thp: fix MADV_DONTNEED vs. numa balancing race
[linux/fpc-iii.git] / mm / mlock.c
blob9d2e773f3a957cda8dba94232ea7d6ab3c7613eb
1 /*
2 * linux/mm/mlock.c
4 * (C) Copyright 1995 Linus Torvalds
5 * (C) Copyright 2002 Christoph Hellwig
6 */
8 #include <linux/capability.h>
9 #include <linux/mman.h>
10 #include <linux/mm.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/pagemap.h>
14 #include <linux/pagevec.h>
15 #include <linux/mempolicy.h>
16 #include <linux/syscalls.h>
17 #include <linux/sched.h>
18 #include <linux/export.h>
19 #include <linux/rmap.h>
20 #include <linux/mmzone.h>
21 #include <linux/hugetlb.h>
22 #include <linux/memcontrol.h>
23 #include <linux/mm_inline.h>
25 #include "internal.h"
27 int can_do_mlock(void)
29 if (rlimit(RLIMIT_MEMLOCK) != 0)
30 return 1;
31 if (capable(CAP_IPC_LOCK))
32 return 1;
33 return 0;
35 EXPORT_SYMBOL(can_do_mlock);
38 * Mlocked pages are marked with PageMlocked() flag for efficient testing
39 * in vmscan and, possibly, the fault path; and to support semi-accurate
40 * statistics.
42 * An mlocked page [PageMlocked(page)] is unevictable. As such, it will
43 * be placed on the LRU "unevictable" list, rather than the [in]active lists.
44 * The unevictable list is an LRU sibling list to the [in]active lists.
45 * PageUnevictable is set to indicate the unevictable state.
47 * When lazy mlocking via vmscan, it is important to ensure that the
48 * vma's VM_LOCKED status is not concurrently being modified, otherwise we
49 * may have mlocked a page that is being munlocked. So lazy mlock must take
50 * the mmap_sem for read, and verify that the vma really is locked
51 * (see mm/rmap.c).
55 * LRU accounting for clear_page_mlock()
57 void clear_page_mlock(struct page *page)
59 if (!TestClearPageMlocked(page))
60 return;
62 mod_zone_page_state(page_zone(page), NR_MLOCK,
63 -hpage_nr_pages(page));
64 count_vm_event(UNEVICTABLE_PGCLEARED);
65 if (!isolate_lru_page(page)) {
66 putback_lru_page(page);
67 } else {
69 * We lost the race. the page already moved to evictable list.
71 if (PageUnevictable(page))
72 count_vm_event(UNEVICTABLE_PGSTRANDED);
77 * Mark page as mlocked if not already.
78 * If page on LRU, isolate and putback to move to unevictable list.
80 void mlock_vma_page(struct page *page)
82 /* Serialize with page migration */
83 BUG_ON(!PageLocked(page));
85 if (!TestSetPageMlocked(page)) {
86 mod_zone_page_state(page_zone(page), NR_MLOCK,
87 hpage_nr_pages(page));
88 count_vm_event(UNEVICTABLE_PGMLOCKED);
89 if (!isolate_lru_page(page))
90 putback_lru_page(page);
95 * Isolate a page from LRU with optional get_page() pin.
96 * Assumes lru_lock already held and page already pinned.
98 static bool __munlock_isolate_lru_page(struct page *page, bool getpage)
100 if (PageLRU(page)) {
101 struct lruvec *lruvec;
103 lruvec = mem_cgroup_page_lruvec(page, page_zone(page));
104 if (getpage)
105 get_page(page);
106 ClearPageLRU(page);
107 del_page_from_lru_list(page, lruvec, page_lru(page));
108 return true;
111 return false;
115 * Finish munlock after successful page isolation
117 * Page must be locked. This is a wrapper for try_to_munlock()
118 * and putback_lru_page() with munlock accounting.
120 static void __munlock_isolated_page(struct page *page)
122 int ret = SWAP_AGAIN;
125 * Optimization: if the page was mapped just once, that's our mapping
126 * and we don't need to check all the other vmas.
128 if (page_mapcount(page) > 1)
129 ret = try_to_munlock(page);
131 /* Did try_to_unlock() succeed or punt? */
132 if (ret != SWAP_MLOCK)
133 count_vm_event(UNEVICTABLE_PGMUNLOCKED);
135 putback_lru_page(page);
139 * Accounting for page isolation fail during munlock
141 * Performs accounting when page isolation fails in munlock. There is nothing
142 * else to do because it means some other task has already removed the page
143 * from the LRU. putback_lru_page() will take care of removing the page from
144 * the unevictable list, if necessary. vmscan [page_referenced()] will move
145 * the page back to the unevictable list if some other vma has it mlocked.
147 static void __munlock_isolation_failed(struct page *page)
149 if (PageUnevictable(page))
150 __count_vm_event(UNEVICTABLE_PGSTRANDED);
151 else
152 __count_vm_event(UNEVICTABLE_PGMUNLOCKED);
156 * munlock_vma_page - munlock a vma page
157 * @page - page to be unlocked, either a normal page or THP page head
159 * returns the size of the page as a page mask (0 for normal page,
160 * HPAGE_PMD_NR - 1 for THP head page)
162 * called from munlock()/munmap() path with page supposedly on the LRU.
163 * When we munlock a page, because the vma where we found the page is being
164 * munlock()ed or munmap()ed, we want to check whether other vmas hold the
165 * page locked so that we can leave it on the unevictable lru list and not
166 * bother vmscan with it. However, to walk the page's rmap list in
167 * try_to_munlock() we must isolate the page from the LRU. If some other
168 * task has removed the page from the LRU, we won't be able to do that.
169 * So we clear the PageMlocked as we might not get another chance. If we
170 * can't isolate the page, we leave it for putback_lru_page() and vmscan
171 * [page_referenced()/try_to_unmap()] to deal with.
173 unsigned int munlock_vma_page(struct page *page)
175 int nr_pages;
176 struct zone *zone = page_zone(page);
178 /* For try_to_munlock() and to serialize with page migration */
179 BUG_ON(!PageLocked(page));
182 * Serialize with any parallel __split_huge_page_refcount() which
183 * might otherwise copy PageMlocked to part of the tail pages before
184 * we clear it in the head page. It also stabilizes hpage_nr_pages().
186 spin_lock_irq(&zone->lru_lock);
188 nr_pages = hpage_nr_pages(page);
189 if (!TestClearPageMlocked(page))
190 goto unlock_out;
192 __mod_zone_page_state(zone, NR_MLOCK, -nr_pages);
194 if (__munlock_isolate_lru_page(page, true)) {
195 spin_unlock_irq(&zone->lru_lock);
196 __munlock_isolated_page(page);
197 goto out;
199 __munlock_isolation_failed(page);
201 unlock_out:
202 spin_unlock_irq(&zone->lru_lock);
204 out:
205 return nr_pages - 1;
209 * convert get_user_pages() return value to posix mlock() error
211 static int __mlock_posix_error_return(long retval)
213 if (retval == -EFAULT)
214 retval = -ENOMEM;
215 else if (retval == -ENOMEM)
216 retval = -EAGAIN;
217 return retval;
221 * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
223 * The fast path is available only for evictable pages with single mapping.
224 * Then we can bypass the per-cpu pvec and get better performance.
225 * when mapcount > 1 we need try_to_munlock() which can fail.
226 * when !page_evictable(), we need the full redo logic of putback_lru_page to
227 * avoid leaving evictable page in unevictable list.
229 * In case of success, @page is added to @pvec and @pgrescued is incremented
230 * in case that the page was previously unevictable. @page is also unlocked.
232 static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
233 int *pgrescued)
235 VM_BUG_ON_PAGE(PageLRU(page), page);
236 VM_BUG_ON_PAGE(!PageLocked(page), page);
238 if (page_mapcount(page) <= 1 && page_evictable(page)) {
239 pagevec_add(pvec, page);
240 if (TestClearPageUnevictable(page))
241 (*pgrescued)++;
242 unlock_page(page);
243 return true;
246 return false;
250 * Putback multiple evictable pages to the LRU
252 * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
253 * the pages might have meanwhile become unevictable but that is OK.
255 static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
257 count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
259 *__pagevec_lru_add() calls release_pages() so we don't call
260 * put_page() explicitly
262 __pagevec_lru_add(pvec);
263 count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
267 * Munlock a batch of pages from the same zone
269 * The work is split to two main phases. First phase clears the Mlocked flag
270 * and attempts to isolate the pages, all under a single zone lru lock.
271 * The second phase finishes the munlock only for pages where isolation
272 * succeeded.
274 * Note that the pagevec may be modified during the process.
276 static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
278 int i;
279 int nr = pagevec_count(pvec);
280 int delta_munlocked = -nr;
281 struct pagevec pvec_putback;
282 int pgrescued = 0;
284 pagevec_init(&pvec_putback, 0);
286 /* Phase 1: page isolation */
287 spin_lock_irq(&zone->lru_lock);
288 for (i = 0; i < nr; i++) {
289 struct page *page = pvec->pages[i];
291 if (TestClearPageMlocked(page)) {
293 * We already have pin from follow_page_mask()
294 * so we can spare the get_page() here.
296 if (__munlock_isolate_lru_page(page, false))
297 continue;
298 else
299 __munlock_isolation_failed(page);
300 } else {
301 delta_munlocked++;
305 * We won't be munlocking this page in the next phase
306 * but we still need to release the follow_page_mask()
307 * pin. We cannot do it under lru_lock however. If it's
308 * the last pin, __page_cache_release() would deadlock.
310 pagevec_add(&pvec_putback, pvec->pages[i]);
311 pvec->pages[i] = NULL;
313 __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
314 spin_unlock_irq(&zone->lru_lock);
316 /* Now we can release pins of pages that we are not munlocking */
317 pagevec_release(&pvec_putback);
319 /* Phase 2: page munlock */
320 for (i = 0; i < nr; i++) {
321 struct page *page = pvec->pages[i];
323 if (page) {
324 lock_page(page);
325 if (!__putback_lru_fast_prepare(page, &pvec_putback,
326 &pgrescued)) {
328 * Slow path. We don't want to lose the last
329 * pin before unlock_page()
331 get_page(page); /* for putback_lru_page() */
332 __munlock_isolated_page(page);
333 unlock_page(page);
334 put_page(page); /* from follow_page_mask() */
340 * Phase 3: page putback for pages that qualified for the fast path
341 * This will also call put_page() to return pin from follow_page_mask()
343 if (pagevec_count(&pvec_putback))
344 __putback_lru_fast(&pvec_putback, pgrescued);
348 * Fill up pagevec for __munlock_pagevec using pte walk
350 * The function expects that the struct page corresponding to @start address is
351 * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
353 * The rest of @pvec is filled by subsequent pages within the same pmd and same
354 * zone, as long as the pte's are present and vm_normal_page() succeeds. These
355 * pages also get pinned.
357 * Returns the address of the next page that should be scanned. This equals
358 * @start + PAGE_SIZE when no page could be added by the pte walk.
360 static unsigned long __munlock_pagevec_fill(struct pagevec *pvec,
361 struct vm_area_struct *vma, int zoneid, unsigned long start,
362 unsigned long end)
364 pte_t *pte;
365 spinlock_t *ptl;
368 * Initialize pte walk starting at the already pinned page where we
369 * are sure that there is a pte, as it was pinned under the same
370 * mmap_sem write op.
372 pte = get_locked_pte(vma->vm_mm, start, &ptl);
373 /* Make sure we do not cross the page table boundary */
374 end = pgd_addr_end(start, end);
375 end = pud_addr_end(start, end);
376 end = pmd_addr_end(start, end);
378 /* The page next to the pinned page is the first we will try to get */
379 start += PAGE_SIZE;
380 while (start < end) {
381 struct page *page = NULL;
382 pte++;
383 if (pte_present(*pte))
384 page = vm_normal_page(vma, start, *pte);
386 * Break if page could not be obtained or the page's node+zone does not
387 * match
389 if (!page || page_zone_id(page) != zoneid)
390 break;
392 get_page(page);
394 * Increase the address that will be returned *before* the
395 * eventual break due to pvec becoming full by adding the page
397 start += PAGE_SIZE;
398 if (pagevec_add(pvec, page) == 0)
399 break;
401 pte_unmap_unlock(pte, ptl);
402 return start;
406 * munlock_vma_pages_range() - munlock all pages in the vma range.'
407 * @vma - vma containing range to be munlock()ed.
408 * @start - start address in @vma of the range
409 * @end - end of range in @vma.
411 * For mremap(), munmap() and exit().
413 * Called with @vma VM_LOCKED.
415 * Returns with VM_LOCKED cleared. Callers must be prepared to
416 * deal with this.
418 * We don't save and restore VM_LOCKED here because pages are
419 * still on lru. In unmap path, pages might be scanned by reclaim
420 * and re-mlocked by try_to_{munlock|unmap} before we unmap and
421 * free them. This will result in freeing mlocked pages.
423 void munlock_vma_pages_range(struct vm_area_struct *vma,
424 unsigned long start, unsigned long end)
426 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
428 while (start < end) {
429 struct page *page = NULL;
430 unsigned int page_mask;
431 unsigned long page_increm;
432 struct pagevec pvec;
433 struct zone *zone;
434 int zoneid;
436 pagevec_init(&pvec, 0);
438 * Although FOLL_DUMP is intended for get_dump_page(),
439 * it just so happens that its special treatment of the
440 * ZERO_PAGE (returning an error instead of doing get_page)
441 * suits munlock very well (and if somehow an abnormal page
442 * has sneaked into the range, we won't oops here: great).
444 page = follow_page_mask(vma, start, FOLL_GET | FOLL_DUMP,
445 &page_mask);
447 if (page && !IS_ERR(page)) {
448 if (PageTransHuge(page)) {
449 lock_page(page);
451 * Any THP page found by follow_page_mask() may
452 * have gotten split before reaching
453 * munlock_vma_page(), so we need to recompute
454 * the page_mask here.
456 page_mask = munlock_vma_page(page);
457 unlock_page(page);
458 put_page(page); /* follow_page_mask() */
459 } else {
461 * Non-huge pages are handled in batches via
462 * pagevec. The pin from follow_page_mask()
463 * prevents them from collapsing by THP.
465 pagevec_add(&pvec, page);
466 zone = page_zone(page);
467 zoneid = page_zone_id(page);
470 * Try to fill the rest of pagevec using fast
471 * pte walk. This will also update start to
472 * the next page to process. Then munlock the
473 * pagevec.
475 start = __munlock_pagevec_fill(&pvec, vma,
476 zoneid, start, end);
477 __munlock_pagevec(&pvec, zone);
478 goto next;
481 /* It's a bug to munlock in the middle of a THP page */
482 VM_BUG_ON((start >> PAGE_SHIFT) & page_mask);
483 page_increm = 1 + page_mask;
484 start += page_increm * PAGE_SIZE;
485 next:
486 cond_resched();
491 * mlock_fixup - handle mlock[all]/munlock[all] requests.
493 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
494 * munlock is a no-op. However, for some special vmas, we go ahead and
495 * populate the ptes.
497 * For vmas that pass the filters, merge/split as appropriate.
499 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
500 unsigned long start, unsigned long end, vm_flags_t newflags)
502 struct mm_struct *mm = vma->vm_mm;
503 pgoff_t pgoff;
504 int nr_pages;
505 int ret = 0;
506 int lock = !!(newflags & VM_LOCKED);
508 if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
509 is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm))
510 /* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */
511 goto out;
513 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
514 *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
515 vma->vm_file, pgoff, vma_policy(vma),
516 vma->vm_userfaultfd_ctx);
517 if (*prev) {
518 vma = *prev;
519 goto success;
522 if (start != vma->vm_start) {
523 ret = split_vma(mm, vma, start, 1);
524 if (ret)
525 goto out;
528 if (end != vma->vm_end) {
529 ret = split_vma(mm, vma, end, 0);
530 if (ret)
531 goto out;
534 success:
536 * Keep track of amount of locked VM.
538 nr_pages = (end - start) >> PAGE_SHIFT;
539 if (!lock)
540 nr_pages = -nr_pages;
541 mm->locked_vm += nr_pages;
544 * vm_flags is protected by the mmap_sem held in write mode.
545 * It's okay if try_to_unmap_one unmaps a page just after we
546 * set VM_LOCKED, populate_vma_page_range will bring it back.
549 if (lock)
550 vma->vm_flags = newflags;
551 else
552 munlock_vma_pages_range(vma, start, end);
554 out:
555 *prev = vma;
556 return ret;
559 static int apply_vma_lock_flags(unsigned long start, size_t len,
560 vm_flags_t flags)
562 unsigned long nstart, end, tmp;
563 struct vm_area_struct * vma, * prev;
564 int error;
566 VM_BUG_ON(offset_in_page(start));
567 VM_BUG_ON(len != PAGE_ALIGN(len));
568 end = start + len;
569 if (end < start)
570 return -EINVAL;
571 if (end == start)
572 return 0;
573 vma = find_vma(current->mm, start);
574 if (!vma || vma->vm_start > start)
575 return -ENOMEM;
577 prev = vma->vm_prev;
578 if (start > vma->vm_start)
579 prev = vma;
581 for (nstart = start ; ; ) {
582 vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
584 newflags |= flags;
586 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */
587 tmp = vma->vm_end;
588 if (tmp > end)
589 tmp = end;
590 error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
591 if (error)
592 break;
593 nstart = tmp;
594 if (nstart < prev->vm_end)
595 nstart = prev->vm_end;
596 if (nstart >= end)
597 break;
599 vma = prev->vm_next;
600 if (!vma || vma->vm_start != nstart) {
601 error = -ENOMEM;
602 break;
605 return error;
608 static int do_mlock(unsigned long start, size_t len, vm_flags_t flags)
610 unsigned long locked;
611 unsigned long lock_limit;
612 int error = -ENOMEM;
614 if (!can_do_mlock())
615 return -EPERM;
617 lru_add_drain_all(); /* flush pagevec */
619 len = PAGE_ALIGN(len + (offset_in_page(start)));
620 start &= PAGE_MASK;
622 lock_limit = rlimit(RLIMIT_MEMLOCK);
623 lock_limit >>= PAGE_SHIFT;
624 locked = len >> PAGE_SHIFT;
626 down_write(&current->mm->mmap_sem);
628 locked += current->mm->locked_vm;
630 /* check against resource limits */
631 if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
632 error = apply_vma_lock_flags(start, len, flags);
634 up_write(&current->mm->mmap_sem);
635 if (error)
636 return error;
638 error = __mm_populate(start, len, 0);
639 if (error)
640 return __mlock_posix_error_return(error);
641 return 0;
644 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
646 return do_mlock(start, len, VM_LOCKED);
649 SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags)
651 vm_flags_t vm_flags = VM_LOCKED;
653 if (flags & ~MLOCK_ONFAULT)
654 return -EINVAL;
656 if (flags & MLOCK_ONFAULT)
657 vm_flags |= VM_LOCKONFAULT;
659 return do_mlock(start, len, vm_flags);
662 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
664 int ret;
666 len = PAGE_ALIGN(len + (offset_in_page(start)));
667 start &= PAGE_MASK;
669 down_write(&current->mm->mmap_sem);
670 ret = apply_vma_lock_flags(start, len, 0);
671 up_write(&current->mm->mmap_sem);
673 return ret;
677 * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall)
678 * and translate into the appropriate modifications to mm->def_flags and/or the
679 * flags for all current VMAs.
681 * There are a couple of subtleties with this. If mlockall() is called multiple
682 * times with different flags, the values do not necessarily stack. If mlockall
683 * is called once including the MCL_FUTURE flag and then a second time without
684 * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags.
686 static int apply_mlockall_flags(int flags)
688 struct vm_area_struct * vma, * prev = NULL;
689 vm_flags_t to_add = 0;
691 current->mm->def_flags &= VM_LOCKED_CLEAR_MASK;
692 if (flags & MCL_FUTURE) {
693 current->mm->def_flags |= VM_LOCKED;
695 if (flags & MCL_ONFAULT)
696 current->mm->def_flags |= VM_LOCKONFAULT;
698 if (!(flags & MCL_CURRENT))
699 goto out;
702 if (flags & MCL_CURRENT) {
703 to_add |= VM_LOCKED;
704 if (flags & MCL_ONFAULT)
705 to_add |= VM_LOCKONFAULT;
708 for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
709 vm_flags_t newflags;
711 newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
712 newflags |= to_add;
714 /* Ignore errors */
715 mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
716 cond_resched_rcu_qs();
718 out:
719 return 0;
722 SYSCALL_DEFINE1(mlockall, int, flags)
724 unsigned long lock_limit;
725 int ret;
727 if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)))
728 return -EINVAL;
730 if (!can_do_mlock())
731 return -EPERM;
733 if (flags & MCL_CURRENT)
734 lru_add_drain_all(); /* flush pagevec */
736 lock_limit = rlimit(RLIMIT_MEMLOCK);
737 lock_limit >>= PAGE_SHIFT;
739 ret = -ENOMEM;
740 down_write(&current->mm->mmap_sem);
742 if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
743 capable(CAP_IPC_LOCK))
744 ret = apply_mlockall_flags(flags);
745 up_write(&current->mm->mmap_sem);
746 if (!ret && (flags & MCL_CURRENT))
747 mm_populate(0, TASK_SIZE);
749 return ret;
752 SYSCALL_DEFINE0(munlockall)
754 int ret;
756 down_write(&current->mm->mmap_sem);
757 ret = apply_mlockall_flags(0);
758 up_write(&current->mm->mmap_sem);
759 return ret;
763 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
764 * shm segments) get accounted against the user_struct instead.
766 static DEFINE_SPINLOCK(shmlock_user_lock);
768 int user_shm_lock(size_t size, struct user_struct *user)
770 unsigned long lock_limit, locked;
771 int allowed = 0;
773 locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
774 lock_limit = rlimit(RLIMIT_MEMLOCK);
775 if (lock_limit == RLIM_INFINITY)
776 allowed = 1;
777 lock_limit >>= PAGE_SHIFT;
778 spin_lock(&shmlock_user_lock);
779 if (!allowed &&
780 locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
781 goto out;
782 get_uid(user);
783 user->locked_shm += locked;
784 allowed = 1;
785 out:
786 spin_unlock(&shmlock_user_lock);
787 return allowed;
790 void user_shm_unlock(size_t size, struct user_struct *user)
792 spin_lock(&shmlock_user_lock);
793 user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
794 spin_unlock(&shmlock_user_lock);
795 free_uid(user);