAKEUP
)
3322 return unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2);
3325 static int active_load_balance_cpu_stop(void *data
);
3328 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3329 * tasks if there is an imbalance.
3331 static int load_balance(int this_cpu
, struct rq
*this_rq
,
3332 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3335 int ld_moved
, all_pinned
= 0, active_balance
= 0;
3336 struct sched_group
*group
;
3337 unsigned long imbalance
;
3339 unsigned long flags
;
3340 struct cpumask
*cpus
= __get_cpu_var(load_balance_tmpmask
);
3342 cpumask_copy(cpus
, cpu_active_mask
);
3344 schedstat_inc(sd
, lb_count
[idle
]);
3347 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
,
3354 schedstat_inc(sd
, lb_nobusyg
[idle
]);
3358 busiest
= find_busiest_queue(sd
, group
, idle
, imbalance
, cpus
);
3360 schedstat_inc(sd
, lb_nobusyq
[idle
]);
3364 BUG_ON(busiest
== this_rq
);
3366 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
3369 if (busiest
->nr_running
> 1) {
3371 * Attempt to move tasks. If find_busiest_group has found
3372 * an imbalance but busiest->nr_running <= 1, the group is
3373 * still unbalanced. ld_moved simply stays zero, so it is
3374 * correctly treated as an imbalance.
3377 local_irq_save(flags
);
3378 double_rq_lock(this_rq
, busiest
);
3379 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
3380 imbalance
, sd
, idle
, &all_pinned
);
3381 double_rq_unlock(this_rq
, busiest
);
3382 local_irq_restore(flags
);
3385 * some other cpu did the load balance for us.
3387 if (ld_moved
&& this_cpu
!= smp_processor_id())
3388 resched_cpu(this_cpu
);
3390 /* All tasks on this runqueue were pinned by CPU affinity */
3391 if (unlikely(all_pinned
)) {
3392 cpumask_clear_cpu(cpu_of(busiest
), cpus
);
3393 if (!cpumask_empty(cpus
))
3400 schedstat_inc(sd
, lb_failed
[idle
]);
3402 * Increment the failure counter only on periodic balance.
3403 * We do not want newidle balance, which can be very
3404 * frequent, pollute the failure counter causing
3405 * excessive cache_hot migrations and active balances.
3407 if (idle
!= CPU_NEWLY_IDLE
)
3408 sd
->nr_balance_failed
++;
3410 if (need_active_balance(sd
, idle
, cpu_of(busiest
), this_cpu
)) {
3411 raw_spin_lock_irqsave(&busiest
->lock
, flags
);
3413 /* don't kick the active_load_balance_cpu_stop,
3414 * if the curr task on busiest cpu can't be
3417 if (!cpumask_test_cpu(this_cpu
,
3418 &busiest
->curr
->cpus_allowed
)) {
3419 raw_spin_unlock_irqrestore(&busiest
->lock
,
3422 goto out_one_pinned
;
3426 * ->active_balance synchronizes accesses to
3427 * ->active_balance_work. Once set, it's cleared
3428 * only after active load balance is finished.
3430 if (!busiest
->active_balance
) {
3431 busiest
->active_balance
= 1;
3432 busiest
->push_cpu
= this_cpu
;
3435 raw_spin_unlock_irqrestore(&busiest
->lock
, flags
);
3438 stop_one_cpu_nowait(cpu_of(busiest
),
3439 active_load_balance_cpu_stop
, busiest
,
3440 &busiest
->active_balance_work
);
3443 * We've kicked active balancing, reset the failure
3446 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
3449 sd
->nr_balance_failed
= 0;
3451 if (likely(!active_balance
)) {
3452 /* We were unbalanced, so reset the balancing interval */
3453 sd
->balance_interval
= sd
->min_interval
;
3456 * If we've begun active balancing, start to back off. This
3457 * case may not be covered by the all_pinned logic if there
3458 * is only 1 task on the busy runqueue (because we don't call
3461 if (sd
->balance_interval
< sd
->max_interval
)
3462 sd
->balance_interval
*= 2;
3468 schedstat_inc(sd
, lb_balanced
[idle
]);
3470 sd
->nr_balance_failed
= 0;
3473 /* tune up the balancing interval */
3474 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
3475 (sd
->balance_interval
< sd
->max_interval
))
3476 sd
->balance_interval
*= 2;
3484 * idle_balance is called by schedule() if this_cpu is about to become
3485 * idle. Attempts to pull tasks from other CPUs.
3487 static void idle_balance(int this_cpu
, struct rq
*this_rq
)
3489 struct sched_domain
*sd
;
3490 int pulled_task
= 0;
3491 unsigned long next_balance
= jiffies
+ HZ
;
3493 this_rq
->idle_stamp
= this_rq
->clock
;
3495 if (this_rq
->avg_idle
< sysctl_sched_migration_cost
)
3499 * Drop the rq->lock, but keep IRQ/preempt disabled.
3501 raw_spin_unlock(&this_rq
->lock
);
3503 update_shares(this_cpu
);
3505 for_each_domain(this_cpu
, sd
) {
3506 unsigned long interval
;
3509 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3512 if (sd
->flags
& SD_BALANCE_NEWIDLE
) {
3513 /* If we've pulled tasks over stop searching: */
3514 pulled_task
= load_balance(this_cpu
, this_rq
,
3515 sd
, CPU_NEWLY_IDLE
, &balance
);
3518 interval
= msecs_to_jiffies(sd
->balance_interval
);
3519 if (time_after(next_balance
, sd
->last_balance
+ interval
))
3520 next_balance
= sd
->last_balance
+ interval
;
3522 this_rq
->idle_stamp
= 0;
3528 raw_spin_lock(&this_rq
->lock
);
3530 if (pulled_task
|| time_after(jiffies
, this_rq
->next_balance
)) {
3532 * We are going idle. next_balance may be set based on
3533 * a busy processor. So reset next_balance.
3535 this_rq
->next_balance
= next_balance
;
3540 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
3541 * running tasks off the busiest CPU onto idle CPUs. It requires at
3542 * least 1 task to be running on each physical CPU where possible, and
3543 * avoids physical / logical imbalances.
3545 static int active_load_balance_cpu_stop(void *data
)
3547 struct rq
*busiest_rq
= data
;
3548 int busiest_cpu
= cpu_of(busiest_rq
);
3549 int target_cpu
= busiest_rq
->push_cpu
;
3550 struct rq
*target_rq
= cpu_rq(target_cpu
);
3551 struct sched_domain
*sd
;
3553 raw_spin_lock_irq(&busiest_rq
->lock
);
3555 /* make sure the requested cpu hasn't gone down in the meantime */
3556 if (unlikely(busiest_cpu
!= smp_processor_id() ||
3557 !busiest_rq
->active_balance
))
3560 /* Is there any task to move? */
3561 if (busiest_rq
->nr_running
<= 1)
3565 * This condition is "impossible", if it occurs
3566 * we need to fix it. Originally reported by
3567 * Bjorn Helgaas on a 128-cpu setup.
3569 BUG_ON(busiest_rq
== target_rq
);
3571 /* move a task from busiest_rq to target_rq */
3572 double_lock_balance(busiest_rq
, target_rq
);
3574 /* Search for an sd spanning us and the target CPU. */
3576 for_each_domain(target_cpu
, sd
) {
3577 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
3578 cpumask_test_cpu(busiest_cpu
, sched_domain_span(sd
)))
3583 schedstat_inc(sd
, alb_count
);
3585 if (move_one_task(target_rq
, target_cpu
, busiest_rq
,
3587 schedstat_inc(sd
, alb_pushed
);
3589 schedstat_inc(sd
, alb_failed
);
3592 double_unlock_balance(busiest_rq
, target_rq
);
3594 busiest_rq
->active_balance
= 0;
3595 raw_spin_unlock_irq(&busiest_rq
->lock
);
3601 static DEFINE_PER_CPU(struct call_single_data
, remote_sched_softirq_cb
);
3603 static void trigger_sched_softirq(void *data
)
3605 raise_softirq_irqoff(SCHED_SOFTIRQ
);
3608 static inline void init_sched_softirq_csd(struct call_single_data
*csd
)
3610 csd
->func
= trigger_sched_softirq
;
3617 * idle load balancing details
3618 * - One of the idle CPUs nominates itself as idle load_balancer, while
3620 * - This idle load balancer CPU will also go into tickless mode when
3621 * it is idle, just like all other idle CPUs
3622 * - When one of the busy CPUs notice that there may be an idle rebalancing
3623 * needed, they will kick the idle load balancer, which then does idle
3624 * load balancing for all the idle CPUs.
3627 atomic_t load_balancer
;
3628 atomic_t first_pick_cpu
;
3629 atomic_t second_pick_cpu
;
3630 cpumask_var_t idle_cpus_mask
;
3631 cpumask_var_t grp_idle_mask
;
3632 unsigned long next_balance
; /* in jiffy units */
3633 } nohz ____cacheline_aligned
;
3635 int get_nohz_load_balancer(void)
3637 return atomic_read(&nohz
.load_balancer
);
3640 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3642 * lowest_flag_domain - Return lowest sched_domain containing flag.
3643 * @cpu: The cpu whose lowest level of sched domain is to
3645 * @flag: The flag to check for the lowest sched_domain
3646 * for the given cpu.
3648 * Returns the lowest sched_domain of a cpu which contains the given flag.
3650 static inline struct sched_domain
*lowest_flag_domain(int cpu
, int flag
)
3652 struct sched_domain
*sd
;
3654 for_each_domain(cpu
, sd
)
3655 if (sd
&& (sd
->flags
& flag
))
3662 * for_each_flag_domain - Iterates over sched_domains containing the flag.
3663 * @cpu: The cpu whose domains we're iterating over.
3664 * @sd: variable holding the value of the power_savings_sd
3666 * @flag: The flag to filter the sched_domains to be iterated.
3668 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
3669 * set, starting from the lowest sched_domain to the highest.
3671 #define for_each_flag_domain(cpu, sd, flag) \
3672 for (sd = lowest_flag_domain(cpu, flag); \
3673 (sd && (sd->flags & flag)); sd = sd->parent)
3676 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
3677 * @ilb_group: group to be checked for semi-idleness
3679 * Returns: 1 if the group is semi-idle. 0 otherwise.
3681 * We define a sched_group to be semi idle if it has atleast one idle-CPU
3682 * and atleast one non-idle CPU. This helper function checks if the given
3683 * sched_group is semi-idle or not.
3685 static inline int is_semi_idle_group(struct sched_group
*ilb_group
)
3687 cpumask_and(nohz
.grp_idle_mask
, nohz
.idle_cpus_mask
,
3688 sched_group_cpus(ilb_group
));
3691 * A sched_group is semi-idle when it has atleast one busy cpu
3692 * and atleast one idle cpu.
3694 if (cpumask_empty(nohz
.grp_idle_mask
))
3697 if (cpumask_equal(nohz
.grp_idle_mask
, sched_group_cpus(ilb_group
)))
3703 * find_new_ilb - Finds the optimum idle load balancer for nomination.
3704 * @cpu: The cpu which is nominating a new idle_load_balancer.
3706 * Returns: Returns the id of the idle load balancer if it exists,
3707 * Else, returns >= nr_cpu_ids.
3709 * This algorithm picks the idle load balancer such that it belongs to a
3710 * semi-idle powersavings sched_domain. The idea is to try and avoid
3711 * completely idle packages/cores just for the purpose of idle load balancing
3712 * when there are other idle cpu's which are better suited for that job.
3714 static int find_new_ilb(int cpu
)
3716 struct sched_domain
*sd
;
3717 struct sched_group
*ilb_group
;
3718 int ilb
= nr_cpu_ids
;
3721 * Have idle load balancer selection from semi-idle packages only
3722 * when power-aware load balancing is enabled
3724 if (!(sched_smt_power_savings
|| sched_mc_power_savings
))
3728 * Optimize for the case when we have no idle CPUs or only one
3729 * idle CPU. Don't walk the sched_domain hierarchy in such cases
3731 if (cpumask_weight(nohz
.idle_cpus_mask
) < 2)
3735 for_each_flag_domain(cpu
, sd
, SD_POWERSAVINGS_BALANCE
) {
3736 ilb_group
= sd
->groups
;
3739 if (is_semi_idle_group(ilb_group
)) {
3740 ilb
= cpumask_first(nohz
.grp_idle_mask
);
3744 ilb_group
= ilb_group
->next
;
3746 } while (ilb_group
!= sd
->groups
);
3754 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
3755 static inline int find_new_ilb(int call_cpu
)
3762 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
3763 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
3764 * CPU (if there is one).
3766 static void nohz_balancer_kick(int cpu
)
3770 nohz
.next_balance
++;
3772 ilb_cpu
= get_nohz_load_balancer();
3774 if (ilb_cpu
>= nr_cpu_ids
) {
3775 ilb_cpu
= cpumask_first(nohz
.idle_cpus_mask
);
3776 if (ilb_cpu
>= nr_cpu_ids
)
3780 if (!cpu_rq(ilb_cpu
)->nohz_balance_kick
) {
3781 struct call_single_data
*cp
;
3783 cpu_rq(ilb_cpu
)->nohz_balance_kick
= 1;
3784 cp
= &per_cpu(remote_sched_softirq_cb
, cpu
);
3785 __smp_call_function_single(ilb_cpu
, cp
, 0);
3791 * This routine will try to nominate the ilb (idle load balancing)
3792 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3793 * load balancing on behalf of all those cpus.
3795 * When the ilb owner becomes busy, we will not have new ilb owner until some
3796 * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
3797 * idle load balancing by kicking one of the idle CPUs.
3799 * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
3800 * ilb owner CPU in future (when there is a need for idle load balancing on
3801 * behalf of all idle CPUs).
3803 void select_nohz_load_balancer(int stop_tick
)
3805 int cpu
= smp_processor_id();
3808 if (!cpu_active(cpu
)) {
3809 if (atomic_read(&nohz
.load_balancer
) != cpu
)
3813 * If we are going offline and still the leader,
3816 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
,
3823 cpumask_set_cpu(cpu
, nohz
.idle_cpus_mask
);
3825 if (atomic_read(&nohz
.first_pick_cpu
) == cpu
)
3826 atomic_cmpxchg(&nohz
.first_pick_cpu
, cpu
, nr_cpu_ids
);
3827 if (atomic_read(&nohz
.second_pick_cpu
) == cpu
)
3828 atomic_cmpxchg(&nohz
.second_pick_cpu
, cpu
, nr_cpu_ids
);
3830 if (atomic_read(&nohz
.load_balancer
) >= nr_cpu_ids
) {
3833 /* make me the ilb owner */
3834 if (atomic_cmpxchg(&nohz
.load_balancer
, nr_cpu_ids
,
3839 * Check to see if there is a more power-efficient
3842 new_ilb
= find_new_ilb(cpu
);
3843 if (new_ilb
< nr_cpu_ids
&& new_ilb
!= cpu
) {
3844 atomic_set(&nohz
.load_balancer
, nr_cpu_ids
);
3845 resched_cpu(new_ilb
);
3851 if (!cpumask_test_cpu(cpu
, nohz
.idle_cpus_mask
))
3854 cpumask_clear_cpu(cpu
, nohz
.idle_cpus_mask
);
3856 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3857 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
,
3865 static DEFINE_SPINLOCK(balancing
);
3867 static unsigned long __read_mostly max_load_balance_interval
= HZ
/10;
3870 * Scale the max load_balance interval with the number of CPUs in the system.
3871 * This trades load-balance latency on larger machines for less cross talk.
3873 static void update_max_interval(void)
3875 max_load_balance_interval
= HZ
*num_online_cpus()/10;
3879 * It checks each scheduling domain to see if it is due to be balanced,
3880 * and initiates a balancing operation if so.
3882 * Balancing parameters are set up in arch_init_sched_domains.
3884 static void rebalance_domains(int cpu
, enum cpu_idle_type idle
)
3887 struct rq
*rq
= cpu_rq(cpu
);
3888 unsigned long interval
;
3889 struct sched_domain
*sd
;
3890 /* Earliest time when we have to do rebalance again */
3891 unsigned long next_balance
= jiffies
+ 60*HZ
;
3892 int update_next_balance
= 0;
3898 for_each_domain(cpu
, sd
) {
3899 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3902 interval
= sd
->balance_interval
;
3903 if (idle
!= CPU_IDLE
)
3904 interval
*= sd
->busy_factor
;
3906 /* scale ms to jiffies */
3907 interval
= msecs_to_jiffies(interval
);
3908 interval
= clamp(interval
, 1UL, max_load_balance_interval
);
3910 need_serialize
= sd
->flags
& SD_SERIALIZE
;
3912 if (need_serialize
) {
3913 if (!spin_trylock(&balancing
))
3917 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
3918 if (load_balance(cpu
, rq
, sd
, idle
, &balance
)) {
3920 * We've pulled tasks over so either we're no
3923 idle
= CPU_NOT_IDLE
;
3925 sd
->last_balance
= jiffies
;
3928 spin_unlock(&balancing
);
3930 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
3931 next_balance
= sd
->last_balance
+ interval
;
3932 update_next_balance
= 1;
3936 * Stop the load balance at this level. There is another
3937 * CPU in our sched group which is doing load balancing more
3946 * next_balance will be updated only when there is a need.
3947 * When the cpu is attached to null domain for ex, it will not be
3950 if (likely(update_next_balance
))
3951 rq
->next_balance
= next_balance
;
3956 * In CONFIG_NO_HZ case, the idle balance kickee will do the
3957 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3959 static void nohz_idle_balance(int this_cpu
, enum cpu_idle_type idle
)
3961 struct rq
*this_rq
= cpu_rq(this_cpu
);
3965 if (idle
!= CPU_IDLE
|| !this_rq
->nohz_balance_kick
)
3968 for_each_cpu(balance_cpu
, nohz
.idle_cpus_mask
) {
3969 if (balance_cpu
== this_cpu
)
3973 * If this cpu gets work to do, stop the load balancing
3974 * work being done for other cpus. Next load
3975 * balancing owner will pick it up.
3977 if (need_resched()) {
3978 this_rq
->nohz_balance_kick
= 0;
3982 raw_spin_lock_irq(&this_rq
->lock
);
3983 update_rq_clock(this_rq
);
3984 update_cpu_load(this_rq
);
3985 raw_spin_unlock_irq(&this_rq
->lock
);
3987 rebalance_domains(balance_cpu
, CPU_IDLE
);
3989 rq
= cpu_rq(balance_cpu
);
3990 if (time_after(this_rq
->next_balance
, rq
->next_balance
))
3991 this_rq
->next_balance
= rq
->next_balance
;
3993 nohz
.next_balance
= this_rq
->next_balance
;
3994 this_rq
->nohz_balance_kick
= 0;
3998 * Current heuristic for kicking the idle load balancer
3999 * - first_pick_cpu is the one of the busy CPUs. It will kick
4000 * idle load balancer when it has more than one process active. This
4001 * eliminates the need for idle load balancing altogether when we have
4002 * only one running process in the system (common case).
4003 * - If there are more than one busy CPU, idle load balancer may have
4004 * to run for active_load_balance to happen (i.e., two busy CPUs are
4005 * SMT or core siblings and can run better if they move to different
4006 * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
4007 * which will kick idle load balancer as soon as it has any load.
4009 static inline int nohz_kick_needed(struct rq
*rq
, int cpu
)
4011 unsigned long now
= jiffies
;
4013 int first_pick_cpu
, second_pick_cpu
;
4015 if (time_before(now
, nohz
.next_balance
))
4018 if (rq
->idle_at_tick
)
4021 first_pick_cpu
= atomic_read(&nohz
.first_pick_cpu
);
4022 second_pick_cpu
= atomic_read(&nohz
.second_pick_cpu
);
4024 if (first_pick_cpu
< nr_cpu_ids
&& first_pick_cpu
!= cpu
&&
4025 second_pick_cpu
< nr_cpu_ids
&& second_pick_cpu
!= cpu
)
4028 ret
= atomic_cmpxchg(&nohz
.first_pick_cpu
, nr_cpu_ids
, cpu
);
4029 if (ret
== nr_cpu_ids
|| ret
== cpu
) {
4030 atomic_cmpxchg(&nohz
.second_pick_cpu
, cpu
, nr_cpu_ids
);
4031 if (rq
->nr_running
> 1)
4034 ret
= atomic_cmpxchg(&nohz
.second_pick_cpu
, nr_cpu_ids
, cpu
);
4035 if (ret
== nr_cpu_ids
|| ret
== cpu
) {
4043 static void nohz_idle_balance(int this_cpu
, enum cpu_idle_type idle
) { }
4047 * run_rebalance_domains is triggered when needed from the scheduler tick.
4048 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
4050 static void run_rebalance_domains(struct softirq_action
*h
)
4052 int this_cpu
= smp_processor_id();
4053 struct rq
*this_rq
= cpu_rq(this_cpu
);
4054 enum cpu_idle_type idle
= this_rq
->idle_at_tick
?
4055 CPU_IDLE
: CPU_NOT_IDLE
;
4057 rebalance_domains(this_cpu
, idle
);
4060 * If this cpu has a pending nohz_balance_kick, then do the
4061 * balancing on behalf of the other idle cpus whose ticks are
4064 nohz_idle_balance(this_cpu
, idle
);
4067 static inline int on_null_domain(int cpu
)
4069 return !rcu_dereference_sched(cpu_rq(cpu
)->sd
);
4073 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4075 static inline void trigger_load_balance(struct rq
*rq
, int cpu
)
4077 /* Don't need to rebalance while attached to NULL domain */
4078 if (time_after_eq(jiffies
, rq
->next_balance
) &&
4079 likely(!on_null_domain(cpu
)))
4080 raise_softirq(SCHED_SOFTIRQ
);
4082 else if (nohz_kick_needed(rq
, cpu
) && likely(!on_null_domain(cpu
)))
4083 nohz_balancer_kick(cpu
);
4087 static void rq_online_fair(struct rq
*rq
)
4092 static void rq_offline_fair(struct rq
*rq
)
4097 #else /* CONFIG_SMP */
4100 * on UP we do not need to balance between CPUs:
4102 static inline void idle_balance(int cpu
, struct rq
*rq
)
4106 #endif /* CONFIG_SMP */
4109 * scheduler tick hitting a task of our scheduling class:
4111 static void task_tick_fair(struct rq
*rq
, struct task_struct
*curr
, int queued
)
4113 struct cfs_rq
*cfs_rq
;
4114 struct sched_entity
*se
= &curr
->se
;
4116 for_each_sched_entity(se
) {
4117 cfs_rq
= cfs_rq_of(se
);
4118 entity_tick(cfs_rq
, se
, queued
);
4123 * called on fork with the child task as argument from the parent's context
4124 * - child not yet on the tasklist
4125 * - preemption disabled
4127 static void task_fork_fair(struct task_struct
*p
)
4129 struct cfs_rq
*cfs_rq
= task_cfs_rq(current
);
4130 struct sched_entity
*se
= &p
->se
, *curr
= cfs_rq
->curr
;
4131 int this_cpu
= smp_processor_id();
4132 struct rq
*rq
= this_rq();
4133 unsigned long flags
;
4135 raw_spin_lock_irqsave(&rq
->lock
, flags
);
4137 update_rq_clock(rq
);
4139 if (unlikely(task_cpu(p
) != this_cpu
)) {
4141 __set_task_cpu(p
, this_cpu
);
4145 update_curr(cfs_rq
);
4148 se
->vruntime
= curr
->vruntime
;
4149 place_entity(cfs_rq
, se
, 1);
4151 if (sysctl_sched_child_runs_first
&& curr
&& entity_before(curr
, se
)) {
4153 * Upon rescheduling, sched_class::put_prev_task() will place
4154 * 'current' within the tree based on its new key value.
4156 swap(curr
->vruntime
, se
->vruntime
);
4157 resched_task(rq
->curr
);
4160 se
->vruntime
-= cfs_rq
->min_vruntime
;
4162 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
4166 * Priority of the task has changed. Check to see if we preempt
4170 prio_changed_fair(struct rq
*rq
, struct task_struct
*p
, int oldprio
)
4176 * Reschedule if we are currently running on this runqueue and
4177 * our priority decreased, or if we are not currently running on
4178 * this runqueue and our priority is higher than the current's
4180 if (rq
->curr
== p
) {
4181 if (p
->prio
> oldprio
)
4182 resched_task(rq
->curr
);
4184 check_preempt_curr(rq
, p
, 0);
4187 static void switched_from_fair(struct rq
*rq
, struct task_struct
*p
)
4189 struct sched_entity
*se
= &p
->se
;
4190 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
4193 * Ensure the task's vruntime is normalized, so that when its
4194 * switched back to the fair class the enqueue_entity(.flags=0) will
4195 * do the right thing.
4197 * If it was on_rq, then the dequeue_entity(.flags=0) will already
4198 * have normalized the vruntime, if it was !on_rq, then only when
4199 * the task is sleeping will it still have non-normalized vruntime.
4201 if (!se
->on_rq
&& p
->state
!= TASK_RUNNING
) {
4203 * Fix up our vruntime so that the current sleep doesn't
4204 * cause 'unlimited' sleep bonus.
4206 place_entity(cfs_rq
, se
, 0);
4207 se
->vruntime
-= cfs_rq
->min_vruntime
;
4212 * We switched to the sched_fair class.
4214 static void switched_to_fair(struct rq
*rq
, struct task_struct
*p
)
4220 * We were most likely switched from sched_rt, so
4221 * kick off the schedule if running, otherwise just see
4222 * if we can still preempt the current task.
4225 resched_task(rq
->curr
);
4227 check_preempt_curr(rq
, p
, 0);
4230 /* Account for a task changing its policy or group.
4232 * This routine is mostly called to set cfs_rq->curr field when a task
4233 * migrates between groups/classes.
4235 static void set_curr_task_fair(struct rq
*rq
)
4237 struct sched_entity
*se
= &rq
->curr
->se
;
4239 for_each_sched_entity(se
)
4240 set_next_entity(cfs_rq_of(se
), se
);
4243 #ifdef CONFIG_FAIR_GROUP_SCHED
4244 static void task_move_group_fair(struct task_struct
*p
, int on_rq
)
4247 * If the task was not on the rq at the time of this cgroup movement
4248 * it must have been asleep, sleeping tasks keep their ->vruntime
4249 * absolute on their old rq until wakeup (needed for the fair sleeper
4250 * bonus in place_entity()).
4252 * If it was on the rq, we've just 'preempted' it, which does convert
4253 * ->vruntime to a relative base.
4255 * Make sure both cases convert their relative position when migrating
4256 * to another cgroup's rq. This does somewhat interfere with the
4257 * fair sleeper stuff for the first placement, but who cares.
4260 p
->se
.vruntime
-= cfs_rq_of(&p
->se
)->min_vruntime
;
4261 set_task_rq(p
, task_cpu(p
));
4263 p
->se
.vruntime
+= cfs_rq_of(&p
->se
)->min_vruntime
;
4267 static unsigned int get_rr_interval_fair(struct rq
*rq
, struct task_struct
*task
)
4269 struct sched_entity
*se
= &task
->se
;
4270 unsigned int rr_interval
= 0;
4273 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
4276 if (rq
->cfs
.load
.weight
)
4277 rr_interval
= NS_TO_JIFFIES(sched_slice(&rq
->cfs
, se
));
4283 * All the scheduling class methods:
4285 static const struct sched_class fair_sched_class
= {
4286 .next
= &idle_sched_class
,
4287 .enqueue_task
= enqueue_task_fair
,
4288 .dequeue_task
= dequeue_task_fair
,
4289 .yield_task
= yield_task_fair
,
4290 .yield_to_task
= yield_to_task_fair
,
4292 .check_preempt_curr
= check_preempt_wakeup
,
4294 .pick_next_task
= pick_next_task_fair
,
4295 .put_prev_task
= put_prev_task_fair
,
4298 .select_task_rq
= select_task_rq_fair
,
4300 .rq_online
= rq_online_fair
,
4301 .rq_offline
= rq_offline_fair
,
4303 .task_waking
= task_waking_fair
,
4306 .set_curr_task
= set_curr_task_fair
,
4307 .task_tick
= task_tick_fair
,
4308 .task_fork
= task_fork_fair
,
4310 .prio_changed
= prio_changed_fair
,
4311 .switched_from
= switched_from_fair
,
4312 .switched_to
= switched_to_fair
,
4314 .get_rr_interval
= get_rr_interval_fair
,
4316 #ifdef CONFIG_FAIR_GROUP_SCHED
4317 .task_move_group
= task_move_group_fair
,
4321 #ifdef CONFIG_SCHED_DEBUG
4322 static void print_cfs_stats(struct seq_file
*m
, int cpu
)
4324 struct cfs_rq
*cfs_rq
;
4327 for_each_leaf_cfs_rq(cpu_rq(cpu
), cfs_rq
)
4328 print_cfs_rq(m
, cpu
, cfs_rq
);