perf tools: Fix libaudit test
[linux/fpc-iii.git] / net / socket.c
blobebed4b68f768a1afccea45ea7dc22ef555f3f679
1 /*
2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
58 * Based upon Swansea University Computer Society NET3.039
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/init.h>
76 #include <linux/poll.h>
77 #include <linux/cache.h>
78 #include <linux/module.h>
79 #include <linux/highmem.h>
80 #include <linux/mount.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/compat.h>
84 #include <linux/kmod.h>
85 #include <linux/audit.h>
86 #include <linux/wireless.h>
87 #include <linux/nsproxy.h>
88 #include <linux/magic.h>
89 #include <linux/slab.h>
90 #include <linux/xattr.h>
92 #include <asm/uaccess.h>
93 #include <asm/unistd.h>
95 #include <net/compat.h>
96 #include <net/wext.h>
97 #include <net/cls_cgroup.h>
99 #include <net/sock.h>
100 #include <linux/netfilter.h>
102 #include <linux/if_tun.h>
103 #include <linux/ipv6_route.h>
104 #include <linux/route.h>
105 #include <linux/sockios.h>
106 #include <linux/atalk.h>
107 #include <net/busy_poll.h>
109 #ifdef CONFIG_NET_RX_BUSY_POLL
110 unsigned int sysctl_net_busy_read __read_mostly;
111 unsigned int sysctl_net_busy_poll __read_mostly;
112 #endif
114 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
115 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
116 unsigned long nr_segs, loff_t pos);
117 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
118 unsigned long nr_segs, loff_t pos);
119 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
121 static int sock_close(struct inode *inode, struct file *file);
122 static unsigned int sock_poll(struct file *file,
123 struct poll_table_struct *wait);
124 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
125 #ifdef CONFIG_COMPAT
126 static long compat_sock_ioctl(struct file *file,
127 unsigned int cmd, unsigned long arg);
128 #endif
129 static int sock_fasync(int fd, struct file *filp, int on);
130 static ssize_t sock_sendpage(struct file *file, struct page *page,
131 int offset, size_t size, loff_t *ppos, int more);
132 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
133 struct pipe_inode_info *pipe, size_t len,
134 unsigned int flags);
137 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
138 * in the operation structures but are done directly via the socketcall() multiplexor.
141 static const struct file_operations socket_file_ops = {
142 .owner = THIS_MODULE,
143 .llseek = no_llseek,
144 .aio_read = sock_aio_read,
145 .aio_write = sock_aio_write,
146 .poll = sock_poll,
147 .unlocked_ioctl = sock_ioctl,
148 #ifdef CONFIG_COMPAT
149 .compat_ioctl = compat_sock_ioctl,
150 #endif
151 .mmap = sock_mmap,
152 .open = sock_no_open, /* special open code to disallow open via /proc */
153 .release = sock_close,
154 .fasync = sock_fasync,
155 .sendpage = sock_sendpage,
156 .splice_write = generic_splice_sendpage,
157 .splice_read = sock_splice_read,
161 * The protocol list. Each protocol is registered in here.
164 static DEFINE_SPINLOCK(net_family_lock);
165 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
168 * Statistics counters of the socket lists
171 static DEFINE_PER_CPU(int, sockets_in_use);
174 * Support routines.
175 * Move socket addresses back and forth across the kernel/user
176 * divide and look after the messy bits.
180 * move_addr_to_kernel - copy a socket address into kernel space
181 * @uaddr: Address in user space
182 * @kaddr: Address in kernel space
183 * @ulen: Length in user space
185 * The address is copied into kernel space. If the provided address is
186 * too long an error code of -EINVAL is returned. If the copy gives
187 * invalid addresses -EFAULT is returned. On a success 0 is returned.
190 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
192 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
193 return -EINVAL;
194 if (ulen == 0)
195 return 0;
196 if (copy_from_user(kaddr, uaddr, ulen))
197 return -EFAULT;
198 return audit_sockaddr(ulen, kaddr);
202 * move_addr_to_user - copy an address to user space
203 * @kaddr: kernel space address
204 * @klen: length of address in kernel
205 * @uaddr: user space address
206 * @ulen: pointer to user length field
208 * The value pointed to by ulen on entry is the buffer length available.
209 * This is overwritten with the buffer space used. -EINVAL is returned
210 * if an overlong buffer is specified or a negative buffer size. -EFAULT
211 * is returned if either the buffer or the length field are not
212 * accessible.
213 * After copying the data up to the limit the user specifies, the true
214 * length of the data is written over the length limit the user
215 * specified. Zero is returned for a success.
218 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
219 void __user *uaddr, int __user *ulen)
221 int err;
222 int len;
224 err = get_user(len, ulen);
225 if (err)
226 return err;
227 if (len > klen)
228 len = klen;
229 if (len < 0 || len > sizeof(struct sockaddr_storage))
230 return -EINVAL;
231 if (len) {
232 if (audit_sockaddr(klen, kaddr))
233 return -ENOMEM;
234 if (copy_to_user(uaddr, kaddr, len))
235 return -EFAULT;
238 * "fromlen shall refer to the value before truncation.."
239 * 1003.1g
241 return __put_user(klen, ulen);
244 static struct kmem_cache *sock_inode_cachep __read_mostly;
246 static struct inode *sock_alloc_inode(struct super_block *sb)
248 struct socket_alloc *ei;
249 struct socket_wq *wq;
251 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
252 if (!ei)
253 return NULL;
254 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
255 if (!wq) {
256 kmem_cache_free(sock_inode_cachep, ei);
257 return NULL;
259 init_waitqueue_head(&wq->wait);
260 wq->fasync_list = NULL;
261 RCU_INIT_POINTER(ei->socket.wq, wq);
263 ei->socket.state = SS_UNCONNECTED;
264 ei->socket.flags = 0;
265 ei->socket.ops = NULL;
266 ei->socket.sk = NULL;
267 ei->socket.file = NULL;
269 return &ei->vfs_inode;
272 static void sock_destroy_inode(struct inode *inode)
274 struct socket_alloc *ei;
275 struct socket_wq *wq;
277 ei = container_of(inode, struct socket_alloc, vfs_inode);
278 wq = rcu_dereference_protected(ei->socket.wq, 1);
279 kfree_rcu(wq, rcu);
280 kmem_cache_free(sock_inode_cachep, ei);
283 static void init_once(void *foo)
285 struct socket_alloc *ei = (struct socket_alloc *)foo;
287 inode_init_once(&ei->vfs_inode);
290 static int init_inodecache(void)
292 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
293 sizeof(struct socket_alloc),
295 (SLAB_HWCACHE_ALIGN |
296 SLAB_RECLAIM_ACCOUNT |
297 SLAB_MEM_SPREAD),
298 init_once);
299 if (sock_inode_cachep == NULL)
300 return -ENOMEM;
301 return 0;
304 static const struct super_operations sockfs_ops = {
305 .alloc_inode = sock_alloc_inode,
306 .destroy_inode = sock_destroy_inode,
307 .statfs = simple_statfs,
311 * sockfs_dname() is called from d_path().
313 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
315 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
316 dentry->d_inode->i_ino);
319 static const struct dentry_operations sockfs_dentry_operations = {
320 .d_dname = sockfs_dname,
323 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
324 int flags, const char *dev_name, void *data)
326 return mount_pseudo(fs_type, "socket:", &sockfs_ops,
327 &sockfs_dentry_operations, SOCKFS_MAGIC);
330 static struct vfsmount *sock_mnt __read_mostly;
332 static struct file_system_type sock_fs_type = {
333 .name = "sockfs",
334 .mount = sockfs_mount,
335 .kill_sb = kill_anon_super,
339 * Obtains the first available file descriptor and sets it up for use.
341 * These functions create file structures and maps them to fd space
342 * of the current process. On success it returns file descriptor
343 * and file struct implicitly stored in sock->file.
344 * Note that another thread may close file descriptor before we return
345 * from this function. We use the fact that now we do not refer
346 * to socket after mapping. If one day we will need it, this
347 * function will increment ref. count on file by 1.
349 * In any case returned fd MAY BE not valid!
350 * This race condition is unavoidable
351 * with shared fd spaces, we cannot solve it inside kernel,
352 * but we take care of internal coherence yet.
355 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
357 struct qstr name = { .name = "" };
358 struct path path;
359 struct file *file;
361 if (dname) {
362 name.name = dname;
363 name.len = strlen(name.name);
364 } else if (sock->sk) {
365 name.name = sock->sk->sk_prot_creator->name;
366 name.len = strlen(name.name);
368 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
369 if (unlikely(!path.dentry))
370 return ERR_PTR(-ENOMEM);
371 path.mnt = mntget(sock_mnt);
373 d_instantiate(path.dentry, SOCK_INODE(sock));
374 SOCK_INODE(sock)->i_fop = &socket_file_ops;
376 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
377 &socket_file_ops);
378 if (unlikely(IS_ERR(file))) {
379 /* drop dentry, keep inode */
380 ihold(path.dentry->d_inode);
381 path_put(&path);
382 return file;
385 sock->file = file;
386 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
387 file->private_data = sock;
388 return file;
390 EXPORT_SYMBOL(sock_alloc_file);
392 static int sock_map_fd(struct socket *sock, int flags)
394 struct file *newfile;
395 int fd = get_unused_fd_flags(flags);
396 if (unlikely(fd < 0))
397 return fd;
399 newfile = sock_alloc_file(sock, flags, NULL);
400 if (likely(!IS_ERR(newfile))) {
401 fd_install(fd, newfile);
402 return fd;
405 put_unused_fd(fd);
406 return PTR_ERR(newfile);
409 struct socket *sock_from_file(struct file *file, int *err)
411 if (file->f_op == &socket_file_ops)
412 return file->private_data; /* set in sock_map_fd */
414 *err = -ENOTSOCK;
415 return NULL;
417 EXPORT_SYMBOL(sock_from_file);
420 * sockfd_lookup - Go from a file number to its socket slot
421 * @fd: file handle
422 * @err: pointer to an error code return
424 * The file handle passed in is locked and the socket it is bound
425 * too is returned. If an error occurs the err pointer is overwritten
426 * with a negative errno code and NULL is returned. The function checks
427 * for both invalid handles and passing a handle which is not a socket.
429 * On a success the socket object pointer is returned.
432 struct socket *sockfd_lookup(int fd, int *err)
434 struct file *file;
435 struct socket *sock;
437 file = fget(fd);
438 if (!file) {
439 *err = -EBADF;
440 return NULL;
443 sock = sock_from_file(file, err);
444 if (!sock)
445 fput(file);
446 return sock;
448 EXPORT_SYMBOL(sockfd_lookup);
450 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
452 struct file *file;
453 struct socket *sock;
455 *err = -EBADF;
456 file = fget_light(fd, fput_needed);
457 if (file) {
458 sock = sock_from_file(file, err);
459 if (sock)
460 return sock;
461 fput_light(file, *fput_needed);
463 return NULL;
466 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
467 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
468 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
469 static ssize_t sockfs_getxattr(struct dentry *dentry,
470 const char *name, void *value, size_t size)
472 const char *proto_name;
473 size_t proto_size;
474 int error;
476 error = -ENODATA;
477 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
478 proto_name = dentry->d_name.name;
479 proto_size = strlen(proto_name);
481 if (value) {
482 error = -ERANGE;
483 if (proto_size + 1 > size)
484 goto out;
486 strncpy(value, proto_name, proto_size + 1);
488 error = proto_size + 1;
491 out:
492 return error;
495 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
496 size_t size)
498 ssize_t len;
499 ssize_t used = 0;
501 len = security_inode_listsecurity(dentry->d_inode, buffer, size);
502 if (len < 0)
503 return len;
504 used += len;
505 if (buffer) {
506 if (size < used)
507 return -ERANGE;
508 buffer += len;
511 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
512 used += len;
513 if (buffer) {
514 if (size < used)
515 return -ERANGE;
516 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
517 buffer += len;
520 return used;
523 static const struct inode_operations sockfs_inode_ops = {
524 .getxattr = sockfs_getxattr,
525 .listxattr = sockfs_listxattr,
529 * sock_alloc - allocate a socket
531 * Allocate a new inode and socket object. The two are bound together
532 * and initialised. The socket is then returned. If we are out of inodes
533 * NULL is returned.
536 static struct socket *sock_alloc(void)
538 struct inode *inode;
539 struct socket *sock;
541 inode = new_inode_pseudo(sock_mnt->mnt_sb);
542 if (!inode)
543 return NULL;
545 sock = SOCKET_I(inode);
547 kmemcheck_annotate_bitfield(sock, type);
548 inode->i_ino = get_next_ino();
549 inode->i_mode = S_IFSOCK | S_IRWXUGO;
550 inode->i_uid = current_fsuid();
551 inode->i_gid = current_fsgid();
552 inode->i_op = &sockfs_inode_ops;
554 this_cpu_add(sockets_in_use, 1);
555 return sock;
559 * In theory you can't get an open on this inode, but /proc provides
560 * a back door. Remember to keep it shut otherwise you'll let the
561 * creepy crawlies in.
564 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
566 return -ENXIO;
569 const struct file_operations bad_sock_fops = {
570 .owner = THIS_MODULE,
571 .open = sock_no_open,
572 .llseek = noop_llseek,
576 * sock_release - close a socket
577 * @sock: socket to close
579 * The socket is released from the protocol stack if it has a release
580 * callback, and the inode is then released if the socket is bound to
581 * an inode not a file.
584 void sock_release(struct socket *sock)
586 if (sock->ops) {
587 struct module *owner = sock->ops->owner;
589 sock->ops->release(sock);
590 sock->ops = NULL;
591 module_put(owner);
594 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
595 printk(KERN_ERR "sock_release: fasync list not empty!\n");
597 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
598 return;
600 this_cpu_sub(sockets_in_use, 1);
601 if (!sock->file) {
602 iput(SOCK_INODE(sock));
603 return;
605 sock->file = NULL;
607 EXPORT_SYMBOL(sock_release);
609 void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
611 *tx_flags = 0;
612 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
613 *tx_flags |= SKBTX_HW_TSTAMP;
614 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
615 *tx_flags |= SKBTX_SW_TSTAMP;
616 if (sock_flag(sk, SOCK_WIFI_STATUS))
617 *tx_flags |= SKBTX_WIFI_STATUS;
619 EXPORT_SYMBOL(sock_tx_timestamp);
621 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
622 struct msghdr *msg, size_t size)
624 struct sock_iocb *si = kiocb_to_siocb(iocb);
626 si->sock = sock;
627 si->scm = NULL;
628 si->msg = msg;
629 si->size = size;
631 return sock->ops->sendmsg(iocb, sock, msg, size);
634 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
635 struct msghdr *msg, size_t size)
637 int err = security_socket_sendmsg(sock, msg, size);
639 return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
642 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
644 struct kiocb iocb;
645 struct sock_iocb siocb;
646 int ret;
648 init_sync_kiocb(&iocb, NULL);
649 iocb.private = &siocb;
650 ret = __sock_sendmsg(&iocb, sock, msg, size);
651 if (-EIOCBQUEUED == ret)
652 ret = wait_on_sync_kiocb(&iocb);
653 return ret;
655 EXPORT_SYMBOL(sock_sendmsg);
657 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
659 struct kiocb iocb;
660 struct sock_iocb siocb;
661 int ret;
663 init_sync_kiocb(&iocb, NULL);
664 iocb.private = &siocb;
665 ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
666 if (-EIOCBQUEUED == ret)
667 ret = wait_on_sync_kiocb(&iocb);
668 return ret;
671 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
672 struct kvec *vec, size_t num, size_t size)
674 mm_segment_t oldfs = get_fs();
675 int result;
677 set_fs(KERNEL_DS);
679 * the following is safe, since for compiler definitions of kvec and
680 * iovec are identical, yielding the same in-core layout and alignment
682 msg->msg_iov = (struct iovec *)vec;
683 msg->msg_iovlen = num;
684 result = sock_sendmsg(sock, msg, size);
685 set_fs(oldfs);
686 return result;
688 EXPORT_SYMBOL(kernel_sendmsg);
691 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
693 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
694 struct sk_buff *skb)
696 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
697 struct timespec ts[3];
698 int empty = 1;
699 struct skb_shared_hwtstamps *shhwtstamps =
700 skb_hwtstamps(skb);
702 /* Race occurred between timestamp enabling and packet
703 receiving. Fill in the current time for now. */
704 if (need_software_tstamp && skb->tstamp.tv64 == 0)
705 __net_timestamp(skb);
707 if (need_software_tstamp) {
708 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
709 struct timeval tv;
710 skb_get_timestamp(skb, &tv);
711 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
712 sizeof(tv), &tv);
713 } else {
714 skb_get_timestampns(skb, &ts[0]);
715 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
716 sizeof(ts[0]), &ts[0]);
721 memset(ts, 0, sizeof(ts));
722 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE) &&
723 ktime_to_timespec_cond(skb->tstamp, ts + 0))
724 empty = 0;
725 if (shhwtstamps) {
726 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
727 ktime_to_timespec_cond(shhwtstamps->syststamp, ts + 1))
728 empty = 0;
729 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
730 ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts + 2))
731 empty = 0;
733 if (!empty)
734 put_cmsg(msg, SOL_SOCKET,
735 SCM_TIMESTAMPING, sizeof(ts), &ts);
737 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
739 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
740 struct sk_buff *skb)
742 int ack;
744 if (!sock_flag(sk, SOCK_WIFI_STATUS))
745 return;
746 if (!skb->wifi_acked_valid)
747 return;
749 ack = skb->wifi_acked;
751 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
753 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
755 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
756 struct sk_buff *skb)
758 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
759 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
760 sizeof(__u32), &skb->dropcount);
763 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
764 struct sk_buff *skb)
766 sock_recv_timestamp(msg, sk, skb);
767 sock_recv_drops(msg, sk, skb);
769 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
771 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
772 struct msghdr *msg, size_t size, int flags)
774 struct sock_iocb *si = kiocb_to_siocb(iocb);
776 si->sock = sock;
777 si->scm = NULL;
778 si->msg = msg;
779 si->size = size;
780 si->flags = flags;
782 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
785 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
786 struct msghdr *msg, size_t size, int flags)
788 int err = security_socket_recvmsg(sock, msg, size, flags);
790 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
793 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
794 size_t size, int flags)
796 struct kiocb iocb;
797 struct sock_iocb siocb;
798 int ret;
800 init_sync_kiocb(&iocb, NULL);
801 iocb.private = &siocb;
802 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
803 if (-EIOCBQUEUED == ret)
804 ret = wait_on_sync_kiocb(&iocb);
805 return ret;
807 EXPORT_SYMBOL(sock_recvmsg);
809 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
810 size_t size, int flags)
812 struct kiocb iocb;
813 struct sock_iocb siocb;
814 int ret;
816 init_sync_kiocb(&iocb, NULL);
817 iocb.private = &siocb;
818 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
819 if (-EIOCBQUEUED == ret)
820 ret = wait_on_sync_kiocb(&iocb);
821 return ret;
825 * kernel_recvmsg - Receive a message from a socket (kernel space)
826 * @sock: The socket to receive the message from
827 * @msg: Received message
828 * @vec: Input s/g array for message data
829 * @num: Size of input s/g array
830 * @size: Number of bytes to read
831 * @flags: Message flags (MSG_DONTWAIT, etc...)
833 * On return the msg structure contains the scatter/gather array passed in the
834 * vec argument. The array is modified so that it consists of the unfilled
835 * portion of the original array.
837 * The returned value is the total number of bytes received, or an error.
839 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
840 struct kvec *vec, size_t num, size_t size, int flags)
842 mm_segment_t oldfs = get_fs();
843 int result;
845 set_fs(KERNEL_DS);
847 * the following is safe, since for compiler definitions of kvec and
848 * iovec are identical, yielding the same in-core layout and alignment
850 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
851 result = sock_recvmsg(sock, msg, size, flags);
852 set_fs(oldfs);
853 return result;
855 EXPORT_SYMBOL(kernel_recvmsg);
857 static ssize_t sock_sendpage(struct file *file, struct page *page,
858 int offset, size_t size, loff_t *ppos, int more)
860 struct socket *sock;
861 int flags;
863 sock = file->private_data;
865 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
866 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
867 flags |= more;
869 return kernel_sendpage(sock, page, offset, size, flags);
872 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
873 struct pipe_inode_info *pipe, size_t len,
874 unsigned int flags)
876 struct socket *sock = file->private_data;
878 if (unlikely(!sock->ops->splice_read))
879 return -EINVAL;
881 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
884 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
885 struct sock_iocb *siocb)
887 if (!is_sync_kiocb(iocb))
888 BUG();
890 siocb->kiocb = iocb;
891 iocb->private = siocb;
892 return siocb;
895 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
896 struct file *file, const struct iovec *iov,
897 unsigned long nr_segs)
899 struct socket *sock = file->private_data;
900 size_t size = 0;
901 int i;
903 for (i = 0; i < nr_segs; i++)
904 size += iov[i].iov_len;
906 msg->msg_name = NULL;
907 msg->msg_namelen = 0;
908 msg->msg_control = NULL;
909 msg->msg_controllen = 0;
910 msg->msg_iov = (struct iovec *)iov;
911 msg->msg_iovlen = nr_segs;
912 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
914 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
917 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
918 unsigned long nr_segs, loff_t pos)
920 struct sock_iocb siocb, *x;
922 if (pos != 0)
923 return -ESPIPE;
925 if (iocb->ki_nbytes == 0) /* Match SYS5 behaviour */
926 return 0;
929 x = alloc_sock_iocb(iocb, &siocb);
930 if (!x)
931 return -ENOMEM;
932 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
935 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
936 struct file *file, const struct iovec *iov,
937 unsigned long nr_segs)
939 struct socket *sock = file->private_data;
940 size_t size = 0;
941 int i;
943 for (i = 0; i < nr_segs; i++)
944 size += iov[i].iov_len;
946 msg->msg_name = NULL;
947 msg->msg_namelen = 0;
948 msg->msg_control = NULL;
949 msg->msg_controllen = 0;
950 msg->msg_iov = (struct iovec *)iov;
951 msg->msg_iovlen = nr_segs;
952 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
953 if (sock->type == SOCK_SEQPACKET)
954 msg->msg_flags |= MSG_EOR;
956 return __sock_sendmsg(iocb, sock, msg, size);
959 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
960 unsigned long nr_segs, loff_t pos)
962 struct sock_iocb siocb, *x;
964 if (pos != 0)
965 return -ESPIPE;
967 x = alloc_sock_iocb(iocb, &siocb);
968 if (!x)
969 return -ENOMEM;
971 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
975 * Atomic setting of ioctl hooks to avoid race
976 * with module unload.
979 static DEFINE_MUTEX(br_ioctl_mutex);
980 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
982 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
984 mutex_lock(&br_ioctl_mutex);
985 br_ioctl_hook = hook;
986 mutex_unlock(&br_ioctl_mutex);
988 EXPORT_SYMBOL(brioctl_set);
990 static DEFINE_MUTEX(vlan_ioctl_mutex);
991 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
993 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
995 mutex_lock(&vlan_ioctl_mutex);
996 vlan_ioctl_hook = hook;
997 mutex_unlock(&vlan_ioctl_mutex);
999 EXPORT_SYMBOL(vlan_ioctl_set);
1001 static DEFINE_MUTEX(dlci_ioctl_mutex);
1002 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1004 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1006 mutex_lock(&dlci_ioctl_mutex);
1007 dlci_ioctl_hook = hook;
1008 mutex_unlock(&dlci_ioctl_mutex);
1010 EXPORT_SYMBOL(dlci_ioctl_set);
1012 static long sock_do_ioctl(struct net *net, struct socket *sock,
1013 unsigned int cmd, unsigned long arg)
1015 int err;
1016 void __user *argp = (void __user *)arg;
1018 err = sock->ops->ioctl(sock, cmd, arg);
1021 * If this ioctl is unknown try to hand it down
1022 * to the NIC driver.
1024 if (err == -ENOIOCTLCMD)
1025 err = dev_ioctl(net, cmd, argp);
1027 return err;
1031 * With an ioctl, arg may well be a user mode pointer, but we don't know
1032 * what to do with it - that's up to the protocol still.
1035 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1037 struct socket *sock;
1038 struct sock *sk;
1039 void __user *argp = (void __user *)arg;
1040 int pid, err;
1041 struct net *net;
1043 sock = file->private_data;
1044 sk = sock->sk;
1045 net = sock_net(sk);
1046 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1047 err = dev_ioctl(net, cmd, argp);
1048 } else
1049 #ifdef CONFIG_WEXT_CORE
1050 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1051 err = dev_ioctl(net, cmd, argp);
1052 } else
1053 #endif
1054 switch (cmd) {
1055 case FIOSETOWN:
1056 case SIOCSPGRP:
1057 err = -EFAULT;
1058 if (get_user(pid, (int __user *)argp))
1059 break;
1060 err = f_setown(sock->file, pid, 1);
1061 break;
1062 case FIOGETOWN:
1063 case SIOCGPGRP:
1064 err = put_user(f_getown(sock->file),
1065 (int __user *)argp);
1066 break;
1067 case SIOCGIFBR:
1068 case SIOCSIFBR:
1069 case SIOCBRADDBR:
1070 case SIOCBRDELBR:
1071 err = -ENOPKG;
1072 if (!br_ioctl_hook)
1073 request_module("bridge");
1075 mutex_lock(&br_ioctl_mutex);
1076 if (br_ioctl_hook)
1077 err = br_ioctl_hook(net, cmd, argp);
1078 mutex_unlock(&br_ioctl_mutex);
1079 break;
1080 case SIOCGIFVLAN:
1081 case SIOCSIFVLAN:
1082 err = -ENOPKG;
1083 if (!vlan_ioctl_hook)
1084 request_module("8021q");
1086 mutex_lock(&vlan_ioctl_mutex);
1087 if (vlan_ioctl_hook)
1088 err = vlan_ioctl_hook(net, argp);
1089 mutex_unlock(&vlan_ioctl_mutex);
1090 break;
1091 case SIOCADDDLCI:
1092 case SIOCDELDLCI:
1093 err = -ENOPKG;
1094 if (!dlci_ioctl_hook)
1095 request_module("dlci");
1097 mutex_lock(&dlci_ioctl_mutex);
1098 if (dlci_ioctl_hook)
1099 err = dlci_ioctl_hook(cmd, argp);
1100 mutex_unlock(&dlci_ioctl_mutex);
1101 break;
1102 default:
1103 err = sock_do_ioctl(net, sock, cmd, arg);
1104 break;
1106 return err;
1109 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1111 int err;
1112 struct socket *sock = NULL;
1114 err = security_socket_create(family, type, protocol, 1);
1115 if (err)
1116 goto out;
1118 sock = sock_alloc();
1119 if (!sock) {
1120 err = -ENOMEM;
1121 goto out;
1124 sock->type = type;
1125 err = security_socket_post_create(sock, family, type, protocol, 1);
1126 if (err)
1127 goto out_release;
1129 out:
1130 *res = sock;
1131 return err;
1132 out_release:
1133 sock_release(sock);
1134 sock = NULL;
1135 goto out;
1137 EXPORT_SYMBOL(sock_create_lite);
1139 /* No kernel lock held - perfect */
1140 static unsigned int sock_poll(struct file *file, poll_table *wait)
1142 unsigned int busy_flag = 0;
1143 struct socket *sock;
1146 * We can't return errors to poll, so it's either yes or no.
1148 sock = file->private_data;
1150 if (sk_can_busy_loop(sock->sk)) {
1151 /* this socket can poll_ll so tell the system call */
1152 busy_flag = POLL_BUSY_LOOP;
1154 /* once, only if requested by syscall */
1155 if (wait && (wait->_key & POLL_BUSY_LOOP))
1156 sk_busy_loop(sock->sk, 1);
1159 return busy_flag | sock->ops->poll(file, sock, wait);
1162 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1164 struct socket *sock = file->private_data;
1166 return sock->ops->mmap(file, sock, vma);
1169 static int sock_close(struct inode *inode, struct file *filp)
1171 sock_release(SOCKET_I(inode));
1172 return 0;
1176 * Update the socket async list
1178 * Fasync_list locking strategy.
1180 * 1. fasync_list is modified only under process context socket lock
1181 * i.e. under semaphore.
1182 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1183 * or under socket lock
1186 static int sock_fasync(int fd, struct file *filp, int on)
1188 struct socket *sock = filp->private_data;
1189 struct sock *sk = sock->sk;
1190 struct socket_wq *wq;
1192 if (sk == NULL)
1193 return -EINVAL;
1195 lock_sock(sk);
1196 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1197 fasync_helper(fd, filp, on, &wq->fasync_list);
1199 if (!wq->fasync_list)
1200 sock_reset_flag(sk, SOCK_FASYNC);
1201 else
1202 sock_set_flag(sk, SOCK_FASYNC);
1204 release_sock(sk);
1205 return 0;
1208 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1210 int sock_wake_async(struct socket *sock, int how, int band)
1212 struct socket_wq *wq;
1214 if (!sock)
1215 return -1;
1216 rcu_read_lock();
1217 wq = rcu_dereference(sock->wq);
1218 if (!wq || !wq->fasync_list) {
1219 rcu_read_unlock();
1220 return -1;
1222 switch (how) {
1223 case SOCK_WAKE_WAITD:
1224 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1225 break;
1226 goto call_kill;
1227 case SOCK_WAKE_SPACE:
1228 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1229 break;
1230 /* fall through */
1231 case SOCK_WAKE_IO:
1232 call_kill:
1233 kill_fasync(&wq->fasync_list, SIGIO, band);
1234 break;
1235 case SOCK_WAKE_URG:
1236 kill_fasync(&wq->fasync_list, SIGURG, band);
1238 rcu_read_unlock();
1239 return 0;
1241 EXPORT_SYMBOL(sock_wake_async);
1243 int __sock_create(struct net *net, int family, int type, int protocol,
1244 struct socket **res, int kern)
1246 int err;
1247 struct socket *sock;
1248 const struct net_proto_family *pf;
1251 * Check protocol is in range
1253 if (family < 0 || family >= NPROTO)
1254 return -EAFNOSUPPORT;
1255 if (type < 0 || type >= SOCK_MAX)
1256 return -EINVAL;
1258 /* Compatibility.
1260 This uglymoron is moved from INET layer to here to avoid
1261 deadlock in module load.
1263 if (family == PF_INET && type == SOCK_PACKET) {
1264 static int warned;
1265 if (!warned) {
1266 warned = 1;
1267 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1268 current->comm);
1270 family = PF_PACKET;
1273 err = security_socket_create(family, type, protocol, kern);
1274 if (err)
1275 return err;
1278 * Allocate the socket and allow the family to set things up. if
1279 * the protocol is 0, the family is instructed to select an appropriate
1280 * default.
1282 sock = sock_alloc();
1283 if (!sock) {
1284 net_warn_ratelimited("socket: no more sockets\n");
1285 return -ENFILE; /* Not exactly a match, but its the
1286 closest posix thing */
1289 sock->type = type;
1291 #ifdef CONFIG_MODULES
1292 /* Attempt to load a protocol module if the find failed.
1294 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1295 * requested real, full-featured networking support upon configuration.
1296 * Otherwise module support will break!
1298 if (rcu_access_pointer(net_families[family]) == NULL)
1299 request_module("net-pf-%d", family);
1300 #endif
1302 rcu_read_lock();
1303 pf = rcu_dereference(net_families[family]);
1304 err = -EAFNOSUPPORT;
1305 if (!pf)
1306 goto out_release;
1309 * We will call the ->create function, that possibly is in a loadable
1310 * module, so we have to bump that loadable module refcnt first.
1312 if (!try_module_get(pf->owner))
1313 goto out_release;
1315 /* Now protected by module ref count */
1316 rcu_read_unlock();
1318 err = pf->create(net, sock, protocol, kern);
1319 if (err < 0)
1320 goto out_module_put;
1323 * Now to bump the refcnt of the [loadable] module that owns this
1324 * socket at sock_release time we decrement its refcnt.
1326 if (!try_module_get(sock->ops->owner))
1327 goto out_module_busy;
1330 * Now that we're done with the ->create function, the [loadable]
1331 * module can have its refcnt decremented
1333 module_put(pf->owner);
1334 err = security_socket_post_create(sock, family, type, protocol, kern);
1335 if (err)
1336 goto out_sock_release;
1337 *res = sock;
1339 return 0;
1341 out_module_busy:
1342 err = -EAFNOSUPPORT;
1343 out_module_put:
1344 sock->ops = NULL;
1345 module_put(pf->owner);
1346 out_sock_release:
1347 sock_release(sock);
1348 return err;
1350 out_release:
1351 rcu_read_unlock();
1352 goto out_sock_release;
1354 EXPORT_SYMBOL(__sock_create);
1356 int sock_create(int family, int type, int protocol, struct socket **res)
1358 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1360 EXPORT_SYMBOL(sock_create);
1362 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1364 return __sock_create(&init_net, family, type, protocol, res, 1);
1366 EXPORT_SYMBOL(sock_create_kern);
1368 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1370 int retval;
1371 struct socket *sock;
1372 int flags;
1374 /* Check the SOCK_* constants for consistency. */
1375 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1376 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1377 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1378 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1380 flags = type & ~SOCK_TYPE_MASK;
1381 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1382 return -EINVAL;
1383 type &= SOCK_TYPE_MASK;
1385 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1386 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1388 retval = sock_create(family, type, protocol, &sock);
1389 if (retval < 0)
1390 goto out;
1392 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1393 if (retval < 0)
1394 goto out_release;
1396 out:
1397 /* It may be already another descriptor 8) Not kernel problem. */
1398 return retval;
1400 out_release:
1401 sock_release(sock);
1402 return retval;
1406 * Create a pair of connected sockets.
1409 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1410 int __user *, usockvec)
1412 struct socket *sock1, *sock2;
1413 int fd1, fd2, err;
1414 struct file *newfile1, *newfile2;
1415 int flags;
1417 flags = type & ~SOCK_TYPE_MASK;
1418 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1419 return -EINVAL;
1420 type &= SOCK_TYPE_MASK;
1422 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1423 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1426 * Obtain the first socket and check if the underlying protocol
1427 * supports the socketpair call.
1430 err = sock_create(family, type, protocol, &sock1);
1431 if (err < 0)
1432 goto out;
1434 err = sock_create(family, type, protocol, &sock2);
1435 if (err < 0)
1436 goto out_release_1;
1438 err = sock1->ops->socketpair(sock1, sock2);
1439 if (err < 0)
1440 goto out_release_both;
1442 fd1 = get_unused_fd_flags(flags);
1443 if (unlikely(fd1 < 0)) {
1444 err = fd1;
1445 goto out_release_both;
1447 fd2 = get_unused_fd_flags(flags);
1448 if (unlikely(fd2 < 0)) {
1449 err = fd2;
1450 put_unused_fd(fd1);
1451 goto out_release_both;
1454 newfile1 = sock_alloc_file(sock1, flags, NULL);
1455 if (unlikely(IS_ERR(newfile1))) {
1456 err = PTR_ERR(newfile1);
1457 put_unused_fd(fd1);
1458 put_unused_fd(fd2);
1459 goto out_release_both;
1462 newfile2 = sock_alloc_file(sock2, flags, NULL);
1463 if (IS_ERR(newfile2)) {
1464 err = PTR_ERR(newfile2);
1465 fput(newfile1);
1466 put_unused_fd(fd1);
1467 put_unused_fd(fd2);
1468 sock_release(sock2);
1469 goto out;
1472 audit_fd_pair(fd1, fd2);
1473 fd_install(fd1, newfile1);
1474 fd_install(fd2, newfile2);
1475 /* fd1 and fd2 may be already another descriptors.
1476 * Not kernel problem.
1479 err = put_user(fd1, &usockvec[0]);
1480 if (!err)
1481 err = put_user(fd2, &usockvec[1]);
1482 if (!err)
1483 return 0;
1485 sys_close(fd2);
1486 sys_close(fd1);
1487 return err;
1489 out_release_both:
1490 sock_release(sock2);
1491 out_release_1:
1492 sock_release(sock1);
1493 out:
1494 return err;
1498 * Bind a name to a socket. Nothing much to do here since it's
1499 * the protocol's responsibility to handle the local address.
1501 * We move the socket address to kernel space before we call
1502 * the protocol layer (having also checked the address is ok).
1505 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1507 struct socket *sock;
1508 struct sockaddr_storage address;
1509 int err, fput_needed;
1511 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1512 if (sock) {
1513 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1514 if (err >= 0) {
1515 err = security_socket_bind(sock,
1516 (struct sockaddr *)&address,
1517 addrlen);
1518 if (!err)
1519 err = sock->ops->bind(sock,
1520 (struct sockaddr *)
1521 &address, addrlen);
1523 fput_light(sock->file, fput_needed);
1525 return err;
1529 * Perform a listen. Basically, we allow the protocol to do anything
1530 * necessary for a listen, and if that works, we mark the socket as
1531 * ready for listening.
1534 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1536 struct socket *sock;
1537 int err, fput_needed;
1538 int somaxconn;
1540 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1541 if (sock) {
1542 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1543 if ((unsigned int)backlog > somaxconn)
1544 backlog = somaxconn;
1546 err = security_socket_listen(sock, backlog);
1547 if (!err)
1548 err = sock->ops->listen(sock, backlog);
1550 fput_light(sock->file, fput_needed);
1552 return err;
1556 * For accept, we attempt to create a new socket, set up the link
1557 * with the client, wake up the client, then return the new
1558 * connected fd. We collect the address of the connector in kernel
1559 * space and move it to user at the very end. This is unclean because
1560 * we open the socket then return an error.
1562 * 1003.1g adds the ability to recvmsg() to query connection pending
1563 * status to recvmsg. We need to add that support in a way thats
1564 * clean when we restucture accept also.
1567 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1568 int __user *, upeer_addrlen, int, flags)
1570 struct socket *sock, *newsock;
1571 struct file *newfile;
1572 int err, len, newfd, fput_needed;
1573 struct sockaddr_storage address;
1575 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1576 return -EINVAL;
1578 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1579 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1581 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1582 if (!sock)
1583 goto out;
1585 err = -ENFILE;
1586 newsock = sock_alloc();
1587 if (!newsock)
1588 goto out_put;
1590 newsock->type = sock->type;
1591 newsock->ops = sock->ops;
1594 * We don't need try_module_get here, as the listening socket (sock)
1595 * has the protocol module (sock->ops->owner) held.
1597 __module_get(newsock->ops->owner);
1599 newfd = get_unused_fd_flags(flags);
1600 if (unlikely(newfd < 0)) {
1601 err = newfd;
1602 sock_release(newsock);
1603 goto out_put;
1605 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1606 if (unlikely(IS_ERR(newfile))) {
1607 err = PTR_ERR(newfile);
1608 put_unused_fd(newfd);
1609 sock_release(newsock);
1610 goto out_put;
1613 err = security_socket_accept(sock, newsock);
1614 if (err)
1615 goto out_fd;
1617 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1618 if (err < 0)
1619 goto out_fd;
1621 if (upeer_sockaddr) {
1622 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1623 &len, 2) < 0) {
1624 err = -ECONNABORTED;
1625 goto out_fd;
1627 err = move_addr_to_user(&address,
1628 len, upeer_sockaddr, upeer_addrlen);
1629 if (err < 0)
1630 goto out_fd;
1633 /* File flags are not inherited via accept() unlike another OSes. */
1635 fd_install(newfd, newfile);
1636 err = newfd;
1638 out_put:
1639 fput_light(sock->file, fput_needed);
1640 out:
1641 return err;
1642 out_fd:
1643 fput(newfile);
1644 put_unused_fd(newfd);
1645 goto out_put;
1648 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1649 int __user *, upeer_addrlen)
1651 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1655 * Attempt to connect to a socket with the server address. The address
1656 * is in user space so we verify it is OK and move it to kernel space.
1658 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1659 * break bindings
1661 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1662 * other SEQPACKET protocols that take time to connect() as it doesn't
1663 * include the -EINPROGRESS status for such sockets.
1666 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1667 int, addrlen)
1669 struct socket *sock;
1670 struct sockaddr_storage address;
1671 int err, fput_needed;
1673 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1674 if (!sock)
1675 goto out;
1676 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1677 if (err < 0)
1678 goto out_put;
1680 err =
1681 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1682 if (err)
1683 goto out_put;
1685 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1686 sock->file->f_flags);
1687 out_put:
1688 fput_light(sock->file, fput_needed);
1689 out:
1690 return err;
1694 * Get the local address ('name') of a socket object. Move the obtained
1695 * name to user space.
1698 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1699 int __user *, usockaddr_len)
1701 struct socket *sock;
1702 struct sockaddr_storage address;
1703 int len, err, fput_needed;
1705 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1706 if (!sock)
1707 goto out;
1709 err = security_socket_getsockname(sock);
1710 if (err)
1711 goto out_put;
1713 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1714 if (err)
1715 goto out_put;
1716 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1718 out_put:
1719 fput_light(sock->file, fput_needed);
1720 out:
1721 return err;
1725 * Get the remote address ('name') of a socket object. Move the obtained
1726 * name to user space.
1729 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1730 int __user *, usockaddr_len)
1732 struct socket *sock;
1733 struct sockaddr_storage address;
1734 int len, err, fput_needed;
1736 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1737 if (sock != NULL) {
1738 err = security_socket_getpeername(sock);
1739 if (err) {
1740 fput_light(sock->file, fput_needed);
1741 return err;
1744 err =
1745 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1747 if (!err)
1748 err = move_addr_to_user(&address, len, usockaddr,
1749 usockaddr_len);
1750 fput_light(sock->file, fput_needed);
1752 return err;
1756 * Send a datagram to a given address. We move the address into kernel
1757 * space and check the user space data area is readable before invoking
1758 * the protocol.
1761 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1762 unsigned int, flags, struct sockaddr __user *, addr,
1763 int, addr_len)
1765 struct socket *sock;
1766 struct sockaddr_storage address;
1767 int err;
1768 struct msghdr msg;
1769 struct iovec iov;
1770 int fput_needed;
1772 if (len > INT_MAX)
1773 len = INT_MAX;
1774 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1775 if (!sock)
1776 goto out;
1778 iov.iov_base = buff;
1779 iov.iov_len = len;
1780 msg.msg_name = NULL;
1781 msg.msg_iov = &iov;
1782 msg.msg_iovlen = 1;
1783 msg.msg_control = NULL;
1784 msg.msg_controllen = 0;
1785 msg.msg_namelen = 0;
1786 if (addr) {
1787 err = move_addr_to_kernel(addr, addr_len, &address);
1788 if (err < 0)
1789 goto out_put;
1790 msg.msg_name = (struct sockaddr *)&address;
1791 msg.msg_namelen = addr_len;
1793 if (sock->file->f_flags & O_NONBLOCK)
1794 flags |= MSG_DONTWAIT;
1795 msg.msg_flags = flags;
1796 err = sock_sendmsg(sock, &msg, len);
1798 out_put:
1799 fput_light(sock->file, fput_needed);
1800 out:
1801 return err;
1805 * Send a datagram down a socket.
1808 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1809 unsigned int, flags)
1811 return sys_sendto(fd, buff, len, flags, NULL, 0);
1815 * Receive a frame from the socket and optionally record the address of the
1816 * sender. We verify the buffers are writable and if needed move the
1817 * sender address from kernel to user space.
1820 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1821 unsigned int, flags, struct sockaddr __user *, addr,
1822 int __user *, addr_len)
1824 struct socket *sock;
1825 struct iovec iov;
1826 struct msghdr msg;
1827 struct sockaddr_storage address;
1828 int err, err2;
1829 int fput_needed;
1831 if (size > INT_MAX)
1832 size = INT_MAX;
1833 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1834 if (!sock)
1835 goto out;
1837 msg.msg_control = NULL;
1838 msg.msg_controllen = 0;
1839 msg.msg_iovlen = 1;
1840 msg.msg_iov = &iov;
1841 iov.iov_len = size;
1842 iov.iov_base = ubuf;
1843 msg.msg_name = (struct sockaddr *)&address;
1844 msg.msg_namelen = sizeof(address);
1845 if (sock->file->f_flags & O_NONBLOCK)
1846 flags |= MSG_DONTWAIT;
1847 err = sock_recvmsg(sock, &msg, size, flags);
1849 if (err >= 0 && addr != NULL) {
1850 err2 = move_addr_to_user(&address,
1851 msg.msg_namelen, addr, addr_len);
1852 if (err2 < 0)
1853 err = err2;
1856 fput_light(sock->file, fput_needed);
1857 out:
1858 return err;
1862 * Receive a datagram from a socket.
1865 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1866 unsigned int flags)
1868 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1872 * Set a socket option. Because we don't know the option lengths we have
1873 * to pass the user mode parameter for the protocols to sort out.
1876 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1877 char __user *, optval, int, optlen)
1879 int err, fput_needed;
1880 struct socket *sock;
1882 if (optlen < 0)
1883 return -EINVAL;
1885 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1886 if (sock != NULL) {
1887 err = security_socket_setsockopt(sock, level, optname);
1888 if (err)
1889 goto out_put;
1891 if (level == SOL_SOCKET)
1892 err =
1893 sock_setsockopt(sock, level, optname, optval,
1894 optlen);
1895 else
1896 err =
1897 sock->ops->setsockopt(sock, level, optname, optval,
1898 optlen);
1899 out_put:
1900 fput_light(sock->file, fput_needed);
1902 return err;
1906 * Get a socket option. Because we don't know the option lengths we have
1907 * to pass a user mode parameter for the protocols to sort out.
1910 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1911 char __user *, optval, int __user *, optlen)
1913 int err, fput_needed;
1914 struct socket *sock;
1916 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1917 if (sock != NULL) {
1918 err = security_socket_getsockopt(sock, level, optname);
1919 if (err)
1920 goto out_put;
1922 if (level == SOL_SOCKET)
1923 err =
1924 sock_getsockopt(sock, level, optname, optval,
1925 optlen);
1926 else
1927 err =
1928 sock->ops->getsockopt(sock, level, optname, optval,
1929 optlen);
1930 out_put:
1931 fput_light(sock->file, fput_needed);
1933 return err;
1937 * Shutdown a socket.
1940 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1942 int err, fput_needed;
1943 struct socket *sock;
1945 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1946 if (sock != NULL) {
1947 err = security_socket_shutdown(sock, how);
1948 if (!err)
1949 err = sock->ops->shutdown(sock, how);
1950 fput_light(sock->file, fput_needed);
1952 return err;
1955 /* A couple of helpful macros for getting the address of the 32/64 bit
1956 * fields which are the same type (int / unsigned) on our platforms.
1958 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1959 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1960 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1962 struct used_address {
1963 struct sockaddr_storage name;
1964 unsigned int name_len;
1967 static int ___sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
1968 struct msghdr *msg_sys, unsigned int flags,
1969 struct used_address *used_address)
1971 struct compat_msghdr __user *msg_compat =
1972 (struct compat_msghdr __user *)msg;
1973 struct sockaddr_storage address;
1974 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1975 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1976 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1977 /* 20 is size of ipv6_pktinfo */
1978 unsigned char *ctl_buf = ctl;
1979 int err, ctl_len, total_len;
1981 err = -EFAULT;
1982 if (MSG_CMSG_COMPAT & flags) {
1983 if (get_compat_msghdr(msg_sys, msg_compat))
1984 return -EFAULT;
1985 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
1986 return -EFAULT;
1988 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
1989 err = -EMSGSIZE;
1990 if (msg_sys->msg_iovlen > UIO_MAXIOV)
1991 goto out;
1992 err = -ENOMEM;
1993 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
1994 GFP_KERNEL);
1995 if (!iov)
1996 goto out;
1999 /* This will also move the address data into kernel space */
2000 if (MSG_CMSG_COMPAT & flags) {
2001 err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ);
2002 } else
2003 err = verify_iovec(msg_sys, iov, &address, VERIFY_READ);
2004 if (err < 0)
2005 goto out_freeiov;
2006 total_len = err;
2008 err = -ENOBUFS;
2010 if (msg_sys->msg_controllen > INT_MAX)
2011 goto out_freeiov;
2012 ctl_len = msg_sys->msg_controllen;
2013 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2014 err =
2015 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2016 sizeof(ctl));
2017 if (err)
2018 goto out_freeiov;
2019 ctl_buf = msg_sys->msg_control;
2020 ctl_len = msg_sys->msg_controllen;
2021 } else if (ctl_len) {
2022 if (ctl_len > sizeof(ctl)) {
2023 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2024 if (ctl_buf == NULL)
2025 goto out_freeiov;
2027 err = -EFAULT;
2029 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2030 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2031 * checking falls down on this.
2033 if (copy_from_user(ctl_buf,
2034 (void __user __force *)msg_sys->msg_control,
2035 ctl_len))
2036 goto out_freectl;
2037 msg_sys->msg_control = ctl_buf;
2039 msg_sys->msg_flags = flags;
2041 if (sock->file->f_flags & O_NONBLOCK)
2042 msg_sys->msg_flags |= MSG_DONTWAIT;
2044 * If this is sendmmsg() and current destination address is same as
2045 * previously succeeded address, omit asking LSM's decision.
2046 * used_address->name_len is initialized to UINT_MAX so that the first
2047 * destination address never matches.
2049 if (used_address && msg_sys->msg_name &&
2050 used_address->name_len == msg_sys->msg_namelen &&
2051 !memcmp(&used_address->name, msg_sys->msg_name,
2052 used_address->name_len)) {
2053 err = sock_sendmsg_nosec(sock, msg_sys, total_len);
2054 goto out_freectl;
2056 err = sock_sendmsg(sock, msg_sys, total_len);
2058 * If this is sendmmsg() and sending to current destination address was
2059 * successful, remember it.
2061 if (used_address && err >= 0) {
2062 used_address->name_len = msg_sys->msg_namelen;
2063 if (msg_sys->msg_name)
2064 memcpy(&used_address->name, msg_sys->msg_name,
2065 used_address->name_len);
2068 out_freectl:
2069 if (ctl_buf != ctl)
2070 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2071 out_freeiov:
2072 if (iov != iovstack)
2073 kfree(iov);
2074 out:
2075 return err;
2079 * BSD sendmsg interface
2082 long __sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
2084 int fput_needed, err;
2085 struct msghdr msg_sys;
2086 struct socket *sock;
2088 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2089 if (!sock)
2090 goto out;
2092 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2094 fput_light(sock->file, fput_needed);
2095 out:
2096 return err;
2099 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags)
2101 if (flags & MSG_CMSG_COMPAT)
2102 return -EINVAL;
2103 return __sys_sendmsg(fd, msg, flags);
2107 * Linux sendmmsg interface
2110 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2111 unsigned int flags)
2113 int fput_needed, err, datagrams;
2114 struct socket *sock;
2115 struct mmsghdr __user *entry;
2116 struct compat_mmsghdr __user *compat_entry;
2117 struct msghdr msg_sys;
2118 struct used_address used_address;
2120 if (vlen > UIO_MAXIOV)
2121 vlen = UIO_MAXIOV;
2123 datagrams = 0;
2125 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2126 if (!sock)
2127 return err;
2129 used_address.name_len = UINT_MAX;
2130 entry = mmsg;
2131 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2132 err = 0;
2134 while (datagrams < vlen) {
2135 if (MSG_CMSG_COMPAT & flags) {
2136 err = ___sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2137 &msg_sys, flags, &used_address);
2138 if (err < 0)
2139 break;
2140 err = __put_user(err, &compat_entry->msg_len);
2141 ++compat_entry;
2142 } else {
2143 err = ___sys_sendmsg(sock,
2144 (struct msghdr __user *)entry,
2145 &msg_sys, flags, &used_address);
2146 if (err < 0)
2147 break;
2148 err = put_user(err, &entry->msg_len);
2149 ++entry;
2152 if (err)
2153 break;
2154 ++datagrams;
2157 fput_light(sock->file, fput_needed);
2159 /* We only return an error if no datagrams were able to be sent */
2160 if (datagrams != 0)
2161 return datagrams;
2163 return err;
2166 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2167 unsigned int, vlen, unsigned int, flags)
2169 if (flags & MSG_CMSG_COMPAT)
2170 return -EINVAL;
2171 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2174 static int ___sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2175 struct msghdr *msg_sys, unsigned int flags, int nosec)
2177 struct compat_msghdr __user *msg_compat =
2178 (struct compat_msghdr __user *)msg;
2179 struct iovec iovstack[UIO_FASTIOV];
2180 struct iovec *iov = iovstack;
2181 unsigned long cmsg_ptr;
2182 int err, total_len, len;
2184 /* kernel mode address */
2185 struct sockaddr_storage addr;
2187 /* user mode address pointers */
2188 struct sockaddr __user *uaddr;
2189 int __user *uaddr_len;
2191 if (MSG_CMSG_COMPAT & flags) {
2192 if (get_compat_msghdr(msg_sys, msg_compat))
2193 return -EFAULT;
2194 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
2195 return -EFAULT;
2197 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2198 err = -EMSGSIZE;
2199 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2200 goto out;
2201 err = -ENOMEM;
2202 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2203 GFP_KERNEL);
2204 if (!iov)
2205 goto out;
2209 * Save the user-mode address (verify_iovec will change the
2210 * kernel msghdr to use the kernel address space)
2213 uaddr = (__force void __user *)msg_sys->msg_name;
2214 uaddr_len = COMPAT_NAMELEN(msg);
2215 if (MSG_CMSG_COMPAT & flags) {
2216 err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2217 } else
2218 err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2219 if (err < 0)
2220 goto out_freeiov;
2221 total_len = err;
2223 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2224 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2226 if (sock->file->f_flags & O_NONBLOCK)
2227 flags |= MSG_DONTWAIT;
2228 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2229 total_len, flags);
2230 if (err < 0)
2231 goto out_freeiov;
2232 len = err;
2234 if (uaddr != NULL) {
2235 err = move_addr_to_user(&addr,
2236 msg_sys->msg_namelen, uaddr,
2237 uaddr_len);
2238 if (err < 0)
2239 goto out_freeiov;
2241 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2242 COMPAT_FLAGS(msg));
2243 if (err)
2244 goto out_freeiov;
2245 if (MSG_CMSG_COMPAT & flags)
2246 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2247 &msg_compat->msg_controllen);
2248 else
2249 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2250 &msg->msg_controllen);
2251 if (err)
2252 goto out_freeiov;
2253 err = len;
2255 out_freeiov:
2256 if (iov != iovstack)
2257 kfree(iov);
2258 out:
2259 return err;
2263 * BSD recvmsg interface
2266 long __sys_recvmsg(int fd, struct msghdr __user *msg, unsigned flags)
2268 int fput_needed, err;
2269 struct msghdr msg_sys;
2270 struct socket *sock;
2272 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2273 if (!sock)
2274 goto out;
2276 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2278 fput_light(sock->file, fput_needed);
2279 out:
2280 return err;
2283 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2284 unsigned int, flags)
2286 if (flags & MSG_CMSG_COMPAT)
2287 return -EINVAL;
2288 return __sys_recvmsg(fd, msg, flags);
2292 * Linux recvmmsg interface
2295 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2296 unsigned int flags, struct timespec *timeout)
2298 int fput_needed, err, datagrams;
2299 struct socket *sock;
2300 struct mmsghdr __user *entry;
2301 struct compat_mmsghdr __user *compat_entry;
2302 struct msghdr msg_sys;
2303 struct timespec end_time;
2305 if (timeout &&
2306 poll_select_set_timeout(&end_time, timeout->tv_sec,
2307 timeout->tv_nsec))
2308 return -EINVAL;
2310 datagrams = 0;
2312 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2313 if (!sock)
2314 return err;
2316 err = sock_error(sock->sk);
2317 if (err)
2318 goto out_put;
2320 entry = mmsg;
2321 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2323 while (datagrams < vlen) {
2325 * No need to ask LSM for more than the first datagram.
2327 if (MSG_CMSG_COMPAT & flags) {
2328 err = ___sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2329 &msg_sys, flags & ~MSG_WAITFORONE,
2330 datagrams);
2331 if (err < 0)
2332 break;
2333 err = __put_user(err, &compat_entry->msg_len);
2334 ++compat_entry;
2335 } else {
2336 err = ___sys_recvmsg(sock,
2337 (struct msghdr __user *)entry,
2338 &msg_sys, flags & ~MSG_WAITFORONE,
2339 datagrams);
2340 if (err < 0)
2341 break;
2342 err = put_user(err, &entry->msg_len);
2343 ++entry;
2346 if (err)
2347 break;
2348 ++datagrams;
2350 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2351 if (flags & MSG_WAITFORONE)
2352 flags |= MSG_DONTWAIT;
2354 if (timeout) {
2355 ktime_get_ts(timeout);
2356 *timeout = timespec_sub(end_time, *timeout);
2357 if (timeout->tv_sec < 0) {
2358 timeout->tv_sec = timeout->tv_nsec = 0;
2359 break;
2362 /* Timeout, return less than vlen datagrams */
2363 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2364 break;
2367 /* Out of band data, return right away */
2368 if (msg_sys.msg_flags & MSG_OOB)
2369 break;
2372 out_put:
2373 fput_light(sock->file, fput_needed);
2375 if (err == 0)
2376 return datagrams;
2378 if (datagrams != 0) {
2380 * We may return less entries than requested (vlen) if the
2381 * sock is non block and there aren't enough datagrams...
2383 if (err != -EAGAIN) {
2385 * ... or if recvmsg returns an error after we
2386 * received some datagrams, where we record the
2387 * error to return on the next call or if the
2388 * app asks about it using getsockopt(SO_ERROR).
2390 sock->sk->sk_err = -err;
2393 return datagrams;
2396 return err;
2399 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2400 unsigned int, vlen, unsigned int, flags,
2401 struct timespec __user *, timeout)
2403 int datagrams;
2404 struct timespec timeout_sys;
2406 if (flags & MSG_CMSG_COMPAT)
2407 return -EINVAL;
2409 if (!timeout)
2410 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2412 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2413 return -EFAULT;
2415 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2417 if (datagrams > 0 &&
2418 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2419 datagrams = -EFAULT;
2421 return datagrams;
2424 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2425 /* Argument list sizes for sys_socketcall */
2426 #define AL(x) ((x) * sizeof(unsigned long))
2427 static const unsigned char nargs[21] = {
2428 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2429 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2430 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2431 AL(4), AL(5), AL(4)
2434 #undef AL
2437 * System call vectors.
2439 * Argument checking cleaned up. Saved 20% in size.
2440 * This function doesn't need to set the kernel lock because
2441 * it is set by the callees.
2444 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2446 unsigned long a[AUDITSC_ARGS];
2447 unsigned long a0, a1;
2448 int err;
2449 unsigned int len;
2451 if (call < 1 || call > SYS_SENDMMSG)
2452 return -EINVAL;
2454 len = nargs[call];
2455 if (len > sizeof(a))
2456 return -EINVAL;
2458 /* copy_from_user should be SMP safe. */
2459 if (copy_from_user(a, args, len))
2460 return -EFAULT;
2462 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2463 if (err)
2464 return err;
2466 a0 = a[0];
2467 a1 = a[1];
2469 switch (call) {
2470 case SYS_SOCKET:
2471 err = sys_socket(a0, a1, a[2]);
2472 break;
2473 case SYS_BIND:
2474 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2475 break;
2476 case SYS_CONNECT:
2477 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2478 break;
2479 case SYS_LISTEN:
2480 err = sys_listen(a0, a1);
2481 break;
2482 case SYS_ACCEPT:
2483 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2484 (int __user *)a[2], 0);
2485 break;
2486 case SYS_GETSOCKNAME:
2487 err =
2488 sys_getsockname(a0, (struct sockaddr __user *)a1,
2489 (int __user *)a[2]);
2490 break;
2491 case SYS_GETPEERNAME:
2492 err =
2493 sys_getpeername(a0, (struct sockaddr __user *)a1,
2494 (int __user *)a[2]);
2495 break;
2496 case SYS_SOCKETPAIR:
2497 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2498 break;
2499 case SYS_SEND:
2500 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2501 break;
2502 case SYS_SENDTO:
2503 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2504 (struct sockaddr __user *)a[4], a[5]);
2505 break;
2506 case SYS_RECV:
2507 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2508 break;
2509 case SYS_RECVFROM:
2510 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2511 (struct sockaddr __user *)a[4],
2512 (int __user *)a[5]);
2513 break;
2514 case SYS_SHUTDOWN:
2515 err = sys_shutdown(a0, a1);
2516 break;
2517 case SYS_SETSOCKOPT:
2518 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2519 break;
2520 case SYS_GETSOCKOPT:
2521 err =
2522 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2523 (int __user *)a[4]);
2524 break;
2525 case SYS_SENDMSG:
2526 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2527 break;
2528 case SYS_SENDMMSG:
2529 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2530 break;
2531 case SYS_RECVMSG:
2532 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2533 break;
2534 case SYS_RECVMMSG:
2535 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2536 (struct timespec __user *)a[4]);
2537 break;
2538 case SYS_ACCEPT4:
2539 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2540 (int __user *)a[2], a[3]);
2541 break;
2542 default:
2543 err = -EINVAL;
2544 break;
2546 return err;
2549 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2552 * sock_register - add a socket protocol handler
2553 * @ops: description of protocol
2555 * This function is called by a protocol handler that wants to
2556 * advertise its address family, and have it linked into the
2557 * socket interface. The value ops->family coresponds to the
2558 * socket system call protocol family.
2560 int sock_register(const struct net_proto_family *ops)
2562 int err;
2564 if (ops->family >= NPROTO) {
2565 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2566 NPROTO);
2567 return -ENOBUFS;
2570 spin_lock(&net_family_lock);
2571 if (rcu_dereference_protected(net_families[ops->family],
2572 lockdep_is_held(&net_family_lock)))
2573 err = -EEXIST;
2574 else {
2575 rcu_assign_pointer(net_families[ops->family], ops);
2576 err = 0;
2578 spin_unlock(&net_family_lock);
2580 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2581 return err;
2583 EXPORT_SYMBOL(sock_register);
2586 * sock_unregister - remove a protocol handler
2587 * @family: protocol family to remove
2589 * This function is called by a protocol handler that wants to
2590 * remove its address family, and have it unlinked from the
2591 * new socket creation.
2593 * If protocol handler is a module, then it can use module reference
2594 * counts to protect against new references. If protocol handler is not
2595 * a module then it needs to provide its own protection in
2596 * the ops->create routine.
2598 void sock_unregister(int family)
2600 BUG_ON(family < 0 || family >= NPROTO);
2602 spin_lock(&net_family_lock);
2603 RCU_INIT_POINTER(net_families[family], NULL);
2604 spin_unlock(&net_family_lock);
2606 synchronize_rcu();
2608 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2610 EXPORT_SYMBOL(sock_unregister);
2612 static int __init sock_init(void)
2614 int err;
2616 * Initialize the network sysctl infrastructure.
2618 err = net_sysctl_init();
2619 if (err)
2620 goto out;
2623 * Initialize skbuff SLAB cache
2625 skb_init();
2628 * Initialize the protocols module.
2631 init_inodecache();
2633 err = register_filesystem(&sock_fs_type);
2634 if (err)
2635 goto out_fs;
2636 sock_mnt = kern_mount(&sock_fs_type);
2637 if (IS_ERR(sock_mnt)) {
2638 err = PTR_ERR(sock_mnt);
2639 goto out_mount;
2642 /* The real protocol initialization is performed in later initcalls.
2645 #ifdef CONFIG_NETFILTER
2646 err = netfilter_init();
2647 if (err)
2648 goto out;
2649 #endif
2651 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2652 skb_timestamping_init();
2653 #endif
2655 out:
2656 return err;
2658 out_mount:
2659 unregister_filesystem(&sock_fs_type);
2660 out_fs:
2661 goto out;
2664 core_initcall(sock_init); /* early initcall */
2666 #ifdef CONFIG_PROC_FS
2667 void socket_seq_show(struct seq_file *seq)
2669 int cpu;
2670 int counter = 0;
2672 for_each_possible_cpu(cpu)
2673 counter += per_cpu(sockets_in_use, cpu);
2675 /* It can be negative, by the way. 8) */
2676 if (counter < 0)
2677 counter = 0;
2679 seq_printf(seq, "sockets: used %d\n", counter);
2681 #endif /* CONFIG_PROC_FS */
2683 #ifdef CONFIG_COMPAT
2684 static int do_siocgstamp(struct net *net, struct socket *sock,
2685 unsigned int cmd, void __user *up)
2687 mm_segment_t old_fs = get_fs();
2688 struct timeval ktv;
2689 int err;
2691 set_fs(KERNEL_DS);
2692 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2693 set_fs(old_fs);
2694 if (!err)
2695 err = compat_put_timeval(&ktv, up);
2697 return err;
2700 static int do_siocgstampns(struct net *net, struct socket *sock,
2701 unsigned int cmd, void __user *up)
2703 mm_segment_t old_fs = get_fs();
2704 struct timespec kts;
2705 int err;
2707 set_fs(KERNEL_DS);
2708 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2709 set_fs(old_fs);
2710 if (!err)
2711 err = compat_put_timespec(&kts, up);
2713 return err;
2716 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2718 struct ifreq __user *uifr;
2719 int err;
2721 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2722 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2723 return -EFAULT;
2725 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2726 if (err)
2727 return err;
2729 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2730 return -EFAULT;
2732 return 0;
2735 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2737 struct compat_ifconf ifc32;
2738 struct ifconf ifc;
2739 struct ifconf __user *uifc;
2740 struct compat_ifreq __user *ifr32;
2741 struct ifreq __user *ifr;
2742 unsigned int i, j;
2743 int err;
2745 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2746 return -EFAULT;
2748 memset(&ifc, 0, sizeof(ifc));
2749 if (ifc32.ifcbuf == 0) {
2750 ifc32.ifc_len = 0;
2751 ifc.ifc_len = 0;
2752 ifc.ifc_req = NULL;
2753 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2754 } else {
2755 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2756 sizeof(struct ifreq);
2757 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2758 ifc.ifc_len = len;
2759 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2760 ifr32 = compat_ptr(ifc32.ifcbuf);
2761 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2762 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2763 return -EFAULT;
2764 ifr++;
2765 ifr32++;
2768 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2769 return -EFAULT;
2771 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2772 if (err)
2773 return err;
2775 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2776 return -EFAULT;
2778 ifr = ifc.ifc_req;
2779 ifr32 = compat_ptr(ifc32.ifcbuf);
2780 for (i = 0, j = 0;
2781 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2782 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2783 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2784 return -EFAULT;
2785 ifr32++;
2786 ifr++;
2789 if (ifc32.ifcbuf == 0) {
2790 /* Translate from 64-bit structure multiple to
2791 * a 32-bit one.
2793 i = ifc.ifc_len;
2794 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2795 ifc32.ifc_len = i;
2796 } else {
2797 ifc32.ifc_len = i;
2799 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2800 return -EFAULT;
2802 return 0;
2805 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2807 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2808 bool convert_in = false, convert_out = false;
2809 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2810 struct ethtool_rxnfc __user *rxnfc;
2811 struct ifreq __user *ifr;
2812 u32 rule_cnt = 0, actual_rule_cnt;
2813 u32 ethcmd;
2814 u32 data;
2815 int ret;
2817 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2818 return -EFAULT;
2820 compat_rxnfc = compat_ptr(data);
2822 if (get_user(ethcmd, &compat_rxnfc->cmd))
2823 return -EFAULT;
2825 /* Most ethtool structures are defined without padding.
2826 * Unfortunately struct ethtool_rxnfc is an exception.
2828 switch (ethcmd) {
2829 default:
2830 break;
2831 case ETHTOOL_GRXCLSRLALL:
2832 /* Buffer size is variable */
2833 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2834 return -EFAULT;
2835 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2836 return -ENOMEM;
2837 buf_size += rule_cnt * sizeof(u32);
2838 /* fall through */
2839 case ETHTOOL_GRXRINGS:
2840 case ETHTOOL_GRXCLSRLCNT:
2841 case ETHTOOL_GRXCLSRULE:
2842 case ETHTOOL_SRXCLSRLINS:
2843 convert_out = true;
2844 /* fall through */
2845 case ETHTOOL_SRXCLSRLDEL:
2846 buf_size += sizeof(struct ethtool_rxnfc);
2847 convert_in = true;
2848 break;
2851 ifr = compat_alloc_user_space(buf_size);
2852 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2854 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2855 return -EFAULT;
2857 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2858 &ifr->ifr_ifru.ifru_data))
2859 return -EFAULT;
2861 if (convert_in) {
2862 /* We expect there to be holes between fs.m_ext and
2863 * fs.ring_cookie and at the end of fs, but nowhere else.
2865 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2866 sizeof(compat_rxnfc->fs.m_ext) !=
2867 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2868 sizeof(rxnfc->fs.m_ext));
2869 BUILD_BUG_ON(
2870 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2871 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2872 offsetof(struct ethtool_rxnfc, fs.location) -
2873 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2875 if (copy_in_user(rxnfc, compat_rxnfc,
2876 (void __user *)(&rxnfc->fs.m_ext + 1) -
2877 (void __user *)rxnfc) ||
2878 copy_in_user(&rxnfc->fs.ring_cookie,
2879 &compat_rxnfc->fs.ring_cookie,
2880 (void __user *)(&rxnfc->fs.location + 1) -
2881 (void __user *)&rxnfc->fs.ring_cookie) ||
2882 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2883 sizeof(rxnfc->rule_cnt)))
2884 return -EFAULT;
2887 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2888 if (ret)
2889 return ret;
2891 if (convert_out) {
2892 if (copy_in_user(compat_rxnfc, rxnfc,
2893 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2894 (const void __user *)rxnfc) ||
2895 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2896 &rxnfc->fs.ring_cookie,
2897 (const void __user *)(&rxnfc->fs.location + 1) -
2898 (const void __user *)&rxnfc->fs.ring_cookie) ||
2899 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2900 sizeof(rxnfc->rule_cnt)))
2901 return -EFAULT;
2903 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2904 /* As an optimisation, we only copy the actual
2905 * number of rules that the underlying
2906 * function returned. Since Mallory might
2907 * change the rule count in user memory, we
2908 * check that it is less than the rule count
2909 * originally given (as the user buffer size),
2910 * which has been range-checked.
2912 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2913 return -EFAULT;
2914 if (actual_rule_cnt < rule_cnt)
2915 rule_cnt = actual_rule_cnt;
2916 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2917 &rxnfc->rule_locs[0],
2918 rule_cnt * sizeof(u32)))
2919 return -EFAULT;
2923 return 0;
2926 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2928 void __user *uptr;
2929 compat_uptr_t uptr32;
2930 struct ifreq __user *uifr;
2932 uifr = compat_alloc_user_space(sizeof(*uifr));
2933 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2934 return -EFAULT;
2936 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2937 return -EFAULT;
2939 uptr = compat_ptr(uptr32);
2941 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2942 return -EFAULT;
2944 return dev_ioctl(net, SIOCWANDEV, uifr);
2947 static int bond_ioctl(struct net *net, unsigned int cmd,
2948 struct compat_ifreq __user *ifr32)
2950 struct ifreq kifr;
2951 struct ifreq __user *uifr;
2952 mm_segment_t old_fs;
2953 int err;
2954 u32 data;
2955 void __user *datap;
2957 switch (cmd) {
2958 case SIOCBONDENSLAVE:
2959 case SIOCBONDRELEASE:
2960 case SIOCBONDSETHWADDR:
2961 case SIOCBONDCHANGEACTIVE:
2962 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2963 return -EFAULT;
2965 old_fs = get_fs();
2966 set_fs(KERNEL_DS);
2967 err = dev_ioctl(net, cmd,
2968 (struct ifreq __user __force *) &kifr);
2969 set_fs(old_fs);
2971 return err;
2972 case SIOCBONDSLAVEINFOQUERY:
2973 case SIOCBONDINFOQUERY:
2974 uifr = compat_alloc_user_space(sizeof(*uifr));
2975 if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2976 return -EFAULT;
2978 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2979 return -EFAULT;
2981 datap = compat_ptr(data);
2982 if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2983 return -EFAULT;
2985 return dev_ioctl(net, cmd, uifr);
2986 default:
2987 return -ENOIOCTLCMD;
2991 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
2992 struct compat_ifreq __user *u_ifreq32)
2994 struct ifreq __user *u_ifreq64;
2995 char tmp_buf[IFNAMSIZ];
2996 void __user *data64;
2997 u32 data32;
2999 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
3000 IFNAMSIZ))
3001 return -EFAULT;
3002 if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
3003 return -EFAULT;
3004 data64 = compat_ptr(data32);
3006 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
3008 /* Don't check these user accesses, just let that get trapped
3009 * in the ioctl handler instead.
3011 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
3012 IFNAMSIZ))
3013 return -EFAULT;
3014 if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
3015 return -EFAULT;
3017 return dev_ioctl(net, cmd, u_ifreq64);
3020 static int dev_ifsioc(struct net *net, struct socket *sock,
3021 unsigned int cmd, struct compat_ifreq __user *uifr32)
3023 struct ifreq __user *uifr;
3024 int err;
3026 uifr = compat_alloc_user_space(sizeof(*uifr));
3027 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3028 return -EFAULT;
3030 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3032 if (!err) {
3033 switch (cmd) {
3034 case SIOCGIFFLAGS:
3035 case SIOCGIFMETRIC:
3036 case SIOCGIFMTU:
3037 case SIOCGIFMEM:
3038 case SIOCGIFHWADDR:
3039 case SIOCGIFINDEX:
3040 case SIOCGIFADDR:
3041 case SIOCGIFBRDADDR:
3042 case SIOCGIFDSTADDR:
3043 case SIOCGIFNETMASK:
3044 case SIOCGIFPFLAGS:
3045 case SIOCGIFTXQLEN:
3046 case SIOCGMIIPHY:
3047 case SIOCGMIIREG:
3048 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3049 err = -EFAULT;
3050 break;
3053 return err;
3056 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3057 struct compat_ifreq __user *uifr32)
3059 struct ifreq ifr;
3060 struct compat_ifmap __user *uifmap32;
3061 mm_segment_t old_fs;
3062 int err;
3064 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3065 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3066 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3067 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3068 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3069 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3070 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3071 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3072 if (err)
3073 return -EFAULT;
3075 old_fs = get_fs();
3076 set_fs(KERNEL_DS);
3077 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
3078 set_fs(old_fs);
3080 if (cmd == SIOCGIFMAP && !err) {
3081 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3082 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3083 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3084 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3085 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3086 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3087 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3088 if (err)
3089 err = -EFAULT;
3091 return err;
3094 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
3096 void __user *uptr;
3097 compat_uptr_t uptr32;
3098 struct ifreq __user *uifr;
3100 uifr = compat_alloc_user_space(sizeof(*uifr));
3101 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
3102 return -EFAULT;
3104 if (get_user(uptr32, &uifr32->ifr_data))
3105 return -EFAULT;
3107 uptr = compat_ptr(uptr32);
3109 if (put_user(uptr, &uifr->ifr_data))
3110 return -EFAULT;
3112 return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
3115 struct rtentry32 {
3116 u32 rt_pad1;
3117 struct sockaddr rt_dst; /* target address */
3118 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3119 struct sockaddr rt_genmask; /* target network mask (IP) */
3120 unsigned short rt_flags;
3121 short rt_pad2;
3122 u32 rt_pad3;
3123 unsigned char rt_tos;
3124 unsigned char rt_class;
3125 short rt_pad4;
3126 short rt_metric; /* +1 for binary compatibility! */
3127 /* char * */ u32 rt_dev; /* forcing the device at add */
3128 u32 rt_mtu; /* per route MTU/Window */
3129 u32 rt_window; /* Window clamping */
3130 unsigned short rt_irtt; /* Initial RTT */
3133 struct in6_rtmsg32 {
3134 struct in6_addr rtmsg_dst;
3135 struct in6_addr rtmsg_src;
3136 struct in6_addr rtmsg_gateway;
3137 u32 rtmsg_type;
3138 u16 rtmsg_dst_len;
3139 u16 rtmsg_src_len;
3140 u32 rtmsg_metric;
3141 u32 rtmsg_info;
3142 u32 rtmsg_flags;
3143 s32 rtmsg_ifindex;
3146 static int routing_ioctl(struct net *net, struct socket *sock,
3147 unsigned int cmd, void __user *argp)
3149 int ret;
3150 void *r = NULL;
3151 struct in6_rtmsg r6;
3152 struct rtentry r4;
3153 char devname[16];
3154 u32 rtdev;
3155 mm_segment_t old_fs = get_fs();
3157 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3158 struct in6_rtmsg32 __user *ur6 = argp;
3159 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3160 3 * sizeof(struct in6_addr));
3161 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3162 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3163 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3164 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3165 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3166 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3167 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3169 r = (void *) &r6;
3170 } else { /* ipv4 */
3171 struct rtentry32 __user *ur4 = argp;
3172 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3173 3 * sizeof(struct sockaddr));
3174 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3175 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3176 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3177 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3178 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3179 ret |= get_user(rtdev, &(ur4->rt_dev));
3180 if (rtdev) {
3181 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3182 r4.rt_dev = (char __user __force *)devname;
3183 devname[15] = 0;
3184 } else
3185 r4.rt_dev = NULL;
3187 r = (void *) &r4;
3190 if (ret) {
3191 ret = -EFAULT;
3192 goto out;
3195 set_fs(KERNEL_DS);
3196 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3197 set_fs(old_fs);
3199 out:
3200 return ret;
3203 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3204 * for some operations; this forces use of the newer bridge-utils that
3205 * use compatible ioctls
3207 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3209 compat_ulong_t tmp;
3211 if (get_user(tmp, argp))
3212 return -EFAULT;
3213 if (tmp == BRCTL_GET_VERSION)
3214 return BRCTL_VERSION + 1;
3215 return -EINVAL;
3218 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3219 unsigned int cmd, unsigned long arg)
3221 void __user *argp = compat_ptr(arg);
3222 struct sock *sk = sock->sk;
3223 struct net *net = sock_net(sk);
3225 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3226 return siocdevprivate_ioctl(net, cmd, argp);
3228 switch (cmd) {
3229 case SIOCSIFBR:
3230 case SIOCGIFBR:
3231 return old_bridge_ioctl(argp);
3232 case SIOCGIFNAME:
3233 return dev_ifname32(net, argp);
3234 case SIOCGIFCONF:
3235 return dev_ifconf(net, argp);
3236 case SIOCETHTOOL:
3237 return ethtool_ioctl(net, argp);
3238 case SIOCWANDEV:
3239 return compat_siocwandev(net, argp);
3240 case SIOCGIFMAP:
3241 case SIOCSIFMAP:
3242 return compat_sioc_ifmap(net, cmd, argp);
3243 case SIOCBONDENSLAVE:
3244 case SIOCBONDRELEASE:
3245 case SIOCBONDSETHWADDR:
3246 case SIOCBONDSLAVEINFOQUERY:
3247 case SIOCBONDINFOQUERY:
3248 case SIOCBONDCHANGEACTIVE:
3249 return bond_ioctl(net, cmd, argp);
3250 case SIOCADDRT:
3251 case SIOCDELRT:
3252 return routing_ioctl(net, sock, cmd, argp);
3253 case SIOCGSTAMP:
3254 return do_siocgstamp(net, sock, cmd, argp);
3255 case SIOCGSTAMPNS:
3256 return do_siocgstampns(net, sock, cmd, argp);
3257 case SIOCSHWTSTAMP:
3258 return compat_siocshwtstamp(net, argp);
3260 case FIOSETOWN:
3261 case SIOCSPGRP:
3262 case FIOGETOWN:
3263 case SIOCGPGRP:
3264 case SIOCBRADDBR:
3265 case SIOCBRDELBR:
3266 case SIOCGIFVLAN:
3267 case SIOCSIFVLAN:
3268 case SIOCADDDLCI:
3269 case SIOCDELDLCI:
3270 return sock_ioctl(file, cmd, arg);
3272 case SIOCGIFFLAGS:
3273 case SIOCSIFFLAGS:
3274 case SIOCGIFMETRIC:
3275 case SIOCSIFMETRIC:
3276 case SIOCGIFMTU:
3277 case SIOCSIFMTU:
3278 case SIOCGIFMEM:
3279 case SIOCSIFMEM:
3280 case SIOCGIFHWADDR:
3281 case SIOCSIFHWADDR:
3282 case SIOCADDMULTI:
3283 case SIOCDELMULTI:
3284 case SIOCGIFINDEX:
3285 case SIOCGIFADDR:
3286 case SIOCSIFADDR:
3287 case SIOCSIFHWBROADCAST:
3288 case SIOCDIFADDR:
3289 case SIOCGIFBRDADDR:
3290 case SIOCSIFBRDADDR:
3291 case SIOCGIFDSTADDR:
3292 case SIOCSIFDSTADDR:
3293 case SIOCGIFNETMASK:
3294 case SIOCSIFNETMASK:
3295 case SIOCSIFPFLAGS:
3296 case SIOCGIFPFLAGS:
3297 case SIOCGIFTXQLEN:
3298 case SIOCSIFTXQLEN:
3299 case SIOCBRADDIF:
3300 case SIOCBRDELIF:
3301 case SIOCSIFNAME:
3302 case SIOCGMIIPHY:
3303 case SIOCGMIIREG:
3304 case SIOCSMIIREG:
3305 return dev_ifsioc(net, sock, cmd, argp);
3307 case SIOCSARP:
3308 case SIOCGARP:
3309 case SIOCDARP:
3310 case SIOCATMARK:
3311 return sock_do_ioctl(net, sock, cmd, arg);
3314 return -ENOIOCTLCMD;
3317 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3318 unsigned long arg)
3320 struct socket *sock = file->private_data;
3321 int ret = -ENOIOCTLCMD;
3322 struct sock *sk;
3323 struct net *net;
3325 sk = sock->sk;
3326 net = sock_net(sk);
3328 if (sock->ops->compat_ioctl)
3329 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3331 if (ret == -ENOIOCTLCMD &&
3332 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3333 ret = compat_wext_handle_ioctl(net, cmd, arg);
3335 if (ret == -ENOIOCTLCMD)
3336 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3338 return ret;
3340 #endif
3342 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3344 return sock->ops->bind(sock, addr, addrlen);
3346 EXPORT_SYMBOL(kernel_bind);
3348 int kernel_listen(struct socket *sock, int backlog)
3350 return sock->ops->listen(sock, backlog);
3352 EXPORT_SYMBOL(kernel_listen);
3354 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3356 struct sock *sk = sock->sk;
3357 int err;
3359 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3360 newsock);
3361 if (err < 0)
3362 goto done;
3364 err = sock->ops->accept(sock, *newsock, flags);
3365 if (err < 0) {
3366 sock_release(*newsock);
3367 *newsock = NULL;
3368 goto done;
3371 (*newsock)->ops = sock->ops;
3372 __module_get((*newsock)->ops->owner);
3374 done:
3375 return err;
3377 EXPORT_SYMBOL(kernel_accept);
3379 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3380 int flags)
3382 return sock->ops->connect(sock, addr, addrlen, flags);
3384 EXPORT_SYMBOL(kernel_connect);
3386 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3387 int *addrlen)
3389 return sock->ops->getname(sock, addr, addrlen, 0);
3391 EXPORT_SYMBOL(kernel_getsockname);
3393 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3394 int *addrlen)
3396 return sock->ops->getname(sock, addr, addrlen, 1);
3398 EXPORT_SYMBOL(kernel_getpeername);
3400 int kernel_getsockopt(struct socket *sock, int level, int optname,
3401 char *optval, int *optlen)
3403 mm_segment_t oldfs = get_fs();
3404 char __user *uoptval;
3405 int __user *uoptlen;
3406 int err;
3408 uoptval = (char __user __force *) optval;
3409 uoptlen = (int __user __force *) optlen;
3411 set_fs(KERNEL_DS);
3412 if (level == SOL_SOCKET)
3413 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3414 else
3415 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3416 uoptlen);
3417 set_fs(oldfs);
3418 return err;
3420 EXPORT_SYMBOL(kernel_getsockopt);
3422 int kernel_setsockopt(struct socket *sock, int level, int optname,
3423 char *optval, unsigned int optlen)
3425 mm_segment_t oldfs = get_fs();
3426 char __user *uoptval;
3427 int err;
3429 uoptval = (char __user __force *) optval;
3431 set_fs(KERNEL_DS);
3432 if (level == SOL_SOCKET)
3433 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3434 else
3435 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3436 optlen);
3437 set_fs(oldfs);
3438 return err;
3440 EXPORT_SYMBOL(kernel_setsockopt);
3442 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3443 size_t size, int flags)
3445 if (sock->ops->sendpage)
3446 return sock->ops->sendpage(sock, page, offset, size, flags);
3448 return sock_no_sendpage(sock, page, offset, size, flags);
3450 EXPORT_SYMBOL(kernel_sendpage);
3452 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3454 mm_segment_t oldfs = get_fs();
3455 int err;
3457 set_fs(KERNEL_DS);
3458 err = sock->ops->ioctl(sock, cmd, arg);
3459 set_fs(oldfs);
3461 return err;
3463 EXPORT_SYMBOL(kernel_sock_ioctl);
3465 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3467 return sock->ops->shutdown(sock, how);
3469 EXPORT_SYMBOL(kernel_sock_shutdown);