2 * Digital Audio (PCM) abstract layer
3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4 * Abramo Bagnara <abramo@alsa-project.org>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #include <linux/slab.h>
24 #include <linux/sched/signal.h>
25 #include <linux/time.h>
26 #include <linux/math64.h>
27 #include <linux/export.h>
28 #include <sound/core.h>
29 #include <sound/control.h>
30 #include <sound/tlv.h>
31 #include <sound/info.h>
32 #include <sound/pcm.h>
33 #include <sound/pcm_params.h>
34 #include <sound/timer.h>
36 #include "pcm_local.h"
38 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
39 #define CREATE_TRACE_POINTS
40 #include "pcm_trace.h"
42 #define trace_hwptr(substream, pos, in_interrupt)
43 #define trace_xrun(substream)
44 #define trace_hw_ptr_error(substream, reason)
45 #define trace_applptr(substream, prev, curr)
48 static int fill_silence_frames(struct snd_pcm_substream
*substream
,
49 snd_pcm_uframes_t off
, snd_pcm_uframes_t frames
);
52 * fill ring buffer with silence
53 * runtime->silence_start: starting pointer to silence area
54 * runtime->silence_filled: size filled with silence
55 * runtime->silence_threshold: threshold from application
56 * runtime->silence_size: maximal size from application
58 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
60 void snd_pcm_playback_silence(struct snd_pcm_substream
*substream
, snd_pcm_uframes_t new_hw_ptr
)
62 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
63 snd_pcm_uframes_t frames
, ofs
, transfer
;
66 if (runtime
->silence_size
< runtime
->boundary
) {
67 snd_pcm_sframes_t noise_dist
, n
;
68 snd_pcm_uframes_t appl_ptr
= READ_ONCE(runtime
->control
->appl_ptr
);
69 if (runtime
->silence_start
!= appl_ptr
) {
70 n
= appl_ptr
- runtime
->silence_start
;
72 n
+= runtime
->boundary
;
73 if ((snd_pcm_uframes_t
)n
< runtime
->silence_filled
)
74 runtime
->silence_filled
-= n
;
76 runtime
->silence_filled
= 0;
77 runtime
->silence_start
= appl_ptr
;
79 if (runtime
->silence_filled
>= runtime
->buffer_size
)
81 noise_dist
= snd_pcm_playback_hw_avail(runtime
) + runtime
->silence_filled
;
82 if (noise_dist
>= (snd_pcm_sframes_t
) runtime
->silence_threshold
)
84 frames
= runtime
->silence_threshold
- noise_dist
;
85 if (frames
> runtime
->silence_size
)
86 frames
= runtime
->silence_size
;
88 if (new_hw_ptr
== ULONG_MAX
) { /* initialization */
89 snd_pcm_sframes_t avail
= snd_pcm_playback_hw_avail(runtime
);
90 if (avail
> runtime
->buffer_size
)
91 avail
= runtime
->buffer_size
;
92 runtime
->silence_filled
= avail
> 0 ? avail
: 0;
93 runtime
->silence_start
= (runtime
->status
->hw_ptr
+
94 runtime
->silence_filled
) %
97 ofs
= runtime
->status
->hw_ptr
;
98 frames
= new_hw_ptr
- ofs
;
99 if ((snd_pcm_sframes_t
)frames
< 0)
100 frames
+= runtime
->boundary
;
101 runtime
->silence_filled
-= frames
;
102 if ((snd_pcm_sframes_t
)runtime
->silence_filled
< 0) {
103 runtime
->silence_filled
= 0;
104 runtime
->silence_start
= new_hw_ptr
;
106 runtime
->silence_start
= ofs
;
109 frames
= runtime
->buffer_size
- runtime
->silence_filled
;
111 if (snd_BUG_ON(frames
> runtime
->buffer_size
))
115 ofs
= runtime
->silence_start
% runtime
->buffer_size
;
117 transfer
= ofs
+ frames
> runtime
->buffer_size
? runtime
->buffer_size
- ofs
: frames
;
118 err
= fill_silence_frames(substream
, ofs
, transfer
);
120 runtime
->silence_filled
+= transfer
;
126 #ifdef CONFIG_SND_DEBUG
127 void snd_pcm_debug_name(struct snd_pcm_substream
*substream
,
128 char *name
, size_t len
)
130 snprintf(name
, len
, "pcmC%dD%d%c:%d",
131 substream
->pcm
->card
->number
,
132 substream
->pcm
->device
,
133 substream
->stream
? 'c' : 'p',
136 EXPORT_SYMBOL(snd_pcm_debug_name
);
139 #define XRUN_DEBUG_BASIC (1<<0)
140 #define XRUN_DEBUG_STACK (1<<1) /* dump also stack */
141 #define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */
143 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
145 #define xrun_debug(substream, mask) \
146 ((substream)->pstr->xrun_debug & (mask))
148 #define xrun_debug(substream, mask) 0
151 #define dump_stack_on_xrun(substream) do { \
152 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \
156 static void xrun(struct snd_pcm_substream
*substream
)
158 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
160 trace_xrun(substream
);
161 if (runtime
->tstamp_mode
== SNDRV_PCM_TSTAMP_ENABLE
)
162 snd_pcm_gettime(runtime
, (struct timespec
*)&runtime
->status
->tstamp
);
163 snd_pcm_stop(substream
, SNDRV_PCM_STATE_XRUN
);
164 if (xrun_debug(substream
, XRUN_DEBUG_BASIC
)) {
166 snd_pcm_debug_name(substream
, name
, sizeof(name
));
167 pcm_warn(substream
->pcm
, "XRUN: %s\n", name
);
168 dump_stack_on_xrun(substream
);
172 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
173 #define hw_ptr_error(substream, in_interrupt, reason, fmt, args...) \
175 trace_hw_ptr_error(substream, reason); \
176 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \
177 pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
178 (in_interrupt) ? 'Q' : 'P', ##args); \
179 dump_stack_on_xrun(substream); \
183 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
185 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
189 int snd_pcm_update_state(struct snd_pcm_substream
*substream
,
190 struct snd_pcm_runtime
*runtime
)
192 snd_pcm_uframes_t avail
;
194 if (substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
)
195 avail
= snd_pcm_playback_avail(runtime
);
197 avail
= snd_pcm_capture_avail(runtime
);
198 if (avail
> runtime
->avail_max
)
199 runtime
->avail_max
= avail
;
200 if (runtime
->status
->state
== SNDRV_PCM_STATE_DRAINING
) {
201 if (avail
>= runtime
->buffer_size
) {
202 snd_pcm_drain_done(substream
);
206 if (avail
>= runtime
->stop_threshold
) {
211 if (runtime
->twake
) {
212 if (avail
>= runtime
->twake
)
213 wake_up(&runtime
->tsleep
);
214 } else if (avail
>= runtime
->control
->avail_min
)
215 wake_up(&runtime
->sleep
);
219 static void update_audio_tstamp(struct snd_pcm_substream
*substream
,
220 struct timespec
*curr_tstamp
,
221 struct timespec
*audio_tstamp
)
223 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
224 u64 audio_frames
, audio_nsecs
;
225 struct timespec driver_tstamp
;
227 if (runtime
->tstamp_mode
!= SNDRV_PCM_TSTAMP_ENABLE
)
230 if (!(substream
->ops
->get_time_info
) ||
231 (runtime
->audio_tstamp_report
.actual_type
==
232 SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT
)) {
235 * provide audio timestamp derived from pointer position
236 * add delay only if requested
239 audio_frames
= runtime
->hw_ptr_wrap
+ runtime
->status
->hw_ptr
;
241 if (runtime
->audio_tstamp_config
.report_delay
) {
242 if (substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
)
243 audio_frames
-= runtime
->delay
;
245 audio_frames
+= runtime
->delay
;
247 audio_nsecs
= div_u64(audio_frames
* 1000000000LL,
249 *audio_tstamp
= ns_to_timespec(audio_nsecs
);
251 runtime
->status
->audio_tstamp
= *audio_tstamp
;
252 runtime
->status
->tstamp
= *curr_tstamp
;
255 * re-take a driver timestamp to let apps detect if the reference tstamp
256 * read by low-level hardware was provided with a delay
258 snd_pcm_gettime(substream
->runtime
, (struct timespec
*)&driver_tstamp
);
259 runtime
->driver_tstamp
= driver_tstamp
;
262 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream
*substream
,
263 unsigned int in_interrupt
)
265 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
266 snd_pcm_uframes_t pos
;
267 snd_pcm_uframes_t old_hw_ptr
, new_hw_ptr
, hw_base
;
268 snd_pcm_sframes_t hdelta
, delta
;
269 unsigned long jdelta
;
270 unsigned long curr_jiffies
;
271 struct timespec curr_tstamp
;
272 struct timespec audio_tstamp
;
273 int crossed_boundary
= 0;
275 old_hw_ptr
= runtime
->status
->hw_ptr
;
278 * group pointer, time and jiffies reads to allow for more
279 * accurate correlations/corrections.
280 * The values are stored at the end of this routine after
281 * corrections for hw_ptr position
283 pos
= substream
->ops
->pointer(substream
);
284 curr_jiffies
= jiffies
;
285 if (runtime
->tstamp_mode
== SNDRV_PCM_TSTAMP_ENABLE
) {
286 if ((substream
->ops
->get_time_info
) &&
287 (runtime
->audio_tstamp_config
.type_requested
!= SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT
)) {
288 substream
->ops
->get_time_info(substream
, &curr_tstamp
,
290 &runtime
->audio_tstamp_config
,
291 &runtime
->audio_tstamp_report
);
293 /* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
294 if (runtime
->audio_tstamp_report
.actual_type
== SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT
)
295 snd_pcm_gettime(runtime
, (struct timespec
*)&curr_tstamp
);
297 snd_pcm_gettime(runtime
, (struct timespec
*)&curr_tstamp
);
300 if (pos
== SNDRV_PCM_POS_XRUN
) {
304 if (pos
>= runtime
->buffer_size
) {
305 if (printk_ratelimit()) {
307 snd_pcm_debug_name(substream
, name
, sizeof(name
));
308 pcm_err(substream
->pcm
,
309 "invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
310 name
, pos
, runtime
->buffer_size
,
311 runtime
->period_size
);
315 pos
-= pos
% runtime
->min_align
;
316 trace_hwptr(substream
, pos
, in_interrupt
);
317 hw_base
= runtime
->hw_ptr_base
;
318 new_hw_ptr
= hw_base
+ pos
;
320 /* we know that one period was processed */
321 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
322 delta
= runtime
->hw_ptr_interrupt
+ runtime
->period_size
;
323 if (delta
> new_hw_ptr
) {
324 /* check for double acknowledged interrupts */
325 hdelta
= curr_jiffies
- runtime
->hw_ptr_jiffies
;
326 if (hdelta
> runtime
->hw_ptr_buffer_jiffies
/2 + 1) {
327 hw_base
+= runtime
->buffer_size
;
328 if (hw_base
>= runtime
->boundary
) {
332 new_hw_ptr
= hw_base
+ pos
;
337 /* new_hw_ptr might be lower than old_hw_ptr in case when */
338 /* pointer crosses the end of the ring buffer */
339 if (new_hw_ptr
< old_hw_ptr
) {
340 hw_base
+= runtime
->buffer_size
;
341 if (hw_base
>= runtime
->boundary
) {
345 new_hw_ptr
= hw_base
+ pos
;
348 delta
= new_hw_ptr
- old_hw_ptr
;
350 delta
+= runtime
->boundary
;
352 if (runtime
->no_period_wakeup
) {
353 snd_pcm_sframes_t xrun_threshold
;
355 * Without regular period interrupts, we have to check
356 * the elapsed time to detect xruns.
358 jdelta
= curr_jiffies
- runtime
->hw_ptr_jiffies
;
359 if (jdelta
< runtime
->hw_ptr_buffer_jiffies
/ 2)
361 hdelta
= jdelta
- delta
* HZ
/ runtime
->rate
;
362 xrun_threshold
= runtime
->hw_ptr_buffer_jiffies
/ 2 + 1;
363 while (hdelta
> xrun_threshold
) {
364 delta
+= runtime
->buffer_size
;
365 hw_base
+= runtime
->buffer_size
;
366 if (hw_base
>= runtime
->boundary
) {
370 new_hw_ptr
= hw_base
+ pos
;
371 hdelta
-= runtime
->hw_ptr_buffer_jiffies
;
376 /* something must be really wrong */
377 if (delta
>= runtime
->buffer_size
+ runtime
->period_size
) {
378 hw_ptr_error(substream
, in_interrupt
, "Unexpected hw_ptr",
379 "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
380 substream
->stream
, (long)pos
,
381 (long)new_hw_ptr
, (long)old_hw_ptr
);
385 /* Do jiffies check only in xrun_debug mode */
386 if (!xrun_debug(substream
, XRUN_DEBUG_JIFFIESCHECK
))
387 goto no_jiffies_check
;
389 /* Skip the jiffies check for hardwares with BATCH flag.
390 * Such hardware usually just increases the position at each IRQ,
391 * thus it can't give any strange position.
393 if (runtime
->hw
.info
& SNDRV_PCM_INFO_BATCH
)
394 goto no_jiffies_check
;
396 if (hdelta
< runtime
->delay
)
397 goto no_jiffies_check
;
398 hdelta
-= runtime
->delay
;
399 jdelta
= curr_jiffies
- runtime
->hw_ptr_jiffies
;
400 if (((hdelta
* HZ
) / runtime
->rate
) > jdelta
+ HZ
/100) {
402 (((runtime
->period_size
* HZ
) / runtime
->rate
)
404 /* move new_hw_ptr according jiffies not pos variable */
405 new_hw_ptr
= old_hw_ptr
;
407 /* use loop to avoid checks for delta overflows */
408 /* the delta value is small or zero in most cases */
410 new_hw_ptr
+= runtime
->period_size
;
411 if (new_hw_ptr
>= runtime
->boundary
) {
412 new_hw_ptr
-= runtime
->boundary
;
417 /* align hw_base to buffer_size */
418 hw_ptr_error(substream
, in_interrupt
, "hw_ptr skipping",
419 "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
420 (long)pos
, (long)hdelta
,
421 (long)runtime
->period_size
, jdelta
,
422 ((hdelta
* HZ
) / runtime
->rate
), hw_base
,
423 (unsigned long)old_hw_ptr
,
424 (unsigned long)new_hw_ptr
);
425 /* reset values to proper state */
427 hw_base
= new_hw_ptr
- (new_hw_ptr
% runtime
->buffer_size
);
430 if (delta
> runtime
->period_size
+ runtime
->period_size
/ 2) {
431 hw_ptr_error(substream
, in_interrupt
,
433 "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
434 substream
->stream
, (long)delta
,
440 if (runtime
->status
->hw_ptr
== new_hw_ptr
) {
441 update_audio_tstamp(substream
, &curr_tstamp
, &audio_tstamp
);
445 if (substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
&&
446 runtime
->silence_size
> 0)
447 snd_pcm_playback_silence(substream
, new_hw_ptr
);
450 delta
= new_hw_ptr
- runtime
->hw_ptr_interrupt
;
452 delta
+= runtime
->boundary
;
453 delta
-= (snd_pcm_uframes_t
)delta
% runtime
->period_size
;
454 runtime
->hw_ptr_interrupt
+= delta
;
455 if (runtime
->hw_ptr_interrupt
>= runtime
->boundary
)
456 runtime
->hw_ptr_interrupt
-= runtime
->boundary
;
458 runtime
->hw_ptr_base
= hw_base
;
459 runtime
->status
->hw_ptr
= new_hw_ptr
;
460 runtime
->hw_ptr_jiffies
= curr_jiffies
;
461 if (crossed_boundary
) {
462 snd_BUG_ON(crossed_boundary
!= 1);
463 runtime
->hw_ptr_wrap
+= runtime
->boundary
;
466 update_audio_tstamp(substream
, &curr_tstamp
, &audio_tstamp
);
468 return snd_pcm_update_state(substream
, runtime
);
471 /* CAUTION: call it with irq disabled */
472 int snd_pcm_update_hw_ptr(struct snd_pcm_substream
*substream
)
474 return snd_pcm_update_hw_ptr0(substream
, 0);
478 * snd_pcm_set_ops - set the PCM operators
479 * @pcm: the pcm instance
480 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
481 * @ops: the operator table
483 * Sets the given PCM operators to the pcm instance.
485 void snd_pcm_set_ops(struct snd_pcm
*pcm
, int direction
,
486 const struct snd_pcm_ops
*ops
)
488 struct snd_pcm_str
*stream
= &pcm
->streams
[direction
];
489 struct snd_pcm_substream
*substream
;
491 for (substream
= stream
->substream
; substream
!= NULL
; substream
= substream
->next
)
492 substream
->ops
= ops
;
494 EXPORT_SYMBOL(snd_pcm_set_ops
);
497 * snd_pcm_sync - set the PCM sync id
498 * @substream: the pcm substream
500 * Sets the PCM sync identifier for the card.
502 void snd_pcm_set_sync(struct snd_pcm_substream
*substream
)
504 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
506 runtime
->sync
.id32
[0] = substream
->pcm
->card
->number
;
507 runtime
->sync
.id32
[1] = -1;
508 runtime
->sync
.id32
[2] = -1;
509 runtime
->sync
.id32
[3] = -1;
511 EXPORT_SYMBOL(snd_pcm_set_sync
);
514 * Standard ioctl routine
517 static inline unsigned int div32(unsigned int a
, unsigned int b
,
528 static inline unsigned int div_down(unsigned int a
, unsigned int b
)
535 static inline unsigned int div_up(unsigned int a
, unsigned int b
)
547 static inline unsigned int mul(unsigned int a
, unsigned int b
)
551 if (div_down(UINT_MAX
, a
) < b
)
556 static inline unsigned int muldiv32(unsigned int a
, unsigned int b
,
557 unsigned int c
, unsigned int *r
)
559 u_int64_t n
= (u_int64_t
) a
* b
;
565 n
= div_u64_rem(n
, c
, r
);
574 * snd_interval_refine - refine the interval value of configurator
575 * @i: the interval value to refine
576 * @v: the interval value to refer to
578 * Refines the interval value with the reference value.
579 * The interval is changed to the range satisfying both intervals.
580 * The interval status (min, max, integer, etc.) are evaluated.
582 * Return: Positive if the value is changed, zero if it's not changed, or a
583 * negative error code.
585 int snd_interval_refine(struct snd_interval
*i
, const struct snd_interval
*v
)
588 if (snd_BUG_ON(snd_interval_empty(i
)))
590 if (i
->min
< v
->min
) {
592 i
->openmin
= v
->openmin
;
594 } else if (i
->min
== v
->min
&& !i
->openmin
&& v
->openmin
) {
598 if (i
->max
> v
->max
) {
600 i
->openmax
= v
->openmax
;
602 } else if (i
->max
== v
->max
&& !i
->openmax
&& v
->openmax
) {
606 if (!i
->integer
&& v
->integer
) {
619 } else if (!i
->openmin
&& !i
->openmax
&& i
->min
== i
->max
)
621 if (snd_interval_checkempty(i
)) {
622 snd_interval_none(i
);
627 EXPORT_SYMBOL(snd_interval_refine
);
629 static int snd_interval_refine_first(struct snd_interval
*i
)
631 if (snd_BUG_ON(snd_interval_empty(i
)))
633 if (snd_interval_single(i
))
636 i
->openmax
= i
->openmin
;
642 static int snd_interval_refine_last(struct snd_interval
*i
)
644 if (snd_BUG_ON(snd_interval_empty(i
)))
646 if (snd_interval_single(i
))
649 i
->openmin
= i
->openmax
;
655 void snd_interval_mul(const struct snd_interval
*a
, const struct snd_interval
*b
, struct snd_interval
*c
)
657 if (a
->empty
|| b
->empty
) {
658 snd_interval_none(c
);
662 c
->min
= mul(a
->min
, b
->min
);
663 c
->openmin
= (a
->openmin
|| b
->openmin
);
664 c
->max
= mul(a
->max
, b
->max
);
665 c
->openmax
= (a
->openmax
|| b
->openmax
);
666 c
->integer
= (a
->integer
&& b
->integer
);
670 * snd_interval_div - refine the interval value with division
677 * Returns non-zero if the value is changed, zero if not changed.
679 void snd_interval_div(const struct snd_interval
*a
, const struct snd_interval
*b
, struct snd_interval
*c
)
682 if (a
->empty
|| b
->empty
) {
683 snd_interval_none(c
);
687 c
->min
= div32(a
->min
, b
->max
, &r
);
688 c
->openmin
= (r
|| a
->openmin
|| b
->openmax
);
690 c
->max
= div32(a
->max
, b
->min
, &r
);
695 c
->openmax
= (a
->openmax
|| b
->openmin
);
704 * snd_interval_muldivk - refine the interval value
707 * @k: divisor (as integer)
712 * Returns non-zero if the value is changed, zero if not changed.
714 void snd_interval_muldivk(const struct snd_interval
*a
, const struct snd_interval
*b
,
715 unsigned int k
, struct snd_interval
*c
)
718 if (a
->empty
|| b
->empty
) {
719 snd_interval_none(c
);
723 c
->min
= muldiv32(a
->min
, b
->min
, k
, &r
);
724 c
->openmin
= (r
|| a
->openmin
|| b
->openmin
);
725 c
->max
= muldiv32(a
->max
, b
->max
, k
, &r
);
730 c
->openmax
= (a
->openmax
|| b
->openmax
);
735 * snd_interval_mulkdiv - refine the interval value
737 * @k: dividend 2 (as integer)
743 * Returns non-zero if the value is changed, zero if not changed.
745 void snd_interval_mulkdiv(const struct snd_interval
*a
, unsigned int k
,
746 const struct snd_interval
*b
, struct snd_interval
*c
)
749 if (a
->empty
|| b
->empty
) {
750 snd_interval_none(c
);
754 c
->min
= muldiv32(a
->min
, k
, b
->max
, &r
);
755 c
->openmin
= (r
|| a
->openmin
|| b
->openmax
);
757 c
->max
= muldiv32(a
->max
, k
, b
->min
, &r
);
762 c
->openmax
= (a
->openmax
|| b
->openmin
);
774 * snd_interval_ratnum - refine the interval value
775 * @i: interval to refine
776 * @rats_count: number of ratnum_t
777 * @rats: ratnum_t array
778 * @nump: pointer to store the resultant numerator
779 * @denp: pointer to store the resultant denominator
781 * Return: Positive if the value is changed, zero if it's not changed, or a
782 * negative error code.
784 int snd_interval_ratnum(struct snd_interval
*i
,
785 unsigned int rats_count
, const struct snd_ratnum
*rats
,
786 unsigned int *nump
, unsigned int *denp
)
788 unsigned int best_num
, best_den
;
791 struct snd_interval t
;
793 unsigned int result_num
, result_den
;
796 best_num
= best_den
= best_diff
= 0;
797 for (k
= 0; k
< rats_count
; ++k
) {
798 unsigned int num
= rats
[k
].num
;
800 unsigned int q
= i
->min
;
804 den
= div_up(num
, q
);
805 if (den
< rats
[k
].den_min
)
807 if (den
> rats
[k
].den_max
)
808 den
= rats
[k
].den_max
;
811 r
= (den
- rats
[k
].den_min
) % rats
[k
].den_step
;
815 diff
= num
- q
* den
;
819 diff
* best_den
< best_diff
* den
) {
829 t
.min
= div_down(best_num
, best_den
);
830 t
.openmin
= !!(best_num
% best_den
);
832 result_num
= best_num
;
833 result_diff
= best_diff
;
834 result_den
= best_den
;
835 best_num
= best_den
= best_diff
= 0;
836 for (k
= 0; k
< rats_count
; ++k
) {
837 unsigned int num
= rats
[k
].num
;
839 unsigned int q
= i
->max
;
845 den
= div_down(num
, q
);
846 if (den
> rats
[k
].den_max
)
848 if (den
< rats
[k
].den_min
)
849 den
= rats
[k
].den_min
;
852 r
= (den
- rats
[k
].den_min
) % rats
[k
].den_step
;
854 den
+= rats
[k
].den_step
- r
;
856 diff
= q
* den
- num
;
860 diff
* best_den
< best_diff
* den
) {
870 t
.max
= div_up(best_num
, best_den
);
871 t
.openmax
= !!(best_num
% best_den
);
873 err
= snd_interval_refine(i
, &t
);
877 if (snd_interval_single(i
)) {
878 if (best_diff
* result_den
< result_diff
* best_den
) {
879 result_num
= best_num
;
880 result_den
= best_den
;
889 EXPORT_SYMBOL(snd_interval_ratnum
);
892 * snd_interval_ratden - refine the interval value
893 * @i: interval to refine
894 * @rats_count: number of struct ratden
895 * @rats: struct ratden array
896 * @nump: pointer to store the resultant numerator
897 * @denp: pointer to store the resultant denominator
899 * Return: Positive if the value is changed, zero if it's not changed, or a
900 * negative error code.
902 static int snd_interval_ratden(struct snd_interval
*i
,
903 unsigned int rats_count
,
904 const struct snd_ratden
*rats
,
905 unsigned int *nump
, unsigned int *denp
)
907 unsigned int best_num
, best_diff
, best_den
;
909 struct snd_interval t
;
912 best_num
= best_den
= best_diff
= 0;
913 for (k
= 0; k
< rats_count
; ++k
) {
915 unsigned int den
= rats
[k
].den
;
916 unsigned int q
= i
->min
;
919 if (num
> rats
[k
].num_max
)
921 if (num
< rats
[k
].num_min
)
922 num
= rats
[k
].num_max
;
925 r
= (num
- rats
[k
].num_min
) % rats
[k
].num_step
;
927 num
+= rats
[k
].num_step
- r
;
929 diff
= num
- q
* den
;
931 diff
* best_den
< best_diff
* den
) {
941 t
.min
= div_down(best_num
, best_den
);
942 t
.openmin
= !!(best_num
% best_den
);
944 best_num
= best_den
= best_diff
= 0;
945 for (k
= 0; k
< rats_count
; ++k
) {
947 unsigned int den
= rats
[k
].den
;
948 unsigned int q
= i
->max
;
951 if (num
< rats
[k
].num_min
)
953 if (num
> rats
[k
].num_max
)
954 num
= rats
[k
].num_max
;
957 r
= (num
- rats
[k
].num_min
) % rats
[k
].num_step
;
961 diff
= q
* den
- num
;
963 diff
* best_den
< best_diff
* den
) {
973 t
.max
= div_up(best_num
, best_den
);
974 t
.openmax
= !!(best_num
% best_den
);
976 err
= snd_interval_refine(i
, &t
);
980 if (snd_interval_single(i
)) {
990 * snd_interval_list - refine the interval value from the list
991 * @i: the interval value to refine
992 * @count: the number of elements in the list
993 * @list: the value list
994 * @mask: the bit-mask to evaluate
996 * Refines the interval value from the list.
997 * When mask is non-zero, only the elements corresponding to bit 1 are
1000 * Return: Positive if the value is changed, zero if it's not changed, or a
1001 * negative error code.
1003 int snd_interval_list(struct snd_interval
*i
, unsigned int count
,
1004 const unsigned int *list
, unsigned int mask
)
1007 struct snd_interval list_range
;
1013 snd_interval_any(&list_range
);
1014 list_range
.min
= UINT_MAX
;
1016 for (k
= 0; k
< count
; k
++) {
1017 if (mask
&& !(mask
& (1 << k
)))
1019 if (!snd_interval_test(i
, list
[k
]))
1021 list_range
.min
= min(list_range
.min
, list
[k
]);
1022 list_range
.max
= max(list_range
.max
, list
[k
]);
1024 return snd_interval_refine(i
, &list_range
);
1026 EXPORT_SYMBOL(snd_interval_list
);
1029 * snd_interval_ranges - refine the interval value from the list of ranges
1030 * @i: the interval value to refine
1031 * @count: the number of elements in the list of ranges
1032 * @ranges: the ranges list
1033 * @mask: the bit-mask to evaluate
1035 * Refines the interval value from the list of ranges.
1036 * When mask is non-zero, only the elements corresponding to bit 1 are
1039 * Return: Positive if the value is changed, zero if it's not changed, or a
1040 * negative error code.
1042 int snd_interval_ranges(struct snd_interval
*i
, unsigned int count
,
1043 const struct snd_interval
*ranges
, unsigned int mask
)
1046 struct snd_interval range_union
;
1047 struct snd_interval range
;
1050 snd_interval_none(i
);
1053 snd_interval_any(&range_union
);
1054 range_union
.min
= UINT_MAX
;
1055 range_union
.max
= 0;
1056 for (k
= 0; k
< count
; k
++) {
1057 if (mask
&& !(mask
& (1 << k
)))
1059 snd_interval_copy(&range
, &ranges
[k
]);
1060 if (snd_interval_refine(&range
, i
) < 0)
1062 if (snd_interval_empty(&range
))
1065 if (range
.min
< range_union
.min
) {
1066 range_union
.min
= range
.min
;
1067 range_union
.openmin
= 1;
1069 if (range
.min
== range_union
.min
&& !range
.openmin
)
1070 range_union
.openmin
= 0;
1071 if (range
.max
> range_union
.max
) {
1072 range_union
.max
= range
.max
;
1073 range_union
.openmax
= 1;
1075 if (range
.max
== range_union
.max
&& !range
.openmax
)
1076 range_union
.openmax
= 0;
1078 return snd_interval_refine(i
, &range_union
);
1080 EXPORT_SYMBOL(snd_interval_ranges
);
1082 static int snd_interval_step(struct snd_interval
*i
, unsigned int step
)
1087 if (n
!= 0 || i
->openmin
) {
1093 if (n
!= 0 || i
->openmax
) {
1098 if (snd_interval_checkempty(i
)) {
1105 /* Info constraints helpers */
1108 * snd_pcm_hw_rule_add - add the hw-constraint rule
1109 * @runtime: the pcm runtime instance
1110 * @cond: condition bits
1111 * @var: the variable to evaluate
1112 * @func: the evaluation function
1113 * @private: the private data pointer passed to function
1114 * @dep: the dependent variables
1116 * Return: Zero if successful, or a negative error code on failure.
1118 int snd_pcm_hw_rule_add(struct snd_pcm_runtime
*runtime
, unsigned int cond
,
1120 snd_pcm_hw_rule_func_t func
, void *private,
1123 struct snd_pcm_hw_constraints
*constrs
= &runtime
->hw_constraints
;
1124 struct snd_pcm_hw_rule
*c
;
1127 va_start(args
, dep
);
1128 if (constrs
->rules_num
>= constrs
->rules_all
) {
1129 struct snd_pcm_hw_rule
*new;
1130 unsigned int new_rules
= constrs
->rules_all
+ 16;
1131 new = kcalloc(new_rules
, sizeof(*c
), GFP_KERNEL
);
1136 if (constrs
->rules
) {
1137 memcpy(new, constrs
->rules
,
1138 constrs
->rules_num
* sizeof(*c
));
1139 kfree(constrs
->rules
);
1141 constrs
->rules
= new;
1142 constrs
->rules_all
= new_rules
;
1144 c
= &constrs
->rules
[constrs
->rules_num
];
1148 c
->private = private;
1151 if (snd_BUG_ON(k
>= ARRAY_SIZE(c
->deps
))) {
1158 dep
= va_arg(args
, int);
1160 constrs
->rules_num
++;
1164 EXPORT_SYMBOL(snd_pcm_hw_rule_add
);
1167 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1168 * @runtime: PCM runtime instance
1169 * @var: hw_params variable to apply the mask
1170 * @mask: the bitmap mask
1172 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1174 * Return: Zero if successful, or a negative error code on failure.
1176 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime
*runtime
, snd_pcm_hw_param_t var
,
1179 struct snd_pcm_hw_constraints
*constrs
= &runtime
->hw_constraints
;
1180 struct snd_mask
*maskp
= constrs_mask(constrs
, var
);
1181 *maskp
->bits
&= mask
;
1182 memset(maskp
->bits
+ 1, 0, (SNDRV_MASK_MAX
-32) / 8); /* clear rest */
1183 if (*maskp
->bits
== 0)
1189 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1190 * @runtime: PCM runtime instance
1191 * @var: hw_params variable to apply the mask
1192 * @mask: the 64bit bitmap mask
1194 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1196 * Return: Zero if successful, or a negative error code on failure.
1198 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime
*runtime
, snd_pcm_hw_param_t var
,
1201 struct snd_pcm_hw_constraints
*constrs
= &runtime
->hw_constraints
;
1202 struct snd_mask
*maskp
= constrs_mask(constrs
, var
);
1203 maskp
->bits
[0] &= (u_int32_t
)mask
;
1204 maskp
->bits
[1] &= (u_int32_t
)(mask
>> 32);
1205 memset(maskp
->bits
+ 2, 0, (SNDRV_MASK_MAX
-64) / 8); /* clear rest */
1206 if (! maskp
->bits
[0] && ! maskp
->bits
[1])
1210 EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64
);
1213 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1214 * @runtime: PCM runtime instance
1215 * @var: hw_params variable to apply the integer constraint
1217 * Apply the constraint of integer to an interval parameter.
1219 * Return: Positive if the value is changed, zero if it's not changed, or a
1220 * negative error code.
1222 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime
*runtime
, snd_pcm_hw_param_t var
)
1224 struct snd_pcm_hw_constraints
*constrs
= &runtime
->hw_constraints
;
1225 return snd_interval_setinteger(constrs_interval(constrs
, var
));
1227 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer
);
1230 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1231 * @runtime: PCM runtime instance
1232 * @var: hw_params variable to apply the range
1233 * @min: the minimal value
1234 * @max: the maximal value
1236 * Apply the min/max range constraint to an interval parameter.
1238 * Return: Positive if the value is changed, zero if it's not changed, or a
1239 * negative error code.
1241 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime
*runtime
, snd_pcm_hw_param_t var
,
1242 unsigned int min
, unsigned int max
)
1244 struct snd_pcm_hw_constraints
*constrs
= &runtime
->hw_constraints
;
1245 struct snd_interval t
;
1248 t
.openmin
= t
.openmax
= 0;
1250 return snd_interval_refine(constrs_interval(constrs
, var
), &t
);
1252 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax
);
1254 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params
*params
,
1255 struct snd_pcm_hw_rule
*rule
)
1257 struct snd_pcm_hw_constraint_list
*list
= rule
->private;
1258 return snd_interval_list(hw_param_interval(params
, rule
->var
), list
->count
, list
->list
, list
->mask
);
1263 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1264 * @runtime: PCM runtime instance
1265 * @cond: condition bits
1266 * @var: hw_params variable to apply the list constraint
1269 * Apply the list of constraints to an interval parameter.
1271 * Return: Zero if successful, or a negative error code on failure.
1273 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime
*runtime
,
1275 snd_pcm_hw_param_t var
,
1276 const struct snd_pcm_hw_constraint_list
*l
)
1278 return snd_pcm_hw_rule_add(runtime
, cond
, var
,
1279 snd_pcm_hw_rule_list
, (void *)l
,
1282 EXPORT_SYMBOL(snd_pcm_hw_constraint_list
);
1284 static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params
*params
,
1285 struct snd_pcm_hw_rule
*rule
)
1287 struct snd_pcm_hw_constraint_ranges
*r
= rule
->private;
1288 return snd_interval_ranges(hw_param_interval(params
, rule
->var
),
1289 r
->count
, r
->ranges
, r
->mask
);
1294 * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1295 * @runtime: PCM runtime instance
1296 * @cond: condition bits
1297 * @var: hw_params variable to apply the list of range constraints
1300 * Apply the list of range constraints to an interval parameter.
1302 * Return: Zero if successful, or a negative error code on failure.
1304 int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime
*runtime
,
1306 snd_pcm_hw_param_t var
,
1307 const struct snd_pcm_hw_constraint_ranges
*r
)
1309 return snd_pcm_hw_rule_add(runtime
, cond
, var
,
1310 snd_pcm_hw_rule_ranges
, (void *)r
,
1313 EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges
);
1315 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params
*params
,
1316 struct snd_pcm_hw_rule
*rule
)
1318 const struct snd_pcm_hw_constraint_ratnums
*r
= rule
->private;
1319 unsigned int num
= 0, den
= 0;
1321 err
= snd_interval_ratnum(hw_param_interval(params
, rule
->var
),
1322 r
->nrats
, r
->rats
, &num
, &den
);
1323 if (err
>= 0 && den
&& rule
->var
== SNDRV_PCM_HW_PARAM_RATE
) {
1324 params
->rate_num
= num
;
1325 params
->rate_den
= den
;
1331 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1332 * @runtime: PCM runtime instance
1333 * @cond: condition bits
1334 * @var: hw_params variable to apply the ratnums constraint
1335 * @r: struct snd_ratnums constriants
1337 * Return: Zero if successful, or a negative error code on failure.
1339 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime
*runtime
,
1341 snd_pcm_hw_param_t var
,
1342 const struct snd_pcm_hw_constraint_ratnums
*r
)
1344 return snd_pcm_hw_rule_add(runtime
, cond
, var
,
1345 snd_pcm_hw_rule_ratnums
, (void *)r
,
1348 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums
);
1350 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params
*params
,
1351 struct snd_pcm_hw_rule
*rule
)
1353 const struct snd_pcm_hw_constraint_ratdens
*r
= rule
->private;
1354 unsigned int num
= 0, den
= 0;
1355 int err
= snd_interval_ratden(hw_param_interval(params
, rule
->var
),
1356 r
->nrats
, r
->rats
, &num
, &den
);
1357 if (err
>= 0 && den
&& rule
->var
== SNDRV_PCM_HW_PARAM_RATE
) {
1358 params
->rate_num
= num
;
1359 params
->rate_den
= den
;
1365 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1366 * @runtime: PCM runtime instance
1367 * @cond: condition bits
1368 * @var: hw_params variable to apply the ratdens constraint
1369 * @r: struct snd_ratdens constriants
1371 * Return: Zero if successful, or a negative error code on failure.
1373 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime
*runtime
,
1375 snd_pcm_hw_param_t var
,
1376 const struct snd_pcm_hw_constraint_ratdens
*r
)
1378 return snd_pcm_hw_rule_add(runtime
, cond
, var
,
1379 snd_pcm_hw_rule_ratdens
, (void *)r
,
1382 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens
);
1384 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params
*params
,
1385 struct snd_pcm_hw_rule
*rule
)
1387 unsigned int l
= (unsigned long) rule
->private;
1388 int width
= l
& 0xffff;
1389 unsigned int msbits
= l
>> 16;
1390 const struct snd_interval
*i
=
1391 hw_param_interval_c(params
, SNDRV_PCM_HW_PARAM_SAMPLE_BITS
);
1393 if (!snd_interval_single(i
))
1396 if ((snd_interval_value(i
) == width
) ||
1397 (width
== 0 && snd_interval_value(i
) > msbits
))
1398 params
->msbits
= min_not_zero(params
->msbits
, msbits
);
1404 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1405 * @runtime: PCM runtime instance
1406 * @cond: condition bits
1407 * @width: sample bits width
1408 * @msbits: msbits width
1410 * This constraint will set the number of most significant bits (msbits) if a
1411 * sample format with the specified width has been select. If width is set to 0
1412 * the msbits will be set for any sample format with a width larger than the
1415 * Return: Zero if successful, or a negative error code on failure.
1417 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime
*runtime
,
1420 unsigned int msbits
)
1422 unsigned long l
= (msbits
<< 16) | width
;
1423 return snd_pcm_hw_rule_add(runtime
, cond
, -1,
1424 snd_pcm_hw_rule_msbits
,
1426 SNDRV_PCM_HW_PARAM_SAMPLE_BITS
, -1);
1428 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits
);
1430 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params
*params
,
1431 struct snd_pcm_hw_rule
*rule
)
1433 unsigned long step
= (unsigned long) rule
->private;
1434 return snd_interval_step(hw_param_interval(params
, rule
->var
), step
);
1438 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1439 * @runtime: PCM runtime instance
1440 * @cond: condition bits
1441 * @var: hw_params variable to apply the step constraint
1444 * Return: Zero if successful, or a negative error code on failure.
1446 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime
*runtime
,
1448 snd_pcm_hw_param_t var
,
1451 return snd_pcm_hw_rule_add(runtime
, cond
, var
,
1452 snd_pcm_hw_rule_step
, (void *) step
,
1455 EXPORT_SYMBOL(snd_pcm_hw_constraint_step
);
1457 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params
*params
, struct snd_pcm_hw_rule
*rule
)
1459 static unsigned int pow2_sizes
[] = {
1460 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1461 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1462 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1463 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1465 return snd_interval_list(hw_param_interval(params
, rule
->var
),
1466 ARRAY_SIZE(pow2_sizes
), pow2_sizes
, 0);
1470 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1471 * @runtime: PCM runtime instance
1472 * @cond: condition bits
1473 * @var: hw_params variable to apply the power-of-2 constraint
1475 * Return: Zero if successful, or a negative error code on failure.
1477 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime
*runtime
,
1479 snd_pcm_hw_param_t var
)
1481 return snd_pcm_hw_rule_add(runtime
, cond
, var
,
1482 snd_pcm_hw_rule_pow2
, NULL
,
1485 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2
);
1487 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params
*params
,
1488 struct snd_pcm_hw_rule
*rule
)
1490 unsigned int base_rate
= (unsigned int)(uintptr_t)rule
->private;
1491 struct snd_interval
*rate
;
1493 rate
= hw_param_interval(params
, SNDRV_PCM_HW_PARAM_RATE
);
1494 return snd_interval_list(rate
, 1, &base_rate
, 0);
1498 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1499 * @runtime: PCM runtime instance
1500 * @base_rate: the rate at which the hardware does not resample
1502 * Return: Zero if successful, or a negative error code on failure.
1504 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime
*runtime
,
1505 unsigned int base_rate
)
1507 return snd_pcm_hw_rule_add(runtime
, SNDRV_PCM_HW_PARAMS_NORESAMPLE
,
1508 SNDRV_PCM_HW_PARAM_RATE
,
1509 snd_pcm_hw_rule_noresample_func
,
1510 (void *)(uintptr_t)base_rate
,
1511 SNDRV_PCM_HW_PARAM_RATE
, -1);
1513 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample
);
1515 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params
*params
,
1516 snd_pcm_hw_param_t var
)
1518 if (hw_is_mask(var
)) {
1519 snd_mask_any(hw_param_mask(params
, var
));
1520 params
->cmask
|= 1 << var
;
1521 params
->rmask
|= 1 << var
;
1524 if (hw_is_interval(var
)) {
1525 snd_interval_any(hw_param_interval(params
, var
));
1526 params
->cmask
|= 1 << var
;
1527 params
->rmask
|= 1 << var
;
1533 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params
*params
)
1536 memset(params
, 0, sizeof(*params
));
1537 for (k
= SNDRV_PCM_HW_PARAM_FIRST_MASK
; k
<= SNDRV_PCM_HW_PARAM_LAST_MASK
; k
++)
1538 _snd_pcm_hw_param_any(params
, k
);
1539 for (k
= SNDRV_PCM_HW_PARAM_FIRST_INTERVAL
; k
<= SNDRV_PCM_HW_PARAM_LAST_INTERVAL
; k
++)
1540 _snd_pcm_hw_param_any(params
, k
);
1543 EXPORT_SYMBOL(_snd_pcm_hw_params_any
);
1546 * snd_pcm_hw_param_value - return @params field @var value
1547 * @params: the hw_params instance
1548 * @var: parameter to retrieve
1549 * @dir: pointer to the direction (-1,0,1) or %NULL
1551 * Return: The value for field @var if it's fixed in configuration space
1552 * defined by @params. -%EINVAL otherwise.
1554 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params
*params
,
1555 snd_pcm_hw_param_t var
, int *dir
)
1557 if (hw_is_mask(var
)) {
1558 const struct snd_mask
*mask
= hw_param_mask_c(params
, var
);
1559 if (!snd_mask_single(mask
))
1563 return snd_mask_value(mask
);
1565 if (hw_is_interval(var
)) {
1566 const struct snd_interval
*i
= hw_param_interval_c(params
, var
);
1567 if (!snd_interval_single(i
))
1571 return snd_interval_value(i
);
1575 EXPORT_SYMBOL(snd_pcm_hw_param_value
);
1577 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params
*params
,
1578 snd_pcm_hw_param_t var
)
1580 if (hw_is_mask(var
)) {
1581 snd_mask_none(hw_param_mask(params
, var
));
1582 params
->cmask
|= 1 << var
;
1583 params
->rmask
|= 1 << var
;
1584 } else if (hw_is_interval(var
)) {
1585 snd_interval_none(hw_param_interval(params
, var
));
1586 params
->cmask
|= 1 << var
;
1587 params
->rmask
|= 1 << var
;
1592 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty
);
1594 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params
*params
,
1595 snd_pcm_hw_param_t var
)
1598 if (hw_is_mask(var
))
1599 changed
= snd_mask_refine_first(hw_param_mask(params
, var
));
1600 else if (hw_is_interval(var
))
1601 changed
= snd_interval_refine_first(hw_param_interval(params
, var
));
1605 params
->cmask
|= 1 << var
;
1606 params
->rmask
|= 1 << var
;
1613 * snd_pcm_hw_param_first - refine config space and return minimum value
1614 * @pcm: PCM instance
1615 * @params: the hw_params instance
1616 * @var: parameter to retrieve
1617 * @dir: pointer to the direction (-1,0,1) or %NULL
1619 * Inside configuration space defined by @params remove from @var all
1620 * values > minimum. Reduce configuration space accordingly.
1622 * Return: The minimum, or a negative error code on failure.
1624 int snd_pcm_hw_param_first(struct snd_pcm_substream
*pcm
,
1625 struct snd_pcm_hw_params
*params
,
1626 snd_pcm_hw_param_t var
, int *dir
)
1628 int changed
= _snd_pcm_hw_param_first(params
, var
);
1631 if (params
->rmask
) {
1632 int err
= snd_pcm_hw_refine(pcm
, params
);
1633 if (snd_BUG_ON(err
< 0))
1636 return snd_pcm_hw_param_value(params
, var
, dir
);
1638 EXPORT_SYMBOL(snd_pcm_hw_param_first
);
1640 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params
*params
,
1641 snd_pcm_hw_param_t var
)
1644 if (hw_is_mask(var
))
1645 changed
= snd_mask_refine_last(hw_param_mask(params
, var
));
1646 else if (hw_is_interval(var
))
1647 changed
= snd_interval_refine_last(hw_param_interval(params
, var
));
1651 params
->cmask
|= 1 << var
;
1652 params
->rmask
|= 1 << var
;
1659 * snd_pcm_hw_param_last - refine config space and return maximum value
1660 * @pcm: PCM instance
1661 * @params: the hw_params instance
1662 * @var: parameter to retrieve
1663 * @dir: pointer to the direction (-1,0,1) or %NULL
1665 * Inside configuration space defined by @params remove from @var all
1666 * values < maximum. Reduce configuration space accordingly.
1668 * Return: The maximum, or a negative error code on failure.
1670 int snd_pcm_hw_param_last(struct snd_pcm_substream
*pcm
,
1671 struct snd_pcm_hw_params
*params
,
1672 snd_pcm_hw_param_t var
, int *dir
)
1674 int changed
= _snd_pcm_hw_param_last(params
, var
);
1677 if (params
->rmask
) {
1678 int err
= snd_pcm_hw_refine(pcm
, params
);
1679 if (snd_BUG_ON(err
< 0))
1682 return snd_pcm_hw_param_value(params
, var
, dir
);
1684 EXPORT_SYMBOL(snd_pcm_hw_param_last
);
1686 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream
*substream
,
1689 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
1690 unsigned long flags
;
1691 snd_pcm_stream_lock_irqsave(substream
, flags
);
1692 if (snd_pcm_running(substream
) &&
1693 snd_pcm_update_hw_ptr(substream
) >= 0)
1694 runtime
->status
->hw_ptr
%= runtime
->buffer_size
;
1696 runtime
->status
->hw_ptr
= 0;
1697 runtime
->hw_ptr_wrap
= 0;
1699 snd_pcm_stream_unlock_irqrestore(substream
, flags
);
1703 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream
*substream
,
1706 struct snd_pcm_channel_info
*info
= arg
;
1707 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
1709 if (!(runtime
->info
& SNDRV_PCM_INFO_MMAP
)) {
1713 width
= snd_pcm_format_physical_width(runtime
->format
);
1717 switch (runtime
->access
) {
1718 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED
:
1719 case SNDRV_PCM_ACCESS_RW_INTERLEAVED
:
1720 info
->first
= info
->channel
* width
;
1721 info
->step
= runtime
->channels
* width
;
1723 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED
:
1724 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED
:
1726 size_t size
= runtime
->dma_bytes
/ runtime
->channels
;
1727 info
->first
= info
->channel
* size
* 8;
1738 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream
*substream
,
1741 struct snd_pcm_hw_params
*params
= arg
;
1742 snd_pcm_format_t format
;
1746 params
->fifo_size
= substream
->runtime
->hw
.fifo_size
;
1747 if (!(substream
->runtime
->hw
.info
& SNDRV_PCM_INFO_FIFO_IN_FRAMES
)) {
1748 format
= params_format(params
);
1749 channels
= params_channels(params
);
1750 frame_size
= snd_pcm_format_size(format
, channels
);
1752 params
->fifo_size
/= (unsigned)frame_size
;
1758 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1759 * @substream: the pcm substream instance
1760 * @cmd: ioctl command
1761 * @arg: ioctl argument
1763 * Processes the generic ioctl commands for PCM.
1764 * Can be passed as the ioctl callback for PCM ops.
1766 * Return: Zero if successful, or a negative error code on failure.
1768 int snd_pcm_lib_ioctl(struct snd_pcm_substream
*substream
,
1769 unsigned int cmd
, void *arg
)
1772 case SNDRV_PCM_IOCTL1_RESET
:
1773 return snd_pcm_lib_ioctl_reset(substream
, arg
);
1774 case SNDRV_PCM_IOCTL1_CHANNEL_INFO
:
1775 return snd_pcm_lib_ioctl_channel_info(substream
, arg
);
1776 case SNDRV_PCM_IOCTL1_FIFO_SIZE
:
1777 return snd_pcm_lib_ioctl_fifo_size(substream
, arg
);
1781 EXPORT_SYMBOL(snd_pcm_lib_ioctl
);
1784 * snd_pcm_period_elapsed - update the pcm status for the next period
1785 * @substream: the pcm substream instance
1787 * This function is called from the interrupt handler when the
1788 * PCM has processed the period size. It will update the current
1789 * pointer, wake up sleepers, etc.
1791 * Even if more than one periods have elapsed since the last call, you
1792 * have to call this only once.
1794 void snd_pcm_period_elapsed(struct snd_pcm_substream
*substream
)
1796 struct snd_pcm_runtime
*runtime
;
1797 unsigned long flags
;
1799 if (PCM_RUNTIME_CHECK(substream
))
1801 runtime
= substream
->runtime
;
1803 snd_pcm_stream_lock_irqsave(substream
, flags
);
1804 if (!snd_pcm_running(substream
) ||
1805 snd_pcm_update_hw_ptr0(substream
, 1) < 0)
1808 #ifdef CONFIG_SND_PCM_TIMER
1809 if (substream
->timer_running
)
1810 snd_timer_interrupt(substream
->timer
, 1);
1813 kill_fasync(&runtime
->fasync
, SIGIO
, POLL_IN
);
1814 snd_pcm_stream_unlock_irqrestore(substream
, flags
);
1816 EXPORT_SYMBOL(snd_pcm_period_elapsed
);
1819 * Wait until avail_min data becomes available
1820 * Returns a negative error code if any error occurs during operation.
1821 * The available space is stored on availp. When err = 0 and avail = 0
1822 * on the capture stream, it indicates the stream is in DRAINING state.
1824 static int wait_for_avail(struct snd_pcm_substream
*substream
,
1825 snd_pcm_uframes_t
*availp
)
1827 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
1828 int is_playback
= substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
;
1829 wait_queue_entry_t wait
;
1831 snd_pcm_uframes_t avail
= 0;
1832 long wait_time
, tout
;
1834 init_waitqueue_entry(&wait
, current
);
1835 set_current_state(TASK_INTERRUPTIBLE
);
1836 add_wait_queue(&runtime
->tsleep
, &wait
);
1838 if (runtime
->no_period_wakeup
)
1839 wait_time
= MAX_SCHEDULE_TIMEOUT
;
1842 if (runtime
->rate
) {
1843 long t
= runtime
->period_size
* 2 / runtime
->rate
;
1844 wait_time
= max(t
, wait_time
);
1846 wait_time
= msecs_to_jiffies(wait_time
* 1000);
1850 if (signal_pending(current
)) {
1856 * We need to check if space became available already
1857 * (and thus the wakeup happened already) first to close
1858 * the race of space already having become available.
1859 * This check must happen after been added to the waitqueue
1860 * and having current state be INTERRUPTIBLE.
1863 avail
= snd_pcm_playback_avail(runtime
);
1865 avail
= snd_pcm_capture_avail(runtime
);
1866 if (avail
>= runtime
->twake
)
1868 snd_pcm_stream_unlock_irq(substream
);
1870 tout
= schedule_timeout(wait_time
);
1872 snd_pcm_stream_lock_irq(substream
);
1873 set_current_state(TASK_INTERRUPTIBLE
);
1874 switch (runtime
->status
->state
) {
1875 case SNDRV_PCM_STATE_SUSPENDED
:
1878 case SNDRV_PCM_STATE_XRUN
:
1881 case SNDRV_PCM_STATE_DRAINING
:
1885 avail
= 0; /* indicate draining */
1887 case SNDRV_PCM_STATE_OPEN
:
1888 case SNDRV_PCM_STATE_SETUP
:
1889 case SNDRV_PCM_STATE_DISCONNECTED
:
1892 case SNDRV_PCM_STATE_PAUSED
:
1896 pcm_dbg(substream
->pcm
,
1897 "%s write error (DMA or IRQ trouble?)\n",
1898 is_playback
? "playback" : "capture");
1904 set_current_state(TASK_RUNNING
);
1905 remove_wait_queue(&runtime
->tsleep
, &wait
);
1910 typedef int (*pcm_transfer_f
)(struct snd_pcm_substream
*substream
,
1911 int channel
, unsigned long hwoff
,
1912 void *buf
, unsigned long bytes
);
1914 typedef int (*pcm_copy_f
)(struct snd_pcm_substream
*, snd_pcm_uframes_t
, void *,
1915 snd_pcm_uframes_t
, snd_pcm_uframes_t
, pcm_transfer_f
);
1917 /* calculate the target DMA-buffer position to be written/read */
1918 static void *get_dma_ptr(struct snd_pcm_runtime
*runtime
,
1919 int channel
, unsigned long hwoff
)
1921 return runtime
->dma_area
+ hwoff
+
1922 channel
* (runtime
->dma_bytes
/ runtime
->channels
);
1925 /* default copy_user ops for write; used for both interleaved and non- modes */
1926 static int default_write_copy(struct snd_pcm_substream
*substream
,
1927 int channel
, unsigned long hwoff
,
1928 void *buf
, unsigned long bytes
)
1930 if (copy_from_user(get_dma_ptr(substream
->runtime
, channel
, hwoff
),
1931 (void __user
*)buf
, bytes
))
1936 /* default copy_kernel ops for write */
1937 static int default_write_copy_kernel(struct snd_pcm_substream
*substream
,
1938 int channel
, unsigned long hwoff
,
1939 void *buf
, unsigned long bytes
)
1941 memcpy(get_dma_ptr(substream
->runtime
, channel
, hwoff
), buf
, bytes
);
1945 /* fill silence instead of copy data; called as a transfer helper
1946 * from __snd_pcm_lib_write() or directly from noninterleaved_copy() when
1947 * a NULL buffer is passed
1949 static int fill_silence(struct snd_pcm_substream
*substream
, int channel
,
1950 unsigned long hwoff
, void *buf
, unsigned long bytes
)
1952 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
1954 if (substream
->stream
!= SNDRV_PCM_STREAM_PLAYBACK
)
1956 if (substream
->ops
->fill_silence
)
1957 return substream
->ops
->fill_silence(substream
, channel
,
1960 snd_pcm_format_set_silence(runtime
->format
,
1961 get_dma_ptr(runtime
, channel
, hwoff
),
1962 bytes_to_samples(runtime
, bytes
));
1966 /* default copy_user ops for read; used for both interleaved and non- modes */
1967 static int default_read_copy(struct snd_pcm_substream
*substream
,
1968 int channel
, unsigned long hwoff
,
1969 void *buf
, unsigned long bytes
)
1971 if (copy_to_user((void __user
*)buf
,
1972 get_dma_ptr(substream
->runtime
, channel
, hwoff
),
1978 /* default copy_kernel ops for read */
1979 static int default_read_copy_kernel(struct snd_pcm_substream
*substream
,
1980 int channel
, unsigned long hwoff
,
1981 void *buf
, unsigned long bytes
)
1983 memcpy(buf
, get_dma_ptr(substream
->runtime
, channel
, hwoff
), bytes
);
1987 /* call transfer function with the converted pointers and sizes;
1988 * for interleaved mode, it's one shot for all samples
1990 static int interleaved_copy(struct snd_pcm_substream
*substream
,
1991 snd_pcm_uframes_t hwoff
, void *data
,
1992 snd_pcm_uframes_t off
,
1993 snd_pcm_uframes_t frames
,
1994 pcm_transfer_f transfer
)
1996 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
1998 /* convert to bytes */
1999 hwoff
= frames_to_bytes(runtime
, hwoff
);
2000 off
= frames_to_bytes(runtime
, off
);
2001 frames
= frames_to_bytes(runtime
, frames
);
2002 return transfer(substream
, 0, hwoff
, data
+ off
, frames
);
2005 /* call transfer function with the converted pointers and sizes for each
2006 * non-interleaved channel; when buffer is NULL, silencing instead of copying
2008 static int noninterleaved_copy(struct snd_pcm_substream
*substream
,
2009 snd_pcm_uframes_t hwoff
, void *data
,
2010 snd_pcm_uframes_t off
,
2011 snd_pcm_uframes_t frames
,
2012 pcm_transfer_f transfer
)
2014 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
2015 int channels
= runtime
->channels
;
2019 /* convert to bytes; note that it's not frames_to_bytes() here.
2020 * in non-interleaved mode, we copy for each channel, thus
2021 * each copy is n_samples bytes x channels = whole frames.
2023 off
= samples_to_bytes(runtime
, off
);
2024 frames
= samples_to_bytes(runtime
, frames
);
2025 hwoff
= samples_to_bytes(runtime
, hwoff
);
2026 for (c
= 0; c
< channels
; ++c
, ++bufs
) {
2027 if (!data
|| !*bufs
)
2028 err
= fill_silence(substream
, c
, hwoff
, NULL
, frames
);
2030 err
= transfer(substream
, c
, hwoff
, *bufs
+ off
,
2038 /* fill silence on the given buffer position;
2039 * called from snd_pcm_playback_silence()
2041 static int fill_silence_frames(struct snd_pcm_substream
*substream
,
2042 snd_pcm_uframes_t off
, snd_pcm_uframes_t frames
)
2044 if (substream
->runtime
->access
== SNDRV_PCM_ACCESS_RW_INTERLEAVED
||
2045 substream
->runtime
->access
== SNDRV_PCM_ACCESS_MMAP_INTERLEAVED
)
2046 return interleaved_copy(substream
, off
, NULL
, 0, frames
,
2049 return noninterleaved_copy(substream
, off
, NULL
, 0, frames
,
2053 /* sanity-check for read/write methods */
2054 static int pcm_sanity_check(struct snd_pcm_substream
*substream
)
2056 struct snd_pcm_runtime
*runtime
;
2057 if (PCM_RUNTIME_CHECK(substream
))
2059 runtime
= substream
->runtime
;
2060 if (snd_BUG_ON(!substream
->ops
->copy_user
&& !runtime
->dma_area
))
2062 if (runtime
->status
->state
== SNDRV_PCM_STATE_OPEN
)
2067 static int pcm_accessible_state(struct snd_pcm_runtime
*runtime
)
2069 switch (runtime
->status
->state
) {
2070 case SNDRV_PCM_STATE_PREPARED
:
2071 case SNDRV_PCM_STATE_RUNNING
:
2072 case SNDRV_PCM_STATE_PAUSED
:
2074 case SNDRV_PCM_STATE_XRUN
:
2076 case SNDRV_PCM_STATE_SUSPENDED
:
2083 /* update to the given appl_ptr and call ack callback if needed;
2084 * when an error is returned, take back to the original value
2086 int pcm_lib_apply_appl_ptr(struct snd_pcm_substream
*substream
,
2087 snd_pcm_uframes_t appl_ptr
)
2089 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
2090 snd_pcm_uframes_t old_appl_ptr
= runtime
->control
->appl_ptr
;
2093 if (old_appl_ptr
== appl_ptr
)
2096 runtime
->control
->appl_ptr
= appl_ptr
;
2097 if (substream
->ops
->ack
) {
2098 ret
= substream
->ops
->ack(substream
);
2100 runtime
->control
->appl_ptr
= old_appl_ptr
;
2105 trace_applptr(substream
, old_appl_ptr
, appl_ptr
);
2110 /* the common loop for read/write data */
2111 snd_pcm_sframes_t
__snd_pcm_lib_xfer(struct snd_pcm_substream
*substream
,
2112 void *data
, bool interleaved
,
2113 snd_pcm_uframes_t size
, bool in_kernel
)
2115 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
2116 snd_pcm_uframes_t xfer
= 0;
2117 snd_pcm_uframes_t offset
= 0;
2118 snd_pcm_uframes_t avail
;
2120 pcm_transfer_f transfer
;
2125 err
= pcm_sanity_check(substream
);
2129 is_playback
= substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
;
2131 if (runtime
->access
!= SNDRV_PCM_ACCESS_RW_INTERLEAVED
&&
2132 runtime
->channels
> 1)
2134 writer
= interleaved_copy
;
2136 if (runtime
->access
!= SNDRV_PCM_ACCESS_RW_NONINTERLEAVED
)
2138 writer
= noninterleaved_copy
;
2143 transfer
= fill_silence
;
2146 } else if (in_kernel
) {
2147 if (substream
->ops
->copy_kernel
)
2148 transfer
= substream
->ops
->copy_kernel
;
2150 transfer
= is_playback
?
2151 default_write_copy_kernel
: default_read_copy_kernel
;
2153 if (substream
->ops
->copy_user
)
2154 transfer
= (pcm_transfer_f
)substream
->ops
->copy_user
;
2156 transfer
= is_playback
?
2157 default_write_copy
: default_read_copy
;
2163 nonblock
= !!(substream
->f_flags
& O_NONBLOCK
);
2165 snd_pcm_stream_lock_irq(substream
);
2166 err
= pcm_accessible_state(runtime
);
2171 runtime
->status
->state
== SNDRV_PCM_STATE_PREPARED
&&
2172 size
>= runtime
->start_threshold
) {
2173 err
= snd_pcm_start(substream
);
2178 runtime
->twake
= runtime
->control
->avail_min
? : 1;
2179 if (runtime
->status
->state
== SNDRV_PCM_STATE_RUNNING
)
2180 snd_pcm_update_hw_ptr(substream
);
2182 avail
= snd_pcm_playback_avail(runtime
);
2184 avail
= snd_pcm_capture_avail(runtime
);
2186 snd_pcm_uframes_t frames
, appl_ptr
, appl_ofs
;
2187 snd_pcm_uframes_t cont
;
2190 runtime
->status
->state
== SNDRV_PCM_STATE_DRAINING
) {
2191 snd_pcm_stop(substream
, SNDRV_PCM_STATE_SETUP
);
2198 runtime
->twake
= min_t(snd_pcm_uframes_t
, size
,
2199 runtime
->control
->avail_min
? : 1);
2200 err
= wait_for_avail(substream
, &avail
);
2204 continue; /* draining */
2206 frames
= size
> avail
? avail
: size
;
2207 appl_ptr
= READ_ONCE(runtime
->control
->appl_ptr
);
2208 appl_ofs
= appl_ptr
% runtime
->buffer_size
;
2209 cont
= runtime
->buffer_size
- appl_ofs
;
2212 if (snd_BUG_ON(!frames
)) {
2214 snd_pcm_stream_unlock_irq(substream
);
2217 snd_pcm_stream_unlock_irq(substream
);
2218 err
= writer(substream
, appl_ofs
, data
, offset
, frames
,
2220 snd_pcm_stream_lock_irq(substream
);
2223 err
= pcm_accessible_state(runtime
);
2227 if (appl_ptr
>= runtime
->boundary
)
2228 appl_ptr
-= runtime
->boundary
;
2229 err
= pcm_lib_apply_appl_ptr(substream
, appl_ptr
);
2238 runtime
->status
->state
== SNDRV_PCM_STATE_PREPARED
&&
2239 snd_pcm_playback_hw_avail(runtime
) >= (snd_pcm_sframes_t
)runtime
->start_threshold
) {
2240 err
= snd_pcm_start(substream
);
2247 if (xfer
> 0 && err
>= 0)
2248 snd_pcm_update_state(substream
, runtime
);
2249 snd_pcm_stream_unlock_irq(substream
);
2250 return xfer
> 0 ? (snd_pcm_sframes_t
)xfer
: err
;
2252 EXPORT_SYMBOL(__snd_pcm_lib_xfer
);
2255 * standard channel mapping helpers
2258 /* default channel maps for multi-channel playbacks, up to 8 channels */
2259 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps
[] = {
2261 .map
= { SNDRV_CHMAP_MONO
} },
2263 .map
= { SNDRV_CHMAP_FL
, SNDRV_CHMAP_FR
} },
2265 .map
= { SNDRV_CHMAP_FL
, SNDRV_CHMAP_FR
,
2266 SNDRV_CHMAP_RL
, SNDRV_CHMAP_RR
} },
2268 .map
= { SNDRV_CHMAP_FL
, SNDRV_CHMAP_FR
,
2269 SNDRV_CHMAP_RL
, SNDRV_CHMAP_RR
,
2270 SNDRV_CHMAP_FC
, SNDRV_CHMAP_LFE
} },
2272 .map
= { SNDRV_CHMAP_FL
, SNDRV_CHMAP_FR
,
2273 SNDRV_CHMAP_RL
, SNDRV_CHMAP_RR
,
2274 SNDRV_CHMAP_FC
, SNDRV_CHMAP_LFE
,
2275 SNDRV_CHMAP_SL
, SNDRV_CHMAP_SR
} },
2278 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps
);
2280 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2281 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps
[] = {
2283 .map
= { SNDRV_CHMAP_MONO
} },
2285 .map
= { SNDRV_CHMAP_FL
, SNDRV_CHMAP_FR
} },
2287 .map
= { SNDRV_CHMAP_FL
, SNDRV_CHMAP_FR
,
2288 SNDRV_CHMAP_RL
, SNDRV_CHMAP_RR
} },
2290 .map
= { SNDRV_CHMAP_FL
, SNDRV_CHMAP_FR
,
2291 SNDRV_CHMAP_FC
, SNDRV_CHMAP_LFE
,
2292 SNDRV_CHMAP_RL
, SNDRV_CHMAP_RR
} },
2294 .map
= { SNDRV_CHMAP_FL
, SNDRV_CHMAP_FR
,
2295 SNDRV_CHMAP_FC
, SNDRV_CHMAP_LFE
,
2296 SNDRV_CHMAP_RL
, SNDRV_CHMAP_RR
,
2297 SNDRV_CHMAP_SL
, SNDRV_CHMAP_SR
} },
2300 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps
);
2302 static bool valid_chmap_channels(const struct snd_pcm_chmap
*info
, int ch
)
2304 if (ch
> info
->max_channels
)
2306 return !info
->channel_mask
|| (info
->channel_mask
& (1U << ch
));
2309 static int pcm_chmap_ctl_info(struct snd_kcontrol
*kcontrol
,
2310 struct snd_ctl_elem_info
*uinfo
)
2312 struct snd_pcm_chmap
*info
= snd_kcontrol_chip(kcontrol
);
2314 uinfo
->type
= SNDRV_CTL_ELEM_TYPE_INTEGER
;
2316 uinfo
->count
= info
->max_channels
;
2317 uinfo
->value
.integer
.min
= 0;
2318 uinfo
->value
.integer
.max
= SNDRV_CHMAP_LAST
;
2322 /* get callback for channel map ctl element
2323 * stores the channel position firstly matching with the current channels
2325 static int pcm_chmap_ctl_get(struct snd_kcontrol
*kcontrol
,
2326 struct snd_ctl_elem_value
*ucontrol
)
2328 struct snd_pcm_chmap
*info
= snd_kcontrol_chip(kcontrol
);
2329 unsigned int idx
= snd_ctl_get_ioffidx(kcontrol
, &ucontrol
->id
);
2330 struct snd_pcm_substream
*substream
;
2331 const struct snd_pcm_chmap_elem
*map
;
2335 substream
= snd_pcm_chmap_substream(info
, idx
);
2338 memset(ucontrol
->value
.integer
.value
, 0,
2339 sizeof(ucontrol
->value
.integer
.value
));
2340 if (!substream
->runtime
)
2341 return 0; /* no channels set */
2342 for (map
= info
->chmap
; map
->channels
; map
++) {
2344 if (map
->channels
== substream
->runtime
->channels
&&
2345 valid_chmap_channels(info
, map
->channels
)) {
2346 for (i
= 0; i
< map
->channels
; i
++)
2347 ucontrol
->value
.integer
.value
[i
] = map
->map
[i
];
2354 /* tlv callback for channel map ctl element
2355 * expands the pre-defined channel maps in a form of TLV
2357 static int pcm_chmap_ctl_tlv(struct snd_kcontrol
*kcontrol
, int op_flag
,
2358 unsigned int size
, unsigned int __user
*tlv
)
2360 struct snd_pcm_chmap
*info
= snd_kcontrol_chip(kcontrol
);
2361 const struct snd_pcm_chmap_elem
*map
;
2362 unsigned int __user
*dst
;
2369 if (put_user(SNDRV_CTL_TLVT_CONTAINER
, tlv
))
2373 for (map
= info
->chmap
; map
->channels
; map
++) {
2374 int chs_bytes
= map
->channels
* 4;
2375 if (!valid_chmap_channels(info
, map
->channels
))
2379 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED
, dst
) ||
2380 put_user(chs_bytes
, dst
+ 1))
2385 if (size
< chs_bytes
)
2389 for (c
= 0; c
< map
->channels
; c
++) {
2390 if (put_user(map
->map
[c
], dst
))
2395 if (put_user(count
, tlv
+ 1))
2400 static void pcm_chmap_ctl_private_free(struct snd_kcontrol
*kcontrol
)
2402 struct snd_pcm_chmap
*info
= snd_kcontrol_chip(kcontrol
);
2403 info
->pcm
->streams
[info
->stream
].chmap_kctl
= NULL
;
2408 * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2409 * @pcm: the assigned PCM instance
2410 * @stream: stream direction
2411 * @chmap: channel map elements (for query)
2412 * @max_channels: the max number of channels for the stream
2413 * @private_value: the value passed to each kcontrol's private_value field
2414 * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2416 * Create channel-mapping control elements assigned to the given PCM stream(s).
2417 * Return: Zero if successful, or a negative error value.
2419 int snd_pcm_add_chmap_ctls(struct snd_pcm
*pcm
, int stream
,
2420 const struct snd_pcm_chmap_elem
*chmap
,
2422 unsigned long private_value
,
2423 struct snd_pcm_chmap
**info_ret
)
2425 struct snd_pcm_chmap
*info
;
2426 struct snd_kcontrol_new knew
= {
2427 .iface
= SNDRV_CTL_ELEM_IFACE_PCM
,
2428 .access
= SNDRV_CTL_ELEM_ACCESS_READ
|
2429 SNDRV_CTL_ELEM_ACCESS_TLV_READ
|
2430 SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK
,
2431 .info
= pcm_chmap_ctl_info
,
2432 .get
= pcm_chmap_ctl_get
,
2433 .tlv
.c
= pcm_chmap_ctl_tlv
,
2437 if (WARN_ON(pcm
->streams
[stream
].chmap_kctl
))
2439 info
= kzalloc(sizeof(*info
), GFP_KERNEL
);
2443 info
->stream
= stream
;
2444 info
->chmap
= chmap
;
2445 info
->max_channels
= max_channels
;
2446 if (stream
== SNDRV_PCM_STREAM_PLAYBACK
)
2447 knew
.name
= "Playback Channel Map";
2449 knew
.name
= "Capture Channel Map";
2450 knew
.device
= pcm
->device
;
2451 knew
.count
= pcm
->streams
[stream
].substream_count
;
2452 knew
.private_value
= private_value
;
2453 info
->kctl
= snd_ctl_new1(&knew
, info
);
2458 info
->kctl
->private_free
= pcm_chmap_ctl_private_free
;
2459 err
= snd_ctl_add(pcm
->card
, info
->kctl
);
2462 pcm
->streams
[stream
].chmap_kctl
= info
->kctl
;
2467 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls
);