1 // SPDX-License-Identifier: GPL-2.0-only
3 * Keystone Queue Manager subsystem driver
5 * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com
6 * Authors: Sandeep Nair <sandeep_n@ti.com>
7 * Cyril Chemparathy <cyril@ti.com>
8 * Santosh Shilimkar <santosh.shilimkar@ti.com>
11 #include <linux/debugfs.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/firmware.h>
14 #include <linux/interrupt.h>
16 #include <linux/module.h>
17 #include <linux/of_address.h>
18 #include <linux/of_device.h>
19 #include <linux/of_irq.h>
20 #include <linux/pm_runtime.h>
21 #include <linux/slab.h>
22 #include <linux/soc/ti/knav_qmss.h>
24 #include "knav_qmss.h"
26 static struct knav_device
*kdev
;
27 static DEFINE_MUTEX(knav_dev_lock
);
28 #define knav_dev_lock_held() \
29 lockdep_is_held(&knav_dev_lock)
31 /* Queue manager register indices in DTS */
32 #define KNAV_QUEUE_PEEK_REG_INDEX 0
33 #define KNAV_QUEUE_STATUS_REG_INDEX 1
34 #define KNAV_QUEUE_CONFIG_REG_INDEX 2
35 #define KNAV_QUEUE_REGION_REG_INDEX 3
36 #define KNAV_QUEUE_PUSH_REG_INDEX 4
37 #define KNAV_QUEUE_POP_REG_INDEX 5
39 /* Queue manager register indices in DTS for QMSS in K2G NAVSS.
40 * There are no status and vbusm push registers on this version
41 * of QMSS. Push registers are same as pop, So all indices above 1
42 * are to be re-defined
44 #define KNAV_L_QUEUE_CONFIG_REG_INDEX 1
45 #define KNAV_L_QUEUE_REGION_REG_INDEX 2
46 #define KNAV_L_QUEUE_PUSH_REG_INDEX 3
48 /* PDSP register indices in DTS */
49 #define KNAV_QUEUE_PDSP_IRAM_REG_INDEX 0
50 #define KNAV_QUEUE_PDSP_REGS_REG_INDEX 1
51 #define KNAV_QUEUE_PDSP_INTD_REG_INDEX 2
52 #define KNAV_QUEUE_PDSP_CMD_REG_INDEX 3
54 #define knav_queue_idx_to_inst(kdev, idx) \
55 (kdev->instances + (idx << kdev->inst_shift))
57 #define for_each_handle_rcu(qh, inst) \
58 list_for_each_entry_rcu(qh, &inst->handles, list, \
61 #define for_each_instance(idx, inst, kdev) \
62 for (idx = 0, inst = kdev->instances; \
63 idx < (kdev)->num_queues_in_use; \
64 idx++, inst = knav_queue_idx_to_inst(kdev, idx))
66 /* All firmware file names end up here. List the firmware file names below.
67 * Newest followed by older ones. Search is done from start of the array
68 * until a firmware file is found.
70 const char *knav_acc_firmwares
[] = {"ks2_qmss_pdsp_acc48.bin"};
72 static bool device_ready
;
73 bool knav_qmss_device_ready(void)
77 EXPORT_SYMBOL_GPL(knav_qmss_device_ready
);
80 * knav_queue_notify: qmss queue notfier call
82 * @inst: qmss queue instance like accumulator
84 void knav_queue_notify(struct knav_queue_inst
*inst
)
86 struct knav_queue
*qh
;
92 for_each_handle_rcu(qh
, inst
) {
93 if (atomic_read(&qh
->notifier_enabled
) <= 0)
95 if (WARN_ON(!qh
->notifier_fn
))
97 this_cpu_inc(qh
->stats
->notifies
);
98 qh
->notifier_fn(qh
->notifier_fn_arg
);
102 EXPORT_SYMBOL_GPL(knav_queue_notify
);
104 static irqreturn_t
knav_queue_int_handler(int irq
, void *_instdata
)
106 struct knav_queue_inst
*inst
= _instdata
;
108 knav_queue_notify(inst
);
112 static int knav_queue_setup_irq(struct knav_range_info
*range
,
113 struct knav_queue_inst
*inst
)
115 unsigned queue
= inst
->id
- range
->queue_base
;
118 if (range
->flags
& RANGE_HAS_IRQ
) {
119 irq
= range
->irqs
[queue
].irq
;
120 ret
= request_irq(irq
, knav_queue_int_handler
, 0,
121 inst
->irq_name
, inst
);
125 if (range
->irqs
[queue
].cpu_mask
) {
126 ret
= irq_set_affinity_hint(irq
, range
->irqs
[queue
].cpu_mask
);
128 dev_warn(range
->kdev
->dev
,
129 "Failed to set IRQ affinity\n");
137 static void knav_queue_free_irq(struct knav_queue_inst
*inst
)
139 struct knav_range_info
*range
= inst
->range
;
140 unsigned queue
= inst
->id
- inst
->range
->queue_base
;
143 if (range
->flags
& RANGE_HAS_IRQ
) {
144 irq
= range
->irqs
[queue
].irq
;
145 irq_set_affinity_hint(irq
, NULL
);
150 static inline bool knav_queue_is_busy(struct knav_queue_inst
*inst
)
152 return !list_empty(&inst
->handles
);
155 static inline bool knav_queue_is_reserved(struct knav_queue_inst
*inst
)
157 return inst
->range
->flags
& RANGE_RESERVED
;
160 static inline bool knav_queue_is_shared(struct knav_queue_inst
*inst
)
162 struct knav_queue
*tmp
;
165 for_each_handle_rcu(tmp
, inst
) {
166 if (tmp
->flags
& KNAV_QUEUE_SHARED
) {
175 static inline bool knav_queue_match_type(struct knav_queue_inst
*inst
,
178 if ((type
== KNAV_QUEUE_QPEND
) &&
179 (inst
->range
->flags
& RANGE_HAS_IRQ
)) {
181 } else if ((type
== KNAV_QUEUE_ACC
) &&
182 (inst
->range
->flags
& RANGE_HAS_ACCUMULATOR
)) {
184 } else if ((type
== KNAV_QUEUE_GP
) &&
185 !(inst
->range
->flags
&
186 (RANGE_HAS_ACCUMULATOR
| RANGE_HAS_IRQ
))) {
192 static inline struct knav_queue_inst
*
193 knav_queue_match_id_to_inst(struct knav_device
*kdev
, unsigned id
)
195 struct knav_queue_inst
*inst
;
198 for_each_instance(idx
, inst
, kdev
) {
205 static inline struct knav_queue_inst
*knav_queue_find_by_id(int id
)
207 if (kdev
->base_id
<= id
&&
208 kdev
->base_id
+ kdev
->num_queues
> id
) {
210 return knav_queue_match_id_to_inst(kdev
, id
);
215 static struct knav_queue
*__knav_queue_open(struct knav_queue_inst
*inst
,
216 const char *name
, unsigned flags
)
218 struct knav_queue
*qh
;
222 qh
= devm_kzalloc(inst
->kdev
->dev
, sizeof(*qh
), GFP_KERNEL
);
224 return ERR_PTR(-ENOMEM
);
226 qh
->stats
= alloc_percpu(struct knav_queue_stats
);
234 id
= inst
->id
- inst
->qmgr
->start_queue
;
235 qh
->reg_push
= &inst
->qmgr
->reg_push
[id
];
236 qh
->reg_pop
= &inst
->qmgr
->reg_pop
[id
];
237 qh
->reg_peek
= &inst
->qmgr
->reg_peek
[id
];
240 if (!knav_queue_is_busy(inst
)) {
241 struct knav_range_info
*range
= inst
->range
;
243 inst
->name
= kstrndup(name
, KNAV_NAME_SIZE
- 1, GFP_KERNEL
);
244 if (range
->ops
&& range
->ops
->open_queue
)
245 ret
= range
->ops
->open_queue(range
, inst
, flags
);
250 list_add_tail_rcu(&qh
->list
, &inst
->handles
);
255 free_percpu(qh
->stats
);
256 devm_kfree(inst
->kdev
->dev
, qh
);
260 static struct knav_queue
*
261 knav_queue_open_by_id(const char *name
, unsigned id
, unsigned flags
)
263 struct knav_queue_inst
*inst
;
264 struct knav_queue
*qh
;
266 mutex_lock(&knav_dev_lock
);
268 qh
= ERR_PTR(-ENODEV
);
269 inst
= knav_queue_find_by_id(id
);
273 qh
= ERR_PTR(-EEXIST
);
274 if (!(flags
& KNAV_QUEUE_SHARED
) && knav_queue_is_busy(inst
))
277 qh
= ERR_PTR(-EBUSY
);
278 if ((flags
& KNAV_QUEUE_SHARED
) &&
279 (knav_queue_is_busy(inst
) && !knav_queue_is_shared(inst
)))
282 qh
= __knav_queue_open(inst
, name
, flags
);
285 mutex_unlock(&knav_dev_lock
);
290 static struct knav_queue
*knav_queue_open_by_type(const char *name
,
291 unsigned type
, unsigned flags
)
293 struct knav_queue_inst
*inst
;
294 struct knav_queue
*qh
= ERR_PTR(-EINVAL
);
297 mutex_lock(&knav_dev_lock
);
299 for_each_instance(idx
, inst
, kdev
) {
300 if (knav_queue_is_reserved(inst
))
302 if (!knav_queue_match_type(inst
, type
))
304 if (knav_queue_is_busy(inst
))
306 qh
= __knav_queue_open(inst
, name
, flags
);
311 mutex_unlock(&knav_dev_lock
);
315 static void knav_queue_set_notify(struct knav_queue_inst
*inst
, bool enabled
)
317 struct knav_range_info
*range
= inst
->range
;
319 if (range
->ops
&& range
->ops
->set_notify
)
320 range
->ops
->set_notify(range
, inst
, enabled
);
323 static int knav_queue_enable_notifier(struct knav_queue
*qh
)
325 struct knav_queue_inst
*inst
= qh
->inst
;
328 if (WARN_ON(!qh
->notifier_fn
))
331 /* Adjust the per handle notifier count */
332 first
= (atomic_inc_return(&qh
->notifier_enabled
) == 1);
334 return 0; /* nothing to do */
336 /* Now adjust the per instance notifier count */
337 first
= (atomic_inc_return(&inst
->num_notifiers
) == 1);
339 knav_queue_set_notify(inst
, true);
344 static int knav_queue_disable_notifier(struct knav_queue
*qh
)
346 struct knav_queue_inst
*inst
= qh
->inst
;
349 last
= (atomic_dec_return(&qh
->notifier_enabled
) == 0);
351 return 0; /* nothing to do */
353 last
= (atomic_dec_return(&inst
->num_notifiers
) == 0);
355 knav_queue_set_notify(inst
, false);
360 static int knav_queue_set_notifier(struct knav_queue
*qh
,
361 struct knav_queue_notify_config
*cfg
)
363 knav_queue_notify_fn old_fn
= qh
->notifier_fn
;
368 if (!(qh
->inst
->range
->flags
& (RANGE_HAS_ACCUMULATOR
| RANGE_HAS_IRQ
)))
371 if (!cfg
->fn
&& old_fn
)
372 knav_queue_disable_notifier(qh
);
374 qh
->notifier_fn
= cfg
->fn
;
375 qh
->notifier_fn_arg
= cfg
->fn_arg
;
377 if (cfg
->fn
&& !old_fn
)
378 knav_queue_enable_notifier(qh
);
383 static int knav_gp_set_notify(struct knav_range_info
*range
,
384 struct knav_queue_inst
*inst
,
389 if (range
->flags
& RANGE_HAS_IRQ
) {
390 queue
= inst
->id
- range
->queue_base
;
392 enable_irq(range
->irqs
[queue
].irq
);
394 disable_irq_nosync(range
->irqs
[queue
].irq
);
399 static int knav_gp_open_queue(struct knav_range_info
*range
,
400 struct knav_queue_inst
*inst
, unsigned flags
)
402 return knav_queue_setup_irq(range
, inst
);
405 static int knav_gp_close_queue(struct knav_range_info
*range
,
406 struct knav_queue_inst
*inst
)
408 knav_queue_free_irq(inst
);
412 struct knav_range_ops knav_gp_range_ops
= {
413 .set_notify
= knav_gp_set_notify
,
414 .open_queue
= knav_gp_open_queue
,
415 .close_queue
= knav_gp_close_queue
,
419 static int knav_queue_get_count(void *qhandle
)
421 struct knav_queue
*qh
= qhandle
;
422 struct knav_queue_inst
*inst
= qh
->inst
;
424 return readl_relaxed(&qh
->reg_peek
[0].entry_count
) +
425 atomic_read(&inst
->desc_count
);
428 static void knav_queue_debug_show_instance(struct seq_file
*s
,
429 struct knav_queue_inst
*inst
)
431 struct knav_device
*kdev
= inst
->kdev
;
432 struct knav_queue
*qh
;
440 if (!knav_queue_is_busy(inst
))
443 seq_printf(s
, "\tqueue id %d (%s)\n",
444 kdev
->base_id
+ inst
->id
, inst
->name
);
445 for_each_handle_rcu(qh
, inst
) {
446 for_each_possible_cpu(cpu
) {
447 pushes
+= per_cpu_ptr(qh
->stats
, cpu
)->pushes
;
448 pops
+= per_cpu_ptr(qh
->stats
, cpu
)->pops
;
449 push_errors
+= per_cpu_ptr(qh
->stats
, cpu
)->push_errors
;
450 pop_errors
+= per_cpu_ptr(qh
->stats
, cpu
)->pop_errors
;
451 notifies
+= per_cpu_ptr(qh
->stats
, cpu
)->notifies
;
454 seq_printf(s
, "\t\thandle %p: pushes %8d, pops %8d, count %8d, notifies %8d, push errors %8d, pop errors %8d\n",
458 knav_queue_get_count(qh
),
465 static int knav_queue_debug_show(struct seq_file
*s
, void *v
)
467 struct knav_queue_inst
*inst
;
470 mutex_lock(&knav_dev_lock
);
471 seq_printf(s
, "%s: %u-%u\n",
472 dev_name(kdev
->dev
), kdev
->base_id
,
473 kdev
->base_id
+ kdev
->num_queues
- 1);
474 for_each_instance(idx
, inst
, kdev
)
475 knav_queue_debug_show_instance(s
, inst
);
476 mutex_unlock(&knav_dev_lock
);
481 static int knav_queue_debug_open(struct inode
*inode
, struct file
*file
)
483 return single_open(file
, knav_queue_debug_show
, NULL
);
486 static const struct file_operations knav_queue_debug_ops
= {
487 .open
= knav_queue_debug_open
,
490 .release
= single_release
,
493 static inline int knav_queue_pdsp_wait(u32
* __iomem addr
, unsigned timeout
,
499 end
= jiffies
+ msecs_to_jiffies(timeout
);
500 while (time_after(end
, jiffies
)) {
501 val
= readl_relaxed(addr
);
508 return val
? -ETIMEDOUT
: 0;
512 static int knav_queue_flush(struct knav_queue
*qh
)
514 struct knav_queue_inst
*inst
= qh
->inst
;
515 unsigned id
= inst
->id
- inst
->qmgr
->start_queue
;
517 atomic_set(&inst
->desc_count
, 0);
518 writel_relaxed(0, &inst
->qmgr
->reg_push
[id
].ptr_size_thresh
);
523 * knav_queue_open() - open a hardware queue
524 * @name - name to give the queue handle
525 * @id - desired queue number if any or specifes the type
527 * @flags - the following flags are applicable to queues:
528 * KNAV_QUEUE_SHARED - allow the queue to be shared. Queues are
529 * exclusive by default.
530 * Subsequent attempts to open a shared queue should
531 * also have this flag.
533 * Returns a handle to the open hardware queue if successful. Use IS_ERR()
534 * to check the returned value for error codes.
536 void *knav_queue_open(const char *name
, unsigned id
,
539 struct knav_queue
*qh
= ERR_PTR(-EINVAL
);
542 case KNAV_QUEUE_QPEND
:
545 qh
= knav_queue_open_by_type(name
, id
, flags
);
549 qh
= knav_queue_open_by_id(name
, id
, flags
);
554 EXPORT_SYMBOL_GPL(knav_queue_open
);
557 * knav_queue_close() - close a hardware queue handle
558 * @qh - handle to close
560 void knav_queue_close(void *qhandle
)
562 struct knav_queue
*qh
= qhandle
;
563 struct knav_queue_inst
*inst
= qh
->inst
;
565 while (atomic_read(&qh
->notifier_enabled
) > 0)
566 knav_queue_disable_notifier(qh
);
568 mutex_lock(&knav_dev_lock
);
569 list_del_rcu(&qh
->list
);
570 mutex_unlock(&knav_dev_lock
);
572 if (!knav_queue_is_busy(inst
)) {
573 struct knav_range_info
*range
= inst
->range
;
575 if (range
->ops
&& range
->ops
->close_queue
)
576 range
->ops
->close_queue(range
, inst
);
578 free_percpu(qh
->stats
);
579 devm_kfree(inst
->kdev
->dev
, qh
);
581 EXPORT_SYMBOL_GPL(knav_queue_close
);
584 * knav_queue_device_control() - Perform control operations on a queue
586 * @cmd - control commands
587 * @arg - command argument
589 * Returns 0 on success, errno otherwise.
591 int knav_queue_device_control(void *qhandle
, enum knav_queue_ctrl_cmd cmd
,
594 struct knav_queue
*qh
= qhandle
;
595 struct knav_queue_notify_config
*cfg
;
599 case KNAV_QUEUE_GET_ID
:
600 ret
= qh
->inst
->kdev
->base_id
+ qh
->inst
->id
;
603 case KNAV_QUEUE_FLUSH
:
604 ret
= knav_queue_flush(qh
);
607 case KNAV_QUEUE_SET_NOTIFIER
:
609 ret
= knav_queue_set_notifier(qh
, cfg
);
612 case KNAV_QUEUE_ENABLE_NOTIFY
:
613 ret
= knav_queue_enable_notifier(qh
);
616 case KNAV_QUEUE_DISABLE_NOTIFY
:
617 ret
= knav_queue_disable_notifier(qh
);
620 case KNAV_QUEUE_GET_COUNT
:
621 ret
= knav_queue_get_count(qh
);
630 EXPORT_SYMBOL_GPL(knav_queue_device_control
);
635 * knav_queue_push() - push data (or descriptor) to the tail of a queue
636 * @qh - hardware queue handle
637 * @data - data to push
638 * @size - size of data to push
639 * @flags - can be used to pass additional information
641 * Returns 0 on success, errno otherwise.
643 int knav_queue_push(void *qhandle
, dma_addr_t dma
,
644 unsigned size
, unsigned flags
)
646 struct knav_queue
*qh
= qhandle
;
649 val
= (u32
)dma
| ((size
/ 16) - 1);
650 writel_relaxed(val
, &qh
->reg_push
[0].ptr_size_thresh
);
652 this_cpu_inc(qh
->stats
->pushes
);
655 EXPORT_SYMBOL_GPL(knav_queue_push
);
658 * knav_queue_pop() - pop data (or descriptor) from the head of a queue
659 * @qh - hardware queue handle
660 * @size - (optional) size of the data pop'ed.
662 * Returns a DMA address on success, 0 on failure.
664 dma_addr_t
knav_queue_pop(void *qhandle
, unsigned *size
)
666 struct knav_queue
*qh
= qhandle
;
667 struct knav_queue_inst
*inst
= qh
->inst
;
671 /* are we accumulated? */
673 if (unlikely(atomic_dec_return(&inst
->desc_count
) < 0)) {
674 atomic_inc(&inst
->desc_count
);
677 idx
= atomic_inc_return(&inst
->desc_head
);
678 idx
&= ACC_DESCS_MASK
;
679 val
= inst
->descs
[idx
];
681 val
= readl_relaxed(&qh
->reg_pop
[0].ptr_size_thresh
);
686 dma
= val
& DESC_PTR_MASK
;
688 *size
= ((val
& DESC_SIZE_MASK
) + 1) * 16;
690 this_cpu_inc(qh
->stats
->pops
);
693 EXPORT_SYMBOL_GPL(knav_queue_pop
);
695 /* carve out descriptors and push into queue */
696 static void kdesc_fill_pool(struct knav_pool
*pool
)
698 struct knav_region
*region
;
701 region
= pool
->region
;
702 pool
->desc_size
= region
->desc_size
;
703 for (i
= 0; i
< pool
->num_desc
; i
++) {
704 int index
= pool
->region_offset
+ i
;
707 dma_addr
= region
->dma_start
+ (region
->desc_size
* index
);
708 dma_size
= ALIGN(pool
->desc_size
, SMP_CACHE_BYTES
);
709 dma_sync_single_for_device(pool
->dev
, dma_addr
, dma_size
,
711 knav_queue_push(pool
->queue
, dma_addr
, dma_size
, 0);
715 /* pop out descriptors and close the queue */
716 static void kdesc_empty_pool(struct knav_pool
*pool
)
727 dma
= knav_queue_pop(pool
->queue
, &size
);
730 desc
= knav_pool_desc_dma_to_virt(pool
, dma
);
732 dev_dbg(pool
->kdev
->dev
,
733 "couldn't unmap desc, continuing\n");
737 WARN_ON(i
!= pool
->num_desc
);
738 knav_queue_close(pool
->queue
);
742 /* Get the DMA address of a descriptor */
743 dma_addr_t
knav_pool_desc_virt_to_dma(void *ph
, void *virt
)
745 struct knav_pool
*pool
= ph
;
746 return pool
->region
->dma_start
+ (virt
- pool
->region
->virt_start
);
748 EXPORT_SYMBOL_GPL(knav_pool_desc_virt_to_dma
);
750 void *knav_pool_desc_dma_to_virt(void *ph
, dma_addr_t dma
)
752 struct knav_pool
*pool
= ph
;
753 return pool
->region
->virt_start
+ (dma
- pool
->region
->dma_start
);
755 EXPORT_SYMBOL_GPL(knav_pool_desc_dma_to_virt
);
758 * knav_pool_create() - Create a pool of descriptors
759 * @name - name to give the pool handle
760 * @num_desc - numbers of descriptors in the pool
761 * @region_id - QMSS region id from which the descriptors are to be
764 * Returns a pool handle on success.
765 * Use IS_ERR_OR_NULL() to identify error values on return.
767 void *knav_pool_create(const char *name
,
768 int num_desc
, int region_id
)
770 struct knav_region
*reg_itr
, *region
= NULL
;
771 struct knav_pool
*pool
, *pi
;
772 struct list_head
*node
;
773 unsigned last_offset
;
778 return ERR_PTR(-EPROBE_DEFER
);
781 return ERR_PTR(-ENODEV
);
783 pool
= devm_kzalloc(kdev
->dev
, sizeof(*pool
), GFP_KERNEL
);
785 dev_err(kdev
->dev
, "out of memory allocating pool\n");
786 return ERR_PTR(-ENOMEM
);
789 for_each_region(kdev
, reg_itr
) {
790 if (reg_itr
->id
!= region_id
)
797 dev_err(kdev
->dev
, "region-id(%d) not found\n", region_id
);
802 pool
->queue
= knav_queue_open(name
, KNAV_QUEUE_GP
, 0);
803 if (IS_ERR_OR_NULL(pool
->queue
)) {
805 "failed to open queue for pool(%s), error %ld\n",
806 name
, PTR_ERR(pool
->queue
));
807 ret
= PTR_ERR(pool
->queue
);
811 pool
->name
= kstrndup(name
, KNAV_NAME_SIZE
- 1, GFP_KERNEL
);
813 pool
->dev
= kdev
->dev
;
815 mutex_lock(&knav_dev_lock
);
817 if (num_desc
> (region
->num_desc
- region
->used_desc
)) {
818 dev_err(kdev
->dev
, "out of descs in region(%d) for pool(%s)\n",
824 /* Region maintains a sorted (by region offset) list of pools
825 * use the first free slot which is large enough to accomodate
830 node
= ®ion
->pools
;
831 list_for_each_entry(pi
, ®ion
->pools
, region_inst
) {
832 if ((pi
->region_offset
- last_offset
) >= num_desc
) {
836 last_offset
= pi
->region_offset
+ pi
->num_desc
;
838 node
= &pi
->region_inst
;
841 pool
->region
= region
;
842 pool
->num_desc
= num_desc
;
843 pool
->region_offset
= last_offset
;
844 region
->used_desc
+= num_desc
;
845 list_add_tail(&pool
->list
, &kdev
->pools
);
846 list_add_tail(&pool
->region_inst
, node
);
848 dev_err(kdev
->dev
, "pool(%s) create failed: fragmented desc pool in region(%d)\n",
854 mutex_unlock(&knav_dev_lock
);
855 kdesc_fill_pool(pool
);
859 mutex_unlock(&knav_dev_lock
);
862 devm_kfree(kdev
->dev
, pool
);
865 EXPORT_SYMBOL_GPL(knav_pool_create
);
868 * knav_pool_destroy() - Free a pool of descriptors
869 * @pool - pool handle
871 void knav_pool_destroy(void *ph
)
873 struct knav_pool
*pool
= ph
;
881 kdesc_empty_pool(pool
);
882 mutex_lock(&knav_dev_lock
);
884 pool
->region
->used_desc
-= pool
->num_desc
;
885 list_del(&pool
->region_inst
);
886 list_del(&pool
->list
);
888 mutex_unlock(&knav_dev_lock
);
890 devm_kfree(kdev
->dev
, pool
);
892 EXPORT_SYMBOL_GPL(knav_pool_destroy
);
896 * knav_pool_desc_get() - Get a descriptor from the pool
897 * @pool - pool handle
899 * Returns descriptor from the pool.
901 void *knav_pool_desc_get(void *ph
)
903 struct knav_pool
*pool
= ph
;
908 dma
= knav_queue_pop(pool
->queue
, &size
);
910 return ERR_PTR(-ENOMEM
);
911 data
= knav_pool_desc_dma_to_virt(pool
, dma
);
914 EXPORT_SYMBOL_GPL(knav_pool_desc_get
);
917 * knav_pool_desc_put() - return a descriptor to the pool
918 * @pool - pool handle
920 void knav_pool_desc_put(void *ph
, void *desc
)
922 struct knav_pool
*pool
= ph
;
924 dma
= knav_pool_desc_virt_to_dma(pool
, desc
);
925 knav_queue_push(pool
->queue
, dma
, pool
->region
->desc_size
, 0);
927 EXPORT_SYMBOL_GPL(knav_pool_desc_put
);
930 * knav_pool_desc_map() - Map descriptor for DMA transfer
931 * @pool - pool handle
932 * @desc - address of descriptor to map
933 * @size - size of descriptor to map
934 * @dma - DMA address return pointer
935 * @dma_sz - adjusted return pointer
937 * Returns 0 on success, errno otherwise.
939 int knav_pool_desc_map(void *ph
, void *desc
, unsigned size
,
940 dma_addr_t
*dma
, unsigned *dma_sz
)
942 struct knav_pool
*pool
= ph
;
943 *dma
= knav_pool_desc_virt_to_dma(pool
, desc
);
944 size
= min(size
, pool
->region
->desc_size
);
945 size
= ALIGN(size
, SMP_CACHE_BYTES
);
947 dma_sync_single_for_device(pool
->dev
, *dma
, size
, DMA_TO_DEVICE
);
949 /* Ensure the descriptor reaches to the memory */
954 EXPORT_SYMBOL_GPL(knav_pool_desc_map
);
957 * knav_pool_desc_unmap() - Unmap descriptor after DMA transfer
958 * @pool - pool handle
959 * @dma - DMA address of descriptor to unmap
960 * @dma_sz - size of descriptor to unmap
962 * Returns descriptor address on success, Use IS_ERR_OR_NULL() to identify
963 * error values on return.
965 void *knav_pool_desc_unmap(void *ph
, dma_addr_t dma
, unsigned dma_sz
)
967 struct knav_pool
*pool
= ph
;
971 desc_sz
= min(dma_sz
, pool
->region
->desc_size
);
972 desc
= knav_pool_desc_dma_to_virt(pool
, dma
);
973 dma_sync_single_for_cpu(pool
->dev
, dma
, desc_sz
, DMA_FROM_DEVICE
);
977 EXPORT_SYMBOL_GPL(knav_pool_desc_unmap
);
980 * knav_pool_count() - Get the number of descriptors in pool.
981 * @pool - pool handle
982 * Returns number of elements in the pool.
984 int knav_pool_count(void *ph
)
986 struct knav_pool
*pool
= ph
;
987 return knav_queue_get_count(pool
->queue
);
989 EXPORT_SYMBOL_GPL(knav_pool_count
);
991 static void knav_queue_setup_region(struct knav_device
*kdev
,
992 struct knav_region
*region
)
994 unsigned hw_num_desc
, hw_desc_size
, size
;
995 struct knav_reg_region __iomem
*regs
;
996 struct knav_qmgr_info
*qmgr
;
997 struct knav_pool
*pool
;
1001 /* unused region? */
1002 if (!region
->num_desc
) {
1003 dev_warn(kdev
->dev
, "unused region %s\n", region
->name
);
1007 /* get hardware descriptor value */
1008 hw_num_desc
= ilog2(region
->num_desc
- 1) + 1;
1010 /* did we force fit ourselves into nothingness? */
1011 if (region
->num_desc
< 32) {
1012 region
->num_desc
= 0;
1013 dev_warn(kdev
->dev
, "too few descriptors in region %s\n",
1018 size
= region
->num_desc
* region
->desc_size
;
1019 region
->virt_start
= alloc_pages_exact(size
, GFP_KERNEL
| GFP_DMA
|
1021 if (!region
->virt_start
) {
1022 region
->num_desc
= 0;
1023 dev_err(kdev
->dev
, "memory alloc failed for region %s\n",
1027 region
->virt_end
= region
->virt_start
+ size
;
1028 page
= virt_to_page(region
->virt_start
);
1030 region
->dma_start
= dma_map_page(kdev
->dev
, page
, 0, size
,
1032 if (dma_mapping_error(kdev
->dev
, region
->dma_start
)) {
1033 dev_err(kdev
->dev
, "dma map failed for region %s\n",
1037 region
->dma_end
= region
->dma_start
+ size
;
1039 pool
= devm_kzalloc(kdev
->dev
, sizeof(*pool
), GFP_KERNEL
);
1041 dev_err(kdev
->dev
, "out of memory allocating dummy pool\n");
1045 pool
->region_offset
= region
->num_desc
;
1046 list_add(&pool
->region_inst
, ®ion
->pools
);
1049 "region %s (%d): size:%d, link:%d@%d, dma:%pad-%pad, virt:%p-%p\n",
1050 region
->name
, id
, region
->desc_size
, region
->num_desc
,
1051 region
->link_index
, ®ion
->dma_start
, ®ion
->dma_end
,
1052 region
->virt_start
, region
->virt_end
);
1054 hw_desc_size
= (region
->desc_size
/ 16) - 1;
1057 for_each_qmgr(kdev
, qmgr
) {
1058 regs
= qmgr
->reg_region
+ id
;
1059 writel_relaxed((u32
)region
->dma_start
, ®s
->base
);
1060 writel_relaxed(region
->link_index
, ®s
->start_index
);
1061 writel_relaxed(hw_desc_size
<< 16 | hw_num_desc
,
1067 if (region
->dma_start
)
1068 dma_unmap_page(kdev
->dev
, region
->dma_start
, size
,
1070 if (region
->virt_start
)
1071 free_pages_exact(region
->virt_start
, size
);
1072 region
->num_desc
= 0;
1076 static const char *knav_queue_find_name(struct device_node
*node
)
1080 if (of_property_read_string(node
, "label", &name
) < 0)
1087 static int knav_queue_setup_regions(struct knav_device
*kdev
,
1088 struct device_node
*regions
)
1090 struct device
*dev
= kdev
->dev
;
1091 struct knav_region
*region
;
1092 struct device_node
*child
;
1096 for_each_child_of_node(regions
, child
) {
1097 region
= devm_kzalloc(dev
, sizeof(*region
), GFP_KERNEL
);
1099 dev_err(dev
, "out of memory allocating region\n");
1103 region
->name
= knav_queue_find_name(child
);
1104 of_property_read_u32(child
, "id", ®ion
->id
);
1105 ret
= of_property_read_u32_array(child
, "region-spec", temp
, 2);
1107 region
->num_desc
= temp
[0];
1108 region
->desc_size
= temp
[1];
1110 dev_err(dev
, "invalid region info %s\n", region
->name
);
1111 devm_kfree(dev
, region
);
1115 if (!of_get_property(child
, "link-index", NULL
)) {
1116 dev_err(dev
, "No link info for %s\n", region
->name
);
1117 devm_kfree(dev
, region
);
1120 ret
= of_property_read_u32(child
, "link-index",
1121 ®ion
->link_index
);
1123 dev_err(dev
, "link index not found for %s\n",
1125 devm_kfree(dev
, region
);
1129 INIT_LIST_HEAD(®ion
->pools
);
1130 list_add_tail(®ion
->list
, &kdev
->regions
);
1132 if (list_empty(&kdev
->regions
)) {
1133 dev_err(dev
, "no valid region information found\n");
1137 /* Next, we run through the regions and set things up */
1138 for_each_region(kdev
, region
)
1139 knav_queue_setup_region(kdev
, region
);
1144 static int knav_get_link_ram(struct knav_device
*kdev
,
1146 struct knav_link_ram_block
*block
)
1148 struct platform_device
*pdev
= to_platform_device(kdev
->dev
);
1149 struct device_node
*node
= pdev
->dev
.of_node
;
1153 * Note: link ram resources are specified in "entry" sized units. In
1154 * reality, although entries are ~40bits in hardware, we treat them as
1155 * 64-bit entities here.
1157 * For example, to specify the internal link ram for Keystone-I class
1158 * devices, we would set the linkram0 resource to 0x80000-0x83fff.
1160 * This gets a bit weird when other link rams are used. For example,
1161 * if the range specified is 0x0c000000-0x0c003fff (i.e., 16K entries
1162 * in MSMC SRAM), the actual memory used is 0x0c000000-0x0c020000,
1163 * which accounts for 64-bits per entry, for 16K entries.
1165 if (!of_property_read_u32_array(node
, name
, temp
, 2)) {
1168 * queue_base specified => using internal or onchip
1169 * link ram WARNING - we do not "reserve" this block
1171 block
->dma
= (dma_addr_t
)temp
[0];
1173 block
->size
= temp
[1];
1175 block
->size
= temp
[1];
1176 /* queue_base not specific => allocate requested size */
1177 block
->virt
= dmam_alloc_coherent(kdev
->dev
,
1178 8 * block
->size
, &block
->dma
,
1181 dev_err(kdev
->dev
, "failed to alloc linkram\n");
1191 static int knav_queue_setup_link_ram(struct knav_device
*kdev
)
1193 struct knav_link_ram_block
*block
;
1194 struct knav_qmgr_info
*qmgr
;
1196 for_each_qmgr(kdev
, qmgr
) {
1197 block
= &kdev
->link_rams
[0];
1198 dev_dbg(kdev
->dev
, "linkram0: dma:%pad, virt:%p, size:%x\n",
1199 &block
->dma
, block
->virt
, block
->size
);
1200 writel_relaxed((u32
)block
->dma
, &qmgr
->reg_config
->link_ram_base0
);
1201 if (kdev
->version
== QMSS_66AK2G
)
1202 writel_relaxed(block
->size
,
1203 &qmgr
->reg_config
->link_ram_size0
);
1205 writel_relaxed(block
->size
- 1,
1206 &qmgr
->reg_config
->link_ram_size0
);
1211 dev_dbg(kdev
->dev
, "linkram1: dma:%pad, virt:%p, size:%x\n",
1212 &block
->dma
, block
->virt
, block
->size
);
1213 writel_relaxed(block
->dma
, &qmgr
->reg_config
->link_ram_base1
);
1219 static int knav_setup_queue_range(struct knav_device
*kdev
,
1220 struct device_node
*node
)
1222 struct device
*dev
= kdev
->dev
;
1223 struct knav_range_info
*range
;
1224 struct knav_qmgr_info
*qmgr
;
1225 u32 temp
[2], start
, end
, id
, index
;
1228 range
= devm_kzalloc(dev
, sizeof(*range
), GFP_KERNEL
);
1230 dev_err(dev
, "out of memory allocating range\n");
1235 range
->name
= knav_queue_find_name(node
);
1236 ret
= of_property_read_u32_array(node
, "qrange", temp
, 2);
1238 range
->queue_base
= temp
[0] - kdev
->base_id
;
1239 range
->num_queues
= temp
[1];
1241 dev_err(dev
, "invalid queue range %s\n", range
->name
);
1242 devm_kfree(dev
, range
);
1246 for (i
= 0; i
< RANGE_MAX_IRQS
; i
++) {
1247 struct of_phandle_args oirq
;
1249 if (of_irq_parse_one(node
, i
, &oirq
))
1252 range
->irqs
[i
].irq
= irq_create_of_mapping(&oirq
);
1253 if (range
->irqs
[i
].irq
== IRQ_NONE
)
1258 if (IS_ENABLED(CONFIG_SMP
) && oirq
.args_count
== 3) {
1262 range
->irqs
[i
].cpu_mask
= devm_kzalloc(dev
,
1263 cpumask_size(), GFP_KERNEL
);
1264 if (!range
->irqs
[i
].cpu_mask
)
1267 mask
= (oirq
.args
[2] & 0x0000ff00) >> 8;
1268 for_each_set_bit(bit
, &mask
, BITS_PER_LONG
)
1269 cpumask_set_cpu(bit
, range
->irqs
[i
].cpu_mask
);
1273 range
->num_irqs
= min(range
->num_irqs
, range
->num_queues
);
1274 if (range
->num_irqs
)
1275 range
->flags
|= RANGE_HAS_IRQ
;
1277 if (of_get_property(node
, "qalloc-by-id", NULL
))
1278 range
->flags
|= RANGE_RESERVED
;
1280 if (of_get_property(node
, "accumulator", NULL
)) {
1281 ret
= knav_init_acc_range(kdev
, node
, range
);
1283 devm_kfree(dev
, range
);
1287 range
->ops
= &knav_gp_range_ops
;
1290 /* set threshold to 1, and flush out the queues */
1291 for_each_qmgr(kdev
, qmgr
) {
1292 start
= max(qmgr
->start_queue
, range
->queue_base
);
1293 end
= min(qmgr
->start_queue
+ qmgr
->num_queues
,
1294 range
->queue_base
+ range
->num_queues
);
1295 for (id
= start
; id
< end
; id
++) {
1296 index
= id
- qmgr
->start_queue
;
1297 writel_relaxed(THRESH_GTE
| 1,
1298 &qmgr
->reg_peek
[index
].ptr_size_thresh
);
1300 &qmgr
->reg_push
[index
].ptr_size_thresh
);
1304 list_add_tail(&range
->list
, &kdev
->queue_ranges
);
1305 dev_dbg(dev
, "added range %s: %d-%d, %d irqs%s%s%s\n",
1306 range
->name
, range
->queue_base
,
1307 range
->queue_base
+ range
->num_queues
- 1,
1309 (range
->flags
& RANGE_HAS_IRQ
) ? ", has irq" : "",
1310 (range
->flags
& RANGE_RESERVED
) ? ", reserved" : "",
1311 (range
->flags
& RANGE_HAS_ACCUMULATOR
) ? ", acc" : "");
1312 kdev
->num_queues_in_use
+= range
->num_queues
;
1316 static int knav_setup_queue_pools(struct knav_device
*kdev
,
1317 struct device_node
*queue_pools
)
1319 struct device_node
*type
, *range
;
1322 for_each_child_of_node(queue_pools
, type
) {
1323 for_each_child_of_node(type
, range
) {
1324 ret
= knav_setup_queue_range(kdev
, range
);
1325 /* return value ignored, we init the rest... */
1329 /* ... and barf if they all failed! */
1330 if (list_empty(&kdev
->queue_ranges
)) {
1331 dev_err(kdev
->dev
, "no valid queue range found\n");
1337 static void knav_free_queue_range(struct knav_device
*kdev
,
1338 struct knav_range_info
*range
)
1340 if (range
->ops
&& range
->ops
->free_range
)
1341 range
->ops
->free_range(range
);
1342 list_del(&range
->list
);
1343 devm_kfree(kdev
->dev
, range
);
1346 static void knav_free_queue_ranges(struct knav_device
*kdev
)
1348 struct knav_range_info
*range
;
1351 range
= first_queue_range(kdev
);
1354 knav_free_queue_range(kdev
, range
);
1358 static void knav_queue_free_regions(struct knav_device
*kdev
)
1360 struct knav_region
*region
;
1361 struct knav_pool
*pool
, *tmp
;
1365 region
= first_region(kdev
);
1368 list_for_each_entry_safe(pool
, tmp
, ®ion
->pools
, region_inst
)
1369 knav_pool_destroy(pool
);
1371 size
= region
->virt_end
- region
->virt_start
;
1373 free_pages_exact(region
->virt_start
, size
);
1374 list_del(®ion
->list
);
1375 devm_kfree(kdev
->dev
, region
);
1379 static void __iomem
*knav_queue_map_reg(struct knav_device
*kdev
,
1380 struct device_node
*node
, int index
)
1382 struct resource res
;
1386 ret
= of_address_to_resource(node
, index
, &res
);
1388 dev_err(kdev
->dev
, "Can't translate of node(%pOFn) address for index(%d)\n",
1390 return ERR_PTR(ret
);
1393 regs
= devm_ioremap_resource(kdev
->dev
, &res
);
1395 dev_err(kdev
->dev
, "Failed to map register base for index(%d) node(%pOFn)\n",
1400 static int knav_queue_init_qmgrs(struct knav_device
*kdev
,
1401 struct device_node
*qmgrs
)
1403 struct device
*dev
= kdev
->dev
;
1404 struct knav_qmgr_info
*qmgr
;
1405 struct device_node
*child
;
1409 for_each_child_of_node(qmgrs
, child
) {
1410 qmgr
= devm_kzalloc(dev
, sizeof(*qmgr
), GFP_KERNEL
);
1412 dev_err(dev
, "out of memory allocating qmgr\n");
1416 ret
= of_property_read_u32_array(child
, "managed-queues",
1419 qmgr
->start_queue
= temp
[0];
1420 qmgr
->num_queues
= temp
[1];
1422 dev_err(dev
, "invalid qmgr queue range\n");
1423 devm_kfree(dev
, qmgr
);
1427 dev_info(dev
, "qmgr start queue %d, number of queues %d\n",
1428 qmgr
->start_queue
, qmgr
->num_queues
);
1431 knav_queue_map_reg(kdev
, child
,
1432 KNAV_QUEUE_PEEK_REG_INDEX
);
1434 if (kdev
->version
== QMSS
) {
1436 knav_queue_map_reg(kdev
, child
,
1437 KNAV_QUEUE_STATUS_REG_INDEX
);
1441 knav_queue_map_reg(kdev
, child
,
1442 (kdev
->version
== QMSS_66AK2G
) ?
1443 KNAV_L_QUEUE_CONFIG_REG_INDEX
:
1444 KNAV_QUEUE_CONFIG_REG_INDEX
);
1446 knav_queue_map_reg(kdev
, child
,
1447 (kdev
->version
== QMSS_66AK2G
) ?
1448 KNAV_L_QUEUE_REGION_REG_INDEX
:
1449 KNAV_QUEUE_REGION_REG_INDEX
);
1452 knav_queue_map_reg(kdev
, child
,
1453 (kdev
->version
== QMSS_66AK2G
) ?
1454 KNAV_L_QUEUE_PUSH_REG_INDEX
:
1455 KNAV_QUEUE_PUSH_REG_INDEX
);
1457 if (kdev
->version
== QMSS
) {
1459 knav_queue_map_reg(kdev
, child
,
1460 KNAV_QUEUE_POP_REG_INDEX
);
1463 if (IS_ERR(qmgr
->reg_peek
) ||
1464 ((kdev
->version
== QMSS
) &&
1465 (IS_ERR(qmgr
->reg_status
) || IS_ERR(qmgr
->reg_pop
))) ||
1466 IS_ERR(qmgr
->reg_config
) || IS_ERR(qmgr
->reg_region
) ||
1467 IS_ERR(qmgr
->reg_push
)) {
1468 dev_err(dev
, "failed to map qmgr regs\n");
1469 if (kdev
->version
== QMSS
) {
1470 if (!IS_ERR(qmgr
->reg_status
))
1471 devm_iounmap(dev
, qmgr
->reg_status
);
1472 if (!IS_ERR(qmgr
->reg_pop
))
1473 devm_iounmap(dev
, qmgr
->reg_pop
);
1475 if (!IS_ERR(qmgr
->reg_peek
))
1476 devm_iounmap(dev
, qmgr
->reg_peek
);
1477 if (!IS_ERR(qmgr
->reg_config
))
1478 devm_iounmap(dev
, qmgr
->reg_config
);
1479 if (!IS_ERR(qmgr
->reg_region
))
1480 devm_iounmap(dev
, qmgr
->reg_region
);
1481 if (!IS_ERR(qmgr
->reg_push
))
1482 devm_iounmap(dev
, qmgr
->reg_push
);
1483 devm_kfree(dev
, qmgr
);
1487 /* Use same push register for pop as well */
1488 if (kdev
->version
== QMSS_66AK2G
)
1489 qmgr
->reg_pop
= qmgr
->reg_push
;
1491 list_add_tail(&qmgr
->list
, &kdev
->qmgrs
);
1492 dev_info(dev
, "added qmgr start queue %d, num of queues %d, reg_peek %p, reg_status %p, reg_config %p, reg_region %p, reg_push %p, reg_pop %p\n",
1493 qmgr
->start_queue
, qmgr
->num_queues
,
1494 qmgr
->reg_peek
, qmgr
->reg_status
,
1495 qmgr
->reg_config
, qmgr
->reg_region
,
1496 qmgr
->reg_push
, qmgr
->reg_pop
);
1501 static int knav_queue_init_pdsps(struct knav_device
*kdev
,
1502 struct device_node
*pdsps
)
1504 struct device
*dev
= kdev
->dev
;
1505 struct knav_pdsp_info
*pdsp
;
1506 struct device_node
*child
;
1508 for_each_child_of_node(pdsps
, child
) {
1509 pdsp
= devm_kzalloc(dev
, sizeof(*pdsp
), GFP_KERNEL
);
1511 dev_err(dev
, "out of memory allocating pdsp\n");
1514 pdsp
->name
= knav_queue_find_name(child
);
1516 knav_queue_map_reg(kdev
, child
,
1517 KNAV_QUEUE_PDSP_IRAM_REG_INDEX
);
1519 knav_queue_map_reg(kdev
, child
,
1520 KNAV_QUEUE_PDSP_REGS_REG_INDEX
);
1522 knav_queue_map_reg(kdev
, child
,
1523 KNAV_QUEUE_PDSP_INTD_REG_INDEX
);
1525 knav_queue_map_reg(kdev
, child
,
1526 KNAV_QUEUE_PDSP_CMD_REG_INDEX
);
1528 if (IS_ERR(pdsp
->command
) || IS_ERR(pdsp
->iram
) ||
1529 IS_ERR(pdsp
->regs
) || IS_ERR(pdsp
->intd
)) {
1530 dev_err(dev
, "failed to map pdsp %s regs\n",
1532 if (!IS_ERR(pdsp
->command
))
1533 devm_iounmap(dev
, pdsp
->command
);
1534 if (!IS_ERR(pdsp
->iram
))
1535 devm_iounmap(dev
, pdsp
->iram
);
1536 if (!IS_ERR(pdsp
->regs
))
1537 devm_iounmap(dev
, pdsp
->regs
);
1538 if (!IS_ERR(pdsp
->intd
))
1539 devm_iounmap(dev
, pdsp
->intd
);
1540 devm_kfree(dev
, pdsp
);
1543 of_property_read_u32(child
, "id", &pdsp
->id
);
1544 list_add_tail(&pdsp
->list
, &kdev
->pdsps
);
1545 dev_dbg(dev
, "added pdsp %s: command %p, iram %p, regs %p, intd %p\n",
1546 pdsp
->name
, pdsp
->command
, pdsp
->iram
, pdsp
->regs
,
1552 static int knav_queue_stop_pdsp(struct knav_device
*kdev
,
1553 struct knav_pdsp_info
*pdsp
)
1555 u32 val
, timeout
= 1000;
1558 val
= readl_relaxed(&pdsp
->regs
->control
) & ~PDSP_CTRL_ENABLE
;
1559 writel_relaxed(val
, &pdsp
->regs
->control
);
1560 ret
= knav_queue_pdsp_wait(&pdsp
->regs
->control
, timeout
,
1563 dev_err(kdev
->dev
, "timed out on pdsp %s stop\n", pdsp
->name
);
1566 pdsp
->loaded
= false;
1567 pdsp
->started
= false;
1571 static int knav_queue_load_pdsp(struct knav_device
*kdev
,
1572 struct knav_pdsp_info
*pdsp
)
1575 const struct firmware
*fw
;
1579 for (i
= 0; i
< ARRAY_SIZE(knav_acc_firmwares
); i
++) {
1580 if (knav_acc_firmwares
[i
]) {
1581 ret
= request_firmware_direct(&fw
,
1582 knav_acc_firmwares
[i
],
1592 dev_err(kdev
->dev
, "failed to get firmware for pdsp\n");
1596 dev_info(kdev
->dev
, "firmware file %s downloaded for PDSP\n",
1597 knav_acc_firmwares
[i
]);
1599 writel_relaxed(pdsp
->id
+ 1, pdsp
->command
+ 0x18);
1600 /* download the firmware */
1601 fwdata
= (u32
*)fw
->data
;
1602 fwlen
= (fw
->size
+ sizeof(u32
) - 1) / sizeof(u32
);
1603 for (i
= 0; i
< fwlen
; i
++)
1604 writel_relaxed(be32_to_cpu(fwdata
[i
]), pdsp
->iram
+ i
);
1606 release_firmware(fw
);
1610 static int knav_queue_start_pdsp(struct knav_device
*kdev
,
1611 struct knav_pdsp_info
*pdsp
)
1613 u32 val
, timeout
= 1000;
1616 /* write a command for sync */
1617 writel_relaxed(0xffffffff, pdsp
->command
);
1618 while (readl_relaxed(pdsp
->command
) != 0xffffffff)
1621 /* soft reset the PDSP */
1622 val
= readl_relaxed(&pdsp
->regs
->control
);
1623 val
&= ~(PDSP_CTRL_PC_MASK
| PDSP_CTRL_SOFT_RESET
);
1624 writel_relaxed(val
, &pdsp
->regs
->control
);
1627 val
= readl_relaxed(&pdsp
->regs
->control
) | PDSP_CTRL_ENABLE
;
1628 writel_relaxed(val
, &pdsp
->regs
->control
);
1630 /* wait for command register to clear */
1631 ret
= knav_queue_pdsp_wait(pdsp
->command
, timeout
, 0);
1634 "timed out on pdsp %s command register wait\n",
1641 static void knav_queue_stop_pdsps(struct knav_device
*kdev
)
1643 struct knav_pdsp_info
*pdsp
;
1645 /* disable all pdsps */
1646 for_each_pdsp(kdev
, pdsp
)
1647 knav_queue_stop_pdsp(kdev
, pdsp
);
1650 static int knav_queue_start_pdsps(struct knav_device
*kdev
)
1652 struct knav_pdsp_info
*pdsp
;
1655 knav_queue_stop_pdsps(kdev
);
1656 /* now load them all. We return success even if pdsp
1657 * is not loaded as acc channels are optional on having
1658 * firmware availability in the system. We set the loaded
1659 * and stated flag and when initialize the acc range, check
1660 * it and init the range only if pdsp is started.
1662 for_each_pdsp(kdev
, pdsp
) {
1663 ret
= knav_queue_load_pdsp(kdev
, pdsp
);
1665 pdsp
->loaded
= true;
1668 for_each_pdsp(kdev
, pdsp
) {
1670 ret
= knav_queue_start_pdsp(kdev
, pdsp
);
1672 pdsp
->started
= true;
1678 static inline struct knav_qmgr_info
*knav_find_qmgr(unsigned id
)
1680 struct knav_qmgr_info
*qmgr
;
1682 for_each_qmgr(kdev
, qmgr
) {
1683 if ((id
>= qmgr
->start_queue
) &&
1684 (id
< qmgr
->start_queue
+ qmgr
->num_queues
))
1690 static int knav_queue_init_queue(struct knav_device
*kdev
,
1691 struct knav_range_info
*range
,
1692 struct knav_queue_inst
*inst
,
1695 char irq_name
[KNAV_NAME_SIZE
];
1696 inst
->qmgr
= knav_find_qmgr(id
);
1700 INIT_LIST_HEAD(&inst
->handles
);
1702 inst
->range
= range
;
1705 scnprintf(irq_name
, sizeof(irq_name
), "hwqueue-%d", id
);
1706 inst
->irq_name
= kstrndup(irq_name
, sizeof(irq_name
), GFP_KERNEL
);
1708 if (range
->ops
&& range
->ops
->init_queue
)
1709 return range
->ops
->init_queue(range
, inst
);
1714 static int knav_queue_init_queues(struct knav_device
*kdev
)
1716 struct knav_range_info
*range
;
1717 int size
, id
, base_idx
;
1718 int idx
= 0, ret
= 0;
1720 /* how much do we need for instance data? */
1721 size
= sizeof(struct knav_queue_inst
);
1723 /* round this up to a power of 2, keep the index to instance
1726 kdev
->inst_shift
= order_base_2(size
);
1727 size
= (1 << kdev
->inst_shift
) * kdev
->num_queues_in_use
;
1728 kdev
->instances
= devm_kzalloc(kdev
->dev
, size
, GFP_KERNEL
);
1729 if (!kdev
->instances
)
1732 for_each_queue_range(kdev
, range
) {
1733 if (range
->ops
&& range
->ops
->init_range
)
1734 range
->ops
->init_range(range
);
1736 for (id
= range
->queue_base
;
1737 id
< range
->queue_base
+ range
->num_queues
; id
++, idx
++) {
1738 ret
= knav_queue_init_queue(kdev
, range
,
1739 knav_queue_idx_to_inst(kdev
, idx
), id
);
1743 range
->queue_base_inst
=
1744 knav_queue_idx_to_inst(kdev
, base_idx
);
1749 /* Match table for of_platform binding */
1750 static const struct of_device_id keystone_qmss_of_match
[] = {
1752 .compatible
= "ti,keystone-navigator-qmss",
1755 .compatible
= "ti,66ak2g-navss-qm",
1756 .data
= (void *)QMSS_66AK2G
,
1760 MODULE_DEVICE_TABLE(of
, keystone_qmss_of_match
);
1762 static int knav_queue_probe(struct platform_device
*pdev
)
1764 struct device_node
*node
= pdev
->dev
.of_node
;
1765 struct device_node
*qmgrs
, *queue_pools
, *regions
, *pdsps
;
1766 const struct of_device_id
*match
;
1767 struct device
*dev
= &pdev
->dev
;
1772 dev_err(dev
, "device tree info unavailable\n");
1776 kdev
= devm_kzalloc(dev
, sizeof(struct knav_device
), GFP_KERNEL
);
1778 dev_err(dev
, "memory allocation failed\n");
1782 match
= of_match_device(of_match_ptr(keystone_qmss_of_match
), dev
);
1783 if (match
&& match
->data
)
1784 kdev
->version
= QMSS_66AK2G
;
1786 platform_set_drvdata(pdev
, kdev
);
1788 INIT_LIST_HEAD(&kdev
->queue_ranges
);
1789 INIT_LIST_HEAD(&kdev
->qmgrs
);
1790 INIT_LIST_HEAD(&kdev
->pools
);
1791 INIT_LIST_HEAD(&kdev
->regions
);
1792 INIT_LIST_HEAD(&kdev
->pdsps
);
1794 pm_runtime_enable(&pdev
->dev
);
1795 ret
= pm_runtime_get_sync(&pdev
->dev
);
1797 dev_err(dev
, "Failed to enable QMSS\n");
1801 if (of_property_read_u32_array(node
, "queue-range", temp
, 2)) {
1802 dev_err(dev
, "queue-range not specified\n");
1806 kdev
->base_id
= temp
[0];
1807 kdev
->num_queues
= temp
[1];
1809 /* Initialize queue managers using device tree configuration */
1810 qmgrs
= of_get_child_by_name(node
, "qmgrs");
1812 dev_err(dev
, "queue manager info not specified\n");
1816 ret
= knav_queue_init_qmgrs(kdev
, qmgrs
);
1821 /* get pdsp configuration values from device tree */
1822 pdsps
= of_get_child_by_name(node
, "pdsps");
1824 ret
= knav_queue_init_pdsps(kdev
, pdsps
);
1828 ret
= knav_queue_start_pdsps(kdev
);
1834 /* get usable queue range values from device tree */
1835 queue_pools
= of_get_child_by_name(node
, "queue-pools");
1837 dev_err(dev
, "queue-pools not specified\n");
1841 ret
= knav_setup_queue_pools(kdev
, queue_pools
);
1842 of_node_put(queue_pools
);
1846 ret
= knav_get_link_ram(kdev
, "linkram0", &kdev
->link_rams
[0]);
1848 dev_err(kdev
->dev
, "could not setup linking ram\n");
1852 ret
= knav_get_link_ram(kdev
, "linkram1", &kdev
->link_rams
[1]);
1855 * nothing really, we have one linking ram already, so we just
1856 * live within our means
1860 ret
= knav_queue_setup_link_ram(kdev
);
1864 regions
= of_get_child_by_name(node
, "descriptor-regions");
1866 dev_err(dev
, "descriptor-regions not specified\n");
1869 ret
= knav_queue_setup_regions(kdev
, regions
);
1870 of_node_put(regions
);
1874 ret
= knav_queue_init_queues(kdev
);
1876 dev_err(dev
, "hwqueue initialization failed\n");
1880 debugfs_create_file("qmss", S_IFREG
| S_IRUGO
, NULL
, NULL
,
1881 &knav_queue_debug_ops
);
1882 device_ready
= true;
1886 knav_queue_stop_pdsps(kdev
);
1887 knav_queue_free_regions(kdev
);
1888 knav_free_queue_ranges(kdev
);
1889 pm_runtime_put_sync(&pdev
->dev
);
1890 pm_runtime_disable(&pdev
->dev
);
1894 static int knav_queue_remove(struct platform_device
*pdev
)
1896 /* TODO: Free resources */
1897 pm_runtime_put_sync(&pdev
->dev
);
1898 pm_runtime_disable(&pdev
->dev
);
1902 static struct platform_driver keystone_qmss_driver
= {
1903 .probe
= knav_queue_probe
,
1904 .remove
= knav_queue_remove
,
1906 .name
= "keystone-navigator-qmss",
1907 .of_match_table
= keystone_qmss_of_match
,
1910 module_platform_driver(keystone_qmss_driver
);
1912 MODULE_LICENSE("GPL v2");
1913 MODULE_DESCRIPTION("TI QMSS driver for Keystone SOCs");
1914 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com>");
1915 MODULE_AUTHOR("Santosh Shilimkar <santosh.shilimkar@ti.com>");