2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
23 * Pedro Roque : Fast Retransmit/Recovery.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
56 * J Hadi Salim: ECN support
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
65 #include <linux/slab.h>
66 #include <linux/module.h>
67 #include <linux/sysctl.h>
68 #include <linux/kernel.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74 #include <net/netdma.h>
76 int sysctl_tcp_timestamps __read_mostly
= 1;
77 int sysctl_tcp_window_scaling __read_mostly
= 1;
78 int sysctl_tcp_sack __read_mostly
= 1;
79 int sysctl_tcp_fack __read_mostly
= 1;
80 int sysctl_tcp_reordering __read_mostly
= TCP_FASTRETRANS_THRESH
;
81 EXPORT_SYMBOL(sysctl_tcp_reordering
);
82 int sysctl_tcp_ecn __read_mostly
= 2;
83 EXPORT_SYMBOL(sysctl_tcp_ecn
);
84 int sysctl_tcp_dsack __read_mostly
= 1;
85 int sysctl_tcp_app_win __read_mostly
= 31;
86 int sysctl_tcp_adv_win_scale __read_mostly
= 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale
);
89 int sysctl_tcp_stdurg __read_mostly
;
90 int sysctl_tcp_rfc1337 __read_mostly
;
91 int sysctl_tcp_max_orphans __read_mostly
= NR_FILE
;
92 int sysctl_tcp_frto __read_mostly
= 2;
93 int sysctl_tcp_frto_response __read_mostly
;
94 int sysctl_tcp_nometrics_save __read_mostly
;
96 int sysctl_tcp_thin_dupack __read_mostly
;
98 int sysctl_tcp_moderate_rcvbuf __read_mostly
= 1;
99 int sysctl_tcp_abc __read_mostly
;
101 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
102 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
103 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
104 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
105 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
106 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
107 #define FLAG_ECE 0x40 /* ECE in this ACK */
108 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
109 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
110 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
111 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
112 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
113 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
115 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
116 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
117 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
118 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
119 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
121 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
122 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
124 /* Adapt the MSS value used to make delayed ack decision to the
127 static void tcp_measure_rcv_mss(struct sock
*sk
, const struct sk_buff
*skb
)
129 struct inet_connection_sock
*icsk
= inet_csk(sk
);
130 const unsigned int lss
= icsk
->icsk_ack
.last_seg_size
;
133 icsk
->icsk_ack
.last_seg_size
= 0;
135 /* skb->len may jitter because of SACKs, even if peer
136 * sends good full-sized frames.
138 len
= skb_shinfo(skb
)->gso_size
? : skb
->len
;
139 if (len
>= icsk
->icsk_ack
.rcv_mss
) {
140 icsk
->icsk_ack
.rcv_mss
= len
;
142 /* Otherwise, we make more careful check taking into account,
143 * that SACKs block is variable.
145 * "len" is invariant segment length, including TCP header.
147 len
+= skb
->data
- skb_transport_header(skb
);
148 if (len
>= TCP_MSS_DEFAULT
+ sizeof(struct tcphdr
) ||
149 /* If PSH is not set, packet should be
150 * full sized, provided peer TCP is not badly broken.
151 * This observation (if it is correct 8)) allows
152 * to handle super-low mtu links fairly.
154 (len
>= TCP_MIN_MSS
+ sizeof(struct tcphdr
) &&
155 !(tcp_flag_word(tcp_hdr(skb
)) & TCP_REMNANT
))) {
156 /* Subtract also invariant (if peer is RFC compliant),
157 * tcp header plus fixed timestamp option length.
158 * Resulting "len" is MSS free of SACK jitter.
160 len
-= tcp_sk(sk
)->tcp_header_len
;
161 icsk
->icsk_ack
.last_seg_size
= len
;
163 icsk
->icsk_ack
.rcv_mss
= len
;
167 if (icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
)
168 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED2
;
169 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED
;
173 static void tcp_incr_quickack(struct sock
*sk
)
175 struct inet_connection_sock
*icsk
= inet_csk(sk
);
176 unsigned quickacks
= tcp_sk(sk
)->rcv_wnd
/ (2 * icsk
->icsk_ack
.rcv_mss
);
180 if (quickacks
> icsk
->icsk_ack
.quick
)
181 icsk
->icsk_ack
.quick
= min(quickacks
, TCP_MAX_QUICKACKS
);
184 static void tcp_enter_quickack_mode(struct sock
*sk
)
186 struct inet_connection_sock
*icsk
= inet_csk(sk
);
187 tcp_incr_quickack(sk
);
188 icsk
->icsk_ack
.pingpong
= 0;
189 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
192 /* Send ACKs quickly, if "quick" count is not exhausted
193 * and the session is not interactive.
196 static inline int tcp_in_quickack_mode(const struct sock
*sk
)
198 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
199 return icsk
->icsk_ack
.quick
&& !icsk
->icsk_ack
.pingpong
;
202 static inline void TCP_ECN_queue_cwr(struct tcp_sock
*tp
)
204 if (tp
->ecn_flags
& TCP_ECN_OK
)
205 tp
->ecn_flags
|= TCP_ECN_QUEUE_CWR
;
208 static inline void TCP_ECN_accept_cwr(struct tcp_sock
*tp
, const struct sk_buff
*skb
)
210 if (tcp_hdr(skb
)->cwr
)
211 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
214 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock
*tp
)
216 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
219 static inline void TCP_ECN_check_ce(struct tcp_sock
*tp
, const struct sk_buff
*skb
)
221 if (!(tp
->ecn_flags
& TCP_ECN_OK
))
224 switch (TCP_SKB_CB(skb
)->ip_dsfield
& INET_ECN_MASK
) {
225 case INET_ECN_NOT_ECT
:
226 /* Funny extension: if ECT is not set on a segment,
227 * and we already seen ECT on a previous segment,
228 * it is probably a retransmit.
230 if (tp
->ecn_flags
& TCP_ECN_SEEN
)
231 tcp_enter_quickack_mode((struct sock
*)tp
);
234 tp
->ecn_flags
|= TCP_ECN_DEMAND_CWR
;
237 tp
->ecn_flags
|= TCP_ECN_SEEN
;
241 static inline void TCP_ECN_rcv_synack(struct tcp_sock
*tp
, const struct tcphdr
*th
)
243 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| th
->cwr
))
244 tp
->ecn_flags
&= ~TCP_ECN_OK
;
247 static inline void TCP_ECN_rcv_syn(struct tcp_sock
*tp
, const struct tcphdr
*th
)
249 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| !th
->cwr
))
250 tp
->ecn_flags
&= ~TCP_ECN_OK
;
253 static inline int TCP_ECN_rcv_ecn_echo(const struct tcp_sock
*tp
, const struct tcphdr
*th
)
255 if (th
->ece
&& !th
->syn
&& (tp
->ecn_flags
& TCP_ECN_OK
))
260 /* Buffer size and advertised window tuning.
262 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
265 static void tcp_fixup_sndbuf(struct sock
*sk
)
267 int sndmem
= SKB_TRUESIZE(tcp_sk(sk
)->rx_opt
.mss_clamp
+ MAX_TCP_HEADER
);
269 sndmem
*= TCP_INIT_CWND
;
270 if (sk
->sk_sndbuf
< sndmem
)
271 sk
->sk_sndbuf
= min(sndmem
, sysctl_tcp_wmem
[2]);
274 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
276 * All tcp_full_space() is split to two parts: "network" buffer, allocated
277 * forward and advertised in receiver window (tp->rcv_wnd) and
278 * "application buffer", required to isolate scheduling/application
279 * latencies from network.
280 * window_clamp is maximal advertised window. It can be less than
281 * tcp_full_space(), in this case tcp_full_space() - window_clamp
282 * is reserved for "application" buffer. The less window_clamp is
283 * the smoother our behaviour from viewpoint of network, but the lower
284 * throughput and the higher sensitivity of the connection to losses. 8)
286 * rcv_ssthresh is more strict window_clamp used at "slow start"
287 * phase to predict further behaviour of this connection.
288 * It is used for two goals:
289 * - to enforce header prediction at sender, even when application
290 * requires some significant "application buffer". It is check #1.
291 * - to prevent pruning of receive queue because of misprediction
292 * of receiver window. Check #2.
294 * The scheme does not work when sender sends good segments opening
295 * window and then starts to feed us spaghetti. But it should work
296 * in common situations. Otherwise, we have to rely on queue collapsing.
299 /* Slow part of check#2. */
300 static int __tcp_grow_window(const struct sock
*sk
, const struct sk_buff
*skb
)
302 struct tcp_sock
*tp
= tcp_sk(sk
);
304 int truesize
= tcp_win_from_space(skb
->truesize
) >> 1;
305 int window
= tcp_win_from_space(sysctl_tcp_rmem
[2]) >> 1;
307 while (tp
->rcv_ssthresh
<= window
) {
308 if (truesize
<= skb
->len
)
309 return 2 * inet_csk(sk
)->icsk_ack
.rcv_mss
;
317 static void tcp_grow_window(struct sock
*sk
, const struct sk_buff
*skb
)
319 struct tcp_sock
*tp
= tcp_sk(sk
);
322 if (tp
->rcv_ssthresh
< tp
->window_clamp
&&
323 (int)tp
->rcv_ssthresh
< tcp_space(sk
) &&
324 !sk_under_memory_pressure(sk
)) {
327 /* Check #2. Increase window, if skb with such overhead
328 * will fit to rcvbuf in future.
330 if (tcp_win_from_space(skb
->truesize
) <= skb
->len
)
331 incr
= 2 * tp
->advmss
;
333 incr
= __tcp_grow_window(sk
, skb
);
336 incr
= max_t(int, incr
, 2 * skb
->len
);
337 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
+ incr
,
339 inet_csk(sk
)->icsk_ack
.quick
|= 1;
344 /* 3. Tuning rcvbuf, when connection enters established state. */
346 static void tcp_fixup_rcvbuf(struct sock
*sk
)
348 u32 mss
= tcp_sk(sk
)->advmss
;
349 u32 icwnd
= TCP_DEFAULT_INIT_RCVWND
;
352 /* Limit to 10 segments if mss <= 1460,
353 * or 14600/mss segments, with a minimum of two segments.
356 icwnd
= max_t(u32
, (1460 * TCP_DEFAULT_INIT_RCVWND
) / mss
, 2);
358 rcvmem
= SKB_TRUESIZE(mss
+ MAX_TCP_HEADER
);
359 while (tcp_win_from_space(rcvmem
) < mss
)
364 if (sk
->sk_rcvbuf
< rcvmem
)
365 sk
->sk_rcvbuf
= min(rcvmem
, sysctl_tcp_rmem
[2]);
368 /* 4. Try to fixup all. It is made immediately after connection enters
371 static void tcp_init_buffer_space(struct sock
*sk
)
373 struct tcp_sock
*tp
= tcp_sk(sk
);
376 if (!(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
))
377 tcp_fixup_rcvbuf(sk
);
378 if (!(sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
))
379 tcp_fixup_sndbuf(sk
);
381 tp
->rcvq_space
.space
= tp
->rcv_wnd
;
383 maxwin
= tcp_full_space(sk
);
385 if (tp
->window_clamp
>= maxwin
) {
386 tp
->window_clamp
= maxwin
;
388 if (sysctl_tcp_app_win
&& maxwin
> 4 * tp
->advmss
)
389 tp
->window_clamp
= max(maxwin
-
390 (maxwin
>> sysctl_tcp_app_win
),
394 /* Force reservation of one segment. */
395 if (sysctl_tcp_app_win
&&
396 tp
->window_clamp
> 2 * tp
->advmss
&&
397 tp
->window_clamp
+ tp
->advmss
> maxwin
)
398 tp
->window_clamp
= max(2 * tp
->advmss
, maxwin
- tp
->advmss
);
400 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, tp
->window_clamp
);
401 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
404 /* 5. Recalculate window clamp after socket hit its memory bounds. */
405 static void tcp_clamp_window(struct sock
*sk
)
407 struct tcp_sock
*tp
= tcp_sk(sk
);
408 struct inet_connection_sock
*icsk
= inet_csk(sk
);
410 icsk
->icsk_ack
.quick
= 0;
412 if (sk
->sk_rcvbuf
< sysctl_tcp_rmem
[2] &&
413 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
) &&
414 !sk_under_memory_pressure(sk
) &&
415 sk_memory_allocated(sk
) < sk_prot_mem_limits(sk
, 0)) {
416 sk
->sk_rcvbuf
= min(atomic_read(&sk
->sk_rmem_alloc
),
419 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
)
420 tp
->rcv_ssthresh
= min(tp
->window_clamp
, 2U * tp
->advmss
);
423 /* Initialize RCV_MSS value.
424 * RCV_MSS is an our guess about MSS used by the peer.
425 * We haven't any direct information about the MSS.
426 * It's better to underestimate the RCV_MSS rather than overestimate.
427 * Overestimations make us ACKing less frequently than needed.
428 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
430 void tcp_initialize_rcv_mss(struct sock
*sk
)
432 const struct tcp_sock
*tp
= tcp_sk(sk
);
433 unsigned int hint
= min_t(unsigned int, tp
->advmss
, tp
->mss_cache
);
435 hint
= min(hint
, tp
->rcv_wnd
/ 2);
436 hint
= min(hint
, TCP_MSS_DEFAULT
);
437 hint
= max(hint
, TCP_MIN_MSS
);
439 inet_csk(sk
)->icsk_ack
.rcv_mss
= hint
;
441 EXPORT_SYMBOL(tcp_initialize_rcv_mss
);
443 /* Receiver "autotuning" code.
445 * The algorithm for RTT estimation w/o timestamps is based on
446 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
447 * <http://public.lanl.gov/radiant/pubs.html#DRS>
449 * More detail on this code can be found at
450 * <http://staff.psc.edu/jheffner/>,
451 * though this reference is out of date. A new paper
454 static void tcp_rcv_rtt_update(struct tcp_sock
*tp
, u32 sample
, int win_dep
)
456 u32 new_sample
= tp
->rcv_rtt_est
.rtt
;
462 if (new_sample
!= 0) {
463 /* If we sample in larger samples in the non-timestamp
464 * case, we could grossly overestimate the RTT especially
465 * with chatty applications or bulk transfer apps which
466 * are stalled on filesystem I/O.
468 * Also, since we are only going for a minimum in the
469 * non-timestamp case, we do not smooth things out
470 * else with timestamps disabled convergence takes too
474 m
-= (new_sample
>> 3);
482 /* No previous measure. */
486 if (tp
->rcv_rtt_est
.rtt
!= new_sample
)
487 tp
->rcv_rtt_est
.rtt
= new_sample
;
490 static inline void tcp_rcv_rtt_measure(struct tcp_sock
*tp
)
492 if (tp
->rcv_rtt_est
.time
== 0)
494 if (before(tp
->rcv_nxt
, tp
->rcv_rtt_est
.seq
))
496 tcp_rcv_rtt_update(tp
, jiffies
- tp
->rcv_rtt_est
.time
, 1);
499 tp
->rcv_rtt_est
.seq
= tp
->rcv_nxt
+ tp
->rcv_wnd
;
500 tp
->rcv_rtt_est
.time
= tcp_time_stamp
;
503 static inline void tcp_rcv_rtt_measure_ts(struct sock
*sk
,
504 const struct sk_buff
*skb
)
506 struct tcp_sock
*tp
= tcp_sk(sk
);
507 if (tp
->rx_opt
.rcv_tsecr
&&
508 (TCP_SKB_CB(skb
)->end_seq
-
509 TCP_SKB_CB(skb
)->seq
>= inet_csk(sk
)->icsk_ack
.rcv_mss
))
510 tcp_rcv_rtt_update(tp
, tcp_time_stamp
- tp
->rx_opt
.rcv_tsecr
, 0);
514 * This function should be called every time data is copied to user space.
515 * It calculates the appropriate TCP receive buffer space.
517 void tcp_rcv_space_adjust(struct sock
*sk
)
519 struct tcp_sock
*tp
= tcp_sk(sk
);
523 if (tp
->rcvq_space
.time
== 0)
526 time
= tcp_time_stamp
- tp
->rcvq_space
.time
;
527 if (time
< (tp
->rcv_rtt_est
.rtt
>> 3) || tp
->rcv_rtt_est
.rtt
== 0)
530 space
= 2 * (tp
->copied_seq
- tp
->rcvq_space
.seq
);
532 space
= max(tp
->rcvq_space
.space
, space
);
534 if (tp
->rcvq_space
.space
!= space
) {
537 tp
->rcvq_space
.space
= space
;
539 if (sysctl_tcp_moderate_rcvbuf
&&
540 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
)) {
541 int new_clamp
= space
;
543 /* Receive space grows, normalize in order to
544 * take into account packet headers and sk_buff
545 * structure overhead.
550 rcvmem
= SKB_TRUESIZE(tp
->advmss
+ MAX_TCP_HEADER
);
551 while (tcp_win_from_space(rcvmem
) < tp
->advmss
)
554 space
= min(space
, sysctl_tcp_rmem
[2]);
555 if (space
> sk
->sk_rcvbuf
) {
556 sk
->sk_rcvbuf
= space
;
558 /* Make the window clamp follow along. */
559 tp
->window_clamp
= new_clamp
;
565 tp
->rcvq_space
.seq
= tp
->copied_seq
;
566 tp
->rcvq_space
.time
= tcp_time_stamp
;
569 /* There is something which you must keep in mind when you analyze the
570 * behavior of the tp->ato delayed ack timeout interval. When a
571 * connection starts up, we want to ack as quickly as possible. The
572 * problem is that "good" TCP's do slow start at the beginning of data
573 * transmission. The means that until we send the first few ACK's the
574 * sender will sit on his end and only queue most of his data, because
575 * he can only send snd_cwnd unacked packets at any given time. For
576 * each ACK we send, he increments snd_cwnd and transmits more of his
579 static void tcp_event_data_recv(struct sock
*sk
, struct sk_buff
*skb
)
581 struct tcp_sock
*tp
= tcp_sk(sk
);
582 struct inet_connection_sock
*icsk
= inet_csk(sk
);
585 inet_csk_schedule_ack(sk
);
587 tcp_measure_rcv_mss(sk
, skb
);
589 tcp_rcv_rtt_measure(tp
);
591 now
= tcp_time_stamp
;
593 if (!icsk
->icsk_ack
.ato
) {
594 /* The _first_ data packet received, initialize
595 * delayed ACK engine.
597 tcp_incr_quickack(sk
);
598 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
600 int m
= now
- icsk
->icsk_ack
.lrcvtime
;
602 if (m
<= TCP_ATO_MIN
/ 2) {
603 /* The fastest case is the first. */
604 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + TCP_ATO_MIN
/ 2;
605 } else if (m
< icsk
->icsk_ack
.ato
) {
606 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + m
;
607 if (icsk
->icsk_ack
.ato
> icsk
->icsk_rto
)
608 icsk
->icsk_ack
.ato
= icsk
->icsk_rto
;
609 } else if (m
> icsk
->icsk_rto
) {
610 /* Too long gap. Apparently sender failed to
611 * restart window, so that we send ACKs quickly.
613 tcp_incr_quickack(sk
);
617 icsk
->icsk_ack
.lrcvtime
= now
;
619 TCP_ECN_check_ce(tp
, skb
);
622 tcp_grow_window(sk
, skb
);
625 /* Called to compute a smoothed rtt estimate. The data fed to this
626 * routine either comes from timestamps, or from segments that were
627 * known _not_ to have been retransmitted [see Karn/Partridge
628 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
629 * piece by Van Jacobson.
630 * NOTE: the next three routines used to be one big routine.
631 * To save cycles in the RFC 1323 implementation it was better to break
632 * it up into three procedures. -- erics
634 static void tcp_rtt_estimator(struct sock
*sk
, const __u32 mrtt
)
636 struct tcp_sock
*tp
= tcp_sk(sk
);
637 long m
= mrtt
; /* RTT */
639 /* The following amusing code comes from Jacobson's
640 * article in SIGCOMM '88. Note that rtt and mdev
641 * are scaled versions of rtt and mean deviation.
642 * This is designed to be as fast as possible
643 * m stands for "measurement".
645 * On a 1990 paper the rto value is changed to:
646 * RTO = rtt + 4 * mdev
648 * Funny. This algorithm seems to be very broken.
649 * These formulae increase RTO, when it should be decreased, increase
650 * too slowly, when it should be increased quickly, decrease too quickly
651 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
652 * does not matter how to _calculate_ it. Seems, it was trap
653 * that VJ failed to avoid. 8)
658 m
-= (tp
->srtt
>> 3); /* m is now error in rtt est */
659 tp
->srtt
+= m
; /* rtt = 7/8 rtt + 1/8 new */
661 m
= -m
; /* m is now abs(error) */
662 m
-= (tp
->mdev
>> 2); /* similar update on mdev */
663 /* This is similar to one of Eifel findings.
664 * Eifel blocks mdev updates when rtt decreases.
665 * This solution is a bit different: we use finer gain
666 * for mdev in this case (alpha*beta).
667 * Like Eifel it also prevents growth of rto,
668 * but also it limits too fast rto decreases,
669 * happening in pure Eifel.
674 m
-= (tp
->mdev
>> 2); /* similar update on mdev */
676 tp
->mdev
+= m
; /* mdev = 3/4 mdev + 1/4 new */
677 if (tp
->mdev
> tp
->mdev_max
) {
678 tp
->mdev_max
= tp
->mdev
;
679 if (tp
->mdev_max
> tp
->rttvar
)
680 tp
->rttvar
= tp
->mdev_max
;
682 if (after(tp
->snd_una
, tp
->rtt_seq
)) {
683 if (tp
->mdev_max
< tp
->rttvar
)
684 tp
->rttvar
-= (tp
->rttvar
- tp
->mdev_max
) >> 2;
685 tp
->rtt_seq
= tp
->snd_nxt
;
686 tp
->mdev_max
= tcp_rto_min(sk
);
689 /* no previous measure. */
690 tp
->srtt
= m
<< 3; /* take the measured time to be rtt */
691 tp
->mdev
= m
<< 1; /* make sure rto = 3*rtt */
692 tp
->mdev_max
= tp
->rttvar
= max(tp
->mdev
, tcp_rto_min(sk
));
693 tp
->rtt_seq
= tp
->snd_nxt
;
697 /* Calculate rto without backoff. This is the second half of Van Jacobson's
698 * routine referred to above.
700 static inline void tcp_set_rto(struct sock
*sk
)
702 const struct tcp_sock
*tp
= tcp_sk(sk
);
703 /* Old crap is replaced with new one. 8)
706 * 1. If rtt variance happened to be less 50msec, it is hallucination.
707 * It cannot be less due to utterly erratic ACK generation made
708 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
709 * to do with delayed acks, because at cwnd>2 true delack timeout
710 * is invisible. Actually, Linux-2.4 also generates erratic
711 * ACKs in some circumstances.
713 inet_csk(sk
)->icsk_rto
= __tcp_set_rto(tp
);
715 /* 2. Fixups made earlier cannot be right.
716 * If we do not estimate RTO correctly without them,
717 * all the algo is pure shit and should be replaced
718 * with correct one. It is exactly, which we pretend to do.
721 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
722 * guarantees that rto is higher.
727 /* Save metrics learned by this TCP session.
728 This function is called only, when TCP finishes successfully
729 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
731 void tcp_update_metrics(struct sock
*sk
)
733 struct tcp_sock
*tp
= tcp_sk(sk
);
734 struct dst_entry
*dst
= __sk_dst_get(sk
);
736 if (sysctl_tcp_nometrics_save
)
741 if (dst
&& (dst
->flags
& DST_HOST
)) {
742 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
746 if (icsk
->icsk_backoff
|| !tp
->srtt
) {
747 /* This session failed to estimate rtt. Why?
748 * Probably, no packets returned in time.
751 if (!(dst_metric_locked(dst
, RTAX_RTT
)))
752 dst_metric_set(dst
, RTAX_RTT
, 0);
756 rtt
= dst_metric_rtt(dst
, RTAX_RTT
);
759 /* If newly calculated rtt larger than stored one,
760 * store new one. Otherwise, use EWMA. Remember,
761 * rtt overestimation is always better than underestimation.
763 if (!(dst_metric_locked(dst
, RTAX_RTT
))) {
765 set_dst_metric_rtt(dst
, RTAX_RTT
, tp
->srtt
);
767 set_dst_metric_rtt(dst
, RTAX_RTT
, rtt
- (m
>> 3));
770 if (!(dst_metric_locked(dst
, RTAX_RTTVAR
))) {
775 /* Scale deviation to rttvar fixed point */
780 var
= dst_metric_rtt(dst
, RTAX_RTTVAR
);
784 var
-= (var
- m
) >> 2;
786 set_dst_metric_rtt(dst
, RTAX_RTTVAR
, var
);
789 if (tcp_in_initial_slowstart(tp
)) {
790 /* Slow start still did not finish. */
791 if (dst_metric(dst
, RTAX_SSTHRESH
) &&
792 !dst_metric_locked(dst
, RTAX_SSTHRESH
) &&
793 (tp
->snd_cwnd
>> 1) > dst_metric(dst
, RTAX_SSTHRESH
))
794 dst_metric_set(dst
, RTAX_SSTHRESH
, tp
->snd_cwnd
>> 1);
795 if (!dst_metric_locked(dst
, RTAX_CWND
) &&
796 tp
->snd_cwnd
> dst_metric(dst
, RTAX_CWND
))
797 dst_metric_set(dst
, RTAX_CWND
, tp
->snd_cwnd
);
798 } else if (tp
->snd_cwnd
> tp
->snd_ssthresh
&&
799 icsk
->icsk_ca_state
== TCP_CA_Open
) {
800 /* Cong. avoidance phase, cwnd is reliable. */
801 if (!dst_metric_locked(dst
, RTAX_SSTHRESH
))
802 dst_metric_set(dst
, RTAX_SSTHRESH
,
803 max(tp
->snd_cwnd
>> 1, tp
->snd_ssthresh
));
804 if (!dst_metric_locked(dst
, RTAX_CWND
))
805 dst_metric_set(dst
, RTAX_CWND
,
806 (dst_metric(dst
, RTAX_CWND
) +
809 /* Else slow start did not finish, cwnd is non-sense,
810 ssthresh may be also invalid.
812 if (!dst_metric_locked(dst
, RTAX_CWND
))
813 dst_metric_set(dst
, RTAX_CWND
,
814 (dst_metric(dst
, RTAX_CWND
) +
815 tp
->snd_ssthresh
) >> 1);
816 if (dst_metric(dst
, RTAX_SSTHRESH
) &&
817 !dst_metric_locked(dst
, RTAX_SSTHRESH
) &&
818 tp
->snd_ssthresh
> dst_metric(dst
, RTAX_SSTHRESH
))
819 dst_metric_set(dst
, RTAX_SSTHRESH
, tp
->snd_ssthresh
);
822 if (!dst_metric_locked(dst
, RTAX_REORDERING
)) {
823 if (dst_metric(dst
, RTAX_REORDERING
) < tp
->reordering
&&
824 tp
->reordering
!= sysctl_tcp_reordering
)
825 dst_metric_set(dst
, RTAX_REORDERING
, tp
->reordering
);
830 __u32
tcp_init_cwnd(const struct tcp_sock
*tp
, const struct dst_entry
*dst
)
832 __u32 cwnd
= (dst
? dst_metric(dst
, RTAX_INITCWND
) : 0);
835 cwnd
= TCP_INIT_CWND
;
836 return min_t(__u32
, cwnd
, tp
->snd_cwnd_clamp
);
839 /* Set slow start threshold and cwnd not falling to slow start */
840 void tcp_enter_cwr(struct sock
*sk
, const int set_ssthresh
)
842 struct tcp_sock
*tp
= tcp_sk(sk
);
843 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
845 tp
->prior_ssthresh
= 0;
847 if (icsk
->icsk_ca_state
< TCP_CA_CWR
) {
850 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
851 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
852 tcp_packets_in_flight(tp
) + 1U);
853 tp
->snd_cwnd_cnt
= 0;
854 tp
->high_seq
= tp
->snd_nxt
;
855 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
856 TCP_ECN_queue_cwr(tp
);
858 tcp_set_ca_state(sk
, TCP_CA_CWR
);
863 * Packet counting of FACK is based on in-order assumptions, therefore TCP
864 * disables it when reordering is detected
866 static void tcp_disable_fack(struct tcp_sock
*tp
)
868 /* RFC3517 uses different metric in lost marker => reset on change */
870 tp
->lost_skb_hint
= NULL
;
871 tp
->rx_opt
.sack_ok
&= ~TCP_FACK_ENABLED
;
874 /* Take a notice that peer is sending D-SACKs */
875 static void tcp_dsack_seen(struct tcp_sock
*tp
)
877 tp
->rx_opt
.sack_ok
|= TCP_DSACK_SEEN
;
880 /* Initialize metrics on socket. */
882 static void tcp_init_metrics(struct sock
*sk
)
884 struct tcp_sock
*tp
= tcp_sk(sk
);
885 struct dst_entry
*dst
= __sk_dst_get(sk
);
892 if (dst_metric_locked(dst
, RTAX_CWND
))
893 tp
->snd_cwnd_clamp
= dst_metric(dst
, RTAX_CWND
);
894 if (dst_metric(dst
, RTAX_SSTHRESH
)) {
895 tp
->snd_ssthresh
= dst_metric(dst
, RTAX_SSTHRESH
);
896 if (tp
->snd_ssthresh
> tp
->snd_cwnd_clamp
)
897 tp
->snd_ssthresh
= tp
->snd_cwnd_clamp
;
899 /* ssthresh may have been reduced unnecessarily during.
900 * 3WHS. Restore it back to its initial default.
902 tp
->snd_ssthresh
= TCP_INFINITE_SSTHRESH
;
904 if (dst_metric(dst
, RTAX_REORDERING
) &&
905 tp
->reordering
!= dst_metric(dst
, RTAX_REORDERING
)) {
906 tcp_disable_fack(tp
);
907 tp
->reordering
= dst_metric(dst
, RTAX_REORDERING
);
910 if (dst_metric(dst
, RTAX_RTT
) == 0 || tp
->srtt
== 0)
913 /* Initial rtt is determined from SYN,SYN-ACK.
914 * The segment is small and rtt may appear much
915 * less than real one. Use per-dst memory
916 * to make it more realistic.
918 * A bit of theory. RTT is time passed after "normal" sized packet
919 * is sent until it is ACKed. In normal circumstances sending small
920 * packets force peer to delay ACKs and calculation is correct too.
921 * The algorithm is adaptive and, provided we follow specs, it
922 * NEVER underestimate RTT. BUT! If peer tries to make some clever
923 * tricks sort of "quick acks" for time long enough to decrease RTT
924 * to low value, and then abruptly stops to do it and starts to delay
925 * ACKs, wait for troubles.
927 if (dst_metric_rtt(dst
, RTAX_RTT
) > tp
->srtt
) {
928 tp
->srtt
= dst_metric_rtt(dst
, RTAX_RTT
);
929 tp
->rtt_seq
= tp
->snd_nxt
;
931 if (dst_metric_rtt(dst
, RTAX_RTTVAR
) > tp
->mdev
) {
932 tp
->mdev
= dst_metric_rtt(dst
, RTAX_RTTVAR
);
933 tp
->mdev_max
= tp
->rttvar
= max(tp
->mdev
, tcp_rto_min(sk
));
938 /* RFC2988bis: We've failed to get a valid RTT sample from
939 * 3WHS. This is most likely due to retransmission,
940 * including spurious one. Reset the RTO back to 3secs
941 * from the more aggressive 1sec to avoid more spurious
944 tp
->mdev
= tp
->mdev_max
= tp
->rttvar
= TCP_TIMEOUT_FALLBACK
;
945 inet_csk(sk
)->icsk_rto
= TCP_TIMEOUT_FALLBACK
;
947 /* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
948 * retransmitted. In light of RFC2988bis' more aggressive 1sec
949 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
950 * retransmission has occurred.
952 if (tp
->total_retrans
> 1)
955 tp
->snd_cwnd
= tcp_init_cwnd(tp
, dst
);
956 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
959 static void tcp_update_reordering(struct sock
*sk
, const int metric
,
962 struct tcp_sock
*tp
= tcp_sk(sk
);
963 if (metric
> tp
->reordering
) {
966 tp
->reordering
= min(TCP_MAX_REORDERING
, metric
);
968 /* This exciting event is worth to be remembered. 8) */
970 mib_idx
= LINUX_MIB_TCPTSREORDER
;
971 else if (tcp_is_reno(tp
))
972 mib_idx
= LINUX_MIB_TCPRENOREORDER
;
973 else if (tcp_is_fack(tp
))
974 mib_idx
= LINUX_MIB_TCPFACKREORDER
;
976 mib_idx
= LINUX_MIB_TCPSACKREORDER
;
978 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
979 #if FASTRETRANS_DEBUG > 1
980 printk(KERN_DEBUG
"Disorder%d %d %u f%u s%u rr%d\n",
981 tp
->rx_opt
.sack_ok
, inet_csk(sk
)->icsk_ca_state
,
985 tp
->undo_marker
? tp
->undo_retrans
: 0);
987 tcp_disable_fack(tp
);
991 /* This must be called before lost_out is incremented */
992 static void tcp_verify_retransmit_hint(struct tcp_sock
*tp
, struct sk_buff
*skb
)
994 if ((tp
->retransmit_skb_hint
== NULL
) ||
995 before(TCP_SKB_CB(skb
)->seq
,
996 TCP_SKB_CB(tp
->retransmit_skb_hint
)->seq
))
997 tp
->retransmit_skb_hint
= skb
;
1000 after(TCP_SKB_CB(skb
)->end_seq
, tp
->retransmit_high
))
1001 tp
->retransmit_high
= TCP_SKB_CB(skb
)->end_seq
;
1004 static void tcp_skb_mark_lost(struct tcp_sock
*tp
, struct sk_buff
*skb
)
1006 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
1007 tcp_verify_retransmit_hint(tp
, skb
);
1009 tp
->lost_out
+= tcp_skb_pcount(skb
);
1010 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1014 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock
*tp
,
1015 struct sk_buff
*skb
)
1017 tcp_verify_retransmit_hint(tp
, skb
);
1019 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
1020 tp
->lost_out
+= tcp_skb_pcount(skb
);
1021 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1025 /* This procedure tags the retransmission queue when SACKs arrive.
1027 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1028 * Packets in queue with these bits set are counted in variables
1029 * sacked_out, retrans_out and lost_out, correspondingly.
1031 * Valid combinations are:
1032 * Tag InFlight Description
1033 * 0 1 - orig segment is in flight.
1034 * S 0 - nothing flies, orig reached receiver.
1035 * L 0 - nothing flies, orig lost by net.
1036 * R 2 - both orig and retransmit are in flight.
1037 * L|R 1 - orig is lost, retransmit is in flight.
1038 * S|R 1 - orig reached receiver, retrans is still in flight.
1039 * (L|S|R is logically valid, it could occur when L|R is sacked,
1040 * but it is equivalent to plain S and code short-curcuits it to S.
1041 * L|S is logically invalid, it would mean -1 packet in flight 8))
1043 * These 6 states form finite state machine, controlled by the following events:
1044 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1045 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1046 * 3. Loss detection event of two flavors:
1047 * A. Scoreboard estimator decided the packet is lost.
1048 * A'. Reno "three dupacks" marks head of queue lost.
1049 * A''. Its FACK modification, head until snd.fack is lost.
1050 * B. SACK arrives sacking SND.NXT at the moment, when the
1051 * segment was retransmitted.
1052 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1054 * It is pleasant to note, that state diagram turns out to be commutative,
1055 * so that we are allowed not to be bothered by order of our actions,
1056 * when multiple events arrive simultaneously. (see the function below).
1058 * Reordering detection.
1059 * --------------------
1060 * Reordering metric is maximal distance, which a packet can be displaced
1061 * in packet stream. With SACKs we can estimate it:
1063 * 1. SACK fills old hole and the corresponding segment was not
1064 * ever retransmitted -> reordering. Alas, we cannot use it
1065 * when segment was retransmitted.
1066 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1067 * for retransmitted and already SACKed segment -> reordering..
1068 * Both of these heuristics are not used in Loss state, when we cannot
1069 * account for retransmits accurately.
1071 * SACK block validation.
1072 * ----------------------
1074 * SACK block range validation checks that the received SACK block fits to
1075 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1076 * Note that SND.UNA is not included to the range though being valid because
1077 * it means that the receiver is rather inconsistent with itself reporting
1078 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1079 * perfectly valid, however, in light of RFC2018 which explicitly states
1080 * that "SACK block MUST reflect the newest segment. Even if the newest
1081 * segment is going to be discarded ...", not that it looks very clever
1082 * in case of head skb. Due to potentional receiver driven attacks, we
1083 * choose to avoid immediate execution of a walk in write queue due to
1084 * reneging and defer head skb's loss recovery to standard loss recovery
1085 * procedure that will eventually trigger (nothing forbids us doing this).
1087 * Implements also blockage to start_seq wrap-around. Problem lies in the
1088 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1089 * there's no guarantee that it will be before snd_nxt (n). The problem
1090 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1093 * <- outs wnd -> <- wrapzone ->
1094 * u e n u_w e_w s n_w
1096 * |<------------+------+----- TCP seqno space --------------+---------->|
1097 * ...-- <2^31 ->| |<--------...
1098 * ...---- >2^31 ------>| |<--------...
1100 * Current code wouldn't be vulnerable but it's better still to discard such
1101 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1102 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1103 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1104 * equal to the ideal case (infinite seqno space without wrap caused issues).
1106 * With D-SACK the lower bound is extended to cover sequence space below
1107 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1108 * again, D-SACK block must not to go across snd_una (for the same reason as
1109 * for the normal SACK blocks, explained above). But there all simplicity
1110 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1111 * fully below undo_marker they do not affect behavior in anyway and can
1112 * therefore be safely ignored. In rare cases (which are more or less
1113 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1114 * fragmentation and packet reordering past skb's retransmission. To consider
1115 * them correctly, the acceptable range must be extended even more though
1116 * the exact amount is rather hard to quantify. However, tp->max_window can
1117 * be used as an exaggerated estimate.
1119 static int tcp_is_sackblock_valid(struct tcp_sock
*tp
, int is_dsack
,
1120 u32 start_seq
, u32 end_seq
)
1122 /* Too far in future, or reversed (interpretation is ambiguous) */
1123 if (after(end_seq
, tp
->snd_nxt
) || !before(start_seq
, end_seq
))
1126 /* Nasty start_seq wrap-around check (see comments above) */
1127 if (!before(start_seq
, tp
->snd_nxt
))
1130 /* In outstanding window? ...This is valid exit for D-SACKs too.
1131 * start_seq == snd_una is non-sensical (see comments above)
1133 if (after(start_seq
, tp
->snd_una
))
1136 if (!is_dsack
|| !tp
->undo_marker
)
1139 /* ...Then it's D-SACK, and must reside below snd_una completely */
1140 if (after(end_seq
, tp
->snd_una
))
1143 if (!before(start_seq
, tp
->undo_marker
))
1147 if (!after(end_seq
, tp
->undo_marker
))
1150 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1151 * start_seq < undo_marker and end_seq >= undo_marker.
1153 return !before(start_seq
, end_seq
- tp
->max_window
);
1156 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1157 * Event "B". Later note: FACK people cheated me again 8), we have to account
1158 * for reordering! Ugly, but should help.
1160 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1161 * less than what is now known to be received by the other end (derived from
1162 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1163 * retransmitted skbs to avoid some costly processing per ACKs.
1165 static void tcp_mark_lost_retrans(struct sock
*sk
)
1167 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1168 struct tcp_sock
*tp
= tcp_sk(sk
);
1169 struct sk_buff
*skb
;
1171 u32 new_low_seq
= tp
->snd_nxt
;
1172 u32 received_upto
= tcp_highest_sack_seq(tp
);
1174 if (!tcp_is_fack(tp
) || !tp
->retrans_out
||
1175 !after(received_upto
, tp
->lost_retrans_low
) ||
1176 icsk
->icsk_ca_state
!= TCP_CA_Recovery
)
1179 tcp_for_write_queue(skb
, sk
) {
1180 u32 ack_seq
= TCP_SKB_CB(skb
)->ack_seq
;
1182 if (skb
== tcp_send_head(sk
))
1184 if (cnt
== tp
->retrans_out
)
1186 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1189 if (!(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
))
1192 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1193 * constraint here (see above) but figuring out that at
1194 * least tp->reordering SACK blocks reside between ack_seq
1195 * and received_upto is not easy task to do cheaply with
1196 * the available datastructures.
1198 * Whether FACK should check here for tp->reordering segs
1199 * in-between one could argue for either way (it would be
1200 * rather simple to implement as we could count fack_count
1201 * during the walk and do tp->fackets_out - fack_count).
1203 if (after(received_upto
, ack_seq
)) {
1204 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
1205 tp
->retrans_out
-= tcp_skb_pcount(skb
);
1207 tcp_skb_mark_lost_uncond_verify(tp
, skb
);
1208 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPLOSTRETRANSMIT
);
1210 if (before(ack_seq
, new_low_seq
))
1211 new_low_seq
= ack_seq
;
1212 cnt
+= tcp_skb_pcount(skb
);
1216 if (tp
->retrans_out
)
1217 tp
->lost_retrans_low
= new_low_seq
;
1220 static int tcp_check_dsack(struct sock
*sk
, const struct sk_buff
*ack_skb
,
1221 struct tcp_sack_block_wire
*sp
, int num_sacks
,
1224 struct tcp_sock
*tp
= tcp_sk(sk
);
1225 u32 start_seq_0
= get_unaligned_be32(&sp
[0].start_seq
);
1226 u32 end_seq_0
= get_unaligned_be32(&sp
[0].end_seq
);
1229 if (before(start_seq_0
, TCP_SKB_CB(ack_skb
)->ack_seq
)) {
1232 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPDSACKRECV
);
1233 } else if (num_sacks
> 1) {
1234 u32 end_seq_1
= get_unaligned_be32(&sp
[1].end_seq
);
1235 u32 start_seq_1
= get_unaligned_be32(&sp
[1].start_seq
);
1237 if (!after(end_seq_0
, end_seq_1
) &&
1238 !before(start_seq_0
, start_seq_1
)) {
1241 NET_INC_STATS_BH(sock_net(sk
),
1242 LINUX_MIB_TCPDSACKOFORECV
);
1246 /* D-SACK for already forgotten data... Do dumb counting. */
1247 if (dup_sack
&& tp
->undo_marker
&& tp
->undo_retrans
&&
1248 !after(end_seq_0
, prior_snd_una
) &&
1249 after(end_seq_0
, tp
->undo_marker
))
1255 struct tcp_sacktag_state
{
1261 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1262 * the incoming SACK may not exactly match but we can find smaller MSS
1263 * aligned portion of it that matches. Therefore we might need to fragment
1264 * which may fail and creates some hassle (caller must handle error case
1267 * FIXME: this could be merged to shift decision code
1269 static int tcp_match_skb_to_sack(struct sock
*sk
, struct sk_buff
*skb
,
1270 u32 start_seq
, u32 end_seq
)
1273 unsigned int pkt_len
;
1276 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1277 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1279 if (tcp_skb_pcount(skb
) > 1 && !in_sack
&&
1280 after(TCP_SKB_CB(skb
)->end_seq
, start_seq
)) {
1281 mss
= tcp_skb_mss(skb
);
1282 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1285 pkt_len
= start_seq
- TCP_SKB_CB(skb
)->seq
;
1289 pkt_len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1294 /* Round if necessary so that SACKs cover only full MSSes
1295 * and/or the remaining small portion (if present)
1297 if (pkt_len
> mss
) {
1298 unsigned int new_len
= (pkt_len
/ mss
) * mss
;
1299 if (!in_sack
&& new_len
< pkt_len
) {
1301 if (new_len
> skb
->len
)
1306 err
= tcp_fragment(sk
, skb
, pkt_len
, mss
);
1314 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1315 static u8
tcp_sacktag_one(struct sock
*sk
,
1316 struct tcp_sacktag_state
*state
, u8 sacked
,
1317 u32 start_seq
, u32 end_seq
,
1318 int dup_sack
, int pcount
)
1320 struct tcp_sock
*tp
= tcp_sk(sk
);
1321 int fack_count
= state
->fack_count
;
1323 /* Account D-SACK for retransmitted packet. */
1324 if (dup_sack
&& (sacked
& TCPCB_RETRANS
)) {
1325 if (tp
->undo_marker
&& tp
->undo_retrans
&&
1326 after(end_seq
, tp
->undo_marker
))
1328 if (sacked
& TCPCB_SACKED_ACKED
)
1329 state
->reord
= min(fack_count
, state
->reord
);
1332 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1333 if (!after(end_seq
, tp
->snd_una
))
1336 if (!(sacked
& TCPCB_SACKED_ACKED
)) {
1337 if (sacked
& TCPCB_SACKED_RETRANS
) {
1338 /* If the segment is not tagged as lost,
1339 * we do not clear RETRANS, believing
1340 * that retransmission is still in flight.
1342 if (sacked
& TCPCB_LOST
) {
1343 sacked
&= ~(TCPCB_LOST
|TCPCB_SACKED_RETRANS
);
1344 tp
->lost_out
-= pcount
;
1345 tp
->retrans_out
-= pcount
;
1348 if (!(sacked
& TCPCB_RETRANS
)) {
1349 /* New sack for not retransmitted frame,
1350 * which was in hole. It is reordering.
1352 if (before(start_seq
,
1353 tcp_highest_sack_seq(tp
)))
1354 state
->reord
= min(fack_count
,
1357 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1358 if (!after(end_seq
, tp
->frto_highmark
))
1359 state
->flag
|= FLAG_ONLY_ORIG_SACKED
;
1362 if (sacked
& TCPCB_LOST
) {
1363 sacked
&= ~TCPCB_LOST
;
1364 tp
->lost_out
-= pcount
;
1368 sacked
|= TCPCB_SACKED_ACKED
;
1369 state
->flag
|= FLAG_DATA_SACKED
;
1370 tp
->sacked_out
+= pcount
;
1372 fack_count
+= pcount
;
1374 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1375 if (!tcp_is_fack(tp
) && (tp
->lost_skb_hint
!= NULL
) &&
1376 before(start_seq
, TCP_SKB_CB(tp
->lost_skb_hint
)->seq
))
1377 tp
->lost_cnt_hint
+= pcount
;
1379 if (fack_count
> tp
->fackets_out
)
1380 tp
->fackets_out
= fack_count
;
1383 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1384 * frames and clear it. undo_retrans is decreased above, L|R frames
1385 * are accounted above as well.
1387 if (dup_sack
&& (sacked
& TCPCB_SACKED_RETRANS
)) {
1388 sacked
&= ~TCPCB_SACKED_RETRANS
;
1389 tp
->retrans_out
-= pcount
;
1395 /* Shift newly-SACKed bytes from this skb to the immediately previous
1396 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1398 static int tcp_shifted_skb(struct sock
*sk
, struct sk_buff
*skb
,
1399 struct tcp_sacktag_state
*state
,
1400 unsigned int pcount
, int shifted
, int mss
,
1403 struct tcp_sock
*tp
= tcp_sk(sk
);
1404 struct sk_buff
*prev
= tcp_write_queue_prev(sk
, skb
);
1405 u32 start_seq
= TCP_SKB_CB(skb
)->seq
; /* start of newly-SACKed */
1406 u32 end_seq
= start_seq
+ shifted
; /* end of newly-SACKed */
1410 /* Adjust counters and hints for the newly sacked sequence
1411 * range but discard the return value since prev is already
1412 * marked. We must tag the range first because the seq
1413 * advancement below implicitly advances
1414 * tcp_highest_sack_seq() when skb is highest_sack.
1416 tcp_sacktag_one(sk
, state
, TCP_SKB_CB(skb
)->sacked
,
1417 start_seq
, end_seq
, dup_sack
, pcount
);
1419 if (skb
== tp
->lost_skb_hint
)
1420 tp
->lost_cnt_hint
+= pcount
;
1422 TCP_SKB_CB(prev
)->end_seq
+= shifted
;
1423 TCP_SKB_CB(skb
)->seq
+= shifted
;
1425 skb_shinfo(prev
)->gso_segs
+= pcount
;
1426 BUG_ON(skb_shinfo(skb
)->gso_segs
< pcount
);
1427 skb_shinfo(skb
)->gso_segs
-= pcount
;
1429 /* When we're adding to gso_segs == 1, gso_size will be zero,
1430 * in theory this shouldn't be necessary but as long as DSACK
1431 * code can come after this skb later on it's better to keep
1432 * setting gso_size to something.
1434 if (!skb_shinfo(prev
)->gso_size
) {
1435 skb_shinfo(prev
)->gso_size
= mss
;
1436 skb_shinfo(prev
)->gso_type
= sk
->sk_gso_type
;
1439 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1440 if (skb_shinfo(skb
)->gso_segs
<= 1) {
1441 skb_shinfo(skb
)->gso_size
= 0;
1442 skb_shinfo(skb
)->gso_type
= 0;
1445 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1446 TCP_SKB_CB(prev
)->sacked
|= (TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
);
1449 BUG_ON(!tcp_skb_pcount(skb
));
1450 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_SACKSHIFTED
);
1454 /* Whole SKB was eaten :-) */
1456 if (skb
== tp
->retransmit_skb_hint
)
1457 tp
->retransmit_skb_hint
= prev
;
1458 if (skb
== tp
->scoreboard_skb_hint
)
1459 tp
->scoreboard_skb_hint
= prev
;
1460 if (skb
== tp
->lost_skb_hint
) {
1461 tp
->lost_skb_hint
= prev
;
1462 tp
->lost_cnt_hint
-= tcp_skb_pcount(prev
);
1465 TCP_SKB_CB(skb
)->tcp_flags
|= TCP_SKB_CB(prev
)->tcp_flags
;
1466 if (skb
== tcp_highest_sack(sk
))
1467 tcp_advance_highest_sack(sk
, skb
);
1469 tcp_unlink_write_queue(skb
, sk
);
1470 sk_wmem_free_skb(sk
, skb
);
1472 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_SACKMERGED
);
1477 /* I wish gso_size would have a bit more sane initialization than
1478 * something-or-zero which complicates things
1480 static int tcp_skb_seglen(const struct sk_buff
*skb
)
1482 return tcp_skb_pcount(skb
) == 1 ? skb
->len
: tcp_skb_mss(skb
);
1485 /* Shifting pages past head area doesn't work */
1486 static int skb_can_shift(const struct sk_buff
*skb
)
1488 return !skb_headlen(skb
) && skb_is_nonlinear(skb
);
1491 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1494 static struct sk_buff
*tcp_shift_skb_data(struct sock
*sk
, struct sk_buff
*skb
,
1495 struct tcp_sacktag_state
*state
,
1496 u32 start_seq
, u32 end_seq
,
1499 struct tcp_sock
*tp
= tcp_sk(sk
);
1500 struct sk_buff
*prev
;
1506 if (!sk_can_gso(sk
))
1509 /* Normally R but no L won't result in plain S */
1511 (TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_RETRANS
)) == TCPCB_SACKED_RETRANS
)
1513 if (!skb_can_shift(skb
))
1515 /* This frame is about to be dropped (was ACKed). */
1516 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1519 /* Can only happen with delayed DSACK + discard craziness */
1520 if (unlikely(skb
== tcp_write_queue_head(sk
)))
1522 prev
= tcp_write_queue_prev(sk
, skb
);
1524 if ((TCP_SKB_CB(prev
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
)
1527 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1528 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1532 pcount
= tcp_skb_pcount(skb
);
1533 mss
= tcp_skb_seglen(skb
);
1535 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1536 * drop this restriction as unnecessary
1538 if (mss
!= tcp_skb_seglen(prev
))
1541 if (!after(TCP_SKB_CB(skb
)->end_seq
, start_seq
))
1543 /* CHECKME: This is non-MSS split case only?, this will
1544 * cause skipped skbs due to advancing loop btw, original
1545 * has that feature too
1547 if (tcp_skb_pcount(skb
) <= 1)
1550 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1552 /* TODO: head merge to next could be attempted here
1553 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1554 * though it might not be worth of the additional hassle
1556 * ...we can probably just fallback to what was done
1557 * previously. We could try merging non-SACKed ones
1558 * as well but it probably isn't going to buy off
1559 * because later SACKs might again split them, and
1560 * it would make skb timestamp tracking considerably
1566 len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1568 BUG_ON(len
> skb
->len
);
1570 /* MSS boundaries should be honoured or else pcount will
1571 * severely break even though it makes things bit trickier.
1572 * Optimize common case to avoid most of the divides
1574 mss
= tcp_skb_mss(skb
);
1576 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1577 * drop this restriction as unnecessary
1579 if (mss
!= tcp_skb_seglen(prev
))
1584 } else if (len
< mss
) {
1592 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1593 if (!after(TCP_SKB_CB(skb
)->seq
+ len
, tp
->snd_una
))
1596 if (!skb_shift(prev
, skb
, len
))
1598 if (!tcp_shifted_skb(sk
, skb
, state
, pcount
, len
, mss
, dup_sack
))
1601 /* Hole filled allows collapsing with the next as well, this is very
1602 * useful when hole on every nth skb pattern happens
1604 if (prev
== tcp_write_queue_tail(sk
))
1606 skb
= tcp_write_queue_next(sk
, prev
);
1608 if (!skb_can_shift(skb
) ||
1609 (skb
== tcp_send_head(sk
)) ||
1610 ((TCP_SKB_CB(skb
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
) ||
1611 (mss
!= tcp_skb_seglen(skb
)))
1615 if (skb_shift(prev
, skb
, len
)) {
1616 pcount
+= tcp_skb_pcount(skb
);
1617 tcp_shifted_skb(sk
, skb
, state
, tcp_skb_pcount(skb
), len
, mss
, 0);
1621 state
->fack_count
+= pcount
;
1628 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_SACKSHIFTFALLBACK
);
1632 static struct sk_buff
*tcp_sacktag_walk(struct sk_buff
*skb
, struct sock
*sk
,
1633 struct tcp_sack_block
*next_dup
,
1634 struct tcp_sacktag_state
*state
,
1635 u32 start_seq
, u32 end_seq
,
1638 struct tcp_sock
*tp
= tcp_sk(sk
);
1639 struct sk_buff
*tmp
;
1641 tcp_for_write_queue_from(skb
, sk
) {
1643 int dup_sack
= dup_sack_in
;
1645 if (skb
== tcp_send_head(sk
))
1648 /* queue is in-order => we can short-circuit the walk early */
1649 if (!before(TCP_SKB_CB(skb
)->seq
, end_seq
))
1652 if ((next_dup
!= NULL
) &&
1653 before(TCP_SKB_CB(skb
)->seq
, next_dup
->end_seq
)) {
1654 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1655 next_dup
->start_seq
,
1661 /* skb reference here is a bit tricky to get right, since
1662 * shifting can eat and free both this skb and the next,
1663 * so not even _safe variant of the loop is enough.
1666 tmp
= tcp_shift_skb_data(sk
, skb
, state
,
1667 start_seq
, end_seq
, dup_sack
);
1676 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1682 if (unlikely(in_sack
< 0))
1686 TCP_SKB_CB(skb
)->sacked
=
1689 TCP_SKB_CB(skb
)->sacked
,
1690 TCP_SKB_CB(skb
)->seq
,
1691 TCP_SKB_CB(skb
)->end_seq
,
1693 tcp_skb_pcount(skb
));
1695 if (!before(TCP_SKB_CB(skb
)->seq
,
1696 tcp_highest_sack_seq(tp
)))
1697 tcp_advance_highest_sack(sk
, skb
);
1700 state
->fack_count
+= tcp_skb_pcount(skb
);
1705 /* Avoid all extra work that is being done by sacktag while walking in
1708 static struct sk_buff
*tcp_sacktag_skip(struct sk_buff
*skb
, struct sock
*sk
,
1709 struct tcp_sacktag_state
*state
,
1712 tcp_for_write_queue_from(skb
, sk
) {
1713 if (skb
== tcp_send_head(sk
))
1716 if (after(TCP_SKB_CB(skb
)->end_seq
, skip_to_seq
))
1719 state
->fack_count
+= tcp_skb_pcount(skb
);
1724 static struct sk_buff
*tcp_maybe_skipping_dsack(struct sk_buff
*skb
,
1726 struct tcp_sack_block
*next_dup
,
1727 struct tcp_sacktag_state
*state
,
1730 if (next_dup
== NULL
)
1733 if (before(next_dup
->start_seq
, skip_to_seq
)) {
1734 skb
= tcp_sacktag_skip(skb
, sk
, state
, next_dup
->start_seq
);
1735 skb
= tcp_sacktag_walk(skb
, sk
, NULL
, state
,
1736 next_dup
->start_seq
, next_dup
->end_seq
,
1743 static int tcp_sack_cache_ok(const struct tcp_sock
*tp
, const struct tcp_sack_block
*cache
)
1745 return cache
< tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1749 tcp_sacktag_write_queue(struct sock
*sk
, const struct sk_buff
*ack_skb
,
1752 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1753 struct tcp_sock
*tp
= tcp_sk(sk
);
1754 const unsigned char *ptr
= (skb_transport_header(ack_skb
) +
1755 TCP_SKB_CB(ack_skb
)->sacked
);
1756 struct tcp_sack_block_wire
*sp_wire
= (struct tcp_sack_block_wire
*)(ptr
+2);
1757 struct tcp_sack_block sp
[TCP_NUM_SACKS
];
1758 struct tcp_sack_block
*cache
;
1759 struct tcp_sacktag_state state
;
1760 struct sk_buff
*skb
;
1761 int num_sacks
= min(TCP_NUM_SACKS
, (ptr
[1] - TCPOLEN_SACK_BASE
) >> 3);
1763 int found_dup_sack
= 0;
1765 int first_sack_index
;
1768 state
.reord
= tp
->packets_out
;
1770 if (!tp
->sacked_out
) {
1771 if (WARN_ON(tp
->fackets_out
))
1772 tp
->fackets_out
= 0;
1773 tcp_highest_sack_reset(sk
);
1776 found_dup_sack
= tcp_check_dsack(sk
, ack_skb
, sp_wire
,
1777 num_sacks
, prior_snd_una
);
1779 state
.flag
|= FLAG_DSACKING_ACK
;
1781 /* Eliminate too old ACKs, but take into
1782 * account more or less fresh ones, they can
1783 * contain valid SACK info.
1785 if (before(TCP_SKB_CB(ack_skb
)->ack_seq
, prior_snd_una
- tp
->max_window
))
1788 if (!tp
->packets_out
)
1792 first_sack_index
= 0;
1793 for (i
= 0; i
< num_sacks
; i
++) {
1794 int dup_sack
= !i
&& found_dup_sack
;
1796 sp
[used_sacks
].start_seq
= get_unaligned_be32(&sp_wire
[i
].start_seq
);
1797 sp
[used_sacks
].end_seq
= get_unaligned_be32(&sp_wire
[i
].end_seq
);
1799 if (!tcp_is_sackblock_valid(tp
, dup_sack
,
1800 sp
[used_sacks
].start_seq
,
1801 sp
[used_sacks
].end_seq
)) {
1805 if (!tp
->undo_marker
)
1806 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDNOUNDO
;
1808 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDOLD
;
1810 /* Don't count olds caused by ACK reordering */
1811 if ((TCP_SKB_CB(ack_skb
)->ack_seq
!= tp
->snd_una
) &&
1812 !after(sp
[used_sacks
].end_seq
, tp
->snd_una
))
1814 mib_idx
= LINUX_MIB_TCPSACKDISCARD
;
1817 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
1819 first_sack_index
= -1;
1823 /* Ignore very old stuff early */
1824 if (!after(sp
[used_sacks
].end_seq
, prior_snd_una
))
1830 /* order SACK blocks to allow in order walk of the retrans queue */
1831 for (i
= used_sacks
- 1; i
> 0; i
--) {
1832 for (j
= 0; j
< i
; j
++) {
1833 if (after(sp
[j
].start_seq
, sp
[j
+ 1].start_seq
)) {
1834 swap(sp
[j
], sp
[j
+ 1]);
1836 /* Track where the first SACK block goes to */
1837 if (j
== first_sack_index
)
1838 first_sack_index
= j
+ 1;
1843 skb
= tcp_write_queue_head(sk
);
1844 state
.fack_count
= 0;
1847 if (!tp
->sacked_out
) {
1848 /* It's already past, so skip checking against it */
1849 cache
= tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1851 cache
= tp
->recv_sack_cache
;
1852 /* Skip empty blocks in at head of the cache */
1853 while (tcp_sack_cache_ok(tp
, cache
) && !cache
->start_seq
&&
1858 while (i
< used_sacks
) {
1859 u32 start_seq
= sp
[i
].start_seq
;
1860 u32 end_seq
= sp
[i
].end_seq
;
1861 int dup_sack
= (found_dup_sack
&& (i
== first_sack_index
));
1862 struct tcp_sack_block
*next_dup
= NULL
;
1864 if (found_dup_sack
&& ((i
+ 1) == first_sack_index
))
1865 next_dup
= &sp
[i
+ 1];
1867 /* Skip too early cached blocks */
1868 while (tcp_sack_cache_ok(tp
, cache
) &&
1869 !before(start_seq
, cache
->end_seq
))
1872 /* Can skip some work by looking recv_sack_cache? */
1873 if (tcp_sack_cache_ok(tp
, cache
) && !dup_sack
&&
1874 after(end_seq
, cache
->start_seq
)) {
1877 if (before(start_seq
, cache
->start_seq
)) {
1878 skb
= tcp_sacktag_skip(skb
, sk
, &state
,
1880 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
,
1887 /* Rest of the block already fully processed? */
1888 if (!after(end_seq
, cache
->end_seq
))
1891 skb
= tcp_maybe_skipping_dsack(skb
, sk
, next_dup
,
1895 /* ...tail remains todo... */
1896 if (tcp_highest_sack_seq(tp
) == cache
->end_seq
) {
1897 /* ...but better entrypoint exists! */
1898 skb
= tcp_highest_sack(sk
);
1901 state
.fack_count
= tp
->fackets_out
;
1906 skb
= tcp_sacktag_skip(skb
, sk
, &state
, cache
->end_seq
);
1907 /* Check overlap against next cached too (past this one already) */
1912 if (!before(start_seq
, tcp_highest_sack_seq(tp
))) {
1913 skb
= tcp_highest_sack(sk
);
1916 state
.fack_count
= tp
->fackets_out
;
1918 skb
= tcp_sacktag_skip(skb
, sk
, &state
, start_seq
);
1921 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
, &state
,
1922 start_seq
, end_seq
, dup_sack
);
1925 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1926 * due to in-order walk
1928 if (after(end_seq
, tp
->frto_highmark
))
1929 state
.flag
&= ~FLAG_ONLY_ORIG_SACKED
;
1934 /* Clear the head of the cache sack blocks so we can skip it next time */
1935 for (i
= 0; i
< ARRAY_SIZE(tp
->recv_sack_cache
) - used_sacks
; i
++) {
1936 tp
->recv_sack_cache
[i
].start_seq
= 0;
1937 tp
->recv_sack_cache
[i
].end_seq
= 0;
1939 for (j
= 0; j
< used_sacks
; j
++)
1940 tp
->recv_sack_cache
[i
++] = sp
[j
];
1942 tcp_mark_lost_retrans(sk
);
1944 tcp_verify_left_out(tp
);
1946 if ((state
.reord
< tp
->fackets_out
) &&
1947 ((icsk
->icsk_ca_state
!= TCP_CA_Loss
) || tp
->undo_marker
) &&
1948 (!tp
->frto_highmark
|| after(tp
->snd_una
, tp
->frto_highmark
)))
1949 tcp_update_reordering(sk
, tp
->fackets_out
- state
.reord
, 0);
1953 #if FASTRETRANS_DEBUG > 0
1954 WARN_ON((int)tp
->sacked_out
< 0);
1955 WARN_ON((int)tp
->lost_out
< 0);
1956 WARN_ON((int)tp
->retrans_out
< 0);
1957 WARN_ON((int)tcp_packets_in_flight(tp
) < 0);
1962 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1963 * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1965 static int tcp_limit_reno_sacked(struct tcp_sock
*tp
)
1969 holes
= max(tp
->lost_out
, 1U);
1970 holes
= min(holes
, tp
->packets_out
);
1972 if ((tp
->sacked_out
+ holes
) > tp
->packets_out
) {
1973 tp
->sacked_out
= tp
->packets_out
- holes
;
1979 /* If we receive more dupacks than we expected counting segments
1980 * in assumption of absent reordering, interpret this as reordering.
1981 * The only another reason could be bug in receiver TCP.
1983 static void tcp_check_reno_reordering(struct sock
*sk
, const int addend
)
1985 struct tcp_sock
*tp
= tcp_sk(sk
);
1986 if (tcp_limit_reno_sacked(tp
))
1987 tcp_update_reordering(sk
, tp
->packets_out
+ addend
, 0);
1990 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1992 static void tcp_add_reno_sack(struct sock
*sk
)
1994 struct tcp_sock
*tp
= tcp_sk(sk
);
1996 tcp_check_reno_reordering(sk
, 0);
1997 tcp_verify_left_out(tp
);
2000 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2002 static void tcp_remove_reno_sacks(struct sock
*sk
, int acked
)
2004 struct tcp_sock
*tp
= tcp_sk(sk
);
2007 /* One ACK acked hole. The rest eat duplicate ACKs. */
2008 if (acked
- 1 >= tp
->sacked_out
)
2011 tp
->sacked_out
-= acked
- 1;
2013 tcp_check_reno_reordering(sk
, acked
);
2014 tcp_verify_left_out(tp
);
2017 static inline void tcp_reset_reno_sack(struct tcp_sock
*tp
)
2022 static int tcp_is_sackfrto(const struct tcp_sock
*tp
)
2024 return (sysctl_tcp_frto
== 0x2) && !tcp_is_reno(tp
);
2027 /* F-RTO can only be used if TCP has never retransmitted anything other than
2028 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2030 int tcp_use_frto(struct sock
*sk
)
2032 const struct tcp_sock
*tp
= tcp_sk(sk
);
2033 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2034 struct sk_buff
*skb
;
2036 if (!sysctl_tcp_frto
)
2039 /* MTU probe and F-RTO won't really play nicely along currently */
2040 if (icsk
->icsk_mtup
.probe_size
)
2043 if (tcp_is_sackfrto(tp
))
2046 /* Avoid expensive walking of rexmit queue if possible */
2047 if (tp
->retrans_out
> 1)
2050 skb
= tcp_write_queue_head(sk
);
2051 if (tcp_skb_is_last(sk
, skb
))
2053 skb
= tcp_write_queue_next(sk
, skb
); /* Skips head */
2054 tcp_for_write_queue_from(skb
, sk
) {
2055 if (skb
== tcp_send_head(sk
))
2057 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
2059 /* Short-circuit when first non-SACKed skb has been checked */
2060 if (!(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
2066 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2067 * recovery a bit and use heuristics in tcp_process_frto() to detect if
2068 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2069 * keep retrans_out counting accurate (with SACK F-RTO, other than head
2070 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2071 * bits are handled if the Loss state is really to be entered (in
2072 * tcp_enter_frto_loss).
2074 * Do like tcp_enter_loss() would; when RTO expires the second time it
2076 * "Reduce ssthresh if it has not yet been made inside this window."
2078 void tcp_enter_frto(struct sock
*sk
)
2080 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2081 struct tcp_sock
*tp
= tcp_sk(sk
);
2082 struct sk_buff
*skb
;
2084 if ((!tp
->frto_counter
&& icsk
->icsk_ca_state
<= TCP_CA_Disorder
) ||
2085 tp
->snd_una
== tp
->high_seq
||
2086 ((icsk
->icsk_ca_state
== TCP_CA_Loss
|| tp
->frto_counter
) &&
2087 !icsk
->icsk_retransmits
)) {
2088 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2089 /* Our state is too optimistic in ssthresh() call because cwnd
2090 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2091 * recovery has not yet completed. Pattern would be this: RTO,
2092 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2094 * RFC4138 should be more specific on what to do, even though
2095 * RTO is quite unlikely to occur after the first Cumulative ACK
2096 * due to back-off and complexity of triggering events ...
2098 if (tp
->frto_counter
) {
2100 stored_cwnd
= tp
->snd_cwnd
;
2102 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
2103 tp
->snd_cwnd
= stored_cwnd
;
2105 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
2107 /* ... in theory, cong.control module could do "any tricks" in
2108 * ssthresh(), which means that ca_state, lost bits and lost_out
2109 * counter would have to be faked before the call occurs. We
2110 * consider that too expensive, unlikely and hacky, so modules
2111 * using these in ssthresh() must deal these incompatibility
2112 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2114 tcp_ca_event(sk
, CA_EVENT_FRTO
);
2117 tp
->undo_marker
= tp
->snd_una
;
2118 tp
->undo_retrans
= 0;
2120 skb
= tcp_write_queue_head(sk
);
2121 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
2122 tp
->undo_marker
= 0;
2123 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
2124 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
2125 tp
->retrans_out
-= tcp_skb_pcount(skb
);
2127 tcp_verify_left_out(tp
);
2129 /* Too bad if TCP was application limited */
2130 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tcp_packets_in_flight(tp
) + 1);
2132 /* Earlier loss recovery underway (see RFC4138; Appendix B).
2133 * The last condition is necessary at least in tp->frto_counter case.
2135 if (tcp_is_sackfrto(tp
) && (tp
->frto_counter
||
2136 ((1 << icsk
->icsk_ca_state
) & (TCPF_CA_Recovery
|TCPF_CA_Loss
))) &&
2137 after(tp
->high_seq
, tp
->snd_una
)) {
2138 tp
->frto_highmark
= tp
->high_seq
;
2140 tp
->frto_highmark
= tp
->snd_nxt
;
2142 tcp_set_ca_state(sk
, TCP_CA_Disorder
);
2143 tp
->high_seq
= tp
->snd_nxt
;
2144 tp
->frto_counter
= 1;
2147 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2148 * which indicates that we should follow the traditional RTO recovery,
2149 * i.e. mark everything lost and do go-back-N retransmission.
2151 static void tcp_enter_frto_loss(struct sock
*sk
, int allowed_segments
, int flag
)
2153 struct tcp_sock
*tp
= tcp_sk(sk
);
2154 struct sk_buff
*skb
;
2157 tp
->retrans_out
= 0;
2158 if (tcp_is_reno(tp
))
2159 tcp_reset_reno_sack(tp
);
2161 tcp_for_write_queue(skb
, sk
) {
2162 if (skb
== tcp_send_head(sk
))
2165 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
2167 * Count the retransmission made on RTO correctly (only when
2168 * waiting for the first ACK and did not get it)...
2170 if ((tp
->frto_counter
== 1) && !(flag
& FLAG_DATA_ACKED
)) {
2171 /* For some reason this R-bit might get cleared? */
2172 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
)
2173 tp
->retrans_out
+= tcp_skb_pcount(skb
);
2174 /* ...enter this if branch just for the first segment */
2175 flag
|= FLAG_DATA_ACKED
;
2177 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
2178 tp
->undo_marker
= 0;
2179 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
2182 /* Marking forward transmissions that were made after RTO lost
2183 * can cause unnecessary retransmissions in some scenarios,
2184 * SACK blocks will mitigate that in some but not in all cases.
2185 * We used to not mark them but it was causing break-ups with
2186 * receivers that do only in-order receival.
2188 * TODO: we could detect presence of such receiver and select
2189 * different behavior per flow.
2191 if (!(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)) {
2192 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
2193 tp
->lost_out
+= tcp_skb_pcount(skb
);
2194 tp
->retransmit_high
= TCP_SKB_CB(skb
)->end_seq
;
2197 tcp_verify_left_out(tp
);
2199 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + allowed_segments
;
2200 tp
->snd_cwnd_cnt
= 0;
2201 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2202 tp
->frto_counter
= 0;
2203 tp
->bytes_acked
= 0;
2205 tp
->reordering
= min_t(unsigned int, tp
->reordering
,
2206 sysctl_tcp_reordering
);
2207 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2208 tp
->high_seq
= tp
->snd_nxt
;
2209 TCP_ECN_queue_cwr(tp
);
2211 tcp_clear_all_retrans_hints(tp
);
2214 static void tcp_clear_retrans_partial(struct tcp_sock
*tp
)
2216 tp
->retrans_out
= 0;
2219 tp
->undo_marker
= 0;
2220 tp
->undo_retrans
= 0;
2223 void tcp_clear_retrans(struct tcp_sock
*tp
)
2225 tcp_clear_retrans_partial(tp
);
2227 tp
->fackets_out
= 0;
2231 /* Enter Loss state. If "how" is not zero, forget all SACK information
2232 * and reset tags completely, otherwise preserve SACKs. If receiver
2233 * dropped its ofo queue, we will know this due to reneging detection.
2235 void tcp_enter_loss(struct sock
*sk
, int how
)
2237 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2238 struct tcp_sock
*tp
= tcp_sk(sk
);
2239 struct sk_buff
*skb
;
2241 /* Reduce ssthresh if it has not yet been made inside this window. */
2242 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
|| tp
->snd_una
== tp
->high_seq
||
2243 (icsk
->icsk_ca_state
== TCP_CA_Loss
&& !icsk
->icsk_retransmits
)) {
2244 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2245 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
2246 tcp_ca_event(sk
, CA_EVENT_LOSS
);
2249 tp
->snd_cwnd_cnt
= 0;
2250 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2252 tp
->bytes_acked
= 0;
2253 tcp_clear_retrans_partial(tp
);
2255 if (tcp_is_reno(tp
))
2256 tcp_reset_reno_sack(tp
);
2259 /* Push undo marker, if it was plain RTO and nothing
2260 * was retransmitted. */
2261 tp
->undo_marker
= tp
->snd_una
;
2264 tp
->fackets_out
= 0;
2266 tcp_clear_all_retrans_hints(tp
);
2268 tcp_for_write_queue(skb
, sk
) {
2269 if (skb
== tcp_send_head(sk
))
2272 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
2273 tp
->undo_marker
= 0;
2274 TCP_SKB_CB(skb
)->sacked
&= (~TCPCB_TAGBITS
)|TCPCB_SACKED_ACKED
;
2275 if (!(TCP_SKB_CB(skb
)->sacked
&TCPCB_SACKED_ACKED
) || how
) {
2276 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_ACKED
;
2277 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
2278 tp
->lost_out
+= tcp_skb_pcount(skb
);
2279 tp
->retransmit_high
= TCP_SKB_CB(skb
)->end_seq
;
2282 tcp_verify_left_out(tp
);
2284 tp
->reordering
= min_t(unsigned int, tp
->reordering
,
2285 sysctl_tcp_reordering
);
2286 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2287 tp
->high_seq
= tp
->snd_nxt
;
2288 TCP_ECN_queue_cwr(tp
);
2289 /* Abort F-RTO algorithm if one is in progress */
2290 tp
->frto_counter
= 0;
2293 /* If ACK arrived pointing to a remembered SACK, it means that our
2294 * remembered SACKs do not reflect real state of receiver i.e.
2295 * receiver _host_ is heavily congested (or buggy).
2297 * Do processing similar to RTO timeout.
2299 static int tcp_check_sack_reneging(struct sock
*sk
, int flag
)
2301 if (flag
& FLAG_SACK_RENEGING
) {
2302 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2303 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPSACKRENEGING
);
2305 tcp_enter_loss(sk
, 1);
2306 icsk
->icsk_retransmits
++;
2307 tcp_retransmit_skb(sk
, tcp_write_queue_head(sk
));
2308 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
2309 icsk
->icsk_rto
, TCP_RTO_MAX
);
2315 static inline int tcp_fackets_out(const struct tcp_sock
*tp
)
2317 return tcp_is_reno(tp
) ? tp
->sacked_out
+ 1 : tp
->fackets_out
;
2320 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2321 * counter when SACK is enabled (without SACK, sacked_out is used for
2324 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2325 * segments up to the highest received SACK block so far and holes in
2328 * With reordering, holes may still be in flight, so RFC3517 recovery
2329 * uses pure sacked_out (total number of SACKed segments) even though
2330 * it violates the RFC that uses duplicate ACKs, often these are equal
2331 * but when e.g. out-of-window ACKs or packet duplication occurs,
2332 * they differ. Since neither occurs due to loss, TCP should really
2335 static inline int tcp_dupack_heuristics(const struct tcp_sock
*tp
)
2337 return tcp_is_fack(tp
) ? tp
->fackets_out
: tp
->sacked_out
+ 1;
2340 static inline int tcp_skb_timedout(const struct sock
*sk
,
2341 const struct sk_buff
*skb
)
2343 return tcp_time_stamp
- TCP_SKB_CB(skb
)->when
> inet_csk(sk
)->icsk_rto
;
2346 static inline int tcp_head_timedout(const struct sock
*sk
)
2348 const struct tcp_sock
*tp
= tcp_sk(sk
);
2350 return tp
->packets_out
&&
2351 tcp_skb_timedout(sk
, tcp_write_queue_head(sk
));
2354 /* Linux NewReno/SACK/FACK/ECN state machine.
2355 * --------------------------------------
2357 * "Open" Normal state, no dubious events, fast path.
2358 * "Disorder" In all the respects it is "Open",
2359 * but requires a bit more attention. It is entered when
2360 * we see some SACKs or dupacks. It is split of "Open"
2361 * mainly to move some processing from fast path to slow one.
2362 * "CWR" CWND was reduced due to some Congestion Notification event.
2363 * It can be ECN, ICMP source quench, local device congestion.
2364 * "Recovery" CWND was reduced, we are fast-retransmitting.
2365 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2367 * tcp_fastretrans_alert() is entered:
2368 * - each incoming ACK, if state is not "Open"
2369 * - when arrived ACK is unusual, namely:
2374 * Counting packets in flight is pretty simple.
2376 * in_flight = packets_out - left_out + retrans_out
2378 * packets_out is SND.NXT-SND.UNA counted in packets.
2380 * retrans_out is number of retransmitted segments.
2382 * left_out is number of segments left network, but not ACKed yet.
2384 * left_out = sacked_out + lost_out
2386 * sacked_out: Packets, which arrived to receiver out of order
2387 * and hence not ACKed. With SACKs this number is simply
2388 * amount of SACKed data. Even without SACKs
2389 * it is easy to give pretty reliable estimate of this number,
2390 * counting duplicate ACKs.
2392 * lost_out: Packets lost by network. TCP has no explicit
2393 * "loss notification" feedback from network (for now).
2394 * It means that this number can be only _guessed_.
2395 * Actually, it is the heuristics to predict lossage that
2396 * distinguishes different algorithms.
2398 * F.e. after RTO, when all the queue is considered as lost,
2399 * lost_out = packets_out and in_flight = retrans_out.
2401 * Essentially, we have now two algorithms counting
2404 * FACK: It is the simplest heuristics. As soon as we decided
2405 * that something is lost, we decide that _all_ not SACKed
2406 * packets until the most forward SACK are lost. I.e.
2407 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2408 * It is absolutely correct estimate, if network does not reorder
2409 * packets. And it loses any connection to reality when reordering
2410 * takes place. We use FACK by default until reordering
2411 * is suspected on the path to this destination.
2413 * NewReno: when Recovery is entered, we assume that one segment
2414 * is lost (classic Reno). While we are in Recovery and
2415 * a partial ACK arrives, we assume that one more packet
2416 * is lost (NewReno). This heuristics are the same in NewReno
2419 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2420 * deflation etc. CWND is real congestion window, never inflated, changes
2421 * only according to classic VJ rules.
2423 * Really tricky (and requiring careful tuning) part of algorithm
2424 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2425 * The first determines the moment _when_ we should reduce CWND and,
2426 * hence, slow down forward transmission. In fact, it determines the moment
2427 * when we decide that hole is caused by loss, rather than by a reorder.
2429 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2430 * holes, caused by lost packets.
2432 * And the most logically complicated part of algorithm is undo
2433 * heuristics. We detect false retransmits due to both too early
2434 * fast retransmit (reordering) and underestimated RTO, analyzing
2435 * timestamps and D-SACKs. When we detect that some segments were
2436 * retransmitted by mistake and CWND reduction was wrong, we undo
2437 * window reduction and abort recovery phase. This logic is hidden
2438 * inside several functions named tcp_try_undo_<something>.
2441 /* This function decides, when we should leave Disordered state
2442 * and enter Recovery phase, reducing congestion window.
2444 * Main question: may we further continue forward transmission
2445 * with the same cwnd?
2447 static int tcp_time_to_recover(struct sock
*sk
)
2449 struct tcp_sock
*tp
= tcp_sk(sk
);
2452 /* Do not perform any recovery during F-RTO algorithm */
2453 if (tp
->frto_counter
)
2456 /* Trick#1: The loss is proven. */
2460 /* Not-A-Trick#2 : Classic rule... */
2461 if (tcp_dupack_heuristics(tp
) > tp
->reordering
)
2464 /* Trick#3 : when we use RFC2988 timer restart, fast
2465 * retransmit can be triggered by timeout of queue head.
2467 if (tcp_is_fack(tp
) && tcp_head_timedout(sk
))
2470 /* Trick#4: It is still not OK... But will it be useful to delay
2473 packets_out
= tp
->packets_out
;
2474 if (packets_out
<= tp
->reordering
&&
2475 tp
->sacked_out
>= max_t(__u32
, packets_out
/2, sysctl_tcp_reordering
) &&
2476 !tcp_may_send_now(sk
)) {
2477 /* We have nothing to send. This connection is limited
2478 * either by receiver window or by application.
2483 /* If a thin stream is detected, retransmit after first
2484 * received dupack. Employ only if SACK is supported in order
2485 * to avoid possible corner-case series of spurious retransmissions
2486 * Use only if there are no unsent data.
2488 if ((tp
->thin_dupack
|| sysctl_tcp_thin_dupack
) &&
2489 tcp_stream_is_thin(tp
) && tcp_dupack_heuristics(tp
) > 1 &&
2490 tcp_is_sack(tp
) && !tcp_send_head(sk
))
2496 /* New heuristics: it is possible only after we switched to restart timer
2497 * each time when something is ACKed. Hence, we can detect timed out packets
2498 * during fast retransmit without falling to slow start.
2500 * Usefulness of this as is very questionable, since we should know which of
2501 * the segments is the next to timeout which is relatively expensive to find
2502 * in general case unless we add some data structure just for that. The
2503 * current approach certainly won't find the right one too often and when it
2504 * finally does find _something_ it usually marks large part of the window
2505 * right away (because a retransmission with a larger timestamp blocks the
2506 * loop from advancing). -ij
2508 static void tcp_timeout_skbs(struct sock
*sk
)
2510 struct tcp_sock
*tp
= tcp_sk(sk
);
2511 struct sk_buff
*skb
;
2513 if (!tcp_is_fack(tp
) || !tcp_head_timedout(sk
))
2516 skb
= tp
->scoreboard_skb_hint
;
2517 if (tp
->scoreboard_skb_hint
== NULL
)
2518 skb
= tcp_write_queue_head(sk
);
2520 tcp_for_write_queue_from(skb
, sk
) {
2521 if (skb
== tcp_send_head(sk
))
2523 if (!tcp_skb_timedout(sk
, skb
))
2526 tcp_skb_mark_lost(tp
, skb
);
2529 tp
->scoreboard_skb_hint
= skb
;
2531 tcp_verify_left_out(tp
);
2534 /* Detect loss in event "A" above by marking head of queue up as lost.
2535 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2536 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2537 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2538 * the maximum SACKed segments to pass before reaching this limit.
2540 static void tcp_mark_head_lost(struct sock
*sk
, int packets
, int mark_head
)
2542 struct tcp_sock
*tp
= tcp_sk(sk
);
2543 struct sk_buff
*skb
;
2547 /* Use SACK to deduce losses of new sequences sent during recovery */
2548 const u32 loss_high
= tcp_is_sack(tp
) ? tp
->snd_nxt
: tp
->high_seq
;
2550 WARN_ON(packets
> tp
->packets_out
);
2551 if (tp
->lost_skb_hint
) {
2552 skb
= tp
->lost_skb_hint
;
2553 cnt
= tp
->lost_cnt_hint
;
2554 /* Head already handled? */
2555 if (mark_head
&& skb
!= tcp_write_queue_head(sk
))
2558 skb
= tcp_write_queue_head(sk
);
2562 tcp_for_write_queue_from(skb
, sk
) {
2563 if (skb
== tcp_send_head(sk
))
2565 /* TODO: do this better */
2566 /* this is not the most efficient way to do this... */
2567 tp
->lost_skb_hint
= skb
;
2568 tp
->lost_cnt_hint
= cnt
;
2570 if (after(TCP_SKB_CB(skb
)->end_seq
, loss_high
))
2574 if (tcp_is_fack(tp
) || tcp_is_reno(tp
) ||
2575 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
2576 cnt
+= tcp_skb_pcount(skb
);
2578 if (cnt
> packets
) {
2579 if ((tcp_is_sack(tp
) && !tcp_is_fack(tp
)) ||
2580 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
) ||
2581 (oldcnt
>= packets
))
2584 mss
= skb_shinfo(skb
)->gso_size
;
2585 err
= tcp_fragment(sk
, skb
, (packets
- oldcnt
) * mss
, mss
);
2591 tcp_skb_mark_lost(tp
, skb
);
2596 tcp_verify_left_out(tp
);
2599 /* Account newly detected lost packet(s) */
2601 static void tcp_update_scoreboard(struct sock
*sk
, int fast_rexmit
)
2603 struct tcp_sock
*tp
= tcp_sk(sk
);
2605 if (tcp_is_reno(tp
)) {
2606 tcp_mark_head_lost(sk
, 1, 1);
2607 } else if (tcp_is_fack(tp
)) {
2608 int lost
= tp
->fackets_out
- tp
->reordering
;
2611 tcp_mark_head_lost(sk
, lost
, 0);
2613 int sacked_upto
= tp
->sacked_out
- tp
->reordering
;
2614 if (sacked_upto
>= 0)
2615 tcp_mark_head_lost(sk
, sacked_upto
, 0);
2616 else if (fast_rexmit
)
2617 tcp_mark_head_lost(sk
, 1, 1);
2620 tcp_timeout_skbs(sk
);
2623 /* CWND moderation, preventing bursts due to too big ACKs
2624 * in dubious situations.
2626 static inline void tcp_moderate_cwnd(struct tcp_sock
*tp
)
2628 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
2629 tcp_packets_in_flight(tp
) + tcp_max_burst(tp
));
2630 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2633 /* Lower bound on congestion window is slow start threshold
2634 * unless congestion avoidance choice decides to overide it.
2636 static inline u32
tcp_cwnd_min(const struct sock
*sk
)
2638 const struct tcp_congestion_ops
*ca_ops
= inet_csk(sk
)->icsk_ca_ops
;
2640 return ca_ops
->min_cwnd
? ca_ops
->min_cwnd(sk
) : tcp_sk(sk
)->snd_ssthresh
;
2643 /* Decrease cwnd each second ack. */
2644 static void tcp_cwnd_down(struct sock
*sk
, int flag
)
2646 struct tcp_sock
*tp
= tcp_sk(sk
);
2647 int decr
= tp
->snd_cwnd_cnt
+ 1;
2649 if ((flag
& (FLAG_ANY_PROGRESS
| FLAG_DSACKING_ACK
)) ||
2650 (tcp_is_reno(tp
) && !(flag
& FLAG_NOT_DUP
))) {
2651 tp
->snd_cwnd_cnt
= decr
& 1;
2654 if (decr
&& tp
->snd_cwnd
> tcp_cwnd_min(sk
))
2655 tp
->snd_cwnd
-= decr
;
2657 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tcp_packets_in_flight(tp
) + 1);
2658 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2662 /* Nothing was retransmitted or returned timestamp is less
2663 * than timestamp of the first retransmission.
2665 static inline int tcp_packet_delayed(const struct tcp_sock
*tp
)
2667 return !tp
->retrans_stamp
||
2668 (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
2669 before(tp
->rx_opt
.rcv_tsecr
, tp
->retrans_stamp
));
2672 /* Undo procedures. */
2674 #if FASTRETRANS_DEBUG > 1
2675 static void DBGUNDO(struct sock
*sk
, const char *msg
)
2677 struct tcp_sock
*tp
= tcp_sk(sk
);
2678 struct inet_sock
*inet
= inet_sk(sk
);
2680 if (sk
->sk_family
== AF_INET
) {
2681 printk(KERN_DEBUG
"Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2683 &inet
->inet_daddr
, ntohs(inet
->inet_dport
),
2684 tp
->snd_cwnd
, tcp_left_out(tp
),
2685 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2688 #if IS_ENABLED(CONFIG_IPV6)
2689 else if (sk
->sk_family
== AF_INET6
) {
2690 struct ipv6_pinfo
*np
= inet6_sk(sk
);
2691 printk(KERN_DEBUG
"Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2693 &np
->daddr
, ntohs(inet
->inet_dport
),
2694 tp
->snd_cwnd
, tcp_left_out(tp
),
2695 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2701 #define DBGUNDO(x...) do { } while (0)
2704 static void tcp_undo_cwr(struct sock
*sk
, const bool undo_ssthresh
)
2706 struct tcp_sock
*tp
= tcp_sk(sk
);
2708 if (tp
->prior_ssthresh
) {
2709 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2711 if (icsk
->icsk_ca_ops
->undo_cwnd
)
2712 tp
->snd_cwnd
= icsk
->icsk_ca_ops
->undo_cwnd(sk
);
2714 tp
->snd_cwnd
= max(tp
->snd_cwnd
, tp
->snd_ssthresh
<< 1);
2716 if (undo_ssthresh
&& tp
->prior_ssthresh
> tp
->snd_ssthresh
) {
2717 tp
->snd_ssthresh
= tp
->prior_ssthresh
;
2718 TCP_ECN_withdraw_cwr(tp
);
2721 tp
->snd_cwnd
= max(tp
->snd_cwnd
, tp
->snd_ssthresh
);
2723 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2726 static inline int tcp_may_undo(const struct tcp_sock
*tp
)
2728 return tp
->undo_marker
&& (!tp
->undo_retrans
|| tcp_packet_delayed(tp
));
2731 /* People celebrate: "We love our President!" */
2732 static int tcp_try_undo_recovery(struct sock
*sk
)
2734 struct tcp_sock
*tp
= tcp_sk(sk
);
2736 if (tcp_may_undo(tp
)) {
2739 /* Happy end! We did not retransmit anything
2740 * or our original transmission succeeded.
2742 DBGUNDO(sk
, inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
? "loss" : "retrans");
2743 tcp_undo_cwr(sk
, true);
2744 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
)
2745 mib_idx
= LINUX_MIB_TCPLOSSUNDO
;
2747 mib_idx
= LINUX_MIB_TCPFULLUNDO
;
2749 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
2750 tp
->undo_marker
= 0;
2752 if (tp
->snd_una
== tp
->high_seq
&& tcp_is_reno(tp
)) {
2753 /* Hold old state until something *above* high_seq
2754 * is ACKed. For Reno it is MUST to prevent false
2755 * fast retransmits (RFC2582). SACK TCP is safe. */
2756 tcp_moderate_cwnd(tp
);
2759 tcp_set_ca_state(sk
, TCP_CA_Open
);
2763 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2764 static void tcp_try_undo_dsack(struct sock
*sk
)
2766 struct tcp_sock
*tp
= tcp_sk(sk
);
2768 if (tp
->undo_marker
&& !tp
->undo_retrans
) {
2769 DBGUNDO(sk
, "D-SACK");
2770 tcp_undo_cwr(sk
, true);
2771 tp
->undo_marker
= 0;
2772 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPDSACKUNDO
);
2776 /* We can clear retrans_stamp when there are no retransmissions in the
2777 * window. It would seem that it is trivially available for us in
2778 * tp->retrans_out, however, that kind of assumptions doesn't consider
2779 * what will happen if errors occur when sending retransmission for the
2780 * second time. ...It could the that such segment has only
2781 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2782 * the head skb is enough except for some reneging corner cases that
2783 * are not worth the effort.
2785 * Main reason for all this complexity is the fact that connection dying
2786 * time now depends on the validity of the retrans_stamp, in particular,
2787 * that successive retransmissions of a segment must not advance
2788 * retrans_stamp under any conditions.
2790 static int tcp_any_retrans_done(const struct sock
*sk
)
2792 const struct tcp_sock
*tp
= tcp_sk(sk
);
2793 struct sk_buff
*skb
;
2795 if (tp
->retrans_out
)
2798 skb
= tcp_write_queue_head(sk
);
2799 if (unlikely(skb
&& TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
))
2805 /* Undo during fast recovery after partial ACK. */
2807 static int tcp_try_undo_partial(struct sock
*sk
, int acked
)
2809 struct tcp_sock
*tp
= tcp_sk(sk
);
2810 /* Partial ACK arrived. Force Hoe's retransmit. */
2811 int failed
= tcp_is_reno(tp
) || (tcp_fackets_out(tp
) > tp
->reordering
);
2813 if (tcp_may_undo(tp
)) {
2814 /* Plain luck! Hole if filled with delayed
2815 * packet, rather than with a retransmit.
2817 if (!tcp_any_retrans_done(sk
))
2818 tp
->retrans_stamp
= 0;
2820 tcp_update_reordering(sk
, tcp_fackets_out(tp
) + acked
, 1);
2823 tcp_undo_cwr(sk
, false);
2824 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPPARTIALUNDO
);
2826 /* So... Do not make Hoe's retransmit yet.
2827 * If the first packet was delayed, the rest
2828 * ones are most probably delayed as well.
2835 /* Undo during loss recovery after partial ACK. */
2836 static int tcp_try_undo_loss(struct sock
*sk
)
2838 struct tcp_sock
*tp
= tcp_sk(sk
);
2840 if (tcp_may_undo(tp
)) {
2841 struct sk_buff
*skb
;
2842 tcp_for_write_queue(skb
, sk
) {
2843 if (skb
== tcp_send_head(sk
))
2845 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
2848 tcp_clear_all_retrans_hints(tp
);
2850 DBGUNDO(sk
, "partial loss");
2852 tcp_undo_cwr(sk
, true);
2853 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPLOSSUNDO
);
2854 inet_csk(sk
)->icsk_retransmits
= 0;
2855 tp
->undo_marker
= 0;
2856 if (tcp_is_sack(tp
))
2857 tcp_set_ca_state(sk
, TCP_CA_Open
);
2863 static inline void tcp_complete_cwr(struct sock
*sk
)
2865 struct tcp_sock
*tp
= tcp_sk(sk
);
2867 /* Do not moderate cwnd if it's already undone in cwr or recovery. */
2868 if (tp
->undo_marker
) {
2869 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_CWR
) {
2870 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tp
->snd_ssthresh
);
2871 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2872 } else if (tp
->snd_ssthresh
< TCP_INFINITE_SSTHRESH
) {
2873 /* PRR algorithm. */
2874 tp
->snd_cwnd
= tp
->snd_ssthresh
;
2875 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2878 tcp_ca_event(sk
, CA_EVENT_COMPLETE_CWR
);
2881 static void tcp_try_keep_open(struct sock
*sk
)
2883 struct tcp_sock
*tp
= tcp_sk(sk
);
2884 int state
= TCP_CA_Open
;
2886 if (tcp_left_out(tp
) || tcp_any_retrans_done(sk
))
2887 state
= TCP_CA_Disorder
;
2889 if (inet_csk(sk
)->icsk_ca_state
!= state
) {
2890 tcp_set_ca_state(sk
, state
);
2891 tp
->high_seq
= tp
->snd_nxt
;
2895 static void tcp_try_to_open(struct sock
*sk
, int flag
)
2897 struct tcp_sock
*tp
= tcp_sk(sk
);
2899 tcp_verify_left_out(tp
);
2901 if (!tp
->frto_counter
&& !tcp_any_retrans_done(sk
))
2902 tp
->retrans_stamp
= 0;
2904 if (flag
& FLAG_ECE
)
2905 tcp_enter_cwr(sk
, 1);
2907 if (inet_csk(sk
)->icsk_ca_state
!= TCP_CA_CWR
) {
2908 tcp_try_keep_open(sk
);
2909 if (inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
)
2910 tcp_moderate_cwnd(tp
);
2912 tcp_cwnd_down(sk
, flag
);
2916 static void tcp_mtup_probe_failed(struct sock
*sk
)
2918 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2920 icsk
->icsk_mtup
.search_high
= icsk
->icsk_mtup
.probe_size
- 1;
2921 icsk
->icsk_mtup
.probe_size
= 0;
2924 static void tcp_mtup_probe_success(struct sock
*sk
)
2926 struct tcp_sock
*tp
= tcp_sk(sk
);
2927 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2929 /* FIXME: breaks with very large cwnd */
2930 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2931 tp
->snd_cwnd
= tp
->snd_cwnd
*
2932 tcp_mss_to_mtu(sk
, tp
->mss_cache
) /
2933 icsk
->icsk_mtup
.probe_size
;
2934 tp
->snd_cwnd_cnt
= 0;
2935 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2936 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
2938 icsk
->icsk_mtup
.search_low
= icsk
->icsk_mtup
.probe_size
;
2939 icsk
->icsk_mtup
.probe_size
= 0;
2940 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
2943 /* Do a simple retransmit without using the backoff mechanisms in
2944 * tcp_timer. This is used for path mtu discovery.
2945 * The socket is already locked here.
2947 void tcp_simple_retransmit(struct sock
*sk
)
2949 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2950 struct tcp_sock
*tp
= tcp_sk(sk
);
2951 struct sk_buff
*skb
;
2952 unsigned int mss
= tcp_current_mss(sk
);
2953 u32 prior_lost
= tp
->lost_out
;
2955 tcp_for_write_queue(skb
, sk
) {
2956 if (skb
== tcp_send_head(sk
))
2958 if (tcp_skb_seglen(skb
) > mss
&&
2959 !(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)) {
2960 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
2961 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
2962 tp
->retrans_out
-= tcp_skb_pcount(skb
);
2964 tcp_skb_mark_lost_uncond_verify(tp
, skb
);
2968 tcp_clear_retrans_hints_partial(tp
);
2970 if (prior_lost
== tp
->lost_out
)
2973 if (tcp_is_reno(tp
))
2974 tcp_limit_reno_sacked(tp
);
2976 tcp_verify_left_out(tp
);
2978 /* Don't muck with the congestion window here.
2979 * Reason is that we do not increase amount of _data_
2980 * in network, but units changed and effective
2981 * cwnd/ssthresh really reduced now.
2983 if (icsk
->icsk_ca_state
!= TCP_CA_Loss
) {
2984 tp
->high_seq
= tp
->snd_nxt
;
2985 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
2986 tp
->prior_ssthresh
= 0;
2987 tp
->undo_marker
= 0;
2988 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2990 tcp_xmit_retransmit_queue(sk
);
2992 EXPORT_SYMBOL(tcp_simple_retransmit
);
2994 /* This function implements the PRR algorithm, specifcally the PRR-SSRB
2995 * (proportional rate reduction with slow start reduction bound) as described in
2996 * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt.
2997 * It computes the number of packets to send (sndcnt) based on packets newly
2999 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
3000 * cwnd reductions across a full RTT.
3001 * 2) If packets in flight is lower than ssthresh (such as due to excess
3002 * losses and/or application stalls), do not perform any further cwnd
3003 * reductions, but instead slow start up to ssthresh.
3005 static void tcp_update_cwnd_in_recovery(struct sock
*sk
, int newly_acked_sacked
,
3006 int fast_rexmit
, int flag
)
3008 struct tcp_sock
*tp
= tcp_sk(sk
);
3010 int delta
= tp
->snd_ssthresh
- tcp_packets_in_flight(tp
);
3012 if (tcp_packets_in_flight(tp
) > tp
->snd_ssthresh
) {
3013 u64 dividend
= (u64
)tp
->snd_ssthresh
* tp
->prr_delivered
+
3015 sndcnt
= div_u64(dividend
, tp
->prior_cwnd
) - tp
->prr_out
;
3017 sndcnt
= min_t(int, delta
,
3018 max_t(int, tp
->prr_delivered
- tp
->prr_out
,
3019 newly_acked_sacked
) + 1);
3022 sndcnt
= max(sndcnt
, (fast_rexmit
? 1 : 0));
3023 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + sndcnt
;
3026 /* Process an event, which can update packets-in-flight not trivially.
3027 * Main goal of this function is to calculate new estimate for left_out,
3028 * taking into account both packets sitting in receiver's buffer and
3029 * packets lost by network.
3031 * Besides that it does CWND reduction, when packet loss is detected
3032 * and changes state of machine.
3034 * It does _not_ decide what to send, it is made in function
3035 * tcp_xmit_retransmit_queue().
3037 static void tcp_fastretrans_alert(struct sock
*sk
, int pkts_acked
,
3038 int newly_acked_sacked
, bool is_dupack
,
3041 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3042 struct tcp_sock
*tp
= tcp_sk(sk
);
3043 int do_lost
= is_dupack
|| ((flag
& FLAG_DATA_SACKED
) &&
3044 (tcp_fackets_out(tp
) > tp
->reordering
));
3045 int fast_rexmit
= 0, mib_idx
;
3047 if (WARN_ON(!tp
->packets_out
&& tp
->sacked_out
))
3049 if (WARN_ON(!tp
->sacked_out
&& tp
->fackets_out
))
3050 tp
->fackets_out
= 0;
3052 /* Now state machine starts.
3053 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3054 if (flag
& FLAG_ECE
)
3055 tp
->prior_ssthresh
= 0;
3057 /* B. In all the states check for reneging SACKs. */
3058 if (tcp_check_sack_reneging(sk
, flag
))
3061 /* C. Check consistency of the current state. */
3062 tcp_verify_left_out(tp
);
3064 /* D. Check state exit conditions. State can be terminated
3065 * when high_seq is ACKed. */
3066 if (icsk
->icsk_ca_state
== TCP_CA_Open
) {
3067 WARN_ON(tp
->retrans_out
!= 0);
3068 tp
->retrans_stamp
= 0;
3069 } else if (!before(tp
->snd_una
, tp
->high_seq
)) {
3070 switch (icsk
->icsk_ca_state
) {
3072 icsk
->icsk_retransmits
= 0;
3073 if (tcp_try_undo_recovery(sk
))
3078 /* CWR is to be held something *above* high_seq
3079 * is ACKed for CWR bit to reach receiver. */
3080 if (tp
->snd_una
!= tp
->high_seq
) {
3081 tcp_complete_cwr(sk
);
3082 tcp_set_ca_state(sk
, TCP_CA_Open
);
3086 case TCP_CA_Recovery
:
3087 if (tcp_is_reno(tp
))
3088 tcp_reset_reno_sack(tp
);
3089 if (tcp_try_undo_recovery(sk
))
3091 tcp_complete_cwr(sk
);
3096 /* E. Process state. */
3097 switch (icsk
->icsk_ca_state
) {
3098 case TCP_CA_Recovery
:
3099 if (!(flag
& FLAG_SND_UNA_ADVANCED
)) {
3100 if (tcp_is_reno(tp
) && is_dupack
)
3101 tcp_add_reno_sack(sk
);
3103 do_lost
= tcp_try_undo_partial(sk
, pkts_acked
);
3106 if (flag
& FLAG_DATA_ACKED
)
3107 icsk
->icsk_retransmits
= 0;
3108 if (tcp_is_reno(tp
) && flag
& FLAG_SND_UNA_ADVANCED
)
3109 tcp_reset_reno_sack(tp
);
3110 if (!tcp_try_undo_loss(sk
)) {
3111 tcp_moderate_cwnd(tp
);
3112 tcp_xmit_retransmit_queue(sk
);
3115 if (icsk
->icsk_ca_state
!= TCP_CA_Open
)
3117 /* Loss is undone; fall through to processing in Open state. */
3119 if (tcp_is_reno(tp
)) {
3120 if (flag
& FLAG_SND_UNA_ADVANCED
)
3121 tcp_reset_reno_sack(tp
);
3123 tcp_add_reno_sack(sk
);
3126 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
)
3127 tcp_try_undo_dsack(sk
);
3129 if (!tcp_time_to_recover(sk
)) {
3130 tcp_try_to_open(sk
, flag
);
3134 /* MTU probe failure: don't reduce cwnd */
3135 if (icsk
->icsk_ca_state
< TCP_CA_CWR
&&
3136 icsk
->icsk_mtup
.probe_size
&&
3137 tp
->snd_una
== tp
->mtu_probe
.probe_seq_start
) {
3138 tcp_mtup_probe_failed(sk
);
3139 /* Restores the reduction we did in tcp_mtup_probe() */
3141 tcp_simple_retransmit(sk
);
3145 /* Otherwise enter Recovery state */
3147 if (tcp_is_reno(tp
))
3148 mib_idx
= LINUX_MIB_TCPRENORECOVERY
;
3150 mib_idx
= LINUX_MIB_TCPSACKRECOVERY
;
3152 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
3154 tp
->high_seq
= tp
->snd_nxt
;
3155 tp
->prior_ssthresh
= 0;
3156 tp
->undo_marker
= tp
->snd_una
;
3157 tp
->undo_retrans
= tp
->retrans_out
;
3159 if (icsk
->icsk_ca_state
< TCP_CA_CWR
) {
3160 if (!(flag
& FLAG_ECE
))
3161 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
3162 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
3163 TCP_ECN_queue_cwr(tp
);
3166 tp
->bytes_acked
= 0;
3167 tp
->snd_cwnd_cnt
= 0;
3168 tp
->prior_cwnd
= tp
->snd_cwnd
;
3169 tp
->prr_delivered
= 0;
3171 tcp_set_ca_state(sk
, TCP_CA_Recovery
);
3175 if (do_lost
|| (tcp_is_fack(tp
) && tcp_head_timedout(sk
)))
3176 tcp_update_scoreboard(sk
, fast_rexmit
);
3177 tp
->prr_delivered
+= newly_acked_sacked
;
3178 tcp_update_cwnd_in_recovery(sk
, newly_acked_sacked
, fast_rexmit
, flag
);
3179 tcp_xmit_retransmit_queue(sk
);
3182 void tcp_valid_rtt_meas(struct sock
*sk
, u32 seq_rtt
)
3184 tcp_rtt_estimator(sk
, seq_rtt
);
3186 inet_csk(sk
)->icsk_backoff
= 0;
3188 EXPORT_SYMBOL(tcp_valid_rtt_meas
);
3190 /* Read draft-ietf-tcplw-high-performance before mucking
3191 * with this code. (Supersedes RFC1323)
3193 static void tcp_ack_saw_tstamp(struct sock
*sk
, int flag
)
3195 /* RTTM Rule: A TSecr value received in a segment is used to
3196 * update the averaged RTT measurement only if the segment
3197 * acknowledges some new data, i.e., only if it advances the
3198 * left edge of the send window.
3200 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3201 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3203 * Changed: reset backoff as soon as we see the first valid sample.
3204 * If we do not, we get strongly overestimated rto. With timestamps
3205 * samples are accepted even from very old segments: f.e., when rtt=1
3206 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3207 * answer arrives rto becomes 120 seconds! If at least one of segments
3208 * in window is lost... Voila. --ANK (010210)
3210 struct tcp_sock
*tp
= tcp_sk(sk
);
3212 tcp_valid_rtt_meas(sk
, tcp_time_stamp
- tp
->rx_opt
.rcv_tsecr
);
3215 static void tcp_ack_no_tstamp(struct sock
*sk
, u32 seq_rtt
, int flag
)
3217 /* We don't have a timestamp. Can only use
3218 * packets that are not retransmitted to determine
3219 * rtt estimates. Also, we must not reset the
3220 * backoff for rto until we get a non-retransmitted
3221 * packet. This allows us to deal with a situation
3222 * where the network delay has increased suddenly.
3223 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3226 if (flag
& FLAG_RETRANS_DATA_ACKED
)
3229 tcp_valid_rtt_meas(sk
, seq_rtt
);
3232 static inline void tcp_ack_update_rtt(struct sock
*sk
, const int flag
,
3235 const struct tcp_sock
*tp
= tcp_sk(sk
);
3236 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3237 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
)
3238 tcp_ack_saw_tstamp(sk
, flag
);
3239 else if (seq_rtt
>= 0)
3240 tcp_ack_no_tstamp(sk
, seq_rtt
, flag
);
3243 static void tcp_cong_avoid(struct sock
*sk
, u32 ack
, u32 in_flight
)
3245 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3246 icsk
->icsk_ca_ops
->cong_avoid(sk
, ack
, in_flight
);
3247 tcp_sk(sk
)->snd_cwnd_stamp
= tcp_time_stamp
;
3250 /* Restart timer after forward progress on connection.
3251 * RFC2988 recommends to restart timer to now+rto.
3253 static void tcp_rearm_rto(struct sock
*sk
)
3255 const struct tcp_sock
*tp
= tcp_sk(sk
);
3257 if (!tp
->packets_out
) {
3258 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_RETRANS
);
3260 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
3261 inet_csk(sk
)->icsk_rto
, TCP_RTO_MAX
);
3265 /* If we get here, the whole TSO packet has not been acked. */
3266 static u32
tcp_tso_acked(struct sock
*sk
, struct sk_buff
*skb
)
3268 struct tcp_sock
*tp
= tcp_sk(sk
);
3271 BUG_ON(!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
));
3273 packets_acked
= tcp_skb_pcount(skb
);
3274 if (tcp_trim_head(sk
, skb
, tp
->snd_una
- TCP_SKB_CB(skb
)->seq
))
3276 packets_acked
-= tcp_skb_pcount(skb
);
3278 if (packets_acked
) {
3279 BUG_ON(tcp_skb_pcount(skb
) == 0);
3280 BUG_ON(!before(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
));
3283 return packets_acked
;
3286 /* Remove acknowledged frames from the retransmission queue. If our packet
3287 * is before the ack sequence we can discard it as it's confirmed to have
3288 * arrived at the other end.
3290 static int tcp_clean_rtx_queue(struct sock
*sk
, int prior_fackets
,
3293 struct tcp_sock
*tp
= tcp_sk(sk
);
3294 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3295 struct sk_buff
*skb
;
3296 u32 now
= tcp_time_stamp
;
3297 int fully_acked
= 1;
3300 u32 reord
= tp
->packets_out
;
3301 u32 prior_sacked
= tp
->sacked_out
;
3303 s32 ca_seq_rtt
= -1;
3304 ktime_t last_ackt
= net_invalid_timestamp();
3306 while ((skb
= tcp_write_queue_head(sk
)) && skb
!= tcp_send_head(sk
)) {
3307 struct tcp_skb_cb
*scb
= TCP_SKB_CB(skb
);
3309 u8 sacked
= scb
->sacked
;
3311 /* Determine how many packets and what bytes were acked, tso and else */
3312 if (after(scb
->end_seq
, tp
->snd_una
)) {
3313 if (tcp_skb_pcount(skb
) == 1 ||
3314 !after(tp
->snd_una
, scb
->seq
))
3317 acked_pcount
= tcp_tso_acked(sk
, skb
);
3323 acked_pcount
= tcp_skb_pcount(skb
);
3326 if (sacked
& TCPCB_RETRANS
) {
3327 if (sacked
& TCPCB_SACKED_RETRANS
)
3328 tp
->retrans_out
-= acked_pcount
;
3329 flag
|= FLAG_RETRANS_DATA_ACKED
;
3332 if ((flag
& FLAG_DATA_ACKED
) || (acked_pcount
> 1))
3333 flag
|= FLAG_NONHEAD_RETRANS_ACKED
;
3335 ca_seq_rtt
= now
- scb
->when
;
3336 last_ackt
= skb
->tstamp
;
3338 seq_rtt
= ca_seq_rtt
;
3340 if (!(sacked
& TCPCB_SACKED_ACKED
))
3341 reord
= min(pkts_acked
, reord
);
3344 if (sacked
& TCPCB_SACKED_ACKED
)
3345 tp
->sacked_out
-= acked_pcount
;
3346 if (sacked
& TCPCB_LOST
)
3347 tp
->lost_out
-= acked_pcount
;
3349 tp
->packets_out
-= acked_pcount
;
3350 pkts_acked
+= acked_pcount
;
3352 /* Initial outgoing SYN's get put onto the write_queue
3353 * just like anything else we transmit. It is not
3354 * true data, and if we misinform our callers that
3355 * this ACK acks real data, we will erroneously exit
3356 * connection startup slow start one packet too
3357 * quickly. This is severely frowned upon behavior.
3359 if (!(scb
->tcp_flags
& TCPHDR_SYN
)) {
3360 flag
|= FLAG_DATA_ACKED
;
3362 flag
|= FLAG_SYN_ACKED
;
3363 tp
->retrans_stamp
= 0;
3369 tcp_unlink_write_queue(skb
, sk
);
3370 sk_wmem_free_skb(sk
, skb
);
3371 tp
->scoreboard_skb_hint
= NULL
;
3372 if (skb
== tp
->retransmit_skb_hint
)
3373 tp
->retransmit_skb_hint
= NULL
;
3374 if (skb
== tp
->lost_skb_hint
)
3375 tp
->lost_skb_hint
= NULL
;
3378 if (likely(between(tp
->snd_up
, prior_snd_una
, tp
->snd_una
)))
3379 tp
->snd_up
= tp
->snd_una
;
3381 if (skb
&& (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
3382 flag
|= FLAG_SACK_RENEGING
;
3384 if (flag
& FLAG_ACKED
) {
3385 const struct tcp_congestion_ops
*ca_ops
3386 = inet_csk(sk
)->icsk_ca_ops
;
3388 if (unlikely(icsk
->icsk_mtup
.probe_size
&&
3389 !after(tp
->mtu_probe
.probe_seq_end
, tp
->snd_una
))) {
3390 tcp_mtup_probe_success(sk
);
3393 tcp_ack_update_rtt(sk
, flag
, seq_rtt
);
3396 if (tcp_is_reno(tp
)) {
3397 tcp_remove_reno_sacks(sk
, pkts_acked
);
3401 /* Non-retransmitted hole got filled? That's reordering */
3402 if (reord
< prior_fackets
)
3403 tcp_update_reordering(sk
, tp
->fackets_out
- reord
, 0);
3405 delta
= tcp_is_fack(tp
) ? pkts_acked
:
3406 prior_sacked
- tp
->sacked_out
;
3407 tp
->lost_cnt_hint
-= min(tp
->lost_cnt_hint
, delta
);
3410 tp
->fackets_out
-= min(pkts_acked
, tp
->fackets_out
);
3412 if (ca_ops
->pkts_acked
) {
3415 /* Is the ACK triggering packet unambiguous? */
3416 if (!(flag
& FLAG_RETRANS_DATA_ACKED
)) {
3417 /* High resolution needed and available? */
3418 if (ca_ops
->flags
& TCP_CONG_RTT_STAMP
&&
3419 !ktime_equal(last_ackt
,
3420 net_invalid_timestamp()))
3421 rtt_us
= ktime_us_delta(ktime_get_real(),
3423 else if (ca_seq_rtt
>= 0)
3424 rtt_us
= jiffies_to_usecs(ca_seq_rtt
);
3427 ca_ops
->pkts_acked(sk
, pkts_acked
, rtt_us
);
3431 #if FASTRETRANS_DEBUG > 0
3432 WARN_ON((int)tp
->sacked_out
< 0);
3433 WARN_ON((int)tp
->lost_out
< 0);
3434 WARN_ON((int)tp
->retrans_out
< 0);
3435 if (!tp
->packets_out
&& tcp_is_sack(tp
)) {
3436 icsk
= inet_csk(sk
);
3438 printk(KERN_DEBUG
"Leak l=%u %d\n",
3439 tp
->lost_out
, icsk
->icsk_ca_state
);
3442 if (tp
->sacked_out
) {
3443 printk(KERN_DEBUG
"Leak s=%u %d\n",
3444 tp
->sacked_out
, icsk
->icsk_ca_state
);
3447 if (tp
->retrans_out
) {
3448 printk(KERN_DEBUG
"Leak r=%u %d\n",
3449 tp
->retrans_out
, icsk
->icsk_ca_state
);
3450 tp
->retrans_out
= 0;
3457 static void tcp_ack_probe(struct sock
*sk
)
3459 const struct tcp_sock
*tp
= tcp_sk(sk
);
3460 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3462 /* Was it a usable window open? */
3464 if (!after(TCP_SKB_CB(tcp_send_head(sk
))->end_seq
, tcp_wnd_end(tp
))) {
3465 icsk
->icsk_backoff
= 0;
3466 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_PROBE0
);
3467 /* Socket must be waked up by subsequent tcp_data_snd_check().
3468 * This function is not for random using!
3471 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_PROBE0
,
3472 min(icsk
->icsk_rto
<< icsk
->icsk_backoff
, TCP_RTO_MAX
),
3477 static inline int tcp_ack_is_dubious(const struct sock
*sk
, const int flag
)
3479 return !(flag
& FLAG_NOT_DUP
) || (flag
& FLAG_CA_ALERT
) ||
3480 inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
;
3483 static inline int tcp_may_raise_cwnd(const struct sock
*sk
, const int flag
)
3485 const struct tcp_sock
*tp
= tcp_sk(sk
);
3486 return (!(flag
& FLAG_ECE
) || tp
->snd_cwnd
< tp
->snd_ssthresh
) &&
3487 !((1 << inet_csk(sk
)->icsk_ca_state
) & (TCPF_CA_Recovery
| TCPF_CA_CWR
));
3490 /* Check that window update is acceptable.
3491 * The function assumes that snd_una<=ack<=snd_next.
3493 static inline int tcp_may_update_window(const struct tcp_sock
*tp
,
3494 const u32 ack
, const u32 ack_seq
,
3497 return after(ack
, tp
->snd_una
) ||
3498 after(ack_seq
, tp
->snd_wl1
) ||
3499 (ack_seq
== tp
->snd_wl1
&& nwin
> tp
->snd_wnd
);
3502 /* Update our send window.
3504 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3505 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3507 static int tcp_ack_update_window(struct sock
*sk
, const struct sk_buff
*skb
, u32 ack
,
3510 struct tcp_sock
*tp
= tcp_sk(sk
);
3512 u32 nwin
= ntohs(tcp_hdr(skb
)->window
);
3514 if (likely(!tcp_hdr(skb
)->syn
))
3515 nwin
<<= tp
->rx_opt
.snd_wscale
;
3517 if (tcp_may_update_window(tp
, ack
, ack_seq
, nwin
)) {
3518 flag
|= FLAG_WIN_UPDATE
;
3519 tcp_update_wl(tp
, ack_seq
);
3521 if (tp
->snd_wnd
!= nwin
) {
3524 /* Note, it is the only place, where
3525 * fast path is recovered for sending TCP.
3528 tcp_fast_path_check(sk
);
3530 if (nwin
> tp
->max_window
) {
3531 tp
->max_window
= nwin
;
3532 tcp_sync_mss(sk
, inet_csk(sk
)->icsk_pmtu_cookie
);
3542 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3543 * continue in congestion avoidance.
3545 static void tcp_conservative_spur_to_response(struct tcp_sock
*tp
)
3547 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tp
->snd_ssthresh
);
3548 tp
->snd_cwnd_cnt
= 0;
3549 tp
->bytes_acked
= 0;
3550 TCP_ECN_queue_cwr(tp
);
3551 tcp_moderate_cwnd(tp
);
3554 /* A conservative spurious RTO response algorithm: reduce cwnd using
3555 * rate halving and continue in congestion avoidance.
3557 static void tcp_ratehalving_spur_to_response(struct sock
*sk
)
3559 tcp_enter_cwr(sk
, 0);
3562 static void tcp_undo_spur_to_response(struct sock
*sk
, int flag
)
3564 if (flag
& FLAG_ECE
)
3565 tcp_ratehalving_spur_to_response(sk
);
3567 tcp_undo_cwr(sk
, true);
3570 /* F-RTO spurious RTO detection algorithm (RFC4138)
3572 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3573 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3574 * window (but not to or beyond highest sequence sent before RTO):
3575 * On First ACK, send two new segments out.
3576 * On Second ACK, RTO was likely spurious. Do spurious response (response
3577 * algorithm is not part of the F-RTO detection algorithm
3578 * given in RFC4138 but can be selected separately).
3579 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3580 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3581 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3582 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3584 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3585 * original window even after we transmit two new data segments.
3588 * on first step, wait until first cumulative ACK arrives, then move to
3589 * the second step. In second step, the next ACK decides.
3591 * F-RTO is implemented (mainly) in four functions:
3592 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3593 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3594 * called when tcp_use_frto() showed green light
3595 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3596 * - tcp_enter_frto_loss() is called if there is not enough evidence
3597 * to prove that the RTO is indeed spurious. It transfers the control
3598 * from F-RTO to the conventional RTO recovery
3600 static int tcp_process_frto(struct sock
*sk
, int flag
)
3602 struct tcp_sock
*tp
= tcp_sk(sk
);
3604 tcp_verify_left_out(tp
);
3606 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3607 if (flag
& FLAG_DATA_ACKED
)
3608 inet_csk(sk
)->icsk_retransmits
= 0;
3610 if ((flag
& FLAG_NONHEAD_RETRANS_ACKED
) ||
3611 ((tp
->frto_counter
>= 2) && (flag
& FLAG_RETRANS_DATA_ACKED
)))
3612 tp
->undo_marker
= 0;
3614 if (!before(tp
->snd_una
, tp
->frto_highmark
)) {
3615 tcp_enter_frto_loss(sk
, (tp
->frto_counter
== 1 ? 2 : 3), flag
);
3619 if (!tcp_is_sackfrto(tp
)) {
3620 /* RFC4138 shortcoming in step 2; should also have case c):
3621 * ACK isn't duplicate nor advances window, e.g., opposite dir
3624 if (!(flag
& FLAG_ANY_PROGRESS
) && (flag
& FLAG_NOT_DUP
))
3627 if (!(flag
& FLAG_DATA_ACKED
)) {
3628 tcp_enter_frto_loss(sk
, (tp
->frto_counter
== 1 ? 0 : 3),
3633 if (!(flag
& FLAG_DATA_ACKED
) && (tp
->frto_counter
== 1)) {
3634 /* Prevent sending of new data. */
3635 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
3636 tcp_packets_in_flight(tp
));
3640 if ((tp
->frto_counter
>= 2) &&
3641 (!(flag
& FLAG_FORWARD_PROGRESS
) ||
3642 ((flag
& FLAG_DATA_SACKED
) &&
3643 !(flag
& FLAG_ONLY_ORIG_SACKED
)))) {
3644 /* RFC4138 shortcoming (see comment above) */
3645 if (!(flag
& FLAG_FORWARD_PROGRESS
) &&
3646 (flag
& FLAG_NOT_DUP
))
3649 tcp_enter_frto_loss(sk
, 3, flag
);
3654 if (tp
->frto_counter
== 1) {
3655 /* tcp_may_send_now needs to see updated state */
3656 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + 2;
3657 tp
->frto_counter
= 2;
3659 if (!tcp_may_send_now(sk
))
3660 tcp_enter_frto_loss(sk
, 2, flag
);
3664 switch (sysctl_tcp_frto_response
) {
3666 tcp_undo_spur_to_response(sk
, flag
);
3669 tcp_conservative_spur_to_response(tp
);
3672 tcp_ratehalving_spur_to_response(sk
);
3675 tp
->frto_counter
= 0;
3676 tp
->undo_marker
= 0;
3677 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPSPURIOUSRTOS
);
3682 /* This routine deals with incoming acks, but not outgoing ones. */
3683 static int tcp_ack(struct sock
*sk
, const struct sk_buff
*skb
, int flag
)
3685 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3686 struct tcp_sock
*tp
= tcp_sk(sk
);
3687 u32 prior_snd_una
= tp
->snd_una
;
3688 u32 ack_seq
= TCP_SKB_CB(skb
)->seq
;
3689 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3690 bool is_dupack
= false;
3691 u32 prior_in_flight
;
3694 int prior_sacked
= tp
->sacked_out
;
3696 int newly_acked_sacked
= 0;
3699 /* If the ack is older than previous acks
3700 * then we can probably ignore it.
3702 if (before(ack
, prior_snd_una
))
3705 /* If the ack includes data we haven't sent yet, discard
3706 * this segment (RFC793 Section 3.9).
3708 if (after(ack
, tp
->snd_nxt
))
3711 if (after(ack
, prior_snd_una
))
3712 flag
|= FLAG_SND_UNA_ADVANCED
;
3714 if (sysctl_tcp_abc
) {
3715 if (icsk
->icsk_ca_state
< TCP_CA_CWR
)
3716 tp
->bytes_acked
+= ack
- prior_snd_una
;
3717 else if (icsk
->icsk_ca_state
== TCP_CA_Loss
)
3718 /* we assume just one segment left network */
3719 tp
->bytes_acked
+= min(ack
- prior_snd_una
,
3723 prior_fackets
= tp
->fackets_out
;
3724 prior_in_flight
= tcp_packets_in_flight(tp
);
3726 if (!(flag
& FLAG_SLOWPATH
) && after(ack
, prior_snd_una
)) {
3727 /* Window is constant, pure forward advance.
3728 * No more checks are required.
3729 * Note, we use the fact that SND.UNA>=SND.WL2.
3731 tcp_update_wl(tp
, ack_seq
);
3733 flag
|= FLAG_WIN_UPDATE
;
3735 tcp_ca_event(sk
, CA_EVENT_FAST_ACK
);
3737 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPHPACKS
);
3739 if (ack_seq
!= TCP_SKB_CB(skb
)->end_seq
)
3742 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPPUREACKS
);
3744 flag
|= tcp_ack_update_window(sk
, skb
, ack
, ack_seq
);
3746 if (TCP_SKB_CB(skb
)->sacked
)
3747 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
);
3749 if (TCP_ECN_rcv_ecn_echo(tp
, tcp_hdr(skb
)))
3752 tcp_ca_event(sk
, CA_EVENT_SLOW_ACK
);
3755 /* We passed data and got it acked, remove any soft error
3756 * log. Something worked...
3758 sk
->sk_err_soft
= 0;
3759 icsk
->icsk_probes_out
= 0;
3760 tp
->rcv_tstamp
= tcp_time_stamp
;
3761 prior_packets
= tp
->packets_out
;
3765 /* See if we can take anything off of the retransmit queue. */
3766 flag
|= tcp_clean_rtx_queue(sk
, prior_fackets
, prior_snd_una
);
3768 pkts_acked
= prior_packets
- tp
->packets_out
;
3769 newly_acked_sacked
= (prior_packets
- prior_sacked
) -
3770 (tp
->packets_out
- tp
->sacked_out
);
3772 if (tp
->frto_counter
)
3773 frto_cwnd
= tcp_process_frto(sk
, flag
);
3774 /* Guarantee sacktag reordering detection against wrap-arounds */
3775 if (before(tp
->frto_highmark
, tp
->snd_una
))
3776 tp
->frto_highmark
= 0;
3778 if (tcp_ack_is_dubious(sk
, flag
)) {
3779 /* Advance CWND, if state allows this. */
3780 if ((flag
& FLAG_DATA_ACKED
) && !frto_cwnd
&&
3781 tcp_may_raise_cwnd(sk
, flag
))
3782 tcp_cong_avoid(sk
, ack
, prior_in_flight
);
3783 is_dupack
= !(flag
& (FLAG_SND_UNA_ADVANCED
| FLAG_NOT_DUP
));
3784 tcp_fastretrans_alert(sk
, pkts_acked
, newly_acked_sacked
,
3787 if ((flag
& FLAG_DATA_ACKED
) && !frto_cwnd
)
3788 tcp_cong_avoid(sk
, ack
, prior_in_flight
);
3791 if ((flag
& FLAG_FORWARD_PROGRESS
) || !(flag
& FLAG_NOT_DUP
))
3792 dst_confirm(__sk_dst_get(sk
));
3797 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3798 if (flag
& FLAG_DSACKING_ACK
)
3799 tcp_fastretrans_alert(sk
, pkts_acked
, newly_acked_sacked
,
3801 /* If this ack opens up a zero window, clear backoff. It was
3802 * being used to time the probes, and is probably far higher than
3803 * it needs to be for normal retransmission.
3805 if (tcp_send_head(sk
))
3810 SOCK_DEBUG(sk
, "Ack %u after %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
3814 /* If data was SACKed, tag it and see if we should send more data.
3815 * If data was DSACKed, see if we can undo a cwnd reduction.
3817 if (TCP_SKB_CB(skb
)->sacked
) {
3818 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
);
3819 newly_acked_sacked
= tp
->sacked_out
- prior_sacked
;
3820 tcp_fastretrans_alert(sk
, pkts_acked
, newly_acked_sacked
,
3824 SOCK_DEBUG(sk
, "Ack %u before %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
3828 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3829 * But, this can also be called on packets in the established flow when
3830 * the fast version below fails.
3832 void tcp_parse_options(const struct sk_buff
*skb
, struct tcp_options_received
*opt_rx
,
3833 const u8
**hvpp
, int estab
)
3835 const unsigned char *ptr
;
3836 const struct tcphdr
*th
= tcp_hdr(skb
);
3837 int length
= (th
->doff
* 4) - sizeof(struct tcphdr
);
3839 ptr
= (const unsigned char *)(th
+ 1);
3840 opt_rx
->saw_tstamp
= 0;
3842 while (length
> 0) {
3843 int opcode
= *ptr
++;
3849 case TCPOPT_NOP
: /* Ref: RFC 793 section 3.1 */
3854 if (opsize
< 2) /* "silly options" */
3856 if (opsize
> length
)
3857 return; /* don't parse partial options */
3860 if (opsize
== TCPOLEN_MSS
&& th
->syn
&& !estab
) {
3861 u16 in_mss
= get_unaligned_be16(ptr
);
3863 if (opt_rx
->user_mss
&&
3864 opt_rx
->user_mss
< in_mss
)
3865 in_mss
= opt_rx
->user_mss
;
3866 opt_rx
->mss_clamp
= in_mss
;
3871 if (opsize
== TCPOLEN_WINDOW
&& th
->syn
&&
3872 !estab
&& sysctl_tcp_window_scaling
) {
3873 __u8 snd_wscale
= *(__u8
*)ptr
;
3874 opt_rx
->wscale_ok
= 1;
3875 if (snd_wscale
> 14) {
3876 if (net_ratelimit())
3877 printk(KERN_INFO
"tcp_parse_options: Illegal window "
3878 "scaling value %d >14 received.\n",
3882 opt_rx
->snd_wscale
= snd_wscale
;
3885 case TCPOPT_TIMESTAMP
:
3886 if ((opsize
== TCPOLEN_TIMESTAMP
) &&
3887 ((estab
&& opt_rx
->tstamp_ok
) ||
3888 (!estab
&& sysctl_tcp_timestamps
))) {
3889 opt_rx
->saw_tstamp
= 1;
3890 opt_rx
->rcv_tsval
= get_unaligned_be32(ptr
);
3891 opt_rx
->rcv_tsecr
= get_unaligned_be32(ptr
+ 4);
3894 case TCPOPT_SACK_PERM
:
3895 if (opsize
== TCPOLEN_SACK_PERM
&& th
->syn
&&
3896 !estab
&& sysctl_tcp_sack
) {
3897 opt_rx
->sack_ok
= TCP_SACK_SEEN
;
3898 tcp_sack_reset(opt_rx
);
3903 if ((opsize
>= (TCPOLEN_SACK_BASE
+ TCPOLEN_SACK_PERBLOCK
)) &&
3904 !((opsize
- TCPOLEN_SACK_BASE
) % TCPOLEN_SACK_PERBLOCK
) &&
3906 TCP_SKB_CB(skb
)->sacked
= (ptr
- 2) - (unsigned char *)th
;
3909 #ifdef CONFIG_TCP_MD5SIG
3912 * The MD5 Hash has already been
3913 * checked (see tcp_v{4,6}_do_rcv()).
3918 /* This option is variable length.
3921 case TCPOLEN_COOKIE_BASE
:
3922 /* not yet implemented */
3924 case TCPOLEN_COOKIE_PAIR
:
3925 /* not yet implemented */
3927 case TCPOLEN_COOKIE_MIN
+0:
3928 case TCPOLEN_COOKIE_MIN
+2:
3929 case TCPOLEN_COOKIE_MIN
+4:
3930 case TCPOLEN_COOKIE_MIN
+6:
3931 case TCPOLEN_COOKIE_MAX
:
3932 /* 16-bit multiple */
3933 opt_rx
->cookie_plus
= opsize
;
3948 EXPORT_SYMBOL(tcp_parse_options
);
3950 static int tcp_parse_aligned_timestamp(struct tcp_sock
*tp
, const struct tcphdr
*th
)
3952 const __be32
*ptr
= (const __be32
*)(th
+ 1);
3954 if (*ptr
== htonl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16)
3955 | (TCPOPT_TIMESTAMP
<< 8) | TCPOLEN_TIMESTAMP
)) {
3956 tp
->rx_opt
.saw_tstamp
= 1;
3958 tp
->rx_opt
.rcv_tsval
= ntohl(*ptr
);
3960 tp
->rx_opt
.rcv_tsecr
= ntohl(*ptr
);
3966 /* Fast parse options. This hopes to only see timestamps.
3967 * If it is wrong it falls back on tcp_parse_options().
3969 static int tcp_fast_parse_options(const struct sk_buff
*skb
,
3970 const struct tcphdr
*th
,
3971 struct tcp_sock
*tp
, const u8
**hvpp
)
3973 /* In the spirit of fast parsing, compare doff directly to constant
3974 * values. Because equality is used, short doff can be ignored here.
3976 if (th
->doff
== (sizeof(*th
) / 4)) {
3977 tp
->rx_opt
.saw_tstamp
= 0;
3979 } else if (tp
->rx_opt
.tstamp_ok
&&
3980 th
->doff
== ((sizeof(*th
) + TCPOLEN_TSTAMP_ALIGNED
) / 4)) {
3981 if (tcp_parse_aligned_timestamp(tp
, th
))
3984 tcp_parse_options(skb
, &tp
->rx_opt
, hvpp
, 1);
3988 #ifdef CONFIG_TCP_MD5SIG
3990 * Parse MD5 Signature option
3992 const u8
*tcp_parse_md5sig_option(const struct tcphdr
*th
)
3994 int length
= (th
->doff
<< 2) - sizeof(*th
);
3995 const u8
*ptr
= (const u8
*)(th
+ 1);
3997 /* If the TCP option is too short, we can short cut */
3998 if (length
< TCPOLEN_MD5SIG
)
4001 while (length
> 0) {
4002 int opcode
= *ptr
++;
4013 if (opsize
< 2 || opsize
> length
)
4015 if (opcode
== TCPOPT_MD5SIG
)
4016 return opsize
== TCPOLEN_MD5SIG
? ptr
: NULL
;
4023 EXPORT_SYMBOL(tcp_parse_md5sig_option
);
4026 static inline void tcp_store_ts_recent(struct tcp_sock
*tp
)
4028 tp
->rx_opt
.ts_recent
= tp
->rx_opt
.rcv_tsval
;
4029 tp
->rx_opt
.ts_recent_stamp
= get_seconds();
4032 static inline void tcp_replace_ts_recent(struct tcp_sock
*tp
, u32 seq
)
4034 if (tp
->rx_opt
.saw_tstamp
&& !after(seq
, tp
->rcv_wup
)) {
4035 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
4036 * extra check below makes sure this can only happen
4037 * for pure ACK frames. -DaveM
4039 * Not only, also it occurs for expired timestamps.
4042 if (tcp_paws_check(&tp
->rx_opt
, 0))
4043 tcp_store_ts_recent(tp
);
4047 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4049 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4050 * it can pass through stack. So, the following predicate verifies that
4051 * this segment is not used for anything but congestion avoidance or
4052 * fast retransmit. Moreover, we even are able to eliminate most of such
4053 * second order effects, if we apply some small "replay" window (~RTO)
4054 * to timestamp space.
4056 * All these measures still do not guarantee that we reject wrapped ACKs
4057 * on networks with high bandwidth, when sequence space is recycled fastly,
4058 * but it guarantees that such events will be very rare and do not affect
4059 * connection seriously. This doesn't look nice, but alas, PAWS is really
4062 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4063 * states that events when retransmit arrives after original data are rare.
4064 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4065 * the biggest problem on large power networks even with minor reordering.
4066 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4067 * up to bandwidth of 18Gigabit/sec. 8) ]
4070 static int tcp_disordered_ack(const struct sock
*sk
, const struct sk_buff
*skb
)
4072 const struct tcp_sock
*tp
= tcp_sk(sk
);
4073 const struct tcphdr
*th
= tcp_hdr(skb
);
4074 u32 seq
= TCP_SKB_CB(skb
)->seq
;
4075 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
4077 return (/* 1. Pure ACK with correct sequence number. */
4078 (th
->ack
&& seq
== TCP_SKB_CB(skb
)->end_seq
&& seq
== tp
->rcv_nxt
) &&
4080 /* 2. ... and duplicate ACK. */
4081 ack
== tp
->snd_una
&&
4083 /* 3. ... and does not update window. */
4084 !tcp_may_update_window(tp
, ack
, seq
, ntohs(th
->window
) << tp
->rx_opt
.snd_wscale
) &&
4086 /* 4. ... and sits in replay window. */
4087 (s32
)(tp
->rx_opt
.ts_recent
- tp
->rx_opt
.rcv_tsval
) <= (inet_csk(sk
)->icsk_rto
* 1024) / HZ
);
4090 static inline int tcp_paws_discard(const struct sock
*sk
,
4091 const struct sk_buff
*skb
)
4093 const struct tcp_sock
*tp
= tcp_sk(sk
);
4095 return !tcp_paws_check(&tp
->rx_opt
, TCP_PAWS_WINDOW
) &&
4096 !tcp_disordered_ack(sk
, skb
);
4099 /* Check segment sequence number for validity.
4101 * Segment controls are considered valid, if the segment
4102 * fits to the window after truncation to the window. Acceptability
4103 * of data (and SYN, FIN, of course) is checked separately.
4104 * See tcp_data_queue(), for example.
4106 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4107 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4108 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4109 * (borrowed from freebsd)
4112 static inline int tcp_sequence(const struct tcp_sock
*tp
, u32 seq
, u32 end_seq
)
4114 return !before(end_seq
, tp
->rcv_wup
) &&
4115 !after(seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
));
4118 /* When we get a reset we do this. */
4119 static void tcp_reset(struct sock
*sk
)
4121 /* We want the right error as BSD sees it (and indeed as we do). */
4122 switch (sk
->sk_state
) {
4124 sk
->sk_err
= ECONNREFUSED
;
4126 case TCP_CLOSE_WAIT
:
4132 sk
->sk_err
= ECONNRESET
;
4134 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4137 if (!sock_flag(sk
, SOCK_DEAD
))
4138 sk
->sk_error_report(sk
);
4144 * Process the FIN bit. This now behaves as it is supposed to work
4145 * and the FIN takes effect when it is validly part of sequence
4146 * space. Not before when we get holes.
4148 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4149 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4152 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4153 * close and we go into CLOSING (and later onto TIME-WAIT)
4155 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4157 static void tcp_fin(struct sock
*sk
)
4159 struct tcp_sock
*tp
= tcp_sk(sk
);
4161 inet_csk_schedule_ack(sk
);
4163 sk
->sk_shutdown
|= RCV_SHUTDOWN
;
4164 sock_set_flag(sk
, SOCK_DONE
);
4166 switch (sk
->sk_state
) {
4168 case TCP_ESTABLISHED
:
4169 /* Move to CLOSE_WAIT */
4170 tcp_set_state(sk
, TCP_CLOSE_WAIT
);
4171 inet_csk(sk
)->icsk_ack
.pingpong
= 1;
4174 case TCP_CLOSE_WAIT
:
4176 /* Received a retransmission of the FIN, do
4181 /* RFC793: Remain in the LAST-ACK state. */
4185 /* This case occurs when a simultaneous close
4186 * happens, we must ack the received FIN and
4187 * enter the CLOSING state.
4190 tcp_set_state(sk
, TCP_CLOSING
);
4193 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4195 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
4198 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4199 * cases we should never reach this piece of code.
4201 printk(KERN_ERR
"%s: Impossible, sk->sk_state=%d\n",
4202 __func__
, sk
->sk_state
);
4206 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4207 * Probably, we should reset in this case. For now drop them.
4209 __skb_queue_purge(&tp
->out_of_order_queue
);
4210 if (tcp_is_sack(tp
))
4211 tcp_sack_reset(&tp
->rx_opt
);
4214 if (!sock_flag(sk
, SOCK_DEAD
)) {
4215 sk
->sk_state_change(sk
);
4217 /* Do not send POLL_HUP for half duplex close. */
4218 if (sk
->sk_shutdown
== SHUTDOWN_MASK
||
4219 sk
->sk_state
== TCP_CLOSE
)
4220 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_HUP
);
4222 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_IN
);
4226 static inline int tcp_sack_extend(struct tcp_sack_block
*sp
, u32 seq
,
4229 if (!after(seq
, sp
->end_seq
) && !after(sp
->start_seq
, end_seq
)) {
4230 if (before(seq
, sp
->start_seq
))
4231 sp
->start_seq
= seq
;
4232 if (after(end_seq
, sp
->end_seq
))
4233 sp
->end_seq
= end_seq
;
4239 static void tcp_dsack_set(struct sock
*sk
, u32 seq
, u32 end_seq
)
4241 struct tcp_sock
*tp
= tcp_sk(sk
);
4243 if (tcp_is_sack(tp
) && sysctl_tcp_dsack
) {
4246 if (before(seq
, tp
->rcv_nxt
))
4247 mib_idx
= LINUX_MIB_TCPDSACKOLDSENT
;
4249 mib_idx
= LINUX_MIB_TCPDSACKOFOSENT
;
4251 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
4253 tp
->rx_opt
.dsack
= 1;
4254 tp
->duplicate_sack
[0].start_seq
= seq
;
4255 tp
->duplicate_sack
[0].end_seq
= end_seq
;
4259 static void tcp_dsack_extend(struct sock
*sk
, u32 seq
, u32 end_seq
)
4261 struct tcp_sock
*tp
= tcp_sk(sk
);
4263 if (!tp
->rx_opt
.dsack
)
4264 tcp_dsack_set(sk
, seq
, end_seq
);
4266 tcp_sack_extend(tp
->duplicate_sack
, seq
, end_seq
);
4269 static void tcp_send_dupack(struct sock
*sk
, const struct sk_buff
*skb
)
4271 struct tcp_sock
*tp
= tcp_sk(sk
);
4273 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
4274 before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4275 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4276 tcp_enter_quickack_mode(sk
);
4278 if (tcp_is_sack(tp
) && sysctl_tcp_dsack
) {
4279 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4281 if (after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
))
4282 end_seq
= tp
->rcv_nxt
;
4283 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, end_seq
);
4290 /* These routines update the SACK block as out-of-order packets arrive or
4291 * in-order packets close up the sequence space.
4293 static void tcp_sack_maybe_coalesce(struct tcp_sock
*tp
)
4296 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4297 struct tcp_sack_block
*swalk
= sp
+ 1;
4299 /* See if the recent change to the first SACK eats into
4300 * or hits the sequence space of other SACK blocks, if so coalesce.
4302 for (this_sack
= 1; this_sack
< tp
->rx_opt
.num_sacks
;) {
4303 if (tcp_sack_extend(sp
, swalk
->start_seq
, swalk
->end_seq
)) {
4306 /* Zap SWALK, by moving every further SACK up by one slot.
4307 * Decrease num_sacks.
4309 tp
->rx_opt
.num_sacks
--;
4310 for (i
= this_sack
; i
< tp
->rx_opt
.num_sacks
; i
++)
4314 this_sack
++, swalk
++;
4318 static void tcp_sack_new_ofo_skb(struct sock
*sk
, u32 seq
, u32 end_seq
)
4320 struct tcp_sock
*tp
= tcp_sk(sk
);
4321 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4322 int cur_sacks
= tp
->rx_opt
.num_sacks
;
4328 for (this_sack
= 0; this_sack
< cur_sacks
; this_sack
++, sp
++) {
4329 if (tcp_sack_extend(sp
, seq
, end_seq
)) {
4330 /* Rotate this_sack to the first one. */
4331 for (; this_sack
> 0; this_sack
--, sp
--)
4332 swap(*sp
, *(sp
- 1));
4334 tcp_sack_maybe_coalesce(tp
);
4339 /* Could not find an adjacent existing SACK, build a new one,
4340 * put it at the front, and shift everyone else down. We
4341 * always know there is at least one SACK present already here.
4343 * If the sack array is full, forget about the last one.
4345 if (this_sack
>= TCP_NUM_SACKS
) {
4347 tp
->rx_opt
.num_sacks
--;
4350 for (; this_sack
> 0; this_sack
--, sp
--)
4354 /* Build the new head SACK, and we're done. */
4355 sp
->start_seq
= seq
;
4356 sp
->end_seq
= end_seq
;
4357 tp
->rx_opt
.num_sacks
++;
4360 /* RCV.NXT advances, some SACKs should be eaten. */
4362 static void tcp_sack_remove(struct tcp_sock
*tp
)
4364 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4365 int num_sacks
= tp
->rx_opt
.num_sacks
;
4368 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4369 if (skb_queue_empty(&tp
->out_of_order_queue
)) {
4370 tp
->rx_opt
.num_sacks
= 0;
4374 for (this_sack
= 0; this_sack
< num_sacks
;) {
4375 /* Check if the start of the sack is covered by RCV.NXT. */
4376 if (!before(tp
->rcv_nxt
, sp
->start_seq
)) {
4379 /* RCV.NXT must cover all the block! */
4380 WARN_ON(before(tp
->rcv_nxt
, sp
->end_seq
));
4382 /* Zap this SACK, by moving forward any other SACKS. */
4383 for (i
=this_sack
+1; i
< num_sacks
; i
++)
4384 tp
->selective_acks
[i
-1] = tp
->selective_acks
[i
];
4391 tp
->rx_opt
.num_sacks
= num_sacks
;
4394 /* This one checks to see if we can put data from the
4395 * out_of_order queue into the receive_queue.
4397 static void tcp_ofo_queue(struct sock
*sk
)
4399 struct tcp_sock
*tp
= tcp_sk(sk
);
4400 __u32 dsack_high
= tp
->rcv_nxt
;
4401 struct sk_buff
*skb
;
4403 while ((skb
= skb_peek(&tp
->out_of_order_queue
)) != NULL
) {
4404 if (after(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
4407 if (before(TCP_SKB_CB(skb
)->seq
, dsack_high
)) {
4408 __u32 dsack
= dsack_high
;
4409 if (before(TCP_SKB_CB(skb
)->end_seq
, dsack_high
))
4410 dsack_high
= TCP_SKB_CB(skb
)->end_seq
;
4411 tcp_dsack_extend(sk
, TCP_SKB_CB(skb
)->seq
, dsack
);
4414 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
4415 SOCK_DEBUG(sk
, "ofo packet was already received\n");
4416 __skb_unlink(skb
, &tp
->out_of_order_queue
);
4420 SOCK_DEBUG(sk
, "ofo requeuing : rcv_next %X seq %X - %X\n",
4421 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
4422 TCP_SKB_CB(skb
)->end_seq
);
4424 __skb_unlink(skb
, &tp
->out_of_order_queue
);
4425 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4426 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
4427 if (tcp_hdr(skb
)->fin
)
4432 static int tcp_prune_ofo_queue(struct sock
*sk
);
4433 static int tcp_prune_queue(struct sock
*sk
);
4435 static inline int tcp_try_rmem_schedule(struct sock
*sk
, unsigned int size
)
4437 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
||
4438 !sk_rmem_schedule(sk
, size
)) {
4440 if (tcp_prune_queue(sk
) < 0)
4443 if (!sk_rmem_schedule(sk
, size
)) {
4444 if (!tcp_prune_ofo_queue(sk
))
4447 if (!sk_rmem_schedule(sk
, size
))
4454 static void tcp_data_queue(struct sock
*sk
, struct sk_buff
*skb
)
4456 const struct tcphdr
*th
= tcp_hdr(skb
);
4457 struct tcp_sock
*tp
= tcp_sk(sk
);
4460 if (TCP_SKB_CB(skb
)->seq
== TCP_SKB_CB(skb
)->end_seq
)
4464 __skb_pull(skb
, th
->doff
* 4);
4466 TCP_ECN_accept_cwr(tp
, skb
);
4468 tp
->rx_opt
.dsack
= 0;
4470 /* Queue data for delivery to the user.
4471 * Packets in sequence go to the receive queue.
4472 * Out of sequence packets to the out_of_order_queue.
4474 if (TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
) {
4475 if (tcp_receive_window(tp
) == 0)
4478 /* Ok. In sequence. In window. */
4479 if (tp
->ucopy
.task
== current
&&
4480 tp
->copied_seq
== tp
->rcv_nxt
&& tp
->ucopy
.len
&&
4481 sock_owned_by_user(sk
) && !tp
->urg_data
) {
4482 int chunk
= min_t(unsigned int, skb
->len
,
4485 __set_current_state(TASK_RUNNING
);
4488 if (!skb_copy_datagram_iovec(skb
, 0, tp
->ucopy
.iov
, chunk
)) {
4489 tp
->ucopy
.len
-= chunk
;
4490 tp
->copied_seq
+= chunk
;
4491 eaten
= (chunk
== skb
->len
);
4492 tcp_rcv_space_adjust(sk
);
4500 tcp_try_rmem_schedule(sk
, skb
->truesize
))
4503 skb_set_owner_r(skb
, sk
);
4504 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4506 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
4508 tcp_event_data_recv(sk
, skb
);
4512 if (!skb_queue_empty(&tp
->out_of_order_queue
)) {
4515 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4516 * gap in queue is filled.
4518 if (skb_queue_empty(&tp
->out_of_order_queue
))
4519 inet_csk(sk
)->icsk_ack
.pingpong
= 0;
4522 if (tp
->rx_opt
.num_sacks
)
4523 tcp_sack_remove(tp
);
4525 tcp_fast_path_check(sk
);
4529 else if (!sock_flag(sk
, SOCK_DEAD
))
4530 sk
->sk_data_ready(sk
, 0);
4534 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
4535 /* A retransmit, 2nd most common case. Force an immediate ack. */
4536 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4537 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
4540 tcp_enter_quickack_mode(sk
);
4541 inet_csk_schedule_ack(sk
);
4547 /* Out of window. F.e. zero window probe. */
4548 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
)))
4551 tcp_enter_quickack_mode(sk
);
4553 if (before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4554 /* Partial packet, seq < rcv_next < end_seq */
4555 SOCK_DEBUG(sk
, "partial packet: rcv_next %X seq %X - %X\n",
4556 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
4557 TCP_SKB_CB(skb
)->end_seq
);
4559 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
);
4561 /* If window is closed, drop tail of packet. But after
4562 * remembering D-SACK for its head made in previous line.
4564 if (!tcp_receive_window(tp
))
4569 TCP_ECN_check_ce(tp
, skb
);
4571 if (tcp_try_rmem_schedule(sk
, skb
->truesize
))
4574 /* Disable header prediction. */
4576 inet_csk_schedule_ack(sk
);
4578 SOCK_DEBUG(sk
, "out of order segment: rcv_next %X seq %X - %X\n",
4579 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
4581 skb_set_owner_r(skb
, sk
);
4583 if (!skb_peek(&tp
->out_of_order_queue
)) {
4584 /* Initial out of order segment, build 1 SACK. */
4585 if (tcp_is_sack(tp
)) {
4586 tp
->rx_opt
.num_sacks
= 1;
4587 tp
->selective_acks
[0].start_seq
= TCP_SKB_CB(skb
)->seq
;
4588 tp
->selective_acks
[0].end_seq
=
4589 TCP_SKB_CB(skb
)->end_seq
;
4591 __skb_queue_head(&tp
->out_of_order_queue
, skb
);
4593 struct sk_buff
*skb1
= skb_peek_tail(&tp
->out_of_order_queue
);
4594 u32 seq
= TCP_SKB_CB(skb
)->seq
;
4595 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4597 if (seq
== TCP_SKB_CB(skb1
)->end_seq
) {
4598 __skb_queue_after(&tp
->out_of_order_queue
, skb1
, skb
);
4600 if (!tp
->rx_opt
.num_sacks
||
4601 tp
->selective_acks
[0].end_seq
!= seq
)
4604 /* Common case: data arrive in order after hole. */
4605 tp
->selective_acks
[0].end_seq
= end_seq
;
4609 /* Find place to insert this segment. */
4611 if (!after(TCP_SKB_CB(skb1
)->seq
, seq
))
4613 if (skb_queue_is_first(&tp
->out_of_order_queue
, skb1
)) {
4617 skb1
= skb_queue_prev(&tp
->out_of_order_queue
, skb1
);
4620 /* Do skb overlap to previous one? */
4621 if (skb1
&& before(seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4622 if (!after(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4623 /* All the bits are present. Drop. */
4625 tcp_dsack_set(sk
, seq
, end_seq
);
4628 if (after(seq
, TCP_SKB_CB(skb1
)->seq
)) {
4629 /* Partial overlap. */
4630 tcp_dsack_set(sk
, seq
,
4631 TCP_SKB_CB(skb1
)->end_seq
);
4633 if (skb_queue_is_first(&tp
->out_of_order_queue
,
4637 skb1
= skb_queue_prev(
4638 &tp
->out_of_order_queue
,
4643 __skb_queue_head(&tp
->out_of_order_queue
, skb
);
4645 __skb_queue_after(&tp
->out_of_order_queue
, skb1
, skb
);
4647 /* And clean segments covered by new one as whole. */
4648 while (!skb_queue_is_last(&tp
->out_of_order_queue
, skb
)) {
4649 skb1
= skb_queue_next(&tp
->out_of_order_queue
, skb
);
4651 if (!after(end_seq
, TCP_SKB_CB(skb1
)->seq
))
4653 if (before(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4654 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4658 __skb_unlink(skb1
, &tp
->out_of_order_queue
);
4659 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4660 TCP_SKB_CB(skb1
)->end_seq
);
4665 if (tcp_is_sack(tp
))
4666 tcp_sack_new_ofo_skb(sk
, seq
, end_seq
);
4670 static struct sk_buff
*tcp_collapse_one(struct sock
*sk
, struct sk_buff
*skb
,
4671 struct sk_buff_head
*list
)
4673 struct sk_buff
*next
= NULL
;
4675 if (!skb_queue_is_last(list
, skb
))
4676 next
= skb_queue_next(list
, skb
);
4678 __skb_unlink(skb
, list
);
4680 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPRCVCOLLAPSED
);
4685 /* Collapse contiguous sequence of skbs head..tail with
4686 * sequence numbers start..end.
4688 * If tail is NULL, this means until the end of the list.
4690 * Segments with FIN/SYN are not collapsed (only because this
4694 tcp_collapse(struct sock
*sk
, struct sk_buff_head
*list
,
4695 struct sk_buff
*head
, struct sk_buff
*tail
,
4698 struct sk_buff
*skb
, *n
;
4701 /* First, check that queue is collapsible and find
4702 * the point where collapsing can be useful. */
4706 skb_queue_walk_from_safe(list
, skb
, n
) {
4709 /* No new bits? It is possible on ofo queue. */
4710 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4711 skb
= tcp_collapse_one(sk
, skb
, list
);
4717 /* The first skb to collapse is:
4719 * - bloated or contains data before "start" or
4720 * overlaps to the next one.
4722 if (!tcp_hdr(skb
)->syn
&& !tcp_hdr(skb
)->fin
&&
4723 (tcp_win_from_space(skb
->truesize
) > skb
->len
||
4724 before(TCP_SKB_CB(skb
)->seq
, start
))) {
4725 end_of_skbs
= false;
4729 if (!skb_queue_is_last(list
, skb
)) {
4730 struct sk_buff
*next
= skb_queue_next(list
, skb
);
4732 TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(next
)->seq
) {
4733 end_of_skbs
= false;
4738 /* Decided to skip this, advance start seq. */
4739 start
= TCP_SKB_CB(skb
)->end_seq
;
4741 if (end_of_skbs
|| tcp_hdr(skb
)->syn
|| tcp_hdr(skb
)->fin
)
4744 while (before(start
, end
)) {
4745 struct sk_buff
*nskb
;
4746 unsigned int header
= skb_headroom(skb
);
4747 int copy
= SKB_MAX_ORDER(header
, 0);
4749 /* Too big header? This can happen with IPv6. */
4752 if (end
- start
< copy
)
4754 nskb
= alloc_skb(copy
+ header
, GFP_ATOMIC
);
4758 skb_set_mac_header(nskb
, skb_mac_header(skb
) - skb
->head
);
4759 skb_set_network_header(nskb
, (skb_network_header(skb
) -
4761 skb_set_transport_header(nskb
, (skb_transport_header(skb
) -
4763 skb_reserve(nskb
, header
);
4764 memcpy(nskb
->head
, skb
->head
, header
);
4765 memcpy(nskb
->cb
, skb
->cb
, sizeof(skb
->cb
));
4766 TCP_SKB_CB(nskb
)->seq
= TCP_SKB_CB(nskb
)->end_seq
= start
;
4767 __skb_queue_before(list
, skb
, nskb
);
4768 skb_set_owner_r(nskb
, sk
);
4770 /* Copy data, releasing collapsed skbs. */
4772 int offset
= start
- TCP_SKB_CB(skb
)->seq
;
4773 int size
= TCP_SKB_CB(skb
)->end_seq
- start
;
4777 size
= min(copy
, size
);
4778 if (skb_copy_bits(skb
, offset
, skb_put(nskb
, size
), size
))
4780 TCP_SKB_CB(nskb
)->end_seq
+= size
;
4784 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4785 skb
= tcp_collapse_one(sk
, skb
, list
);
4788 tcp_hdr(skb
)->syn
||
4796 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4797 * and tcp_collapse() them until all the queue is collapsed.
4799 static void tcp_collapse_ofo_queue(struct sock
*sk
)
4801 struct tcp_sock
*tp
= tcp_sk(sk
);
4802 struct sk_buff
*skb
= skb_peek(&tp
->out_of_order_queue
);
4803 struct sk_buff
*head
;
4809 start
= TCP_SKB_CB(skb
)->seq
;
4810 end
= TCP_SKB_CB(skb
)->end_seq
;
4814 struct sk_buff
*next
= NULL
;
4816 if (!skb_queue_is_last(&tp
->out_of_order_queue
, skb
))
4817 next
= skb_queue_next(&tp
->out_of_order_queue
, skb
);
4820 /* Segment is terminated when we see gap or when
4821 * we are at the end of all the queue. */
4823 after(TCP_SKB_CB(skb
)->seq
, end
) ||
4824 before(TCP_SKB_CB(skb
)->end_seq
, start
)) {
4825 tcp_collapse(sk
, &tp
->out_of_order_queue
,
4826 head
, skb
, start
, end
);
4830 /* Start new segment */
4831 start
= TCP_SKB_CB(skb
)->seq
;
4832 end
= TCP_SKB_CB(skb
)->end_seq
;
4834 if (before(TCP_SKB_CB(skb
)->seq
, start
))
4835 start
= TCP_SKB_CB(skb
)->seq
;
4836 if (after(TCP_SKB_CB(skb
)->end_seq
, end
))
4837 end
= TCP_SKB_CB(skb
)->end_seq
;
4843 * Purge the out-of-order queue.
4844 * Return true if queue was pruned.
4846 static int tcp_prune_ofo_queue(struct sock
*sk
)
4848 struct tcp_sock
*tp
= tcp_sk(sk
);
4851 if (!skb_queue_empty(&tp
->out_of_order_queue
)) {
4852 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_OFOPRUNED
);
4853 __skb_queue_purge(&tp
->out_of_order_queue
);
4855 /* Reset SACK state. A conforming SACK implementation will
4856 * do the same at a timeout based retransmit. When a connection
4857 * is in a sad state like this, we care only about integrity
4858 * of the connection not performance.
4860 if (tp
->rx_opt
.sack_ok
)
4861 tcp_sack_reset(&tp
->rx_opt
);
4868 /* Reduce allocated memory if we can, trying to get
4869 * the socket within its memory limits again.
4871 * Return less than zero if we should start dropping frames
4872 * until the socket owning process reads some of the data
4873 * to stabilize the situation.
4875 static int tcp_prune_queue(struct sock
*sk
)
4877 struct tcp_sock
*tp
= tcp_sk(sk
);
4879 SOCK_DEBUG(sk
, "prune_queue: c=%x\n", tp
->copied_seq
);
4881 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PRUNECALLED
);
4883 if (atomic_read(&sk
->sk_rmem_alloc
) >= sk
->sk_rcvbuf
)
4884 tcp_clamp_window(sk
);
4885 else if (sk_under_memory_pressure(sk
))
4886 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, 4U * tp
->advmss
);
4888 tcp_collapse_ofo_queue(sk
);
4889 if (!skb_queue_empty(&sk
->sk_receive_queue
))
4890 tcp_collapse(sk
, &sk
->sk_receive_queue
,
4891 skb_peek(&sk
->sk_receive_queue
),
4893 tp
->copied_seq
, tp
->rcv_nxt
);
4896 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
4899 /* Collapsing did not help, destructive actions follow.
4900 * This must not ever occur. */
4902 tcp_prune_ofo_queue(sk
);
4904 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
4907 /* If we are really being abused, tell the caller to silently
4908 * drop receive data on the floor. It will get retransmitted
4909 * and hopefully then we'll have sufficient space.
4911 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_RCVPRUNED
);
4913 /* Massive buffer overcommit. */
4918 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4919 * As additional protections, we do not touch cwnd in retransmission phases,
4920 * and if application hit its sndbuf limit recently.
4922 void tcp_cwnd_application_limited(struct sock
*sk
)
4924 struct tcp_sock
*tp
= tcp_sk(sk
);
4926 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Open
&&
4927 sk
->sk_socket
&& !test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
)) {
4928 /* Limited by application or receiver window. */
4929 u32 init_win
= tcp_init_cwnd(tp
, __sk_dst_get(sk
));
4930 u32 win_used
= max(tp
->snd_cwnd_used
, init_win
);
4931 if (win_used
< tp
->snd_cwnd
) {
4932 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
4933 tp
->snd_cwnd
= (tp
->snd_cwnd
+ win_used
) >> 1;
4935 tp
->snd_cwnd_used
= 0;
4937 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
4940 static int tcp_should_expand_sndbuf(const struct sock
*sk
)
4942 const struct tcp_sock
*tp
= tcp_sk(sk
);
4944 /* If the user specified a specific send buffer setting, do
4947 if (sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
)
4950 /* If we are under global TCP memory pressure, do not expand. */
4951 if (sk_under_memory_pressure(sk
))
4954 /* If we are under soft global TCP memory pressure, do not expand. */
4955 if (sk_memory_allocated(sk
) >= sk_prot_mem_limits(sk
, 0))
4958 /* If we filled the congestion window, do not expand. */
4959 if (tp
->packets_out
>= tp
->snd_cwnd
)
4965 /* When incoming ACK allowed to free some skb from write_queue,
4966 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4967 * on the exit from tcp input handler.
4969 * PROBLEM: sndbuf expansion does not work well with largesend.
4971 static void tcp_new_space(struct sock
*sk
)
4973 struct tcp_sock
*tp
= tcp_sk(sk
);
4975 if (tcp_should_expand_sndbuf(sk
)) {
4976 int sndmem
= SKB_TRUESIZE(max_t(u32
,
4977 tp
->rx_opt
.mss_clamp
,
4980 int demanded
= max_t(unsigned int, tp
->snd_cwnd
,
4981 tp
->reordering
+ 1);
4982 sndmem
*= 2 * demanded
;
4983 if (sndmem
> sk
->sk_sndbuf
)
4984 sk
->sk_sndbuf
= min(sndmem
, sysctl_tcp_wmem
[2]);
4985 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
4988 sk
->sk_write_space(sk
);
4991 static void tcp_check_space(struct sock
*sk
)
4993 if (sock_flag(sk
, SOCK_QUEUE_SHRUNK
)) {
4994 sock_reset_flag(sk
, SOCK_QUEUE_SHRUNK
);
4995 if (sk
->sk_socket
&&
4996 test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
))
5001 static inline void tcp_data_snd_check(struct sock
*sk
)
5003 tcp_push_pending_frames(sk
);
5004 tcp_check_space(sk
);
5008 * Check if sending an ack is needed.
5010 static void __tcp_ack_snd_check(struct sock
*sk
, int ofo_possible
)
5012 struct tcp_sock
*tp
= tcp_sk(sk
);
5014 /* More than one full frame received... */
5015 if (((tp
->rcv_nxt
- tp
->rcv_wup
) > inet_csk(sk
)->icsk_ack
.rcv_mss
&&
5016 /* ... and right edge of window advances far enough.
5017 * (tcp_recvmsg() will send ACK otherwise). Or...
5019 __tcp_select_window(sk
) >= tp
->rcv_wnd
) ||
5020 /* We ACK each frame or... */
5021 tcp_in_quickack_mode(sk
) ||
5022 /* We have out of order data. */
5023 (ofo_possible
&& skb_peek(&tp
->out_of_order_queue
))) {
5024 /* Then ack it now */
5027 /* Else, send delayed ack. */
5028 tcp_send_delayed_ack(sk
);
5032 static inline void tcp_ack_snd_check(struct sock
*sk
)
5034 if (!inet_csk_ack_scheduled(sk
)) {
5035 /* We sent a data segment already. */
5038 __tcp_ack_snd_check(sk
, 1);
5042 * This routine is only called when we have urgent data
5043 * signaled. Its the 'slow' part of tcp_urg. It could be
5044 * moved inline now as tcp_urg is only called from one
5045 * place. We handle URGent data wrong. We have to - as
5046 * BSD still doesn't use the correction from RFC961.
5047 * For 1003.1g we should support a new option TCP_STDURG to permit
5048 * either form (or just set the sysctl tcp_stdurg).
5051 static void tcp_check_urg(struct sock
*sk
, const struct tcphdr
*th
)
5053 struct tcp_sock
*tp
= tcp_sk(sk
);
5054 u32 ptr
= ntohs(th
->urg_ptr
);
5056 if (ptr
&& !sysctl_tcp_stdurg
)
5058 ptr
+= ntohl(th
->seq
);
5060 /* Ignore urgent data that we've already seen and read. */
5061 if (after(tp
->copied_seq
, ptr
))
5064 /* Do not replay urg ptr.
5066 * NOTE: interesting situation not covered by specs.
5067 * Misbehaving sender may send urg ptr, pointing to segment,
5068 * which we already have in ofo queue. We are not able to fetch
5069 * such data and will stay in TCP_URG_NOTYET until will be eaten
5070 * by recvmsg(). Seems, we are not obliged to handle such wicked
5071 * situations. But it is worth to think about possibility of some
5072 * DoSes using some hypothetical application level deadlock.
5074 if (before(ptr
, tp
->rcv_nxt
))
5077 /* Do we already have a newer (or duplicate) urgent pointer? */
5078 if (tp
->urg_data
&& !after(ptr
, tp
->urg_seq
))
5081 /* Tell the world about our new urgent pointer. */
5084 /* We may be adding urgent data when the last byte read was
5085 * urgent. To do this requires some care. We cannot just ignore
5086 * tp->copied_seq since we would read the last urgent byte again
5087 * as data, nor can we alter copied_seq until this data arrives
5088 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5090 * NOTE. Double Dutch. Rendering to plain English: author of comment
5091 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5092 * and expect that both A and B disappear from stream. This is _wrong_.
5093 * Though this happens in BSD with high probability, this is occasional.
5094 * Any application relying on this is buggy. Note also, that fix "works"
5095 * only in this artificial test. Insert some normal data between A and B and we will
5096 * decline of BSD again. Verdict: it is better to remove to trap
5099 if (tp
->urg_seq
== tp
->copied_seq
&& tp
->urg_data
&&
5100 !sock_flag(sk
, SOCK_URGINLINE
) && tp
->copied_seq
!= tp
->rcv_nxt
) {
5101 struct sk_buff
*skb
= skb_peek(&sk
->sk_receive_queue
);
5103 if (skb
&& !before(tp
->copied_seq
, TCP_SKB_CB(skb
)->end_seq
)) {
5104 __skb_unlink(skb
, &sk
->sk_receive_queue
);
5109 tp
->urg_data
= TCP_URG_NOTYET
;
5112 /* Disable header prediction. */
5116 /* This is the 'fast' part of urgent handling. */
5117 static void tcp_urg(struct sock
*sk
, struct sk_buff
*skb
, const struct tcphdr
*th
)
5119 struct tcp_sock
*tp
= tcp_sk(sk
);
5121 /* Check if we get a new urgent pointer - normally not. */
5123 tcp_check_urg(sk
, th
);
5125 /* Do we wait for any urgent data? - normally not... */
5126 if (tp
->urg_data
== TCP_URG_NOTYET
) {
5127 u32 ptr
= tp
->urg_seq
- ntohl(th
->seq
) + (th
->doff
* 4) -
5130 /* Is the urgent pointer pointing into this packet? */
5131 if (ptr
< skb
->len
) {
5133 if (skb_copy_bits(skb
, ptr
, &tmp
, 1))
5135 tp
->urg_data
= TCP_URG_VALID
| tmp
;
5136 if (!sock_flag(sk
, SOCK_DEAD
))
5137 sk
->sk_data_ready(sk
, 0);
5142 static int tcp_copy_to_iovec(struct sock
*sk
, struct sk_buff
*skb
, int hlen
)
5144 struct tcp_sock
*tp
= tcp_sk(sk
);
5145 int chunk
= skb
->len
- hlen
;
5149 if (skb_csum_unnecessary(skb
))
5150 err
= skb_copy_datagram_iovec(skb
, hlen
, tp
->ucopy
.iov
, chunk
);
5152 err
= skb_copy_and_csum_datagram_iovec(skb
, hlen
,
5156 tp
->ucopy
.len
-= chunk
;
5157 tp
->copied_seq
+= chunk
;
5158 tcp_rcv_space_adjust(sk
);
5165 static __sum16
__tcp_checksum_complete_user(struct sock
*sk
,
5166 struct sk_buff
*skb
)
5170 if (sock_owned_by_user(sk
)) {
5172 result
= __tcp_checksum_complete(skb
);
5175 result
= __tcp_checksum_complete(skb
);
5180 static inline int tcp_checksum_complete_user(struct sock
*sk
,
5181 struct sk_buff
*skb
)
5183 return !skb_csum_unnecessary(skb
) &&
5184 __tcp_checksum_complete_user(sk
, skb
);
5187 #ifdef CONFIG_NET_DMA
5188 static int tcp_dma_try_early_copy(struct sock
*sk
, struct sk_buff
*skb
,
5191 struct tcp_sock
*tp
= tcp_sk(sk
);
5192 int chunk
= skb
->len
- hlen
;
5194 int copied_early
= 0;
5196 if (tp
->ucopy
.wakeup
)
5199 if (!tp
->ucopy
.dma_chan
&& tp
->ucopy
.pinned_list
)
5200 tp
->ucopy
.dma_chan
= dma_find_channel(DMA_MEMCPY
);
5202 if (tp
->ucopy
.dma_chan
&& skb_csum_unnecessary(skb
)) {
5204 dma_cookie
= dma_skb_copy_datagram_iovec(tp
->ucopy
.dma_chan
,
5206 tp
->ucopy
.iov
, chunk
,
5207 tp
->ucopy
.pinned_list
);
5212 tp
->ucopy
.dma_cookie
= dma_cookie
;
5215 tp
->ucopy
.len
-= chunk
;
5216 tp
->copied_seq
+= chunk
;
5217 tcp_rcv_space_adjust(sk
);
5219 if ((tp
->ucopy
.len
== 0) ||
5220 (tcp_flag_word(tcp_hdr(skb
)) & TCP_FLAG_PSH
) ||
5221 (atomic_read(&sk
->sk_rmem_alloc
) > (sk
->sk_rcvbuf
>> 1))) {
5222 tp
->ucopy
.wakeup
= 1;
5223 sk
->sk_data_ready(sk
, 0);
5225 } else if (chunk
> 0) {
5226 tp
->ucopy
.wakeup
= 1;
5227 sk
->sk_data_ready(sk
, 0);
5230 return copied_early
;
5232 #endif /* CONFIG_NET_DMA */
5234 /* Does PAWS and seqno based validation of an incoming segment, flags will
5235 * play significant role here.
5237 static int tcp_validate_incoming(struct sock
*sk
, struct sk_buff
*skb
,
5238 const struct tcphdr
*th
, int syn_inerr
)
5240 const u8
*hash_location
;
5241 struct tcp_sock
*tp
= tcp_sk(sk
);
5243 /* RFC1323: H1. Apply PAWS check first. */
5244 if (tcp_fast_parse_options(skb
, th
, tp
, &hash_location
) &&
5245 tp
->rx_opt
.saw_tstamp
&&
5246 tcp_paws_discard(sk
, skb
)) {
5248 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PAWSESTABREJECTED
);
5249 tcp_send_dupack(sk
, skb
);
5252 /* Reset is accepted even if it did not pass PAWS. */
5255 /* Step 1: check sequence number */
5256 if (!tcp_sequence(tp
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
)) {
5257 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5258 * (RST) segments are validated by checking their SEQ-fields."
5259 * And page 69: "If an incoming segment is not acceptable,
5260 * an acknowledgment should be sent in reply (unless the RST
5261 * bit is set, if so drop the segment and return)".
5264 tcp_send_dupack(sk
, skb
);
5268 /* Step 2: check RST bit */
5274 /* ts_recent update must be made after we are sure that the packet
5277 tcp_replace_ts_recent(tp
, TCP_SKB_CB(skb
)->seq
);
5279 /* step 3: check security and precedence [ignored] */
5281 /* step 4: Check for a SYN in window. */
5282 if (th
->syn
&& !before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
5284 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
5285 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPABORTONSYN
);
5298 * TCP receive function for the ESTABLISHED state.
5300 * It is split into a fast path and a slow path. The fast path is
5302 * - A zero window was announced from us - zero window probing
5303 * is only handled properly in the slow path.
5304 * - Out of order segments arrived.
5305 * - Urgent data is expected.
5306 * - There is no buffer space left
5307 * - Unexpected TCP flags/window values/header lengths are received
5308 * (detected by checking the TCP header against pred_flags)
5309 * - Data is sent in both directions. Fast path only supports pure senders
5310 * or pure receivers (this means either the sequence number or the ack
5311 * value must stay constant)
5312 * - Unexpected TCP option.
5314 * When these conditions are not satisfied it drops into a standard
5315 * receive procedure patterned after RFC793 to handle all cases.
5316 * The first three cases are guaranteed by proper pred_flags setting,
5317 * the rest is checked inline. Fast processing is turned on in
5318 * tcp_data_queue when everything is OK.
5320 int tcp_rcv_established(struct sock
*sk
, struct sk_buff
*skb
,
5321 const struct tcphdr
*th
, unsigned int len
)
5323 struct tcp_sock
*tp
= tcp_sk(sk
);
5327 * Header prediction.
5328 * The code loosely follows the one in the famous
5329 * "30 instruction TCP receive" Van Jacobson mail.
5331 * Van's trick is to deposit buffers into socket queue
5332 * on a device interrupt, to call tcp_recv function
5333 * on the receive process context and checksum and copy
5334 * the buffer to user space. smart...
5336 * Our current scheme is not silly either but we take the
5337 * extra cost of the net_bh soft interrupt processing...
5338 * We do checksum and copy also but from device to kernel.
5341 tp
->rx_opt
.saw_tstamp
= 0;
5343 /* pred_flags is 0xS?10 << 16 + snd_wnd
5344 * if header_prediction is to be made
5345 * 'S' will always be tp->tcp_header_len >> 2
5346 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5347 * turn it off (when there are holes in the receive
5348 * space for instance)
5349 * PSH flag is ignored.
5352 if ((tcp_flag_word(th
) & TCP_HP_BITS
) == tp
->pred_flags
&&
5353 TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
&&
5354 !after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_nxt
)) {
5355 int tcp_header_len
= tp
->tcp_header_len
;
5357 /* Timestamp header prediction: tcp_header_len
5358 * is automatically equal to th->doff*4 due to pred_flags
5362 /* Check timestamp */
5363 if (tcp_header_len
== sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) {
5364 /* No? Slow path! */
5365 if (!tcp_parse_aligned_timestamp(tp
, th
))
5368 /* If PAWS failed, check it more carefully in slow path */
5369 if ((s32
)(tp
->rx_opt
.rcv_tsval
- tp
->rx_opt
.ts_recent
) < 0)
5372 /* DO NOT update ts_recent here, if checksum fails
5373 * and timestamp was corrupted part, it will result
5374 * in a hung connection since we will drop all
5375 * future packets due to the PAWS test.
5379 if (len
<= tcp_header_len
) {
5380 /* Bulk data transfer: sender */
5381 if (len
== tcp_header_len
) {
5382 /* Predicted packet is in window by definition.
5383 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5384 * Hence, check seq<=rcv_wup reduces to:
5386 if (tcp_header_len
==
5387 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5388 tp
->rcv_nxt
== tp
->rcv_wup
)
5389 tcp_store_ts_recent(tp
);
5391 /* We know that such packets are checksummed
5394 tcp_ack(sk
, skb
, 0);
5396 tcp_data_snd_check(sk
);
5398 } else { /* Header too small */
5399 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
5404 int copied_early
= 0;
5406 if (tp
->copied_seq
== tp
->rcv_nxt
&&
5407 len
- tcp_header_len
<= tp
->ucopy
.len
) {
5408 #ifdef CONFIG_NET_DMA
5409 if (tcp_dma_try_early_copy(sk
, skb
, tcp_header_len
)) {
5414 if (tp
->ucopy
.task
== current
&&
5415 sock_owned_by_user(sk
) && !copied_early
) {
5416 __set_current_state(TASK_RUNNING
);
5418 if (!tcp_copy_to_iovec(sk
, skb
, tcp_header_len
))
5422 /* Predicted packet is in window by definition.
5423 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5424 * Hence, check seq<=rcv_wup reduces to:
5426 if (tcp_header_len
==
5427 (sizeof(struct tcphdr
) +
5428 TCPOLEN_TSTAMP_ALIGNED
) &&
5429 tp
->rcv_nxt
== tp
->rcv_wup
)
5430 tcp_store_ts_recent(tp
);
5432 tcp_rcv_rtt_measure_ts(sk
, skb
);
5434 __skb_pull(skb
, tcp_header_len
);
5435 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
5436 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPHPHITSTOUSER
);
5439 tcp_cleanup_rbuf(sk
, skb
->len
);
5442 if (tcp_checksum_complete_user(sk
, skb
))
5445 /* Predicted packet is in window by definition.
5446 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5447 * Hence, check seq<=rcv_wup reduces to:
5449 if (tcp_header_len
==
5450 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5451 tp
->rcv_nxt
== tp
->rcv_wup
)
5452 tcp_store_ts_recent(tp
);
5454 tcp_rcv_rtt_measure_ts(sk
, skb
);
5456 if ((int)skb
->truesize
> sk
->sk_forward_alloc
)
5459 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPHPHITS
);
5461 /* Bulk data transfer: receiver */
5462 __skb_pull(skb
, tcp_header_len
);
5463 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
5464 skb_set_owner_r(skb
, sk
);
5465 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
5468 tcp_event_data_recv(sk
, skb
);
5470 if (TCP_SKB_CB(skb
)->ack_seq
!= tp
->snd_una
) {
5471 /* Well, only one small jumplet in fast path... */
5472 tcp_ack(sk
, skb
, FLAG_DATA
);
5473 tcp_data_snd_check(sk
);
5474 if (!inet_csk_ack_scheduled(sk
))
5478 if (!copied_early
|| tp
->rcv_nxt
!= tp
->rcv_wup
)
5479 __tcp_ack_snd_check(sk
, 0);
5481 #ifdef CONFIG_NET_DMA
5483 __skb_queue_tail(&sk
->sk_async_wait_queue
, skb
);
5489 sk
->sk_data_ready(sk
, 0);
5495 if (len
< (th
->doff
<< 2) || tcp_checksum_complete_user(sk
, skb
))
5499 * Standard slow path.
5502 res
= tcp_validate_incoming(sk
, skb
, th
, 1);
5507 if (th
->ack
&& tcp_ack(sk
, skb
, FLAG_SLOWPATH
) < 0)
5510 tcp_rcv_rtt_measure_ts(sk
, skb
);
5512 /* Process urgent data. */
5513 tcp_urg(sk
, skb
, th
);
5515 /* step 7: process the segment text */
5516 tcp_data_queue(sk
, skb
);
5518 tcp_data_snd_check(sk
);
5519 tcp_ack_snd_check(sk
);
5523 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
5529 EXPORT_SYMBOL(tcp_rcv_established
);
5531 static int tcp_rcv_synsent_state_process(struct sock
*sk
, struct sk_buff
*skb
,
5532 const struct tcphdr
*th
, unsigned int len
)
5534 const u8
*hash_location
;
5535 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5536 struct tcp_sock
*tp
= tcp_sk(sk
);
5537 struct tcp_cookie_values
*cvp
= tp
->cookie_values
;
5538 int saved_clamp
= tp
->rx_opt
.mss_clamp
;
5540 tcp_parse_options(skb
, &tp
->rx_opt
, &hash_location
, 0);
5544 * "If the state is SYN-SENT then
5545 * first check the ACK bit
5546 * If the ACK bit is set
5547 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5548 * a reset (unless the RST bit is set, if so drop
5549 * the segment and return)"
5551 * We do not send data with SYN, so that RFC-correct
5554 if (TCP_SKB_CB(skb
)->ack_seq
!= tp
->snd_nxt
)
5555 goto reset_and_undo
;
5557 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
5558 !between(tp
->rx_opt
.rcv_tsecr
, tp
->retrans_stamp
,
5560 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PAWSACTIVEREJECTED
);
5561 goto reset_and_undo
;
5564 /* Now ACK is acceptable.
5566 * "If the RST bit is set
5567 * If the ACK was acceptable then signal the user "error:
5568 * connection reset", drop the segment, enter CLOSED state,
5569 * delete TCB, and return."
5578 * "fifth, if neither of the SYN or RST bits is set then
5579 * drop the segment and return."
5585 goto discard_and_undo
;
5588 * "If the SYN bit is on ...
5589 * are acceptable then ...
5590 * (our SYN has been ACKed), change the connection
5591 * state to ESTABLISHED..."
5594 TCP_ECN_rcv_synack(tp
, th
);
5596 tp
->snd_wl1
= TCP_SKB_CB(skb
)->seq
;
5597 tcp_ack(sk
, skb
, FLAG_SLOWPATH
);
5599 /* Ok.. it's good. Set up sequence numbers and
5600 * move to established.
5602 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5603 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5605 /* RFC1323: The window in SYN & SYN/ACK segments is
5608 tp
->snd_wnd
= ntohs(th
->window
);
5609 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
5611 if (!tp
->rx_opt
.wscale_ok
) {
5612 tp
->rx_opt
.snd_wscale
= tp
->rx_opt
.rcv_wscale
= 0;
5613 tp
->window_clamp
= min(tp
->window_clamp
, 65535U);
5616 if (tp
->rx_opt
.saw_tstamp
) {
5617 tp
->rx_opt
.tstamp_ok
= 1;
5618 tp
->tcp_header_len
=
5619 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5620 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
5621 tcp_store_ts_recent(tp
);
5623 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5626 if (tcp_is_sack(tp
) && sysctl_tcp_fack
)
5627 tcp_enable_fack(tp
);
5630 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5631 tcp_initialize_rcv_mss(sk
);
5633 /* Remember, tcp_poll() does not lock socket!
5634 * Change state from SYN-SENT only after copied_seq
5635 * is initialized. */
5636 tp
->copied_seq
= tp
->rcv_nxt
;
5639 cvp
->cookie_pair_size
> 0 &&
5640 tp
->rx_opt
.cookie_plus
> 0) {
5641 int cookie_size
= tp
->rx_opt
.cookie_plus
5642 - TCPOLEN_COOKIE_BASE
;
5643 int cookie_pair_size
= cookie_size
5644 + cvp
->cookie_desired
;
5646 /* A cookie extension option was sent and returned.
5647 * Note that each incoming SYNACK replaces the
5648 * Responder cookie. The initial exchange is most
5649 * fragile, as protection against spoofing relies
5650 * entirely upon the sequence and timestamp (above).
5651 * This replacement strategy allows the correct pair to
5652 * pass through, while any others will be filtered via
5653 * Responder verification later.
5655 if (sizeof(cvp
->cookie_pair
) >= cookie_pair_size
) {
5656 memcpy(&cvp
->cookie_pair
[cvp
->cookie_desired
],
5657 hash_location
, cookie_size
);
5658 cvp
->cookie_pair_size
= cookie_pair_size
;
5663 tcp_set_state(sk
, TCP_ESTABLISHED
);
5665 security_inet_conn_established(sk
, skb
);
5667 /* Make sure socket is routed, for correct metrics. */
5668 icsk
->icsk_af_ops
->rebuild_header(sk
);
5670 tcp_init_metrics(sk
);
5672 tcp_init_congestion_control(sk
);
5674 /* Prevent spurious tcp_cwnd_restart() on first data
5677 tp
->lsndtime
= tcp_time_stamp
;
5679 tcp_init_buffer_space(sk
);
5681 if (sock_flag(sk
, SOCK_KEEPOPEN
))
5682 inet_csk_reset_keepalive_timer(sk
, keepalive_time_when(tp
));
5684 if (!tp
->rx_opt
.snd_wscale
)
5685 __tcp_fast_path_on(tp
, tp
->snd_wnd
);
5689 if (!sock_flag(sk
, SOCK_DEAD
)) {
5690 sk
->sk_state_change(sk
);
5691 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_OUT
);
5694 if (sk
->sk_write_pending
||
5695 icsk
->icsk_accept_queue
.rskq_defer_accept
||
5696 icsk
->icsk_ack
.pingpong
) {
5697 /* Save one ACK. Data will be ready after
5698 * several ticks, if write_pending is set.
5700 * It may be deleted, but with this feature tcpdumps
5701 * look so _wonderfully_ clever, that I was not able
5702 * to stand against the temptation 8) --ANK
5704 inet_csk_schedule_ack(sk
);
5705 icsk
->icsk_ack
.lrcvtime
= tcp_time_stamp
;
5706 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
5707 tcp_incr_quickack(sk
);
5708 tcp_enter_quickack_mode(sk
);
5709 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_DACK
,
5710 TCP_DELACK_MAX
, TCP_RTO_MAX
);
5721 /* No ACK in the segment */
5725 * "If the RST bit is set
5727 * Otherwise (no ACK) drop the segment and return."
5730 goto discard_and_undo
;
5734 if (tp
->rx_opt
.ts_recent_stamp
&& tp
->rx_opt
.saw_tstamp
&&
5735 tcp_paws_reject(&tp
->rx_opt
, 0))
5736 goto discard_and_undo
;
5739 /* We see SYN without ACK. It is attempt of
5740 * simultaneous connect with crossed SYNs.
5741 * Particularly, it can be connect to self.
5743 tcp_set_state(sk
, TCP_SYN_RECV
);
5745 if (tp
->rx_opt
.saw_tstamp
) {
5746 tp
->rx_opt
.tstamp_ok
= 1;
5747 tcp_store_ts_recent(tp
);
5748 tp
->tcp_header_len
=
5749 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5751 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5754 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5755 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5757 /* RFC1323: The window in SYN & SYN/ACK segments is
5760 tp
->snd_wnd
= ntohs(th
->window
);
5761 tp
->snd_wl1
= TCP_SKB_CB(skb
)->seq
;
5762 tp
->max_window
= tp
->snd_wnd
;
5764 TCP_ECN_rcv_syn(tp
, th
);
5767 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5768 tcp_initialize_rcv_mss(sk
);
5770 tcp_send_synack(sk
);
5772 /* Note, we could accept data and URG from this segment.
5773 * There are no obstacles to make this.
5775 * However, if we ignore data in ACKless segments sometimes,
5776 * we have no reasons to accept it sometimes.
5777 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5778 * is not flawless. So, discard packet for sanity.
5779 * Uncomment this return to process the data.
5786 /* "fifth, if neither of the SYN or RST bits is set then
5787 * drop the segment and return."
5791 tcp_clear_options(&tp
->rx_opt
);
5792 tp
->rx_opt
.mss_clamp
= saved_clamp
;
5796 tcp_clear_options(&tp
->rx_opt
);
5797 tp
->rx_opt
.mss_clamp
= saved_clamp
;
5802 * This function implements the receiving procedure of RFC 793 for
5803 * all states except ESTABLISHED and TIME_WAIT.
5804 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5805 * address independent.
5808 int tcp_rcv_state_process(struct sock
*sk
, struct sk_buff
*skb
,
5809 const struct tcphdr
*th
, unsigned int len
)
5811 struct tcp_sock
*tp
= tcp_sk(sk
);
5812 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5816 tp
->rx_opt
.saw_tstamp
= 0;
5818 switch (sk
->sk_state
) {
5832 if (icsk
->icsk_af_ops
->conn_request(sk
, skb
) < 0)
5835 /* Now we have several options: In theory there is
5836 * nothing else in the frame. KA9Q has an option to
5837 * send data with the syn, BSD accepts data with the
5838 * syn up to the [to be] advertised window and
5839 * Solaris 2.1 gives you a protocol error. For now
5840 * we just ignore it, that fits the spec precisely
5841 * and avoids incompatibilities. It would be nice in
5842 * future to drop through and process the data.
5844 * Now that TTCP is starting to be used we ought to
5846 * But, this leaves one open to an easy denial of
5847 * service attack, and SYN cookies can't defend
5848 * against this problem. So, we drop the data
5849 * in the interest of security over speed unless
5850 * it's still in use.
5858 queued
= tcp_rcv_synsent_state_process(sk
, skb
, th
, len
);
5862 /* Do step6 onward by hand. */
5863 tcp_urg(sk
, skb
, th
);
5865 tcp_data_snd_check(sk
);
5869 res
= tcp_validate_incoming(sk
, skb
, th
, 0);
5873 /* step 5: check the ACK field */
5875 int acceptable
= tcp_ack(sk
, skb
, FLAG_SLOWPATH
) > 0;
5877 switch (sk
->sk_state
) {
5880 tp
->copied_seq
= tp
->rcv_nxt
;
5882 tcp_set_state(sk
, TCP_ESTABLISHED
);
5883 sk
->sk_state_change(sk
);
5885 /* Note, that this wakeup is only for marginal
5886 * crossed SYN case. Passively open sockets
5887 * are not waked up, because sk->sk_sleep ==
5888 * NULL and sk->sk_socket == NULL.
5892 SOCK_WAKE_IO
, POLL_OUT
);
5894 tp
->snd_una
= TCP_SKB_CB(skb
)->ack_seq
;
5895 tp
->snd_wnd
= ntohs(th
->window
) <<
5896 tp
->rx_opt
.snd_wscale
;
5897 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
5899 if (tp
->rx_opt
.tstamp_ok
)
5900 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
5902 /* Make sure socket is routed, for
5905 icsk
->icsk_af_ops
->rebuild_header(sk
);
5907 tcp_init_metrics(sk
);
5909 tcp_init_congestion_control(sk
);
5911 /* Prevent spurious tcp_cwnd_restart() on
5912 * first data packet.
5914 tp
->lsndtime
= tcp_time_stamp
;
5917 tcp_initialize_rcv_mss(sk
);
5918 tcp_init_buffer_space(sk
);
5919 tcp_fast_path_on(tp
);
5926 if (tp
->snd_una
== tp
->write_seq
) {
5927 tcp_set_state(sk
, TCP_FIN_WAIT2
);
5928 sk
->sk_shutdown
|= SEND_SHUTDOWN
;
5929 dst_confirm(__sk_dst_get(sk
));
5931 if (!sock_flag(sk
, SOCK_DEAD
))
5932 /* Wake up lingering close() */
5933 sk
->sk_state_change(sk
);
5937 if (tp
->linger2
< 0 ||
5938 (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
5939 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
))) {
5941 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
5945 tmo
= tcp_fin_time(sk
);
5946 if (tmo
> TCP_TIMEWAIT_LEN
) {
5947 inet_csk_reset_keepalive_timer(sk
, tmo
- TCP_TIMEWAIT_LEN
);
5948 } else if (th
->fin
|| sock_owned_by_user(sk
)) {
5949 /* Bad case. We could lose such FIN otherwise.
5950 * It is not a big problem, but it looks confusing
5951 * and not so rare event. We still can lose it now,
5952 * if it spins in bh_lock_sock(), but it is really
5955 inet_csk_reset_keepalive_timer(sk
, tmo
);
5957 tcp_time_wait(sk
, TCP_FIN_WAIT2
, tmo
);
5965 if (tp
->snd_una
== tp
->write_seq
) {
5966 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
5972 if (tp
->snd_una
== tp
->write_seq
) {
5973 tcp_update_metrics(sk
);
5982 /* step 6: check the URG bit */
5983 tcp_urg(sk
, skb
, th
);
5985 /* step 7: process the segment text */
5986 switch (sk
->sk_state
) {
5987 case TCP_CLOSE_WAIT
:
5990 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
5994 /* RFC 793 says to queue data in these states,
5995 * RFC 1122 says we MUST send a reset.
5996 * BSD 4.4 also does reset.
5998 if (sk
->sk_shutdown
& RCV_SHUTDOWN
) {
5999 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
6000 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
)) {
6001 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
6007 case TCP_ESTABLISHED
:
6008 tcp_data_queue(sk
, skb
);
6013 /* tcp_data could move socket to TIME-WAIT */
6014 if (sk
->sk_state
!= TCP_CLOSE
) {
6015 tcp_data_snd_check(sk
);
6016 tcp_ack_snd_check(sk
);
6025 EXPORT_SYMBOL(tcp_rcv_state_process
);