parisc iommu: fix panic due to trying to allocate too large region
[linux/fpc-iii.git] / drivers / scsi / csiostor / csio_hw.c
blob1936055193615ef8bc445fa1f778857a8d09ef6b
1 /*
2 * This file is part of the Chelsio FCoE driver for Linux.
4 * Copyright (c) 2008-2012 Chelsio Communications, Inc. All rights reserved.
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
35 #include <linux/pci.h>
36 #include <linux/pci_regs.h>
37 #include <linux/firmware.h>
38 #include <linux/stddef.h>
39 #include <linux/delay.h>
40 #include <linux/string.h>
41 #include <linux/compiler.h>
42 #include <linux/jiffies.h>
43 #include <linux/kernel.h>
44 #include <linux/log2.h>
46 #include "csio_hw.h"
47 #include "csio_lnode.h"
48 #include "csio_rnode.h"
50 int csio_force_master;
51 int csio_dbg_level = 0xFEFF;
52 unsigned int csio_port_mask = 0xf;
54 /* Default FW event queue entries. */
55 static uint32_t csio_evtq_sz = CSIO_EVTQ_SIZE;
57 /* Default MSI param level */
58 int csio_msi = 2;
60 /* FCoE function instances */
61 static int dev_num;
63 /* FCoE Adapter types & its description */
64 static const struct csio_adap_desc csio_t4_fcoe_adapters[] = {
65 {"T440-Dbg 10G", "Chelsio T440-Dbg 10G [FCoE]"},
66 {"T420-CR 10G", "Chelsio T420-CR 10G [FCoE]"},
67 {"T422-CR 10G/1G", "Chelsio T422-CR 10G/1G [FCoE]"},
68 {"T440-CR 10G", "Chelsio T440-CR 10G [FCoE]"},
69 {"T420-BCH 10G", "Chelsio T420-BCH 10G [FCoE]"},
70 {"T440-BCH 10G", "Chelsio T440-BCH 10G [FCoE]"},
71 {"T440-CH 10G", "Chelsio T440-CH 10G [FCoE]"},
72 {"T420-SO 10G", "Chelsio T420-SO 10G [FCoE]"},
73 {"T420-CX4 10G", "Chelsio T420-CX4 10G [FCoE]"},
74 {"T420-BT 10G", "Chelsio T420-BT 10G [FCoE]"},
75 {"T404-BT 1G", "Chelsio T404-BT 1G [FCoE]"},
76 {"B420-SR 10G", "Chelsio B420-SR 10G [FCoE]"},
77 {"B404-BT 1G", "Chelsio B404-BT 1G [FCoE]"},
78 {"T480-CR 10G", "Chelsio T480-CR 10G [FCoE]"},
79 {"T440-LP-CR 10G", "Chelsio T440-LP-CR 10G [FCoE]"},
80 {"AMSTERDAM 10G", "Chelsio AMSTERDAM 10G [FCoE]"},
81 {"HUAWEI T480 10G", "Chelsio HUAWEI T480 10G [FCoE]"},
82 {"HUAWEI T440 10G", "Chelsio HUAWEI T440 10G [FCoE]"},
83 {"HUAWEI STG 10G", "Chelsio HUAWEI STG 10G [FCoE]"},
84 {"ACROMAG XAUI 10G", "Chelsio ACROMAG XAUI 10G [FCoE]"},
85 {"ACROMAG SFP+ 10G", "Chelsio ACROMAG SFP+ 10G [FCoE]"},
86 {"QUANTA SFP+ 10G", "Chelsio QUANTA SFP+ 10G [FCoE]"},
87 {"HUAWEI 10Gbase-T", "Chelsio HUAWEI 10Gbase-T [FCoE]"},
88 {"HUAWEI T4TOE 10G", "Chelsio HUAWEI T4TOE 10G [FCoE]"}
91 static const struct csio_adap_desc csio_t5_fcoe_adapters[] = {
92 {"T580-Dbg 10G", "Chelsio T580-Dbg 10G [FCoE]"},
93 {"T520-CR 10G", "Chelsio T520-CR 10G [FCoE]"},
94 {"T522-CR 10G/1G", "Chelsio T452-CR 10G/1G [FCoE]"},
95 {"T540-CR 10G", "Chelsio T540-CR 10G [FCoE]"},
96 {"T520-BCH 10G", "Chelsio T520-BCH 10G [FCoE]"},
97 {"T540-BCH 10G", "Chelsio T540-BCH 10G [FCoE]"},
98 {"T540-CH 10G", "Chelsio T540-CH 10G [FCoE]"},
99 {"T520-SO 10G", "Chelsio T520-SO 10G [FCoE]"},
100 {"T520-CX4 10G", "Chelsio T520-CX4 10G [FCoE]"},
101 {"T520-BT 10G", "Chelsio T520-BT 10G [FCoE]"},
102 {"T504-BT 1G", "Chelsio T504-BT 1G [FCoE]"},
103 {"B520-SR 10G", "Chelsio B520-SR 10G [FCoE]"},
104 {"B504-BT 1G", "Chelsio B504-BT 1G [FCoE]"},
105 {"T580-CR 10G", "Chelsio T580-CR 10G [FCoE]"},
106 {"T540-LP-CR 10G", "Chelsio T540-LP-CR 10G [FCoE]"},
107 {"AMSTERDAM 10G", "Chelsio AMSTERDAM 10G [FCoE]"},
108 {"T580-LP-CR 40G", "Chelsio T580-LP-CR 40G [FCoE]"},
109 {"T520-LL-CR 10G", "Chelsio T520-LL-CR 10G [FCoE]"},
110 {"T560-CR 40G", "Chelsio T560-CR 40G [FCoE]"},
111 {"T580-CR 40G", "Chelsio T580-CR 40G [FCoE]"}
114 static void csio_mgmtm_cleanup(struct csio_mgmtm *);
115 static void csio_hw_mbm_cleanup(struct csio_hw *);
117 /* State machine forward declarations */
118 static void csio_hws_uninit(struct csio_hw *, enum csio_hw_ev);
119 static void csio_hws_configuring(struct csio_hw *, enum csio_hw_ev);
120 static void csio_hws_initializing(struct csio_hw *, enum csio_hw_ev);
121 static void csio_hws_ready(struct csio_hw *, enum csio_hw_ev);
122 static void csio_hws_quiescing(struct csio_hw *, enum csio_hw_ev);
123 static void csio_hws_quiesced(struct csio_hw *, enum csio_hw_ev);
124 static void csio_hws_resetting(struct csio_hw *, enum csio_hw_ev);
125 static void csio_hws_removing(struct csio_hw *, enum csio_hw_ev);
126 static void csio_hws_pcierr(struct csio_hw *, enum csio_hw_ev);
128 static void csio_hw_initialize(struct csio_hw *hw);
129 static void csio_evtq_stop(struct csio_hw *hw);
130 static void csio_evtq_start(struct csio_hw *hw);
132 int csio_is_hw_ready(struct csio_hw *hw)
134 return csio_match_state(hw, csio_hws_ready);
137 int csio_is_hw_removing(struct csio_hw *hw)
139 return csio_match_state(hw, csio_hws_removing);
144 * csio_hw_wait_op_done_val - wait until an operation is completed
145 * @hw: the HW module
146 * @reg: the register to check for completion
147 * @mask: a single-bit field within @reg that indicates completion
148 * @polarity: the value of the field when the operation is completed
149 * @attempts: number of check iterations
150 * @delay: delay in usecs between iterations
151 * @valp: where to store the value of the register at completion time
153 * Wait until an operation is completed by checking a bit in a register
154 * up to @attempts times. If @valp is not NULL the value of the register
155 * at the time it indicated completion is stored there. Returns 0 if the
156 * operation completes and -EAGAIN otherwise.
159 csio_hw_wait_op_done_val(struct csio_hw *hw, int reg, uint32_t mask,
160 int polarity, int attempts, int delay, uint32_t *valp)
162 uint32_t val;
163 while (1) {
164 val = csio_rd_reg32(hw, reg);
166 if (!!(val & mask) == polarity) {
167 if (valp)
168 *valp = val;
169 return 0;
172 if (--attempts == 0)
173 return -EAGAIN;
174 if (delay)
175 udelay(delay);
180 * csio_hw_tp_wr_bits_indirect - set/clear bits in an indirect TP register
181 * @hw: the adapter
182 * @addr: the indirect TP register address
183 * @mask: specifies the field within the register to modify
184 * @val: new value for the field
186 * Sets a field of an indirect TP register to the given value.
188 void
189 csio_hw_tp_wr_bits_indirect(struct csio_hw *hw, unsigned int addr,
190 unsigned int mask, unsigned int val)
192 csio_wr_reg32(hw, addr, TP_PIO_ADDR);
193 val |= csio_rd_reg32(hw, TP_PIO_DATA) & ~mask;
194 csio_wr_reg32(hw, val, TP_PIO_DATA);
197 void
198 csio_set_reg_field(struct csio_hw *hw, uint32_t reg, uint32_t mask,
199 uint32_t value)
201 uint32_t val = csio_rd_reg32(hw, reg) & ~mask;
203 csio_wr_reg32(hw, val | value, reg);
204 /* Flush */
205 csio_rd_reg32(hw, reg);
209 static int
210 csio_memory_write(struct csio_hw *hw, int mtype, u32 addr, u32 len, u32 *buf)
212 return hw->chip_ops->chip_memory_rw(hw, MEMWIN_CSIOSTOR, mtype,
213 addr, len, buf, 0);
217 * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
219 #define EEPROM_MAX_RD_POLL 40
220 #define EEPROM_MAX_WR_POLL 6
221 #define EEPROM_STAT_ADDR 0x7bfc
222 #define VPD_BASE 0x400
223 #define VPD_BASE_OLD 0
224 #define VPD_LEN 1024
225 #define VPD_INFO_FLD_HDR_SIZE 3
228 * csio_hw_seeprom_read - read a serial EEPROM location
229 * @hw: hw to read
230 * @addr: EEPROM virtual address
231 * @data: where to store the read data
233 * Read a 32-bit word from a location in serial EEPROM using the card's PCI
234 * VPD capability. Note that this function must be called with a virtual
235 * address.
237 static int
238 csio_hw_seeprom_read(struct csio_hw *hw, uint32_t addr, uint32_t *data)
240 uint16_t val = 0;
241 int attempts = EEPROM_MAX_RD_POLL;
242 uint32_t base = hw->params.pci.vpd_cap_addr;
244 if (addr >= EEPROMVSIZE || (addr & 3))
245 return -EINVAL;
247 pci_write_config_word(hw->pdev, base + PCI_VPD_ADDR, (uint16_t)addr);
249 do {
250 udelay(10);
251 pci_read_config_word(hw->pdev, base + PCI_VPD_ADDR, &val);
252 } while (!(val & PCI_VPD_ADDR_F) && --attempts);
254 if (!(val & PCI_VPD_ADDR_F)) {
255 csio_err(hw, "reading EEPROM address 0x%x failed\n", addr);
256 return -EINVAL;
259 pci_read_config_dword(hw->pdev, base + PCI_VPD_DATA, data);
260 *data = le32_to_cpu(*data);
262 return 0;
266 * Partial EEPROM Vital Product Data structure. Includes only the ID and
267 * VPD-R sections.
269 struct t4_vpd_hdr {
270 u8 id_tag;
271 u8 id_len[2];
272 u8 id_data[ID_LEN];
273 u8 vpdr_tag;
274 u8 vpdr_len[2];
278 * csio_hw_get_vpd_keyword_val - Locates an information field keyword in
279 * the VPD
280 * @v: Pointer to buffered vpd data structure
281 * @kw: The keyword to search for
283 * Returns the value of the information field keyword or
284 * -EINVAL otherwise.
286 static int
287 csio_hw_get_vpd_keyword_val(const struct t4_vpd_hdr *v, const char *kw)
289 int32_t i;
290 int32_t offset , len;
291 const uint8_t *buf = &v->id_tag;
292 const uint8_t *vpdr_len = &v->vpdr_tag;
293 offset = sizeof(struct t4_vpd_hdr);
294 len = (uint16_t)vpdr_len[1] + ((uint16_t)vpdr_len[2] << 8);
296 if (len + sizeof(struct t4_vpd_hdr) > VPD_LEN)
297 return -EINVAL;
299 for (i = offset; (i + VPD_INFO_FLD_HDR_SIZE) <= (offset + len);) {
300 if (memcmp(buf + i , kw, 2) == 0) {
301 i += VPD_INFO_FLD_HDR_SIZE;
302 return i;
305 i += VPD_INFO_FLD_HDR_SIZE + buf[i+2];
308 return -EINVAL;
311 static int
312 csio_pci_capability(struct pci_dev *pdev, int cap, int *pos)
314 *pos = pci_find_capability(pdev, cap);
315 if (*pos)
316 return 0;
318 return -1;
322 * csio_hw_get_vpd_params - read VPD parameters from VPD EEPROM
323 * @hw: HW module
324 * @p: where to store the parameters
326 * Reads card parameters stored in VPD EEPROM.
328 static int
329 csio_hw_get_vpd_params(struct csio_hw *hw, struct csio_vpd *p)
331 int i, ret, ec, sn, addr;
332 uint8_t *vpd, csum;
333 const struct t4_vpd_hdr *v;
334 /* To get around compilation warning from strstrip */
335 char *s;
337 if (csio_is_valid_vpd(hw))
338 return 0;
340 ret = csio_pci_capability(hw->pdev, PCI_CAP_ID_VPD,
341 &hw->params.pci.vpd_cap_addr);
342 if (ret)
343 return -EINVAL;
345 vpd = kzalloc(VPD_LEN, GFP_ATOMIC);
346 if (vpd == NULL)
347 return -ENOMEM;
350 * Card information normally starts at VPD_BASE but early cards had
351 * it at 0.
353 ret = csio_hw_seeprom_read(hw, VPD_BASE, (uint32_t *)(vpd));
354 addr = *vpd == 0x82 ? VPD_BASE : VPD_BASE_OLD;
356 for (i = 0; i < VPD_LEN; i += 4) {
357 ret = csio_hw_seeprom_read(hw, addr + i, (uint32_t *)(vpd + i));
358 if (ret) {
359 kfree(vpd);
360 return ret;
364 /* Reset the VPD flag! */
365 hw->flags &= (~CSIO_HWF_VPD_VALID);
367 v = (const struct t4_vpd_hdr *)vpd;
369 #define FIND_VPD_KW(var, name) do { \
370 var = csio_hw_get_vpd_keyword_val(v, name); \
371 if (var < 0) { \
372 csio_err(hw, "missing VPD keyword " name "\n"); \
373 kfree(vpd); \
374 return -EINVAL; \
376 } while (0)
378 FIND_VPD_KW(i, "RV");
379 for (csum = 0; i >= 0; i--)
380 csum += vpd[i];
382 if (csum) {
383 csio_err(hw, "corrupted VPD EEPROM, actual csum %u\n", csum);
384 kfree(vpd);
385 return -EINVAL;
387 FIND_VPD_KW(ec, "EC");
388 FIND_VPD_KW(sn, "SN");
389 #undef FIND_VPD_KW
391 memcpy(p->id, v->id_data, ID_LEN);
392 s = strstrip(p->id);
393 memcpy(p->ec, vpd + ec, EC_LEN);
394 s = strstrip(p->ec);
395 i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
396 memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
397 s = strstrip(p->sn);
399 csio_valid_vpd_copied(hw);
401 kfree(vpd);
402 return 0;
406 * csio_hw_sf1_read - read data from the serial flash
407 * @hw: the HW module
408 * @byte_cnt: number of bytes to read
409 * @cont: whether another operation will be chained
410 * @lock: whether to lock SF for PL access only
411 * @valp: where to store the read data
413 * Reads up to 4 bytes of data from the serial flash. The location of
414 * the read needs to be specified prior to calling this by issuing the
415 * appropriate commands to the serial flash.
417 static int
418 csio_hw_sf1_read(struct csio_hw *hw, uint32_t byte_cnt, int32_t cont,
419 int32_t lock, uint32_t *valp)
421 int ret;
423 if (!byte_cnt || byte_cnt > 4)
424 return -EINVAL;
425 if (csio_rd_reg32(hw, SF_OP) & SF_BUSY)
426 return -EBUSY;
428 cont = cont ? SF_CONT : 0;
429 lock = lock ? SF_LOCK : 0;
431 csio_wr_reg32(hw, lock | cont | BYTECNT(byte_cnt - 1), SF_OP);
432 ret = csio_hw_wait_op_done_val(hw, SF_OP, SF_BUSY, 0, SF_ATTEMPTS,
433 10, NULL);
434 if (!ret)
435 *valp = csio_rd_reg32(hw, SF_DATA);
436 return ret;
440 * csio_hw_sf1_write - write data to the serial flash
441 * @hw: the HW module
442 * @byte_cnt: number of bytes to write
443 * @cont: whether another operation will be chained
444 * @lock: whether to lock SF for PL access only
445 * @val: value to write
447 * Writes up to 4 bytes of data to the serial flash. The location of
448 * the write needs to be specified prior to calling this by issuing the
449 * appropriate commands to the serial flash.
451 static int
452 csio_hw_sf1_write(struct csio_hw *hw, uint32_t byte_cnt, uint32_t cont,
453 int32_t lock, uint32_t val)
455 if (!byte_cnt || byte_cnt > 4)
456 return -EINVAL;
457 if (csio_rd_reg32(hw, SF_OP) & SF_BUSY)
458 return -EBUSY;
460 cont = cont ? SF_CONT : 0;
461 lock = lock ? SF_LOCK : 0;
463 csio_wr_reg32(hw, val, SF_DATA);
464 csio_wr_reg32(hw, cont | BYTECNT(byte_cnt - 1) | OP_WR | lock, SF_OP);
466 return csio_hw_wait_op_done_val(hw, SF_OP, SF_BUSY, 0, SF_ATTEMPTS,
467 10, NULL);
471 * csio_hw_flash_wait_op - wait for a flash operation to complete
472 * @hw: the HW module
473 * @attempts: max number of polls of the status register
474 * @delay: delay between polls in ms
476 * Wait for a flash operation to complete by polling the status register.
478 static int
479 csio_hw_flash_wait_op(struct csio_hw *hw, int32_t attempts, int32_t delay)
481 int ret;
482 uint32_t status;
484 while (1) {
485 ret = csio_hw_sf1_write(hw, 1, 1, 1, SF_RD_STATUS);
486 if (ret != 0)
487 return ret;
489 ret = csio_hw_sf1_read(hw, 1, 0, 1, &status);
490 if (ret != 0)
491 return ret;
493 if (!(status & 1))
494 return 0;
495 if (--attempts == 0)
496 return -EAGAIN;
497 if (delay)
498 msleep(delay);
503 * csio_hw_read_flash - read words from serial flash
504 * @hw: the HW module
505 * @addr: the start address for the read
506 * @nwords: how many 32-bit words to read
507 * @data: where to store the read data
508 * @byte_oriented: whether to store data as bytes or as words
510 * Read the specified number of 32-bit words from the serial flash.
511 * If @byte_oriented is set the read data is stored as a byte array
512 * (i.e., big-endian), otherwise as 32-bit words in the platform's
513 * natural endianess.
515 static int
516 csio_hw_read_flash(struct csio_hw *hw, uint32_t addr, uint32_t nwords,
517 uint32_t *data, int32_t byte_oriented)
519 int ret;
521 if (addr + nwords * sizeof(uint32_t) > hw->params.sf_size || (addr & 3))
522 return -EINVAL;
524 addr = swab32(addr) | SF_RD_DATA_FAST;
526 ret = csio_hw_sf1_write(hw, 4, 1, 0, addr);
527 if (ret != 0)
528 return ret;
530 ret = csio_hw_sf1_read(hw, 1, 1, 0, data);
531 if (ret != 0)
532 return ret;
534 for ( ; nwords; nwords--, data++) {
535 ret = csio_hw_sf1_read(hw, 4, nwords > 1, nwords == 1, data);
536 if (nwords == 1)
537 csio_wr_reg32(hw, 0, SF_OP); /* unlock SF */
538 if (ret)
539 return ret;
540 if (byte_oriented)
541 *data = htonl(*data);
543 return 0;
547 * csio_hw_write_flash - write up to a page of data to the serial flash
548 * @hw: the hw
549 * @addr: the start address to write
550 * @n: length of data to write in bytes
551 * @data: the data to write
553 * Writes up to a page of data (256 bytes) to the serial flash starting
554 * at the given address. All the data must be written to the same page.
556 static int
557 csio_hw_write_flash(struct csio_hw *hw, uint32_t addr,
558 uint32_t n, const uint8_t *data)
560 int ret = -EINVAL;
561 uint32_t buf[64];
562 uint32_t i, c, left, val, offset = addr & 0xff;
564 if (addr >= hw->params.sf_size || offset + n > SF_PAGE_SIZE)
565 return -EINVAL;
567 val = swab32(addr) | SF_PROG_PAGE;
569 ret = csio_hw_sf1_write(hw, 1, 0, 1, SF_WR_ENABLE);
570 if (ret != 0)
571 goto unlock;
573 ret = csio_hw_sf1_write(hw, 4, 1, 1, val);
574 if (ret != 0)
575 goto unlock;
577 for (left = n; left; left -= c) {
578 c = min(left, 4U);
579 for (val = 0, i = 0; i < c; ++i)
580 val = (val << 8) + *data++;
582 ret = csio_hw_sf1_write(hw, c, c != left, 1, val);
583 if (ret)
584 goto unlock;
586 ret = csio_hw_flash_wait_op(hw, 8, 1);
587 if (ret)
588 goto unlock;
590 csio_wr_reg32(hw, 0, SF_OP); /* unlock SF */
592 /* Read the page to verify the write succeeded */
593 ret = csio_hw_read_flash(hw, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
594 if (ret)
595 return ret;
597 if (memcmp(data - n, (uint8_t *)buf + offset, n)) {
598 csio_err(hw,
599 "failed to correctly write the flash page at %#x\n",
600 addr);
601 return -EINVAL;
604 return 0;
606 unlock:
607 csio_wr_reg32(hw, 0, SF_OP); /* unlock SF */
608 return ret;
612 * csio_hw_flash_erase_sectors - erase a range of flash sectors
613 * @hw: the HW module
614 * @start: the first sector to erase
615 * @end: the last sector to erase
617 * Erases the sectors in the given inclusive range.
619 static int
620 csio_hw_flash_erase_sectors(struct csio_hw *hw, int32_t start, int32_t end)
622 int ret = 0;
624 while (start <= end) {
626 ret = csio_hw_sf1_write(hw, 1, 0, 1, SF_WR_ENABLE);
627 if (ret != 0)
628 goto out;
630 ret = csio_hw_sf1_write(hw, 4, 0, 1,
631 SF_ERASE_SECTOR | (start << 8));
632 if (ret != 0)
633 goto out;
635 ret = csio_hw_flash_wait_op(hw, 14, 500);
636 if (ret != 0)
637 goto out;
639 start++;
641 out:
642 if (ret)
643 csio_err(hw, "erase of flash sector %d failed, error %d\n",
644 start, ret);
645 csio_wr_reg32(hw, 0, SF_OP); /* unlock SF */
646 return 0;
649 static void
650 csio_hw_print_fw_version(struct csio_hw *hw, char *str)
652 csio_info(hw, "%s: %u.%u.%u.%u\n", str,
653 FW_HDR_FW_VER_MAJOR_GET(hw->fwrev),
654 FW_HDR_FW_VER_MINOR_GET(hw->fwrev),
655 FW_HDR_FW_VER_MICRO_GET(hw->fwrev),
656 FW_HDR_FW_VER_BUILD_GET(hw->fwrev));
660 * csio_hw_get_fw_version - read the firmware version
661 * @hw: HW module
662 * @vers: where to place the version
664 * Reads the FW version from flash.
666 static int
667 csio_hw_get_fw_version(struct csio_hw *hw, uint32_t *vers)
669 return csio_hw_read_flash(hw, FW_IMG_START +
670 offsetof(struct fw_hdr, fw_ver), 1,
671 vers, 0);
675 * csio_hw_get_tp_version - read the TP microcode version
676 * @hw: HW module
677 * @vers: where to place the version
679 * Reads the TP microcode version from flash.
681 static int
682 csio_hw_get_tp_version(struct csio_hw *hw, u32 *vers)
684 return csio_hw_read_flash(hw, FLASH_FW_START +
685 offsetof(struct fw_hdr, tp_microcode_ver), 1,
686 vers, 0);
690 * csio_hw_check_fw_version - check if the FW is compatible with
691 * this driver
692 * @hw: HW module
694 * Checks if an adapter's FW is compatible with the driver. Returns 0
695 * if there's exact match, a negative error if the version could not be
696 * read or there's a major/minor version mismatch/minor.
698 static int
699 csio_hw_check_fw_version(struct csio_hw *hw)
701 int ret, major, minor, micro;
703 ret = csio_hw_get_fw_version(hw, &hw->fwrev);
704 if (!ret)
705 ret = csio_hw_get_tp_version(hw, &hw->tp_vers);
706 if (ret)
707 return ret;
709 major = FW_HDR_FW_VER_MAJOR_GET(hw->fwrev);
710 minor = FW_HDR_FW_VER_MINOR_GET(hw->fwrev);
711 micro = FW_HDR_FW_VER_MICRO_GET(hw->fwrev);
713 if (major != FW_VERSION_MAJOR(hw)) { /* major mismatch - fail */
714 csio_err(hw, "card FW has major version %u, driver wants %u\n",
715 major, FW_VERSION_MAJOR(hw));
716 return -EINVAL;
719 if (minor == FW_VERSION_MINOR(hw) && micro == FW_VERSION_MICRO(hw))
720 return 0; /* perfect match */
722 /* Minor/micro version mismatch */
723 return -EINVAL;
727 * csio_hw_fw_dload - download firmware.
728 * @hw: HW module
729 * @fw_data: firmware image to write.
730 * @size: image size
732 * Write the supplied firmware image to the card's serial flash.
734 static int
735 csio_hw_fw_dload(struct csio_hw *hw, uint8_t *fw_data, uint32_t size)
737 uint32_t csum;
738 int32_t addr;
739 int ret;
740 uint32_t i;
741 uint8_t first_page[SF_PAGE_SIZE];
742 const __be32 *p = (const __be32 *)fw_data;
743 struct fw_hdr *hdr = (struct fw_hdr *)fw_data;
744 uint32_t sf_sec_size;
746 if ((!hw->params.sf_size) || (!hw->params.sf_nsec)) {
747 csio_err(hw, "Serial Flash data invalid\n");
748 return -EINVAL;
751 if (!size) {
752 csio_err(hw, "FW image has no data\n");
753 return -EINVAL;
756 if (size & 511) {
757 csio_err(hw, "FW image size not multiple of 512 bytes\n");
758 return -EINVAL;
761 if (ntohs(hdr->len512) * 512 != size) {
762 csio_err(hw, "FW image size differs from size in FW header\n");
763 return -EINVAL;
766 if (size > FW_MAX_SIZE) {
767 csio_err(hw, "FW image too large, max is %u bytes\n",
768 FW_MAX_SIZE);
769 return -EINVAL;
772 for (csum = 0, i = 0; i < size / sizeof(csum); i++)
773 csum += ntohl(p[i]);
775 if (csum != 0xffffffff) {
776 csio_err(hw, "corrupted firmware image, checksum %#x\n", csum);
777 return -EINVAL;
780 sf_sec_size = hw->params.sf_size / hw->params.sf_nsec;
781 i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */
783 csio_dbg(hw, "Erasing sectors... start:%d end:%d\n",
784 FW_START_SEC, FW_START_SEC + i - 1);
786 ret = csio_hw_flash_erase_sectors(hw, FW_START_SEC,
787 FW_START_SEC + i - 1);
788 if (ret) {
789 csio_err(hw, "Flash Erase failed\n");
790 goto out;
794 * We write the correct version at the end so the driver can see a bad
795 * version if the FW write fails. Start by writing a copy of the
796 * first page with a bad version.
798 memcpy(first_page, fw_data, SF_PAGE_SIZE);
799 ((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff);
800 ret = csio_hw_write_flash(hw, FW_IMG_START, SF_PAGE_SIZE, first_page);
801 if (ret)
802 goto out;
804 csio_dbg(hw, "Writing Flash .. start:%d end:%d\n",
805 FW_IMG_START, FW_IMG_START + size);
807 addr = FW_IMG_START;
808 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
809 addr += SF_PAGE_SIZE;
810 fw_data += SF_PAGE_SIZE;
811 ret = csio_hw_write_flash(hw, addr, SF_PAGE_SIZE, fw_data);
812 if (ret)
813 goto out;
816 ret = csio_hw_write_flash(hw,
817 FW_IMG_START +
818 offsetof(struct fw_hdr, fw_ver),
819 sizeof(hdr->fw_ver),
820 (const uint8_t *)&hdr->fw_ver);
822 out:
823 if (ret)
824 csio_err(hw, "firmware download failed, error %d\n", ret);
825 return ret;
828 static int
829 csio_hw_get_flash_params(struct csio_hw *hw)
831 int ret;
832 uint32_t info = 0;
834 ret = csio_hw_sf1_write(hw, 1, 1, 0, SF_RD_ID);
835 if (!ret)
836 ret = csio_hw_sf1_read(hw, 3, 0, 1, &info);
837 csio_wr_reg32(hw, 0, SF_OP); /* unlock SF */
838 if (ret != 0)
839 return ret;
841 if ((info & 0xff) != 0x20) /* not a Numonix flash */
842 return -EINVAL;
843 info >>= 16; /* log2 of size */
844 if (info >= 0x14 && info < 0x18)
845 hw->params.sf_nsec = 1 << (info - 16);
846 else if (info == 0x18)
847 hw->params.sf_nsec = 64;
848 else
849 return -EINVAL;
850 hw->params.sf_size = 1 << info;
852 return 0;
855 static void
856 csio_set_pcie_completion_timeout(struct csio_hw *hw, u8 range)
858 uint16_t val;
859 int pcie_cap;
861 if (!csio_pci_capability(hw->pdev, PCI_CAP_ID_EXP, &pcie_cap)) {
862 pci_read_config_word(hw->pdev,
863 pcie_cap + PCI_EXP_DEVCTL2, &val);
864 val &= 0xfff0;
865 val |= range ;
866 pci_write_config_word(hw->pdev,
867 pcie_cap + PCI_EXP_DEVCTL2, val);
871 /*****************************************************************************/
872 /* HW State machine assists */
873 /*****************************************************************************/
875 static int
876 csio_hw_dev_ready(struct csio_hw *hw)
878 uint32_t reg;
879 int cnt = 6;
881 while (((reg = csio_rd_reg32(hw, PL_WHOAMI)) == 0xFFFFFFFF) &&
882 (--cnt != 0))
883 mdelay(100);
885 if ((cnt == 0) && (((int32_t)(SOURCEPF_GET(reg)) < 0) ||
886 (SOURCEPF_GET(reg) >= CSIO_MAX_PFN))) {
887 csio_err(hw, "PL_WHOAMI returned 0x%x, cnt:%d\n", reg, cnt);
888 return -EIO;
891 hw->pfn = SOURCEPF_GET(reg);
893 return 0;
897 * csio_do_hello - Perform the HELLO FW Mailbox command and process response.
898 * @hw: HW module
899 * @state: Device state
901 * FW_HELLO_CMD has to be polled for completion.
903 static int
904 csio_do_hello(struct csio_hw *hw, enum csio_dev_state *state)
906 struct csio_mb *mbp;
907 int rv = 0;
908 enum csio_dev_master master;
909 enum fw_retval retval;
910 uint8_t mpfn;
911 char state_str[16];
912 int retries = FW_CMD_HELLO_RETRIES;
914 memset(state_str, 0, sizeof(state_str));
916 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
917 if (!mbp) {
918 rv = -ENOMEM;
919 CSIO_INC_STATS(hw, n_err_nomem);
920 goto out;
923 master = csio_force_master ? CSIO_MASTER_MUST : CSIO_MASTER_MAY;
925 retry:
926 csio_mb_hello(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn,
927 hw->pfn, master, NULL);
929 rv = csio_mb_issue(hw, mbp);
930 if (rv) {
931 csio_err(hw, "failed to issue HELLO cmd. ret:%d.\n", rv);
932 goto out_free_mb;
935 csio_mb_process_hello_rsp(hw, mbp, &retval, state, &mpfn);
936 if (retval != FW_SUCCESS) {
937 csio_err(hw, "HELLO cmd failed with ret: %d\n", retval);
938 rv = -EINVAL;
939 goto out_free_mb;
942 /* Firmware has designated us to be master */
943 if (hw->pfn == mpfn) {
944 hw->flags |= CSIO_HWF_MASTER;
945 } else if (*state == CSIO_DEV_STATE_UNINIT) {
947 * If we're not the Master PF then we need to wait around for
948 * the Master PF Driver to finish setting up the adapter.
950 * Note that we also do this wait if we're a non-Master-capable
951 * PF and there is no current Master PF; a Master PF may show up
952 * momentarily and we wouldn't want to fail pointlessly. (This
953 * can happen when an OS loads lots of different drivers rapidly
954 * at the same time). In this case, the Master PF returned by
955 * the firmware will be PCIE_FW_MASTER_MASK so the test below
956 * will work ...
959 int waiting = FW_CMD_HELLO_TIMEOUT;
962 * Wait for the firmware to either indicate an error or
963 * initialized state. If we see either of these we bail out
964 * and report the issue to the caller. If we exhaust the
965 * "hello timeout" and we haven't exhausted our retries, try
966 * again. Otherwise bail with a timeout error.
968 for (;;) {
969 uint32_t pcie_fw;
971 spin_unlock_irq(&hw->lock);
972 msleep(50);
973 spin_lock_irq(&hw->lock);
974 waiting -= 50;
977 * If neither Error nor Initialialized are indicated
978 * by the firmware keep waiting till we exaust our
979 * timeout ... and then retry if we haven't exhausted
980 * our retries ...
982 pcie_fw = csio_rd_reg32(hw, PCIE_FW);
983 if (!(pcie_fw & (PCIE_FW_ERR|PCIE_FW_INIT))) {
984 if (waiting <= 0) {
985 if (retries-- > 0)
986 goto retry;
988 rv = -ETIMEDOUT;
989 break;
991 continue;
995 * We either have an Error or Initialized condition
996 * report errors preferentially.
998 if (state) {
999 if (pcie_fw & PCIE_FW_ERR) {
1000 *state = CSIO_DEV_STATE_ERR;
1001 rv = -ETIMEDOUT;
1002 } else if (pcie_fw & PCIE_FW_INIT)
1003 *state = CSIO_DEV_STATE_INIT;
1007 * If we arrived before a Master PF was selected and
1008 * there's not a valid Master PF, grab its identity
1009 * for our caller.
1011 if (mpfn == PCIE_FW_MASTER_MASK &&
1012 (pcie_fw & PCIE_FW_MASTER_VLD))
1013 mpfn = PCIE_FW_MASTER_GET(pcie_fw);
1014 break;
1016 hw->flags &= ~CSIO_HWF_MASTER;
1019 switch (*state) {
1020 case CSIO_DEV_STATE_UNINIT:
1021 strcpy(state_str, "Initializing");
1022 break;
1023 case CSIO_DEV_STATE_INIT:
1024 strcpy(state_str, "Initialized");
1025 break;
1026 case CSIO_DEV_STATE_ERR:
1027 strcpy(state_str, "Error");
1028 break;
1029 default:
1030 strcpy(state_str, "Unknown");
1031 break;
1034 if (hw->pfn == mpfn)
1035 csio_info(hw, "PF: %d, Coming up as MASTER, HW state: %s\n",
1036 hw->pfn, state_str);
1037 else
1038 csio_info(hw,
1039 "PF: %d, Coming up as SLAVE, Master PF: %d, HW state: %s\n",
1040 hw->pfn, mpfn, state_str);
1042 out_free_mb:
1043 mempool_free(mbp, hw->mb_mempool);
1044 out:
1045 return rv;
1049 * csio_do_bye - Perform the BYE FW Mailbox command and process response.
1050 * @hw: HW module
1053 static int
1054 csio_do_bye(struct csio_hw *hw)
1056 struct csio_mb *mbp;
1057 enum fw_retval retval;
1059 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1060 if (!mbp) {
1061 CSIO_INC_STATS(hw, n_err_nomem);
1062 return -ENOMEM;
1065 csio_mb_bye(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
1067 if (csio_mb_issue(hw, mbp)) {
1068 csio_err(hw, "Issue of BYE command failed\n");
1069 mempool_free(mbp, hw->mb_mempool);
1070 return -EINVAL;
1073 retval = csio_mb_fw_retval(mbp);
1074 if (retval != FW_SUCCESS) {
1075 mempool_free(mbp, hw->mb_mempool);
1076 return -EINVAL;
1079 mempool_free(mbp, hw->mb_mempool);
1081 return 0;
1085 * csio_do_reset- Perform the device reset.
1086 * @hw: HW module
1087 * @fw_rst: FW reset
1089 * If fw_rst is set, issues FW reset mbox cmd otherwise
1090 * does PIO reset.
1091 * Performs reset of the function.
1093 static int
1094 csio_do_reset(struct csio_hw *hw, bool fw_rst)
1096 struct csio_mb *mbp;
1097 enum fw_retval retval;
1099 if (!fw_rst) {
1100 /* PIO reset */
1101 csio_wr_reg32(hw, PIORSTMODE | PIORST, PL_RST);
1102 mdelay(2000);
1103 return 0;
1106 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1107 if (!mbp) {
1108 CSIO_INC_STATS(hw, n_err_nomem);
1109 return -ENOMEM;
1112 csio_mb_reset(hw, mbp, CSIO_MB_DEFAULT_TMO,
1113 PIORSTMODE | PIORST, 0, NULL);
1115 if (csio_mb_issue(hw, mbp)) {
1116 csio_err(hw, "Issue of RESET command failed.n");
1117 mempool_free(mbp, hw->mb_mempool);
1118 return -EINVAL;
1121 retval = csio_mb_fw_retval(mbp);
1122 if (retval != FW_SUCCESS) {
1123 csio_err(hw, "RESET cmd failed with ret:0x%x.\n", retval);
1124 mempool_free(mbp, hw->mb_mempool);
1125 return -EINVAL;
1128 mempool_free(mbp, hw->mb_mempool);
1130 return 0;
1133 static int
1134 csio_hw_validate_caps(struct csio_hw *hw, struct csio_mb *mbp)
1136 struct fw_caps_config_cmd *rsp = (struct fw_caps_config_cmd *)mbp->mb;
1137 uint16_t caps;
1139 caps = ntohs(rsp->fcoecaps);
1141 if (!(caps & FW_CAPS_CONFIG_FCOE_INITIATOR)) {
1142 csio_err(hw, "No FCoE Initiator capability in the firmware.\n");
1143 return -EINVAL;
1146 if (!(caps & FW_CAPS_CONFIG_FCOE_CTRL_OFLD)) {
1147 csio_err(hw, "No FCoE Control Offload capability\n");
1148 return -EINVAL;
1151 return 0;
1155 * csio_hw_fw_halt - issue a reset/halt to FW and put uP into RESET
1156 * @hw: the HW module
1157 * @mbox: mailbox to use for the FW RESET command (if desired)
1158 * @force: force uP into RESET even if FW RESET command fails
1160 * Issues a RESET command to firmware (if desired) with a HALT indication
1161 * and then puts the microprocessor into RESET state. The RESET command
1162 * will only be issued if a legitimate mailbox is provided (mbox <=
1163 * PCIE_FW_MASTER_MASK).
1165 * This is generally used in order for the host to safely manipulate the
1166 * adapter without fear of conflicting with whatever the firmware might
1167 * be doing. The only way out of this state is to RESTART the firmware
1168 * ...
1170 static int
1171 csio_hw_fw_halt(struct csio_hw *hw, uint32_t mbox, int32_t force)
1173 enum fw_retval retval = 0;
1176 * If a legitimate mailbox is provided, issue a RESET command
1177 * with a HALT indication.
1179 if (mbox <= PCIE_FW_MASTER_MASK) {
1180 struct csio_mb *mbp;
1182 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1183 if (!mbp) {
1184 CSIO_INC_STATS(hw, n_err_nomem);
1185 return -ENOMEM;
1188 csio_mb_reset(hw, mbp, CSIO_MB_DEFAULT_TMO,
1189 PIORSTMODE | PIORST, FW_RESET_CMD_HALT(1),
1190 NULL);
1192 if (csio_mb_issue(hw, mbp)) {
1193 csio_err(hw, "Issue of RESET command failed!\n");
1194 mempool_free(mbp, hw->mb_mempool);
1195 return -EINVAL;
1198 retval = csio_mb_fw_retval(mbp);
1199 mempool_free(mbp, hw->mb_mempool);
1203 * Normally we won't complete the operation if the firmware RESET
1204 * command fails but if our caller insists we'll go ahead and put the
1205 * uP into RESET. This can be useful if the firmware is hung or even
1206 * missing ... We'll have to take the risk of putting the uP into
1207 * RESET without the cooperation of firmware in that case.
1209 * We also force the firmware's HALT flag to be on in case we bypassed
1210 * the firmware RESET command above or we're dealing with old firmware
1211 * which doesn't have the HALT capability. This will serve as a flag
1212 * for the incoming firmware to know that it's coming out of a HALT
1213 * rather than a RESET ... if it's new enough to understand that ...
1215 if (retval == 0 || force) {
1216 csio_set_reg_field(hw, CIM_BOOT_CFG, UPCRST, UPCRST);
1217 csio_set_reg_field(hw, PCIE_FW, PCIE_FW_HALT, PCIE_FW_HALT);
1221 * And we always return the result of the firmware RESET command
1222 * even when we force the uP into RESET ...
1224 return retval ? -EINVAL : 0;
1228 * csio_hw_fw_restart - restart the firmware by taking the uP out of RESET
1229 * @hw: the HW module
1230 * @reset: if we want to do a RESET to restart things
1232 * Restart firmware previously halted by csio_hw_fw_halt(). On successful
1233 * return the previous PF Master remains as the new PF Master and there
1234 * is no need to issue a new HELLO command, etc.
1236 * We do this in two ways:
1238 * 1. If we're dealing with newer firmware we'll simply want to take
1239 * the chip's microprocessor out of RESET. This will cause the
1240 * firmware to start up from its start vector. And then we'll loop
1241 * until the firmware indicates it's started again (PCIE_FW.HALT
1242 * reset to 0) or we timeout.
1244 * 2. If we're dealing with older firmware then we'll need to RESET
1245 * the chip since older firmware won't recognize the PCIE_FW.HALT
1246 * flag and automatically RESET itself on startup.
1248 static int
1249 csio_hw_fw_restart(struct csio_hw *hw, uint32_t mbox, int32_t reset)
1251 if (reset) {
1253 * Since we're directing the RESET instead of the firmware
1254 * doing it automatically, we need to clear the PCIE_FW.HALT
1255 * bit.
1257 csio_set_reg_field(hw, PCIE_FW, PCIE_FW_HALT, 0);
1260 * If we've been given a valid mailbox, first try to get the
1261 * firmware to do the RESET. If that works, great and we can
1262 * return success. Otherwise, if we haven't been given a
1263 * valid mailbox or the RESET command failed, fall back to
1264 * hitting the chip with a hammer.
1266 if (mbox <= PCIE_FW_MASTER_MASK) {
1267 csio_set_reg_field(hw, CIM_BOOT_CFG, UPCRST, 0);
1268 msleep(100);
1269 if (csio_do_reset(hw, true) == 0)
1270 return 0;
1273 csio_wr_reg32(hw, PIORSTMODE | PIORST, PL_RST);
1274 msleep(2000);
1275 } else {
1276 int ms;
1278 csio_set_reg_field(hw, CIM_BOOT_CFG, UPCRST, 0);
1279 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
1280 if (!(csio_rd_reg32(hw, PCIE_FW) & PCIE_FW_HALT))
1281 return 0;
1282 msleep(100);
1283 ms += 100;
1285 return -ETIMEDOUT;
1287 return 0;
1291 * csio_hw_fw_upgrade - perform all of the steps necessary to upgrade FW
1292 * @hw: the HW module
1293 * @mbox: mailbox to use for the FW RESET command (if desired)
1294 * @fw_data: the firmware image to write
1295 * @size: image size
1296 * @force: force upgrade even if firmware doesn't cooperate
1298 * Perform all of the steps necessary for upgrading an adapter's
1299 * firmware image. Normally this requires the cooperation of the
1300 * existing firmware in order to halt all existing activities
1301 * but if an invalid mailbox token is passed in we skip that step
1302 * (though we'll still put the adapter microprocessor into RESET in
1303 * that case).
1305 * On successful return the new firmware will have been loaded and
1306 * the adapter will have been fully RESET losing all previous setup
1307 * state. On unsuccessful return the adapter may be completely hosed ...
1308 * positive errno indicates that the adapter is ~probably~ intact, a
1309 * negative errno indicates that things are looking bad ...
1311 static int
1312 csio_hw_fw_upgrade(struct csio_hw *hw, uint32_t mbox,
1313 const u8 *fw_data, uint32_t size, int32_t force)
1315 const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
1316 int reset, ret;
1318 ret = csio_hw_fw_halt(hw, mbox, force);
1319 if (ret != 0 && !force)
1320 return ret;
1322 ret = csio_hw_fw_dload(hw, (uint8_t *) fw_data, size);
1323 if (ret != 0)
1324 return ret;
1327 * Older versions of the firmware don't understand the new
1328 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
1329 * restart. So for newly loaded older firmware we'll have to do the
1330 * RESET for it so it starts up on a clean slate. We can tell if
1331 * the newly loaded firmware will handle this right by checking
1332 * its header flags to see if it advertises the capability.
1334 reset = ((ntohl(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
1335 return csio_hw_fw_restart(hw, mbox, reset);
1340 * csio_hw_fw_config_file - setup an adapter via a Configuration File
1341 * @hw: the HW module
1342 * @mbox: mailbox to use for the FW command
1343 * @mtype: the memory type where the Configuration File is located
1344 * @maddr: the memory address where the Configuration File is located
1345 * @finiver: return value for CF [fini] version
1346 * @finicsum: return value for CF [fini] checksum
1347 * @cfcsum: return value for CF computed checksum
1349 * Issue a command to get the firmware to process the Configuration
1350 * File located at the specified mtype/maddress. If the Configuration
1351 * File is processed successfully and return value pointers are
1352 * provided, the Configuration File "[fini] section version and
1353 * checksum values will be returned along with the computed checksum.
1354 * It's up to the caller to decide how it wants to respond to the
1355 * checksums not matching but it recommended that a prominant warning
1356 * be emitted in order to help people rapidly identify changed or
1357 * corrupted Configuration Files.
1359 * Also note that it's possible to modify things like "niccaps",
1360 * "toecaps",etc. between processing the Configuration File and telling
1361 * the firmware to use the new configuration. Callers which want to
1362 * do this will need to "hand-roll" their own CAPS_CONFIGS commands for
1363 * Configuration Files if they want to do this.
1365 static int
1366 csio_hw_fw_config_file(struct csio_hw *hw,
1367 unsigned int mtype, unsigned int maddr,
1368 uint32_t *finiver, uint32_t *finicsum, uint32_t *cfcsum)
1370 struct csio_mb *mbp;
1371 struct fw_caps_config_cmd *caps_cmd;
1372 int rv = -EINVAL;
1373 enum fw_retval ret;
1375 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1376 if (!mbp) {
1377 CSIO_INC_STATS(hw, n_err_nomem);
1378 return -ENOMEM;
1381 * Tell the firmware to process the indicated Configuration File.
1382 * If there are no errors and the caller has provided return value
1383 * pointers for the [fini] section version, checksum and computed
1384 * checksum, pass those back to the caller.
1386 caps_cmd = (struct fw_caps_config_cmd *)(mbp->mb);
1387 CSIO_INIT_MBP(mbp, caps_cmd, CSIO_MB_DEFAULT_TMO, hw, NULL, 1);
1388 caps_cmd->op_to_write =
1389 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
1390 FW_CMD_REQUEST |
1391 FW_CMD_READ);
1392 caps_cmd->cfvalid_to_len16 =
1393 htonl(FW_CAPS_CONFIG_CMD_CFVALID |
1394 FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
1395 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) |
1396 FW_LEN16(*caps_cmd));
1398 if (csio_mb_issue(hw, mbp)) {
1399 csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD failed!\n");
1400 goto out;
1403 ret = csio_mb_fw_retval(mbp);
1404 if (ret != FW_SUCCESS) {
1405 csio_dbg(hw, "FW_CAPS_CONFIG_CMD returned %d!\n", rv);
1406 goto out;
1409 if (finiver)
1410 *finiver = ntohl(caps_cmd->finiver);
1411 if (finicsum)
1412 *finicsum = ntohl(caps_cmd->finicsum);
1413 if (cfcsum)
1414 *cfcsum = ntohl(caps_cmd->cfcsum);
1416 /* Validate device capabilities */
1417 if (csio_hw_validate_caps(hw, mbp)) {
1418 rv = -ENOENT;
1419 goto out;
1423 * And now tell the firmware to use the configuration we just loaded.
1425 caps_cmd->op_to_write =
1426 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
1427 FW_CMD_REQUEST |
1428 FW_CMD_WRITE);
1429 caps_cmd->cfvalid_to_len16 = htonl(FW_LEN16(*caps_cmd));
1431 if (csio_mb_issue(hw, mbp)) {
1432 csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD failed!\n");
1433 goto out;
1436 ret = csio_mb_fw_retval(mbp);
1437 if (ret != FW_SUCCESS) {
1438 csio_dbg(hw, "FW_CAPS_CONFIG_CMD returned %d!\n", rv);
1439 goto out;
1442 rv = 0;
1443 out:
1444 mempool_free(mbp, hw->mb_mempool);
1445 return rv;
1449 * csio_get_device_params - Get device parameters.
1450 * @hw: HW module
1453 static int
1454 csio_get_device_params(struct csio_hw *hw)
1456 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1457 struct csio_mb *mbp;
1458 enum fw_retval retval;
1459 u32 param[6];
1460 int i, j = 0;
1462 /* Initialize portids to -1 */
1463 for (i = 0; i < CSIO_MAX_PPORTS; i++)
1464 hw->pport[i].portid = -1;
1466 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1467 if (!mbp) {
1468 CSIO_INC_STATS(hw, n_err_nomem);
1469 return -ENOMEM;
1472 /* Get port vec information. */
1473 param[0] = FW_PARAM_DEV(PORTVEC);
1475 /* Get Core clock. */
1476 param[1] = FW_PARAM_DEV(CCLK);
1478 /* Get EQ id start and end. */
1479 param[2] = FW_PARAM_PFVF(EQ_START);
1480 param[3] = FW_PARAM_PFVF(EQ_END);
1482 /* Get IQ id start and end. */
1483 param[4] = FW_PARAM_PFVF(IQFLINT_START);
1484 param[5] = FW_PARAM_PFVF(IQFLINT_END);
1486 csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, 0,
1487 ARRAY_SIZE(param), param, NULL, false, NULL);
1488 if (csio_mb_issue(hw, mbp)) {
1489 csio_err(hw, "Issue of FW_PARAMS_CMD(read) failed!\n");
1490 mempool_free(mbp, hw->mb_mempool);
1491 return -EINVAL;
1494 csio_mb_process_read_params_rsp(hw, mbp, &retval,
1495 ARRAY_SIZE(param), param);
1496 if (retval != FW_SUCCESS) {
1497 csio_err(hw, "FW_PARAMS_CMD(read) failed with ret:0x%x!\n",
1498 retval);
1499 mempool_free(mbp, hw->mb_mempool);
1500 return -EINVAL;
1503 /* cache the information. */
1504 hw->port_vec = param[0];
1505 hw->vpd.cclk = param[1];
1506 wrm->fw_eq_start = param[2];
1507 wrm->fw_iq_start = param[4];
1509 /* Using FW configured max iqs & eqs */
1510 if ((hw->flags & CSIO_HWF_USING_SOFT_PARAMS) ||
1511 !csio_is_hw_master(hw)) {
1512 hw->cfg_niq = param[5] - param[4] + 1;
1513 hw->cfg_neq = param[3] - param[2] + 1;
1514 csio_dbg(hw, "Using fwconfig max niqs %d neqs %d\n",
1515 hw->cfg_niq, hw->cfg_neq);
1518 hw->port_vec &= csio_port_mask;
1520 hw->num_pports = hweight32(hw->port_vec);
1522 csio_dbg(hw, "Port vector: 0x%x, #ports: %d\n",
1523 hw->port_vec, hw->num_pports);
1525 for (i = 0; i < hw->num_pports; i++) {
1526 while ((hw->port_vec & (1 << j)) == 0)
1527 j++;
1528 hw->pport[i].portid = j++;
1529 csio_dbg(hw, "Found Port:%d\n", hw->pport[i].portid);
1531 mempool_free(mbp, hw->mb_mempool);
1533 return 0;
1538 * csio_config_device_caps - Get and set device capabilities.
1539 * @hw: HW module
1542 static int
1543 csio_config_device_caps(struct csio_hw *hw)
1545 struct csio_mb *mbp;
1546 enum fw_retval retval;
1547 int rv = -EINVAL;
1549 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1550 if (!mbp) {
1551 CSIO_INC_STATS(hw, n_err_nomem);
1552 return -ENOMEM;
1555 /* Get device capabilities */
1556 csio_mb_caps_config(hw, mbp, CSIO_MB_DEFAULT_TMO, 0, 0, 0, 0, NULL);
1558 if (csio_mb_issue(hw, mbp)) {
1559 csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD(r) failed!\n");
1560 goto out;
1563 retval = csio_mb_fw_retval(mbp);
1564 if (retval != FW_SUCCESS) {
1565 csio_err(hw, "FW_CAPS_CONFIG_CMD(r) returned %d!\n", retval);
1566 goto out;
1569 /* Validate device capabilities */
1570 if (csio_hw_validate_caps(hw, mbp))
1571 goto out;
1573 /* Don't config device capabilities if already configured */
1574 if (hw->fw_state == CSIO_DEV_STATE_INIT) {
1575 rv = 0;
1576 goto out;
1579 /* Write back desired device capabilities */
1580 csio_mb_caps_config(hw, mbp, CSIO_MB_DEFAULT_TMO, true, true,
1581 false, true, NULL);
1583 if (csio_mb_issue(hw, mbp)) {
1584 csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD(w) failed!\n");
1585 goto out;
1588 retval = csio_mb_fw_retval(mbp);
1589 if (retval != FW_SUCCESS) {
1590 csio_err(hw, "FW_CAPS_CONFIG_CMD(w) returned %d!\n", retval);
1591 goto out;
1594 rv = 0;
1595 out:
1596 mempool_free(mbp, hw->mb_mempool);
1597 return rv;
1600 static int
1601 csio_config_global_rss(struct csio_hw *hw)
1603 struct csio_mb *mbp;
1604 enum fw_retval retval;
1606 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1607 if (!mbp) {
1608 CSIO_INC_STATS(hw, n_err_nomem);
1609 return -ENOMEM;
1612 csio_rss_glb_config(hw, mbp, CSIO_MB_DEFAULT_TMO,
1613 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
1614 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN |
1615 FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ |
1616 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP,
1617 NULL);
1619 if (csio_mb_issue(hw, mbp)) {
1620 csio_err(hw, "Issue of FW_RSS_GLB_CONFIG_CMD failed!\n");
1621 mempool_free(mbp, hw->mb_mempool);
1622 return -EINVAL;
1625 retval = csio_mb_fw_retval(mbp);
1626 if (retval != FW_SUCCESS) {
1627 csio_err(hw, "FW_RSS_GLB_CONFIG_CMD returned 0x%x!\n", retval);
1628 mempool_free(mbp, hw->mb_mempool);
1629 return -EINVAL;
1632 mempool_free(mbp, hw->mb_mempool);
1634 return 0;
1638 * csio_config_pfvf - Configure Physical/Virtual functions settings.
1639 * @hw: HW module
1642 static int
1643 csio_config_pfvf(struct csio_hw *hw)
1645 struct csio_mb *mbp;
1646 enum fw_retval retval;
1648 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1649 if (!mbp) {
1650 CSIO_INC_STATS(hw, n_err_nomem);
1651 return -ENOMEM;
1655 * For now, allow all PFs to access to all ports using a pmask
1656 * value of 0xF (M_FW_PFVF_CMD_PMASK). Once we have VFs, we will
1657 * need to provide access based on some rule.
1659 csio_mb_pfvf(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, 0, CSIO_NEQ,
1660 CSIO_NETH_CTRL, CSIO_NIQ_FLINT, 0, 0, CSIO_NVI, CSIO_CMASK,
1661 CSIO_PMASK, CSIO_NEXACTF, CSIO_R_CAPS, CSIO_WX_CAPS, NULL);
1663 if (csio_mb_issue(hw, mbp)) {
1664 csio_err(hw, "Issue of FW_PFVF_CMD failed!\n");
1665 mempool_free(mbp, hw->mb_mempool);
1666 return -EINVAL;
1669 retval = csio_mb_fw_retval(mbp);
1670 if (retval != FW_SUCCESS) {
1671 csio_err(hw, "FW_PFVF_CMD returned 0x%x!\n", retval);
1672 mempool_free(mbp, hw->mb_mempool);
1673 return -EINVAL;
1676 mempool_free(mbp, hw->mb_mempool);
1678 return 0;
1682 * csio_enable_ports - Bring up all available ports.
1683 * @hw: HW module.
1686 static int
1687 csio_enable_ports(struct csio_hw *hw)
1689 struct csio_mb *mbp;
1690 enum fw_retval retval;
1691 uint8_t portid;
1692 int i;
1694 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1695 if (!mbp) {
1696 CSIO_INC_STATS(hw, n_err_nomem);
1697 return -ENOMEM;
1700 for (i = 0; i < hw->num_pports; i++) {
1701 portid = hw->pport[i].portid;
1703 /* Read PORT information */
1704 csio_mb_port(hw, mbp, CSIO_MB_DEFAULT_TMO, portid,
1705 false, 0, 0, NULL);
1707 if (csio_mb_issue(hw, mbp)) {
1708 csio_err(hw, "failed to issue FW_PORT_CMD(r) port:%d\n",
1709 portid);
1710 mempool_free(mbp, hw->mb_mempool);
1711 return -EINVAL;
1714 csio_mb_process_read_port_rsp(hw, mbp, &retval,
1715 &hw->pport[i].pcap);
1716 if (retval != FW_SUCCESS) {
1717 csio_err(hw, "FW_PORT_CMD(r) port:%d failed: 0x%x\n",
1718 portid, retval);
1719 mempool_free(mbp, hw->mb_mempool);
1720 return -EINVAL;
1723 /* Write back PORT information */
1724 csio_mb_port(hw, mbp, CSIO_MB_DEFAULT_TMO, portid, true,
1725 (PAUSE_RX | PAUSE_TX), hw->pport[i].pcap, NULL);
1727 if (csio_mb_issue(hw, mbp)) {
1728 csio_err(hw, "failed to issue FW_PORT_CMD(w) port:%d\n",
1729 portid);
1730 mempool_free(mbp, hw->mb_mempool);
1731 return -EINVAL;
1734 retval = csio_mb_fw_retval(mbp);
1735 if (retval != FW_SUCCESS) {
1736 csio_err(hw, "FW_PORT_CMD(w) port:%d failed :0x%x\n",
1737 portid, retval);
1738 mempool_free(mbp, hw->mb_mempool);
1739 return -EINVAL;
1742 } /* For all ports */
1744 mempool_free(mbp, hw->mb_mempool);
1746 return 0;
1750 * csio_get_fcoe_resinfo - Read fcoe fw resource info.
1751 * @hw: HW module
1752 * Issued with lock held.
1754 static int
1755 csio_get_fcoe_resinfo(struct csio_hw *hw)
1757 struct csio_fcoe_res_info *res_info = &hw->fres_info;
1758 struct fw_fcoe_res_info_cmd *rsp;
1759 struct csio_mb *mbp;
1760 enum fw_retval retval;
1762 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1763 if (!mbp) {
1764 CSIO_INC_STATS(hw, n_err_nomem);
1765 return -ENOMEM;
1768 /* Get FCoE FW resource information */
1769 csio_fcoe_read_res_info_init_mb(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
1771 if (csio_mb_issue(hw, mbp)) {
1772 csio_err(hw, "failed to issue FW_FCOE_RES_INFO_CMD\n");
1773 mempool_free(mbp, hw->mb_mempool);
1774 return -EINVAL;
1777 rsp = (struct fw_fcoe_res_info_cmd *)(mbp->mb);
1778 retval = FW_CMD_RETVAL_GET(ntohl(rsp->retval_len16));
1779 if (retval != FW_SUCCESS) {
1780 csio_err(hw, "FW_FCOE_RES_INFO_CMD failed with ret x%x\n",
1781 retval);
1782 mempool_free(mbp, hw->mb_mempool);
1783 return -EINVAL;
1786 res_info->e_d_tov = ntohs(rsp->e_d_tov);
1787 res_info->r_a_tov_seq = ntohs(rsp->r_a_tov_seq);
1788 res_info->r_a_tov_els = ntohs(rsp->r_a_tov_els);
1789 res_info->r_r_tov = ntohs(rsp->r_r_tov);
1790 res_info->max_xchgs = ntohl(rsp->max_xchgs);
1791 res_info->max_ssns = ntohl(rsp->max_ssns);
1792 res_info->used_xchgs = ntohl(rsp->used_xchgs);
1793 res_info->used_ssns = ntohl(rsp->used_ssns);
1794 res_info->max_fcfs = ntohl(rsp->max_fcfs);
1795 res_info->max_vnps = ntohl(rsp->max_vnps);
1796 res_info->used_fcfs = ntohl(rsp->used_fcfs);
1797 res_info->used_vnps = ntohl(rsp->used_vnps);
1799 csio_dbg(hw, "max ssns:%d max xchgs:%d\n", res_info->max_ssns,
1800 res_info->max_xchgs);
1801 mempool_free(mbp, hw->mb_mempool);
1803 return 0;
1806 static int
1807 csio_hw_check_fwconfig(struct csio_hw *hw, u32 *param)
1809 struct csio_mb *mbp;
1810 enum fw_retval retval;
1811 u32 _param[1];
1813 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1814 if (!mbp) {
1815 CSIO_INC_STATS(hw, n_err_nomem);
1816 return -ENOMEM;
1820 * Find out whether we're dealing with a version of
1821 * the firmware which has configuration file support.
1823 _param[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
1824 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF));
1826 csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, 0,
1827 ARRAY_SIZE(_param), _param, NULL, false, NULL);
1828 if (csio_mb_issue(hw, mbp)) {
1829 csio_err(hw, "Issue of FW_PARAMS_CMD(read) failed!\n");
1830 mempool_free(mbp, hw->mb_mempool);
1831 return -EINVAL;
1834 csio_mb_process_read_params_rsp(hw, mbp, &retval,
1835 ARRAY_SIZE(_param), _param);
1836 if (retval != FW_SUCCESS) {
1837 csio_err(hw, "FW_PARAMS_CMD(read) failed with ret:0x%x!\n",
1838 retval);
1839 mempool_free(mbp, hw->mb_mempool);
1840 return -EINVAL;
1843 mempool_free(mbp, hw->mb_mempool);
1844 *param = _param[0];
1846 return 0;
1849 static int
1850 csio_hw_flash_config(struct csio_hw *hw, u32 *fw_cfg_param, char *path)
1852 int ret = 0;
1853 const struct firmware *cf;
1854 struct pci_dev *pci_dev = hw->pdev;
1855 struct device *dev = &pci_dev->dev;
1856 unsigned int mtype = 0, maddr = 0;
1857 uint32_t *cfg_data;
1858 int value_to_add = 0;
1860 if (request_firmware(&cf, CSIO_CF_FNAME(hw), dev) < 0) {
1861 csio_err(hw, "could not find config file %s, err: %d\n",
1862 CSIO_CF_FNAME(hw), ret);
1863 return -ENOENT;
1866 if (cf->size%4 != 0)
1867 value_to_add = 4 - (cf->size % 4);
1869 cfg_data = kzalloc(cf->size+value_to_add, GFP_KERNEL);
1870 if (cfg_data == NULL) {
1871 ret = -ENOMEM;
1872 goto leave;
1875 memcpy((void *)cfg_data, (const void *)cf->data, cf->size);
1876 if (csio_hw_check_fwconfig(hw, fw_cfg_param) != 0) {
1877 ret = -EINVAL;
1878 goto leave;
1881 mtype = FW_PARAMS_PARAM_Y_GET(*fw_cfg_param);
1882 maddr = FW_PARAMS_PARAM_Z_GET(*fw_cfg_param) << 16;
1884 ret = csio_memory_write(hw, mtype, maddr,
1885 cf->size + value_to_add, cfg_data);
1887 if ((ret == 0) && (value_to_add != 0)) {
1888 union {
1889 u32 word;
1890 char buf[4];
1891 } last;
1892 size_t size = cf->size & ~0x3;
1893 int i;
1895 last.word = cfg_data[size >> 2];
1896 for (i = value_to_add; i < 4; i++)
1897 last.buf[i] = 0;
1898 ret = csio_memory_write(hw, mtype, maddr + size, 4, &last.word);
1900 if (ret == 0) {
1901 csio_info(hw, "config file upgraded to %s\n",
1902 CSIO_CF_FNAME(hw));
1903 snprintf(path, 64, "%s%s", "/lib/firmware/", CSIO_CF_FNAME(hw));
1906 leave:
1907 kfree(cfg_data);
1908 release_firmware(cf);
1909 return ret;
1913 * HW initialization: contact FW, obtain config, perform basic init.
1915 * If the firmware we're dealing with has Configuration File support, then
1916 * we use that to perform all configuration -- either using the configuration
1917 * file stored in flash on the adapter or using a filesystem-local file
1918 * if available.
1920 * If we don't have configuration file support in the firmware, then we'll
1921 * have to set things up the old fashioned way with hard-coded register
1922 * writes and firmware commands ...
1926 * Attempt to initialize the HW via a Firmware Configuration File.
1928 static int
1929 csio_hw_use_fwconfig(struct csio_hw *hw, int reset, u32 *fw_cfg_param)
1931 unsigned int mtype, maddr;
1932 int rv;
1933 uint32_t finiver = 0, finicsum = 0, cfcsum = 0;
1934 int using_flash;
1935 char path[64];
1938 * Reset device if necessary
1940 if (reset) {
1941 rv = csio_do_reset(hw, true);
1942 if (rv != 0)
1943 goto bye;
1947 * If we have a configuration file in host ,
1948 * then use that. Otherwise, use the configuration file stored
1949 * in the HW flash ...
1951 spin_unlock_irq(&hw->lock);
1952 rv = csio_hw_flash_config(hw, fw_cfg_param, path);
1953 spin_lock_irq(&hw->lock);
1954 if (rv != 0) {
1955 if (rv == -ENOENT) {
1957 * config file was not found. Use default
1958 * config file from flash.
1960 mtype = FW_MEMTYPE_CF_FLASH;
1961 maddr = hw->chip_ops->chip_flash_cfg_addr(hw);
1962 using_flash = 1;
1963 } else {
1965 * we revert back to the hardwired config if
1966 * flashing failed.
1968 goto bye;
1970 } else {
1971 mtype = FW_PARAMS_PARAM_Y_GET(*fw_cfg_param);
1972 maddr = FW_PARAMS_PARAM_Z_GET(*fw_cfg_param) << 16;
1973 using_flash = 0;
1976 hw->cfg_store = (uint8_t)mtype;
1979 * Issue a Capability Configuration command to the firmware to get it
1980 * to parse the Configuration File.
1982 rv = csio_hw_fw_config_file(hw, mtype, maddr, &finiver,
1983 &finicsum, &cfcsum);
1984 if (rv != 0)
1985 goto bye;
1987 hw->cfg_finiver = finiver;
1988 hw->cfg_finicsum = finicsum;
1989 hw->cfg_cfcsum = cfcsum;
1990 hw->cfg_csum_status = true;
1992 if (finicsum != cfcsum) {
1993 csio_warn(hw,
1994 "Config File checksum mismatch: csum=%#x, computed=%#x\n",
1995 finicsum, cfcsum);
1997 hw->cfg_csum_status = false;
2001 * Note that we're operating with parameters
2002 * not supplied by the driver, rather than from hard-wired
2003 * initialization constants buried in the driver.
2005 hw->flags |= CSIO_HWF_USING_SOFT_PARAMS;
2007 /* device parameters */
2008 rv = csio_get_device_params(hw);
2009 if (rv != 0)
2010 goto bye;
2012 /* Configure SGE */
2013 csio_wr_sge_init(hw);
2016 * And finally tell the firmware to initialize itself using the
2017 * parameters from the Configuration File.
2019 /* Post event to notify completion of configuration */
2020 csio_post_event(&hw->sm, CSIO_HWE_INIT);
2022 csio_info(hw,
2023 "Firmware Configuration File %s, version %#x, computed checksum %#x\n",
2024 (using_flash ? "in device FLASH" : path), finiver, cfcsum);
2026 return 0;
2029 * Something bad happened. Return the error ...
2031 bye:
2032 hw->flags &= ~CSIO_HWF_USING_SOFT_PARAMS;
2033 csio_dbg(hw, "Configuration file error %d\n", rv);
2034 return rv;
2038 * Attempt to initialize the adapter via hard-coded, driver supplied
2039 * parameters ...
2041 static int
2042 csio_hw_no_fwconfig(struct csio_hw *hw, int reset)
2044 int rv;
2046 * Reset device if necessary
2048 if (reset) {
2049 rv = csio_do_reset(hw, true);
2050 if (rv != 0)
2051 goto out;
2054 /* Get and set device capabilities */
2055 rv = csio_config_device_caps(hw);
2056 if (rv != 0)
2057 goto out;
2059 /* Config Global RSS command */
2060 rv = csio_config_global_rss(hw);
2061 if (rv != 0)
2062 goto out;
2064 /* Configure PF/VF capabilities of device */
2065 rv = csio_config_pfvf(hw);
2066 if (rv != 0)
2067 goto out;
2069 /* device parameters */
2070 rv = csio_get_device_params(hw);
2071 if (rv != 0)
2072 goto out;
2074 /* Configure SGE */
2075 csio_wr_sge_init(hw);
2077 /* Post event to notify completion of configuration */
2078 csio_post_event(&hw->sm, CSIO_HWE_INIT);
2080 out:
2081 return rv;
2085 * Returns -EINVAL if attempts to flash the firmware failed
2086 * else returns 0,
2087 * if flashing was not attempted because the card had the
2088 * latest firmware ECANCELED is returned
2090 static int
2091 csio_hw_flash_fw(struct csio_hw *hw)
2093 int ret = -ECANCELED;
2094 const struct firmware *fw;
2095 const struct fw_hdr *hdr;
2096 u32 fw_ver;
2097 struct pci_dev *pci_dev = hw->pdev;
2098 struct device *dev = &pci_dev->dev ;
2100 if (request_firmware(&fw, CSIO_FW_FNAME(hw), dev) < 0) {
2101 csio_err(hw, "could not find firmware image %s, err: %d\n",
2102 CSIO_FW_FNAME(hw), ret);
2103 return -EINVAL;
2106 hdr = (const struct fw_hdr *)fw->data;
2107 fw_ver = ntohl(hdr->fw_ver);
2108 if (FW_HDR_FW_VER_MAJOR_GET(fw_ver) != FW_VERSION_MAJOR(hw))
2109 return -EINVAL; /* wrong major version, won't do */
2112 * If the flash FW is unusable or we found something newer, load it.
2114 if (FW_HDR_FW_VER_MAJOR_GET(hw->fwrev) != FW_VERSION_MAJOR(hw) ||
2115 fw_ver > hw->fwrev) {
2116 ret = csio_hw_fw_upgrade(hw, hw->pfn, fw->data, fw->size,
2117 /*force=*/false);
2118 if (!ret)
2119 csio_info(hw,
2120 "firmware upgraded to version %pI4 from %s\n",
2121 &hdr->fw_ver, CSIO_FW_FNAME(hw));
2122 else
2123 csio_err(hw, "firmware upgrade failed! err=%d\n", ret);
2124 } else
2125 ret = -EINVAL;
2127 release_firmware(fw);
2129 return ret;
2134 * csio_hw_configure - Configure HW
2135 * @hw - HW module
2138 static void
2139 csio_hw_configure(struct csio_hw *hw)
2141 int reset = 1;
2142 int rv;
2143 u32 param[1];
2145 rv = csio_hw_dev_ready(hw);
2146 if (rv != 0) {
2147 CSIO_INC_STATS(hw, n_err_fatal);
2148 csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2149 goto out;
2152 /* HW version */
2153 hw->chip_ver = (char)csio_rd_reg32(hw, PL_REV);
2155 /* Needed for FW download */
2156 rv = csio_hw_get_flash_params(hw);
2157 if (rv != 0) {
2158 csio_err(hw, "Failed to get serial flash params rv:%d\n", rv);
2159 csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2160 goto out;
2163 /* Set pci completion timeout value to 4 seconds. */
2164 csio_set_pcie_completion_timeout(hw, 0xd);
2166 hw->chip_ops->chip_set_mem_win(hw, MEMWIN_CSIOSTOR);
2168 rv = csio_hw_get_fw_version(hw, &hw->fwrev);
2169 if (rv != 0)
2170 goto out;
2172 csio_hw_print_fw_version(hw, "Firmware revision");
2174 rv = csio_do_hello(hw, &hw->fw_state);
2175 if (rv != 0) {
2176 CSIO_INC_STATS(hw, n_err_fatal);
2177 csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2178 goto out;
2181 /* Read vpd */
2182 rv = csio_hw_get_vpd_params(hw, &hw->vpd);
2183 if (rv != 0)
2184 goto out;
2186 if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2187 rv = csio_hw_check_fw_version(hw);
2188 if (rv == -EINVAL) {
2190 /* Do firmware update */
2191 spin_unlock_irq(&hw->lock);
2192 rv = csio_hw_flash_fw(hw);
2193 spin_lock_irq(&hw->lock);
2195 if (rv == 0) {
2196 reset = 0;
2198 * Note that the chip was reset as part of the
2199 * firmware upgrade so we don't reset it again
2200 * below and grab the new firmware version.
2202 rv = csio_hw_check_fw_version(hw);
2206 * If the firmware doesn't support Configuration
2207 * Files, use the old Driver-based, hard-wired
2208 * initialization. Otherwise, try using the
2209 * Configuration File support and fall back to the
2210 * Driver-based initialization if there's no
2211 * Configuration File found.
2213 if (csio_hw_check_fwconfig(hw, param) == 0) {
2214 rv = csio_hw_use_fwconfig(hw, reset, param);
2215 if (rv == -ENOENT)
2216 goto out;
2217 if (rv != 0) {
2218 csio_info(hw,
2219 "No Configuration File present "
2220 "on adapter. Using hard-wired "
2221 "configuration parameters.\n");
2222 rv = csio_hw_no_fwconfig(hw, reset);
2224 } else {
2225 rv = csio_hw_no_fwconfig(hw, reset);
2228 if (rv != 0)
2229 goto out;
2231 } else {
2232 if (hw->fw_state == CSIO_DEV_STATE_INIT) {
2234 hw->flags |= CSIO_HWF_USING_SOFT_PARAMS;
2236 /* device parameters */
2237 rv = csio_get_device_params(hw);
2238 if (rv != 0)
2239 goto out;
2241 /* Get device capabilities */
2242 rv = csio_config_device_caps(hw);
2243 if (rv != 0)
2244 goto out;
2246 /* Configure SGE */
2247 csio_wr_sge_init(hw);
2249 /* Post event to notify completion of configuration */
2250 csio_post_event(&hw->sm, CSIO_HWE_INIT);
2251 goto out;
2253 } /* if not master */
2255 out:
2256 return;
2260 * csio_hw_initialize - Initialize HW
2261 * @hw - HW module
2264 static void
2265 csio_hw_initialize(struct csio_hw *hw)
2267 struct csio_mb *mbp;
2268 enum fw_retval retval;
2269 int rv;
2270 int i;
2272 if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2273 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
2274 if (!mbp)
2275 goto out;
2277 csio_mb_initialize(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
2279 if (csio_mb_issue(hw, mbp)) {
2280 csio_err(hw, "Issue of FW_INITIALIZE_CMD failed!\n");
2281 goto free_and_out;
2284 retval = csio_mb_fw_retval(mbp);
2285 if (retval != FW_SUCCESS) {
2286 csio_err(hw, "FW_INITIALIZE_CMD returned 0x%x!\n",
2287 retval);
2288 goto free_and_out;
2291 mempool_free(mbp, hw->mb_mempool);
2294 rv = csio_get_fcoe_resinfo(hw);
2295 if (rv != 0) {
2296 csio_err(hw, "Failed to read fcoe resource info: %d\n", rv);
2297 goto out;
2300 spin_unlock_irq(&hw->lock);
2301 rv = csio_config_queues(hw);
2302 spin_lock_irq(&hw->lock);
2304 if (rv != 0) {
2305 csio_err(hw, "Config of queues failed!: %d\n", rv);
2306 goto out;
2309 for (i = 0; i < hw->num_pports; i++)
2310 hw->pport[i].mod_type = FW_PORT_MOD_TYPE_NA;
2312 if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2313 rv = csio_enable_ports(hw);
2314 if (rv != 0) {
2315 csio_err(hw, "Failed to enable ports: %d\n", rv);
2316 goto out;
2320 csio_post_event(&hw->sm, CSIO_HWE_INIT_DONE);
2321 return;
2323 free_and_out:
2324 mempool_free(mbp, hw->mb_mempool);
2325 out:
2326 return;
2329 #define PF_INTR_MASK (PFSW | PFCIM)
2332 * csio_hw_intr_enable - Enable HW interrupts
2333 * @hw: Pointer to HW module.
2335 * Enable interrupts in HW registers.
2337 static void
2338 csio_hw_intr_enable(struct csio_hw *hw)
2340 uint16_t vec = (uint16_t)csio_get_mb_intr_idx(csio_hw_to_mbm(hw));
2341 uint32_t pf = SOURCEPF_GET(csio_rd_reg32(hw, PL_WHOAMI));
2342 uint32_t pl = csio_rd_reg32(hw, PL_INT_ENABLE);
2345 * Set aivec for MSI/MSIX. PCIE_PF_CFG.INTXType is set up
2346 * by FW, so do nothing for INTX.
2348 if (hw->intr_mode == CSIO_IM_MSIX)
2349 csio_set_reg_field(hw, MYPF_REG(PCIE_PF_CFG),
2350 AIVEC(AIVEC_MASK), vec);
2351 else if (hw->intr_mode == CSIO_IM_MSI)
2352 csio_set_reg_field(hw, MYPF_REG(PCIE_PF_CFG),
2353 AIVEC(AIVEC_MASK), 0);
2355 csio_wr_reg32(hw, PF_INTR_MASK, MYPF_REG(PL_PF_INT_ENABLE));
2357 /* Turn on MB interrupts - this will internally flush PIO as well */
2358 csio_mb_intr_enable(hw);
2360 /* These are common registers - only a master can modify them */
2361 if (csio_is_hw_master(hw)) {
2363 * Disable the Serial FLASH interrupt, if enabled!
2365 pl &= (~SF);
2366 csio_wr_reg32(hw, pl, PL_INT_ENABLE);
2368 csio_wr_reg32(hw, ERR_CPL_EXCEED_IQE_SIZE |
2369 EGRESS_SIZE_ERR | ERR_INVALID_CIDX_INC |
2370 ERR_CPL_OPCODE_0 | ERR_DROPPED_DB |
2371 ERR_DATA_CPL_ON_HIGH_QID1 |
2372 ERR_DATA_CPL_ON_HIGH_QID0 | ERR_BAD_DB_PIDX3 |
2373 ERR_BAD_DB_PIDX2 | ERR_BAD_DB_PIDX1 |
2374 ERR_BAD_DB_PIDX0 | ERR_ING_CTXT_PRIO |
2375 ERR_EGR_CTXT_PRIO | INGRESS_SIZE_ERR,
2376 SGE_INT_ENABLE3);
2377 csio_set_reg_field(hw, PL_INT_MAP0, 0, 1 << pf);
2380 hw->flags |= CSIO_HWF_HW_INTR_ENABLED;
2385 * csio_hw_intr_disable - Disable HW interrupts
2386 * @hw: Pointer to HW module.
2388 * Turn off Mailbox and PCI_PF_CFG interrupts.
2390 void
2391 csio_hw_intr_disable(struct csio_hw *hw)
2393 uint32_t pf = SOURCEPF_GET(csio_rd_reg32(hw, PL_WHOAMI));
2395 if (!(hw->flags & CSIO_HWF_HW_INTR_ENABLED))
2396 return;
2398 hw->flags &= ~CSIO_HWF_HW_INTR_ENABLED;
2400 csio_wr_reg32(hw, 0, MYPF_REG(PL_PF_INT_ENABLE));
2401 if (csio_is_hw_master(hw))
2402 csio_set_reg_field(hw, PL_INT_MAP0, 1 << pf, 0);
2404 /* Turn off MB interrupts */
2405 csio_mb_intr_disable(hw);
2409 void
2410 csio_hw_fatal_err(struct csio_hw *hw)
2412 csio_set_reg_field(hw, SGE_CONTROL, GLOBALENABLE, 0);
2413 csio_hw_intr_disable(hw);
2415 /* Do not reset HW, we may need FW state for debugging */
2416 csio_fatal(hw, "HW Fatal error encountered!\n");
2419 /*****************************************************************************/
2420 /* START: HW SM */
2421 /*****************************************************************************/
2423 * csio_hws_uninit - Uninit state
2424 * @hw - HW module
2425 * @evt - Event
2428 static void
2429 csio_hws_uninit(struct csio_hw *hw, enum csio_hw_ev evt)
2431 hw->prev_evt = hw->cur_evt;
2432 hw->cur_evt = evt;
2433 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2435 switch (evt) {
2436 case CSIO_HWE_CFG:
2437 csio_set_state(&hw->sm, csio_hws_configuring);
2438 csio_hw_configure(hw);
2439 break;
2441 default:
2442 CSIO_INC_STATS(hw, n_evt_unexp);
2443 break;
2448 * csio_hws_configuring - Configuring state
2449 * @hw - HW module
2450 * @evt - Event
2453 static void
2454 csio_hws_configuring(struct csio_hw *hw, enum csio_hw_ev evt)
2456 hw->prev_evt = hw->cur_evt;
2457 hw->cur_evt = evt;
2458 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2460 switch (evt) {
2461 case CSIO_HWE_INIT:
2462 csio_set_state(&hw->sm, csio_hws_initializing);
2463 csio_hw_initialize(hw);
2464 break;
2466 case CSIO_HWE_INIT_DONE:
2467 csio_set_state(&hw->sm, csio_hws_ready);
2468 /* Fan out event to all lnode SMs */
2469 csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREADY);
2470 break;
2472 case CSIO_HWE_FATAL:
2473 csio_set_state(&hw->sm, csio_hws_uninit);
2474 break;
2476 case CSIO_HWE_PCI_REMOVE:
2477 csio_do_bye(hw);
2478 break;
2479 default:
2480 CSIO_INC_STATS(hw, n_evt_unexp);
2481 break;
2486 * csio_hws_initializing - Initialiazing state
2487 * @hw - HW module
2488 * @evt - Event
2491 static void
2492 csio_hws_initializing(struct csio_hw *hw, enum csio_hw_ev evt)
2494 hw->prev_evt = hw->cur_evt;
2495 hw->cur_evt = evt;
2496 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2498 switch (evt) {
2499 case CSIO_HWE_INIT_DONE:
2500 csio_set_state(&hw->sm, csio_hws_ready);
2502 /* Fan out event to all lnode SMs */
2503 csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREADY);
2505 /* Enable interrupts */
2506 csio_hw_intr_enable(hw);
2507 break;
2509 case CSIO_HWE_FATAL:
2510 csio_set_state(&hw->sm, csio_hws_uninit);
2511 break;
2513 case CSIO_HWE_PCI_REMOVE:
2514 csio_do_bye(hw);
2515 break;
2517 default:
2518 CSIO_INC_STATS(hw, n_evt_unexp);
2519 break;
2524 * csio_hws_ready - Ready state
2525 * @hw - HW module
2526 * @evt - Event
2529 static void
2530 csio_hws_ready(struct csio_hw *hw, enum csio_hw_ev evt)
2532 /* Remember the event */
2533 hw->evtflag = evt;
2535 hw->prev_evt = hw->cur_evt;
2536 hw->cur_evt = evt;
2537 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2539 switch (evt) {
2540 case CSIO_HWE_HBA_RESET:
2541 case CSIO_HWE_FW_DLOAD:
2542 case CSIO_HWE_SUSPEND:
2543 case CSIO_HWE_PCI_REMOVE:
2544 case CSIO_HWE_PCIERR_DETECTED:
2545 csio_set_state(&hw->sm, csio_hws_quiescing);
2546 /* cleanup all outstanding cmds */
2547 if (evt == CSIO_HWE_HBA_RESET ||
2548 evt == CSIO_HWE_PCIERR_DETECTED)
2549 csio_scsim_cleanup_io(csio_hw_to_scsim(hw), false);
2550 else
2551 csio_scsim_cleanup_io(csio_hw_to_scsim(hw), true);
2553 csio_hw_intr_disable(hw);
2554 csio_hw_mbm_cleanup(hw);
2555 csio_evtq_stop(hw);
2556 csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWSTOP);
2557 csio_evtq_flush(hw);
2558 csio_mgmtm_cleanup(csio_hw_to_mgmtm(hw));
2559 csio_post_event(&hw->sm, CSIO_HWE_QUIESCED);
2560 break;
2562 case CSIO_HWE_FATAL:
2563 csio_set_state(&hw->sm, csio_hws_uninit);
2564 break;
2566 default:
2567 CSIO_INC_STATS(hw, n_evt_unexp);
2568 break;
2573 * csio_hws_quiescing - Quiescing state
2574 * @hw - HW module
2575 * @evt - Event
2578 static void
2579 csio_hws_quiescing(struct csio_hw *hw, enum csio_hw_ev evt)
2581 hw->prev_evt = hw->cur_evt;
2582 hw->cur_evt = evt;
2583 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2585 switch (evt) {
2586 case CSIO_HWE_QUIESCED:
2587 switch (hw->evtflag) {
2588 case CSIO_HWE_FW_DLOAD:
2589 csio_set_state(&hw->sm, csio_hws_resetting);
2590 /* Download firmware */
2591 /* Fall through */
2593 case CSIO_HWE_HBA_RESET:
2594 csio_set_state(&hw->sm, csio_hws_resetting);
2595 /* Start reset of the HBA */
2596 csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWRESET);
2597 csio_wr_destroy_queues(hw, false);
2598 csio_do_reset(hw, false);
2599 csio_post_event(&hw->sm, CSIO_HWE_HBA_RESET_DONE);
2600 break;
2602 case CSIO_HWE_PCI_REMOVE:
2603 csio_set_state(&hw->sm, csio_hws_removing);
2604 csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREMOVE);
2605 csio_wr_destroy_queues(hw, true);
2606 /* Now send the bye command */
2607 csio_do_bye(hw);
2608 break;
2610 case CSIO_HWE_SUSPEND:
2611 csio_set_state(&hw->sm, csio_hws_quiesced);
2612 break;
2614 case CSIO_HWE_PCIERR_DETECTED:
2615 csio_set_state(&hw->sm, csio_hws_pcierr);
2616 csio_wr_destroy_queues(hw, false);
2617 break;
2619 default:
2620 CSIO_INC_STATS(hw, n_evt_unexp);
2621 break;
2624 break;
2626 default:
2627 CSIO_INC_STATS(hw, n_evt_unexp);
2628 break;
2633 * csio_hws_quiesced - Quiesced state
2634 * @hw - HW module
2635 * @evt - Event
2638 static void
2639 csio_hws_quiesced(struct csio_hw *hw, enum csio_hw_ev evt)
2641 hw->prev_evt = hw->cur_evt;
2642 hw->cur_evt = evt;
2643 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2645 switch (evt) {
2646 case CSIO_HWE_RESUME:
2647 csio_set_state(&hw->sm, csio_hws_configuring);
2648 csio_hw_configure(hw);
2649 break;
2651 default:
2652 CSIO_INC_STATS(hw, n_evt_unexp);
2653 break;
2658 * csio_hws_resetting - HW Resetting state
2659 * @hw - HW module
2660 * @evt - Event
2663 static void
2664 csio_hws_resetting(struct csio_hw *hw, enum csio_hw_ev evt)
2666 hw->prev_evt = hw->cur_evt;
2667 hw->cur_evt = evt;
2668 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2670 switch (evt) {
2671 case CSIO_HWE_HBA_RESET_DONE:
2672 csio_evtq_start(hw);
2673 csio_set_state(&hw->sm, csio_hws_configuring);
2674 csio_hw_configure(hw);
2675 break;
2677 default:
2678 CSIO_INC_STATS(hw, n_evt_unexp);
2679 break;
2684 * csio_hws_removing - PCI Hotplug removing state
2685 * @hw - HW module
2686 * @evt - Event
2689 static void
2690 csio_hws_removing(struct csio_hw *hw, enum csio_hw_ev evt)
2692 hw->prev_evt = hw->cur_evt;
2693 hw->cur_evt = evt;
2694 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2696 switch (evt) {
2697 case CSIO_HWE_HBA_RESET:
2698 if (!csio_is_hw_master(hw))
2699 break;
2701 * The BYE should have alerady been issued, so we cant
2702 * use the mailbox interface. Hence we use the PL_RST
2703 * register directly.
2705 csio_err(hw, "Resetting HW and waiting 2 seconds...\n");
2706 csio_wr_reg32(hw, PIORSTMODE | PIORST, PL_RST);
2707 mdelay(2000);
2708 break;
2710 /* Should never receive any new events */
2711 default:
2712 CSIO_INC_STATS(hw, n_evt_unexp);
2713 break;
2719 * csio_hws_pcierr - PCI Error state
2720 * @hw - HW module
2721 * @evt - Event
2724 static void
2725 csio_hws_pcierr(struct csio_hw *hw, enum csio_hw_ev evt)
2727 hw->prev_evt = hw->cur_evt;
2728 hw->cur_evt = evt;
2729 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2731 switch (evt) {
2732 case CSIO_HWE_PCIERR_SLOT_RESET:
2733 csio_evtq_start(hw);
2734 csio_set_state(&hw->sm, csio_hws_configuring);
2735 csio_hw_configure(hw);
2736 break;
2738 default:
2739 CSIO_INC_STATS(hw, n_evt_unexp);
2740 break;
2744 /*****************************************************************************/
2745 /* END: HW SM */
2746 /*****************************************************************************/
2749 * csio_handle_intr_status - table driven interrupt handler
2750 * @hw: HW instance
2751 * @reg: the interrupt status register to process
2752 * @acts: table of interrupt actions
2754 * A table driven interrupt handler that applies a set of masks to an
2755 * interrupt status word and performs the corresponding actions if the
2756 * interrupts described by the mask have occured. The actions include
2757 * optionally emitting a warning or alert message. The table is terminated
2758 * by an entry specifying mask 0. Returns the number of fatal interrupt
2759 * conditions.
2762 csio_handle_intr_status(struct csio_hw *hw, unsigned int reg,
2763 const struct intr_info *acts)
2765 int fatal = 0;
2766 unsigned int mask = 0;
2767 unsigned int status = csio_rd_reg32(hw, reg);
2769 for ( ; acts->mask; ++acts) {
2770 if (!(status & acts->mask))
2771 continue;
2772 if (acts->fatal) {
2773 fatal++;
2774 csio_fatal(hw, "Fatal %s (0x%x)\n",
2775 acts->msg, status & acts->mask);
2776 } else if (acts->msg)
2777 csio_info(hw, "%s (0x%x)\n",
2778 acts->msg, status & acts->mask);
2779 mask |= acts->mask;
2781 status &= mask;
2782 if (status) /* clear processed interrupts */
2783 csio_wr_reg32(hw, status, reg);
2784 return fatal;
2788 * TP interrupt handler.
2790 static void csio_tp_intr_handler(struct csio_hw *hw)
2792 static struct intr_info tp_intr_info[] = {
2793 { 0x3fffffff, "TP parity error", -1, 1 },
2794 { FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 },
2795 { 0, NULL, 0, 0 }
2798 if (csio_handle_intr_status(hw, TP_INT_CAUSE, tp_intr_info))
2799 csio_hw_fatal_err(hw);
2803 * SGE interrupt handler.
2805 static void csio_sge_intr_handler(struct csio_hw *hw)
2807 uint64_t v;
2809 static struct intr_info sge_intr_info[] = {
2810 { ERR_CPL_EXCEED_IQE_SIZE,
2811 "SGE received CPL exceeding IQE size", -1, 1 },
2812 { ERR_INVALID_CIDX_INC,
2813 "SGE GTS CIDX increment too large", -1, 0 },
2814 { ERR_CPL_OPCODE_0, "SGE received 0-length CPL", -1, 0 },
2815 { ERR_DROPPED_DB, "SGE doorbell dropped", -1, 0 },
2816 { ERR_DATA_CPL_ON_HIGH_QID1 | ERR_DATA_CPL_ON_HIGH_QID0,
2817 "SGE IQID > 1023 received CPL for FL", -1, 0 },
2818 { ERR_BAD_DB_PIDX3, "SGE DBP 3 pidx increment too large", -1,
2819 0 },
2820 { ERR_BAD_DB_PIDX2, "SGE DBP 2 pidx increment too large", -1,
2821 0 },
2822 { ERR_BAD_DB_PIDX1, "SGE DBP 1 pidx increment too large", -1,
2823 0 },
2824 { ERR_BAD_DB_PIDX0, "SGE DBP 0 pidx increment too large", -1,
2825 0 },
2826 { ERR_ING_CTXT_PRIO,
2827 "SGE too many priority ingress contexts", -1, 0 },
2828 { ERR_EGR_CTXT_PRIO,
2829 "SGE too many priority egress contexts", -1, 0 },
2830 { INGRESS_SIZE_ERR, "SGE illegal ingress QID", -1, 0 },
2831 { EGRESS_SIZE_ERR, "SGE illegal egress QID", -1, 0 },
2832 { 0, NULL, 0, 0 }
2835 v = (uint64_t)csio_rd_reg32(hw, SGE_INT_CAUSE1) |
2836 ((uint64_t)csio_rd_reg32(hw, SGE_INT_CAUSE2) << 32);
2837 if (v) {
2838 csio_fatal(hw, "SGE parity error (%#llx)\n",
2839 (unsigned long long)v);
2840 csio_wr_reg32(hw, (uint32_t)(v & 0xFFFFFFFF),
2841 SGE_INT_CAUSE1);
2842 csio_wr_reg32(hw, (uint32_t)(v >> 32), SGE_INT_CAUSE2);
2845 v |= csio_handle_intr_status(hw, SGE_INT_CAUSE3, sge_intr_info);
2847 if (csio_handle_intr_status(hw, SGE_INT_CAUSE3, sge_intr_info) ||
2848 v != 0)
2849 csio_hw_fatal_err(hw);
2852 #define CIM_OBQ_INTR (OBQULP0PARERR | OBQULP1PARERR | OBQULP2PARERR |\
2853 OBQULP3PARERR | OBQSGEPARERR | OBQNCSIPARERR)
2854 #define CIM_IBQ_INTR (IBQTP0PARERR | IBQTP1PARERR | IBQULPPARERR |\
2855 IBQSGEHIPARERR | IBQSGELOPARERR | IBQNCSIPARERR)
2858 * CIM interrupt handler.
2860 static void csio_cim_intr_handler(struct csio_hw *hw)
2862 static struct intr_info cim_intr_info[] = {
2863 { PREFDROPINT, "CIM control register prefetch drop", -1, 1 },
2864 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
2865 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
2866 { MBUPPARERR, "CIM mailbox uP parity error", -1, 1 },
2867 { MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 },
2868 { TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 },
2869 { TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 },
2870 { 0, NULL, 0, 0 }
2872 static struct intr_info cim_upintr_info[] = {
2873 { RSVDSPACEINT, "CIM reserved space access", -1, 1 },
2874 { ILLTRANSINT, "CIM illegal transaction", -1, 1 },
2875 { ILLWRINT, "CIM illegal write", -1, 1 },
2876 { ILLRDINT, "CIM illegal read", -1, 1 },
2877 { ILLRDBEINT, "CIM illegal read BE", -1, 1 },
2878 { ILLWRBEINT, "CIM illegal write BE", -1, 1 },
2879 { SGLRDBOOTINT, "CIM single read from boot space", -1, 1 },
2880 { SGLWRBOOTINT, "CIM single write to boot space", -1, 1 },
2881 { BLKWRBOOTINT, "CIM block write to boot space", -1, 1 },
2882 { SGLRDFLASHINT, "CIM single read from flash space", -1, 1 },
2883 { SGLWRFLASHINT, "CIM single write to flash space", -1, 1 },
2884 { BLKWRFLASHINT, "CIM block write to flash space", -1, 1 },
2885 { SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 },
2886 { SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 },
2887 { BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 },
2888 { BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 },
2889 { SGLRDCTLINT , "CIM single read from CTL space", -1, 1 },
2890 { SGLWRCTLINT , "CIM single write to CTL space", -1, 1 },
2891 { BLKRDCTLINT , "CIM block read from CTL space", -1, 1 },
2892 { BLKWRCTLINT , "CIM block write to CTL space", -1, 1 },
2893 { SGLRDPLINT , "CIM single read from PL space", -1, 1 },
2894 { SGLWRPLINT , "CIM single write to PL space", -1, 1 },
2895 { BLKRDPLINT , "CIM block read from PL space", -1, 1 },
2896 { BLKWRPLINT , "CIM block write to PL space", -1, 1 },
2897 { REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 },
2898 { RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 },
2899 { TIMEOUTINT , "CIM PIF timeout", -1, 1 },
2900 { TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 },
2901 { 0, NULL, 0, 0 }
2904 int fat;
2906 fat = csio_handle_intr_status(hw, CIM_HOST_INT_CAUSE,
2907 cim_intr_info) +
2908 csio_handle_intr_status(hw, CIM_HOST_UPACC_INT_CAUSE,
2909 cim_upintr_info);
2910 if (fat)
2911 csio_hw_fatal_err(hw);
2915 * ULP RX interrupt handler.
2917 static void csio_ulprx_intr_handler(struct csio_hw *hw)
2919 static struct intr_info ulprx_intr_info[] = {
2920 { 0x1800000, "ULPRX context error", -1, 1 },
2921 { 0x7fffff, "ULPRX parity error", -1, 1 },
2922 { 0, NULL, 0, 0 }
2925 if (csio_handle_intr_status(hw, ULP_RX_INT_CAUSE, ulprx_intr_info))
2926 csio_hw_fatal_err(hw);
2930 * ULP TX interrupt handler.
2932 static void csio_ulptx_intr_handler(struct csio_hw *hw)
2934 static struct intr_info ulptx_intr_info[] = {
2935 { PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1,
2936 0 },
2937 { PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1,
2938 0 },
2939 { PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1,
2940 0 },
2941 { PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1,
2942 0 },
2943 { 0xfffffff, "ULPTX parity error", -1, 1 },
2944 { 0, NULL, 0, 0 }
2947 if (csio_handle_intr_status(hw, ULP_TX_INT_CAUSE, ulptx_intr_info))
2948 csio_hw_fatal_err(hw);
2952 * PM TX interrupt handler.
2954 static void csio_pmtx_intr_handler(struct csio_hw *hw)
2956 static struct intr_info pmtx_intr_info[] = {
2957 { PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 },
2958 { PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 },
2959 { PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 },
2960 { ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 },
2961 { 0xffffff0, "PMTX framing error", -1, 1 },
2962 { OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 },
2963 { DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1,
2964 1 },
2965 { ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 },
2966 { C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1},
2967 { 0, NULL, 0, 0 }
2970 if (csio_handle_intr_status(hw, PM_TX_INT_CAUSE, pmtx_intr_info))
2971 csio_hw_fatal_err(hw);
2975 * PM RX interrupt handler.
2977 static void csio_pmrx_intr_handler(struct csio_hw *hw)
2979 static struct intr_info pmrx_intr_info[] = {
2980 { ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 },
2981 { 0x3ffff0, "PMRX framing error", -1, 1 },
2982 { OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 },
2983 { DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1,
2984 1 },
2985 { IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 },
2986 { E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1},
2987 { 0, NULL, 0, 0 }
2990 if (csio_handle_intr_status(hw, PM_RX_INT_CAUSE, pmrx_intr_info))
2991 csio_hw_fatal_err(hw);
2995 * CPL switch interrupt handler.
2997 static void csio_cplsw_intr_handler(struct csio_hw *hw)
2999 static struct intr_info cplsw_intr_info[] = {
3000 { CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 },
3001 { CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 },
3002 { TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 },
3003 { SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 },
3004 { CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 },
3005 { ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 },
3006 { 0, NULL, 0, 0 }
3009 if (csio_handle_intr_status(hw, CPL_INTR_CAUSE, cplsw_intr_info))
3010 csio_hw_fatal_err(hw);
3014 * LE interrupt handler.
3016 static void csio_le_intr_handler(struct csio_hw *hw)
3018 static struct intr_info le_intr_info[] = {
3019 { LIPMISS, "LE LIP miss", -1, 0 },
3020 { LIP0, "LE 0 LIP error", -1, 0 },
3021 { PARITYERR, "LE parity error", -1, 1 },
3022 { UNKNOWNCMD, "LE unknown command", -1, 1 },
3023 { REQQPARERR, "LE request queue parity error", -1, 1 },
3024 { 0, NULL, 0, 0 }
3027 if (csio_handle_intr_status(hw, LE_DB_INT_CAUSE, le_intr_info))
3028 csio_hw_fatal_err(hw);
3032 * MPS interrupt handler.
3034 static void csio_mps_intr_handler(struct csio_hw *hw)
3036 static struct intr_info mps_rx_intr_info[] = {
3037 { 0xffffff, "MPS Rx parity error", -1, 1 },
3038 { 0, NULL, 0, 0 }
3040 static struct intr_info mps_tx_intr_info[] = {
3041 { TPFIFO, "MPS Tx TP FIFO parity error", -1, 1 },
3042 { NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 },
3043 { TXDATAFIFO, "MPS Tx data FIFO parity error", -1, 1 },
3044 { TXDESCFIFO, "MPS Tx desc FIFO parity error", -1, 1 },
3045 { BUBBLE, "MPS Tx underflow", -1, 1 },
3046 { SECNTERR, "MPS Tx SOP/EOP error", -1, 1 },
3047 { FRMERR, "MPS Tx framing error", -1, 1 },
3048 { 0, NULL, 0, 0 }
3050 static struct intr_info mps_trc_intr_info[] = {
3051 { FILTMEM, "MPS TRC filter parity error", -1, 1 },
3052 { PKTFIFO, "MPS TRC packet FIFO parity error", -1, 1 },
3053 { MISCPERR, "MPS TRC misc parity error", -1, 1 },
3054 { 0, NULL, 0, 0 }
3056 static struct intr_info mps_stat_sram_intr_info[] = {
3057 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
3058 { 0, NULL, 0, 0 }
3060 static struct intr_info mps_stat_tx_intr_info[] = {
3061 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
3062 { 0, NULL, 0, 0 }
3064 static struct intr_info mps_stat_rx_intr_info[] = {
3065 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
3066 { 0, NULL, 0, 0 }
3068 static struct intr_info mps_cls_intr_info[] = {
3069 { MATCHSRAM, "MPS match SRAM parity error", -1, 1 },
3070 { MATCHTCAM, "MPS match TCAM parity error", -1, 1 },
3071 { HASHSRAM, "MPS hash SRAM parity error", -1, 1 },
3072 { 0, NULL, 0, 0 }
3075 int fat;
3077 fat = csio_handle_intr_status(hw, MPS_RX_PERR_INT_CAUSE,
3078 mps_rx_intr_info) +
3079 csio_handle_intr_status(hw, MPS_TX_INT_CAUSE,
3080 mps_tx_intr_info) +
3081 csio_handle_intr_status(hw, MPS_TRC_INT_CAUSE,
3082 mps_trc_intr_info) +
3083 csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_SRAM,
3084 mps_stat_sram_intr_info) +
3085 csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
3086 mps_stat_tx_intr_info) +
3087 csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
3088 mps_stat_rx_intr_info) +
3089 csio_handle_intr_status(hw, MPS_CLS_INT_CAUSE,
3090 mps_cls_intr_info);
3092 csio_wr_reg32(hw, 0, MPS_INT_CAUSE);
3093 csio_rd_reg32(hw, MPS_INT_CAUSE); /* flush */
3094 if (fat)
3095 csio_hw_fatal_err(hw);
3098 #define MEM_INT_MASK (PERR_INT_CAUSE | ECC_CE_INT_CAUSE | ECC_UE_INT_CAUSE)
3101 * EDC/MC interrupt handler.
3103 static void csio_mem_intr_handler(struct csio_hw *hw, int idx)
3105 static const char name[3][5] = { "EDC0", "EDC1", "MC" };
3107 unsigned int addr, cnt_addr, v;
3109 if (idx <= MEM_EDC1) {
3110 addr = EDC_REG(EDC_INT_CAUSE, idx);
3111 cnt_addr = EDC_REG(EDC_ECC_STATUS, idx);
3112 } else {
3113 addr = MC_INT_CAUSE;
3114 cnt_addr = MC_ECC_STATUS;
3117 v = csio_rd_reg32(hw, addr) & MEM_INT_MASK;
3118 if (v & PERR_INT_CAUSE)
3119 csio_fatal(hw, "%s FIFO parity error\n", name[idx]);
3120 if (v & ECC_CE_INT_CAUSE) {
3121 uint32_t cnt = ECC_CECNT_GET(csio_rd_reg32(hw, cnt_addr));
3123 csio_wr_reg32(hw, ECC_CECNT_MASK, cnt_addr);
3124 csio_warn(hw, "%u %s correctable ECC data error%s\n",
3125 cnt, name[idx], cnt > 1 ? "s" : "");
3127 if (v & ECC_UE_INT_CAUSE)
3128 csio_fatal(hw, "%s uncorrectable ECC data error\n", name[idx]);
3130 csio_wr_reg32(hw, v, addr);
3131 if (v & (PERR_INT_CAUSE | ECC_UE_INT_CAUSE))
3132 csio_hw_fatal_err(hw);
3136 * MA interrupt handler.
3138 static void csio_ma_intr_handler(struct csio_hw *hw)
3140 uint32_t v, status = csio_rd_reg32(hw, MA_INT_CAUSE);
3142 if (status & MEM_PERR_INT_CAUSE)
3143 csio_fatal(hw, "MA parity error, parity status %#x\n",
3144 csio_rd_reg32(hw, MA_PARITY_ERROR_STATUS));
3145 if (status & MEM_WRAP_INT_CAUSE) {
3146 v = csio_rd_reg32(hw, MA_INT_WRAP_STATUS);
3147 csio_fatal(hw,
3148 "MA address wrap-around error by client %u to address %#x\n",
3149 MEM_WRAP_CLIENT_NUM_GET(v), MEM_WRAP_ADDRESS_GET(v) << 4);
3151 csio_wr_reg32(hw, status, MA_INT_CAUSE);
3152 csio_hw_fatal_err(hw);
3156 * SMB interrupt handler.
3158 static void csio_smb_intr_handler(struct csio_hw *hw)
3160 static struct intr_info smb_intr_info[] = {
3161 { MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 },
3162 { MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 },
3163 { SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 },
3164 { 0, NULL, 0, 0 }
3167 if (csio_handle_intr_status(hw, SMB_INT_CAUSE, smb_intr_info))
3168 csio_hw_fatal_err(hw);
3172 * NC-SI interrupt handler.
3174 static void csio_ncsi_intr_handler(struct csio_hw *hw)
3176 static struct intr_info ncsi_intr_info[] = {
3177 { CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 },
3178 { MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 },
3179 { TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 },
3180 { RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 },
3181 { 0, NULL, 0, 0 }
3184 if (csio_handle_intr_status(hw, NCSI_INT_CAUSE, ncsi_intr_info))
3185 csio_hw_fatal_err(hw);
3189 * XGMAC interrupt handler.
3191 static void csio_xgmac_intr_handler(struct csio_hw *hw, int port)
3193 uint32_t v = csio_rd_reg32(hw, CSIO_MAC_INT_CAUSE_REG(hw, port));
3195 v &= TXFIFO_PRTY_ERR | RXFIFO_PRTY_ERR;
3196 if (!v)
3197 return;
3199 if (v & TXFIFO_PRTY_ERR)
3200 csio_fatal(hw, "XGMAC %d Tx FIFO parity error\n", port);
3201 if (v & RXFIFO_PRTY_ERR)
3202 csio_fatal(hw, "XGMAC %d Rx FIFO parity error\n", port);
3203 csio_wr_reg32(hw, v, CSIO_MAC_INT_CAUSE_REG(hw, port));
3204 csio_hw_fatal_err(hw);
3208 * PL interrupt handler.
3210 static void csio_pl_intr_handler(struct csio_hw *hw)
3212 static struct intr_info pl_intr_info[] = {
3213 { FATALPERR, "T4 fatal parity error", -1, 1 },
3214 { PERRVFID, "PL VFID_MAP parity error", -1, 1 },
3215 { 0, NULL, 0, 0 }
3218 if (csio_handle_intr_status(hw, PL_PL_INT_CAUSE, pl_intr_info))
3219 csio_hw_fatal_err(hw);
3223 * csio_hw_slow_intr_handler - control path interrupt handler
3224 * @hw: HW module
3226 * Interrupt handler for non-data global interrupt events, e.g., errors.
3227 * The designation 'slow' is because it involves register reads, while
3228 * data interrupts typically don't involve any MMIOs.
3231 csio_hw_slow_intr_handler(struct csio_hw *hw)
3233 uint32_t cause = csio_rd_reg32(hw, PL_INT_CAUSE);
3235 if (!(cause & CSIO_GLBL_INTR_MASK)) {
3236 CSIO_INC_STATS(hw, n_plint_unexp);
3237 return 0;
3240 csio_dbg(hw, "Slow interrupt! cause: 0x%x\n", cause);
3242 CSIO_INC_STATS(hw, n_plint_cnt);
3244 if (cause & CIM)
3245 csio_cim_intr_handler(hw);
3247 if (cause & MPS)
3248 csio_mps_intr_handler(hw);
3250 if (cause & NCSI)
3251 csio_ncsi_intr_handler(hw);
3253 if (cause & PL)
3254 csio_pl_intr_handler(hw);
3256 if (cause & SMB)
3257 csio_smb_intr_handler(hw);
3259 if (cause & XGMAC0)
3260 csio_xgmac_intr_handler(hw, 0);
3262 if (cause & XGMAC1)
3263 csio_xgmac_intr_handler(hw, 1);
3265 if (cause & XGMAC_KR0)
3266 csio_xgmac_intr_handler(hw, 2);
3268 if (cause & XGMAC_KR1)
3269 csio_xgmac_intr_handler(hw, 3);
3271 if (cause & PCIE)
3272 hw->chip_ops->chip_pcie_intr_handler(hw);
3274 if (cause & MC)
3275 csio_mem_intr_handler(hw, MEM_MC);
3277 if (cause & EDC0)
3278 csio_mem_intr_handler(hw, MEM_EDC0);
3280 if (cause & EDC1)
3281 csio_mem_intr_handler(hw, MEM_EDC1);
3283 if (cause & LE)
3284 csio_le_intr_handler(hw);
3286 if (cause & TP)
3287 csio_tp_intr_handler(hw);
3289 if (cause & MA)
3290 csio_ma_intr_handler(hw);
3292 if (cause & PM_TX)
3293 csio_pmtx_intr_handler(hw);
3295 if (cause & PM_RX)
3296 csio_pmrx_intr_handler(hw);
3298 if (cause & ULP_RX)
3299 csio_ulprx_intr_handler(hw);
3301 if (cause & CPL_SWITCH)
3302 csio_cplsw_intr_handler(hw);
3304 if (cause & SGE)
3305 csio_sge_intr_handler(hw);
3307 if (cause & ULP_TX)
3308 csio_ulptx_intr_handler(hw);
3310 /* Clear the interrupts just processed for which we are the master. */
3311 csio_wr_reg32(hw, cause & CSIO_GLBL_INTR_MASK, PL_INT_CAUSE);
3312 csio_rd_reg32(hw, PL_INT_CAUSE); /* flush */
3314 return 1;
3317 /*****************************************************************************
3318 * HW <--> mailbox interfacing routines.
3319 ****************************************************************************/
3321 * csio_mberr_worker - Worker thread (dpc) for mailbox/error completions
3323 * @data: Private data pointer.
3325 * Called from worker thread context.
3327 static void
3328 csio_mberr_worker(void *data)
3330 struct csio_hw *hw = (struct csio_hw *)data;
3331 struct csio_mbm *mbm = &hw->mbm;
3332 LIST_HEAD(cbfn_q);
3333 struct csio_mb *mbp_next;
3334 int rv;
3336 del_timer_sync(&mbm->timer);
3338 spin_lock_irq(&hw->lock);
3339 if (list_empty(&mbm->cbfn_q)) {
3340 spin_unlock_irq(&hw->lock);
3341 return;
3344 list_splice_tail_init(&mbm->cbfn_q, &cbfn_q);
3345 mbm->stats.n_cbfnq = 0;
3347 /* Try to start waiting mailboxes */
3348 if (!list_empty(&mbm->req_q)) {
3349 mbp_next = list_first_entry(&mbm->req_q, struct csio_mb, list);
3350 list_del_init(&mbp_next->list);
3352 rv = csio_mb_issue(hw, mbp_next);
3353 if (rv != 0)
3354 list_add_tail(&mbp_next->list, &mbm->req_q);
3355 else
3356 CSIO_DEC_STATS(mbm, n_activeq);
3358 spin_unlock_irq(&hw->lock);
3360 /* Now callback completions */
3361 csio_mb_completions(hw, &cbfn_q);
3365 * csio_hw_mb_timer - Top-level Mailbox timeout handler.
3367 * @data: private data pointer
3370 static void
3371 csio_hw_mb_timer(uintptr_t data)
3373 struct csio_hw *hw = (struct csio_hw *)data;
3374 struct csio_mb *mbp = NULL;
3376 spin_lock_irq(&hw->lock);
3377 mbp = csio_mb_tmo_handler(hw);
3378 spin_unlock_irq(&hw->lock);
3380 /* Call back the function for the timed-out Mailbox */
3381 if (mbp)
3382 mbp->mb_cbfn(hw, mbp);
3387 * csio_hw_mbm_cleanup - Cleanup Mailbox module.
3388 * @hw: HW module
3390 * Called with lock held, should exit with lock held.
3391 * Cancels outstanding mailboxes (waiting, in-flight) and gathers them
3392 * into a local queue. Drops lock and calls the completions. Holds
3393 * lock and returns.
3395 static void
3396 csio_hw_mbm_cleanup(struct csio_hw *hw)
3398 LIST_HEAD(cbfn_q);
3400 csio_mb_cancel_all(hw, &cbfn_q);
3402 spin_unlock_irq(&hw->lock);
3403 csio_mb_completions(hw, &cbfn_q);
3404 spin_lock_irq(&hw->lock);
3407 /*****************************************************************************
3408 * Event handling
3409 ****************************************************************************/
3411 csio_enqueue_evt(struct csio_hw *hw, enum csio_evt type, void *evt_msg,
3412 uint16_t len)
3414 struct csio_evt_msg *evt_entry = NULL;
3416 if (type >= CSIO_EVT_MAX)
3417 return -EINVAL;
3419 if (len > CSIO_EVT_MSG_SIZE)
3420 return -EINVAL;
3422 if (hw->flags & CSIO_HWF_FWEVT_STOP)
3423 return -EINVAL;
3425 if (list_empty(&hw->evt_free_q)) {
3426 csio_err(hw, "Failed to alloc evt entry, msg type %d len %d\n",
3427 type, len);
3428 return -ENOMEM;
3431 evt_entry = list_first_entry(&hw->evt_free_q,
3432 struct csio_evt_msg, list);
3433 list_del_init(&evt_entry->list);
3435 /* copy event msg and queue the event */
3436 evt_entry->type = type;
3437 memcpy((void *)evt_entry->data, evt_msg, len);
3438 list_add_tail(&evt_entry->list, &hw->evt_active_q);
3440 CSIO_DEC_STATS(hw, n_evt_freeq);
3441 CSIO_INC_STATS(hw, n_evt_activeq);
3443 return 0;
3446 static int
3447 csio_enqueue_evt_lock(struct csio_hw *hw, enum csio_evt type, void *evt_msg,
3448 uint16_t len, bool msg_sg)
3450 struct csio_evt_msg *evt_entry = NULL;
3451 struct csio_fl_dma_buf *fl_sg;
3452 uint32_t off = 0;
3453 unsigned long flags;
3454 int n, ret = 0;
3456 if (type >= CSIO_EVT_MAX)
3457 return -EINVAL;
3459 if (len > CSIO_EVT_MSG_SIZE)
3460 return -EINVAL;
3462 spin_lock_irqsave(&hw->lock, flags);
3463 if (hw->flags & CSIO_HWF_FWEVT_STOP) {
3464 ret = -EINVAL;
3465 goto out;
3468 if (list_empty(&hw->evt_free_q)) {
3469 csio_err(hw, "Failed to alloc evt entry, msg type %d len %d\n",
3470 type, len);
3471 ret = -ENOMEM;
3472 goto out;
3475 evt_entry = list_first_entry(&hw->evt_free_q,
3476 struct csio_evt_msg, list);
3477 list_del_init(&evt_entry->list);
3479 /* copy event msg and queue the event */
3480 evt_entry->type = type;
3482 /* If Payload in SG list*/
3483 if (msg_sg) {
3484 fl_sg = (struct csio_fl_dma_buf *) evt_msg;
3485 for (n = 0; (n < CSIO_MAX_FLBUF_PER_IQWR && off < len); n++) {
3486 memcpy((void *)((uintptr_t)evt_entry->data + off),
3487 fl_sg->flbufs[n].vaddr,
3488 fl_sg->flbufs[n].len);
3489 off += fl_sg->flbufs[n].len;
3491 } else
3492 memcpy((void *)evt_entry->data, evt_msg, len);
3494 list_add_tail(&evt_entry->list, &hw->evt_active_q);
3495 CSIO_DEC_STATS(hw, n_evt_freeq);
3496 CSIO_INC_STATS(hw, n_evt_activeq);
3497 out:
3498 spin_unlock_irqrestore(&hw->lock, flags);
3499 return ret;
3502 static void
3503 csio_free_evt(struct csio_hw *hw, struct csio_evt_msg *evt_entry)
3505 if (evt_entry) {
3506 spin_lock_irq(&hw->lock);
3507 list_del_init(&evt_entry->list);
3508 list_add_tail(&evt_entry->list, &hw->evt_free_q);
3509 CSIO_DEC_STATS(hw, n_evt_activeq);
3510 CSIO_INC_STATS(hw, n_evt_freeq);
3511 spin_unlock_irq(&hw->lock);
3515 void
3516 csio_evtq_flush(struct csio_hw *hw)
3518 uint32_t count;
3519 count = 30;
3520 while (hw->flags & CSIO_HWF_FWEVT_PENDING && count--) {
3521 spin_unlock_irq(&hw->lock);
3522 msleep(2000);
3523 spin_lock_irq(&hw->lock);
3526 CSIO_DB_ASSERT(!(hw->flags & CSIO_HWF_FWEVT_PENDING));
3529 static void
3530 csio_evtq_stop(struct csio_hw *hw)
3532 hw->flags |= CSIO_HWF_FWEVT_STOP;
3535 static void
3536 csio_evtq_start(struct csio_hw *hw)
3538 hw->flags &= ~CSIO_HWF_FWEVT_STOP;
3541 static void
3542 csio_evtq_cleanup(struct csio_hw *hw)
3544 struct list_head *evt_entry, *next_entry;
3546 /* Release outstanding events from activeq to freeq*/
3547 if (!list_empty(&hw->evt_active_q))
3548 list_splice_tail_init(&hw->evt_active_q, &hw->evt_free_q);
3550 hw->stats.n_evt_activeq = 0;
3551 hw->flags &= ~CSIO_HWF_FWEVT_PENDING;
3553 /* Freeup event entry */
3554 list_for_each_safe(evt_entry, next_entry, &hw->evt_free_q) {
3555 kfree(evt_entry);
3556 CSIO_DEC_STATS(hw, n_evt_freeq);
3559 hw->stats.n_evt_freeq = 0;
3563 static void
3564 csio_process_fwevtq_entry(struct csio_hw *hw, void *wr, uint32_t len,
3565 struct csio_fl_dma_buf *flb, void *priv)
3567 __u8 op;
3568 void *msg = NULL;
3569 uint32_t msg_len = 0;
3570 bool msg_sg = 0;
3572 op = ((struct rss_header *) wr)->opcode;
3573 if (op == CPL_FW6_PLD) {
3574 CSIO_INC_STATS(hw, n_cpl_fw6_pld);
3575 if (!flb || !flb->totlen) {
3576 CSIO_INC_STATS(hw, n_cpl_unexp);
3577 return;
3580 msg = (void *) flb;
3581 msg_len = flb->totlen;
3582 msg_sg = 1;
3583 } else if (op == CPL_FW6_MSG || op == CPL_FW4_MSG) {
3585 CSIO_INC_STATS(hw, n_cpl_fw6_msg);
3586 /* skip RSS header */
3587 msg = (void *)((uintptr_t)wr + sizeof(__be64));
3588 msg_len = (op == CPL_FW6_MSG) ? sizeof(struct cpl_fw6_msg) :
3589 sizeof(struct cpl_fw4_msg);
3590 } else {
3591 csio_warn(hw, "unexpected CPL %#x on FW event queue\n", op);
3592 CSIO_INC_STATS(hw, n_cpl_unexp);
3593 return;
3597 * Enqueue event to EventQ. Events processing happens
3598 * in Event worker thread context
3600 if (csio_enqueue_evt_lock(hw, CSIO_EVT_FW, msg,
3601 (uint16_t)msg_len, msg_sg))
3602 CSIO_INC_STATS(hw, n_evt_drop);
3605 void
3606 csio_evtq_worker(struct work_struct *work)
3608 struct csio_hw *hw = container_of(work, struct csio_hw, evtq_work);
3609 struct list_head *evt_entry, *next_entry;
3610 LIST_HEAD(evt_q);
3611 struct csio_evt_msg *evt_msg;
3612 struct cpl_fw6_msg *msg;
3613 struct csio_rnode *rn;
3614 int rv = 0;
3615 uint8_t evtq_stop = 0;
3617 csio_dbg(hw, "event worker thread active evts#%d\n",
3618 hw->stats.n_evt_activeq);
3620 spin_lock_irq(&hw->lock);
3621 while (!list_empty(&hw->evt_active_q)) {
3622 list_splice_tail_init(&hw->evt_active_q, &evt_q);
3623 spin_unlock_irq(&hw->lock);
3625 list_for_each_safe(evt_entry, next_entry, &evt_q) {
3626 evt_msg = (struct csio_evt_msg *) evt_entry;
3628 /* Drop events if queue is STOPPED */
3629 spin_lock_irq(&hw->lock);
3630 if (hw->flags & CSIO_HWF_FWEVT_STOP)
3631 evtq_stop = 1;
3632 spin_unlock_irq(&hw->lock);
3633 if (evtq_stop) {
3634 CSIO_INC_STATS(hw, n_evt_drop);
3635 goto free_evt;
3638 switch (evt_msg->type) {
3639 case CSIO_EVT_FW:
3640 msg = (struct cpl_fw6_msg *)(evt_msg->data);
3642 if ((msg->opcode == CPL_FW6_MSG ||
3643 msg->opcode == CPL_FW4_MSG) &&
3644 !msg->type) {
3645 rv = csio_mb_fwevt_handler(hw,
3646 msg->data);
3647 if (!rv)
3648 break;
3649 /* Handle any remaining fw events */
3650 csio_fcoe_fwevt_handler(hw,
3651 msg->opcode, msg->data);
3652 } else if (msg->opcode == CPL_FW6_PLD) {
3654 csio_fcoe_fwevt_handler(hw,
3655 msg->opcode, msg->data);
3656 } else {
3657 csio_warn(hw,
3658 "Unhandled FW msg op %x type %x\n",
3659 msg->opcode, msg->type);
3660 CSIO_INC_STATS(hw, n_evt_drop);
3662 break;
3664 case CSIO_EVT_MBX:
3665 csio_mberr_worker(hw);
3666 break;
3668 case CSIO_EVT_DEV_LOSS:
3669 memcpy(&rn, evt_msg->data, sizeof(rn));
3670 csio_rnode_devloss_handler(rn);
3671 break;
3673 default:
3674 csio_warn(hw, "Unhandled event %x on evtq\n",
3675 evt_msg->type);
3676 CSIO_INC_STATS(hw, n_evt_unexp);
3677 break;
3679 free_evt:
3680 csio_free_evt(hw, evt_msg);
3683 spin_lock_irq(&hw->lock);
3685 hw->flags &= ~CSIO_HWF_FWEVT_PENDING;
3686 spin_unlock_irq(&hw->lock);
3690 csio_fwevtq_handler(struct csio_hw *hw)
3692 int rv;
3694 if (csio_q_iqid(hw, hw->fwevt_iq_idx) == CSIO_MAX_QID) {
3695 CSIO_INC_STATS(hw, n_int_stray);
3696 return -EINVAL;
3699 rv = csio_wr_process_iq_idx(hw, hw->fwevt_iq_idx,
3700 csio_process_fwevtq_entry, NULL);
3701 return rv;
3704 /****************************************************************************
3705 * Entry points
3706 ****************************************************************************/
3708 /* Management module */
3710 * csio_mgmt_req_lookup - Lookup the given IO req exist in Active Q.
3711 * mgmt - mgmt module
3712 * @io_req - io request
3714 * Return - 0:if given IO Req exists in active Q.
3715 * -EINVAL :if lookup fails.
3718 csio_mgmt_req_lookup(struct csio_mgmtm *mgmtm, struct csio_ioreq *io_req)
3720 struct list_head *tmp;
3722 /* Lookup ioreq in the ACTIVEQ */
3723 list_for_each(tmp, &mgmtm->active_q) {
3724 if (io_req == (struct csio_ioreq *)tmp)
3725 return 0;
3727 return -EINVAL;
3730 #define ECM_MIN_TMO 1000 /* Minimum timeout value for req */
3733 * csio_mgmts_tmo_handler - MGMT IO Timeout handler.
3734 * @data - Event data.
3736 * Return - none.
3738 static void
3739 csio_mgmt_tmo_handler(uintptr_t data)
3741 struct csio_mgmtm *mgmtm = (struct csio_mgmtm *) data;
3742 struct list_head *tmp;
3743 struct csio_ioreq *io_req;
3745 csio_dbg(mgmtm->hw, "Mgmt timer invoked!\n");
3747 spin_lock_irq(&mgmtm->hw->lock);
3749 list_for_each(tmp, &mgmtm->active_q) {
3750 io_req = (struct csio_ioreq *) tmp;
3751 io_req->tmo -= min_t(uint32_t, io_req->tmo, ECM_MIN_TMO);
3753 if (!io_req->tmo) {
3754 /* Dequeue the request from retry Q. */
3755 tmp = csio_list_prev(tmp);
3756 list_del_init(&io_req->sm.sm_list);
3757 if (io_req->io_cbfn) {
3758 /* io_req will be freed by completion handler */
3759 io_req->wr_status = -ETIMEDOUT;
3760 io_req->io_cbfn(mgmtm->hw, io_req);
3761 } else {
3762 CSIO_DB_ASSERT(0);
3767 /* If retry queue is not empty, re-arm timer */
3768 if (!list_empty(&mgmtm->active_q))
3769 mod_timer(&mgmtm->mgmt_timer,
3770 jiffies + msecs_to_jiffies(ECM_MIN_TMO));
3771 spin_unlock_irq(&mgmtm->hw->lock);
3774 static void
3775 csio_mgmtm_cleanup(struct csio_mgmtm *mgmtm)
3777 struct csio_hw *hw = mgmtm->hw;
3778 struct csio_ioreq *io_req;
3779 struct list_head *tmp;
3780 uint32_t count;
3782 count = 30;
3783 /* Wait for all outstanding req to complete gracefully */
3784 while ((!list_empty(&mgmtm->active_q)) && count--) {
3785 spin_unlock_irq(&hw->lock);
3786 msleep(2000);
3787 spin_lock_irq(&hw->lock);
3790 /* release outstanding req from ACTIVEQ */
3791 list_for_each(tmp, &mgmtm->active_q) {
3792 io_req = (struct csio_ioreq *) tmp;
3793 tmp = csio_list_prev(tmp);
3794 list_del_init(&io_req->sm.sm_list);
3795 mgmtm->stats.n_active--;
3796 if (io_req->io_cbfn) {
3797 /* io_req will be freed by completion handler */
3798 io_req->wr_status = -ETIMEDOUT;
3799 io_req->io_cbfn(mgmtm->hw, io_req);
3805 * csio_mgmt_init - Mgmt module init entry point
3806 * @mgmtsm - mgmt module
3807 * @hw - HW module
3809 * Initialize mgmt timer, resource wait queue, active queue,
3810 * completion q. Allocate Egress and Ingress
3811 * WR queues and save off the queue index returned by the WR
3812 * module for future use. Allocate and save off mgmt reqs in the
3813 * mgmt_req_freelist for future use. Make sure their SM is initialized
3814 * to uninit state.
3815 * Returns: 0 - on success
3816 * -ENOMEM - on error.
3818 static int
3819 csio_mgmtm_init(struct csio_mgmtm *mgmtm, struct csio_hw *hw)
3821 struct timer_list *timer = &mgmtm->mgmt_timer;
3823 init_timer(timer);
3824 timer->function = csio_mgmt_tmo_handler;
3825 timer->data = (unsigned long)mgmtm;
3827 INIT_LIST_HEAD(&mgmtm->active_q);
3828 INIT_LIST_HEAD(&mgmtm->cbfn_q);
3830 mgmtm->hw = hw;
3831 /*mgmtm->iq_idx = hw->fwevt_iq_idx;*/
3833 return 0;
3837 * csio_mgmtm_exit - MGMT module exit entry point
3838 * @mgmtsm - mgmt module
3840 * This function called during MGMT module uninit.
3841 * Stop timers, free ioreqs allocated.
3842 * Returns: None
3845 static void
3846 csio_mgmtm_exit(struct csio_mgmtm *mgmtm)
3848 del_timer_sync(&mgmtm->mgmt_timer);
3853 * csio_hw_start - Kicks off the HW State machine
3854 * @hw: Pointer to HW module.
3856 * It is assumed that the initialization is a synchronous operation.
3857 * So when we return afer posting the event, the HW SM should be in
3858 * the ready state, if there were no errors during init.
3861 csio_hw_start(struct csio_hw *hw)
3863 spin_lock_irq(&hw->lock);
3864 csio_post_event(&hw->sm, CSIO_HWE_CFG);
3865 spin_unlock_irq(&hw->lock);
3867 if (csio_is_hw_ready(hw))
3868 return 0;
3869 else
3870 return -EINVAL;
3874 csio_hw_stop(struct csio_hw *hw)
3876 csio_post_event(&hw->sm, CSIO_HWE_PCI_REMOVE);
3878 if (csio_is_hw_removing(hw))
3879 return 0;
3880 else
3881 return -EINVAL;
3884 /* Max reset retries */
3885 #define CSIO_MAX_RESET_RETRIES 3
3888 * csio_hw_reset - Reset the hardware
3889 * @hw: HW module.
3891 * Caller should hold lock across this function.
3894 csio_hw_reset(struct csio_hw *hw)
3896 if (!csio_is_hw_master(hw))
3897 return -EPERM;
3899 if (hw->rst_retries >= CSIO_MAX_RESET_RETRIES) {
3900 csio_dbg(hw, "Max hw reset attempts reached..");
3901 return -EINVAL;
3904 hw->rst_retries++;
3905 csio_post_event(&hw->sm, CSIO_HWE_HBA_RESET);
3907 if (csio_is_hw_ready(hw)) {
3908 hw->rst_retries = 0;
3909 hw->stats.n_reset_start = jiffies_to_msecs(jiffies);
3910 return 0;
3911 } else
3912 return -EINVAL;
3916 * csio_hw_get_device_id - Caches the Adapter's vendor & device id.
3917 * @hw: HW module.
3919 static void
3920 csio_hw_get_device_id(struct csio_hw *hw)
3922 /* Is the adapter device id cached already ?*/
3923 if (csio_is_dev_id_cached(hw))
3924 return;
3926 /* Get the PCI vendor & device id */
3927 pci_read_config_word(hw->pdev, PCI_VENDOR_ID,
3928 &hw->params.pci.vendor_id);
3929 pci_read_config_word(hw->pdev, PCI_DEVICE_ID,
3930 &hw->params.pci.device_id);
3932 csio_dev_id_cached(hw);
3933 hw->chip_id = (hw->params.pci.device_id & CSIO_HW_CHIP_MASK);
3935 } /* csio_hw_get_device_id */
3938 * csio_hw_set_description - Set the model, description of the hw.
3939 * @hw: HW module.
3940 * @ven_id: PCI Vendor ID
3941 * @dev_id: PCI Device ID
3943 static void
3944 csio_hw_set_description(struct csio_hw *hw, uint16_t ven_id, uint16_t dev_id)
3946 uint32_t adap_type, prot_type;
3948 if (ven_id == CSIO_VENDOR_ID) {
3949 prot_type = (dev_id & CSIO_ASIC_DEVID_PROTO_MASK);
3950 adap_type = (dev_id & CSIO_ASIC_DEVID_TYPE_MASK);
3952 if (prot_type == CSIO_T4_FCOE_ASIC) {
3953 memcpy(hw->hw_ver,
3954 csio_t4_fcoe_adapters[adap_type].model_no, 16);
3955 memcpy(hw->model_desc,
3956 csio_t4_fcoe_adapters[adap_type].description,
3957 32);
3958 } else if (prot_type == CSIO_T5_FCOE_ASIC) {
3959 memcpy(hw->hw_ver,
3960 csio_t5_fcoe_adapters[adap_type].model_no, 16);
3961 memcpy(hw->model_desc,
3962 csio_t5_fcoe_adapters[adap_type].description,
3963 32);
3964 } else {
3965 char tempName[32] = "Chelsio FCoE Controller";
3966 memcpy(hw->model_desc, tempName, 32);
3969 } /* csio_hw_set_description */
3972 * csio_hw_init - Initialize HW module.
3973 * @hw: Pointer to HW module.
3975 * Initialize the members of the HW module.
3978 csio_hw_init(struct csio_hw *hw)
3980 int rv = -EINVAL;
3981 uint32_t i;
3982 uint16_t ven_id, dev_id;
3983 struct csio_evt_msg *evt_entry;
3985 INIT_LIST_HEAD(&hw->sm.sm_list);
3986 csio_init_state(&hw->sm, csio_hws_uninit);
3987 spin_lock_init(&hw->lock);
3988 INIT_LIST_HEAD(&hw->sln_head);
3990 /* Get the PCI vendor & device id */
3991 csio_hw_get_device_id(hw);
3993 strcpy(hw->name, CSIO_HW_NAME);
3995 /* Initialize the HW chip ops with T4/T5 specific ops */
3996 hw->chip_ops = csio_is_t4(hw->chip_id) ? &t4_ops : &t5_ops;
3998 /* Set the model & its description */
4000 ven_id = hw->params.pci.vendor_id;
4001 dev_id = hw->params.pci.device_id;
4003 csio_hw_set_description(hw, ven_id, dev_id);
4005 /* Initialize default log level */
4006 hw->params.log_level = (uint32_t) csio_dbg_level;
4008 csio_set_fwevt_intr_idx(hw, -1);
4009 csio_set_nondata_intr_idx(hw, -1);
4011 /* Init all the modules: Mailbox, WorkRequest and Transport */
4012 if (csio_mbm_init(csio_hw_to_mbm(hw), hw, csio_hw_mb_timer))
4013 goto err;
4015 rv = csio_wrm_init(csio_hw_to_wrm(hw), hw);
4016 if (rv)
4017 goto err_mbm_exit;
4019 rv = csio_scsim_init(csio_hw_to_scsim(hw), hw);
4020 if (rv)
4021 goto err_wrm_exit;
4023 rv = csio_mgmtm_init(csio_hw_to_mgmtm(hw), hw);
4024 if (rv)
4025 goto err_scsim_exit;
4026 /* Pre-allocate evtq and initialize them */
4027 INIT_LIST_HEAD(&hw->evt_active_q);
4028 INIT_LIST_HEAD(&hw->evt_free_q);
4029 for (i = 0; i < csio_evtq_sz; i++) {
4031 evt_entry = kzalloc(sizeof(struct csio_evt_msg), GFP_KERNEL);
4032 if (!evt_entry) {
4033 csio_err(hw, "Failed to initialize eventq");
4034 goto err_evtq_cleanup;
4037 list_add_tail(&evt_entry->list, &hw->evt_free_q);
4038 CSIO_INC_STATS(hw, n_evt_freeq);
4041 hw->dev_num = dev_num;
4042 dev_num++;
4044 return 0;
4046 err_evtq_cleanup:
4047 csio_evtq_cleanup(hw);
4048 csio_mgmtm_exit(csio_hw_to_mgmtm(hw));
4049 err_scsim_exit:
4050 csio_scsim_exit(csio_hw_to_scsim(hw));
4051 err_wrm_exit:
4052 csio_wrm_exit(csio_hw_to_wrm(hw), hw);
4053 err_mbm_exit:
4054 csio_mbm_exit(csio_hw_to_mbm(hw));
4055 err:
4056 return rv;
4060 * csio_hw_exit - Un-initialize HW module.
4061 * @hw: Pointer to HW module.
4064 void
4065 csio_hw_exit(struct csio_hw *hw)
4067 csio_evtq_cleanup(hw);
4068 csio_mgmtm_exit(csio_hw_to_mgmtm(hw));
4069 csio_scsim_exit(csio_hw_to_scsim(hw));
4070 csio_wrm_exit(csio_hw_to_wrm(hw), hw);
4071 csio_mbm_exit(csio_hw_to_mbm(hw));