Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[linux/fpc-iii.git] / fs / dcache.c
blobf90141387f01ea4ed61bae215e137042527182c5
1 /*
2 * fs/dcache.c
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
9 /*
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <linux/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include <linux/kasan.h>
43 #include "internal.h"
44 #include "mount.h"
47 * Usage:
48 * dcache->d_inode->i_lock protects:
49 * - i_dentry, d_u.d_alias, d_inode of aliases
50 * dcache_hash_bucket lock protects:
51 * - the dcache hash table
52 * s_anon bl list spinlock protects:
53 * - the s_anon list (see __d_drop)
54 * dentry->d_sb->s_dentry_lru_lock protects:
55 * - the dcache lru lists and counters
56 * d_lock protects:
57 * - d_flags
58 * - d_name
59 * - d_lru
60 * - d_count
61 * - d_unhashed()
62 * - d_parent and d_subdirs
63 * - childrens' d_child and d_parent
64 * - d_u.d_alias, d_inode
66 * Ordering:
67 * dentry->d_inode->i_lock
68 * dentry->d_lock
69 * dentry->d_sb->s_dentry_lru_lock
70 * dcache_hash_bucket lock
71 * s_anon lock
73 * If there is an ancestor relationship:
74 * dentry->d_parent->...->d_parent->d_lock
75 * ...
76 * dentry->d_parent->d_lock
77 * dentry->d_lock
79 * If no ancestor relationship:
80 * if (dentry1 < dentry2)
81 * dentry1->d_lock
82 * dentry2->d_lock
84 int sysctl_vfs_cache_pressure __read_mostly = 100;
85 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
87 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
89 EXPORT_SYMBOL(rename_lock);
91 static struct kmem_cache *dentry_cache __read_mostly;
93 const struct qstr empty_name = QSTR_INIT("", 0);
94 EXPORT_SYMBOL(empty_name);
95 const struct qstr slash_name = QSTR_INIT("/", 1);
96 EXPORT_SYMBOL(slash_name);
99 * This is the single most critical data structure when it comes
100 * to the dcache: the hashtable for lookups. Somebody should try
101 * to make this good - I've just made it work.
103 * This hash-function tries to avoid losing too many bits of hash
104 * information, yet avoid using a prime hash-size or similar.
107 static unsigned int d_hash_mask __read_mostly;
108 static unsigned int d_hash_shift __read_mostly;
110 static struct hlist_bl_head *dentry_hashtable __read_mostly;
112 static inline struct hlist_bl_head *d_hash(unsigned int hash)
114 return dentry_hashtable + (hash >> (32 - d_hash_shift));
117 #define IN_LOOKUP_SHIFT 10
118 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
120 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
121 unsigned int hash)
123 hash += (unsigned long) parent / L1_CACHE_BYTES;
124 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
128 /* Statistics gathering. */
129 struct dentry_stat_t dentry_stat = {
130 .age_limit = 45,
133 static DEFINE_PER_CPU(long, nr_dentry);
134 static DEFINE_PER_CPU(long, nr_dentry_unused);
136 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
139 * Here we resort to our own counters instead of using generic per-cpu counters
140 * for consistency with what the vfs inode code does. We are expected to harvest
141 * better code and performance by having our own specialized counters.
143 * Please note that the loop is done over all possible CPUs, not over all online
144 * CPUs. The reason for this is that we don't want to play games with CPUs going
145 * on and off. If one of them goes off, we will just keep their counters.
147 * glommer: See cffbc8a for details, and if you ever intend to change this,
148 * please update all vfs counters to match.
150 static long get_nr_dentry(void)
152 int i;
153 long sum = 0;
154 for_each_possible_cpu(i)
155 sum += per_cpu(nr_dentry, i);
156 return sum < 0 ? 0 : sum;
159 static long get_nr_dentry_unused(void)
161 int i;
162 long sum = 0;
163 for_each_possible_cpu(i)
164 sum += per_cpu(nr_dentry_unused, i);
165 return sum < 0 ? 0 : sum;
168 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
169 size_t *lenp, loff_t *ppos)
171 dentry_stat.nr_dentry = get_nr_dentry();
172 dentry_stat.nr_unused = get_nr_dentry_unused();
173 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
175 #endif
178 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
179 * The strings are both count bytes long, and count is non-zero.
181 #ifdef CONFIG_DCACHE_WORD_ACCESS
183 #include <asm/word-at-a-time.h>
185 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
186 * aligned allocation for this particular component. We don't
187 * strictly need the load_unaligned_zeropad() safety, but it
188 * doesn't hurt either.
190 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
191 * need the careful unaligned handling.
193 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
195 unsigned long a,b,mask;
197 for (;;) {
198 a = *(unsigned long *)cs;
199 b = load_unaligned_zeropad(ct);
200 if (tcount < sizeof(unsigned long))
201 break;
202 if (unlikely(a != b))
203 return 1;
204 cs += sizeof(unsigned long);
205 ct += sizeof(unsigned long);
206 tcount -= sizeof(unsigned long);
207 if (!tcount)
208 return 0;
210 mask = bytemask_from_count(tcount);
211 return unlikely(!!((a ^ b) & mask));
214 #else
216 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
218 do {
219 if (*cs != *ct)
220 return 1;
221 cs++;
222 ct++;
223 tcount--;
224 } while (tcount);
225 return 0;
228 #endif
230 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
233 * Be careful about RCU walk racing with rename:
234 * use 'lockless_dereference' to fetch the name pointer.
236 * NOTE! Even if a rename will mean that the length
237 * was not loaded atomically, we don't care. The
238 * RCU walk will check the sequence count eventually,
239 * and catch it. And we won't overrun the buffer,
240 * because we're reading the name pointer atomically,
241 * and a dentry name is guaranteed to be properly
242 * terminated with a NUL byte.
244 * End result: even if 'len' is wrong, we'll exit
245 * early because the data cannot match (there can
246 * be no NUL in the ct/tcount data)
248 const unsigned char *cs = lockless_dereference(dentry->d_name.name);
250 return dentry_string_cmp(cs, ct, tcount);
253 struct external_name {
254 union {
255 atomic_t count;
256 struct rcu_head head;
257 } u;
258 unsigned char name[];
261 static inline struct external_name *external_name(struct dentry *dentry)
263 return container_of(dentry->d_name.name, struct external_name, name[0]);
266 static void __d_free(struct rcu_head *head)
268 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
270 kmem_cache_free(dentry_cache, dentry);
273 static void __d_free_external(struct rcu_head *head)
275 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
276 kfree(external_name(dentry));
277 kmem_cache_free(dentry_cache, dentry);
280 static inline int dname_external(const struct dentry *dentry)
282 return dentry->d_name.name != dentry->d_iname;
285 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
287 spin_lock(&dentry->d_lock);
288 if (unlikely(dname_external(dentry))) {
289 struct external_name *p = external_name(dentry);
290 atomic_inc(&p->u.count);
291 spin_unlock(&dentry->d_lock);
292 name->name = p->name;
293 } else {
294 memcpy(name->inline_name, dentry->d_iname, DNAME_INLINE_LEN);
295 spin_unlock(&dentry->d_lock);
296 name->name = name->inline_name;
299 EXPORT_SYMBOL(take_dentry_name_snapshot);
301 void release_dentry_name_snapshot(struct name_snapshot *name)
303 if (unlikely(name->name != name->inline_name)) {
304 struct external_name *p;
305 p = container_of(name->name, struct external_name, name[0]);
306 if (unlikely(atomic_dec_and_test(&p->u.count)))
307 kfree_rcu(p, u.head);
310 EXPORT_SYMBOL(release_dentry_name_snapshot);
312 static inline void __d_set_inode_and_type(struct dentry *dentry,
313 struct inode *inode,
314 unsigned type_flags)
316 unsigned flags;
318 dentry->d_inode = inode;
319 flags = READ_ONCE(dentry->d_flags);
320 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
321 flags |= type_flags;
322 WRITE_ONCE(dentry->d_flags, flags);
325 static inline void __d_clear_type_and_inode(struct dentry *dentry)
327 unsigned flags = READ_ONCE(dentry->d_flags);
329 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
330 WRITE_ONCE(dentry->d_flags, flags);
331 dentry->d_inode = NULL;
334 static void dentry_free(struct dentry *dentry)
336 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
337 if (unlikely(dname_external(dentry))) {
338 struct external_name *p = external_name(dentry);
339 if (likely(atomic_dec_and_test(&p->u.count))) {
340 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
341 return;
344 /* if dentry was never visible to RCU, immediate free is OK */
345 if (!(dentry->d_flags & DCACHE_RCUACCESS))
346 __d_free(&dentry->d_u.d_rcu);
347 else
348 call_rcu(&dentry->d_u.d_rcu, __d_free);
352 * Release the dentry's inode, using the filesystem
353 * d_iput() operation if defined.
355 static void dentry_unlink_inode(struct dentry * dentry)
356 __releases(dentry->d_lock)
357 __releases(dentry->d_inode->i_lock)
359 struct inode *inode = dentry->d_inode;
360 bool hashed = !d_unhashed(dentry);
362 if (hashed)
363 raw_write_seqcount_begin(&dentry->d_seq);
364 __d_clear_type_and_inode(dentry);
365 hlist_del_init(&dentry->d_u.d_alias);
366 if (hashed)
367 raw_write_seqcount_end(&dentry->d_seq);
368 spin_unlock(&dentry->d_lock);
369 spin_unlock(&inode->i_lock);
370 if (!inode->i_nlink)
371 fsnotify_inoderemove(inode);
372 if (dentry->d_op && dentry->d_op->d_iput)
373 dentry->d_op->d_iput(dentry, inode);
374 else
375 iput(inode);
379 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
380 * is in use - which includes both the "real" per-superblock
381 * LRU list _and_ the DCACHE_SHRINK_LIST use.
383 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
384 * on the shrink list (ie not on the superblock LRU list).
386 * The per-cpu "nr_dentry_unused" counters are updated with
387 * the DCACHE_LRU_LIST bit.
389 * These helper functions make sure we always follow the
390 * rules. d_lock must be held by the caller.
392 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
393 static void d_lru_add(struct dentry *dentry)
395 D_FLAG_VERIFY(dentry, 0);
396 dentry->d_flags |= DCACHE_LRU_LIST;
397 this_cpu_inc(nr_dentry_unused);
398 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
401 static void d_lru_del(struct dentry *dentry)
403 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
404 dentry->d_flags &= ~DCACHE_LRU_LIST;
405 this_cpu_dec(nr_dentry_unused);
406 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
409 static void d_shrink_del(struct dentry *dentry)
411 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
412 list_del_init(&dentry->d_lru);
413 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
414 this_cpu_dec(nr_dentry_unused);
417 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
419 D_FLAG_VERIFY(dentry, 0);
420 list_add(&dentry->d_lru, list);
421 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
422 this_cpu_inc(nr_dentry_unused);
426 * These can only be called under the global LRU lock, ie during the
427 * callback for freeing the LRU list. "isolate" removes it from the
428 * LRU lists entirely, while shrink_move moves it to the indicated
429 * private list.
431 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
433 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
434 dentry->d_flags &= ~DCACHE_LRU_LIST;
435 this_cpu_dec(nr_dentry_unused);
436 list_lru_isolate(lru, &dentry->d_lru);
439 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
440 struct list_head *list)
442 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
443 dentry->d_flags |= DCACHE_SHRINK_LIST;
444 list_lru_isolate_move(lru, &dentry->d_lru, list);
448 * dentry_lru_(add|del)_list) must be called with d_lock held.
450 static void dentry_lru_add(struct dentry *dentry)
452 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
453 d_lru_add(dentry);
454 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
455 dentry->d_flags |= DCACHE_REFERENCED;
459 * d_drop - drop a dentry
460 * @dentry: dentry to drop
462 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
463 * be found through a VFS lookup any more. Note that this is different from
464 * deleting the dentry - d_delete will try to mark the dentry negative if
465 * possible, giving a successful _negative_ lookup, while d_drop will
466 * just make the cache lookup fail.
468 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
469 * reason (NFS timeouts or autofs deletes).
471 * __d_drop requires dentry->d_lock.
473 void __d_drop(struct dentry *dentry)
475 if (!d_unhashed(dentry)) {
476 struct hlist_bl_head *b;
478 * Hashed dentries are normally on the dentry hashtable,
479 * with the exception of those newly allocated by
480 * d_obtain_alias, which are always IS_ROOT:
482 if (unlikely(IS_ROOT(dentry)))
483 b = &dentry->d_sb->s_anon;
484 else
485 b = d_hash(dentry->d_name.hash);
487 hlist_bl_lock(b);
488 __hlist_bl_del(&dentry->d_hash);
489 dentry->d_hash.pprev = NULL;
490 hlist_bl_unlock(b);
491 /* After this call, in-progress rcu-walk path lookup will fail. */
492 write_seqcount_invalidate(&dentry->d_seq);
495 EXPORT_SYMBOL(__d_drop);
497 void d_drop(struct dentry *dentry)
499 spin_lock(&dentry->d_lock);
500 __d_drop(dentry);
501 spin_unlock(&dentry->d_lock);
503 EXPORT_SYMBOL(d_drop);
505 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
507 struct dentry *next;
509 * Inform d_walk() and shrink_dentry_list() that we are no longer
510 * attached to the dentry tree
512 dentry->d_flags |= DCACHE_DENTRY_KILLED;
513 if (unlikely(list_empty(&dentry->d_child)))
514 return;
515 __list_del_entry(&dentry->d_child);
517 * Cursors can move around the list of children. While we'd been
518 * a normal list member, it didn't matter - ->d_child.next would've
519 * been updated. However, from now on it won't be and for the
520 * things like d_walk() it might end up with a nasty surprise.
521 * Normally d_walk() doesn't care about cursors moving around -
522 * ->d_lock on parent prevents that and since a cursor has no children
523 * of its own, we get through it without ever unlocking the parent.
524 * There is one exception, though - if we ascend from a child that
525 * gets killed as soon as we unlock it, the next sibling is found
526 * using the value left in its ->d_child.next. And if _that_
527 * pointed to a cursor, and cursor got moved (e.g. by lseek())
528 * before d_walk() regains parent->d_lock, we'll end up skipping
529 * everything the cursor had been moved past.
531 * Solution: make sure that the pointer left behind in ->d_child.next
532 * points to something that won't be moving around. I.e. skip the
533 * cursors.
535 while (dentry->d_child.next != &parent->d_subdirs) {
536 next = list_entry(dentry->d_child.next, struct dentry, d_child);
537 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
538 break;
539 dentry->d_child.next = next->d_child.next;
543 static void __dentry_kill(struct dentry *dentry)
545 struct dentry *parent = NULL;
546 bool can_free = true;
547 if (!IS_ROOT(dentry))
548 parent = dentry->d_parent;
551 * The dentry is now unrecoverably dead to the world.
553 lockref_mark_dead(&dentry->d_lockref);
556 * inform the fs via d_prune that this dentry is about to be
557 * unhashed and destroyed.
559 if (dentry->d_flags & DCACHE_OP_PRUNE)
560 dentry->d_op->d_prune(dentry);
562 if (dentry->d_flags & DCACHE_LRU_LIST) {
563 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
564 d_lru_del(dentry);
566 /* if it was on the hash then remove it */
567 __d_drop(dentry);
568 dentry_unlist(dentry, parent);
569 if (parent)
570 spin_unlock(&parent->d_lock);
571 if (dentry->d_inode)
572 dentry_unlink_inode(dentry);
573 else
574 spin_unlock(&dentry->d_lock);
575 this_cpu_dec(nr_dentry);
576 if (dentry->d_op && dentry->d_op->d_release)
577 dentry->d_op->d_release(dentry);
579 spin_lock(&dentry->d_lock);
580 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
581 dentry->d_flags |= DCACHE_MAY_FREE;
582 can_free = false;
584 spin_unlock(&dentry->d_lock);
585 if (likely(can_free))
586 dentry_free(dentry);
590 * Finish off a dentry we've decided to kill.
591 * dentry->d_lock must be held, returns with it unlocked.
592 * If ref is non-zero, then decrement the refcount too.
593 * Returns dentry requiring refcount drop, or NULL if we're done.
595 static struct dentry *dentry_kill(struct dentry *dentry)
596 __releases(dentry->d_lock)
598 struct inode *inode = dentry->d_inode;
599 struct dentry *parent = NULL;
601 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
602 goto failed;
604 if (!IS_ROOT(dentry)) {
605 parent = dentry->d_parent;
606 if (unlikely(!spin_trylock(&parent->d_lock))) {
607 if (inode)
608 spin_unlock(&inode->i_lock);
609 goto failed;
613 __dentry_kill(dentry);
614 return parent;
616 failed:
617 spin_unlock(&dentry->d_lock);
618 return dentry; /* try again with same dentry */
621 static inline struct dentry *lock_parent(struct dentry *dentry)
623 struct dentry *parent = dentry->d_parent;
624 if (IS_ROOT(dentry))
625 return NULL;
626 if (unlikely(dentry->d_lockref.count < 0))
627 return NULL;
628 if (likely(spin_trylock(&parent->d_lock)))
629 return parent;
630 rcu_read_lock();
631 spin_unlock(&dentry->d_lock);
632 again:
633 parent = ACCESS_ONCE(dentry->d_parent);
634 spin_lock(&parent->d_lock);
636 * We can't blindly lock dentry until we are sure
637 * that we won't violate the locking order.
638 * Any changes of dentry->d_parent must have
639 * been done with parent->d_lock held, so
640 * spin_lock() above is enough of a barrier
641 * for checking if it's still our child.
643 if (unlikely(parent != dentry->d_parent)) {
644 spin_unlock(&parent->d_lock);
645 goto again;
647 rcu_read_unlock();
648 if (parent != dentry)
649 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
650 else
651 parent = NULL;
652 return parent;
656 * Try to do a lockless dput(), and return whether that was successful.
658 * If unsuccessful, we return false, having already taken the dentry lock.
660 * The caller needs to hold the RCU read lock, so that the dentry is
661 * guaranteed to stay around even if the refcount goes down to zero!
663 static inline bool fast_dput(struct dentry *dentry)
665 int ret;
666 unsigned int d_flags;
669 * If we have a d_op->d_delete() operation, we sould not
670 * let the dentry count go to zero, so use "put_or_lock".
672 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
673 return lockref_put_or_lock(&dentry->d_lockref);
676 * .. otherwise, we can try to just decrement the
677 * lockref optimistically.
679 ret = lockref_put_return(&dentry->d_lockref);
682 * If the lockref_put_return() failed due to the lock being held
683 * by somebody else, the fast path has failed. We will need to
684 * get the lock, and then check the count again.
686 if (unlikely(ret < 0)) {
687 spin_lock(&dentry->d_lock);
688 if (dentry->d_lockref.count > 1) {
689 dentry->d_lockref.count--;
690 spin_unlock(&dentry->d_lock);
691 return 1;
693 return 0;
697 * If we weren't the last ref, we're done.
699 if (ret)
700 return 1;
703 * Careful, careful. The reference count went down
704 * to zero, but we don't hold the dentry lock, so
705 * somebody else could get it again, and do another
706 * dput(), and we need to not race with that.
708 * However, there is a very special and common case
709 * where we don't care, because there is nothing to
710 * do: the dentry is still hashed, it does not have
711 * a 'delete' op, and it's referenced and already on
712 * the LRU list.
714 * NOTE! Since we aren't locked, these values are
715 * not "stable". However, it is sufficient that at
716 * some point after we dropped the reference the
717 * dentry was hashed and the flags had the proper
718 * value. Other dentry users may have re-gotten
719 * a reference to the dentry and change that, but
720 * our work is done - we can leave the dentry
721 * around with a zero refcount.
723 smp_rmb();
724 d_flags = ACCESS_ONCE(dentry->d_flags);
725 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
727 /* Nothing to do? Dropping the reference was all we needed? */
728 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
729 return 1;
732 * Not the fast normal case? Get the lock. We've already decremented
733 * the refcount, but we'll need to re-check the situation after
734 * getting the lock.
736 spin_lock(&dentry->d_lock);
739 * Did somebody else grab a reference to it in the meantime, and
740 * we're no longer the last user after all? Alternatively, somebody
741 * else could have killed it and marked it dead. Either way, we
742 * don't need to do anything else.
744 if (dentry->d_lockref.count) {
745 spin_unlock(&dentry->d_lock);
746 return 1;
750 * Re-get the reference we optimistically dropped. We hold the
751 * lock, and we just tested that it was zero, so we can just
752 * set it to 1.
754 dentry->d_lockref.count = 1;
755 return 0;
760 * This is dput
762 * This is complicated by the fact that we do not want to put
763 * dentries that are no longer on any hash chain on the unused
764 * list: we'd much rather just get rid of them immediately.
766 * However, that implies that we have to traverse the dentry
767 * tree upwards to the parents which might _also_ now be
768 * scheduled for deletion (it may have been only waiting for
769 * its last child to go away).
771 * This tail recursion is done by hand as we don't want to depend
772 * on the compiler to always get this right (gcc generally doesn't).
773 * Real recursion would eat up our stack space.
777 * dput - release a dentry
778 * @dentry: dentry to release
780 * Release a dentry. This will drop the usage count and if appropriate
781 * call the dentry unlink method as well as removing it from the queues and
782 * releasing its resources. If the parent dentries were scheduled for release
783 * they too may now get deleted.
785 void dput(struct dentry *dentry)
787 if (unlikely(!dentry))
788 return;
790 repeat:
791 might_sleep();
793 rcu_read_lock();
794 if (likely(fast_dput(dentry))) {
795 rcu_read_unlock();
796 return;
799 /* Slow case: now with the dentry lock held */
800 rcu_read_unlock();
802 WARN_ON(d_in_lookup(dentry));
804 /* Unreachable? Get rid of it */
805 if (unlikely(d_unhashed(dentry)))
806 goto kill_it;
808 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
809 goto kill_it;
811 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
812 if (dentry->d_op->d_delete(dentry))
813 goto kill_it;
816 dentry_lru_add(dentry);
818 dentry->d_lockref.count--;
819 spin_unlock(&dentry->d_lock);
820 return;
822 kill_it:
823 dentry = dentry_kill(dentry);
824 if (dentry) {
825 cond_resched();
826 goto repeat;
829 EXPORT_SYMBOL(dput);
832 /* This must be called with d_lock held */
833 static inline void __dget_dlock(struct dentry *dentry)
835 dentry->d_lockref.count++;
838 static inline void __dget(struct dentry *dentry)
840 lockref_get(&dentry->d_lockref);
843 struct dentry *dget_parent(struct dentry *dentry)
845 int gotref;
846 struct dentry *ret;
849 * Do optimistic parent lookup without any
850 * locking.
852 rcu_read_lock();
853 ret = ACCESS_ONCE(dentry->d_parent);
854 gotref = lockref_get_not_zero(&ret->d_lockref);
855 rcu_read_unlock();
856 if (likely(gotref)) {
857 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
858 return ret;
859 dput(ret);
862 repeat:
864 * Don't need rcu_dereference because we re-check it was correct under
865 * the lock.
867 rcu_read_lock();
868 ret = dentry->d_parent;
869 spin_lock(&ret->d_lock);
870 if (unlikely(ret != dentry->d_parent)) {
871 spin_unlock(&ret->d_lock);
872 rcu_read_unlock();
873 goto repeat;
875 rcu_read_unlock();
876 BUG_ON(!ret->d_lockref.count);
877 ret->d_lockref.count++;
878 spin_unlock(&ret->d_lock);
879 return ret;
881 EXPORT_SYMBOL(dget_parent);
884 * d_find_alias - grab a hashed alias of inode
885 * @inode: inode in question
887 * If inode has a hashed alias, or is a directory and has any alias,
888 * acquire the reference to alias and return it. Otherwise return NULL.
889 * Notice that if inode is a directory there can be only one alias and
890 * it can be unhashed only if it has no children, or if it is the root
891 * of a filesystem, or if the directory was renamed and d_revalidate
892 * was the first vfs operation to notice.
894 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
895 * any other hashed alias over that one.
897 static struct dentry *__d_find_alias(struct inode *inode)
899 struct dentry *alias, *discon_alias;
901 again:
902 discon_alias = NULL;
903 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
904 spin_lock(&alias->d_lock);
905 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
906 if (IS_ROOT(alias) &&
907 (alias->d_flags & DCACHE_DISCONNECTED)) {
908 discon_alias = alias;
909 } else {
910 __dget_dlock(alias);
911 spin_unlock(&alias->d_lock);
912 return alias;
915 spin_unlock(&alias->d_lock);
917 if (discon_alias) {
918 alias = discon_alias;
919 spin_lock(&alias->d_lock);
920 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
921 __dget_dlock(alias);
922 spin_unlock(&alias->d_lock);
923 return alias;
925 spin_unlock(&alias->d_lock);
926 goto again;
928 return NULL;
931 struct dentry *d_find_alias(struct inode *inode)
933 struct dentry *de = NULL;
935 if (!hlist_empty(&inode->i_dentry)) {
936 spin_lock(&inode->i_lock);
937 de = __d_find_alias(inode);
938 spin_unlock(&inode->i_lock);
940 return de;
942 EXPORT_SYMBOL(d_find_alias);
945 * Try to kill dentries associated with this inode.
946 * WARNING: you must own a reference to inode.
948 void d_prune_aliases(struct inode *inode)
950 struct dentry *dentry;
951 restart:
952 spin_lock(&inode->i_lock);
953 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
954 spin_lock(&dentry->d_lock);
955 if (!dentry->d_lockref.count) {
956 struct dentry *parent = lock_parent(dentry);
957 if (likely(!dentry->d_lockref.count)) {
958 __dentry_kill(dentry);
959 dput(parent);
960 goto restart;
962 if (parent)
963 spin_unlock(&parent->d_lock);
965 spin_unlock(&dentry->d_lock);
967 spin_unlock(&inode->i_lock);
969 EXPORT_SYMBOL(d_prune_aliases);
971 static void shrink_dentry_list(struct list_head *list)
973 struct dentry *dentry, *parent;
975 while (!list_empty(list)) {
976 struct inode *inode;
977 dentry = list_entry(list->prev, struct dentry, d_lru);
978 spin_lock(&dentry->d_lock);
979 parent = lock_parent(dentry);
982 * The dispose list is isolated and dentries are not accounted
983 * to the LRU here, so we can simply remove it from the list
984 * here regardless of whether it is referenced or not.
986 d_shrink_del(dentry);
989 * We found an inuse dentry which was not removed from
990 * the LRU because of laziness during lookup. Do not free it.
992 if (dentry->d_lockref.count > 0) {
993 spin_unlock(&dentry->d_lock);
994 if (parent)
995 spin_unlock(&parent->d_lock);
996 continue;
1000 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
1001 bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
1002 spin_unlock(&dentry->d_lock);
1003 if (parent)
1004 spin_unlock(&parent->d_lock);
1005 if (can_free)
1006 dentry_free(dentry);
1007 continue;
1010 inode = dentry->d_inode;
1011 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1012 d_shrink_add(dentry, list);
1013 spin_unlock(&dentry->d_lock);
1014 if (parent)
1015 spin_unlock(&parent->d_lock);
1016 continue;
1019 __dentry_kill(dentry);
1022 * We need to prune ancestors too. This is necessary to prevent
1023 * quadratic behavior of shrink_dcache_parent(), but is also
1024 * expected to be beneficial in reducing dentry cache
1025 * fragmentation.
1027 dentry = parent;
1028 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
1029 parent = lock_parent(dentry);
1030 if (dentry->d_lockref.count != 1) {
1031 dentry->d_lockref.count--;
1032 spin_unlock(&dentry->d_lock);
1033 if (parent)
1034 spin_unlock(&parent->d_lock);
1035 break;
1037 inode = dentry->d_inode; /* can't be NULL */
1038 if (unlikely(!spin_trylock(&inode->i_lock))) {
1039 spin_unlock(&dentry->d_lock);
1040 if (parent)
1041 spin_unlock(&parent->d_lock);
1042 cpu_relax();
1043 continue;
1045 __dentry_kill(dentry);
1046 dentry = parent;
1051 static enum lru_status dentry_lru_isolate(struct list_head *item,
1052 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1054 struct list_head *freeable = arg;
1055 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1059 * we are inverting the lru lock/dentry->d_lock here,
1060 * so use a trylock. If we fail to get the lock, just skip
1061 * it
1063 if (!spin_trylock(&dentry->d_lock))
1064 return LRU_SKIP;
1067 * Referenced dentries are still in use. If they have active
1068 * counts, just remove them from the LRU. Otherwise give them
1069 * another pass through the LRU.
1071 if (dentry->d_lockref.count) {
1072 d_lru_isolate(lru, dentry);
1073 spin_unlock(&dentry->d_lock);
1074 return LRU_REMOVED;
1077 if (dentry->d_flags & DCACHE_REFERENCED) {
1078 dentry->d_flags &= ~DCACHE_REFERENCED;
1079 spin_unlock(&dentry->d_lock);
1082 * The list move itself will be made by the common LRU code. At
1083 * this point, we've dropped the dentry->d_lock but keep the
1084 * lru lock. This is safe to do, since every list movement is
1085 * protected by the lru lock even if both locks are held.
1087 * This is guaranteed by the fact that all LRU management
1088 * functions are intermediated by the LRU API calls like
1089 * list_lru_add and list_lru_del. List movement in this file
1090 * only ever occur through this functions or through callbacks
1091 * like this one, that are called from the LRU API.
1093 * The only exceptions to this are functions like
1094 * shrink_dentry_list, and code that first checks for the
1095 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1096 * operating only with stack provided lists after they are
1097 * properly isolated from the main list. It is thus, always a
1098 * local access.
1100 return LRU_ROTATE;
1103 d_lru_shrink_move(lru, dentry, freeable);
1104 spin_unlock(&dentry->d_lock);
1106 return LRU_REMOVED;
1110 * prune_dcache_sb - shrink the dcache
1111 * @sb: superblock
1112 * @sc: shrink control, passed to list_lru_shrink_walk()
1114 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1115 * is done when we need more memory and called from the superblock shrinker
1116 * function.
1118 * This function may fail to free any resources if all the dentries are in
1119 * use.
1121 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1123 LIST_HEAD(dispose);
1124 long freed;
1126 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1127 dentry_lru_isolate, &dispose);
1128 shrink_dentry_list(&dispose);
1129 return freed;
1132 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1133 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1135 struct list_head *freeable = arg;
1136 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1139 * we are inverting the lru lock/dentry->d_lock here,
1140 * so use a trylock. If we fail to get the lock, just skip
1141 * it
1143 if (!spin_trylock(&dentry->d_lock))
1144 return LRU_SKIP;
1146 d_lru_shrink_move(lru, dentry, freeable);
1147 spin_unlock(&dentry->d_lock);
1149 return LRU_REMOVED;
1154 * shrink_dcache_sb - shrink dcache for a superblock
1155 * @sb: superblock
1157 * Shrink the dcache for the specified super block. This is used to free
1158 * the dcache before unmounting a file system.
1160 void shrink_dcache_sb(struct super_block *sb)
1162 long freed;
1164 do {
1165 LIST_HEAD(dispose);
1167 freed = list_lru_walk(&sb->s_dentry_lru,
1168 dentry_lru_isolate_shrink, &dispose, 1024);
1170 this_cpu_sub(nr_dentry_unused, freed);
1171 shrink_dentry_list(&dispose);
1172 cond_resched();
1173 } while (list_lru_count(&sb->s_dentry_lru) > 0);
1175 EXPORT_SYMBOL(shrink_dcache_sb);
1178 * enum d_walk_ret - action to talke during tree walk
1179 * @D_WALK_CONTINUE: contrinue walk
1180 * @D_WALK_QUIT: quit walk
1181 * @D_WALK_NORETRY: quit when retry is needed
1182 * @D_WALK_SKIP: skip this dentry and its children
1184 enum d_walk_ret {
1185 D_WALK_CONTINUE,
1186 D_WALK_QUIT,
1187 D_WALK_NORETRY,
1188 D_WALK_SKIP,
1192 * d_walk - walk the dentry tree
1193 * @parent: start of walk
1194 * @data: data passed to @enter() and @finish()
1195 * @enter: callback when first entering the dentry
1196 * @finish: callback when successfully finished the walk
1198 * The @enter() and @finish() callbacks are called with d_lock held.
1200 static void d_walk(struct dentry *parent, void *data,
1201 enum d_walk_ret (*enter)(void *, struct dentry *),
1202 void (*finish)(void *))
1204 struct dentry *this_parent;
1205 struct list_head *next;
1206 unsigned seq = 0;
1207 enum d_walk_ret ret;
1208 bool retry = true;
1210 again:
1211 read_seqbegin_or_lock(&rename_lock, &seq);
1212 this_parent = parent;
1213 spin_lock(&this_parent->d_lock);
1215 ret = enter(data, this_parent);
1216 switch (ret) {
1217 case D_WALK_CONTINUE:
1218 break;
1219 case D_WALK_QUIT:
1220 case D_WALK_SKIP:
1221 goto out_unlock;
1222 case D_WALK_NORETRY:
1223 retry = false;
1224 break;
1226 repeat:
1227 next = this_parent->d_subdirs.next;
1228 resume:
1229 while (next != &this_parent->d_subdirs) {
1230 struct list_head *tmp = next;
1231 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1232 next = tmp->next;
1234 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1235 continue;
1237 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1239 ret = enter(data, dentry);
1240 switch (ret) {
1241 case D_WALK_CONTINUE:
1242 break;
1243 case D_WALK_QUIT:
1244 spin_unlock(&dentry->d_lock);
1245 goto out_unlock;
1246 case D_WALK_NORETRY:
1247 retry = false;
1248 break;
1249 case D_WALK_SKIP:
1250 spin_unlock(&dentry->d_lock);
1251 continue;
1254 if (!list_empty(&dentry->d_subdirs)) {
1255 spin_unlock(&this_parent->d_lock);
1256 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1257 this_parent = dentry;
1258 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1259 goto repeat;
1261 spin_unlock(&dentry->d_lock);
1264 * All done at this level ... ascend and resume the search.
1266 rcu_read_lock();
1267 ascend:
1268 if (this_parent != parent) {
1269 struct dentry *child = this_parent;
1270 this_parent = child->d_parent;
1272 spin_unlock(&child->d_lock);
1273 spin_lock(&this_parent->d_lock);
1275 /* might go back up the wrong parent if we have had a rename. */
1276 if (need_seqretry(&rename_lock, seq))
1277 goto rename_retry;
1278 /* go into the first sibling still alive */
1279 do {
1280 next = child->d_child.next;
1281 if (next == &this_parent->d_subdirs)
1282 goto ascend;
1283 child = list_entry(next, struct dentry, d_child);
1284 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1285 rcu_read_unlock();
1286 goto resume;
1288 if (need_seqretry(&rename_lock, seq))
1289 goto rename_retry;
1290 rcu_read_unlock();
1291 if (finish)
1292 finish(data);
1294 out_unlock:
1295 spin_unlock(&this_parent->d_lock);
1296 done_seqretry(&rename_lock, seq);
1297 return;
1299 rename_retry:
1300 spin_unlock(&this_parent->d_lock);
1301 rcu_read_unlock();
1302 BUG_ON(seq & 1);
1303 if (!retry)
1304 return;
1305 seq = 1;
1306 goto again;
1309 struct check_mount {
1310 struct vfsmount *mnt;
1311 unsigned int mounted;
1314 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1316 struct check_mount *info = data;
1317 struct path path = { .mnt = info->mnt, .dentry = dentry };
1319 if (likely(!d_mountpoint(dentry)))
1320 return D_WALK_CONTINUE;
1321 if (__path_is_mountpoint(&path)) {
1322 info->mounted = 1;
1323 return D_WALK_QUIT;
1325 return D_WALK_CONTINUE;
1329 * path_has_submounts - check for mounts over a dentry in the
1330 * current namespace.
1331 * @parent: path to check.
1333 * Return true if the parent or its subdirectories contain
1334 * a mount point in the current namespace.
1336 int path_has_submounts(const struct path *parent)
1338 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1340 read_seqlock_excl(&mount_lock);
1341 d_walk(parent->dentry, &data, path_check_mount, NULL);
1342 read_sequnlock_excl(&mount_lock);
1344 return data.mounted;
1346 EXPORT_SYMBOL(path_has_submounts);
1349 * Called by mount code to set a mountpoint and check if the mountpoint is
1350 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1351 * subtree can become unreachable).
1353 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1354 * this reason take rename_lock and d_lock on dentry and ancestors.
1356 int d_set_mounted(struct dentry *dentry)
1358 struct dentry *p;
1359 int ret = -ENOENT;
1360 write_seqlock(&rename_lock);
1361 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1362 /* Need exclusion wrt. d_invalidate() */
1363 spin_lock(&p->d_lock);
1364 if (unlikely(d_unhashed(p))) {
1365 spin_unlock(&p->d_lock);
1366 goto out;
1368 spin_unlock(&p->d_lock);
1370 spin_lock(&dentry->d_lock);
1371 if (!d_unlinked(dentry)) {
1372 ret = -EBUSY;
1373 if (!d_mountpoint(dentry)) {
1374 dentry->d_flags |= DCACHE_MOUNTED;
1375 ret = 0;
1378 spin_unlock(&dentry->d_lock);
1379 out:
1380 write_sequnlock(&rename_lock);
1381 return ret;
1385 * Search the dentry child list of the specified parent,
1386 * and move any unused dentries to the end of the unused
1387 * list for prune_dcache(). We descend to the next level
1388 * whenever the d_subdirs list is non-empty and continue
1389 * searching.
1391 * It returns zero iff there are no unused children,
1392 * otherwise it returns the number of children moved to
1393 * the end of the unused list. This may not be the total
1394 * number of unused children, because select_parent can
1395 * drop the lock and return early due to latency
1396 * constraints.
1399 struct select_data {
1400 struct dentry *start;
1401 struct list_head dispose;
1402 int found;
1405 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1407 struct select_data *data = _data;
1408 enum d_walk_ret ret = D_WALK_CONTINUE;
1410 if (data->start == dentry)
1411 goto out;
1413 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1414 data->found++;
1415 } else {
1416 if (dentry->d_flags & DCACHE_LRU_LIST)
1417 d_lru_del(dentry);
1418 if (!dentry->d_lockref.count) {
1419 d_shrink_add(dentry, &data->dispose);
1420 data->found++;
1424 * We can return to the caller if we have found some (this
1425 * ensures forward progress). We'll be coming back to find
1426 * the rest.
1428 if (!list_empty(&data->dispose))
1429 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1430 out:
1431 return ret;
1435 * shrink_dcache_parent - prune dcache
1436 * @parent: parent of entries to prune
1438 * Prune the dcache to remove unused children of the parent dentry.
1440 void shrink_dcache_parent(struct dentry *parent)
1442 for (;;) {
1443 struct select_data data;
1445 INIT_LIST_HEAD(&data.dispose);
1446 data.start = parent;
1447 data.found = 0;
1449 d_walk(parent, &data, select_collect, NULL);
1450 if (!data.found)
1451 break;
1453 shrink_dentry_list(&data.dispose);
1454 cond_resched();
1457 EXPORT_SYMBOL(shrink_dcache_parent);
1459 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1461 /* it has busy descendents; complain about those instead */
1462 if (!list_empty(&dentry->d_subdirs))
1463 return D_WALK_CONTINUE;
1465 /* root with refcount 1 is fine */
1466 if (dentry == _data && dentry->d_lockref.count == 1)
1467 return D_WALK_CONTINUE;
1469 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1470 " still in use (%d) [unmount of %s %s]\n",
1471 dentry,
1472 dentry->d_inode ?
1473 dentry->d_inode->i_ino : 0UL,
1474 dentry,
1475 dentry->d_lockref.count,
1476 dentry->d_sb->s_type->name,
1477 dentry->d_sb->s_id);
1478 WARN_ON(1);
1479 return D_WALK_CONTINUE;
1482 static void do_one_tree(struct dentry *dentry)
1484 shrink_dcache_parent(dentry);
1485 d_walk(dentry, dentry, umount_check, NULL);
1486 d_drop(dentry);
1487 dput(dentry);
1491 * destroy the dentries attached to a superblock on unmounting
1493 void shrink_dcache_for_umount(struct super_block *sb)
1495 struct dentry *dentry;
1497 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1499 dentry = sb->s_root;
1500 sb->s_root = NULL;
1501 do_one_tree(dentry);
1503 while (!hlist_bl_empty(&sb->s_anon)) {
1504 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1505 do_one_tree(dentry);
1509 struct detach_data {
1510 struct select_data select;
1511 struct dentry *mountpoint;
1513 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1515 struct detach_data *data = _data;
1517 if (d_mountpoint(dentry)) {
1518 __dget_dlock(dentry);
1519 data->mountpoint = dentry;
1520 return D_WALK_QUIT;
1523 return select_collect(&data->select, dentry);
1526 static void check_and_drop(void *_data)
1528 struct detach_data *data = _data;
1530 if (!data->mountpoint && list_empty(&data->select.dispose))
1531 __d_drop(data->select.start);
1535 * d_invalidate - detach submounts, prune dcache, and drop
1536 * @dentry: dentry to invalidate (aka detach, prune and drop)
1538 * no dcache lock.
1540 * The final d_drop is done as an atomic operation relative to
1541 * rename_lock ensuring there are no races with d_set_mounted. This
1542 * ensures there are no unhashed dentries on the path to a mountpoint.
1544 void d_invalidate(struct dentry *dentry)
1547 * If it's already been dropped, return OK.
1549 spin_lock(&dentry->d_lock);
1550 if (d_unhashed(dentry)) {
1551 spin_unlock(&dentry->d_lock);
1552 return;
1554 spin_unlock(&dentry->d_lock);
1556 /* Negative dentries can be dropped without further checks */
1557 if (!dentry->d_inode) {
1558 d_drop(dentry);
1559 return;
1562 for (;;) {
1563 struct detach_data data;
1565 data.mountpoint = NULL;
1566 INIT_LIST_HEAD(&data.select.dispose);
1567 data.select.start = dentry;
1568 data.select.found = 0;
1570 d_walk(dentry, &data, detach_and_collect, check_and_drop);
1572 if (!list_empty(&data.select.dispose))
1573 shrink_dentry_list(&data.select.dispose);
1574 else if (!data.mountpoint)
1575 return;
1577 if (data.mountpoint) {
1578 detach_mounts(data.mountpoint);
1579 dput(data.mountpoint);
1581 cond_resched();
1584 EXPORT_SYMBOL(d_invalidate);
1587 * __d_alloc - allocate a dcache entry
1588 * @sb: filesystem it will belong to
1589 * @name: qstr of the name
1591 * Allocates a dentry. It returns %NULL if there is insufficient memory
1592 * available. On a success the dentry is returned. The name passed in is
1593 * copied and the copy passed in may be reused after this call.
1596 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1598 struct dentry *dentry;
1599 char *dname;
1600 int err;
1602 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1603 if (!dentry)
1604 return NULL;
1607 * We guarantee that the inline name is always NUL-terminated.
1608 * This way the memcpy() done by the name switching in rename
1609 * will still always have a NUL at the end, even if we might
1610 * be overwriting an internal NUL character
1612 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1613 if (unlikely(!name)) {
1614 name = &slash_name;
1615 dname = dentry->d_iname;
1616 } else if (name->len > DNAME_INLINE_LEN-1) {
1617 size_t size = offsetof(struct external_name, name[1]);
1618 struct external_name *p = kmalloc(size + name->len,
1619 GFP_KERNEL_ACCOUNT);
1620 if (!p) {
1621 kmem_cache_free(dentry_cache, dentry);
1622 return NULL;
1624 atomic_set(&p->u.count, 1);
1625 dname = p->name;
1626 if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS))
1627 kasan_unpoison_shadow(dname,
1628 round_up(name->len + 1, sizeof(unsigned long)));
1629 } else {
1630 dname = dentry->d_iname;
1633 dentry->d_name.len = name->len;
1634 dentry->d_name.hash = name->hash;
1635 memcpy(dname, name->name, name->len);
1636 dname[name->len] = 0;
1638 /* Make sure we always see the terminating NUL character */
1639 smp_wmb();
1640 dentry->d_name.name = dname;
1642 dentry->d_lockref.count = 1;
1643 dentry->d_flags = 0;
1644 spin_lock_init(&dentry->d_lock);
1645 seqcount_init(&dentry->d_seq);
1646 dentry->d_inode = NULL;
1647 dentry->d_parent = dentry;
1648 dentry->d_sb = sb;
1649 dentry->d_op = NULL;
1650 dentry->d_fsdata = NULL;
1651 INIT_HLIST_BL_NODE(&dentry->d_hash);
1652 INIT_LIST_HEAD(&dentry->d_lru);
1653 INIT_LIST_HEAD(&dentry->d_subdirs);
1654 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1655 INIT_LIST_HEAD(&dentry->d_child);
1656 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1658 if (dentry->d_op && dentry->d_op->d_init) {
1659 err = dentry->d_op->d_init(dentry);
1660 if (err) {
1661 if (dname_external(dentry))
1662 kfree(external_name(dentry));
1663 kmem_cache_free(dentry_cache, dentry);
1664 return NULL;
1668 this_cpu_inc(nr_dentry);
1670 return dentry;
1674 * d_alloc - allocate a dcache entry
1675 * @parent: parent of entry to allocate
1676 * @name: qstr of the name
1678 * Allocates a dentry. It returns %NULL if there is insufficient memory
1679 * available. On a success the dentry is returned. The name passed in is
1680 * copied and the copy passed in may be reused after this call.
1682 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1684 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1685 if (!dentry)
1686 return NULL;
1687 dentry->d_flags |= DCACHE_RCUACCESS;
1688 spin_lock(&parent->d_lock);
1690 * don't need child lock because it is not subject
1691 * to concurrency here
1693 __dget_dlock(parent);
1694 dentry->d_parent = parent;
1695 list_add(&dentry->d_child, &parent->d_subdirs);
1696 spin_unlock(&parent->d_lock);
1698 return dentry;
1700 EXPORT_SYMBOL(d_alloc);
1702 struct dentry *d_alloc_cursor(struct dentry * parent)
1704 struct dentry *dentry = __d_alloc(parent->d_sb, NULL);
1705 if (dentry) {
1706 dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
1707 dentry->d_parent = dget(parent);
1709 return dentry;
1713 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1714 * @sb: the superblock
1715 * @name: qstr of the name
1717 * For a filesystem that just pins its dentries in memory and never
1718 * performs lookups at all, return an unhashed IS_ROOT dentry.
1720 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1722 return __d_alloc(sb, name);
1724 EXPORT_SYMBOL(d_alloc_pseudo);
1726 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1728 struct qstr q;
1730 q.name = name;
1731 q.hash_len = hashlen_string(parent, name);
1732 return d_alloc(parent, &q);
1734 EXPORT_SYMBOL(d_alloc_name);
1736 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1738 WARN_ON_ONCE(dentry->d_op);
1739 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1740 DCACHE_OP_COMPARE |
1741 DCACHE_OP_REVALIDATE |
1742 DCACHE_OP_WEAK_REVALIDATE |
1743 DCACHE_OP_DELETE |
1744 DCACHE_OP_REAL));
1745 dentry->d_op = op;
1746 if (!op)
1747 return;
1748 if (op->d_hash)
1749 dentry->d_flags |= DCACHE_OP_HASH;
1750 if (op->d_compare)
1751 dentry->d_flags |= DCACHE_OP_COMPARE;
1752 if (op->d_revalidate)
1753 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1754 if (op->d_weak_revalidate)
1755 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1756 if (op->d_delete)
1757 dentry->d_flags |= DCACHE_OP_DELETE;
1758 if (op->d_prune)
1759 dentry->d_flags |= DCACHE_OP_PRUNE;
1760 if (op->d_real)
1761 dentry->d_flags |= DCACHE_OP_REAL;
1764 EXPORT_SYMBOL(d_set_d_op);
1768 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1769 * @dentry - The dentry to mark
1771 * Mark a dentry as falling through to the lower layer (as set with
1772 * d_pin_lower()). This flag may be recorded on the medium.
1774 void d_set_fallthru(struct dentry *dentry)
1776 spin_lock(&dentry->d_lock);
1777 dentry->d_flags |= DCACHE_FALLTHRU;
1778 spin_unlock(&dentry->d_lock);
1780 EXPORT_SYMBOL(d_set_fallthru);
1782 static unsigned d_flags_for_inode(struct inode *inode)
1784 unsigned add_flags = DCACHE_REGULAR_TYPE;
1786 if (!inode)
1787 return DCACHE_MISS_TYPE;
1789 if (S_ISDIR(inode->i_mode)) {
1790 add_flags = DCACHE_DIRECTORY_TYPE;
1791 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1792 if (unlikely(!inode->i_op->lookup))
1793 add_flags = DCACHE_AUTODIR_TYPE;
1794 else
1795 inode->i_opflags |= IOP_LOOKUP;
1797 goto type_determined;
1800 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1801 if (unlikely(inode->i_op->get_link)) {
1802 add_flags = DCACHE_SYMLINK_TYPE;
1803 goto type_determined;
1805 inode->i_opflags |= IOP_NOFOLLOW;
1808 if (unlikely(!S_ISREG(inode->i_mode)))
1809 add_flags = DCACHE_SPECIAL_TYPE;
1811 type_determined:
1812 if (unlikely(IS_AUTOMOUNT(inode)))
1813 add_flags |= DCACHE_NEED_AUTOMOUNT;
1814 return add_flags;
1817 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1819 unsigned add_flags = d_flags_for_inode(inode);
1820 WARN_ON(d_in_lookup(dentry));
1822 spin_lock(&dentry->d_lock);
1823 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1824 raw_write_seqcount_begin(&dentry->d_seq);
1825 __d_set_inode_and_type(dentry, inode, add_flags);
1826 raw_write_seqcount_end(&dentry->d_seq);
1827 fsnotify_update_flags(dentry);
1828 spin_unlock(&dentry->d_lock);
1832 * d_instantiate - fill in inode information for a dentry
1833 * @entry: dentry to complete
1834 * @inode: inode to attach to this dentry
1836 * Fill in inode information in the entry.
1838 * This turns negative dentries into productive full members
1839 * of society.
1841 * NOTE! This assumes that the inode count has been incremented
1842 * (or otherwise set) by the caller to indicate that it is now
1843 * in use by the dcache.
1846 void d_instantiate(struct dentry *entry, struct inode * inode)
1848 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1849 if (inode) {
1850 security_d_instantiate(entry, inode);
1851 spin_lock(&inode->i_lock);
1852 __d_instantiate(entry, inode);
1853 spin_unlock(&inode->i_lock);
1856 EXPORT_SYMBOL(d_instantiate);
1859 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1860 * @entry: dentry to complete
1861 * @inode: inode to attach to this dentry
1863 * Fill in inode information in the entry. If a directory alias is found, then
1864 * return an error (and drop inode). Together with d_materialise_unique() this
1865 * guarantees that a directory inode may never have more than one alias.
1867 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1869 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1871 security_d_instantiate(entry, inode);
1872 spin_lock(&inode->i_lock);
1873 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1874 spin_unlock(&inode->i_lock);
1875 iput(inode);
1876 return -EBUSY;
1878 __d_instantiate(entry, inode);
1879 spin_unlock(&inode->i_lock);
1881 return 0;
1883 EXPORT_SYMBOL(d_instantiate_no_diralias);
1885 struct dentry *d_make_root(struct inode *root_inode)
1887 struct dentry *res = NULL;
1889 if (root_inode) {
1890 res = __d_alloc(root_inode->i_sb, NULL);
1891 if (res)
1892 d_instantiate(res, root_inode);
1893 else
1894 iput(root_inode);
1896 return res;
1898 EXPORT_SYMBOL(d_make_root);
1900 static struct dentry * __d_find_any_alias(struct inode *inode)
1902 struct dentry *alias;
1904 if (hlist_empty(&inode->i_dentry))
1905 return NULL;
1906 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1907 __dget(alias);
1908 return alias;
1912 * d_find_any_alias - find any alias for a given inode
1913 * @inode: inode to find an alias for
1915 * If any aliases exist for the given inode, take and return a
1916 * reference for one of them. If no aliases exist, return %NULL.
1918 struct dentry *d_find_any_alias(struct inode *inode)
1920 struct dentry *de;
1922 spin_lock(&inode->i_lock);
1923 de = __d_find_any_alias(inode);
1924 spin_unlock(&inode->i_lock);
1925 return de;
1927 EXPORT_SYMBOL(d_find_any_alias);
1929 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
1931 struct dentry *tmp;
1932 struct dentry *res;
1933 unsigned add_flags;
1935 if (!inode)
1936 return ERR_PTR(-ESTALE);
1937 if (IS_ERR(inode))
1938 return ERR_CAST(inode);
1940 res = d_find_any_alias(inode);
1941 if (res)
1942 goto out_iput;
1944 tmp = __d_alloc(inode->i_sb, NULL);
1945 if (!tmp) {
1946 res = ERR_PTR(-ENOMEM);
1947 goto out_iput;
1950 security_d_instantiate(tmp, inode);
1951 spin_lock(&inode->i_lock);
1952 res = __d_find_any_alias(inode);
1953 if (res) {
1954 spin_unlock(&inode->i_lock);
1955 dput(tmp);
1956 goto out_iput;
1959 /* attach a disconnected dentry */
1960 add_flags = d_flags_for_inode(inode);
1962 if (disconnected)
1963 add_flags |= DCACHE_DISCONNECTED;
1965 spin_lock(&tmp->d_lock);
1966 __d_set_inode_and_type(tmp, inode, add_flags);
1967 hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
1968 hlist_bl_lock(&tmp->d_sb->s_anon);
1969 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1970 hlist_bl_unlock(&tmp->d_sb->s_anon);
1971 spin_unlock(&tmp->d_lock);
1972 spin_unlock(&inode->i_lock);
1974 return tmp;
1976 out_iput:
1977 iput(inode);
1978 return res;
1982 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1983 * @inode: inode to allocate the dentry for
1985 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1986 * similar open by handle operations. The returned dentry may be anonymous,
1987 * or may have a full name (if the inode was already in the cache).
1989 * When called on a directory inode, we must ensure that the inode only ever
1990 * has one dentry. If a dentry is found, that is returned instead of
1991 * allocating a new one.
1993 * On successful return, the reference to the inode has been transferred
1994 * to the dentry. In case of an error the reference on the inode is released.
1995 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1996 * be passed in and the error will be propagated to the return value,
1997 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1999 struct dentry *d_obtain_alias(struct inode *inode)
2001 return __d_obtain_alias(inode, 1);
2003 EXPORT_SYMBOL(d_obtain_alias);
2006 * d_obtain_root - find or allocate a dentry for a given inode
2007 * @inode: inode to allocate the dentry for
2009 * Obtain an IS_ROOT dentry for the root of a filesystem.
2011 * We must ensure that directory inodes only ever have one dentry. If a
2012 * dentry is found, that is returned instead of allocating a new one.
2014 * On successful return, the reference to the inode has been transferred
2015 * to the dentry. In case of an error the reference on the inode is
2016 * released. A %NULL or IS_ERR inode may be passed in and will be the
2017 * error will be propagate to the return value, with a %NULL @inode
2018 * replaced by ERR_PTR(-ESTALE).
2020 struct dentry *d_obtain_root(struct inode *inode)
2022 return __d_obtain_alias(inode, 0);
2024 EXPORT_SYMBOL(d_obtain_root);
2027 * d_add_ci - lookup or allocate new dentry with case-exact name
2028 * @inode: the inode case-insensitive lookup has found
2029 * @dentry: the negative dentry that was passed to the parent's lookup func
2030 * @name: the case-exact name to be associated with the returned dentry
2032 * This is to avoid filling the dcache with case-insensitive names to the
2033 * same inode, only the actual correct case is stored in the dcache for
2034 * case-insensitive filesystems.
2036 * For a case-insensitive lookup match and if the the case-exact dentry
2037 * already exists in in the dcache, use it and return it.
2039 * If no entry exists with the exact case name, allocate new dentry with
2040 * the exact case, and return the spliced entry.
2042 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2043 struct qstr *name)
2045 struct dentry *found, *res;
2048 * First check if a dentry matching the name already exists,
2049 * if not go ahead and create it now.
2051 found = d_hash_and_lookup(dentry->d_parent, name);
2052 if (found) {
2053 iput(inode);
2054 return found;
2056 if (d_in_lookup(dentry)) {
2057 found = d_alloc_parallel(dentry->d_parent, name,
2058 dentry->d_wait);
2059 if (IS_ERR(found) || !d_in_lookup(found)) {
2060 iput(inode);
2061 return found;
2063 } else {
2064 found = d_alloc(dentry->d_parent, name);
2065 if (!found) {
2066 iput(inode);
2067 return ERR_PTR(-ENOMEM);
2070 res = d_splice_alias(inode, found);
2071 if (res) {
2072 dput(found);
2073 return res;
2075 return found;
2077 EXPORT_SYMBOL(d_add_ci);
2080 static inline bool d_same_name(const struct dentry *dentry,
2081 const struct dentry *parent,
2082 const struct qstr *name)
2084 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2085 if (dentry->d_name.len != name->len)
2086 return false;
2087 return dentry_cmp(dentry, name->name, name->len) == 0;
2089 return parent->d_op->d_compare(dentry,
2090 dentry->d_name.len, dentry->d_name.name,
2091 name) == 0;
2095 * __d_lookup_rcu - search for a dentry (racy, store-free)
2096 * @parent: parent dentry
2097 * @name: qstr of name we wish to find
2098 * @seqp: returns d_seq value at the point where the dentry was found
2099 * Returns: dentry, or NULL
2101 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2102 * resolution (store-free path walking) design described in
2103 * Documentation/filesystems/path-lookup.txt.
2105 * This is not to be used outside core vfs.
2107 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2108 * held, and rcu_read_lock held. The returned dentry must not be stored into
2109 * without taking d_lock and checking d_seq sequence count against @seq
2110 * returned here.
2112 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2113 * function.
2115 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2116 * the returned dentry, so long as its parent's seqlock is checked after the
2117 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2118 * is formed, giving integrity down the path walk.
2120 * NOTE! The caller *has* to check the resulting dentry against the sequence
2121 * number we've returned before using any of the resulting dentry state!
2123 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2124 const struct qstr *name,
2125 unsigned *seqp)
2127 u64 hashlen = name->hash_len;
2128 const unsigned char *str = name->name;
2129 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2130 struct hlist_bl_node *node;
2131 struct dentry *dentry;
2134 * Note: There is significant duplication with __d_lookup_rcu which is
2135 * required to prevent single threaded performance regressions
2136 * especially on architectures where smp_rmb (in seqcounts) are costly.
2137 * Keep the two functions in sync.
2141 * The hash list is protected using RCU.
2143 * Carefully use d_seq when comparing a candidate dentry, to avoid
2144 * races with d_move().
2146 * It is possible that concurrent renames can mess up our list
2147 * walk here and result in missing our dentry, resulting in the
2148 * false-negative result. d_lookup() protects against concurrent
2149 * renames using rename_lock seqlock.
2151 * See Documentation/filesystems/path-lookup.txt for more details.
2153 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2154 unsigned seq;
2156 seqretry:
2158 * The dentry sequence count protects us from concurrent
2159 * renames, and thus protects parent and name fields.
2161 * The caller must perform a seqcount check in order
2162 * to do anything useful with the returned dentry.
2164 * NOTE! We do a "raw" seqcount_begin here. That means that
2165 * we don't wait for the sequence count to stabilize if it
2166 * is in the middle of a sequence change. If we do the slow
2167 * dentry compare, we will do seqretries until it is stable,
2168 * and if we end up with a successful lookup, we actually
2169 * want to exit RCU lookup anyway.
2171 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2172 * we are still guaranteed NUL-termination of ->d_name.name.
2174 seq = raw_seqcount_begin(&dentry->d_seq);
2175 if (dentry->d_parent != parent)
2176 continue;
2177 if (d_unhashed(dentry))
2178 continue;
2180 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2181 int tlen;
2182 const char *tname;
2183 if (dentry->d_name.hash != hashlen_hash(hashlen))
2184 continue;
2185 tlen = dentry->d_name.len;
2186 tname = dentry->d_name.name;
2187 /* we want a consistent (name,len) pair */
2188 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2189 cpu_relax();
2190 goto seqretry;
2192 if (parent->d_op->d_compare(dentry,
2193 tlen, tname, name) != 0)
2194 continue;
2195 } else {
2196 if (dentry->d_name.hash_len != hashlen)
2197 continue;
2198 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2199 continue;
2201 *seqp = seq;
2202 return dentry;
2204 return NULL;
2208 * d_lookup - search for a dentry
2209 * @parent: parent dentry
2210 * @name: qstr of name we wish to find
2211 * Returns: dentry, or NULL
2213 * d_lookup searches the children of the parent dentry for the name in
2214 * question. If the dentry is found its reference count is incremented and the
2215 * dentry is returned. The caller must use dput to free the entry when it has
2216 * finished using it. %NULL is returned if the dentry does not exist.
2218 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2220 struct dentry *dentry;
2221 unsigned seq;
2223 do {
2224 seq = read_seqbegin(&rename_lock);
2225 dentry = __d_lookup(parent, name);
2226 if (dentry)
2227 break;
2228 } while (read_seqretry(&rename_lock, seq));
2229 return dentry;
2231 EXPORT_SYMBOL(d_lookup);
2234 * __d_lookup - search for a dentry (racy)
2235 * @parent: parent dentry
2236 * @name: qstr of name we wish to find
2237 * Returns: dentry, or NULL
2239 * __d_lookup is like d_lookup, however it may (rarely) return a
2240 * false-negative result due to unrelated rename activity.
2242 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2243 * however it must be used carefully, eg. with a following d_lookup in
2244 * the case of failure.
2246 * __d_lookup callers must be commented.
2248 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2250 unsigned int hash = name->hash;
2251 struct hlist_bl_head *b = d_hash(hash);
2252 struct hlist_bl_node *node;
2253 struct dentry *found = NULL;
2254 struct dentry *dentry;
2257 * Note: There is significant duplication with __d_lookup_rcu which is
2258 * required to prevent single threaded performance regressions
2259 * especially on architectures where smp_rmb (in seqcounts) are costly.
2260 * Keep the two functions in sync.
2264 * The hash list is protected using RCU.
2266 * Take d_lock when comparing a candidate dentry, to avoid races
2267 * with d_move().
2269 * It is possible that concurrent renames can mess up our list
2270 * walk here and result in missing our dentry, resulting in the
2271 * false-negative result. d_lookup() protects against concurrent
2272 * renames using rename_lock seqlock.
2274 * See Documentation/filesystems/path-lookup.txt for more details.
2276 rcu_read_lock();
2278 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2280 if (dentry->d_name.hash != hash)
2281 continue;
2283 spin_lock(&dentry->d_lock);
2284 if (dentry->d_parent != parent)
2285 goto next;
2286 if (d_unhashed(dentry))
2287 goto next;
2289 if (!d_same_name(dentry, parent, name))
2290 goto next;
2292 dentry->d_lockref.count++;
2293 found = dentry;
2294 spin_unlock(&dentry->d_lock);
2295 break;
2296 next:
2297 spin_unlock(&dentry->d_lock);
2299 rcu_read_unlock();
2301 return found;
2305 * d_hash_and_lookup - hash the qstr then search for a dentry
2306 * @dir: Directory to search in
2307 * @name: qstr of name we wish to find
2309 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2311 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2314 * Check for a fs-specific hash function. Note that we must
2315 * calculate the standard hash first, as the d_op->d_hash()
2316 * routine may choose to leave the hash value unchanged.
2318 name->hash = full_name_hash(dir, name->name, name->len);
2319 if (dir->d_flags & DCACHE_OP_HASH) {
2320 int err = dir->d_op->d_hash(dir, name);
2321 if (unlikely(err < 0))
2322 return ERR_PTR(err);
2324 return d_lookup(dir, name);
2326 EXPORT_SYMBOL(d_hash_and_lookup);
2329 * When a file is deleted, we have two options:
2330 * - turn this dentry into a negative dentry
2331 * - unhash this dentry and free it.
2333 * Usually, we want to just turn this into
2334 * a negative dentry, but if anybody else is
2335 * currently using the dentry or the inode
2336 * we can't do that and we fall back on removing
2337 * it from the hash queues and waiting for
2338 * it to be deleted later when it has no users
2342 * d_delete - delete a dentry
2343 * @dentry: The dentry to delete
2345 * Turn the dentry into a negative dentry if possible, otherwise
2346 * remove it from the hash queues so it can be deleted later
2349 void d_delete(struct dentry * dentry)
2351 struct inode *inode;
2352 int isdir = 0;
2354 * Are we the only user?
2356 again:
2357 spin_lock(&dentry->d_lock);
2358 inode = dentry->d_inode;
2359 isdir = S_ISDIR(inode->i_mode);
2360 if (dentry->d_lockref.count == 1) {
2361 if (!spin_trylock(&inode->i_lock)) {
2362 spin_unlock(&dentry->d_lock);
2363 cpu_relax();
2364 goto again;
2366 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2367 dentry_unlink_inode(dentry);
2368 fsnotify_nameremove(dentry, isdir);
2369 return;
2372 if (!d_unhashed(dentry))
2373 __d_drop(dentry);
2375 spin_unlock(&dentry->d_lock);
2377 fsnotify_nameremove(dentry, isdir);
2379 EXPORT_SYMBOL(d_delete);
2381 static void __d_rehash(struct dentry *entry)
2383 struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2384 BUG_ON(!d_unhashed(entry));
2385 hlist_bl_lock(b);
2386 hlist_bl_add_head_rcu(&entry->d_hash, b);
2387 hlist_bl_unlock(b);
2391 * d_rehash - add an entry back to the hash
2392 * @entry: dentry to add to the hash
2394 * Adds a dentry to the hash according to its name.
2397 void d_rehash(struct dentry * entry)
2399 spin_lock(&entry->d_lock);
2400 __d_rehash(entry);
2401 spin_unlock(&entry->d_lock);
2403 EXPORT_SYMBOL(d_rehash);
2405 static inline unsigned start_dir_add(struct inode *dir)
2408 for (;;) {
2409 unsigned n = dir->i_dir_seq;
2410 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2411 return n;
2412 cpu_relax();
2416 static inline void end_dir_add(struct inode *dir, unsigned n)
2418 smp_store_release(&dir->i_dir_seq, n + 2);
2421 static void d_wait_lookup(struct dentry *dentry)
2423 if (d_in_lookup(dentry)) {
2424 DECLARE_WAITQUEUE(wait, current);
2425 add_wait_queue(dentry->d_wait, &wait);
2426 do {
2427 set_current_state(TASK_UNINTERRUPTIBLE);
2428 spin_unlock(&dentry->d_lock);
2429 schedule();
2430 spin_lock(&dentry->d_lock);
2431 } while (d_in_lookup(dentry));
2435 struct dentry *d_alloc_parallel(struct dentry *parent,
2436 const struct qstr *name,
2437 wait_queue_head_t *wq)
2439 unsigned int hash = name->hash;
2440 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2441 struct hlist_bl_node *node;
2442 struct dentry *new = d_alloc(parent, name);
2443 struct dentry *dentry;
2444 unsigned seq, r_seq, d_seq;
2446 if (unlikely(!new))
2447 return ERR_PTR(-ENOMEM);
2449 retry:
2450 rcu_read_lock();
2451 seq = smp_load_acquire(&parent->d_inode->i_dir_seq) & ~1;
2452 r_seq = read_seqbegin(&rename_lock);
2453 dentry = __d_lookup_rcu(parent, name, &d_seq);
2454 if (unlikely(dentry)) {
2455 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2456 rcu_read_unlock();
2457 goto retry;
2459 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2460 rcu_read_unlock();
2461 dput(dentry);
2462 goto retry;
2464 rcu_read_unlock();
2465 dput(new);
2466 return dentry;
2468 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2469 rcu_read_unlock();
2470 goto retry;
2472 hlist_bl_lock(b);
2473 if (unlikely(parent->d_inode->i_dir_seq != seq)) {
2474 hlist_bl_unlock(b);
2475 rcu_read_unlock();
2476 goto retry;
2479 * No changes for the parent since the beginning of d_lookup().
2480 * Since all removals from the chain happen with hlist_bl_lock(),
2481 * any potential in-lookup matches are going to stay here until
2482 * we unlock the chain. All fields are stable in everything
2483 * we encounter.
2485 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2486 if (dentry->d_name.hash != hash)
2487 continue;
2488 if (dentry->d_parent != parent)
2489 continue;
2490 if (!d_same_name(dentry, parent, name))
2491 continue;
2492 hlist_bl_unlock(b);
2493 /* now we can try to grab a reference */
2494 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2495 rcu_read_unlock();
2496 goto retry;
2499 rcu_read_unlock();
2501 * somebody is likely to be still doing lookup for it;
2502 * wait for them to finish
2504 spin_lock(&dentry->d_lock);
2505 d_wait_lookup(dentry);
2507 * it's not in-lookup anymore; in principle we should repeat
2508 * everything from dcache lookup, but it's likely to be what
2509 * d_lookup() would've found anyway. If it is, just return it;
2510 * otherwise we really have to repeat the whole thing.
2512 if (unlikely(dentry->d_name.hash != hash))
2513 goto mismatch;
2514 if (unlikely(dentry->d_parent != parent))
2515 goto mismatch;
2516 if (unlikely(d_unhashed(dentry)))
2517 goto mismatch;
2518 if (unlikely(!d_same_name(dentry, parent, name)))
2519 goto mismatch;
2520 /* OK, it *is* a hashed match; return it */
2521 spin_unlock(&dentry->d_lock);
2522 dput(new);
2523 return dentry;
2525 rcu_read_unlock();
2526 /* we can't take ->d_lock here; it's OK, though. */
2527 new->d_flags |= DCACHE_PAR_LOOKUP;
2528 new->d_wait = wq;
2529 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2530 hlist_bl_unlock(b);
2531 return new;
2532 mismatch:
2533 spin_unlock(&dentry->d_lock);
2534 dput(dentry);
2535 goto retry;
2537 EXPORT_SYMBOL(d_alloc_parallel);
2539 void __d_lookup_done(struct dentry *dentry)
2541 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2542 dentry->d_name.hash);
2543 hlist_bl_lock(b);
2544 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2545 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2546 wake_up_all(dentry->d_wait);
2547 dentry->d_wait = NULL;
2548 hlist_bl_unlock(b);
2549 INIT_HLIST_NODE(&dentry->d_u.d_alias);
2550 INIT_LIST_HEAD(&dentry->d_lru);
2552 EXPORT_SYMBOL(__d_lookup_done);
2554 /* inode->i_lock held if inode is non-NULL */
2556 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2558 struct inode *dir = NULL;
2559 unsigned n;
2560 spin_lock(&dentry->d_lock);
2561 if (unlikely(d_in_lookup(dentry))) {
2562 dir = dentry->d_parent->d_inode;
2563 n = start_dir_add(dir);
2564 __d_lookup_done(dentry);
2566 if (inode) {
2567 unsigned add_flags = d_flags_for_inode(inode);
2568 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2569 raw_write_seqcount_begin(&dentry->d_seq);
2570 __d_set_inode_and_type(dentry, inode, add_flags);
2571 raw_write_seqcount_end(&dentry->d_seq);
2572 fsnotify_update_flags(dentry);
2574 __d_rehash(dentry);
2575 if (dir)
2576 end_dir_add(dir, n);
2577 spin_unlock(&dentry->d_lock);
2578 if (inode)
2579 spin_unlock(&inode->i_lock);
2583 * d_add - add dentry to hash queues
2584 * @entry: dentry to add
2585 * @inode: The inode to attach to this dentry
2587 * This adds the entry to the hash queues and initializes @inode.
2588 * The entry was actually filled in earlier during d_alloc().
2591 void d_add(struct dentry *entry, struct inode *inode)
2593 if (inode) {
2594 security_d_instantiate(entry, inode);
2595 spin_lock(&inode->i_lock);
2597 __d_add(entry, inode);
2599 EXPORT_SYMBOL(d_add);
2602 * d_exact_alias - find and hash an exact unhashed alias
2603 * @entry: dentry to add
2604 * @inode: The inode to go with this dentry
2606 * If an unhashed dentry with the same name/parent and desired
2607 * inode already exists, hash and return it. Otherwise, return
2608 * NULL.
2610 * Parent directory should be locked.
2612 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2614 struct dentry *alias;
2615 unsigned int hash = entry->d_name.hash;
2617 spin_lock(&inode->i_lock);
2618 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2620 * Don't need alias->d_lock here, because aliases with
2621 * d_parent == entry->d_parent are not subject to name or
2622 * parent changes, because the parent inode i_mutex is held.
2624 if (alias->d_name.hash != hash)
2625 continue;
2626 if (alias->d_parent != entry->d_parent)
2627 continue;
2628 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2629 continue;
2630 spin_lock(&alias->d_lock);
2631 if (!d_unhashed(alias)) {
2632 spin_unlock(&alias->d_lock);
2633 alias = NULL;
2634 } else {
2635 __dget_dlock(alias);
2636 __d_rehash(alias);
2637 spin_unlock(&alias->d_lock);
2639 spin_unlock(&inode->i_lock);
2640 return alias;
2642 spin_unlock(&inode->i_lock);
2643 return NULL;
2645 EXPORT_SYMBOL(d_exact_alias);
2648 * dentry_update_name_case - update case insensitive dentry with a new name
2649 * @dentry: dentry to be updated
2650 * @name: new name
2652 * Update a case insensitive dentry with new case of name.
2654 * dentry must have been returned by d_lookup with name @name. Old and new
2655 * name lengths must match (ie. no d_compare which allows mismatched name
2656 * lengths).
2658 * Parent inode i_mutex must be held over d_lookup and into this call (to
2659 * keep renames and concurrent inserts, and readdir(2) away).
2661 void dentry_update_name_case(struct dentry *dentry, const struct qstr *name)
2663 BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
2664 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2666 spin_lock(&dentry->d_lock);
2667 write_seqcount_begin(&dentry->d_seq);
2668 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2669 write_seqcount_end(&dentry->d_seq);
2670 spin_unlock(&dentry->d_lock);
2672 EXPORT_SYMBOL(dentry_update_name_case);
2674 static void swap_names(struct dentry *dentry, struct dentry *target)
2676 if (unlikely(dname_external(target))) {
2677 if (unlikely(dname_external(dentry))) {
2679 * Both external: swap the pointers
2681 swap(target->d_name.name, dentry->d_name.name);
2682 } else {
2684 * dentry:internal, target:external. Steal target's
2685 * storage and make target internal.
2687 memcpy(target->d_iname, dentry->d_name.name,
2688 dentry->d_name.len + 1);
2689 dentry->d_name.name = target->d_name.name;
2690 target->d_name.name = target->d_iname;
2692 } else {
2693 if (unlikely(dname_external(dentry))) {
2695 * dentry:external, target:internal. Give dentry's
2696 * storage to target and make dentry internal
2698 memcpy(dentry->d_iname, target->d_name.name,
2699 target->d_name.len + 1);
2700 target->d_name.name = dentry->d_name.name;
2701 dentry->d_name.name = dentry->d_iname;
2702 } else {
2704 * Both are internal.
2706 unsigned int i;
2707 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2708 kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN);
2709 kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN);
2710 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2711 swap(((long *) &dentry->d_iname)[i],
2712 ((long *) &target->d_iname)[i]);
2716 swap(dentry->d_name.hash_len, target->d_name.hash_len);
2719 static void copy_name(struct dentry *dentry, struct dentry *target)
2721 struct external_name *old_name = NULL;
2722 if (unlikely(dname_external(dentry)))
2723 old_name = external_name(dentry);
2724 if (unlikely(dname_external(target))) {
2725 atomic_inc(&external_name(target)->u.count);
2726 dentry->d_name = target->d_name;
2727 } else {
2728 memcpy(dentry->d_iname, target->d_name.name,
2729 target->d_name.len + 1);
2730 dentry->d_name.name = dentry->d_iname;
2731 dentry->d_name.hash_len = target->d_name.hash_len;
2733 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2734 kfree_rcu(old_name, u.head);
2737 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2740 * XXXX: do we really need to take target->d_lock?
2742 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2743 spin_lock(&target->d_parent->d_lock);
2744 else {
2745 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2746 spin_lock(&dentry->d_parent->d_lock);
2747 spin_lock_nested(&target->d_parent->d_lock,
2748 DENTRY_D_LOCK_NESTED);
2749 } else {
2750 spin_lock(&target->d_parent->d_lock);
2751 spin_lock_nested(&dentry->d_parent->d_lock,
2752 DENTRY_D_LOCK_NESTED);
2755 if (target < dentry) {
2756 spin_lock_nested(&target->d_lock, 2);
2757 spin_lock_nested(&dentry->d_lock, 3);
2758 } else {
2759 spin_lock_nested(&dentry->d_lock, 2);
2760 spin_lock_nested(&target->d_lock, 3);
2764 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2766 if (target->d_parent != dentry->d_parent)
2767 spin_unlock(&dentry->d_parent->d_lock);
2768 if (target->d_parent != target)
2769 spin_unlock(&target->d_parent->d_lock);
2770 spin_unlock(&target->d_lock);
2771 spin_unlock(&dentry->d_lock);
2775 * When switching names, the actual string doesn't strictly have to
2776 * be preserved in the target - because we're dropping the target
2777 * anyway. As such, we can just do a simple memcpy() to copy over
2778 * the new name before we switch, unless we are going to rehash
2779 * it. Note that if we *do* unhash the target, we are not allowed
2780 * to rehash it without giving it a new name/hash key - whether
2781 * we swap or overwrite the names here, resulting name won't match
2782 * the reality in filesystem; it's only there for d_path() purposes.
2783 * Note that all of this is happening under rename_lock, so the
2784 * any hash lookup seeing it in the middle of manipulations will
2785 * be discarded anyway. So we do not care what happens to the hash
2786 * key in that case.
2789 * __d_move - move a dentry
2790 * @dentry: entry to move
2791 * @target: new dentry
2792 * @exchange: exchange the two dentries
2794 * Update the dcache to reflect the move of a file name. Negative
2795 * dcache entries should not be moved in this way. Caller must hold
2796 * rename_lock, the i_mutex of the source and target directories,
2797 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2799 static void __d_move(struct dentry *dentry, struct dentry *target,
2800 bool exchange)
2802 struct inode *dir = NULL;
2803 unsigned n;
2804 if (!dentry->d_inode)
2805 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2807 BUG_ON(d_ancestor(dentry, target));
2808 BUG_ON(d_ancestor(target, dentry));
2810 dentry_lock_for_move(dentry, target);
2811 if (unlikely(d_in_lookup(target))) {
2812 dir = target->d_parent->d_inode;
2813 n = start_dir_add(dir);
2814 __d_lookup_done(target);
2817 write_seqcount_begin(&dentry->d_seq);
2818 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2820 /* unhash both */
2821 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2822 __d_drop(dentry);
2823 __d_drop(target);
2825 /* Switch the names.. */
2826 if (exchange)
2827 swap_names(dentry, target);
2828 else
2829 copy_name(dentry, target);
2831 /* rehash in new place(s) */
2832 __d_rehash(dentry);
2833 if (exchange)
2834 __d_rehash(target);
2836 /* ... and switch them in the tree */
2837 if (IS_ROOT(dentry)) {
2838 /* splicing a tree */
2839 dentry->d_flags |= DCACHE_RCUACCESS;
2840 dentry->d_parent = target->d_parent;
2841 target->d_parent = target;
2842 list_del_init(&target->d_child);
2843 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2844 } else {
2845 /* swapping two dentries */
2846 swap(dentry->d_parent, target->d_parent);
2847 list_move(&target->d_child, &target->d_parent->d_subdirs);
2848 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2849 if (exchange)
2850 fsnotify_update_flags(target);
2851 fsnotify_update_flags(dentry);
2854 write_seqcount_end(&target->d_seq);
2855 write_seqcount_end(&dentry->d_seq);
2857 if (dir)
2858 end_dir_add(dir, n);
2859 dentry_unlock_for_move(dentry, target);
2863 * d_move - move a dentry
2864 * @dentry: entry to move
2865 * @target: new dentry
2867 * Update the dcache to reflect the move of a file name. Negative
2868 * dcache entries should not be moved in this way. See the locking
2869 * requirements for __d_move.
2871 void d_move(struct dentry *dentry, struct dentry *target)
2873 write_seqlock(&rename_lock);
2874 __d_move(dentry, target, false);
2875 write_sequnlock(&rename_lock);
2877 EXPORT_SYMBOL(d_move);
2880 * d_exchange - exchange two dentries
2881 * @dentry1: first dentry
2882 * @dentry2: second dentry
2884 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2886 write_seqlock(&rename_lock);
2888 WARN_ON(!dentry1->d_inode);
2889 WARN_ON(!dentry2->d_inode);
2890 WARN_ON(IS_ROOT(dentry1));
2891 WARN_ON(IS_ROOT(dentry2));
2893 __d_move(dentry1, dentry2, true);
2895 write_sequnlock(&rename_lock);
2899 * d_ancestor - search for an ancestor
2900 * @p1: ancestor dentry
2901 * @p2: child dentry
2903 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2904 * an ancestor of p2, else NULL.
2906 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2908 struct dentry *p;
2910 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2911 if (p->d_parent == p1)
2912 return p;
2914 return NULL;
2918 * This helper attempts to cope with remotely renamed directories
2920 * It assumes that the caller is already holding
2921 * dentry->d_parent->d_inode->i_mutex, and rename_lock
2923 * Note: If ever the locking in lock_rename() changes, then please
2924 * remember to update this too...
2926 static int __d_unalias(struct inode *inode,
2927 struct dentry *dentry, struct dentry *alias)
2929 struct mutex *m1 = NULL;
2930 struct rw_semaphore *m2 = NULL;
2931 int ret = -ESTALE;
2933 /* If alias and dentry share a parent, then no extra locks required */
2934 if (alias->d_parent == dentry->d_parent)
2935 goto out_unalias;
2937 /* See lock_rename() */
2938 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2939 goto out_err;
2940 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2941 if (!inode_trylock_shared(alias->d_parent->d_inode))
2942 goto out_err;
2943 m2 = &alias->d_parent->d_inode->i_rwsem;
2944 out_unalias:
2945 __d_move(alias, dentry, false);
2946 ret = 0;
2947 out_err:
2948 if (m2)
2949 up_read(m2);
2950 if (m1)
2951 mutex_unlock(m1);
2952 return ret;
2956 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2957 * @inode: the inode which may have a disconnected dentry
2958 * @dentry: a negative dentry which we want to point to the inode.
2960 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2961 * place of the given dentry and return it, else simply d_add the inode
2962 * to the dentry and return NULL.
2964 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2965 * we should error out: directories can't have multiple aliases.
2967 * This is needed in the lookup routine of any filesystem that is exportable
2968 * (via knfsd) so that we can build dcache paths to directories effectively.
2970 * If a dentry was found and moved, then it is returned. Otherwise NULL
2971 * is returned. This matches the expected return value of ->lookup.
2973 * Cluster filesystems may call this function with a negative, hashed dentry.
2974 * In that case, we know that the inode will be a regular file, and also this
2975 * will only occur during atomic_open. So we need to check for the dentry
2976 * being already hashed only in the final case.
2978 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2980 if (IS_ERR(inode))
2981 return ERR_CAST(inode);
2983 BUG_ON(!d_unhashed(dentry));
2985 if (!inode)
2986 goto out;
2988 security_d_instantiate(dentry, inode);
2989 spin_lock(&inode->i_lock);
2990 if (S_ISDIR(inode->i_mode)) {
2991 struct dentry *new = __d_find_any_alias(inode);
2992 if (unlikely(new)) {
2993 /* The reference to new ensures it remains an alias */
2994 spin_unlock(&inode->i_lock);
2995 write_seqlock(&rename_lock);
2996 if (unlikely(d_ancestor(new, dentry))) {
2997 write_sequnlock(&rename_lock);
2998 dput(new);
2999 new = ERR_PTR(-ELOOP);
3000 pr_warn_ratelimited(
3001 "VFS: Lookup of '%s' in %s %s"
3002 " would have caused loop\n",
3003 dentry->d_name.name,
3004 inode->i_sb->s_type->name,
3005 inode->i_sb->s_id);
3006 } else if (!IS_ROOT(new)) {
3007 int err = __d_unalias(inode, dentry, new);
3008 write_sequnlock(&rename_lock);
3009 if (err) {
3010 dput(new);
3011 new = ERR_PTR(err);
3013 } else {
3014 __d_move(new, dentry, false);
3015 write_sequnlock(&rename_lock);
3017 iput(inode);
3018 return new;
3021 out:
3022 __d_add(dentry, inode);
3023 return NULL;
3025 EXPORT_SYMBOL(d_splice_alias);
3027 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
3029 *buflen -= namelen;
3030 if (*buflen < 0)
3031 return -ENAMETOOLONG;
3032 *buffer -= namelen;
3033 memcpy(*buffer, str, namelen);
3034 return 0;
3038 * prepend_name - prepend a pathname in front of current buffer pointer
3039 * @buffer: buffer pointer
3040 * @buflen: allocated length of the buffer
3041 * @name: name string and length qstr structure
3043 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
3044 * make sure that either the old or the new name pointer and length are
3045 * fetched. However, there may be mismatch between length and pointer.
3046 * The length cannot be trusted, we need to copy it byte-by-byte until
3047 * the length is reached or a null byte is found. It also prepends "/" at
3048 * the beginning of the name. The sequence number check at the caller will
3049 * retry it again when a d_move() does happen. So any garbage in the buffer
3050 * due to mismatched pointer and length will be discarded.
3052 * Data dependency barrier is needed to make sure that we see that terminating
3053 * NUL. Alpha strikes again, film at 11...
3055 static int prepend_name(char **buffer, int *buflen, const struct qstr *name)
3057 const char *dname = ACCESS_ONCE(name->name);
3058 u32 dlen = ACCESS_ONCE(name->len);
3059 char *p;
3061 smp_read_barrier_depends();
3063 *buflen -= dlen + 1;
3064 if (*buflen < 0)
3065 return -ENAMETOOLONG;
3066 p = *buffer -= dlen + 1;
3067 *p++ = '/';
3068 while (dlen--) {
3069 char c = *dname++;
3070 if (!c)
3071 break;
3072 *p++ = c;
3074 return 0;
3078 * prepend_path - Prepend path string to a buffer
3079 * @path: the dentry/vfsmount to report
3080 * @root: root vfsmnt/dentry
3081 * @buffer: pointer to the end of the buffer
3082 * @buflen: pointer to buffer length
3084 * The function will first try to write out the pathname without taking any
3085 * lock other than the RCU read lock to make sure that dentries won't go away.
3086 * It only checks the sequence number of the global rename_lock as any change
3087 * in the dentry's d_seq will be preceded by changes in the rename_lock
3088 * sequence number. If the sequence number had been changed, it will restart
3089 * the whole pathname back-tracing sequence again by taking the rename_lock.
3090 * In this case, there is no need to take the RCU read lock as the recursive
3091 * parent pointer references will keep the dentry chain alive as long as no
3092 * rename operation is performed.
3094 static int prepend_path(const struct path *path,
3095 const struct path *root,
3096 char **buffer, int *buflen)
3098 struct dentry *dentry;
3099 struct vfsmount *vfsmnt;
3100 struct mount *mnt;
3101 int error = 0;
3102 unsigned seq, m_seq = 0;
3103 char *bptr;
3104 int blen;
3106 rcu_read_lock();
3107 restart_mnt:
3108 read_seqbegin_or_lock(&mount_lock, &m_seq);
3109 seq = 0;
3110 rcu_read_lock();
3111 restart:
3112 bptr = *buffer;
3113 blen = *buflen;
3114 error = 0;
3115 dentry = path->dentry;
3116 vfsmnt = path->mnt;
3117 mnt = real_mount(vfsmnt);
3118 read_seqbegin_or_lock(&rename_lock, &seq);
3119 while (dentry != root->dentry || vfsmnt != root->mnt) {
3120 struct dentry * parent;
3122 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
3123 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
3124 /* Escaped? */
3125 if (dentry != vfsmnt->mnt_root) {
3126 bptr = *buffer;
3127 blen = *buflen;
3128 error = 3;
3129 break;
3131 /* Global root? */
3132 if (mnt != parent) {
3133 dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
3134 mnt = parent;
3135 vfsmnt = &mnt->mnt;
3136 continue;
3138 if (!error)
3139 error = is_mounted(vfsmnt) ? 1 : 2;
3140 break;
3142 parent = dentry->d_parent;
3143 prefetch(parent);
3144 error = prepend_name(&bptr, &blen, &dentry->d_name);
3145 if (error)
3146 break;
3148 dentry = parent;
3150 if (!(seq & 1))
3151 rcu_read_unlock();
3152 if (need_seqretry(&rename_lock, seq)) {
3153 seq = 1;
3154 goto restart;
3156 done_seqretry(&rename_lock, seq);
3158 if (!(m_seq & 1))
3159 rcu_read_unlock();
3160 if (need_seqretry(&mount_lock, m_seq)) {
3161 m_seq = 1;
3162 goto restart_mnt;
3164 done_seqretry(&mount_lock, m_seq);
3166 if (error >= 0 && bptr == *buffer) {
3167 if (--blen < 0)
3168 error = -ENAMETOOLONG;
3169 else
3170 *--bptr = '/';
3172 *buffer = bptr;
3173 *buflen = blen;
3174 return error;
3178 * __d_path - return the path of a dentry
3179 * @path: the dentry/vfsmount to report
3180 * @root: root vfsmnt/dentry
3181 * @buf: buffer to return value in
3182 * @buflen: buffer length
3184 * Convert a dentry into an ASCII path name.
3186 * Returns a pointer into the buffer or an error code if the
3187 * path was too long.
3189 * "buflen" should be positive.
3191 * If the path is not reachable from the supplied root, return %NULL.
3193 char *__d_path(const struct path *path,
3194 const struct path *root,
3195 char *buf, int buflen)
3197 char *res = buf + buflen;
3198 int error;
3200 prepend(&res, &buflen, "\0", 1);
3201 error = prepend_path(path, root, &res, &buflen);
3203 if (error < 0)
3204 return ERR_PTR(error);
3205 if (error > 0)
3206 return NULL;
3207 return res;
3210 char *d_absolute_path(const struct path *path,
3211 char *buf, int buflen)
3213 struct path root = {};
3214 char *res = buf + buflen;
3215 int error;
3217 prepend(&res, &buflen, "\0", 1);
3218 error = prepend_path(path, &root, &res, &buflen);
3220 if (error > 1)
3221 error = -EINVAL;
3222 if (error < 0)
3223 return ERR_PTR(error);
3224 return res;
3228 * same as __d_path but appends "(deleted)" for unlinked files.
3230 static int path_with_deleted(const struct path *path,
3231 const struct path *root,
3232 char **buf, int *buflen)
3234 prepend(buf, buflen, "\0", 1);
3235 if (d_unlinked(path->dentry)) {
3236 int error = prepend(buf, buflen, " (deleted)", 10);
3237 if (error)
3238 return error;
3241 return prepend_path(path, root, buf, buflen);
3244 static int prepend_unreachable(char **buffer, int *buflen)
3246 return prepend(buffer, buflen, "(unreachable)", 13);
3249 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3251 unsigned seq;
3253 do {
3254 seq = read_seqcount_begin(&fs->seq);
3255 *root = fs->root;
3256 } while (read_seqcount_retry(&fs->seq, seq));
3260 * d_path - return the path of a dentry
3261 * @path: path to report
3262 * @buf: buffer to return value in
3263 * @buflen: buffer length
3265 * Convert a dentry into an ASCII path name. If the entry has been deleted
3266 * the string " (deleted)" is appended. Note that this is ambiguous.
3268 * Returns a pointer into the buffer or an error code if the path was
3269 * too long. Note: Callers should use the returned pointer, not the passed
3270 * in buffer, to use the name! The implementation often starts at an offset
3271 * into the buffer, and may leave 0 bytes at the start.
3273 * "buflen" should be positive.
3275 char *d_path(const struct path *path, char *buf, int buflen)
3277 char *res = buf + buflen;
3278 struct path root;
3279 int error;
3282 * We have various synthetic filesystems that never get mounted. On
3283 * these filesystems dentries are never used for lookup purposes, and
3284 * thus don't need to be hashed. They also don't need a name until a
3285 * user wants to identify the object in /proc/pid/fd/. The little hack
3286 * below allows us to generate a name for these objects on demand:
3288 * Some pseudo inodes are mountable. When they are mounted
3289 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3290 * and instead have d_path return the mounted path.
3292 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3293 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3294 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3296 rcu_read_lock();
3297 get_fs_root_rcu(current->fs, &root);
3298 error = path_with_deleted(path, &root, &res, &buflen);
3299 rcu_read_unlock();
3301 if (error < 0)
3302 res = ERR_PTR(error);
3303 return res;
3305 EXPORT_SYMBOL(d_path);
3308 * Helper function for dentry_operations.d_dname() members
3310 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3311 const char *fmt, ...)
3313 va_list args;
3314 char temp[64];
3315 int sz;
3317 va_start(args, fmt);
3318 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3319 va_end(args);
3321 if (sz > sizeof(temp) || sz > buflen)
3322 return ERR_PTR(-ENAMETOOLONG);
3324 buffer += buflen - sz;
3325 return memcpy(buffer, temp, sz);
3328 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3330 char *end = buffer + buflen;
3331 /* these dentries are never renamed, so d_lock is not needed */
3332 if (prepend(&end, &buflen, " (deleted)", 11) ||
3333 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3334 prepend(&end, &buflen, "/", 1))
3335 end = ERR_PTR(-ENAMETOOLONG);
3336 return end;
3338 EXPORT_SYMBOL(simple_dname);
3341 * Write full pathname from the root of the filesystem into the buffer.
3343 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3345 struct dentry *dentry;
3346 char *end, *retval;
3347 int len, seq = 0;
3348 int error = 0;
3350 if (buflen < 2)
3351 goto Elong;
3353 rcu_read_lock();
3354 restart:
3355 dentry = d;
3356 end = buf + buflen;
3357 len = buflen;
3358 prepend(&end, &len, "\0", 1);
3359 /* Get '/' right */
3360 retval = end-1;
3361 *retval = '/';
3362 read_seqbegin_or_lock(&rename_lock, &seq);
3363 while (!IS_ROOT(dentry)) {
3364 struct dentry *parent = dentry->d_parent;
3366 prefetch(parent);
3367 error = prepend_name(&end, &len, &dentry->d_name);
3368 if (error)
3369 break;
3371 retval = end;
3372 dentry = parent;
3374 if (!(seq & 1))
3375 rcu_read_unlock();
3376 if (need_seqretry(&rename_lock, seq)) {
3377 seq = 1;
3378 goto restart;
3380 done_seqretry(&rename_lock, seq);
3381 if (error)
3382 goto Elong;
3383 return retval;
3384 Elong:
3385 return ERR_PTR(-ENAMETOOLONG);
3388 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3390 return __dentry_path(dentry, buf, buflen);
3392 EXPORT_SYMBOL(dentry_path_raw);
3394 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3396 char *p = NULL;
3397 char *retval;
3399 if (d_unlinked(dentry)) {
3400 p = buf + buflen;
3401 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3402 goto Elong;
3403 buflen++;
3405 retval = __dentry_path(dentry, buf, buflen);
3406 if (!IS_ERR(retval) && p)
3407 *p = '/'; /* restore '/' overriden with '\0' */
3408 return retval;
3409 Elong:
3410 return ERR_PTR(-ENAMETOOLONG);
3413 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3414 struct path *pwd)
3416 unsigned seq;
3418 do {
3419 seq = read_seqcount_begin(&fs->seq);
3420 *root = fs->root;
3421 *pwd = fs->pwd;
3422 } while (read_seqcount_retry(&fs->seq, seq));
3426 * NOTE! The user-level library version returns a
3427 * character pointer. The kernel system call just
3428 * returns the length of the buffer filled (which
3429 * includes the ending '\0' character), or a negative
3430 * error value. So libc would do something like
3432 * char *getcwd(char * buf, size_t size)
3434 * int retval;
3436 * retval = sys_getcwd(buf, size);
3437 * if (retval >= 0)
3438 * return buf;
3439 * errno = -retval;
3440 * return NULL;
3443 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3445 int error;
3446 struct path pwd, root;
3447 char *page = __getname();
3449 if (!page)
3450 return -ENOMEM;
3452 rcu_read_lock();
3453 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3455 error = -ENOENT;
3456 if (!d_unlinked(pwd.dentry)) {
3457 unsigned long len;
3458 char *cwd = page + PATH_MAX;
3459 int buflen = PATH_MAX;
3461 prepend(&cwd, &buflen, "\0", 1);
3462 error = prepend_path(&pwd, &root, &cwd, &buflen);
3463 rcu_read_unlock();
3465 if (error < 0)
3466 goto out;
3468 /* Unreachable from current root */
3469 if (error > 0) {
3470 error = prepend_unreachable(&cwd, &buflen);
3471 if (error)
3472 goto out;
3475 error = -ERANGE;
3476 len = PATH_MAX + page - cwd;
3477 if (len <= size) {
3478 error = len;
3479 if (copy_to_user(buf, cwd, len))
3480 error = -EFAULT;
3482 } else {
3483 rcu_read_unlock();
3486 out:
3487 __putname(page);
3488 return error;
3492 * Test whether new_dentry is a subdirectory of old_dentry.
3494 * Trivially implemented using the dcache structure
3498 * is_subdir - is new dentry a subdirectory of old_dentry
3499 * @new_dentry: new dentry
3500 * @old_dentry: old dentry
3502 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3503 * Returns false otherwise.
3504 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3507 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3509 bool result;
3510 unsigned seq;
3512 if (new_dentry == old_dentry)
3513 return true;
3515 do {
3516 /* for restarting inner loop in case of seq retry */
3517 seq = read_seqbegin(&rename_lock);
3519 * Need rcu_readlock to protect against the d_parent trashing
3520 * due to d_move
3522 rcu_read_lock();
3523 if (d_ancestor(old_dentry, new_dentry))
3524 result = true;
3525 else
3526 result = false;
3527 rcu_read_unlock();
3528 } while (read_seqretry(&rename_lock, seq));
3530 return result;
3533 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3535 struct dentry *root = data;
3536 if (dentry != root) {
3537 if (d_unhashed(dentry) || !dentry->d_inode)
3538 return D_WALK_SKIP;
3540 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3541 dentry->d_flags |= DCACHE_GENOCIDE;
3542 dentry->d_lockref.count--;
3545 return D_WALK_CONTINUE;
3548 void d_genocide(struct dentry *parent)
3550 d_walk(parent, parent, d_genocide_kill, NULL);
3553 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3555 inode_dec_link_count(inode);
3556 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3557 !hlist_unhashed(&dentry->d_u.d_alias) ||
3558 !d_unlinked(dentry));
3559 spin_lock(&dentry->d_parent->d_lock);
3560 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3561 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3562 (unsigned long long)inode->i_ino);
3563 spin_unlock(&dentry->d_lock);
3564 spin_unlock(&dentry->d_parent->d_lock);
3565 d_instantiate(dentry, inode);
3567 EXPORT_SYMBOL(d_tmpfile);
3569 static __initdata unsigned long dhash_entries;
3570 static int __init set_dhash_entries(char *str)
3572 if (!str)
3573 return 0;
3574 dhash_entries = simple_strtoul(str, &str, 0);
3575 return 1;
3577 __setup("dhash_entries=", set_dhash_entries);
3579 static void __init dcache_init_early(void)
3581 /* If hashes are distributed across NUMA nodes, defer
3582 * hash allocation until vmalloc space is available.
3584 if (hashdist)
3585 return;
3587 dentry_hashtable =
3588 alloc_large_system_hash("Dentry cache",
3589 sizeof(struct hlist_bl_head),
3590 dhash_entries,
3592 HASH_EARLY | HASH_ZERO,
3593 &d_hash_shift,
3594 &d_hash_mask,
3599 static void __init dcache_init(void)
3602 * A constructor could be added for stable state like the lists,
3603 * but it is probably not worth it because of the cache nature
3604 * of the dcache.
3606 dentry_cache = KMEM_CACHE(dentry,
3607 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT);
3609 /* Hash may have been set up in dcache_init_early */
3610 if (!hashdist)
3611 return;
3613 dentry_hashtable =
3614 alloc_large_system_hash("Dentry cache",
3615 sizeof(struct hlist_bl_head),
3616 dhash_entries,
3618 HASH_ZERO,
3619 &d_hash_shift,
3620 &d_hash_mask,
3625 /* SLAB cache for __getname() consumers */
3626 struct kmem_cache *names_cachep __read_mostly;
3627 EXPORT_SYMBOL(names_cachep);
3629 EXPORT_SYMBOL(d_genocide);
3631 void __init vfs_caches_init_early(void)
3633 int i;
3635 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3636 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3638 dcache_init_early();
3639 inode_init_early();
3642 void __init vfs_caches_init(void)
3644 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3645 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3647 dcache_init();
3648 inode_init();
3649 files_init();
3650 files_maxfiles_init();
3651 mnt_init();
3652 bdev_cache_init();
3653 chrdev_init();