2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_da_format.h"
26 #include "xfs_da_btree.h"
27 #include "xfs_inode.h"
28 #include "xfs_trans.h"
29 #include "xfs_inode_item.h"
31 #include "xfs_bmap_util.h"
32 #include "xfs_error.h"
34 #include "xfs_dir2_priv.h"
35 #include "xfs_ioctl.h"
36 #include "xfs_trace.h"
38 #include "xfs_icache.h"
40 #include "xfs_iomap.h"
41 #include "xfs_reflink.h"
43 #include <linux/dcache.h>
44 #include <linux/falloc.h>
45 #include <linux/pagevec.h>
46 #include <linux/backing-dev.h>
47 #include <linux/mman.h>
49 static const struct vm_operations_struct xfs_file_vm_ops
;
52 * Clear the specified ranges to zero through either the pagecache or DAX.
53 * Holes and unwritten extents will be left as-is as they already are zeroed.
62 return iomap_zero_range(VFS_I(ip
), pos
, count
, did_zero
, &xfs_iomap_ops
);
66 xfs_update_prealloc_flags(
68 enum xfs_prealloc_flags flags
)
73 error
= xfs_trans_alloc(ip
->i_mount
, &M_RES(ip
->i_mount
)->tr_writeid
,
78 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
79 xfs_trans_ijoin(tp
, ip
, XFS_ILOCK_EXCL
);
81 if (!(flags
& XFS_PREALLOC_INVISIBLE
)) {
82 VFS_I(ip
)->i_mode
&= ~S_ISUID
;
83 if (VFS_I(ip
)->i_mode
& S_IXGRP
)
84 VFS_I(ip
)->i_mode
&= ~S_ISGID
;
85 xfs_trans_ichgtime(tp
, ip
, XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
88 if (flags
& XFS_PREALLOC_SET
)
89 ip
->i_d
.di_flags
|= XFS_DIFLAG_PREALLOC
;
90 if (flags
& XFS_PREALLOC_CLEAR
)
91 ip
->i_d
.di_flags
&= ~XFS_DIFLAG_PREALLOC
;
93 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
94 if (flags
& XFS_PREALLOC_SYNC
)
95 xfs_trans_set_sync(tp
);
96 return xfs_trans_commit(tp
);
100 * Fsync operations on directories are much simpler than on regular files,
101 * as there is no file data to flush, and thus also no need for explicit
102 * cache flush operations, and there are no non-transaction metadata updates
103 * on directories either.
112 struct xfs_inode
*ip
= XFS_I(file
->f_mapping
->host
);
113 struct xfs_mount
*mp
= ip
->i_mount
;
116 trace_xfs_dir_fsync(ip
);
118 xfs_ilock(ip
, XFS_ILOCK_SHARED
);
119 if (xfs_ipincount(ip
))
120 lsn
= ip
->i_itemp
->ili_last_lsn
;
121 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
125 return _xfs_log_force_lsn(mp
, lsn
, XFS_LOG_SYNC
, NULL
);
135 struct inode
*inode
= file
->f_mapping
->host
;
136 struct xfs_inode
*ip
= XFS_I(inode
);
137 struct xfs_mount
*mp
= ip
->i_mount
;
142 trace_xfs_file_fsync(ip
);
144 error
= file_write_and_wait_range(file
, start
, end
);
148 if (XFS_FORCED_SHUTDOWN(mp
))
151 xfs_iflags_clear(ip
, XFS_ITRUNCATED
);
154 * If we have an RT and/or log subvolume we need to make sure to flush
155 * the write cache the device used for file data first. This is to
156 * ensure newly written file data make it to disk before logging the new
157 * inode size in case of an extending write.
159 if (XFS_IS_REALTIME_INODE(ip
))
160 xfs_blkdev_issue_flush(mp
->m_rtdev_targp
);
161 else if (mp
->m_logdev_targp
!= mp
->m_ddev_targp
)
162 xfs_blkdev_issue_flush(mp
->m_ddev_targp
);
165 * All metadata updates are logged, which means that we just have to
166 * flush the log up to the latest LSN that touched the inode. If we have
167 * concurrent fsync/fdatasync() calls, we need them to all block on the
168 * log force before we clear the ili_fsync_fields field. This ensures
169 * that we don't get a racing sync operation that does not wait for the
170 * metadata to hit the journal before returning. If we race with
171 * clearing the ili_fsync_fields, then all that will happen is the log
172 * force will do nothing as the lsn will already be on disk. We can't
173 * race with setting ili_fsync_fields because that is done under
174 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
175 * until after the ili_fsync_fields is cleared.
177 xfs_ilock(ip
, XFS_ILOCK_SHARED
);
178 if (xfs_ipincount(ip
)) {
180 (ip
->i_itemp
->ili_fsync_fields
& ~XFS_ILOG_TIMESTAMP
))
181 lsn
= ip
->i_itemp
->ili_last_lsn
;
185 error
= _xfs_log_force_lsn(mp
, lsn
, XFS_LOG_SYNC
, &log_flushed
);
186 ip
->i_itemp
->ili_fsync_fields
= 0;
188 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
191 * If we only have a single device, and the log force about was
192 * a no-op we might have to flush the data device cache here.
193 * This can only happen for fdatasync/O_DSYNC if we were overwriting
194 * an already allocated file and thus do not have any metadata to
197 if (!log_flushed
&& !XFS_IS_REALTIME_INODE(ip
) &&
198 mp
->m_logdev_targp
== mp
->m_ddev_targp
)
199 xfs_blkdev_issue_flush(mp
->m_ddev_targp
);
205 xfs_file_dio_aio_read(
209 struct xfs_inode
*ip
= XFS_I(file_inode(iocb
->ki_filp
));
210 size_t count
= iov_iter_count(to
);
213 trace_xfs_file_direct_read(ip
, count
, iocb
->ki_pos
);
216 return 0; /* skip atime */
218 file_accessed(iocb
->ki_filp
);
220 xfs_ilock(ip
, XFS_IOLOCK_SHARED
);
221 ret
= iomap_dio_rw(iocb
, to
, &xfs_iomap_ops
, NULL
);
222 xfs_iunlock(ip
, XFS_IOLOCK_SHARED
);
227 static noinline ssize_t
232 struct xfs_inode
*ip
= XFS_I(iocb
->ki_filp
->f_mapping
->host
);
233 size_t count
= iov_iter_count(to
);
236 trace_xfs_file_dax_read(ip
, count
, iocb
->ki_pos
);
239 return 0; /* skip atime */
241 if (iocb
->ki_flags
& IOCB_NOWAIT
) {
242 if (!xfs_ilock_nowait(ip
, XFS_IOLOCK_SHARED
))
245 xfs_ilock(ip
, XFS_IOLOCK_SHARED
);
248 ret
= dax_iomap_rw(iocb
, to
, &xfs_iomap_ops
);
249 xfs_iunlock(ip
, XFS_IOLOCK_SHARED
);
251 file_accessed(iocb
->ki_filp
);
256 xfs_file_buffered_aio_read(
260 struct xfs_inode
*ip
= XFS_I(file_inode(iocb
->ki_filp
));
263 trace_xfs_file_buffered_read(ip
, iov_iter_count(to
), iocb
->ki_pos
);
265 if (iocb
->ki_flags
& IOCB_NOWAIT
) {
266 if (!xfs_ilock_nowait(ip
, XFS_IOLOCK_SHARED
))
269 xfs_ilock(ip
, XFS_IOLOCK_SHARED
);
271 ret
= generic_file_read_iter(iocb
, to
);
272 xfs_iunlock(ip
, XFS_IOLOCK_SHARED
);
282 struct inode
*inode
= file_inode(iocb
->ki_filp
);
283 struct xfs_mount
*mp
= XFS_I(inode
)->i_mount
;
286 XFS_STATS_INC(mp
, xs_read_calls
);
288 if (XFS_FORCED_SHUTDOWN(mp
))
292 ret
= xfs_file_dax_read(iocb
, to
);
293 else if (iocb
->ki_flags
& IOCB_DIRECT
)
294 ret
= xfs_file_dio_aio_read(iocb
, to
);
296 ret
= xfs_file_buffered_aio_read(iocb
, to
);
299 XFS_STATS_ADD(mp
, xs_read_bytes
, ret
);
304 * Zero any on disk space between the current EOF and the new, larger EOF.
306 * This handles the normal case of zeroing the remainder of the last block in
307 * the file and the unusual case of zeroing blocks out beyond the size of the
308 * file. This second case only happens with fixed size extents and when the
309 * system crashes before the inode size was updated but after blocks were
312 * Expects the iolock to be held exclusive, and will take the ilock internally.
314 int /* error (positive) */
316 struct xfs_inode
*ip
,
317 xfs_off_t offset
, /* starting I/O offset */
318 xfs_fsize_t isize
, /* current inode size */
321 ASSERT(xfs_isilocked(ip
, XFS_IOLOCK_EXCL
));
322 ASSERT(offset
> isize
);
324 trace_xfs_zero_eof(ip
, isize
, offset
- isize
);
325 return xfs_zero_range(ip
, isize
, offset
- isize
, did_zeroing
);
329 * Common pre-write limit and setup checks.
331 * Called with the iolocked held either shared and exclusive according to
332 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
333 * if called for a direct write beyond i_size.
336 xfs_file_aio_write_checks(
338 struct iov_iter
*from
,
341 struct file
*file
= iocb
->ki_filp
;
342 struct inode
*inode
= file
->f_mapping
->host
;
343 struct xfs_inode
*ip
= XFS_I(inode
);
345 size_t count
= iov_iter_count(from
);
346 bool drained_dio
= false;
349 error
= generic_write_checks(iocb
, from
);
353 error
= xfs_break_layouts(inode
, iolock
);
358 * For changing security info in file_remove_privs() we need i_rwsem
361 if (*iolock
== XFS_IOLOCK_SHARED
&& !IS_NOSEC(inode
)) {
362 xfs_iunlock(ip
, *iolock
);
363 *iolock
= XFS_IOLOCK_EXCL
;
364 xfs_ilock(ip
, *iolock
);
368 * If the offset is beyond the size of the file, we need to zero any
369 * blocks that fall between the existing EOF and the start of this
370 * write. If zeroing is needed and we are currently holding the
371 * iolock shared, we need to update it to exclusive which implies
372 * having to redo all checks before.
374 * We need to serialise against EOF updates that occur in IO
375 * completions here. We want to make sure that nobody is changing the
376 * size while we do this check until we have placed an IO barrier (i.e.
377 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
378 * The spinlock effectively forms a memory barrier once we have the
379 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
380 * and hence be able to correctly determine if we need to run zeroing.
382 spin_lock(&ip
->i_flags_lock
);
383 if (iocb
->ki_pos
> i_size_read(inode
)) {
384 spin_unlock(&ip
->i_flags_lock
);
386 if (*iolock
== XFS_IOLOCK_SHARED
) {
387 xfs_iunlock(ip
, *iolock
);
388 *iolock
= XFS_IOLOCK_EXCL
;
389 xfs_ilock(ip
, *iolock
);
390 iov_iter_reexpand(from
, count
);
393 * We now have an IO submission barrier in place, but
394 * AIO can do EOF updates during IO completion and hence
395 * we now need to wait for all of them to drain. Non-AIO
396 * DIO will have drained before we are given the
397 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
400 inode_dio_wait(inode
);
404 error
= xfs_zero_eof(ip
, iocb
->ki_pos
, i_size_read(inode
), NULL
);
408 spin_unlock(&ip
->i_flags_lock
);
411 * Updating the timestamps will grab the ilock again from
412 * xfs_fs_dirty_inode, so we have to call it after dropping the
413 * lock above. Eventually we should look into a way to avoid
414 * the pointless lock roundtrip.
416 if (likely(!(file
->f_mode
& FMODE_NOCMTIME
))) {
417 error
= file_update_time(file
);
423 * If we're writing the file then make sure to clear the setuid and
424 * setgid bits if the process is not being run by root. This keeps
425 * people from modifying setuid and setgid binaries.
427 if (!IS_NOSEC(inode
))
428 return file_remove_privs(file
);
433 xfs_dio_write_end_io(
438 struct inode
*inode
= file_inode(iocb
->ki_filp
);
439 struct xfs_inode
*ip
= XFS_I(inode
);
440 loff_t offset
= iocb
->ki_pos
;
443 trace_xfs_end_io_direct_write(ip
, offset
, size
);
445 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
))
451 if (flags
& IOMAP_DIO_COW
) {
452 error
= xfs_reflink_end_cow(ip
, offset
, size
);
458 * Unwritten conversion updates the in-core isize after extent
459 * conversion but before updating the on-disk size. Updating isize any
460 * earlier allows a racing dio read to find unwritten extents before
461 * they are converted.
463 if (flags
& IOMAP_DIO_UNWRITTEN
)
464 return xfs_iomap_write_unwritten(ip
, offset
, size
, true);
467 * We need to update the in-core inode size here so that we don't end up
468 * with the on-disk inode size being outside the in-core inode size. We
469 * have no other method of updating EOF for AIO, so always do it here
472 * We need to lock the test/set EOF update as we can be racing with
473 * other IO completions here to update the EOF. Failing to serialise
474 * here can result in EOF moving backwards and Bad Things Happen when
477 spin_lock(&ip
->i_flags_lock
);
478 if (offset
+ size
> i_size_read(inode
)) {
479 i_size_write(inode
, offset
+ size
);
480 spin_unlock(&ip
->i_flags_lock
);
481 error
= xfs_setfilesize(ip
, offset
, size
);
483 spin_unlock(&ip
->i_flags_lock
);
490 * xfs_file_dio_aio_write - handle direct IO writes
492 * Lock the inode appropriately to prepare for and issue a direct IO write.
493 * By separating it from the buffered write path we remove all the tricky to
494 * follow locking changes and looping.
496 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
497 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
498 * pages are flushed out.
500 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
501 * allowing them to be done in parallel with reads and other direct IO writes.
502 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
503 * needs to do sub-block zeroing and that requires serialisation against other
504 * direct IOs to the same block. In this case we need to serialise the
505 * submission of the unaligned IOs so that we don't get racing block zeroing in
506 * the dio layer. To avoid the problem with aio, we also need to wait for
507 * outstanding IOs to complete so that unwritten extent conversion is completed
508 * before we try to map the overlapping block. This is currently implemented by
509 * hitting it with a big hammer (i.e. inode_dio_wait()).
511 * Returns with locks held indicated by @iolock and errors indicated by
512 * negative return values.
515 xfs_file_dio_aio_write(
517 struct iov_iter
*from
)
519 struct file
*file
= iocb
->ki_filp
;
520 struct address_space
*mapping
= file
->f_mapping
;
521 struct inode
*inode
= mapping
->host
;
522 struct xfs_inode
*ip
= XFS_I(inode
);
523 struct xfs_mount
*mp
= ip
->i_mount
;
525 int unaligned_io
= 0;
527 size_t count
= iov_iter_count(from
);
528 struct xfs_buftarg
*target
= XFS_IS_REALTIME_INODE(ip
) ?
529 mp
->m_rtdev_targp
: mp
->m_ddev_targp
;
531 /* DIO must be aligned to device logical sector size */
532 if ((iocb
->ki_pos
| count
) & target
->bt_logical_sectormask
)
536 * Don't take the exclusive iolock here unless the I/O is unaligned to
537 * the file system block size. We don't need to consider the EOF
538 * extension case here because xfs_file_aio_write_checks() will relock
539 * the inode as necessary for EOF zeroing cases and fill out the new
540 * inode size as appropriate.
542 if ((iocb
->ki_pos
& mp
->m_blockmask
) ||
543 ((iocb
->ki_pos
+ count
) & mp
->m_blockmask
)) {
547 * We can't properly handle unaligned direct I/O to reflink
548 * files yet, as we can't unshare a partial block.
550 if (xfs_is_reflink_inode(ip
)) {
551 trace_xfs_reflink_bounce_dio_write(ip
, iocb
->ki_pos
, count
);
554 iolock
= XFS_IOLOCK_EXCL
;
556 iolock
= XFS_IOLOCK_SHARED
;
559 if (iocb
->ki_flags
& IOCB_NOWAIT
) {
560 if (!xfs_ilock_nowait(ip
, iolock
))
563 xfs_ilock(ip
, iolock
);
566 ret
= xfs_file_aio_write_checks(iocb
, from
, &iolock
);
569 count
= iov_iter_count(from
);
572 * If we are doing unaligned IO, wait for all other IO to drain,
573 * otherwise demote the lock if we had to take the exclusive lock
574 * for other reasons in xfs_file_aio_write_checks.
577 /* If we are going to wait for other DIO to finish, bail */
578 if (iocb
->ki_flags
& IOCB_NOWAIT
) {
579 if (atomic_read(&inode
->i_dio_count
))
582 inode_dio_wait(inode
);
584 } else if (iolock
== XFS_IOLOCK_EXCL
) {
585 xfs_ilock_demote(ip
, XFS_IOLOCK_EXCL
);
586 iolock
= XFS_IOLOCK_SHARED
;
589 trace_xfs_file_direct_write(ip
, count
, iocb
->ki_pos
);
590 ret
= iomap_dio_rw(iocb
, from
, &xfs_iomap_ops
, xfs_dio_write_end_io
);
592 xfs_iunlock(ip
, iolock
);
595 * No fallback to buffered IO on errors for XFS, direct IO will either
596 * complete fully or fail.
598 ASSERT(ret
< 0 || ret
== count
);
602 static noinline ssize_t
605 struct iov_iter
*from
)
607 struct inode
*inode
= iocb
->ki_filp
->f_mapping
->host
;
608 struct xfs_inode
*ip
= XFS_I(inode
);
609 int iolock
= XFS_IOLOCK_EXCL
;
610 ssize_t ret
, error
= 0;
614 if (iocb
->ki_flags
& IOCB_NOWAIT
) {
615 if (!xfs_ilock_nowait(ip
, iolock
))
618 xfs_ilock(ip
, iolock
);
621 ret
= xfs_file_aio_write_checks(iocb
, from
, &iolock
);
626 count
= iov_iter_count(from
);
628 trace_xfs_file_dax_write(ip
, count
, pos
);
629 ret
= dax_iomap_rw(iocb
, from
, &xfs_iomap_ops
);
630 if (ret
> 0 && iocb
->ki_pos
> i_size_read(inode
)) {
631 i_size_write(inode
, iocb
->ki_pos
);
632 error
= xfs_setfilesize(ip
, pos
, ret
);
635 xfs_iunlock(ip
, iolock
);
636 return error
? error
: ret
;
640 xfs_file_buffered_aio_write(
642 struct iov_iter
*from
)
644 struct file
*file
= iocb
->ki_filp
;
645 struct address_space
*mapping
= file
->f_mapping
;
646 struct inode
*inode
= mapping
->host
;
647 struct xfs_inode
*ip
= XFS_I(inode
);
652 if (iocb
->ki_flags
& IOCB_NOWAIT
)
656 iolock
= XFS_IOLOCK_EXCL
;
657 xfs_ilock(ip
, iolock
);
659 ret
= xfs_file_aio_write_checks(iocb
, from
, &iolock
);
663 /* We can write back this queue in page reclaim */
664 current
->backing_dev_info
= inode_to_bdi(inode
);
666 trace_xfs_file_buffered_write(ip
, iov_iter_count(from
), iocb
->ki_pos
);
667 ret
= iomap_file_buffered_write(iocb
, from
, &xfs_iomap_ops
);
668 if (likely(ret
>= 0))
672 * If we hit a space limit, try to free up some lingering preallocated
673 * space before returning an error. In the case of ENOSPC, first try to
674 * write back all dirty inodes to free up some of the excess reserved
675 * metadata space. This reduces the chances that the eofblocks scan
676 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
677 * also behaves as a filter to prevent too many eofblocks scans from
678 * running at the same time.
680 if (ret
== -EDQUOT
&& !enospc
) {
681 xfs_iunlock(ip
, iolock
);
682 enospc
= xfs_inode_free_quota_eofblocks(ip
);
685 enospc
= xfs_inode_free_quota_cowblocks(ip
);
689 } else if (ret
== -ENOSPC
&& !enospc
) {
690 struct xfs_eofblocks eofb
= {0};
693 xfs_flush_inodes(ip
->i_mount
);
695 xfs_iunlock(ip
, iolock
);
696 eofb
.eof_flags
= XFS_EOF_FLAGS_SYNC
;
697 xfs_icache_free_eofblocks(ip
->i_mount
, &eofb
);
698 xfs_icache_free_cowblocks(ip
->i_mount
, &eofb
);
702 current
->backing_dev_info
= NULL
;
705 xfs_iunlock(ip
, iolock
);
712 struct iov_iter
*from
)
714 struct file
*file
= iocb
->ki_filp
;
715 struct address_space
*mapping
= file
->f_mapping
;
716 struct inode
*inode
= mapping
->host
;
717 struct xfs_inode
*ip
= XFS_I(inode
);
719 size_t ocount
= iov_iter_count(from
);
721 XFS_STATS_INC(ip
->i_mount
, xs_write_calls
);
726 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
))
730 ret
= xfs_file_dax_write(iocb
, from
);
731 else if (iocb
->ki_flags
& IOCB_DIRECT
) {
733 * Allow a directio write to fall back to a buffered
734 * write *only* in the case that we're doing a reflink
735 * CoW. In all other directio scenarios we do not
736 * allow an operation to fall back to buffered mode.
738 ret
= xfs_file_dio_aio_write(iocb
, from
);
743 ret
= xfs_file_buffered_aio_write(iocb
, from
);
747 XFS_STATS_ADD(ip
->i_mount
, xs_write_bytes
, ret
);
749 /* Handle various SYNC-type writes */
750 ret
= generic_write_sync(iocb
, ret
);
755 #define XFS_FALLOC_FL_SUPPORTED \
756 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
757 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \
758 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
767 struct inode
*inode
= file_inode(file
);
768 struct xfs_inode
*ip
= XFS_I(inode
);
770 enum xfs_prealloc_flags flags
= 0;
771 uint iolock
= XFS_IOLOCK_EXCL
;
773 bool do_file_insert
= false;
775 if (!S_ISREG(inode
->i_mode
))
777 if (mode
& ~XFS_FALLOC_FL_SUPPORTED
)
780 xfs_ilock(ip
, iolock
);
781 error
= xfs_break_layouts(inode
, &iolock
);
785 xfs_ilock(ip
, XFS_MMAPLOCK_EXCL
);
786 iolock
|= XFS_MMAPLOCK_EXCL
;
788 if (mode
& FALLOC_FL_PUNCH_HOLE
) {
789 error
= xfs_free_file_space(ip
, offset
, len
);
792 } else if (mode
& FALLOC_FL_COLLAPSE_RANGE
) {
793 unsigned int blksize_mask
= i_blocksize(inode
) - 1;
795 if (offset
& blksize_mask
|| len
& blksize_mask
) {
801 * There is no need to overlap collapse range with EOF,
802 * in which case it is effectively a truncate operation
804 if (offset
+ len
>= i_size_read(inode
)) {
809 new_size
= i_size_read(inode
) - len
;
811 error
= xfs_collapse_file_space(ip
, offset
, len
);
814 } else if (mode
& FALLOC_FL_INSERT_RANGE
) {
815 unsigned int blksize_mask
= i_blocksize(inode
) - 1;
817 new_size
= i_size_read(inode
) + len
;
818 if (offset
& blksize_mask
|| len
& blksize_mask
) {
823 /* check the new inode size does not wrap through zero */
824 if (new_size
> inode
->i_sb
->s_maxbytes
) {
829 /* Offset should be less than i_size */
830 if (offset
>= i_size_read(inode
)) {
834 do_file_insert
= true;
836 flags
|= XFS_PREALLOC_SET
;
838 if (!(mode
& FALLOC_FL_KEEP_SIZE
) &&
839 offset
+ len
> i_size_read(inode
)) {
840 new_size
= offset
+ len
;
841 error
= inode_newsize_ok(inode
, new_size
);
846 if (mode
& FALLOC_FL_ZERO_RANGE
)
847 error
= xfs_zero_file_space(ip
, offset
, len
);
849 if (mode
& FALLOC_FL_UNSHARE_RANGE
) {
850 error
= xfs_reflink_unshare(ip
, offset
, len
);
854 error
= xfs_alloc_file_space(ip
, offset
, len
,
861 if (file
->f_flags
& O_DSYNC
)
862 flags
|= XFS_PREALLOC_SYNC
;
864 error
= xfs_update_prealloc_flags(ip
, flags
);
868 /* Change file size if needed */
872 iattr
.ia_valid
= ATTR_SIZE
;
873 iattr
.ia_size
= new_size
;
874 error
= xfs_vn_setattr_size(file_dentry(file
), &iattr
);
880 * Perform hole insertion now that the file size has been
881 * updated so that if we crash during the operation we don't
882 * leave shifted extents past EOF and hence losing access to
883 * the data that is contained within them.
886 error
= xfs_insert_file_space(ip
, offset
, len
);
889 xfs_iunlock(ip
, iolock
);
894 xfs_file_clone_range(
895 struct file
*file_in
,
897 struct file
*file_out
,
901 return xfs_reflink_remap_range(file_in
, pos_in
, file_out
, pos_out
,
906 xfs_file_dedupe_range(
907 struct file
*src_file
,
910 struct file
*dst_file
,
915 error
= xfs_reflink_remap_range(src_file
, loff
, dst_file
, dst_loff
,
927 if (!(file
->f_flags
& O_LARGEFILE
) && i_size_read(inode
) > MAX_NON_LFS
)
929 if (XFS_FORCED_SHUTDOWN(XFS_M(inode
->i_sb
)))
931 file
->f_mode
|= FMODE_NOWAIT
;
940 struct xfs_inode
*ip
= XFS_I(inode
);
944 error
= xfs_file_open(inode
, file
);
949 * If there are any blocks, read-ahead block 0 as we're almost
950 * certain to have the next operation be a read there.
952 mode
= xfs_ilock_data_map_shared(ip
);
953 if (ip
->i_d
.di_nextents
> 0)
954 error
= xfs_dir3_data_readahead(ip
, 0, -1);
955 xfs_iunlock(ip
, mode
);
964 return xfs_release(XFS_I(inode
));
970 struct dir_context
*ctx
)
972 struct inode
*inode
= file_inode(file
);
973 xfs_inode_t
*ip
= XFS_I(inode
);
977 * The Linux API doesn't pass down the total size of the buffer
978 * we read into down to the filesystem. With the filldir concept
979 * it's not needed for correct information, but the XFS dir2 leaf
980 * code wants an estimate of the buffer size to calculate it's
981 * readahead window and size the buffers used for mapping to
984 * Try to give it an estimate that's good enough, maybe at some
985 * point we can change the ->readdir prototype to include the
986 * buffer size. For now we use the current glibc buffer size.
988 bufsize
= (size_t)min_t(loff_t
, XFS_READDIR_BUFSIZE
, ip
->i_d
.di_size
);
990 return xfs_readdir(NULL
, ip
, ctx
, bufsize
);
999 struct inode
*inode
= file
->f_mapping
->host
;
1001 if (XFS_FORCED_SHUTDOWN(XFS_I(inode
)->i_mount
))
1006 return generic_file_llseek(file
, offset
, whence
);
1008 offset
= iomap_seek_hole(inode
, offset
, &xfs_iomap_ops
);
1011 offset
= iomap_seek_data(inode
, offset
, &xfs_iomap_ops
);
1017 return vfs_setpos(file
, offset
, inode
->i_sb
->s_maxbytes
);
1021 * Locking for serialisation of IO during page faults. This results in a lock
1025 * sb_start_pagefault(vfs, freeze)
1026 * i_mmaplock (XFS - truncate serialisation)
1028 * i_lock (XFS - extent map serialisation)
1031 __xfs_filemap_fault(
1032 struct vm_fault
*vmf
,
1033 enum page_entry_size pe_size
,
1036 struct inode
*inode
= file_inode(vmf
->vma
->vm_file
);
1037 struct xfs_inode
*ip
= XFS_I(inode
);
1040 trace_xfs_filemap_fault(ip
, pe_size
, write_fault
);
1043 sb_start_pagefault(inode
->i_sb
);
1044 file_update_time(vmf
->vma
->vm_file
);
1047 xfs_ilock(XFS_I(inode
), XFS_MMAPLOCK_SHARED
);
1048 if (IS_DAX(inode
)) {
1051 ret
= dax_iomap_fault(vmf
, pe_size
, &pfn
, &xfs_iomap_ops
);
1052 if (ret
& VM_FAULT_NEEDDSYNC
)
1053 ret
= dax_finish_sync_fault(vmf
, pe_size
, pfn
);
1056 ret
= iomap_page_mkwrite(vmf
, &xfs_iomap_ops
);
1058 ret
= filemap_fault(vmf
);
1060 xfs_iunlock(XFS_I(inode
), XFS_MMAPLOCK_SHARED
);
1063 sb_end_pagefault(inode
->i_sb
);
1069 struct vm_fault
*vmf
)
1071 /* DAX can shortcut the normal fault path on write faults! */
1072 return __xfs_filemap_fault(vmf
, PE_SIZE_PTE
,
1073 IS_DAX(file_inode(vmf
->vma
->vm_file
)) &&
1074 (vmf
->flags
& FAULT_FLAG_WRITE
));
1078 xfs_filemap_huge_fault(
1079 struct vm_fault
*vmf
,
1080 enum page_entry_size pe_size
)
1082 if (!IS_DAX(file_inode(vmf
->vma
->vm_file
)))
1083 return VM_FAULT_FALLBACK
;
1085 /* DAX can shortcut the normal fault path on write faults! */
1086 return __xfs_filemap_fault(vmf
, pe_size
,
1087 (vmf
->flags
& FAULT_FLAG_WRITE
));
1091 xfs_filemap_page_mkwrite(
1092 struct vm_fault
*vmf
)
1094 return __xfs_filemap_fault(vmf
, PE_SIZE_PTE
, true);
1098 * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1099 * on write faults. In reality, it needs to serialise against truncate and
1100 * prepare memory for writing so handle is as standard write fault.
1103 xfs_filemap_pfn_mkwrite(
1104 struct vm_fault
*vmf
)
1107 return __xfs_filemap_fault(vmf
, PE_SIZE_PTE
, true);
1110 static const struct vm_operations_struct xfs_file_vm_ops
= {
1111 .fault
= xfs_filemap_fault
,
1112 .huge_fault
= xfs_filemap_huge_fault
,
1113 .map_pages
= filemap_map_pages
,
1114 .page_mkwrite
= xfs_filemap_page_mkwrite
,
1115 .pfn_mkwrite
= xfs_filemap_pfn_mkwrite
,
1121 struct vm_area_struct
*vma
)
1124 * We don't support synchronous mappings for non-DAX files. At least
1125 * until someone comes with a sensible use case.
1127 if (!IS_DAX(file_inode(filp
)) && (vma
->vm_flags
& VM_SYNC
))
1130 file_accessed(filp
);
1131 vma
->vm_ops
= &xfs_file_vm_ops
;
1132 if (IS_DAX(file_inode(filp
)))
1133 vma
->vm_flags
|= VM_MIXEDMAP
| VM_HUGEPAGE
;
1137 const struct file_operations xfs_file_operations
= {
1138 .llseek
= xfs_file_llseek
,
1139 .read_iter
= xfs_file_read_iter
,
1140 .write_iter
= xfs_file_write_iter
,
1141 .splice_read
= generic_file_splice_read
,
1142 .splice_write
= iter_file_splice_write
,
1143 .unlocked_ioctl
= xfs_file_ioctl
,
1144 #ifdef CONFIG_COMPAT
1145 .compat_ioctl
= xfs_file_compat_ioctl
,
1147 .mmap
= xfs_file_mmap
,
1148 .mmap_supported_flags
= MAP_SYNC
,
1149 .open
= xfs_file_open
,
1150 .release
= xfs_file_release
,
1151 .fsync
= xfs_file_fsync
,
1152 .get_unmapped_area
= thp_get_unmapped_area
,
1153 .fallocate
= xfs_file_fallocate
,
1154 .clone_file_range
= xfs_file_clone_range
,
1155 .dedupe_file_range
= xfs_file_dedupe_range
,
1158 const struct file_operations xfs_dir_file_operations
= {
1159 .open
= xfs_dir_open
,
1160 .read
= generic_read_dir
,
1161 .iterate_shared
= xfs_file_readdir
,
1162 .llseek
= generic_file_llseek
,
1163 .unlocked_ioctl
= xfs_file_ioctl
,
1164 #ifdef CONFIG_COMPAT
1165 .compat_ioctl
= xfs_file_compat_ioctl
,
1167 .fsync
= xfs_dir_fsync
,