Merge tag 'fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arm...
[linux/fpc-iii.git] / drivers / rtc / rtc-cmos.c
blobf4a96dbdabf21ec4bdf8017e524ea42b9b0ce5c7
1 /*
2 * RTC class driver for "CMOS RTC": PCs, ACPI, etc
4 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5 * Copyright (C) 2006 David Brownell (convert to new framework)
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
14 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15 * That defined the register interface now provided by all PCs, some
16 * non-PC systems, and incorporated into ACPI. Modern PC chipsets
17 * integrate an MC146818 clone in their southbridge, and boards use
18 * that instead of discrete clones like the DS12887 or M48T86. There
19 * are also clones that connect using the LPC bus.
21 * That register API is also used directly by various other drivers
22 * (notably for integrated NVRAM), infrastructure (x86 has code to
23 * bypass the RTC framework, directly reading the RTC during boot
24 * and updating minutes/seconds for systems using NTP synch) and
25 * utilities (like userspace 'hwclock', if no /dev node exists).
27 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28 * interrupts disabled, holding the global rtc_lock, to exclude those
29 * other drivers and utilities on correctly configured systems.
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/interrupt.h>
38 #include <linux/spinlock.h>
39 #include <linux/platform_device.h>
40 #include <linux/log2.h>
41 #include <linux/pm.h>
42 #include <linux/of.h>
43 #include <linux/of_platform.h>
45 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
46 #include <linux/mc146818rtc.h>
48 struct cmos_rtc {
49 struct rtc_device *rtc;
50 struct device *dev;
51 int irq;
52 struct resource *iomem;
53 time64_t alarm_expires;
55 void (*wake_on)(struct device *);
56 void (*wake_off)(struct device *);
58 u8 enabled_wake;
59 u8 suspend_ctrl;
61 /* newer hardware extends the original register set */
62 u8 day_alrm;
63 u8 mon_alrm;
64 u8 century;
66 struct rtc_wkalrm saved_wkalrm;
69 /* both platform and pnp busses use negative numbers for invalid irqs */
70 #define is_valid_irq(n) ((n) > 0)
72 static const char driver_name[] = "rtc_cmos";
74 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
75 * always mask it against the irq enable bits in RTC_CONTROL. Bit values
76 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
78 #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
80 static inline int is_intr(u8 rtc_intr)
82 if (!(rtc_intr & RTC_IRQF))
83 return 0;
84 return rtc_intr & RTC_IRQMASK;
87 /*----------------------------------------------------------------*/
89 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
90 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
91 * used in a broken "legacy replacement" mode. The breakage includes
92 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
93 * other (better) use.
95 * When that broken mode is in use, platform glue provides a partial
96 * emulation of hardware RTC IRQ facilities using HPET #1. We don't
97 * want to use HPET for anything except those IRQs though...
99 #ifdef CONFIG_HPET_EMULATE_RTC
100 #include <asm/hpet.h>
101 #else
103 static inline int is_hpet_enabled(void)
105 return 0;
108 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
110 return 0;
113 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
115 return 0;
118 static inline int
119 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
121 return 0;
124 static inline int hpet_set_periodic_freq(unsigned long freq)
126 return 0;
129 static inline int hpet_rtc_dropped_irq(void)
131 return 0;
134 static inline int hpet_rtc_timer_init(void)
136 return 0;
139 extern irq_handler_t hpet_rtc_interrupt;
141 static inline int hpet_register_irq_handler(irq_handler_t handler)
143 return 0;
146 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
148 return 0;
151 #endif
153 /*----------------------------------------------------------------*/
155 #ifdef RTC_PORT
157 /* Most newer x86 systems have two register banks, the first used
158 * for RTC and NVRAM and the second only for NVRAM. Caller must
159 * own rtc_lock ... and we won't worry about access during NMI.
161 #define can_bank2 true
163 static inline unsigned char cmos_read_bank2(unsigned char addr)
165 outb(addr, RTC_PORT(2));
166 return inb(RTC_PORT(3));
169 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
171 outb(addr, RTC_PORT(2));
172 outb(val, RTC_PORT(3));
175 #else
177 #define can_bank2 false
179 static inline unsigned char cmos_read_bank2(unsigned char addr)
181 return 0;
184 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
188 #endif
190 /*----------------------------------------------------------------*/
192 static int cmos_read_time(struct device *dev, struct rtc_time *t)
195 * If pm_trace abused the RTC for storage, set the timespec to 0,
196 * which tells the caller that this RTC value is unusable.
198 if (!pm_trace_rtc_valid())
199 return -EIO;
201 /* REVISIT: if the clock has a "century" register, use
202 * that instead of the heuristic in mc146818_get_time().
203 * That'll make Y3K compatility (year > 2070) easy!
205 mc146818_get_time(t);
206 return 0;
209 static int cmos_set_time(struct device *dev, struct rtc_time *t)
211 /* REVISIT: set the "century" register if available
213 * NOTE: this ignores the issue whereby updating the seconds
214 * takes effect exactly 500ms after we write the register.
215 * (Also queueing and other delays before we get this far.)
217 return mc146818_set_time(t);
220 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
222 struct cmos_rtc *cmos = dev_get_drvdata(dev);
223 unsigned char rtc_control;
225 if (!is_valid_irq(cmos->irq))
226 return -EIO;
228 /* Basic alarms only support hour, minute, and seconds fields.
229 * Some also support day and month, for alarms up to a year in
230 * the future.
233 spin_lock_irq(&rtc_lock);
234 t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
235 t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
236 t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
238 if (cmos->day_alrm) {
239 /* ignore upper bits on readback per ACPI spec */
240 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
241 if (!t->time.tm_mday)
242 t->time.tm_mday = -1;
244 if (cmos->mon_alrm) {
245 t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
246 if (!t->time.tm_mon)
247 t->time.tm_mon = -1;
251 rtc_control = CMOS_READ(RTC_CONTROL);
252 spin_unlock_irq(&rtc_lock);
254 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
255 if (((unsigned)t->time.tm_sec) < 0x60)
256 t->time.tm_sec = bcd2bin(t->time.tm_sec);
257 else
258 t->time.tm_sec = -1;
259 if (((unsigned)t->time.tm_min) < 0x60)
260 t->time.tm_min = bcd2bin(t->time.tm_min);
261 else
262 t->time.tm_min = -1;
263 if (((unsigned)t->time.tm_hour) < 0x24)
264 t->time.tm_hour = bcd2bin(t->time.tm_hour);
265 else
266 t->time.tm_hour = -1;
268 if (cmos->day_alrm) {
269 if (((unsigned)t->time.tm_mday) <= 0x31)
270 t->time.tm_mday = bcd2bin(t->time.tm_mday);
271 else
272 t->time.tm_mday = -1;
274 if (cmos->mon_alrm) {
275 if (((unsigned)t->time.tm_mon) <= 0x12)
276 t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
277 else
278 t->time.tm_mon = -1;
283 t->enabled = !!(rtc_control & RTC_AIE);
284 t->pending = 0;
286 return 0;
289 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
291 unsigned char rtc_intr;
293 /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
294 * allegedly some older rtcs need that to handle irqs properly
296 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
298 if (is_hpet_enabled())
299 return;
301 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
302 if (is_intr(rtc_intr))
303 rtc_update_irq(cmos->rtc, 1, rtc_intr);
306 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
308 unsigned char rtc_control;
310 /* flush any pending IRQ status, notably for update irqs,
311 * before we enable new IRQs
313 rtc_control = CMOS_READ(RTC_CONTROL);
314 cmos_checkintr(cmos, rtc_control);
316 rtc_control |= mask;
317 CMOS_WRITE(rtc_control, RTC_CONTROL);
318 hpet_set_rtc_irq_bit(mask);
320 cmos_checkintr(cmos, rtc_control);
323 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
325 unsigned char rtc_control;
327 rtc_control = CMOS_READ(RTC_CONTROL);
328 rtc_control &= ~mask;
329 CMOS_WRITE(rtc_control, RTC_CONTROL);
330 hpet_mask_rtc_irq_bit(mask);
332 cmos_checkintr(cmos, rtc_control);
335 static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t)
337 struct cmos_rtc *cmos = dev_get_drvdata(dev);
338 struct rtc_time now;
340 cmos_read_time(dev, &now);
342 if (!cmos->day_alrm) {
343 time64_t t_max_date;
344 time64_t t_alrm;
346 t_max_date = rtc_tm_to_time64(&now);
347 t_max_date += 24 * 60 * 60 - 1;
348 t_alrm = rtc_tm_to_time64(&t->time);
349 if (t_alrm > t_max_date) {
350 dev_err(dev,
351 "Alarms can be up to one day in the future\n");
352 return -EINVAL;
354 } else if (!cmos->mon_alrm) {
355 struct rtc_time max_date = now;
356 time64_t t_max_date;
357 time64_t t_alrm;
358 int max_mday;
360 if (max_date.tm_mon == 11) {
361 max_date.tm_mon = 0;
362 max_date.tm_year += 1;
363 } else {
364 max_date.tm_mon += 1;
366 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
367 if (max_date.tm_mday > max_mday)
368 max_date.tm_mday = max_mday;
370 t_max_date = rtc_tm_to_time64(&max_date);
371 t_max_date -= 1;
372 t_alrm = rtc_tm_to_time64(&t->time);
373 if (t_alrm > t_max_date) {
374 dev_err(dev,
375 "Alarms can be up to one month in the future\n");
376 return -EINVAL;
378 } else {
379 struct rtc_time max_date = now;
380 time64_t t_max_date;
381 time64_t t_alrm;
382 int max_mday;
384 max_date.tm_year += 1;
385 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
386 if (max_date.tm_mday > max_mday)
387 max_date.tm_mday = max_mday;
389 t_max_date = rtc_tm_to_time64(&max_date);
390 t_max_date -= 1;
391 t_alrm = rtc_tm_to_time64(&t->time);
392 if (t_alrm > t_max_date) {
393 dev_err(dev,
394 "Alarms can be up to one year in the future\n");
395 return -EINVAL;
399 return 0;
402 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
404 struct cmos_rtc *cmos = dev_get_drvdata(dev);
405 unsigned char mon, mday, hrs, min, sec, rtc_control;
406 int ret;
408 if (!is_valid_irq(cmos->irq))
409 return -EIO;
411 ret = cmos_validate_alarm(dev, t);
412 if (ret < 0)
413 return ret;
415 mon = t->time.tm_mon + 1;
416 mday = t->time.tm_mday;
417 hrs = t->time.tm_hour;
418 min = t->time.tm_min;
419 sec = t->time.tm_sec;
421 rtc_control = CMOS_READ(RTC_CONTROL);
422 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
423 /* Writing 0xff means "don't care" or "match all". */
424 mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
425 mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
426 hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
427 min = (min < 60) ? bin2bcd(min) : 0xff;
428 sec = (sec < 60) ? bin2bcd(sec) : 0xff;
431 spin_lock_irq(&rtc_lock);
433 /* next rtc irq must not be from previous alarm setting */
434 cmos_irq_disable(cmos, RTC_AIE);
436 /* update alarm */
437 CMOS_WRITE(hrs, RTC_HOURS_ALARM);
438 CMOS_WRITE(min, RTC_MINUTES_ALARM);
439 CMOS_WRITE(sec, RTC_SECONDS_ALARM);
441 /* the system may support an "enhanced" alarm */
442 if (cmos->day_alrm) {
443 CMOS_WRITE(mday, cmos->day_alrm);
444 if (cmos->mon_alrm)
445 CMOS_WRITE(mon, cmos->mon_alrm);
448 /* FIXME the HPET alarm glue currently ignores day_alrm
449 * and mon_alrm ...
451 hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
453 if (t->enabled)
454 cmos_irq_enable(cmos, RTC_AIE);
456 spin_unlock_irq(&rtc_lock);
458 cmos->alarm_expires = rtc_tm_to_time64(&t->time);
460 return 0;
463 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
465 struct cmos_rtc *cmos = dev_get_drvdata(dev);
466 unsigned long flags;
468 if (!is_valid_irq(cmos->irq))
469 return -EINVAL;
471 spin_lock_irqsave(&rtc_lock, flags);
473 if (enabled)
474 cmos_irq_enable(cmos, RTC_AIE);
475 else
476 cmos_irq_disable(cmos, RTC_AIE);
478 spin_unlock_irqrestore(&rtc_lock, flags);
479 return 0;
482 #if IS_ENABLED(CONFIG_RTC_INTF_PROC)
484 static int cmos_procfs(struct device *dev, struct seq_file *seq)
486 struct cmos_rtc *cmos = dev_get_drvdata(dev);
487 unsigned char rtc_control, valid;
489 spin_lock_irq(&rtc_lock);
490 rtc_control = CMOS_READ(RTC_CONTROL);
491 valid = CMOS_READ(RTC_VALID);
492 spin_unlock_irq(&rtc_lock);
494 /* NOTE: at least ICH6 reports battery status using a different
495 * (non-RTC) bit; and SQWE is ignored on many current systems.
497 seq_printf(seq,
498 "periodic_IRQ\t: %s\n"
499 "update_IRQ\t: %s\n"
500 "HPET_emulated\t: %s\n"
501 // "square_wave\t: %s\n"
502 "BCD\t\t: %s\n"
503 "DST_enable\t: %s\n"
504 "periodic_freq\t: %d\n"
505 "batt_status\t: %s\n",
506 (rtc_control & RTC_PIE) ? "yes" : "no",
507 (rtc_control & RTC_UIE) ? "yes" : "no",
508 is_hpet_enabled() ? "yes" : "no",
509 // (rtc_control & RTC_SQWE) ? "yes" : "no",
510 (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
511 (rtc_control & RTC_DST_EN) ? "yes" : "no",
512 cmos->rtc->irq_freq,
513 (valid & RTC_VRT) ? "okay" : "dead");
515 return 0;
518 #else
519 #define cmos_procfs NULL
520 #endif
522 static const struct rtc_class_ops cmos_rtc_ops = {
523 .read_time = cmos_read_time,
524 .set_time = cmos_set_time,
525 .read_alarm = cmos_read_alarm,
526 .set_alarm = cmos_set_alarm,
527 .proc = cmos_procfs,
528 .alarm_irq_enable = cmos_alarm_irq_enable,
531 /*----------------------------------------------------------------*/
534 * All these chips have at least 64 bytes of address space, shared by
535 * RTC registers and NVRAM. Most of those bytes of NVRAM are used
536 * by boot firmware. Modern chips have 128 or 256 bytes.
539 #define NVRAM_OFFSET (RTC_REG_D + 1)
541 static ssize_t
542 cmos_nvram_read(struct file *filp, struct kobject *kobj,
543 struct bin_attribute *attr,
544 char *buf, loff_t off, size_t count)
546 int retval;
548 off += NVRAM_OFFSET;
549 spin_lock_irq(&rtc_lock);
550 for (retval = 0; count; count--, off++, retval++) {
551 if (off < 128)
552 *buf++ = CMOS_READ(off);
553 else if (can_bank2)
554 *buf++ = cmos_read_bank2(off);
555 else
556 break;
558 spin_unlock_irq(&rtc_lock);
560 return retval;
563 static ssize_t
564 cmos_nvram_write(struct file *filp, struct kobject *kobj,
565 struct bin_attribute *attr,
566 char *buf, loff_t off, size_t count)
568 struct cmos_rtc *cmos;
569 int retval;
571 cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
573 /* NOTE: on at least PCs and Ataris, the boot firmware uses a
574 * checksum on part of the NVRAM data. That's currently ignored
575 * here. If userspace is smart enough to know what fields of
576 * NVRAM to update, updating checksums is also part of its job.
578 off += NVRAM_OFFSET;
579 spin_lock_irq(&rtc_lock);
580 for (retval = 0; count; count--, off++, retval++) {
581 /* don't trash RTC registers */
582 if (off == cmos->day_alrm
583 || off == cmos->mon_alrm
584 || off == cmos->century)
585 buf++;
586 else if (off < 128)
587 CMOS_WRITE(*buf++, off);
588 else if (can_bank2)
589 cmos_write_bank2(*buf++, off);
590 else
591 break;
593 spin_unlock_irq(&rtc_lock);
595 return retval;
598 static struct bin_attribute nvram = {
599 .attr = {
600 .name = "nvram",
601 .mode = S_IRUGO | S_IWUSR,
604 .read = cmos_nvram_read,
605 .write = cmos_nvram_write,
606 /* size gets set up later */
609 /*----------------------------------------------------------------*/
611 static struct cmos_rtc cmos_rtc;
613 static irqreturn_t cmos_interrupt(int irq, void *p)
615 u8 irqstat;
616 u8 rtc_control;
618 spin_lock(&rtc_lock);
620 /* When the HPET interrupt handler calls us, the interrupt
621 * status is passed as arg1 instead of the irq number. But
622 * always clear irq status, even when HPET is in the way.
624 * Note that HPET and RTC are almost certainly out of phase,
625 * giving different IRQ status ...
627 irqstat = CMOS_READ(RTC_INTR_FLAGS);
628 rtc_control = CMOS_READ(RTC_CONTROL);
629 if (is_hpet_enabled())
630 irqstat = (unsigned long)irq & 0xF0;
632 /* If we were suspended, RTC_CONTROL may not be accurate since the
633 * bios may have cleared it.
635 if (!cmos_rtc.suspend_ctrl)
636 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
637 else
638 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
640 /* All Linux RTC alarms should be treated as if they were oneshot.
641 * Similar code may be needed in system wakeup paths, in case the
642 * alarm woke the system.
644 if (irqstat & RTC_AIE) {
645 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
646 rtc_control &= ~RTC_AIE;
647 CMOS_WRITE(rtc_control, RTC_CONTROL);
648 hpet_mask_rtc_irq_bit(RTC_AIE);
649 CMOS_READ(RTC_INTR_FLAGS);
651 spin_unlock(&rtc_lock);
653 if (is_intr(irqstat)) {
654 rtc_update_irq(p, 1, irqstat);
655 return IRQ_HANDLED;
656 } else
657 return IRQ_NONE;
660 #ifdef CONFIG_PNP
661 #define INITSECTION
663 #else
664 #define INITSECTION __init
665 #endif
667 static int INITSECTION
668 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
670 struct cmos_rtc_board_info *info = dev_get_platdata(dev);
671 int retval = 0;
672 unsigned char rtc_control;
673 unsigned address_space;
674 u32 flags = 0;
676 /* there can be only one ... */
677 if (cmos_rtc.dev)
678 return -EBUSY;
680 if (!ports)
681 return -ENODEV;
683 /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
685 * REVISIT non-x86 systems may instead use memory space resources
686 * (needing ioremap etc), not i/o space resources like this ...
688 if (RTC_IOMAPPED)
689 ports = request_region(ports->start, resource_size(ports),
690 driver_name);
691 else
692 ports = request_mem_region(ports->start, resource_size(ports),
693 driver_name);
694 if (!ports) {
695 dev_dbg(dev, "i/o registers already in use\n");
696 return -EBUSY;
699 cmos_rtc.irq = rtc_irq;
700 cmos_rtc.iomem = ports;
702 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
703 * driver did, but don't reject unknown configs. Old hardware
704 * won't address 128 bytes. Newer chips have multiple banks,
705 * though they may not be listed in one I/O resource.
707 #if defined(CONFIG_ATARI)
708 address_space = 64;
709 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
710 || defined(__sparc__) || defined(__mips__) \
711 || defined(__powerpc__) || defined(CONFIG_MN10300)
712 address_space = 128;
713 #else
714 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
715 address_space = 128;
716 #endif
717 if (can_bank2 && ports->end > (ports->start + 1))
718 address_space = 256;
720 /* For ACPI systems extension info comes from the FADT. On others,
721 * board specific setup provides it as appropriate. Systems where
722 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
723 * some almost-clones) can provide hooks to make that behave.
725 * Note that ACPI doesn't preclude putting these registers into
726 * "extended" areas of the chip, including some that we won't yet
727 * expect CMOS_READ and friends to handle.
729 if (info) {
730 if (info->flags)
731 flags = info->flags;
732 if (info->address_space)
733 address_space = info->address_space;
735 if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
736 cmos_rtc.day_alrm = info->rtc_day_alarm;
737 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
738 cmos_rtc.mon_alrm = info->rtc_mon_alarm;
739 if (info->rtc_century && info->rtc_century < 128)
740 cmos_rtc.century = info->rtc_century;
742 if (info->wake_on && info->wake_off) {
743 cmos_rtc.wake_on = info->wake_on;
744 cmos_rtc.wake_off = info->wake_off;
748 cmos_rtc.dev = dev;
749 dev_set_drvdata(dev, &cmos_rtc);
751 cmos_rtc.rtc = rtc_device_register(driver_name, dev,
752 &cmos_rtc_ops, THIS_MODULE);
753 if (IS_ERR(cmos_rtc.rtc)) {
754 retval = PTR_ERR(cmos_rtc.rtc);
755 goto cleanup0;
758 rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
760 spin_lock_irq(&rtc_lock);
762 if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
763 /* force periodic irq to CMOS reset default of 1024Hz;
765 * REVISIT it's been reported that at least one x86_64 ALI
766 * mobo doesn't use 32KHz here ... for portability we might
767 * need to do something about other clock frequencies.
769 cmos_rtc.rtc->irq_freq = 1024;
770 hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
771 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
774 /* disable irqs */
775 if (is_valid_irq(rtc_irq))
776 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
778 rtc_control = CMOS_READ(RTC_CONTROL);
780 spin_unlock_irq(&rtc_lock);
782 if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
783 dev_warn(dev, "only 24-hr supported\n");
784 retval = -ENXIO;
785 goto cleanup1;
788 hpet_rtc_timer_init();
790 if (is_valid_irq(rtc_irq)) {
791 irq_handler_t rtc_cmos_int_handler;
793 if (is_hpet_enabled()) {
794 rtc_cmos_int_handler = hpet_rtc_interrupt;
795 retval = hpet_register_irq_handler(cmos_interrupt);
796 if (retval) {
797 hpet_mask_rtc_irq_bit(RTC_IRQMASK);
798 dev_warn(dev, "hpet_register_irq_handler "
799 " failed in rtc_init().");
800 goto cleanup1;
802 } else
803 rtc_cmos_int_handler = cmos_interrupt;
805 retval = request_irq(rtc_irq, rtc_cmos_int_handler,
806 IRQF_SHARED, dev_name(&cmos_rtc.rtc->dev),
807 cmos_rtc.rtc);
808 if (retval < 0) {
809 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
810 goto cleanup1;
814 /* export at least the first block of NVRAM */
815 nvram.size = address_space - NVRAM_OFFSET;
816 retval = sysfs_create_bin_file(&dev->kobj, &nvram);
817 if (retval < 0) {
818 dev_dbg(dev, "can't create nvram file? %d\n", retval);
819 goto cleanup2;
822 dev_info(dev, "%s%s, %zd bytes nvram%s\n",
823 !is_valid_irq(rtc_irq) ? "no alarms" :
824 cmos_rtc.mon_alrm ? "alarms up to one year" :
825 cmos_rtc.day_alrm ? "alarms up to one month" :
826 "alarms up to one day",
827 cmos_rtc.century ? ", y3k" : "",
828 nvram.size,
829 is_hpet_enabled() ? ", hpet irqs" : "");
831 return 0;
833 cleanup2:
834 if (is_valid_irq(rtc_irq))
835 free_irq(rtc_irq, cmos_rtc.rtc);
836 cleanup1:
837 cmos_rtc.dev = NULL;
838 rtc_device_unregister(cmos_rtc.rtc);
839 cleanup0:
840 if (RTC_IOMAPPED)
841 release_region(ports->start, resource_size(ports));
842 else
843 release_mem_region(ports->start, resource_size(ports));
844 return retval;
847 static void cmos_do_shutdown(int rtc_irq)
849 spin_lock_irq(&rtc_lock);
850 if (is_valid_irq(rtc_irq))
851 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
852 spin_unlock_irq(&rtc_lock);
855 static void cmos_do_remove(struct device *dev)
857 struct cmos_rtc *cmos = dev_get_drvdata(dev);
858 struct resource *ports;
860 cmos_do_shutdown(cmos->irq);
862 sysfs_remove_bin_file(&dev->kobj, &nvram);
864 if (is_valid_irq(cmos->irq)) {
865 free_irq(cmos->irq, cmos->rtc);
866 hpet_unregister_irq_handler(cmos_interrupt);
869 rtc_device_unregister(cmos->rtc);
870 cmos->rtc = NULL;
872 ports = cmos->iomem;
873 if (RTC_IOMAPPED)
874 release_region(ports->start, resource_size(ports));
875 else
876 release_mem_region(ports->start, resource_size(ports));
877 cmos->iomem = NULL;
879 cmos->dev = NULL;
882 static int cmos_aie_poweroff(struct device *dev)
884 struct cmos_rtc *cmos = dev_get_drvdata(dev);
885 struct rtc_time now;
886 time64_t t_now;
887 int retval = 0;
888 unsigned char rtc_control;
890 if (!cmos->alarm_expires)
891 return -EINVAL;
893 spin_lock_irq(&rtc_lock);
894 rtc_control = CMOS_READ(RTC_CONTROL);
895 spin_unlock_irq(&rtc_lock);
897 /* We only care about the situation where AIE is disabled. */
898 if (rtc_control & RTC_AIE)
899 return -EBUSY;
901 cmos_read_time(dev, &now);
902 t_now = rtc_tm_to_time64(&now);
905 * When enabling "RTC wake-up" in BIOS setup, the machine reboots
906 * automatically right after shutdown on some buggy boxes.
907 * This automatic rebooting issue won't happen when the alarm
908 * time is larger than now+1 seconds.
910 * If the alarm time is equal to now+1 seconds, the issue can be
911 * prevented by cancelling the alarm.
913 if (cmos->alarm_expires == t_now + 1) {
914 struct rtc_wkalrm alarm;
916 /* Cancel the AIE timer by configuring the past time. */
917 rtc_time64_to_tm(t_now - 1, &alarm.time);
918 alarm.enabled = 0;
919 retval = cmos_set_alarm(dev, &alarm);
920 } else if (cmos->alarm_expires > t_now + 1) {
921 retval = -EBUSY;
924 return retval;
927 static int cmos_suspend(struct device *dev)
929 struct cmos_rtc *cmos = dev_get_drvdata(dev);
930 unsigned char tmp;
932 /* only the alarm might be a wakeup event source */
933 spin_lock_irq(&rtc_lock);
934 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
935 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
936 unsigned char mask;
938 if (device_may_wakeup(dev))
939 mask = RTC_IRQMASK & ~RTC_AIE;
940 else
941 mask = RTC_IRQMASK;
942 tmp &= ~mask;
943 CMOS_WRITE(tmp, RTC_CONTROL);
944 hpet_mask_rtc_irq_bit(mask);
946 cmos_checkintr(cmos, tmp);
948 spin_unlock_irq(&rtc_lock);
950 if (tmp & RTC_AIE) {
951 cmos->enabled_wake = 1;
952 if (cmos->wake_on)
953 cmos->wake_on(dev);
954 else
955 enable_irq_wake(cmos->irq);
958 cmos_read_alarm(dev, &cmos->saved_wkalrm);
960 dev_dbg(dev, "suspend%s, ctrl %02x\n",
961 (tmp & RTC_AIE) ? ", alarm may wake" : "",
962 tmp);
964 return 0;
967 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
968 * after a detour through G3 "mechanical off", although the ACPI spec
969 * says wakeup should only work from G1/S4 "hibernate". To most users,
970 * distinctions between S4 and S5 are pointless. So when the hardware
971 * allows, don't draw that distinction.
973 static inline int cmos_poweroff(struct device *dev)
975 if (!IS_ENABLED(CONFIG_PM))
976 return -ENOSYS;
978 return cmos_suspend(dev);
981 static void cmos_check_wkalrm(struct device *dev)
983 struct cmos_rtc *cmos = dev_get_drvdata(dev);
984 struct rtc_wkalrm current_alarm;
985 time64_t t_current_expires;
986 time64_t t_saved_expires;
988 cmos_read_alarm(dev, &current_alarm);
989 t_current_expires = rtc_tm_to_time64(&current_alarm.time);
990 t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
991 if (t_current_expires != t_saved_expires ||
992 cmos->saved_wkalrm.enabled != current_alarm.enabled) {
993 cmos_set_alarm(dev, &cmos->saved_wkalrm);
997 static void cmos_check_acpi_rtc_status(struct device *dev,
998 unsigned char *rtc_control);
1000 static int __maybe_unused cmos_resume(struct device *dev)
1002 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1003 unsigned char tmp;
1005 if (cmos->enabled_wake) {
1006 if (cmos->wake_off)
1007 cmos->wake_off(dev);
1008 else
1009 disable_irq_wake(cmos->irq);
1010 cmos->enabled_wake = 0;
1013 /* The BIOS might have changed the alarm, restore it */
1014 cmos_check_wkalrm(dev);
1016 spin_lock_irq(&rtc_lock);
1017 tmp = cmos->suspend_ctrl;
1018 cmos->suspend_ctrl = 0;
1019 /* re-enable any irqs previously active */
1020 if (tmp & RTC_IRQMASK) {
1021 unsigned char mask;
1023 if (device_may_wakeup(dev))
1024 hpet_rtc_timer_init();
1026 do {
1027 CMOS_WRITE(tmp, RTC_CONTROL);
1028 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
1030 mask = CMOS_READ(RTC_INTR_FLAGS);
1031 mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
1032 if (!is_hpet_enabled() || !is_intr(mask))
1033 break;
1035 /* force one-shot behavior if HPET blocked
1036 * the wake alarm's irq
1038 rtc_update_irq(cmos->rtc, 1, mask);
1039 tmp &= ~RTC_AIE;
1040 hpet_mask_rtc_irq_bit(RTC_AIE);
1041 } while (mask & RTC_AIE);
1043 if (tmp & RTC_AIE)
1044 cmos_check_acpi_rtc_status(dev, &tmp);
1046 spin_unlock_irq(&rtc_lock);
1048 dev_dbg(dev, "resume, ctrl %02x\n", tmp);
1050 return 0;
1053 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
1055 /*----------------------------------------------------------------*/
1057 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
1058 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
1059 * probably list them in similar PNPBIOS tables; so PNP is more common.
1061 * We don't use legacy "poke at the hardware" probing. Ancient PCs that
1062 * predate even PNPBIOS should set up platform_bus devices.
1065 #ifdef CONFIG_ACPI
1067 #include <linux/acpi.h>
1069 static u32 rtc_handler(void *context)
1071 struct device *dev = context;
1072 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1073 unsigned char rtc_control = 0;
1074 unsigned char rtc_intr;
1075 unsigned long flags;
1077 spin_lock_irqsave(&rtc_lock, flags);
1078 if (cmos_rtc.suspend_ctrl)
1079 rtc_control = CMOS_READ(RTC_CONTROL);
1080 if (rtc_control & RTC_AIE) {
1081 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
1082 CMOS_WRITE(rtc_control, RTC_CONTROL);
1083 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
1084 rtc_update_irq(cmos->rtc, 1, rtc_intr);
1086 spin_unlock_irqrestore(&rtc_lock, flags);
1088 pm_wakeup_event(dev, 0);
1089 acpi_clear_event(ACPI_EVENT_RTC);
1090 acpi_disable_event(ACPI_EVENT_RTC, 0);
1091 return ACPI_INTERRUPT_HANDLED;
1094 static inline void rtc_wake_setup(struct device *dev)
1096 acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
1098 * After the RTC handler is installed, the Fixed_RTC event should
1099 * be disabled. Only when the RTC alarm is set will it be enabled.
1101 acpi_clear_event(ACPI_EVENT_RTC);
1102 acpi_disable_event(ACPI_EVENT_RTC, 0);
1105 static void rtc_wake_on(struct device *dev)
1107 acpi_clear_event(ACPI_EVENT_RTC);
1108 acpi_enable_event(ACPI_EVENT_RTC, 0);
1111 static void rtc_wake_off(struct device *dev)
1113 acpi_disable_event(ACPI_EVENT_RTC, 0);
1116 /* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find
1117 * its device node and pass extra config data. This helps its driver use
1118 * capabilities that the now-obsolete mc146818 didn't have, and informs it
1119 * that this board's RTC is wakeup-capable (per ACPI spec).
1121 static struct cmos_rtc_board_info acpi_rtc_info;
1123 static void cmos_wake_setup(struct device *dev)
1125 if (acpi_disabled)
1126 return;
1128 rtc_wake_setup(dev);
1129 acpi_rtc_info.wake_on = rtc_wake_on;
1130 acpi_rtc_info.wake_off = rtc_wake_off;
1132 /* workaround bug in some ACPI tables */
1133 if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1134 dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1135 acpi_gbl_FADT.month_alarm);
1136 acpi_gbl_FADT.month_alarm = 0;
1139 acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1140 acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1141 acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1143 /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */
1144 if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1145 dev_info(dev, "RTC can wake from S4\n");
1147 dev->platform_data = &acpi_rtc_info;
1149 /* RTC always wakes from S1/S2/S3, and often S4/STD */
1150 device_init_wakeup(dev, 1);
1153 static void cmos_check_acpi_rtc_status(struct device *dev,
1154 unsigned char *rtc_control)
1156 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1157 acpi_event_status rtc_status;
1158 acpi_status status;
1160 if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
1161 return;
1163 status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
1164 if (ACPI_FAILURE(status)) {
1165 dev_err(dev, "Could not get RTC status\n");
1166 } else if (rtc_status & ACPI_EVENT_FLAG_SET) {
1167 unsigned char mask;
1168 *rtc_control &= ~RTC_AIE;
1169 CMOS_WRITE(*rtc_control, RTC_CONTROL);
1170 mask = CMOS_READ(RTC_INTR_FLAGS);
1171 rtc_update_irq(cmos->rtc, 1, mask);
1175 #else
1177 static void cmos_wake_setup(struct device *dev)
1181 static void cmos_check_acpi_rtc_status(struct device *dev,
1182 unsigned char *rtc_control)
1186 #endif
1188 #ifdef CONFIG_PNP
1190 #include <linux/pnp.h>
1192 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1194 cmos_wake_setup(&pnp->dev);
1196 if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0))
1197 /* Some machines contain a PNP entry for the RTC, but
1198 * don't define the IRQ. It should always be safe to
1199 * hardcode it in these cases
1201 return cmos_do_probe(&pnp->dev,
1202 pnp_get_resource(pnp, IORESOURCE_IO, 0), 8);
1203 else
1204 return cmos_do_probe(&pnp->dev,
1205 pnp_get_resource(pnp, IORESOURCE_IO, 0),
1206 pnp_irq(pnp, 0));
1209 static void cmos_pnp_remove(struct pnp_dev *pnp)
1211 cmos_do_remove(&pnp->dev);
1214 static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1216 struct device *dev = &pnp->dev;
1217 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1219 if (system_state == SYSTEM_POWER_OFF) {
1220 int retval = cmos_poweroff(dev);
1222 if (cmos_aie_poweroff(dev) < 0 && !retval)
1223 return;
1226 cmos_do_shutdown(cmos->irq);
1229 static const struct pnp_device_id rtc_ids[] = {
1230 { .id = "PNP0b00", },
1231 { .id = "PNP0b01", },
1232 { .id = "PNP0b02", },
1233 { },
1235 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1237 static struct pnp_driver cmos_pnp_driver = {
1238 .name = (char *) driver_name,
1239 .id_table = rtc_ids,
1240 .probe = cmos_pnp_probe,
1241 .remove = cmos_pnp_remove,
1242 .shutdown = cmos_pnp_shutdown,
1244 /* flag ensures resume() gets called, and stops syslog spam */
1245 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
1246 .driver = {
1247 .pm = &cmos_pm_ops,
1251 #endif /* CONFIG_PNP */
1253 #ifdef CONFIG_OF
1254 static const struct of_device_id of_cmos_match[] = {
1256 .compatible = "motorola,mc146818",
1258 { },
1260 MODULE_DEVICE_TABLE(of, of_cmos_match);
1262 static __init void cmos_of_init(struct platform_device *pdev)
1264 struct device_node *node = pdev->dev.of_node;
1265 struct rtc_time time;
1266 int ret;
1267 const __be32 *val;
1269 if (!node)
1270 return;
1272 val = of_get_property(node, "ctrl-reg", NULL);
1273 if (val)
1274 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1276 val = of_get_property(node, "freq-reg", NULL);
1277 if (val)
1278 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1280 cmos_read_time(&pdev->dev, &time);
1281 ret = rtc_valid_tm(&time);
1282 if (ret) {
1283 struct rtc_time def_time = {
1284 .tm_year = 1,
1285 .tm_mday = 1,
1287 cmos_set_time(&pdev->dev, &def_time);
1290 #else
1291 static inline void cmos_of_init(struct platform_device *pdev) {}
1292 #endif
1293 /*----------------------------------------------------------------*/
1295 /* Platform setup should have set up an RTC device, when PNP is
1296 * unavailable ... this could happen even on (older) PCs.
1299 static int __init cmos_platform_probe(struct platform_device *pdev)
1301 struct resource *resource;
1302 int irq;
1304 cmos_of_init(pdev);
1305 cmos_wake_setup(&pdev->dev);
1307 if (RTC_IOMAPPED)
1308 resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1309 else
1310 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1311 irq = platform_get_irq(pdev, 0);
1312 if (irq < 0)
1313 irq = -1;
1315 return cmos_do_probe(&pdev->dev, resource, irq);
1318 static int cmos_platform_remove(struct platform_device *pdev)
1320 cmos_do_remove(&pdev->dev);
1321 return 0;
1324 static void cmos_platform_shutdown(struct platform_device *pdev)
1326 struct device *dev = &pdev->dev;
1327 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1329 if (system_state == SYSTEM_POWER_OFF) {
1330 int retval = cmos_poweroff(dev);
1332 if (cmos_aie_poweroff(dev) < 0 && !retval)
1333 return;
1336 cmos_do_shutdown(cmos->irq);
1339 /* work with hotplug and coldplug */
1340 MODULE_ALIAS("platform:rtc_cmos");
1342 static struct platform_driver cmos_platform_driver = {
1343 .remove = cmos_platform_remove,
1344 .shutdown = cmos_platform_shutdown,
1345 .driver = {
1346 .name = driver_name,
1347 .pm = &cmos_pm_ops,
1348 .of_match_table = of_match_ptr(of_cmos_match),
1352 #ifdef CONFIG_PNP
1353 static bool pnp_driver_registered;
1354 #endif
1355 static bool platform_driver_registered;
1357 static int __init cmos_init(void)
1359 int retval = 0;
1361 #ifdef CONFIG_PNP
1362 retval = pnp_register_driver(&cmos_pnp_driver);
1363 if (retval == 0)
1364 pnp_driver_registered = true;
1365 #endif
1367 if (!cmos_rtc.dev) {
1368 retval = platform_driver_probe(&cmos_platform_driver,
1369 cmos_platform_probe);
1370 if (retval == 0)
1371 platform_driver_registered = true;
1374 if (retval == 0)
1375 return 0;
1377 #ifdef CONFIG_PNP
1378 if (pnp_driver_registered)
1379 pnp_unregister_driver(&cmos_pnp_driver);
1380 #endif
1381 return retval;
1383 module_init(cmos_init);
1385 static void __exit cmos_exit(void)
1387 #ifdef CONFIG_PNP
1388 if (pnp_driver_registered)
1389 pnp_unregister_driver(&cmos_pnp_driver);
1390 #endif
1391 if (platform_driver_registered)
1392 platform_driver_unregister(&cmos_platform_driver);
1394 module_exit(cmos_exit);
1397 MODULE_AUTHOR("David Brownell");
1398 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1399 MODULE_LICENSE("GPL");