2 * RTC class driver for "CMOS RTC": PCs, ACPI, etc
4 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5 * Copyright (C) 2006 David Brownell (convert to new framework)
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
14 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15 * That defined the register interface now provided by all PCs, some
16 * non-PC systems, and incorporated into ACPI. Modern PC chipsets
17 * integrate an MC146818 clone in their southbridge, and boards use
18 * that instead of discrete clones like the DS12887 or M48T86. There
19 * are also clones that connect using the LPC bus.
21 * That register API is also used directly by various other drivers
22 * (notably for integrated NVRAM), infrastructure (x86 has code to
23 * bypass the RTC framework, directly reading the RTC during boot
24 * and updating minutes/seconds for systems using NTP synch) and
25 * utilities (like userspace 'hwclock', if no /dev node exists).
27 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28 * interrupts disabled, holding the global rtc_lock, to exclude those
29 * other drivers and utilities on correctly configured systems.
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/interrupt.h>
38 #include <linux/spinlock.h>
39 #include <linux/platform_device.h>
40 #include <linux/log2.h>
43 #include <linux/of_platform.h>
45 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
46 #include <linux/mc146818rtc.h>
49 struct rtc_device
*rtc
;
52 struct resource
*iomem
;
53 time64_t alarm_expires
;
55 void (*wake_on
)(struct device
*);
56 void (*wake_off
)(struct device
*);
61 /* newer hardware extends the original register set */
66 struct rtc_wkalrm saved_wkalrm
;
69 /* both platform and pnp busses use negative numbers for invalid irqs */
70 #define is_valid_irq(n) ((n) > 0)
72 static const char driver_name
[] = "rtc_cmos";
74 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
75 * always mask it against the irq enable bits in RTC_CONTROL. Bit values
76 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
78 #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
80 static inline int is_intr(u8 rtc_intr
)
82 if (!(rtc_intr
& RTC_IRQF
))
84 return rtc_intr
& RTC_IRQMASK
;
87 /*----------------------------------------------------------------*/
89 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
90 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
91 * used in a broken "legacy replacement" mode. The breakage includes
92 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
95 * When that broken mode is in use, platform glue provides a partial
96 * emulation of hardware RTC IRQ facilities using HPET #1. We don't
97 * want to use HPET for anything except those IRQs though...
99 #ifdef CONFIG_HPET_EMULATE_RTC
100 #include <asm/hpet.h>
103 static inline int is_hpet_enabled(void)
108 static inline int hpet_mask_rtc_irq_bit(unsigned long mask
)
113 static inline int hpet_set_rtc_irq_bit(unsigned long mask
)
119 hpet_set_alarm_time(unsigned char hrs
, unsigned char min
, unsigned char sec
)
124 static inline int hpet_set_periodic_freq(unsigned long freq
)
129 static inline int hpet_rtc_dropped_irq(void)
134 static inline int hpet_rtc_timer_init(void)
139 extern irq_handler_t hpet_rtc_interrupt
;
141 static inline int hpet_register_irq_handler(irq_handler_t handler
)
146 static inline int hpet_unregister_irq_handler(irq_handler_t handler
)
153 /*----------------------------------------------------------------*/
157 /* Most newer x86 systems have two register banks, the first used
158 * for RTC and NVRAM and the second only for NVRAM. Caller must
159 * own rtc_lock ... and we won't worry about access during NMI.
161 #define can_bank2 true
163 static inline unsigned char cmos_read_bank2(unsigned char addr
)
165 outb(addr
, RTC_PORT(2));
166 return inb(RTC_PORT(3));
169 static inline void cmos_write_bank2(unsigned char val
, unsigned char addr
)
171 outb(addr
, RTC_PORT(2));
172 outb(val
, RTC_PORT(3));
177 #define can_bank2 false
179 static inline unsigned char cmos_read_bank2(unsigned char addr
)
184 static inline void cmos_write_bank2(unsigned char val
, unsigned char addr
)
190 /*----------------------------------------------------------------*/
192 static int cmos_read_time(struct device
*dev
, struct rtc_time
*t
)
195 * If pm_trace abused the RTC for storage, set the timespec to 0,
196 * which tells the caller that this RTC value is unusable.
198 if (!pm_trace_rtc_valid())
201 /* REVISIT: if the clock has a "century" register, use
202 * that instead of the heuristic in mc146818_get_time().
203 * That'll make Y3K compatility (year > 2070) easy!
205 mc146818_get_time(t
);
209 static int cmos_set_time(struct device
*dev
, struct rtc_time
*t
)
211 /* REVISIT: set the "century" register if available
213 * NOTE: this ignores the issue whereby updating the seconds
214 * takes effect exactly 500ms after we write the register.
215 * (Also queueing and other delays before we get this far.)
217 return mc146818_set_time(t
);
220 static int cmos_read_alarm(struct device
*dev
, struct rtc_wkalrm
*t
)
222 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
223 unsigned char rtc_control
;
225 if (!is_valid_irq(cmos
->irq
))
228 /* Basic alarms only support hour, minute, and seconds fields.
229 * Some also support day and month, for alarms up to a year in
233 spin_lock_irq(&rtc_lock
);
234 t
->time
.tm_sec
= CMOS_READ(RTC_SECONDS_ALARM
);
235 t
->time
.tm_min
= CMOS_READ(RTC_MINUTES_ALARM
);
236 t
->time
.tm_hour
= CMOS_READ(RTC_HOURS_ALARM
);
238 if (cmos
->day_alrm
) {
239 /* ignore upper bits on readback per ACPI spec */
240 t
->time
.tm_mday
= CMOS_READ(cmos
->day_alrm
) & 0x3f;
241 if (!t
->time
.tm_mday
)
242 t
->time
.tm_mday
= -1;
244 if (cmos
->mon_alrm
) {
245 t
->time
.tm_mon
= CMOS_READ(cmos
->mon_alrm
);
251 rtc_control
= CMOS_READ(RTC_CONTROL
);
252 spin_unlock_irq(&rtc_lock
);
254 if (!(rtc_control
& RTC_DM_BINARY
) || RTC_ALWAYS_BCD
) {
255 if (((unsigned)t
->time
.tm_sec
) < 0x60)
256 t
->time
.tm_sec
= bcd2bin(t
->time
.tm_sec
);
259 if (((unsigned)t
->time
.tm_min
) < 0x60)
260 t
->time
.tm_min
= bcd2bin(t
->time
.tm_min
);
263 if (((unsigned)t
->time
.tm_hour
) < 0x24)
264 t
->time
.tm_hour
= bcd2bin(t
->time
.tm_hour
);
266 t
->time
.tm_hour
= -1;
268 if (cmos
->day_alrm
) {
269 if (((unsigned)t
->time
.tm_mday
) <= 0x31)
270 t
->time
.tm_mday
= bcd2bin(t
->time
.tm_mday
);
272 t
->time
.tm_mday
= -1;
274 if (cmos
->mon_alrm
) {
275 if (((unsigned)t
->time
.tm_mon
) <= 0x12)
276 t
->time
.tm_mon
= bcd2bin(t
->time
.tm_mon
)-1;
283 t
->enabled
= !!(rtc_control
& RTC_AIE
);
289 static void cmos_checkintr(struct cmos_rtc
*cmos
, unsigned char rtc_control
)
291 unsigned char rtc_intr
;
293 /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
294 * allegedly some older rtcs need that to handle irqs properly
296 rtc_intr
= CMOS_READ(RTC_INTR_FLAGS
);
298 if (is_hpet_enabled())
301 rtc_intr
&= (rtc_control
& RTC_IRQMASK
) | RTC_IRQF
;
302 if (is_intr(rtc_intr
))
303 rtc_update_irq(cmos
->rtc
, 1, rtc_intr
);
306 static void cmos_irq_enable(struct cmos_rtc
*cmos
, unsigned char mask
)
308 unsigned char rtc_control
;
310 /* flush any pending IRQ status, notably for update irqs,
311 * before we enable new IRQs
313 rtc_control
= CMOS_READ(RTC_CONTROL
);
314 cmos_checkintr(cmos
, rtc_control
);
317 CMOS_WRITE(rtc_control
, RTC_CONTROL
);
318 hpet_set_rtc_irq_bit(mask
);
320 cmos_checkintr(cmos
, rtc_control
);
323 static void cmos_irq_disable(struct cmos_rtc
*cmos
, unsigned char mask
)
325 unsigned char rtc_control
;
327 rtc_control
= CMOS_READ(RTC_CONTROL
);
328 rtc_control
&= ~mask
;
329 CMOS_WRITE(rtc_control
, RTC_CONTROL
);
330 hpet_mask_rtc_irq_bit(mask
);
332 cmos_checkintr(cmos
, rtc_control
);
335 static int cmos_validate_alarm(struct device
*dev
, struct rtc_wkalrm
*t
)
337 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
340 cmos_read_time(dev
, &now
);
342 if (!cmos
->day_alrm
) {
346 t_max_date
= rtc_tm_to_time64(&now
);
347 t_max_date
+= 24 * 60 * 60 - 1;
348 t_alrm
= rtc_tm_to_time64(&t
->time
);
349 if (t_alrm
> t_max_date
) {
351 "Alarms can be up to one day in the future\n");
354 } else if (!cmos
->mon_alrm
) {
355 struct rtc_time max_date
= now
;
360 if (max_date
.tm_mon
== 11) {
362 max_date
.tm_year
+= 1;
364 max_date
.tm_mon
+= 1;
366 max_mday
= rtc_month_days(max_date
.tm_mon
, max_date
.tm_year
);
367 if (max_date
.tm_mday
> max_mday
)
368 max_date
.tm_mday
= max_mday
;
370 t_max_date
= rtc_tm_to_time64(&max_date
);
372 t_alrm
= rtc_tm_to_time64(&t
->time
);
373 if (t_alrm
> t_max_date
) {
375 "Alarms can be up to one month in the future\n");
379 struct rtc_time max_date
= now
;
384 max_date
.tm_year
+= 1;
385 max_mday
= rtc_month_days(max_date
.tm_mon
, max_date
.tm_year
);
386 if (max_date
.tm_mday
> max_mday
)
387 max_date
.tm_mday
= max_mday
;
389 t_max_date
= rtc_tm_to_time64(&max_date
);
391 t_alrm
= rtc_tm_to_time64(&t
->time
);
392 if (t_alrm
> t_max_date
) {
394 "Alarms can be up to one year in the future\n");
402 static int cmos_set_alarm(struct device
*dev
, struct rtc_wkalrm
*t
)
404 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
405 unsigned char mon
, mday
, hrs
, min
, sec
, rtc_control
;
408 if (!is_valid_irq(cmos
->irq
))
411 ret
= cmos_validate_alarm(dev
, t
);
415 mon
= t
->time
.tm_mon
+ 1;
416 mday
= t
->time
.tm_mday
;
417 hrs
= t
->time
.tm_hour
;
418 min
= t
->time
.tm_min
;
419 sec
= t
->time
.tm_sec
;
421 rtc_control
= CMOS_READ(RTC_CONTROL
);
422 if (!(rtc_control
& RTC_DM_BINARY
) || RTC_ALWAYS_BCD
) {
423 /* Writing 0xff means "don't care" or "match all". */
424 mon
= (mon
<= 12) ? bin2bcd(mon
) : 0xff;
425 mday
= (mday
>= 1 && mday
<= 31) ? bin2bcd(mday
) : 0xff;
426 hrs
= (hrs
< 24) ? bin2bcd(hrs
) : 0xff;
427 min
= (min
< 60) ? bin2bcd(min
) : 0xff;
428 sec
= (sec
< 60) ? bin2bcd(sec
) : 0xff;
431 spin_lock_irq(&rtc_lock
);
433 /* next rtc irq must not be from previous alarm setting */
434 cmos_irq_disable(cmos
, RTC_AIE
);
437 CMOS_WRITE(hrs
, RTC_HOURS_ALARM
);
438 CMOS_WRITE(min
, RTC_MINUTES_ALARM
);
439 CMOS_WRITE(sec
, RTC_SECONDS_ALARM
);
441 /* the system may support an "enhanced" alarm */
442 if (cmos
->day_alrm
) {
443 CMOS_WRITE(mday
, cmos
->day_alrm
);
445 CMOS_WRITE(mon
, cmos
->mon_alrm
);
448 /* FIXME the HPET alarm glue currently ignores day_alrm
451 hpet_set_alarm_time(t
->time
.tm_hour
, t
->time
.tm_min
, t
->time
.tm_sec
);
454 cmos_irq_enable(cmos
, RTC_AIE
);
456 spin_unlock_irq(&rtc_lock
);
458 cmos
->alarm_expires
= rtc_tm_to_time64(&t
->time
);
463 static int cmos_alarm_irq_enable(struct device
*dev
, unsigned int enabled
)
465 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
468 if (!is_valid_irq(cmos
->irq
))
471 spin_lock_irqsave(&rtc_lock
, flags
);
474 cmos_irq_enable(cmos
, RTC_AIE
);
476 cmos_irq_disable(cmos
, RTC_AIE
);
478 spin_unlock_irqrestore(&rtc_lock
, flags
);
482 #if IS_ENABLED(CONFIG_RTC_INTF_PROC)
484 static int cmos_procfs(struct device
*dev
, struct seq_file
*seq
)
486 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
487 unsigned char rtc_control
, valid
;
489 spin_lock_irq(&rtc_lock
);
490 rtc_control
= CMOS_READ(RTC_CONTROL
);
491 valid
= CMOS_READ(RTC_VALID
);
492 spin_unlock_irq(&rtc_lock
);
494 /* NOTE: at least ICH6 reports battery status using a different
495 * (non-RTC) bit; and SQWE is ignored on many current systems.
498 "periodic_IRQ\t: %s\n"
500 "HPET_emulated\t: %s\n"
501 // "square_wave\t: %s\n"
504 "periodic_freq\t: %d\n"
505 "batt_status\t: %s\n",
506 (rtc_control
& RTC_PIE
) ? "yes" : "no",
507 (rtc_control
& RTC_UIE
) ? "yes" : "no",
508 is_hpet_enabled() ? "yes" : "no",
509 // (rtc_control & RTC_SQWE) ? "yes" : "no",
510 (rtc_control
& RTC_DM_BINARY
) ? "no" : "yes",
511 (rtc_control
& RTC_DST_EN
) ? "yes" : "no",
513 (valid
& RTC_VRT
) ? "okay" : "dead");
519 #define cmos_procfs NULL
522 static const struct rtc_class_ops cmos_rtc_ops
= {
523 .read_time
= cmos_read_time
,
524 .set_time
= cmos_set_time
,
525 .read_alarm
= cmos_read_alarm
,
526 .set_alarm
= cmos_set_alarm
,
528 .alarm_irq_enable
= cmos_alarm_irq_enable
,
531 /*----------------------------------------------------------------*/
534 * All these chips have at least 64 bytes of address space, shared by
535 * RTC registers and NVRAM. Most of those bytes of NVRAM are used
536 * by boot firmware. Modern chips have 128 or 256 bytes.
539 #define NVRAM_OFFSET (RTC_REG_D + 1)
542 cmos_nvram_read(struct file
*filp
, struct kobject
*kobj
,
543 struct bin_attribute
*attr
,
544 char *buf
, loff_t off
, size_t count
)
549 spin_lock_irq(&rtc_lock
);
550 for (retval
= 0; count
; count
--, off
++, retval
++) {
552 *buf
++ = CMOS_READ(off
);
554 *buf
++ = cmos_read_bank2(off
);
558 spin_unlock_irq(&rtc_lock
);
564 cmos_nvram_write(struct file
*filp
, struct kobject
*kobj
,
565 struct bin_attribute
*attr
,
566 char *buf
, loff_t off
, size_t count
)
568 struct cmos_rtc
*cmos
;
571 cmos
= dev_get_drvdata(container_of(kobj
, struct device
, kobj
));
573 /* NOTE: on at least PCs and Ataris, the boot firmware uses a
574 * checksum on part of the NVRAM data. That's currently ignored
575 * here. If userspace is smart enough to know what fields of
576 * NVRAM to update, updating checksums is also part of its job.
579 spin_lock_irq(&rtc_lock
);
580 for (retval
= 0; count
; count
--, off
++, retval
++) {
581 /* don't trash RTC registers */
582 if (off
== cmos
->day_alrm
583 || off
== cmos
->mon_alrm
584 || off
== cmos
->century
)
587 CMOS_WRITE(*buf
++, off
);
589 cmos_write_bank2(*buf
++, off
);
593 spin_unlock_irq(&rtc_lock
);
598 static struct bin_attribute nvram
= {
601 .mode
= S_IRUGO
| S_IWUSR
,
604 .read
= cmos_nvram_read
,
605 .write
= cmos_nvram_write
,
606 /* size gets set up later */
609 /*----------------------------------------------------------------*/
611 static struct cmos_rtc cmos_rtc
;
613 static irqreturn_t
cmos_interrupt(int irq
, void *p
)
618 spin_lock(&rtc_lock
);
620 /* When the HPET interrupt handler calls us, the interrupt
621 * status is passed as arg1 instead of the irq number. But
622 * always clear irq status, even when HPET is in the way.
624 * Note that HPET and RTC are almost certainly out of phase,
625 * giving different IRQ status ...
627 irqstat
= CMOS_READ(RTC_INTR_FLAGS
);
628 rtc_control
= CMOS_READ(RTC_CONTROL
);
629 if (is_hpet_enabled())
630 irqstat
= (unsigned long)irq
& 0xF0;
632 /* If we were suspended, RTC_CONTROL may not be accurate since the
633 * bios may have cleared it.
635 if (!cmos_rtc
.suspend_ctrl
)
636 irqstat
&= (rtc_control
& RTC_IRQMASK
) | RTC_IRQF
;
638 irqstat
&= (cmos_rtc
.suspend_ctrl
& RTC_IRQMASK
) | RTC_IRQF
;
640 /* All Linux RTC alarms should be treated as if they were oneshot.
641 * Similar code may be needed in system wakeup paths, in case the
642 * alarm woke the system.
644 if (irqstat
& RTC_AIE
) {
645 cmos_rtc
.suspend_ctrl
&= ~RTC_AIE
;
646 rtc_control
&= ~RTC_AIE
;
647 CMOS_WRITE(rtc_control
, RTC_CONTROL
);
648 hpet_mask_rtc_irq_bit(RTC_AIE
);
649 CMOS_READ(RTC_INTR_FLAGS
);
651 spin_unlock(&rtc_lock
);
653 if (is_intr(irqstat
)) {
654 rtc_update_irq(p
, 1, irqstat
);
664 #define INITSECTION __init
667 static int INITSECTION
668 cmos_do_probe(struct device
*dev
, struct resource
*ports
, int rtc_irq
)
670 struct cmos_rtc_board_info
*info
= dev_get_platdata(dev
);
672 unsigned char rtc_control
;
673 unsigned address_space
;
676 /* there can be only one ... */
683 /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
685 * REVISIT non-x86 systems may instead use memory space resources
686 * (needing ioremap etc), not i/o space resources like this ...
689 ports
= request_region(ports
->start
, resource_size(ports
),
692 ports
= request_mem_region(ports
->start
, resource_size(ports
),
695 dev_dbg(dev
, "i/o registers already in use\n");
699 cmos_rtc
.irq
= rtc_irq
;
700 cmos_rtc
.iomem
= ports
;
702 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
703 * driver did, but don't reject unknown configs. Old hardware
704 * won't address 128 bytes. Newer chips have multiple banks,
705 * though they may not be listed in one I/O resource.
707 #if defined(CONFIG_ATARI)
709 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
710 || defined(__sparc__) || defined(__mips__) \
711 || defined(__powerpc__) || defined(CONFIG_MN10300)
714 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
717 if (can_bank2
&& ports
->end
> (ports
->start
+ 1))
720 /* For ACPI systems extension info comes from the FADT. On others,
721 * board specific setup provides it as appropriate. Systems where
722 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
723 * some almost-clones) can provide hooks to make that behave.
725 * Note that ACPI doesn't preclude putting these registers into
726 * "extended" areas of the chip, including some that we won't yet
727 * expect CMOS_READ and friends to handle.
732 if (info
->address_space
)
733 address_space
= info
->address_space
;
735 if (info
->rtc_day_alarm
&& info
->rtc_day_alarm
< 128)
736 cmos_rtc
.day_alrm
= info
->rtc_day_alarm
;
737 if (info
->rtc_mon_alarm
&& info
->rtc_mon_alarm
< 128)
738 cmos_rtc
.mon_alrm
= info
->rtc_mon_alarm
;
739 if (info
->rtc_century
&& info
->rtc_century
< 128)
740 cmos_rtc
.century
= info
->rtc_century
;
742 if (info
->wake_on
&& info
->wake_off
) {
743 cmos_rtc
.wake_on
= info
->wake_on
;
744 cmos_rtc
.wake_off
= info
->wake_off
;
749 dev_set_drvdata(dev
, &cmos_rtc
);
751 cmos_rtc
.rtc
= rtc_device_register(driver_name
, dev
,
752 &cmos_rtc_ops
, THIS_MODULE
);
753 if (IS_ERR(cmos_rtc
.rtc
)) {
754 retval
= PTR_ERR(cmos_rtc
.rtc
);
758 rename_region(ports
, dev_name(&cmos_rtc
.rtc
->dev
));
760 spin_lock_irq(&rtc_lock
);
762 if (!(flags
& CMOS_RTC_FLAGS_NOFREQ
)) {
763 /* force periodic irq to CMOS reset default of 1024Hz;
765 * REVISIT it's been reported that at least one x86_64 ALI
766 * mobo doesn't use 32KHz here ... for portability we might
767 * need to do something about other clock frequencies.
769 cmos_rtc
.rtc
->irq_freq
= 1024;
770 hpet_set_periodic_freq(cmos_rtc
.rtc
->irq_freq
);
771 CMOS_WRITE(RTC_REF_CLCK_32KHZ
| 0x06, RTC_FREQ_SELECT
);
775 if (is_valid_irq(rtc_irq
))
776 cmos_irq_disable(&cmos_rtc
, RTC_PIE
| RTC_AIE
| RTC_UIE
);
778 rtc_control
= CMOS_READ(RTC_CONTROL
);
780 spin_unlock_irq(&rtc_lock
);
782 if (is_valid_irq(rtc_irq
) && !(rtc_control
& RTC_24H
)) {
783 dev_warn(dev
, "only 24-hr supported\n");
788 hpet_rtc_timer_init();
790 if (is_valid_irq(rtc_irq
)) {
791 irq_handler_t rtc_cmos_int_handler
;
793 if (is_hpet_enabled()) {
794 rtc_cmos_int_handler
= hpet_rtc_interrupt
;
795 retval
= hpet_register_irq_handler(cmos_interrupt
);
797 hpet_mask_rtc_irq_bit(RTC_IRQMASK
);
798 dev_warn(dev
, "hpet_register_irq_handler "
799 " failed in rtc_init().");
803 rtc_cmos_int_handler
= cmos_interrupt
;
805 retval
= request_irq(rtc_irq
, rtc_cmos_int_handler
,
806 IRQF_SHARED
, dev_name(&cmos_rtc
.rtc
->dev
),
809 dev_dbg(dev
, "IRQ %d is already in use\n", rtc_irq
);
814 /* export at least the first block of NVRAM */
815 nvram
.size
= address_space
- NVRAM_OFFSET
;
816 retval
= sysfs_create_bin_file(&dev
->kobj
, &nvram
);
818 dev_dbg(dev
, "can't create nvram file? %d\n", retval
);
822 dev_info(dev
, "%s%s, %zd bytes nvram%s\n",
823 !is_valid_irq(rtc_irq
) ? "no alarms" :
824 cmos_rtc
.mon_alrm
? "alarms up to one year" :
825 cmos_rtc
.day_alrm
? "alarms up to one month" :
826 "alarms up to one day",
827 cmos_rtc
.century
? ", y3k" : "",
829 is_hpet_enabled() ? ", hpet irqs" : "");
834 if (is_valid_irq(rtc_irq
))
835 free_irq(rtc_irq
, cmos_rtc
.rtc
);
838 rtc_device_unregister(cmos_rtc
.rtc
);
841 release_region(ports
->start
, resource_size(ports
));
843 release_mem_region(ports
->start
, resource_size(ports
));
847 static void cmos_do_shutdown(int rtc_irq
)
849 spin_lock_irq(&rtc_lock
);
850 if (is_valid_irq(rtc_irq
))
851 cmos_irq_disable(&cmos_rtc
, RTC_IRQMASK
);
852 spin_unlock_irq(&rtc_lock
);
855 static void cmos_do_remove(struct device
*dev
)
857 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
858 struct resource
*ports
;
860 cmos_do_shutdown(cmos
->irq
);
862 sysfs_remove_bin_file(&dev
->kobj
, &nvram
);
864 if (is_valid_irq(cmos
->irq
)) {
865 free_irq(cmos
->irq
, cmos
->rtc
);
866 hpet_unregister_irq_handler(cmos_interrupt
);
869 rtc_device_unregister(cmos
->rtc
);
874 release_region(ports
->start
, resource_size(ports
));
876 release_mem_region(ports
->start
, resource_size(ports
));
882 static int cmos_aie_poweroff(struct device
*dev
)
884 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
888 unsigned char rtc_control
;
890 if (!cmos
->alarm_expires
)
893 spin_lock_irq(&rtc_lock
);
894 rtc_control
= CMOS_READ(RTC_CONTROL
);
895 spin_unlock_irq(&rtc_lock
);
897 /* We only care about the situation where AIE is disabled. */
898 if (rtc_control
& RTC_AIE
)
901 cmos_read_time(dev
, &now
);
902 t_now
= rtc_tm_to_time64(&now
);
905 * When enabling "RTC wake-up" in BIOS setup, the machine reboots
906 * automatically right after shutdown on some buggy boxes.
907 * This automatic rebooting issue won't happen when the alarm
908 * time is larger than now+1 seconds.
910 * If the alarm time is equal to now+1 seconds, the issue can be
911 * prevented by cancelling the alarm.
913 if (cmos
->alarm_expires
== t_now
+ 1) {
914 struct rtc_wkalrm alarm
;
916 /* Cancel the AIE timer by configuring the past time. */
917 rtc_time64_to_tm(t_now
- 1, &alarm
.time
);
919 retval
= cmos_set_alarm(dev
, &alarm
);
920 } else if (cmos
->alarm_expires
> t_now
+ 1) {
927 static int cmos_suspend(struct device
*dev
)
929 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
932 /* only the alarm might be a wakeup event source */
933 spin_lock_irq(&rtc_lock
);
934 cmos
->suspend_ctrl
= tmp
= CMOS_READ(RTC_CONTROL
);
935 if (tmp
& (RTC_PIE
|RTC_AIE
|RTC_UIE
)) {
938 if (device_may_wakeup(dev
))
939 mask
= RTC_IRQMASK
& ~RTC_AIE
;
943 CMOS_WRITE(tmp
, RTC_CONTROL
);
944 hpet_mask_rtc_irq_bit(mask
);
946 cmos_checkintr(cmos
, tmp
);
948 spin_unlock_irq(&rtc_lock
);
951 cmos
->enabled_wake
= 1;
955 enable_irq_wake(cmos
->irq
);
958 cmos_read_alarm(dev
, &cmos
->saved_wkalrm
);
960 dev_dbg(dev
, "suspend%s, ctrl %02x\n",
961 (tmp
& RTC_AIE
) ? ", alarm may wake" : "",
967 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
968 * after a detour through G3 "mechanical off", although the ACPI spec
969 * says wakeup should only work from G1/S4 "hibernate". To most users,
970 * distinctions between S4 and S5 are pointless. So when the hardware
971 * allows, don't draw that distinction.
973 static inline int cmos_poweroff(struct device
*dev
)
975 if (!IS_ENABLED(CONFIG_PM
))
978 return cmos_suspend(dev
);
981 static void cmos_check_wkalrm(struct device
*dev
)
983 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
984 struct rtc_wkalrm current_alarm
;
985 time64_t t_current_expires
;
986 time64_t t_saved_expires
;
988 cmos_read_alarm(dev
, ¤t_alarm
);
989 t_current_expires
= rtc_tm_to_time64(¤t_alarm
.time
);
990 t_saved_expires
= rtc_tm_to_time64(&cmos
->saved_wkalrm
.time
);
991 if (t_current_expires
!= t_saved_expires
||
992 cmos
->saved_wkalrm
.enabled
!= current_alarm
.enabled
) {
993 cmos_set_alarm(dev
, &cmos
->saved_wkalrm
);
997 static void cmos_check_acpi_rtc_status(struct device
*dev
,
998 unsigned char *rtc_control
);
1000 static int __maybe_unused
cmos_resume(struct device
*dev
)
1002 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
1005 if (cmos
->enabled_wake
) {
1007 cmos
->wake_off(dev
);
1009 disable_irq_wake(cmos
->irq
);
1010 cmos
->enabled_wake
= 0;
1013 /* The BIOS might have changed the alarm, restore it */
1014 cmos_check_wkalrm(dev
);
1016 spin_lock_irq(&rtc_lock
);
1017 tmp
= cmos
->suspend_ctrl
;
1018 cmos
->suspend_ctrl
= 0;
1019 /* re-enable any irqs previously active */
1020 if (tmp
& RTC_IRQMASK
) {
1023 if (device_may_wakeup(dev
))
1024 hpet_rtc_timer_init();
1027 CMOS_WRITE(tmp
, RTC_CONTROL
);
1028 hpet_set_rtc_irq_bit(tmp
& RTC_IRQMASK
);
1030 mask
= CMOS_READ(RTC_INTR_FLAGS
);
1031 mask
&= (tmp
& RTC_IRQMASK
) | RTC_IRQF
;
1032 if (!is_hpet_enabled() || !is_intr(mask
))
1035 /* force one-shot behavior if HPET blocked
1036 * the wake alarm's irq
1038 rtc_update_irq(cmos
->rtc
, 1, mask
);
1040 hpet_mask_rtc_irq_bit(RTC_AIE
);
1041 } while (mask
& RTC_AIE
);
1044 cmos_check_acpi_rtc_status(dev
, &tmp
);
1046 spin_unlock_irq(&rtc_lock
);
1048 dev_dbg(dev
, "resume, ctrl %02x\n", tmp
);
1053 static SIMPLE_DEV_PM_OPS(cmos_pm_ops
, cmos_suspend
, cmos_resume
);
1055 /*----------------------------------------------------------------*/
1057 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
1058 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
1059 * probably list them in similar PNPBIOS tables; so PNP is more common.
1061 * We don't use legacy "poke at the hardware" probing. Ancient PCs that
1062 * predate even PNPBIOS should set up platform_bus devices.
1067 #include <linux/acpi.h>
1069 static u32
rtc_handler(void *context
)
1071 struct device
*dev
= context
;
1072 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
1073 unsigned char rtc_control
= 0;
1074 unsigned char rtc_intr
;
1075 unsigned long flags
;
1077 spin_lock_irqsave(&rtc_lock
, flags
);
1078 if (cmos_rtc
.suspend_ctrl
)
1079 rtc_control
= CMOS_READ(RTC_CONTROL
);
1080 if (rtc_control
& RTC_AIE
) {
1081 cmos_rtc
.suspend_ctrl
&= ~RTC_AIE
;
1082 CMOS_WRITE(rtc_control
, RTC_CONTROL
);
1083 rtc_intr
= CMOS_READ(RTC_INTR_FLAGS
);
1084 rtc_update_irq(cmos
->rtc
, 1, rtc_intr
);
1086 spin_unlock_irqrestore(&rtc_lock
, flags
);
1088 pm_wakeup_event(dev
, 0);
1089 acpi_clear_event(ACPI_EVENT_RTC
);
1090 acpi_disable_event(ACPI_EVENT_RTC
, 0);
1091 return ACPI_INTERRUPT_HANDLED
;
1094 static inline void rtc_wake_setup(struct device
*dev
)
1096 acpi_install_fixed_event_handler(ACPI_EVENT_RTC
, rtc_handler
, dev
);
1098 * After the RTC handler is installed, the Fixed_RTC event should
1099 * be disabled. Only when the RTC alarm is set will it be enabled.
1101 acpi_clear_event(ACPI_EVENT_RTC
);
1102 acpi_disable_event(ACPI_EVENT_RTC
, 0);
1105 static void rtc_wake_on(struct device
*dev
)
1107 acpi_clear_event(ACPI_EVENT_RTC
);
1108 acpi_enable_event(ACPI_EVENT_RTC
, 0);
1111 static void rtc_wake_off(struct device
*dev
)
1113 acpi_disable_event(ACPI_EVENT_RTC
, 0);
1116 /* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find
1117 * its device node and pass extra config data. This helps its driver use
1118 * capabilities that the now-obsolete mc146818 didn't have, and informs it
1119 * that this board's RTC is wakeup-capable (per ACPI spec).
1121 static struct cmos_rtc_board_info acpi_rtc_info
;
1123 static void cmos_wake_setup(struct device
*dev
)
1128 rtc_wake_setup(dev
);
1129 acpi_rtc_info
.wake_on
= rtc_wake_on
;
1130 acpi_rtc_info
.wake_off
= rtc_wake_off
;
1132 /* workaround bug in some ACPI tables */
1133 if (acpi_gbl_FADT
.month_alarm
&& !acpi_gbl_FADT
.day_alarm
) {
1134 dev_dbg(dev
, "bogus FADT month_alarm (%d)\n",
1135 acpi_gbl_FADT
.month_alarm
);
1136 acpi_gbl_FADT
.month_alarm
= 0;
1139 acpi_rtc_info
.rtc_day_alarm
= acpi_gbl_FADT
.day_alarm
;
1140 acpi_rtc_info
.rtc_mon_alarm
= acpi_gbl_FADT
.month_alarm
;
1141 acpi_rtc_info
.rtc_century
= acpi_gbl_FADT
.century
;
1143 /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */
1144 if (acpi_gbl_FADT
.flags
& ACPI_FADT_S4_RTC_WAKE
)
1145 dev_info(dev
, "RTC can wake from S4\n");
1147 dev
->platform_data
= &acpi_rtc_info
;
1149 /* RTC always wakes from S1/S2/S3, and often S4/STD */
1150 device_init_wakeup(dev
, 1);
1153 static void cmos_check_acpi_rtc_status(struct device
*dev
,
1154 unsigned char *rtc_control
)
1156 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
1157 acpi_event_status rtc_status
;
1160 if (acpi_gbl_FADT
.flags
& ACPI_FADT_FIXED_RTC
)
1163 status
= acpi_get_event_status(ACPI_EVENT_RTC
, &rtc_status
);
1164 if (ACPI_FAILURE(status
)) {
1165 dev_err(dev
, "Could not get RTC status\n");
1166 } else if (rtc_status
& ACPI_EVENT_FLAG_SET
) {
1168 *rtc_control
&= ~RTC_AIE
;
1169 CMOS_WRITE(*rtc_control
, RTC_CONTROL
);
1170 mask
= CMOS_READ(RTC_INTR_FLAGS
);
1171 rtc_update_irq(cmos
->rtc
, 1, mask
);
1177 static void cmos_wake_setup(struct device
*dev
)
1181 static void cmos_check_acpi_rtc_status(struct device
*dev
,
1182 unsigned char *rtc_control
)
1190 #include <linux/pnp.h>
1192 static int cmos_pnp_probe(struct pnp_dev
*pnp
, const struct pnp_device_id
*id
)
1194 cmos_wake_setup(&pnp
->dev
);
1196 if (pnp_port_start(pnp
, 0) == 0x70 && !pnp_irq_valid(pnp
, 0))
1197 /* Some machines contain a PNP entry for the RTC, but
1198 * don't define the IRQ. It should always be safe to
1199 * hardcode it in these cases
1201 return cmos_do_probe(&pnp
->dev
,
1202 pnp_get_resource(pnp
, IORESOURCE_IO
, 0), 8);
1204 return cmos_do_probe(&pnp
->dev
,
1205 pnp_get_resource(pnp
, IORESOURCE_IO
, 0),
1209 static void cmos_pnp_remove(struct pnp_dev
*pnp
)
1211 cmos_do_remove(&pnp
->dev
);
1214 static void cmos_pnp_shutdown(struct pnp_dev
*pnp
)
1216 struct device
*dev
= &pnp
->dev
;
1217 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
1219 if (system_state
== SYSTEM_POWER_OFF
) {
1220 int retval
= cmos_poweroff(dev
);
1222 if (cmos_aie_poweroff(dev
) < 0 && !retval
)
1226 cmos_do_shutdown(cmos
->irq
);
1229 static const struct pnp_device_id rtc_ids
[] = {
1230 { .id
= "PNP0b00", },
1231 { .id
= "PNP0b01", },
1232 { .id
= "PNP0b02", },
1235 MODULE_DEVICE_TABLE(pnp
, rtc_ids
);
1237 static struct pnp_driver cmos_pnp_driver
= {
1238 .name
= (char *) driver_name
,
1239 .id_table
= rtc_ids
,
1240 .probe
= cmos_pnp_probe
,
1241 .remove
= cmos_pnp_remove
,
1242 .shutdown
= cmos_pnp_shutdown
,
1244 /* flag ensures resume() gets called, and stops syslog spam */
1245 .flags
= PNP_DRIVER_RES_DO_NOT_CHANGE
,
1251 #endif /* CONFIG_PNP */
1254 static const struct of_device_id of_cmos_match
[] = {
1256 .compatible
= "motorola,mc146818",
1260 MODULE_DEVICE_TABLE(of
, of_cmos_match
);
1262 static __init
void cmos_of_init(struct platform_device
*pdev
)
1264 struct device_node
*node
= pdev
->dev
.of_node
;
1265 struct rtc_time time
;
1272 val
= of_get_property(node
, "ctrl-reg", NULL
);
1274 CMOS_WRITE(be32_to_cpup(val
), RTC_CONTROL
);
1276 val
= of_get_property(node
, "freq-reg", NULL
);
1278 CMOS_WRITE(be32_to_cpup(val
), RTC_FREQ_SELECT
);
1280 cmos_read_time(&pdev
->dev
, &time
);
1281 ret
= rtc_valid_tm(&time
);
1283 struct rtc_time def_time
= {
1287 cmos_set_time(&pdev
->dev
, &def_time
);
1291 static inline void cmos_of_init(struct platform_device
*pdev
) {}
1293 /*----------------------------------------------------------------*/
1295 /* Platform setup should have set up an RTC device, when PNP is
1296 * unavailable ... this could happen even on (older) PCs.
1299 static int __init
cmos_platform_probe(struct platform_device
*pdev
)
1301 struct resource
*resource
;
1305 cmos_wake_setup(&pdev
->dev
);
1308 resource
= platform_get_resource(pdev
, IORESOURCE_IO
, 0);
1310 resource
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1311 irq
= platform_get_irq(pdev
, 0);
1315 return cmos_do_probe(&pdev
->dev
, resource
, irq
);
1318 static int cmos_platform_remove(struct platform_device
*pdev
)
1320 cmos_do_remove(&pdev
->dev
);
1324 static void cmos_platform_shutdown(struct platform_device
*pdev
)
1326 struct device
*dev
= &pdev
->dev
;
1327 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
1329 if (system_state
== SYSTEM_POWER_OFF
) {
1330 int retval
= cmos_poweroff(dev
);
1332 if (cmos_aie_poweroff(dev
) < 0 && !retval
)
1336 cmos_do_shutdown(cmos
->irq
);
1339 /* work with hotplug and coldplug */
1340 MODULE_ALIAS("platform:rtc_cmos");
1342 static struct platform_driver cmos_platform_driver
= {
1343 .remove
= cmos_platform_remove
,
1344 .shutdown
= cmos_platform_shutdown
,
1346 .name
= driver_name
,
1348 .of_match_table
= of_match_ptr(of_cmos_match
),
1353 static bool pnp_driver_registered
;
1355 static bool platform_driver_registered
;
1357 static int __init
cmos_init(void)
1362 retval
= pnp_register_driver(&cmos_pnp_driver
);
1364 pnp_driver_registered
= true;
1367 if (!cmos_rtc
.dev
) {
1368 retval
= platform_driver_probe(&cmos_platform_driver
,
1369 cmos_platform_probe
);
1371 platform_driver_registered
= true;
1378 if (pnp_driver_registered
)
1379 pnp_unregister_driver(&cmos_pnp_driver
);
1383 module_init(cmos_init
);
1385 static void __exit
cmos_exit(void)
1388 if (pnp_driver_registered
)
1389 pnp_unregister_driver(&cmos_pnp_driver
);
1391 if (platform_driver_registered
)
1392 platform_driver_unregister(&cmos_platform_driver
);
1394 module_exit(cmos_exit
);
1397 MODULE_AUTHOR("David Brownell");
1398 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1399 MODULE_LICENSE("GPL");