1 /* SPDX-License-Identifier: GPL-2.0-only */
3 * Copyright (C) 2013 ARM Ltd.
4 * Copyright (C) 2013 Linaro.
6 * This code is based on glibc cortex strings work originally authored by Linaro
9 * http://bazaar.launchpad.net/~linaro-toolchain-dev/cortex-strings/trunk/
10 * files/head:/src/aarch64/
13 #include <linux/linkage.h>
14 #include <asm/assembler.h>
20 * x0 - const string 1 pointer
21 * x1 - const string 2 pointer
22 * x2 - the maximal length to be compared
24 * x0 - an integer less than, equal to, or greater than zero if s1 is found,
25 * respectively, to be less than, to match, or be greater than s2.
28 #define REP8_01 0x0101010101010101
29 #define REP8_7f 0x7f7f7f7f7f7f7f7f
30 #define REP8_80 0x8080808080808080
32 /* Parameters and result. */
38 /* Internal variables. */
58 mov zeroones, #REP8_01
63 /* Calculate the number of full and partial words -1. */
65 * when limit is mulitply of 8, if not sub 1,
66 * the judgement of last dword will wrong.
68 sub limit_wd, limit, #1 /* limit != 0, so no underflow. */
69 lsr limit_wd, limit_wd, #3 /* Convert to Dwords. */
72 * NUL detection works on the principle that (X - 1) & (~X) & 0x80
73 * (=> (X - 1) & ~(X | 0x7f)) is non-zero iff a byte is zero, and
74 * can be done in parallel across the entire word.
80 subs limit_wd, limit_wd, #1
81 sub tmp1, data1, zeroones
82 orr tmp2, data1, #REP8_7f
83 eor diff, data1, data2 /* Non-zero if differences found. */
84 csinv endloop, diff, xzr, pl /* Last Dword or differences.*/
85 bics has_nul, tmp1, tmp2 /* Non-zero if NUL terminator. */
86 ccmp endloop, #0, #0, eq
89 /*Not reached the limit, must have found the end or a diff. */
90 tbz limit_wd, #63, .Lnot_limit
92 /* Limit % 8 == 0 => all bytes significant. */
96 lsl limit, limit, #3 /* Bits -> bytes. */
98 CPU_BE( lsr mask, mask, limit )
99 CPU_LE( lsl mask, mask, limit )
100 bic data1, data1, mask
101 bic data2, data2, mask
103 /* Make sure that the NUL byte is marked in the syndrome. */
104 orr has_nul, has_nul, mask
107 orr syndrome, diff, has_nul
112 * Sources are mutually aligned, but are not currently at an
113 * alignment boundary. Round down the addresses and then mask off
114 * the bytes that precede the start point.
115 * We also need to adjust the limit calculations, but without
116 * overflowing if the limit is near ULONG_MAX.
120 ldr data1, [src1], #8
121 neg tmp3, tmp1, lsl #3 /* 64 - bits(bytes beyond align). */
122 ldr data2, [src2], #8
124 sub limit_wd, limit, #1 /* limit != 0, so no underflow. */
125 /* Big-endian. Early bytes are at MSB. */
126 CPU_BE( lsl tmp2, tmp2, tmp3 ) /* Shift (tmp1 & 63). */
127 /* Little-endian. Early bytes are at LSB. */
128 CPU_LE( lsr tmp2, tmp2, tmp3 ) /* Shift (tmp1 & 63). */
130 and tmp3, limit_wd, #7
131 lsr limit_wd, limit_wd, #3
132 /* Adjust the limit. Only low 3 bits used, so overflow irrelevant.*/
133 add limit, limit, tmp1
135 orr data1, data1, tmp2
136 orr data2, data2, tmp2
137 add limit_wd, limit_wd, tmp3, lsr #3
140 /*when src1 offset is not equal to src2 offset...*/
143 b.lo .Ltiny8proc /*limit < 8... */
145 * Get the align offset length to compare per byte first.
146 * After this process, one string's address will be aligned.*/
153 subs tmp3, tmp1, tmp2
154 csel pos, tmp1, tmp2, hi /*Choose the maximum. */
156 * Here, limit is not less than 8, so directly run .Ltinycmp
157 * without checking the limit.*/
158 sub limit, limit, pos
160 ldrb data1w, [src1], #1
161 ldrb data2w, [src2], #1
163 ccmp data1w, #1, #0, ne /* NZCV = 0b0000. */
164 ccmp data1w, data2w, #0, cs /* NZCV = 0b0000. */
166 cbnz pos, 1f /*find the null or unequal...*/
168 ccmp data1w, data2w, #0, cs
169 b.eq .Lstart_align /*the last bytes are equal....*/
171 sub result, data1, data2
175 lsr limit_wd, limit, #3
176 cbz limit_wd, .Lremain8
177 /*process more leading bytes to make str1 aligned...*/
180 add src1, src1, tmp3 /*tmp3 is positive in this branch.*/
182 ldr data1, [src1], #8
183 ldr data2, [src2], #8
185 sub limit, limit, tmp3
186 lsr limit_wd, limit, #3
187 subs limit_wd, limit_wd, #1
189 sub tmp1, data1, zeroones
190 orr tmp2, data1, #REP8_7f
191 eor diff, data1, data2 /* Non-zero if differences found. */
192 csinv endloop, diff, xzr, ne/*if limit_wd is 0,will finish the cmp*/
193 bics has_nul, tmp1, tmp2
194 ccmp endloop, #0, #0, eq /*has_null is ZERO: no null byte*/
196 /*How far is the current str2 from the alignment boundary...*/
202 * Divide the eight bytes into two parts. First,backwards the src2
203 * to an alignment boundary,load eight bytes from the SRC2 alignment
204 * boundary,then compare with the relative bytes from SRC1.
205 * If all 8 bytes are equal,then start the second part's comparison.
206 * Otherwise finish the comparison.
207 * This special handle can garantee all the accesses are in the
208 * thread/task space in avoid to overrange access.
210 ldr data1, [src1,pos]
211 ldr data2, [src2,pos]
212 sub tmp1, data1, zeroones
213 orr tmp2, data1, #REP8_7f
214 bics has_nul, tmp1, tmp2 /* Non-zero if NUL terminator. */
215 eor diff, data1, data2 /* Non-zero if differences found. */
216 csinv endloop, diff, xzr, eq
217 cbnz endloop, .Lunequal_proc
219 /*The second part process*/
220 ldr data1, [src1], #8
221 ldr data2, [src2], #8
222 subs limit_wd, limit_wd, #1
223 sub tmp1, data1, zeroones
224 orr tmp2, data1, #REP8_7f
225 eor diff, data1, data2 /* Non-zero if differences found. */
226 csinv endloop, diff, xzr, ne/*if limit_wd is 0,will finish the cmp*/
227 bics has_nul, tmp1, tmp2
228 ccmp endloop, #0, #0, eq /*has_null is ZERO: no null byte*/
232 orr syndrome, diff, has_nul
233 cbz syndrome, .Lremain8
236 * reversed the byte-order as big-endian,then CLZ can find the most
237 * significant zero bits.
239 CPU_LE( rev syndrome, syndrome )
240 CPU_LE( rev data1, data1 )
241 CPU_LE( rev data2, data2 )
243 * For big-endian we cannot use the trick with the syndrome value
244 * as carry-propagation can corrupt the upper bits if the trailing
245 * bytes in the string contain 0x01.
246 * However, if there is no NUL byte in the dword, we can generate
247 * the result directly. We can't just subtract the bytes as the
248 * MSB might be significant.
250 CPU_BE( cbnz has_nul, 1f )
251 CPU_BE( cmp data1, data2 )
252 CPU_BE( cset result, ne )
253 CPU_BE( cneg result, result, lo )
256 /* Re-compute the NUL-byte detection, using a byte-reversed value.*/
257 CPU_BE( rev tmp3, data1 )
258 CPU_BE( sub tmp1, tmp3, zeroones )
259 CPU_BE( orr tmp2, tmp3, #REP8_7f )
260 CPU_BE( bic has_nul, tmp1, tmp2 )
261 CPU_BE( rev has_nul, has_nul )
262 CPU_BE( orr syndrome, diff, has_nul )
264 * The MS-non-zero bit of the syndrome marks either the first bit
265 * that is different, or the top bit of the first zero byte.
266 * Shifting left now will bring the critical information into the
270 lsl data1, data1, pos
271 lsl data2, data2, pos
273 * But we need to zero-extend (char is unsigned) the value and then
274 * perform a signed 32-bit subtraction.
276 lsr data1, data1, #56
277 sub result, data1, data2, lsr #56
281 /* Limit % 8 == 0 => all bytes significant. */
282 ands limit, limit, #7
285 ldrb data1w, [src1], #1
286 ldrb data2w, [src2], #1
287 subs limit, limit, #1
289 ccmp data1w, #1, #0, ne /* NZCV = 0b0000. */
290 ccmp data1w, data2w, #0, cs /* NZCV = 0b0000. */
292 sub result, data1, data2
299 EXPORT_SYMBOL_NOKASAN(strncmp)