io_uring: do not always copy iovec in io_req_map_rw()
[linux/fpc-iii.git] / drivers / soc / ti / knav_qmss_queue.c
blob37f3db6c041c2299723f2a1a3f4bb4d8cdb658ea
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Keystone Queue Manager subsystem driver
5 * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com
6 * Authors: Sandeep Nair <sandeep_n@ti.com>
7 * Cyril Chemparathy <cyril@ti.com>
8 * Santosh Shilimkar <santosh.shilimkar@ti.com>
9 */
11 #include <linux/debugfs.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/firmware.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/module.h>
17 #include <linux/of_address.h>
18 #include <linux/of_device.h>
19 #include <linux/of_irq.h>
20 #include <linux/pm_runtime.h>
21 #include <linux/slab.h>
22 #include <linux/soc/ti/knav_qmss.h>
24 #include "knav_qmss.h"
26 static struct knav_device *kdev;
27 static DEFINE_MUTEX(knav_dev_lock);
28 #define knav_dev_lock_held() \
29 lockdep_is_held(&knav_dev_lock)
31 /* Queue manager register indices in DTS */
32 #define KNAV_QUEUE_PEEK_REG_INDEX 0
33 #define KNAV_QUEUE_STATUS_REG_INDEX 1
34 #define KNAV_QUEUE_CONFIG_REG_INDEX 2
35 #define KNAV_QUEUE_REGION_REG_INDEX 3
36 #define KNAV_QUEUE_PUSH_REG_INDEX 4
37 #define KNAV_QUEUE_POP_REG_INDEX 5
39 /* Queue manager register indices in DTS for QMSS in K2G NAVSS.
40 * There are no status and vbusm push registers on this version
41 * of QMSS. Push registers are same as pop, So all indices above 1
42 * are to be re-defined
44 #define KNAV_L_QUEUE_CONFIG_REG_INDEX 1
45 #define KNAV_L_QUEUE_REGION_REG_INDEX 2
46 #define KNAV_L_QUEUE_PUSH_REG_INDEX 3
48 /* PDSP register indices in DTS */
49 #define KNAV_QUEUE_PDSP_IRAM_REG_INDEX 0
50 #define KNAV_QUEUE_PDSP_REGS_REG_INDEX 1
51 #define KNAV_QUEUE_PDSP_INTD_REG_INDEX 2
52 #define KNAV_QUEUE_PDSP_CMD_REG_INDEX 3
54 #define knav_queue_idx_to_inst(kdev, idx) \
55 (kdev->instances + (idx << kdev->inst_shift))
57 #define for_each_handle_rcu(qh, inst) \
58 list_for_each_entry_rcu(qh, &inst->handles, list, \
59 knav_dev_lock_held())
61 #define for_each_instance(idx, inst, kdev) \
62 for (idx = 0, inst = kdev->instances; \
63 idx < (kdev)->num_queues_in_use; \
64 idx++, inst = knav_queue_idx_to_inst(kdev, idx))
66 /* All firmware file names end up here. List the firmware file names below.
67 * Newest followed by older ones. Search is done from start of the array
68 * until a firmware file is found.
70 const char *knav_acc_firmwares[] = {"ks2_qmss_pdsp_acc48.bin"};
72 static bool device_ready;
73 bool knav_qmss_device_ready(void)
75 return device_ready;
77 EXPORT_SYMBOL_GPL(knav_qmss_device_ready);
79 /**
80 * knav_queue_notify: qmss queue notfier call
82 * @inst: qmss queue instance like accumulator
84 void knav_queue_notify(struct knav_queue_inst *inst)
86 struct knav_queue *qh;
88 if (!inst)
89 return;
91 rcu_read_lock();
92 for_each_handle_rcu(qh, inst) {
93 if (atomic_read(&qh->notifier_enabled) <= 0)
94 continue;
95 if (WARN_ON(!qh->notifier_fn))
96 continue;
97 this_cpu_inc(qh->stats->notifies);
98 qh->notifier_fn(qh->notifier_fn_arg);
100 rcu_read_unlock();
102 EXPORT_SYMBOL_GPL(knav_queue_notify);
104 static irqreturn_t knav_queue_int_handler(int irq, void *_instdata)
106 struct knav_queue_inst *inst = _instdata;
108 knav_queue_notify(inst);
109 return IRQ_HANDLED;
112 static int knav_queue_setup_irq(struct knav_range_info *range,
113 struct knav_queue_inst *inst)
115 unsigned queue = inst->id - range->queue_base;
116 int ret = 0, irq;
118 if (range->flags & RANGE_HAS_IRQ) {
119 irq = range->irqs[queue].irq;
120 ret = request_irq(irq, knav_queue_int_handler, 0,
121 inst->irq_name, inst);
122 if (ret)
123 return ret;
124 disable_irq(irq);
125 if (range->irqs[queue].cpu_mask) {
126 ret = irq_set_affinity_hint(irq, range->irqs[queue].cpu_mask);
127 if (ret) {
128 dev_warn(range->kdev->dev,
129 "Failed to set IRQ affinity\n");
130 return ret;
134 return ret;
137 static void knav_queue_free_irq(struct knav_queue_inst *inst)
139 struct knav_range_info *range = inst->range;
140 unsigned queue = inst->id - inst->range->queue_base;
141 int irq;
143 if (range->flags & RANGE_HAS_IRQ) {
144 irq = range->irqs[queue].irq;
145 irq_set_affinity_hint(irq, NULL);
146 free_irq(irq, inst);
150 static inline bool knav_queue_is_busy(struct knav_queue_inst *inst)
152 return !list_empty(&inst->handles);
155 static inline bool knav_queue_is_reserved(struct knav_queue_inst *inst)
157 return inst->range->flags & RANGE_RESERVED;
160 static inline bool knav_queue_is_shared(struct knav_queue_inst *inst)
162 struct knav_queue *tmp;
164 rcu_read_lock();
165 for_each_handle_rcu(tmp, inst) {
166 if (tmp->flags & KNAV_QUEUE_SHARED) {
167 rcu_read_unlock();
168 return true;
171 rcu_read_unlock();
172 return false;
175 static inline bool knav_queue_match_type(struct knav_queue_inst *inst,
176 unsigned type)
178 if ((type == KNAV_QUEUE_QPEND) &&
179 (inst->range->flags & RANGE_HAS_IRQ)) {
180 return true;
181 } else if ((type == KNAV_QUEUE_ACC) &&
182 (inst->range->flags & RANGE_HAS_ACCUMULATOR)) {
183 return true;
184 } else if ((type == KNAV_QUEUE_GP) &&
185 !(inst->range->flags &
186 (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) {
187 return true;
189 return false;
192 static inline struct knav_queue_inst *
193 knav_queue_match_id_to_inst(struct knav_device *kdev, unsigned id)
195 struct knav_queue_inst *inst;
196 int idx;
198 for_each_instance(idx, inst, kdev) {
199 if (inst->id == id)
200 return inst;
202 return NULL;
205 static inline struct knav_queue_inst *knav_queue_find_by_id(int id)
207 if (kdev->base_id <= id &&
208 kdev->base_id + kdev->num_queues > id) {
209 id -= kdev->base_id;
210 return knav_queue_match_id_to_inst(kdev, id);
212 return NULL;
215 static struct knav_queue *__knav_queue_open(struct knav_queue_inst *inst,
216 const char *name, unsigned flags)
218 struct knav_queue *qh;
219 unsigned id;
220 int ret = 0;
222 qh = devm_kzalloc(inst->kdev->dev, sizeof(*qh), GFP_KERNEL);
223 if (!qh)
224 return ERR_PTR(-ENOMEM);
226 qh->stats = alloc_percpu(struct knav_queue_stats);
227 if (!qh->stats) {
228 ret = -ENOMEM;
229 goto err;
232 qh->flags = flags;
233 qh->inst = inst;
234 id = inst->id - inst->qmgr->start_queue;
235 qh->reg_push = &inst->qmgr->reg_push[id];
236 qh->reg_pop = &inst->qmgr->reg_pop[id];
237 qh->reg_peek = &inst->qmgr->reg_peek[id];
239 /* first opener? */
240 if (!knav_queue_is_busy(inst)) {
241 struct knav_range_info *range = inst->range;
243 inst->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL);
244 if (range->ops && range->ops->open_queue)
245 ret = range->ops->open_queue(range, inst, flags);
247 if (ret)
248 goto err;
250 list_add_tail_rcu(&qh->list, &inst->handles);
251 return qh;
253 err:
254 if (qh->stats)
255 free_percpu(qh->stats);
256 devm_kfree(inst->kdev->dev, qh);
257 return ERR_PTR(ret);
260 static struct knav_queue *
261 knav_queue_open_by_id(const char *name, unsigned id, unsigned flags)
263 struct knav_queue_inst *inst;
264 struct knav_queue *qh;
266 mutex_lock(&knav_dev_lock);
268 qh = ERR_PTR(-ENODEV);
269 inst = knav_queue_find_by_id(id);
270 if (!inst)
271 goto unlock_ret;
273 qh = ERR_PTR(-EEXIST);
274 if (!(flags & KNAV_QUEUE_SHARED) && knav_queue_is_busy(inst))
275 goto unlock_ret;
277 qh = ERR_PTR(-EBUSY);
278 if ((flags & KNAV_QUEUE_SHARED) &&
279 (knav_queue_is_busy(inst) && !knav_queue_is_shared(inst)))
280 goto unlock_ret;
282 qh = __knav_queue_open(inst, name, flags);
284 unlock_ret:
285 mutex_unlock(&knav_dev_lock);
287 return qh;
290 static struct knav_queue *knav_queue_open_by_type(const char *name,
291 unsigned type, unsigned flags)
293 struct knav_queue_inst *inst;
294 struct knav_queue *qh = ERR_PTR(-EINVAL);
295 int idx;
297 mutex_lock(&knav_dev_lock);
299 for_each_instance(idx, inst, kdev) {
300 if (knav_queue_is_reserved(inst))
301 continue;
302 if (!knav_queue_match_type(inst, type))
303 continue;
304 if (knav_queue_is_busy(inst))
305 continue;
306 qh = __knav_queue_open(inst, name, flags);
307 goto unlock_ret;
310 unlock_ret:
311 mutex_unlock(&knav_dev_lock);
312 return qh;
315 static void knav_queue_set_notify(struct knav_queue_inst *inst, bool enabled)
317 struct knav_range_info *range = inst->range;
319 if (range->ops && range->ops->set_notify)
320 range->ops->set_notify(range, inst, enabled);
323 static int knav_queue_enable_notifier(struct knav_queue *qh)
325 struct knav_queue_inst *inst = qh->inst;
326 bool first;
328 if (WARN_ON(!qh->notifier_fn))
329 return -EINVAL;
331 /* Adjust the per handle notifier count */
332 first = (atomic_inc_return(&qh->notifier_enabled) == 1);
333 if (!first)
334 return 0; /* nothing to do */
336 /* Now adjust the per instance notifier count */
337 first = (atomic_inc_return(&inst->num_notifiers) == 1);
338 if (first)
339 knav_queue_set_notify(inst, true);
341 return 0;
344 static int knav_queue_disable_notifier(struct knav_queue *qh)
346 struct knav_queue_inst *inst = qh->inst;
347 bool last;
349 last = (atomic_dec_return(&qh->notifier_enabled) == 0);
350 if (!last)
351 return 0; /* nothing to do */
353 last = (atomic_dec_return(&inst->num_notifiers) == 0);
354 if (last)
355 knav_queue_set_notify(inst, false);
357 return 0;
360 static int knav_queue_set_notifier(struct knav_queue *qh,
361 struct knav_queue_notify_config *cfg)
363 knav_queue_notify_fn old_fn = qh->notifier_fn;
365 if (!cfg)
366 return -EINVAL;
368 if (!(qh->inst->range->flags & (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ)))
369 return -ENOTSUPP;
371 if (!cfg->fn && old_fn)
372 knav_queue_disable_notifier(qh);
374 qh->notifier_fn = cfg->fn;
375 qh->notifier_fn_arg = cfg->fn_arg;
377 if (cfg->fn && !old_fn)
378 knav_queue_enable_notifier(qh);
380 return 0;
383 static int knav_gp_set_notify(struct knav_range_info *range,
384 struct knav_queue_inst *inst,
385 bool enabled)
387 unsigned queue;
389 if (range->flags & RANGE_HAS_IRQ) {
390 queue = inst->id - range->queue_base;
391 if (enabled)
392 enable_irq(range->irqs[queue].irq);
393 else
394 disable_irq_nosync(range->irqs[queue].irq);
396 return 0;
399 static int knav_gp_open_queue(struct knav_range_info *range,
400 struct knav_queue_inst *inst, unsigned flags)
402 return knav_queue_setup_irq(range, inst);
405 static int knav_gp_close_queue(struct knav_range_info *range,
406 struct knav_queue_inst *inst)
408 knav_queue_free_irq(inst);
409 return 0;
412 struct knav_range_ops knav_gp_range_ops = {
413 .set_notify = knav_gp_set_notify,
414 .open_queue = knav_gp_open_queue,
415 .close_queue = knav_gp_close_queue,
419 static int knav_queue_get_count(void *qhandle)
421 struct knav_queue *qh = qhandle;
422 struct knav_queue_inst *inst = qh->inst;
424 return readl_relaxed(&qh->reg_peek[0].entry_count) +
425 atomic_read(&inst->desc_count);
428 static void knav_queue_debug_show_instance(struct seq_file *s,
429 struct knav_queue_inst *inst)
431 struct knav_device *kdev = inst->kdev;
432 struct knav_queue *qh;
433 int cpu = 0;
434 int pushes = 0;
435 int pops = 0;
436 int push_errors = 0;
437 int pop_errors = 0;
438 int notifies = 0;
440 if (!knav_queue_is_busy(inst))
441 return;
443 seq_printf(s, "\tqueue id %d (%s)\n",
444 kdev->base_id + inst->id, inst->name);
445 for_each_handle_rcu(qh, inst) {
446 for_each_possible_cpu(cpu) {
447 pushes += per_cpu_ptr(qh->stats, cpu)->pushes;
448 pops += per_cpu_ptr(qh->stats, cpu)->pops;
449 push_errors += per_cpu_ptr(qh->stats, cpu)->push_errors;
450 pop_errors += per_cpu_ptr(qh->stats, cpu)->pop_errors;
451 notifies += per_cpu_ptr(qh->stats, cpu)->notifies;
454 seq_printf(s, "\t\thandle %p: pushes %8d, pops %8d, count %8d, notifies %8d, push errors %8d, pop errors %8d\n",
456 pushes,
457 pops,
458 knav_queue_get_count(qh),
459 notifies,
460 push_errors,
461 pop_errors);
465 static int knav_queue_debug_show(struct seq_file *s, void *v)
467 struct knav_queue_inst *inst;
468 int idx;
470 mutex_lock(&knav_dev_lock);
471 seq_printf(s, "%s: %u-%u\n",
472 dev_name(kdev->dev), kdev->base_id,
473 kdev->base_id + kdev->num_queues - 1);
474 for_each_instance(idx, inst, kdev)
475 knav_queue_debug_show_instance(s, inst);
476 mutex_unlock(&knav_dev_lock);
478 return 0;
481 static int knav_queue_debug_open(struct inode *inode, struct file *file)
483 return single_open(file, knav_queue_debug_show, NULL);
486 static const struct file_operations knav_queue_debug_ops = {
487 .open = knav_queue_debug_open,
488 .read = seq_read,
489 .llseek = seq_lseek,
490 .release = single_release,
493 static inline int knav_queue_pdsp_wait(u32 * __iomem addr, unsigned timeout,
494 u32 flags)
496 unsigned long end;
497 u32 val = 0;
499 end = jiffies + msecs_to_jiffies(timeout);
500 while (time_after(end, jiffies)) {
501 val = readl_relaxed(addr);
502 if (flags)
503 val &= flags;
504 if (!val)
505 break;
506 cpu_relax();
508 return val ? -ETIMEDOUT : 0;
512 static int knav_queue_flush(struct knav_queue *qh)
514 struct knav_queue_inst *inst = qh->inst;
515 unsigned id = inst->id - inst->qmgr->start_queue;
517 atomic_set(&inst->desc_count, 0);
518 writel_relaxed(0, &inst->qmgr->reg_push[id].ptr_size_thresh);
519 return 0;
523 * knav_queue_open() - open a hardware queue
524 * @name - name to give the queue handle
525 * @id - desired queue number if any or specifes the type
526 * of queue
527 * @flags - the following flags are applicable to queues:
528 * KNAV_QUEUE_SHARED - allow the queue to be shared. Queues are
529 * exclusive by default.
530 * Subsequent attempts to open a shared queue should
531 * also have this flag.
533 * Returns a handle to the open hardware queue if successful. Use IS_ERR()
534 * to check the returned value for error codes.
536 void *knav_queue_open(const char *name, unsigned id,
537 unsigned flags)
539 struct knav_queue *qh = ERR_PTR(-EINVAL);
541 switch (id) {
542 case KNAV_QUEUE_QPEND:
543 case KNAV_QUEUE_ACC:
544 case KNAV_QUEUE_GP:
545 qh = knav_queue_open_by_type(name, id, flags);
546 break;
548 default:
549 qh = knav_queue_open_by_id(name, id, flags);
550 break;
552 return qh;
554 EXPORT_SYMBOL_GPL(knav_queue_open);
557 * knav_queue_close() - close a hardware queue handle
558 * @qh - handle to close
560 void knav_queue_close(void *qhandle)
562 struct knav_queue *qh = qhandle;
563 struct knav_queue_inst *inst = qh->inst;
565 while (atomic_read(&qh->notifier_enabled) > 0)
566 knav_queue_disable_notifier(qh);
568 mutex_lock(&knav_dev_lock);
569 list_del_rcu(&qh->list);
570 mutex_unlock(&knav_dev_lock);
571 synchronize_rcu();
572 if (!knav_queue_is_busy(inst)) {
573 struct knav_range_info *range = inst->range;
575 if (range->ops && range->ops->close_queue)
576 range->ops->close_queue(range, inst);
578 free_percpu(qh->stats);
579 devm_kfree(inst->kdev->dev, qh);
581 EXPORT_SYMBOL_GPL(knav_queue_close);
584 * knav_queue_device_control() - Perform control operations on a queue
585 * @qh - queue handle
586 * @cmd - control commands
587 * @arg - command argument
589 * Returns 0 on success, errno otherwise.
591 int knav_queue_device_control(void *qhandle, enum knav_queue_ctrl_cmd cmd,
592 unsigned long arg)
594 struct knav_queue *qh = qhandle;
595 struct knav_queue_notify_config *cfg;
596 int ret;
598 switch ((int)cmd) {
599 case KNAV_QUEUE_GET_ID:
600 ret = qh->inst->kdev->base_id + qh->inst->id;
601 break;
603 case KNAV_QUEUE_FLUSH:
604 ret = knav_queue_flush(qh);
605 break;
607 case KNAV_QUEUE_SET_NOTIFIER:
608 cfg = (void *)arg;
609 ret = knav_queue_set_notifier(qh, cfg);
610 break;
612 case KNAV_QUEUE_ENABLE_NOTIFY:
613 ret = knav_queue_enable_notifier(qh);
614 break;
616 case KNAV_QUEUE_DISABLE_NOTIFY:
617 ret = knav_queue_disable_notifier(qh);
618 break;
620 case KNAV_QUEUE_GET_COUNT:
621 ret = knav_queue_get_count(qh);
622 break;
624 default:
625 ret = -ENOTSUPP;
626 break;
628 return ret;
630 EXPORT_SYMBOL_GPL(knav_queue_device_control);
635 * knav_queue_push() - push data (or descriptor) to the tail of a queue
636 * @qh - hardware queue handle
637 * @data - data to push
638 * @size - size of data to push
639 * @flags - can be used to pass additional information
641 * Returns 0 on success, errno otherwise.
643 int knav_queue_push(void *qhandle, dma_addr_t dma,
644 unsigned size, unsigned flags)
646 struct knav_queue *qh = qhandle;
647 u32 val;
649 val = (u32)dma | ((size / 16) - 1);
650 writel_relaxed(val, &qh->reg_push[0].ptr_size_thresh);
652 this_cpu_inc(qh->stats->pushes);
653 return 0;
655 EXPORT_SYMBOL_GPL(knav_queue_push);
658 * knav_queue_pop() - pop data (or descriptor) from the head of a queue
659 * @qh - hardware queue handle
660 * @size - (optional) size of the data pop'ed.
662 * Returns a DMA address on success, 0 on failure.
664 dma_addr_t knav_queue_pop(void *qhandle, unsigned *size)
666 struct knav_queue *qh = qhandle;
667 struct knav_queue_inst *inst = qh->inst;
668 dma_addr_t dma;
669 u32 val, idx;
671 /* are we accumulated? */
672 if (inst->descs) {
673 if (unlikely(atomic_dec_return(&inst->desc_count) < 0)) {
674 atomic_inc(&inst->desc_count);
675 return 0;
677 idx = atomic_inc_return(&inst->desc_head);
678 idx &= ACC_DESCS_MASK;
679 val = inst->descs[idx];
680 } else {
681 val = readl_relaxed(&qh->reg_pop[0].ptr_size_thresh);
682 if (unlikely(!val))
683 return 0;
686 dma = val & DESC_PTR_MASK;
687 if (size)
688 *size = ((val & DESC_SIZE_MASK) + 1) * 16;
690 this_cpu_inc(qh->stats->pops);
691 return dma;
693 EXPORT_SYMBOL_GPL(knav_queue_pop);
695 /* carve out descriptors and push into queue */
696 static void kdesc_fill_pool(struct knav_pool *pool)
698 struct knav_region *region;
699 int i;
701 region = pool->region;
702 pool->desc_size = region->desc_size;
703 for (i = 0; i < pool->num_desc; i++) {
704 int index = pool->region_offset + i;
705 dma_addr_t dma_addr;
706 unsigned dma_size;
707 dma_addr = region->dma_start + (region->desc_size * index);
708 dma_size = ALIGN(pool->desc_size, SMP_CACHE_BYTES);
709 dma_sync_single_for_device(pool->dev, dma_addr, dma_size,
710 DMA_TO_DEVICE);
711 knav_queue_push(pool->queue, dma_addr, dma_size, 0);
715 /* pop out descriptors and close the queue */
716 static void kdesc_empty_pool(struct knav_pool *pool)
718 dma_addr_t dma;
719 unsigned size;
720 void *desc;
721 int i;
723 if (!pool->queue)
724 return;
726 for (i = 0;; i++) {
727 dma = knav_queue_pop(pool->queue, &size);
728 if (!dma)
729 break;
730 desc = knav_pool_desc_dma_to_virt(pool, dma);
731 if (!desc) {
732 dev_dbg(pool->kdev->dev,
733 "couldn't unmap desc, continuing\n");
734 continue;
737 WARN_ON(i != pool->num_desc);
738 knav_queue_close(pool->queue);
742 /* Get the DMA address of a descriptor */
743 dma_addr_t knav_pool_desc_virt_to_dma(void *ph, void *virt)
745 struct knav_pool *pool = ph;
746 return pool->region->dma_start + (virt - pool->region->virt_start);
748 EXPORT_SYMBOL_GPL(knav_pool_desc_virt_to_dma);
750 void *knav_pool_desc_dma_to_virt(void *ph, dma_addr_t dma)
752 struct knav_pool *pool = ph;
753 return pool->region->virt_start + (dma - pool->region->dma_start);
755 EXPORT_SYMBOL_GPL(knav_pool_desc_dma_to_virt);
758 * knav_pool_create() - Create a pool of descriptors
759 * @name - name to give the pool handle
760 * @num_desc - numbers of descriptors in the pool
761 * @region_id - QMSS region id from which the descriptors are to be
762 * allocated.
764 * Returns a pool handle on success.
765 * Use IS_ERR_OR_NULL() to identify error values on return.
767 void *knav_pool_create(const char *name,
768 int num_desc, int region_id)
770 struct knav_region *reg_itr, *region = NULL;
771 struct knav_pool *pool, *pi;
772 struct list_head *node;
773 unsigned last_offset;
774 bool slot_found;
775 int ret;
777 if (!kdev)
778 return ERR_PTR(-EPROBE_DEFER);
780 if (!kdev->dev)
781 return ERR_PTR(-ENODEV);
783 pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
784 if (!pool) {
785 dev_err(kdev->dev, "out of memory allocating pool\n");
786 return ERR_PTR(-ENOMEM);
789 for_each_region(kdev, reg_itr) {
790 if (reg_itr->id != region_id)
791 continue;
792 region = reg_itr;
793 break;
796 if (!region) {
797 dev_err(kdev->dev, "region-id(%d) not found\n", region_id);
798 ret = -EINVAL;
799 goto err;
802 pool->queue = knav_queue_open(name, KNAV_QUEUE_GP, 0);
803 if (IS_ERR_OR_NULL(pool->queue)) {
804 dev_err(kdev->dev,
805 "failed to open queue for pool(%s), error %ld\n",
806 name, PTR_ERR(pool->queue));
807 ret = PTR_ERR(pool->queue);
808 goto err;
811 pool->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL);
812 pool->kdev = kdev;
813 pool->dev = kdev->dev;
815 mutex_lock(&knav_dev_lock);
817 if (num_desc > (region->num_desc - region->used_desc)) {
818 dev_err(kdev->dev, "out of descs in region(%d) for pool(%s)\n",
819 region_id, name);
820 ret = -ENOMEM;
821 goto err_unlock;
824 /* Region maintains a sorted (by region offset) list of pools
825 * use the first free slot which is large enough to accomodate
826 * the request
828 last_offset = 0;
829 slot_found = false;
830 node = &region->pools;
831 list_for_each_entry(pi, &region->pools, region_inst) {
832 if ((pi->region_offset - last_offset) >= num_desc) {
833 slot_found = true;
834 break;
836 last_offset = pi->region_offset + pi->num_desc;
838 node = &pi->region_inst;
840 if (slot_found) {
841 pool->region = region;
842 pool->num_desc = num_desc;
843 pool->region_offset = last_offset;
844 region->used_desc += num_desc;
845 list_add_tail(&pool->list, &kdev->pools);
846 list_add_tail(&pool->region_inst, node);
847 } else {
848 dev_err(kdev->dev, "pool(%s) create failed: fragmented desc pool in region(%d)\n",
849 name, region_id);
850 ret = -ENOMEM;
851 goto err_unlock;
854 mutex_unlock(&knav_dev_lock);
855 kdesc_fill_pool(pool);
856 return pool;
858 err_unlock:
859 mutex_unlock(&knav_dev_lock);
860 err:
861 kfree(pool->name);
862 devm_kfree(kdev->dev, pool);
863 return ERR_PTR(ret);
865 EXPORT_SYMBOL_GPL(knav_pool_create);
868 * knav_pool_destroy() - Free a pool of descriptors
869 * @pool - pool handle
871 void knav_pool_destroy(void *ph)
873 struct knav_pool *pool = ph;
875 if (!pool)
876 return;
878 if (!pool->region)
879 return;
881 kdesc_empty_pool(pool);
882 mutex_lock(&knav_dev_lock);
884 pool->region->used_desc -= pool->num_desc;
885 list_del(&pool->region_inst);
886 list_del(&pool->list);
888 mutex_unlock(&knav_dev_lock);
889 kfree(pool->name);
890 devm_kfree(kdev->dev, pool);
892 EXPORT_SYMBOL_GPL(knav_pool_destroy);
896 * knav_pool_desc_get() - Get a descriptor from the pool
897 * @pool - pool handle
899 * Returns descriptor from the pool.
901 void *knav_pool_desc_get(void *ph)
903 struct knav_pool *pool = ph;
904 dma_addr_t dma;
905 unsigned size;
906 void *data;
908 dma = knav_queue_pop(pool->queue, &size);
909 if (unlikely(!dma))
910 return ERR_PTR(-ENOMEM);
911 data = knav_pool_desc_dma_to_virt(pool, dma);
912 return data;
914 EXPORT_SYMBOL_GPL(knav_pool_desc_get);
917 * knav_pool_desc_put() - return a descriptor to the pool
918 * @pool - pool handle
920 void knav_pool_desc_put(void *ph, void *desc)
922 struct knav_pool *pool = ph;
923 dma_addr_t dma;
924 dma = knav_pool_desc_virt_to_dma(pool, desc);
925 knav_queue_push(pool->queue, dma, pool->region->desc_size, 0);
927 EXPORT_SYMBOL_GPL(knav_pool_desc_put);
930 * knav_pool_desc_map() - Map descriptor for DMA transfer
931 * @pool - pool handle
932 * @desc - address of descriptor to map
933 * @size - size of descriptor to map
934 * @dma - DMA address return pointer
935 * @dma_sz - adjusted return pointer
937 * Returns 0 on success, errno otherwise.
939 int knav_pool_desc_map(void *ph, void *desc, unsigned size,
940 dma_addr_t *dma, unsigned *dma_sz)
942 struct knav_pool *pool = ph;
943 *dma = knav_pool_desc_virt_to_dma(pool, desc);
944 size = min(size, pool->region->desc_size);
945 size = ALIGN(size, SMP_CACHE_BYTES);
946 *dma_sz = size;
947 dma_sync_single_for_device(pool->dev, *dma, size, DMA_TO_DEVICE);
949 /* Ensure the descriptor reaches to the memory */
950 __iowmb();
952 return 0;
954 EXPORT_SYMBOL_GPL(knav_pool_desc_map);
957 * knav_pool_desc_unmap() - Unmap descriptor after DMA transfer
958 * @pool - pool handle
959 * @dma - DMA address of descriptor to unmap
960 * @dma_sz - size of descriptor to unmap
962 * Returns descriptor address on success, Use IS_ERR_OR_NULL() to identify
963 * error values on return.
965 void *knav_pool_desc_unmap(void *ph, dma_addr_t dma, unsigned dma_sz)
967 struct knav_pool *pool = ph;
968 unsigned desc_sz;
969 void *desc;
971 desc_sz = min(dma_sz, pool->region->desc_size);
972 desc = knav_pool_desc_dma_to_virt(pool, dma);
973 dma_sync_single_for_cpu(pool->dev, dma, desc_sz, DMA_FROM_DEVICE);
974 prefetch(desc);
975 return desc;
977 EXPORT_SYMBOL_GPL(knav_pool_desc_unmap);
980 * knav_pool_count() - Get the number of descriptors in pool.
981 * @pool - pool handle
982 * Returns number of elements in the pool.
984 int knav_pool_count(void *ph)
986 struct knav_pool *pool = ph;
987 return knav_queue_get_count(pool->queue);
989 EXPORT_SYMBOL_GPL(knav_pool_count);
991 static void knav_queue_setup_region(struct knav_device *kdev,
992 struct knav_region *region)
994 unsigned hw_num_desc, hw_desc_size, size;
995 struct knav_reg_region __iomem *regs;
996 struct knav_qmgr_info *qmgr;
997 struct knav_pool *pool;
998 int id = region->id;
999 struct page *page;
1001 /* unused region? */
1002 if (!region->num_desc) {
1003 dev_warn(kdev->dev, "unused region %s\n", region->name);
1004 return;
1007 /* get hardware descriptor value */
1008 hw_num_desc = ilog2(region->num_desc - 1) + 1;
1010 /* did we force fit ourselves into nothingness? */
1011 if (region->num_desc < 32) {
1012 region->num_desc = 0;
1013 dev_warn(kdev->dev, "too few descriptors in region %s\n",
1014 region->name);
1015 return;
1018 size = region->num_desc * region->desc_size;
1019 region->virt_start = alloc_pages_exact(size, GFP_KERNEL | GFP_DMA |
1020 GFP_DMA32);
1021 if (!region->virt_start) {
1022 region->num_desc = 0;
1023 dev_err(kdev->dev, "memory alloc failed for region %s\n",
1024 region->name);
1025 return;
1027 region->virt_end = region->virt_start + size;
1028 page = virt_to_page(region->virt_start);
1030 region->dma_start = dma_map_page(kdev->dev, page, 0, size,
1031 DMA_BIDIRECTIONAL);
1032 if (dma_mapping_error(kdev->dev, region->dma_start)) {
1033 dev_err(kdev->dev, "dma map failed for region %s\n",
1034 region->name);
1035 goto fail;
1037 region->dma_end = region->dma_start + size;
1039 pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
1040 if (!pool) {
1041 dev_err(kdev->dev, "out of memory allocating dummy pool\n");
1042 goto fail;
1044 pool->num_desc = 0;
1045 pool->region_offset = region->num_desc;
1046 list_add(&pool->region_inst, &region->pools);
1048 dev_dbg(kdev->dev,
1049 "region %s (%d): size:%d, link:%d@%d, dma:%pad-%pad, virt:%p-%p\n",
1050 region->name, id, region->desc_size, region->num_desc,
1051 region->link_index, &region->dma_start, &region->dma_end,
1052 region->virt_start, region->virt_end);
1054 hw_desc_size = (region->desc_size / 16) - 1;
1055 hw_num_desc -= 5;
1057 for_each_qmgr(kdev, qmgr) {
1058 regs = qmgr->reg_region + id;
1059 writel_relaxed((u32)region->dma_start, &regs->base);
1060 writel_relaxed(region->link_index, &regs->start_index);
1061 writel_relaxed(hw_desc_size << 16 | hw_num_desc,
1062 &regs->size_count);
1064 return;
1066 fail:
1067 if (region->dma_start)
1068 dma_unmap_page(kdev->dev, region->dma_start, size,
1069 DMA_BIDIRECTIONAL);
1070 if (region->virt_start)
1071 free_pages_exact(region->virt_start, size);
1072 region->num_desc = 0;
1073 return;
1076 static const char *knav_queue_find_name(struct device_node *node)
1078 const char *name;
1080 if (of_property_read_string(node, "label", &name) < 0)
1081 name = node->name;
1082 if (!name)
1083 name = "unknown";
1084 return name;
1087 static int knav_queue_setup_regions(struct knav_device *kdev,
1088 struct device_node *regions)
1090 struct device *dev = kdev->dev;
1091 struct knav_region *region;
1092 struct device_node *child;
1093 u32 temp[2];
1094 int ret;
1096 for_each_child_of_node(regions, child) {
1097 region = devm_kzalloc(dev, sizeof(*region), GFP_KERNEL);
1098 if (!region) {
1099 dev_err(dev, "out of memory allocating region\n");
1100 return -ENOMEM;
1103 region->name = knav_queue_find_name(child);
1104 of_property_read_u32(child, "id", &region->id);
1105 ret = of_property_read_u32_array(child, "region-spec", temp, 2);
1106 if (!ret) {
1107 region->num_desc = temp[0];
1108 region->desc_size = temp[1];
1109 } else {
1110 dev_err(dev, "invalid region info %s\n", region->name);
1111 devm_kfree(dev, region);
1112 continue;
1115 if (!of_get_property(child, "link-index", NULL)) {
1116 dev_err(dev, "No link info for %s\n", region->name);
1117 devm_kfree(dev, region);
1118 continue;
1120 ret = of_property_read_u32(child, "link-index",
1121 &region->link_index);
1122 if (ret) {
1123 dev_err(dev, "link index not found for %s\n",
1124 region->name);
1125 devm_kfree(dev, region);
1126 continue;
1129 INIT_LIST_HEAD(&region->pools);
1130 list_add_tail(&region->list, &kdev->regions);
1132 if (list_empty(&kdev->regions)) {
1133 dev_err(dev, "no valid region information found\n");
1134 return -ENODEV;
1137 /* Next, we run through the regions and set things up */
1138 for_each_region(kdev, region)
1139 knav_queue_setup_region(kdev, region);
1141 return 0;
1144 static int knav_get_link_ram(struct knav_device *kdev,
1145 const char *name,
1146 struct knav_link_ram_block *block)
1148 struct platform_device *pdev = to_platform_device(kdev->dev);
1149 struct device_node *node = pdev->dev.of_node;
1150 u32 temp[2];
1153 * Note: link ram resources are specified in "entry" sized units. In
1154 * reality, although entries are ~40bits in hardware, we treat them as
1155 * 64-bit entities here.
1157 * For example, to specify the internal link ram for Keystone-I class
1158 * devices, we would set the linkram0 resource to 0x80000-0x83fff.
1160 * This gets a bit weird when other link rams are used. For example,
1161 * if the range specified is 0x0c000000-0x0c003fff (i.e., 16K entries
1162 * in MSMC SRAM), the actual memory used is 0x0c000000-0x0c020000,
1163 * which accounts for 64-bits per entry, for 16K entries.
1165 if (!of_property_read_u32_array(node, name , temp, 2)) {
1166 if (temp[0]) {
1168 * queue_base specified => using internal or onchip
1169 * link ram WARNING - we do not "reserve" this block
1171 block->dma = (dma_addr_t)temp[0];
1172 block->virt = NULL;
1173 block->size = temp[1];
1174 } else {
1175 block->size = temp[1];
1176 /* queue_base not specific => allocate requested size */
1177 block->virt = dmam_alloc_coherent(kdev->dev,
1178 8 * block->size, &block->dma,
1179 GFP_KERNEL);
1180 if (!block->virt) {
1181 dev_err(kdev->dev, "failed to alloc linkram\n");
1182 return -ENOMEM;
1185 } else {
1186 return -ENODEV;
1188 return 0;
1191 static int knav_queue_setup_link_ram(struct knav_device *kdev)
1193 struct knav_link_ram_block *block;
1194 struct knav_qmgr_info *qmgr;
1196 for_each_qmgr(kdev, qmgr) {
1197 block = &kdev->link_rams[0];
1198 dev_dbg(kdev->dev, "linkram0: dma:%pad, virt:%p, size:%x\n",
1199 &block->dma, block->virt, block->size);
1200 writel_relaxed((u32)block->dma, &qmgr->reg_config->link_ram_base0);
1201 if (kdev->version == QMSS_66AK2G)
1202 writel_relaxed(block->size,
1203 &qmgr->reg_config->link_ram_size0);
1204 else
1205 writel_relaxed(block->size - 1,
1206 &qmgr->reg_config->link_ram_size0);
1207 block++;
1208 if (!block->size)
1209 continue;
1211 dev_dbg(kdev->dev, "linkram1: dma:%pad, virt:%p, size:%x\n",
1212 &block->dma, block->virt, block->size);
1213 writel_relaxed(block->dma, &qmgr->reg_config->link_ram_base1);
1216 return 0;
1219 static int knav_setup_queue_range(struct knav_device *kdev,
1220 struct device_node *node)
1222 struct device *dev = kdev->dev;
1223 struct knav_range_info *range;
1224 struct knav_qmgr_info *qmgr;
1225 u32 temp[2], start, end, id, index;
1226 int ret, i;
1228 range = devm_kzalloc(dev, sizeof(*range), GFP_KERNEL);
1229 if (!range) {
1230 dev_err(dev, "out of memory allocating range\n");
1231 return -ENOMEM;
1234 range->kdev = kdev;
1235 range->name = knav_queue_find_name(node);
1236 ret = of_property_read_u32_array(node, "qrange", temp, 2);
1237 if (!ret) {
1238 range->queue_base = temp[0] - kdev->base_id;
1239 range->num_queues = temp[1];
1240 } else {
1241 dev_err(dev, "invalid queue range %s\n", range->name);
1242 devm_kfree(dev, range);
1243 return -EINVAL;
1246 for (i = 0; i < RANGE_MAX_IRQS; i++) {
1247 struct of_phandle_args oirq;
1249 if (of_irq_parse_one(node, i, &oirq))
1250 break;
1252 range->irqs[i].irq = irq_create_of_mapping(&oirq);
1253 if (range->irqs[i].irq == IRQ_NONE)
1254 break;
1256 range->num_irqs++;
1258 if (IS_ENABLED(CONFIG_SMP) && oirq.args_count == 3) {
1259 unsigned long mask;
1260 int bit;
1262 range->irqs[i].cpu_mask = devm_kzalloc(dev,
1263 cpumask_size(), GFP_KERNEL);
1264 if (!range->irqs[i].cpu_mask)
1265 return -ENOMEM;
1267 mask = (oirq.args[2] & 0x0000ff00) >> 8;
1268 for_each_set_bit(bit, &mask, BITS_PER_LONG)
1269 cpumask_set_cpu(bit, range->irqs[i].cpu_mask);
1273 range->num_irqs = min(range->num_irqs, range->num_queues);
1274 if (range->num_irqs)
1275 range->flags |= RANGE_HAS_IRQ;
1277 if (of_get_property(node, "qalloc-by-id", NULL))
1278 range->flags |= RANGE_RESERVED;
1280 if (of_get_property(node, "accumulator", NULL)) {
1281 ret = knav_init_acc_range(kdev, node, range);
1282 if (ret < 0) {
1283 devm_kfree(dev, range);
1284 return ret;
1286 } else {
1287 range->ops = &knav_gp_range_ops;
1290 /* set threshold to 1, and flush out the queues */
1291 for_each_qmgr(kdev, qmgr) {
1292 start = max(qmgr->start_queue, range->queue_base);
1293 end = min(qmgr->start_queue + qmgr->num_queues,
1294 range->queue_base + range->num_queues);
1295 for (id = start; id < end; id++) {
1296 index = id - qmgr->start_queue;
1297 writel_relaxed(THRESH_GTE | 1,
1298 &qmgr->reg_peek[index].ptr_size_thresh);
1299 writel_relaxed(0,
1300 &qmgr->reg_push[index].ptr_size_thresh);
1304 list_add_tail(&range->list, &kdev->queue_ranges);
1305 dev_dbg(dev, "added range %s: %d-%d, %d irqs%s%s%s\n",
1306 range->name, range->queue_base,
1307 range->queue_base + range->num_queues - 1,
1308 range->num_irqs,
1309 (range->flags & RANGE_HAS_IRQ) ? ", has irq" : "",
1310 (range->flags & RANGE_RESERVED) ? ", reserved" : "",
1311 (range->flags & RANGE_HAS_ACCUMULATOR) ? ", acc" : "");
1312 kdev->num_queues_in_use += range->num_queues;
1313 return 0;
1316 static int knav_setup_queue_pools(struct knav_device *kdev,
1317 struct device_node *queue_pools)
1319 struct device_node *type, *range;
1320 int ret;
1322 for_each_child_of_node(queue_pools, type) {
1323 for_each_child_of_node(type, range) {
1324 ret = knav_setup_queue_range(kdev, range);
1325 /* return value ignored, we init the rest... */
1329 /* ... and barf if they all failed! */
1330 if (list_empty(&kdev->queue_ranges)) {
1331 dev_err(kdev->dev, "no valid queue range found\n");
1332 return -ENODEV;
1334 return 0;
1337 static void knav_free_queue_range(struct knav_device *kdev,
1338 struct knav_range_info *range)
1340 if (range->ops && range->ops->free_range)
1341 range->ops->free_range(range);
1342 list_del(&range->list);
1343 devm_kfree(kdev->dev, range);
1346 static void knav_free_queue_ranges(struct knav_device *kdev)
1348 struct knav_range_info *range;
1350 for (;;) {
1351 range = first_queue_range(kdev);
1352 if (!range)
1353 break;
1354 knav_free_queue_range(kdev, range);
1358 static void knav_queue_free_regions(struct knav_device *kdev)
1360 struct knav_region *region;
1361 struct knav_pool *pool, *tmp;
1362 unsigned size;
1364 for (;;) {
1365 region = first_region(kdev);
1366 if (!region)
1367 break;
1368 list_for_each_entry_safe(pool, tmp, &region->pools, region_inst)
1369 knav_pool_destroy(pool);
1371 size = region->virt_end - region->virt_start;
1372 if (size)
1373 free_pages_exact(region->virt_start, size);
1374 list_del(&region->list);
1375 devm_kfree(kdev->dev, region);
1379 static void __iomem *knav_queue_map_reg(struct knav_device *kdev,
1380 struct device_node *node, int index)
1382 struct resource res;
1383 void __iomem *regs;
1384 int ret;
1386 ret = of_address_to_resource(node, index, &res);
1387 if (ret) {
1388 dev_err(kdev->dev, "Can't translate of node(%pOFn) address for index(%d)\n",
1389 node, index);
1390 return ERR_PTR(ret);
1393 regs = devm_ioremap_resource(kdev->dev, &res);
1394 if (IS_ERR(regs))
1395 dev_err(kdev->dev, "Failed to map register base for index(%d) node(%pOFn)\n",
1396 index, node);
1397 return regs;
1400 static int knav_queue_init_qmgrs(struct knav_device *kdev,
1401 struct device_node *qmgrs)
1403 struct device *dev = kdev->dev;
1404 struct knav_qmgr_info *qmgr;
1405 struct device_node *child;
1406 u32 temp[2];
1407 int ret;
1409 for_each_child_of_node(qmgrs, child) {
1410 qmgr = devm_kzalloc(dev, sizeof(*qmgr), GFP_KERNEL);
1411 if (!qmgr) {
1412 dev_err(dev, "out of memory allocating qmgr\n");
1413 return -ENOMEM;
1416 ret = of_property_read_u32_array(child, "managed-queues",
1417 temp, 2);
1418 if (!ret) {
1419 qmgr->start_queue = temp[0];
1420 qmgr->num_queues = temp[1];
1421 } else {
1422 dev_err(dev, "invalid qmgr queue range\n");
1423 devm_kfree(dev, qmgr);
1424 continue;
1427 dev_info(dev, "qmgr start queue %d, number of queues %d\n",
1428 qmgr->start_queue, qmgr->num_queues);
1430 qmgr->reg_peek =
1431 knav_queue_map_reg(kdev, child,
1432 KNAV_QUEUE_PEEK_REG_INDEX);
1434 if (kdev->version == QMSS) {
1435 qmgr->reg_status =
1436 knav_queue_map_reg(kdev, child,
1437 KNAV_QUEUE_STATUS_REG_INDEX);
1440 qmgr->reg_config =
1441 knav_queue_map_reg(kdev, child,
1442 (kdev->version == QMSS_66AK2G) ?
1443 KNAV_L_QUEUE_CONFIG_REG_INDEX :
1444 KNAV_QUEUE_CONFIG_REG_INDEX);
1445 qmgr->reg_region =
1446 knav_queue_map_reg(kdev, child,
1447 (kdev->version == QMSS_66AK2G) ?
1448 KNAV_L_QUEUE_REGION_REG_INDEX :
1449 KNAV_QUEUE_REGION_REG_INDEX);
1451 qmgr->reg_push =
1452 knav_queue_map_reg(kdev, child,
1453 (kdev->version == QMSS_66AK2G) ?
1454 KNAV_L_QUEUE_PUSH_REG_INDEX :
1455 KNAV_QUEUE_PUSH_REG_INDEX);
1457 if (kdev->version == QMSS) {
1458 qmgr->reg_pop =
1459 knav_queue_map_reg(kdev, child,
1460 KNAV_QUEUE_POP_REG_INDEX);
1463 if (IS_ERR(qmgr->reg_peek) ||
1464 ((kdev->version == QMSS) &&
1465 (IS_ERR(qmgr->reg_status) || IS_ERR(qmgr->reg_pop))) ||
1466 IS_ERR(qmgr->reg_config) || IS_ERR(qmgr->reg_region) ||
1467 IS_ERR(qmgr->reg_push)) {
1468 dev_err(dev, "failed to map qmgr regs\n");
1469 if (kdev->version == QMSS) {
1470 if (!IS_ERR(qmgr->reg_status))
1471 devm_iounmap(dev, qmgr->reg_status);
1472 if (!IS_ERR(qmgr->reg_pop))
1473 devm_iounmap(dev, qmgr->reg_pop);
1475 if (!IS_ERR(qmgr->reg_peek))
1476 devm_iounmap(dev, qmgr->reg_peek);
1477 if (!IS_ERR(qmgr->reg_config))
1478 devm_iounmap(dev, qmgr->reg_config);
1479 if (!IS_ERR(qmgr->reg_region))
1480 devm_iounmap(dev, qmgr->reg_region);
1481 if (!IS_ERR(qmgr->reg_push))
1482 devm_iounmap(dev, qmgr->reg_push);
1483 devm_kfree(dev, qmgr);
1484 continue;
1487 /* Use same push register for pop as well */
1488 if (kdev->version == QMSS_66AK2G)
1489 qmgr->reg_pop = qmgr->reg_push;
1491 list_add_tail(&qmgr->list, &kdev->qmgrs);
1492 dev_info(dev, "added qmgr start queue %d, num of queues %d, reg_peek %p, reg_status %p, reg_config %p, reg_region %p, reg_push %p, reg_pop %p\n",
1493 qmgr->start_queue, qmgr->num_queues,
1494 qmgr->reg_peek, qmgr->reg_status,
1495 qmgr->reg_config, qmgr->reg_region,
1496 qmgr->reg_push, qmgr->reg_pop);
1498 return 0;
1501 static int knav_queue_init_pdsps(struct knav_device *kdev,
1502 struct device_node *pdsps)
1504 struct device *dev = kdev->dev;
1505 struct knav_pdsp_info *pdsp;
1506 struct device_node *child;
1508 for_each_child_of_node(pdsps, child) {
1509 pdsp = devm_kzalloc(dev, sizeof(*pdsp), GFP_KERNEL);
1510 if (!pdsp) {
1511 dev_err(dev, "out of memory allocating pdsp\n");
1512 return -ENOMEM;
1514 pdsp->name = knav_queue_find_name(child);
1515 pdsp->iram =
1516 knav_queue_map_reg(kdev, child,
1517 KNAV_QUEUE_PDSP_IRAM_REG_INDEX);
1518 pdsp->regs =
1519 knav_queue_map_reg(kdev, child,
1520 KNAV_QUEUE_PDSP_REGS_REG_INDEX);
1521 pdsp->intd =
1522 knav_queue_map_reg(kdev, child,
1523 KNAV_QUEUE_PDSP_INTD_REG_INDEX);
1524 pdsp->command =
1525 knav_queue_map_reg(kdev, child,
1526 KNAV_QUEUE_PDSP_CMD_REG_INDEX);
1528 if (IS_ERR(pdsp->command) || IS_ERR(pdsp->iram) ||
1529 IS_ERR(pdsp->regs) || IS_ERR(pdsp->intd)) {
1530 dev_err(dev, "failed to map pdsp %s regs\n",
1531 pdsp->name);
1532 if (!IS_ERR(pdsp->command))
1533 devm_iounmap(dev, pdsp->command);
1534 if (!IS_ERR(pdsp->iram))
1535 devm_iounmap(dev, pdsp->iram);
1536 if (!IS_ERR(pdsp->regs))
1537 devm_iounmap(dev, pdsp->regs);
1538 if (!IS_ERR(pdsp->intd))
1539 devm_iounmap(dev, pdsp->intd);
1540 devm_kfree(dev, pdsp);
1541 continue;
1543 of_property_read_u32(child, "id", &pdsp->id);
1544 list_add_tail(&pdsp->list, &kdev->pdsps);
1545 dev_dbg(dev, "added pdsp %s: command %p, iram %p, regs %p, intd %p\n",
1546 pdsp->name, pdsp->command, pdsp->iram, pdsp->regs,
1547 pdsp->intd);
1549 return 0;
1552 static int knav_queue_stop_pdsp(struct knav_device *kdev,
1553 struct knav_pdsp_info *pdsp)
1555 u32 val, timeout = 1000;
1556 int ret;
1558 val = readl_relaxed(&pdsp->regs->control) & ~PDSP_CTRL_ENABLE;
1559 writel_relaxed(val, &pdsp->regs->control);
1560 ret = knav_queue_pdsp_wait(&pdsp->regs->control, timeout,
1561 PDSP_CTRL_RUNNING);
1562 if (ret < 0) {
1563 dev_err(kdev->dev, "timed out on pdsp %s stop\n", pdsp->name);
1564 return ret;
1566 pdsp->loaded = false;
1567 pdsp->started = false;
1568 return 0;
1571 static int knav_queue_load_pdsp(struct knav_device *kdev,
1572 struct knav_pdsp_info *pdsp)
1574 int i, ret, fwlen;
1575 const struct firmware *fw;
1576 bool found = false;
1577 u32 *fwdata;
1579 for (i = 0; i < ARRAY_SIZE(knav_acc_firmwares); i++) {
1580 if (knav_acc_firmwares[i]) {
1581 ret = request_firmware_direct(&fw,
1582 knav_acc_firmwares[i],
1583 kdev->dev);
1584 if (!ret) {
1585 found = true;
1586 break;
1591 if (!found) {
1592 dev_err(kdev->dev, "failed to get firmware for pdsp\n");
1593 return -ENODEV;
1596 dev_info(kdev->dev, "firmware file %s downloaded for PDSP\n",
1597 knav_acc_firmwares[i]);
1599 writel_relaxed(pdsp->id + 1, pdsp->command + 0x18);
1600 /* download the firmware */
1601 fwdata = (u32 *)fw->data;
1602 fwlen = (fw->size + sizeof(u32) - 1) / sizeof(u32);
1603 for (i = 0; i < fwlen; i++)
1604 writel_relaxed(be32_to_cpu(fwdata[i]), pdsp->iram + i);
1606 release_firmware(fw);
1607 return 0;
1610 static int knav_queue_start_pdsp(struct knav_device *kdev,
1611 struct knav_pdsp_info *pdsp)
1613 u32 val, timeout = 1000;
1614 int ret;
1616 /* write a command for sync */
1617 writel_relaxed(0xffffffff, pdsp->command);
1618 while (readl_relaxed(pdsp->command) != 0xffffffff)
1619 cpu_relax();
1621 /* soft reset the PDSP */
1622 val = readl_relaxed(&pdsp->regs->control);
1623 val &= ~(PDSP_CTRL_PC_MASK | PDSP_CTRL_SOFT_RESET);
1624 writel_relaxed(val, &pdsp->regs->control);
1626 /* enable pdsp */
1627 val = readl_relaxed(&pdsp->regs->control) | PDSP_CTRL_ENABLE;
1628 writel_relaxed(val, &pdsp->regs->control);
1630 /* wait for command register to clear */
1631 ret = knav_queue_pdsp_wait(pdsp->command, timeout, 0);
1632 if (ret < 0) {
1633 dev_err(kdev->dev,
1634 "timed out on pdsp %s command register wait\n",
1635 pdsp->name);
1636 return ret;
1638 return 0;
1641 static void knav_queue_stop_pdsps(struct knav_device *kdev)
1643 struct knav_pdsp_info *pdsp;
1645 /* disable all pdsps */
1646 for_each_pdsp(kdev, pdsp)
1647 knav_queue_stop_pdsp(kdev, pdsp);
1650 static int knav_queue_start_pdsps(struct knav_device *kdev)
1652 struct knav_pdsp_info *pdsp;
1653 int ret;
1655 knav_queue_stop_pdsps(kdev);
1656 /* now load them all. We return success even if pdsp
1657 * is not loaded as acc channels are optional on having
1658 * firmware availability in the system. We set the loaded
1659 * and stated flag and when initialize the acc range, check
1660 * it and init the range only if pdsp is started.
1662 for_each_pdsp(kdev, pdsp) {
1663 ret = knav_queue_load_pdsp(kdev, pdsp);
1664 if (!ret)
1665 pdsp->loaded = true;
1668 for_each_pdsp(kdev, pdsp) {
1669 if (pdsp->loaded) {
1670 ret = knav_queue_start_pdsp(kdev, pdsp);
1671 if (!ret)
1672 pdsp->started = true;
1675 return 0;
1678 static inline struct knav_qmgr_info *knav_find_qmgr(unsigned id)
1680 struct knav_qmgr_info *qmgr;
1682 for_each_qmgr(kdev, qmgr) {
1683 if ((id >= qmgr->start_queue) &&
1684 (id < qmgr->start_queue + qmgr->num_queues))
1685 return qmgr;
1687 return NULL;
1690 static int knav_queue_init_queue(struct knav_device *kdev,
1691 struct knav_range_info *range,
1692 struct knav_queue_inst *inst,
1693 unsigned id)
1695 char irq_name[KNAV_NAME_SIZE];
1696 inst->qmgr = knav_find_qmgr(id);
1697 if (!inst->qmgr)
1698 return -1;
1700 INIT_LIST_HEAD(&inst->handles);
1701 inst->kdev = kdev;
1702 inst->range = range;
1703 inst->irq_num = -1;
1704 inst->id = id;
1705 scnprintf(irq_name, sizeof(irq_name), "hwqueue-%d", id);
1706 inst->irq_name = kstrndup(irq_name, sizeof(irq_name), GFP_KERNEL);
1708 if (range->ops && range->ops->init_queue)
1709 return range->ops->init_queue(range, inst);
1710 else
1711 return 0;
1714 static int knav_queue_init_queues(struct knav_device *kdev)
1716 struct knav_range_info *range;
1717 int size, id, base_idx;
1718 int idx = 0, ret = 0;
1720 /* how much do we need for instance data? */
1721 size = sizeof(struct knav_queue_inst);
1723 /* round this up to a power of 2, keep the index to instance
1724 * arithmetic fast.
1725 * */
1726 kdev->inst_shift = order_base_2(size);
1727 size = (1 << kdev->inst_shift) * kdev->num_queues_in_use;
1728 kdev->instances = devm_kzalloc(kdev->dev, size, GFP_KERNEL);
1729 if (!kdev->instances)
1730 return -ENOMEM;
1732 for_each_queue_range(kdev, range) {
1733 if (range->ops && range->ops->init_range)
1734 range->ops->init_range(range);
1735 base_idx = idx;
1736 for (id = range->queue_base;
1737 id < range->queue_base + range->num_queues; id++, idx++) {
1738 ret = knav_queue_init_queue(kdev, range,
1739 knav_queue_idx_to_inst(kdev, idx), id);
1740 if (ret < 0)
1741 return ret;
1743 range->queue_base_inst =
1744 knav_queue_idx_to_inst(kdev, base_idx);
1746 return 0;
1749 /* Match table for of_platform binding */
1750 static const struct of_device_id keystone_qmss_of_match[] = {
1752 .compatible = "ti,keystone-navigator-qmss",
1755 .compatible = "ti,66ak2g-navss-qm",
1756 .data = (void *)QMSS_66AK2G,
1760 MODULE_DEVICE_TABLE(of, keystone_qmss_of_match);
1762 static int knav_queue_probe(struct platform_device *pdev)
1764 struct device_node *node = pdev->dev.of_node;
1765 struct device_node *qmgrs, *queue_pools, *regions, *pdsps;
1766 const struct of_device_id *match;
1767 struct device *dev = &pdev->dev;
1768 u32 temp[2];
1769 int ret;
1771 if (!node) {
1772 dev_err(dev, "device tree info unavailable\n");
1773 return -ENODEV;
1776 kdev = devm_kzalloc(dev, sizeof(struct knav_device), GFP_KERNEL);
1777 if (!kdev) {
1778 dev_err(dev, "memory allocation failed\n");
1779 return -ENOMEM;
1782 match = of_match_device(of_match_ptr(keystone_qmss_of_match), dev);
1783 if (match && match->data)
1784 kdev->version = QMSS_66AK2G;
1786 platform_set_drvdata(pdev, kdev);
1787 kdev->dev = dev;
1788 INIT_LIST_HEAD(&kdev->queue_ranges);
1789 INIT_LIST_HEAD(&kdev->qmgrs);
1790 INIT_LIST_HEAD(&kdev->pools);
1791 INIT_LIST_HEAD(&kdev->regions);
1792 INIT_LIST_HEAD(&kdev->pdsps);
1794 pm_runtime_enable(&pdev->dev);
1795 ret = pm_runtime_get_sync(&pdev->dev);
1796 if (ret < 0) {
1797 dev_err(dev, "Failed to enable QMSS\n");
1798 return ret;
1801 if (of_property_read_u32_array(node, "queue-range", temp, 2)) {
1802 dev_err(dev, "queue-range not specified\n");
1803 ret = -ENODEV;
1804 goto err;
1806 kdev->base_id = temp[0];
1807 kdev->num_queues = temp[1];
1809 /* Initialize queue managers using device tree configuration */
1810 qmgrs = of_get_child_by_name(node, "qmgrs");
1811 if (!qmgrs) {
1812 dev_err(dev, "queue manager info not specified\n");
1813 ret = -ENODEV;
1814 goto err;
1816 ret = knav_queue_init_qmgrs(kdev, qmgrs);
1817 of_node_put(qmgrs);
1818 if (ret)
1819 goto err;
1821 /* get pdsp configuration values from device tree */
1822 pdsps = of_get_child_by_name(node, "pdsps");
1823 if (pdsps) {
1824 ret = knav_queue_init_pdsps(kdev, pdsps);
1825 if (ret)
1826 goto err;
1828 ret = knav_queue_start_pdsps(kdev);
1829 if (ret)
1830 goto err;
1832 of_node_put(pdsps);
1834 /* get usable queue range values from device tree */
1835 queue_pools = of_get_child_by_name(node, "queue-pools");
1836 if (!queue_pools) {
1837 dev_err(dev, "queue-pools not specified\n");
1838 ret = -ENODEV;
1839 goto err;
1841 ret = knav_setup_queue_pools(kdev, queue_pools);
1842 of_node_put(queue_pools);
1843 if (ret)
1844 goto err;
1846 ret = knav_get_link_ram(kdev, "linkram0", &kdev->link_rams[0]);
1847 if (ret) {
1848 dev_err(kdev->dev, "could not setup linking ram\n");
1849 goto err;
1852 ret = knav_get_link_ram(kdev, "linkram1", &kdev->link_rams[1]);
1853 if (ret) {
1855 * nothing really, we have one linking ram already, so we just
1856 * live within our means
1860 ret = knav_queue_setup_link_ram(kdev);
1861 if (ret)
1862 goto err;
1864 regions = of_get_child_by_name(node, "descriptor-regions");
1865 if (!regions) {
1866 dev_err(dev, "descriptor-regions not specified\n");
1867 goto err;
1869 ret = knav_queue_setup_regions(kdev, regions);
1870 of_node_put(regions);
1871 if (ret)
1872 goto err;
1874 ret = knav_queue_init_queues(kdev);
1875 if (ret < 0) {
1876 dev_err(dev, "hwqueue initialization failed\n");
1877 goto err;
1880 debugfs_create_file("qmss", S_IFREG | S_IRUGO, NULL, NULL,
1881 &knav_queue_debug_ops);
1882 device_ready = true;
1883 return 0;
1885 err:
1886 knav_queue_stop_pdsps(kdev);
1887 knav_queue_free_regions(kdev);
1888 knav_free_queue_ranges(kdev);
1889 pm_runtime_put_sync(&pdev->dev);
1890 pm_runtime_disable(&pdev->dev);
1891 return ret;
1894 static int knav_queue_remove(struct platform_device *pdev)
1896 /* TODO: Free resources */
1897 pm_runtime_put_sync(&pdev->dev);
1898 pm_runtime_disable(&pdev->dev);
1899 return 0;
1902 static struct platform_driver keystone_qmss_driver = {
1903 .probe = knav_queue_probe,
1904 .remove = knav_queue_remove,
1905 .driver = {
1906 .name = "keystone-navigator-qmss",
1907 .of_match_table = keystone_qmss_of_match,
1910 module_platform_driver(keystone_qmss_driver);
1912 MODULE_LICENSE("GPL v2");
1913 MODULE_DESCRIPTION("TI QMSS driver for Keystone SOCs");
1914 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com>");
1915 MODULE_AUTHOR("Santosh Shilimkar <santosh.shilimkar@ti.com>");