2 * Driver for Atmel AT32 and AT91 SPI Controllers
4 * Copyright (C) 2006 Atmel Corporation
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
11 #include <linux/kernel.h>
12 #include <linux/clk.h>
13 #include <linux/module.h>
14 #include <linux/platform_device.h>
15 #include <linux/delay.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/dmaengine.h>
18 #include <linux/err.h>
19 #include <linux/interrupt.h>
20 #include <linux/spi/spi.h>
21 #include <linux/slab.h>
22 #include <linux/platform_data/dma-atmel.h>
26 #include <linux/gpio.h>
27 #include <linux/of_gpio.h>
28 #include <linux/pinctrl/consumer.h>
29 #include <linux/pm_runtime.h>
31 /* SPI register offsets */
34 #define SPI_RDR 0x0008
35 #define SPI_TDR 0x000c
37 #define SPI_IER 0x0014
38 #define SPI_IDR 0x0018
39 #define SPI_IMR 0x001c
40 #define SPI_CSR0 0x0030
41 #define SPI_CSR1 0x0034
42 #define SPI_CSR2 0x0038
43 #define SPI_CSR3 0x003c
44 #define SPI_FMR 0x0040
45 #define SPI_FLR 0x0044
46 #define SPI_VERSION 0x00fc
47 #define SPI_RPR 0x0100
48 #define SPI_RCR 0x0104
49 #define SPI_TPR 0x0108
50 #define SPI_TCR 0x010c
51 #define SPI_RNPR 0x0110
52 #define SPI_RNCR 0x0114
53 #define SPI_TNPR 0x0118
54 #define SPI_TNCR 0x011c
55 #define SPI_PTCR 0x0120
56 #define SPI_PTSR 0x0124
59 #define SPI_SPIEN_OFFSET 0
60 #define SPI_SPIEN_SIZE 1
61 #define SPI_SPIDIS_OFFSET 1
62 #define SPI_SPIDIS_SIZE 1
63 #define SPI_SWRST_OFFSET 7
64 #define SPI_SWRST_SIZE 1
65 #define SPI_LASTXFER_OFFSET 24
66 #define SPI_LASTXFER_SIZE 1
67 #define SPI_TXFCLR_OFFSET 16
68 #define SPI_TXFCLR_SIZE 1
69 #define SPI_RXFCLR_OFFSET 17
70 #define SPI_RXFCLR_SIZE 1
71 #define SPI_FIFOEN_OFFSET 30
72 #define SPI_FIFOEN_SIZE 1
73 #define SPI_FIFODIS_OFFSET 31
74 #define SPI_FIFODIS_SIZE 1
77 #define SPI_MSTR_OFFSET 0
78 #define SPI_MSTR_SIZE 1
79 #define SPI_PS_OFFSET 1
81 #define SPI_PCSDEC_OFFSET 2
82 #define SPI_PCSDEC_SIZE 1
83 #define SPI_FDIV_OFFSET 3
84 #define SPI_FDIV_SIZE 1
85 #define SPI_MODFDIS_OFFSET 4
86 #define SPI_MODFDIS_SIZE 1
87 #define SPI_WDRBT_OFFSET 5
88 #define SPI_WDRBT_SIZE 1
89 #define SPI_LLB_OFFSET 7
90 #define SPI_LLB_SIZE 1
91 #define SPI_PCS_OFFSET 16
92 #define SPI_PCS_SIZE 4
93 #define SPI_DLYBCS_OFFSET 24
94 #define SPI_DLYBCS_SIZE 8
96 /* Bitfields in RDR */
97 #define SPI_RD_OFFSET 0
98 #define SPI_RD_SIZE 16
100 /* Bitfields in TDR */
101 #define SPI_TD_OFFSET 0
102 #define SPI_TD_SIZE 16
104 /* Bitfields in SR */
105 #define SPI_RDRF_OFFSET 0
106 #define SPI_RDRF_SIZE 1
107 #define SPI_TDRE_OFFSET 1
108 #define SPI_TDRE_SIZE 1
109 #define SPI_MODF_OFFSET 2
110 #define SPI_MODF_SIZE 1
111 #define SPI_OVRES_OFFSET 3
112 #define SPI_OVRES_SIZE 1
113 #define SPI_ENDRX_OFFSET 4
114 #define SPI_ENDRX_SIZE 1
115 #define SPI_ENDTX_OFFSET 5
116 #define SPI_ENDTX_SIZE 1
117 #define SPI_RXBUFF_OFFSET 6
118 #define SPI_RXBUFF_SIZE 1
119 #define SPI_TXBUFE_OFFSET 7
120 #define SPI_TXBUFE_SIZE 1
121 #define SPI_NSSR_OFFSET 8
122 #define SPI_NSSR_SIZE 1
123 #define SPI_TXEMPTY_OFFSET 9
124 #define SPI_TXEMPTY_SIZE 1
125 #define SPI_SPIENS_OFFSET 16
126 #define SPI_SPIENS_SIZE 1
127 #define SPI_TXFEF_OFFSET 24
128 #define SPI_TXFEF_SIZE 1
129 #define SPI_TXFFF_OFFSET 25
130 #define SPI_TXFFF_SIZE 1
131 #define SPI_TXFTHF_OFFSET 26
132 #define SPI_TXFTHF_SIZE 1
133 #define SPI_RXFEF_OFFSET 27
134 #define SPI_RXFEF_SIZE 1
135 #define SPI_RXFFF_OFFSET 28
136 #define SPI_RXFFF_SIZE 1
137 #define SPI_RXFTHF_OFFSET 29
138 #define SPI_RXFTHF_SIZE 1
139 #define SPI_TXFPTEF_OFFSET 30
140 #define SPI_TXFPTEF_SIZE 1
141 #define SPI_RXFPTEF_OFFSET 31
142 #define SPI_RXFPTEF_SIZE 1
144 /* Bitfields in CSR0 */
145 #define SPI_CPOL_OFFSET 0
146 #define SPI_CPOL_SIZE 1
147 #define SPI_NCPHA_OFFSET 1
148 #define SPI_NCPHA_SIZE 1
149 #define SPI_CSAAT_OFFSET 3
150 #define SPI_CSAAT_SIZE 1
151 #define SPI_BITS_OFFSET 4
152 #define SPI_BITS_SIZE 4
153 #define SPI_SCBR_OFFSET 8
154 #define SPI_SCBR_SIZE 8
155 #define SPI_DLYBS_OFFSET 16
156 #define SPI_DLYBS_SIZE 8
157 #define SPI_DLYBCT_OFFSET 24
158 #define SPI_DLYBCT_SIZE 8
160 /* Bitfields in RCR */
161 #define SPI_RXCTR_OFFSET 0
162 #define SPI_RXCTR_SIZE 16
164 /* Bitfields in TCR */
165 #define SPI_TXCTR_OFFSET 0
166 #define SPI_TXCTR_SIZE 16
168 /* Bitfields in RNCR */
169 #define SPI_RXNCR_OFFSET 0
170 #define SPI_RXNCR_SIZE 16
172 /* Bitfields in TNCR */
173 #define SPI_TXNCR_OFFSET 0
174 #define SPI_TXNCR_SIZE 16
176 /* Bitfields in PTCR */
177 #define SPI_RXTEN_OFFSET 0
178 #define SPI_RXTEN_SIZE 1
179 #define SPI_RXTDIS_OFFSET 1
180 #define SPI_RXTDIS_SIZE 1
181 #define SPI_TXTEN_OFFSET 8
182 #define SPI_TXTEN_SIZE 1
183 #define SPI_TXTDIS_OFFSET 9
184 #define SPI_TXTDIS_SIZE 1
186 /* Bitfields in FMR */
187 #define SPI_TXRDYM_OFFSET 0
188 #define SPI_TXRDYM_SIZE 2
189 #define SPI_RXRDYM_OFFSET 4
190 #define SPI_RXRDYM_SIZE 2
191 #define SPI_TXFTHRES_OFFSET 16
192 #define SPI_TXFTHRES_SIZE 6
193 #define SPI_RXFTHRES_OFFSET 24
194 #define SPI_RXFTHRES_SIZE 6
196 /* Bitfields in FLR */
197 #define SPI_TXFL_OFFSET 0
198 #define SPI_TXFL_SIZE 6
199 #define SPI_RXFL_OFFSET 16
200 #define SPI_RXFL_SIZE 6
202 /* Constants for BITS */
203 #define SPI_BITS_8_BPT 0
204 #define SPI_BITS_9_BPT 1
205 #define SPI_BITS_10_BPT 2
206 #define SPI_BITS_11_BPT 3
207 #define SPI_BITS_12_BPT 4
208 #define SPI_BITS_13_BPT 5
209 #define SPI_BITS_14_BPT 6
210 #define SPI_BITS_15_BPT 7
211 #define SPI_BITS_16_BPT 8
212 #define SPI_ONE_DATA 0
213 #define SPI_TWO_DATA 1
214 #define SPI_FOUR_DATA 2
216 /* Bit manipulation macros */
217 #define SPI_BIT(name) \
218 (1 << SPI_##name##_OFFSET)
219 #define SPI_BF(name, value) \
220 (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
221 #define SPI_BFEXT(name, value) \
222 (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
223 #define SPI_BFINS(name, value, old) \
224 (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
225 | SPI_BF(name, value))
227 /* Register access macros */
229 #define spi_readl(port, reg) \
230 __raw_readl((port)->regs + SPI_##reg)
231 #define spi_writel(port, reg, value) \
232 __raw_writel((value), (port)->regs + SPI_##reg)
234 #define spi_readw(port, reg) \
235 __raw_readw((port)->regs + SPI_##reg)
236 #define spi_writew(port, reg, value) \
237 __raw_writew((value), (port)->regs + SPI_##reg)
239 #define spi_readb(port, reg) \
240 __raw_readb((port)->regs + SPI_##reg)
241 #define spi_writeb(port, reg, value) \
242 __raw_writeb((value), (port)->regs + SPI_##reg)
244 #define spi_readl(port, reg) \
245 readl_relaxed((port)->regs + SPI_##reg)
246 #define spi_writel(port, reg, value) \
247 writel_relaxed((value), (port)->regs + SPI_##reg)
249 #define spi_readw(port, reg) \
250 readw_relaxed((port)->regs + SPI_##reg)
251 #define spi_writew(port, reg, value) \
252 writew_relaxed((value), (port)->regs + SPI_##reg)
254 #define spi_readb(port, reg) \
255 readb_relaxed((port)->regs + SPI_##reg)
256 #define spi_writeb(port, reg, value) \
257 writeb_relaxed((value), (port)->regs + SPI_##reg)
259 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
260 * cache operations; better heuristics consider wordsize and bitrate.
262 #define DMA_MIN_BYTES 16
264 #define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000))
266 #define AUTOSUSPEND_TIMEOUT 2000
268 struct atmel_spi_caps
{
271 bool has_dma_support
;
272 bool has_pdc_support
;
276 * The core SPI transfer engine just talks to a register bank to set up
277 * DMA transfers; transfer queue progress is driven by IRQs. The clock
278 * framework provides the base clock, subdivided for each spi_device.
288 struct platform_device
*pdev
;
289 unsigned long spi_clk
;
291 struct spi_transfer
*current_transfer
;
292 int current_remaining_bytes
;
294 dma_addr_t dma_addr_rx_bbuf
;
295 dma_addr_t dma_addr_tx_bbuf
;
299 struct completion xfer_completion
;
301 struct atmel_spi_caps caps
;
313 /* Controller-specific per-slave state */
314 struct atmel_spi_device
{
315 unsigned int npcs_pin
;
319 #define SPI_MAX_DMA_XFER 65535 /* true for both PDC and DMA */
320 #define INVALID_DMA_ADDRESS 0xffffffff
323 * Version 2 of the SPI controller has
325 * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
326 * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
328 * - SPI_CSRx.SBCR allows faster clocking
330 static bool atmel_spi_is_v2(struct atmel_spi
*as
)
332 return as
->caps
.is_spi2
;
336 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
337 * they assume that spi slave device state will not change on deselect, so
338 * that automagic deselection is OK. ("NPCSx rises if no data is to be
339 * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer
340 * controllers have CSAAT and friends.
342 * Since the CSAAT functionality is a bit weird on newer controllers as
343 * well, we use GPIO to control nCSx pins on all controllers, updating
344 * MR.PCS to avoid confusing the controller. Using GPIOs also lets us
345 * support active-high chipselects despite the controller's belief that
346 * only active-low devices/systems exists.
348 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
349 * right when driven with GPIO. ("Mode Fault does not allow more than one
350 * Master on Chip Select 0.") No workaround exists for that ... so for
351 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
352 * and (c) will trigger that first erratum in some cases.
355 static void cs_activate(struct atmel_spi
*as
, struct spi_device
*spi
)
357 struct atmel_spi_device
*asd
= spi
->controller_state
;
358 unsigned active
= spi
->mode
& SPI_CS_HIGH
;
361 if (atmel_spi_is_v2(as
)) {
362 spi_writel(as
, CSR0
+ 4 * spi
->chip_select
, asd
->csr
);
363 /* For the low SPI version, there is a issue that PDC transfer
364 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
366 spi_writel(as
, CSR0
, asd
->csr
);
367 if (as
->caps
.has_wdrbt
) {
369 SPI_BF(PCS
, ~(0x01 << spi
->chip_select
))
375 SPI_BF(PCS
, ~(0x01 << spi
->chip_select
))
380 mr
= spi_readl(as
, MR
);
381 if (as
->use_cs_gpios
)
382 gpio_set_value(asd
->npcs_pin
, active
);
384 u32 cpol
= (spi
->mode
& SPI_CPOL
) ? SPI_BIT(CPOL
) : 0;
388 /* Make sure clock polarity is correct */
389 for (i
= 0; i
< spi
->master
->num_chipselect
; i
++) {
390 csr
= spi_readl(as
, CSR0
+ 4 * i
);
391 if ((csr
^ cpol
) & SPI_BIT(CPOL
))
392 spi_writel(as
, CSR0
+ 4 * i
,
393 csr
^ SPI_BIT(CPOL
));
396 mr
= spi_readl(as
, MR
);
397 mr
= SPI_BFINS(PCS
, ~(1 << spi
->chip_select
), mr
);
398 if (as
->use_cs_gpios
&& spi
->chip_select
!= 0)
399 gpio_set_value(asd
->npcs_pin
, active
);
400 spi_writel(as
, MR
, mr
);
403 dev_dbg(&spi
->dev
, "activate %u%s, mr %08x\n",
404 asd
->npcs_pin
, active
? " (high)" : "",
408 static void cs_deactivate(struct atmel_spi
*as
, struct spi_device
*spi
)
410 struct atmel_spi_device
*asd
= spi
->controller_state
;
411 unsigned active
= spi
->mode
& SPI_CS_HIGH
;
414 /* only deactivate *this* device; sometimes transfers to
415 * another device may be active when this routine is called.
417 mr
= spi_readl(as
, MR
);
418 if (~SPI_BFEXT(PCS
, mr
) & (1 << spi
->chip_select
)) {
419 mr
= SPI_BFINS(PCS
, 0xf, mr
);
420 spi_writel(as
, MR
, mr
);
423 dev_dbg(&spi
->dev
, "DEactivate %u%s, mr %08x\n",
424 asd
->npcs_pin
, active
? " (low)" : "",
427 if (!as
->use_cs_gpios
)
428 spi_writel(as
, CR
, SPI_BIT(LASTXFER
));
429 else if (atmel_spi_is_v2(as
) || spi
->chip_select
!= 0)
430 gpio_set_value(asd
->npcs_pin
, !active
);
433 static void atmel_spi_lock(struct atmel_spi
*as
) __acquires(&as
->lock
)
435 spin_lock_irqsave(&as
->lock
, as
->flags
);
438 static void atmel_spi_unlock(struct atmel_spi
*as
) __releases(&as
->lock
)
440 spin_unlock_irqrestore(&as
->lock
, as
->flags
);
443 static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer
*xfer
)
445 return is_vmalloc_addr(xfer
->tx_buf
) || is_vmalloc_addr(xfer
->rx_buf
);
448 static inline bool atmel_spi_use_dma(struct atmel_spi
*as
,
449 struct spi_transfer
*xfer
)
451 return as
->use_dma
&& xfer
->len
>= DMA_MIN_BYTES
;
454 static bool atmel_spi_can_dma(struct spi_master
*master
,
455 struct spi_device
*spi
,
456 struct spi_transfer
*xfer
)
458 struct atmel_spi
*as
= spi_master_get_devdata(master
);
460 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5
))
461 return atmel_spi_use_dma(as
, xfer
) &&
462 !atmel_spi_is_vmalloc_xfer(xfer
);
464 return atmel_spi_use_dma(as
, xfer
);
468 static int atmel_spi_dma_slave_config(struct atmel_spi
*as
,
469 struct dma_slave_config
*slave_config
,
472 struct spi_master
*master
= platform_get_drvdata(as
->pdev
);
475 if (bits_per_word
> 8) {
476 slave_config
->dst_addr_width
= DMA_SLAVE_BUSWIDTH_2_BYTES
;
477 slave_config
->src_addr_width
= DMA_SLAVE_BUSWIDTH_2_BYTES
;
479 slave_config
->dst_addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
;
480 slave_config
->src_addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
;
483 slave_config
->dst_addr
= (dma_addr_t
)as
->phybase
+ SPI_TDR
;
484 slave_config
->src_addr
= (dma_addr_t
)as
->phybase
+ SPI_RDR
;
485 slave_config
->src_maxburst
= 1;
486 slave_config
->dst_maxburst
= 1;
487 slave_config
->device_fc
= false;
490 * This driver uses fixed peripheral select mode (PS bit set to '0' in
491 * the Mode Register).
492 * So according to the datasheet, when FIFOs are available (and
493 * enabled), the Transmit FIFO operates in Multiple Data Mode.
494 * In this mode, up to 2 data, not 4, can be written into the Transmit
495 * Data Register in a single access.
496 * However, the first data has to be written into the lowest 16 bits and
497 * the second data into the highest 16 bits of the Transmit
498 * Data Register. For 8bit data (the most frequent case), it would
499 * require to rework tx_buf so each data would actualy fit 16 bits.
500 * So we'd rather write only one data at the time. Hence the transmit
501 * path works the same whether FIFOs are available (and enabled) or not.
503 slave_config
->direction
= DMA_MEM_TO_DEV
;
504 if (dmaengine_slave_config(master
->dma_tx
, slave_config
)) {
505 dev_err(&as
->pdev
->dev
,
506 "failed to configure tx dma channel\n");
511 * This driver configures the spi controller for master mode (MSTR bit
512 * set to '1' in the Mode Register).
513 * So according to the datasheet, when FIFOs are available (and
514 * enabled), the Receive FIFO operates in Single Data Mode.
515 * So the receive path works the same whether FIFOs are available (and
518 slave_config
->direction
= DMA_DEV_TO_MEM
;
519 if (dmaengine_slave_config(master
->dma_rx
, slave_config
)) {
520 dev_err(&as
->pdev
->dev
,
521 "failed to configure rx dma channel\n");
528 static int atmel_spi_configure_dma(struct spi_master
*master
,
529 struct atmel_spi
*as
)
531 struct dma_slave_config slave_config
;
532 struct device
*dev
= &as
->pdev
->dev
;
537 dma_cap_set(DMA_SLAVE
, mask
);
539 master
->dma_tx
= dma_request_slave_channel_reason(dev
, "tx");
540 if (IS_ERR(master
->dma_tx
)) {
541 err
= PTR_ERR(master
->dma_tx
);
542 if (err
== -EPROBE_DEFER
) {
543 dev_warn(dev
, "no DMA channel available at the moment\n");
547 "DMA TX channel not available, SPI unable to use DMA\n");
553 * No reason to check EPROBE_DEFER here since we have already requested
554 * tx channel. If it fails here, it's for another reason.
556 master
->dma_rx
= dma_request_slave_channel(dev
, "rx");
558 if (!master
->dma_rx
) {
560 "DMA RX channel not available, SPI unable to use DMA\n");
565 err
= atmel_spi_dma_slave_config(as
, &slave_config
, 8);
569 dev_info(&as
->pdev
->dev
,
570 "Using %s (tx) and %s (rx) for DMA transfers\n",
571 dma_chan_name(master
->dma_tx
),
572 dma_chan_name(master
->dma_rx
));
577 dma_release_channel(master
->dma_rx
);
578 if (!IS_ERR(master
->dma_tx
))
579 dma_release_channel(master
->dma_tx
);
581 master
->dma_tx
= master
->dma_rx
= NULL
;
585 static void atmel_spi_stop_dma(struct spi_master
*master
)
588 dmaengine_terminate_all(master
->dma_rx
);
590 dmaengine_terminate_all(master
->dma_tx
);
593 static void atmel_spi_release_dma(struct spi_master
*master
)
595 if (master
->dma_rx
) {
596 dma_release_channel(master
->dma_rx
);
597 master
->dma_rx
= NULL
;
599 if (master
->dma_tx
) {
600 dma_release_channel(master
->dma_tx
);
601 master
->dma_tx
= NULL
;
605 /* This function is called by the DMA driver from tasklet context */
606 static void dma_callback(void *data
)
608 struct spi_master
*master
= data
;
609 struct atmel_spi
*as
= spi_master_get_devdata(master
);
611 if (is_vmalloc_addr(as
->current_transfer
->rx_buf
) &&
612 IS_ENABLED(CONFIG_SOC_SAM_V4_V5
)) {
613 memcpy(as
->current_transfer
->rx_buf
, as
->addr_rx_bbuf
,
614 as
->current_transfer
->len
);
616 complete(&as
->xfer_completion
);
620 * Next transfer using PIO without FIFO.
622 static void atmel_spi_next_xfer_single(struct spi_master
*master
,
623 struct spi_transfer
*xfer
)
625 struct atmel_spi
*as
= spi_master_get_devdata(master
);
626 unsigned long xfer_pos
= xfer
->len
- as
->current_remaining_bytes
;
628 dev_vdbg(master
->dev
.parent
, "atmel_spi_next_xfer_pio\n");
630 /* Make sure data is not remaining in RDR */
632 while (spi_readl(as
, SR
) & SPI_BIT(RDRF
)) {
637 if (xfer
->bits_per_word
> 8)
638 spi_writel(as
, TDR
, *(u16
*)(xfer
->tx_buf
+ xfer_pos
));
640 spi_writel(as
, TDR
, *(u8
*)(xfer
->tx_buf
+ xfer_pos
));
642 dev_dbg(master
->dev
.parent
,
643 " start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
644 xfer
, xfer
->len
, xfer
->tx_buf
, xfer
->rx_buf
,
645 xfer
->bits_per_word
);
647 /* Enable relevant interrupts */
648 spi_writel(as
, IER
, SPI_BIT(RDRF
) | SPI_BIT(OVRES
));
652 * Next transfer using PIO with FIFO.
654 static void atmel_spi_next_xfer_fifo(struct spi_master
*master
,
655 struct spi_transfer
*xfer
)
657 struct atmel_spi
*as
= spi_master_get_devdata(master
);
658 u32 current_remaining_data
, num_data
;
659 u32 offset
= xfer
->len
- as
->current_remaining_bytes
;
660 const u16
*words
= (const u16
*)((u8
*)xfer
->tx_buf
+ offset
);
661 const u8
*bytes
= (const u8
*)((u8
*)xfer
->tx_buf
+ offset
);
665 dev_vdbg(master
->dev
.parent
, "atmel_spi_next_xfer_fifo\n");
667 /* Compute the number of data to transfer in the current iteration */
668 current_remaining_data
= ((xfer
->bits_per_word
> 8) ?
669 ((u32
)as
->current_remaining_bytes
>> 1) :
670 (u32
)as
->current_remaining_bytes
);
671 num_data
= min(current_remaining_data
, as
->fifo_size
);
673 /* Flush RX and TX FIFOs */
674 spi_writel(as
, CR
, SPI_BIT(RXFCLR
) | SPI_BIT(TXFCLR
));
675 while (spi_readl(as
, FLR
))
678 /* Set RX FIFO Threshold to the number of data to transfer */
679 fifomr
= spi_readl(as
, FMR
);
680 spi_writel(as
, FMR
, SPI_BFINS(RXFTHRES
, num_data
, fifomr
));
682 /* Clear FIFO flags in the Status Register, especially RXFTHF */
683 (void)spi_readl(as
, SR
);
686 while (num_data
>= 2) {
687 if (xfer
->bits_per_word
> 8) {
695 spi_writel(as
, TDR
, (td1
<< 16) | td0
);
700 if (xfer
->bits_per_word
> 8)
705 spi_writew(as
, TDR
, td0
);
709 dev_dbg(master
->dev
.parent
,
710 " start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
711 xfer
, xfer
->len
, xfer
->tx_buf
, xfer
->rx_buf
,
712 xfer
->bits_per_word
);
715 * Enable RX FIFO Threshold Flag interrupt to be notified about
716 * transfer completion.
718 spi_writel(as
, IER
, SPI_BIT(RXFTHF
) | SPI_BIT(OVRES
));
722 * Next transfer using PIO.
724 static void atmel_spi_next_xfer_pio(struct spi_master
*master
,
725 struct spi_transfer
*xfer
)
727 struct atmel_spi
*as
= spi_master_get_devdata(master
);
730 atmel_spi_next_xfer_fifo(master
, xfer
);
732 atmel_spi_next_xfer_single(master
, xfer
);
736 * Submit next transfer for DMA.
738 static int atmel_spi_next_xfer_dma_submit(struct spi_master
*master
,
739 struct spi_transfer
*xfer
,
742 struct atmel_spi
*as
= spi_master_get_devdata(master
);
743 struct dma_chan
*rxchan
= master
->dma_rx
;
744 struct dma_chan
*txchan
= master
->dma_tx
;
745 struct dma_async_tx_descriptor
*rxdesc
;
746 struct dma_async_tx_descriptor
*txdesc
;
747 struct dma_slave_config slave_config
;
750 dev_vdbg(master
->dev
.parent
, "atmel_spi_next_xfer_dma_submit\n");
752 /* Check that the channels are available */
753 if (!rxchan
|| !txchan
)
756 /* release lock for DMA operations */
757 atmel_spi_unlock(as
);
761 if (atmel_spi_dma_slave_config(as
, &slave_config
,
762 xfer
->bits_per_word
))
765 /* Send both scatterlists */
766 if (atmel_spi_is_vmalloc_xfer(xfer
) &&
767 IS_ENABLED(CONFIG_SOC_SAM_V4_V5
)) {
768 rxdesc
= dmaengine_prep_slave_single(rxchan
,
769 as
->dma_addr_rx_bbuf
,
775 rxdesc
= dmaengine_prep_slave_sg(rxchan
,
785 if (atmel_spi_is_vmalloc_xfer(xfer
) &&
786 IS_ENABLED(CONFIG_SOC_SAM_V4_V5
)) {
787 memcpy(as
->addr_tx_bbuf
, xfer
->tx_buf
, xfer
->len
);
788 txdesc
= dmaengine_prep_slave_single(txchan
,
789 as
->dma_addr_tx_bbuf
,
790 xfer
->len
, DMA_MEM_TO_DEV
,
794 txdesc
= dmaengine_prep_slave_sg(txchan
,
804 dev_dbg(master
->dev
.parent
,
805 " start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
806 xfer
, xfer
->len
, xfer
->tx_buf
, (unsigned long long)xfer
->tx_dma
,
807 xfer
->rx_buf
, (unsigned long long)xfer
->rx_dma
);
809 /* Enable relevant interrupts */
810 spi_writel(as
, IER
, SPI_BIT(OVRES
));
812 /* Put the callback on the RX transfer only, that should finish last */
813 rxdesc
->callback
= dma_callback
;
814 rxdesc
->callback_param
= master
;
816 /* Submit and fire RX and TX with TX last so we're ready to read! */
817 cookie
= rxdesc
->tx_submit(rxdesc
);
818 if (dma_submit_error(cookie
))
820 cookie
= txdesc
->tx_submit(txdesc
);
821 if (dma_submit_error(cookie
))
823 rxchan
->device
->device_issue_pending(rxchan
);
824 txchan
->device
->device_issue_pending(txchan
);
831 spi_writel(as
, IDR
, SPI_BIT(OVRES
));
832 atmel_spi_stop_dma(master
);
838 static void atmel_spi_next_xfer_data(struct spi_master
*master
,
839 struct spi_transfer
*xfer
,
844 *rx_dma
= xfer
->rx_dma
+ xfer
->len
- *plen
;
845 *tx_dma
= xfer
->tx_dma
+ xfer
->len
- *plen
;
846 if (*plen
> master
->max_dma_len
)
847 *plen
= master
->max_dma_len
;
850 static int atmel_spi_set_xfer_speed(struct atmel_spi
*as
,
851 struct spi_device
*spi
,
852 struct spi_transfer
*xfer
)
855 unsigned long bus_hz
;
857 /* v1 chips start out at half the peripheral bus speed. */
858 bus_hz
= as
->spi_clk
;
859 if (!atmel_spi_is_v2(as
))
863 * Calculate the lowest divider that satisfies the
864 * constraint, assuming div32/fdiv/mbz == 0.
866 scbr
= DIV_ROUND_UP(bus_hz
, xfer
->speed_hz
);
869 * If the resulting divider doesn't fit into the
870 * register bitfield, we can't satisfy the constraint.
872 if (scbr
>= (1 << SPI_SCBR_SIZE
)) {
874 "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
875 xfer
->speed_hz
, scbr
, bus_hz
/255);
880 "setup: %d Hz too high, scbr %u; max %ld Hz\n",
881 xfer
->speed_hz
, scbr
, bus_hz
);
884 csr
= spi_readl(as
, CSR0
+ 4 * spi
->chip_select
);
885 csr
= SPI_BFINS(SCBR
, scbr
, csr
);
886 spi_writel(as
, CSR0
+ 4 * spi
->chip_select
, csr
);
892 * Submit next transfer for PDC.
893 * lock is held, spi irq is blocked
895 static void atmel_spi_pdc_next_xfer(struct spi_master
*master
,
896 struct spi_message
*msg
,
897 struct spi_transfer
*xfer
)
899 struct atmel_spi
*as
= spi_master_get_devdata(master
);
901 dma_addr_t tx_dma
, rx_dma
;
903 spi_writel(as
, PTCR
, SPI_BIT(RXTDIS
) | SPI_BIT(TXTDIS
));
905 len
= as
->current_remaining_bytes
;
906 atmel_spi_next_xfer_data(master
, xfer
, &tx_dma
, &rx_dma
, &len
);
907 as
->current_remaining_bytes
-= len
;
909 spi_writel(as
, RPR
, rx_dma
);
910 spi_writel(as
, TPR
, tx_dma
);
912 if (msg
->spi
->bits_per_word
> 8)
914 spi_writel(as
, RCR
, len
);
915 spi_writel(as
, TCR
, len
);
917 dev_dbg(&msg
->spi
->dev
,
918 " start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
919 xfer
, xfer
->len
, xfer
->tx_buf
,
920 (unsigned long long)xfer
->tx_dma
, xfer
->rx_buf
,
921 (unsigned long long)xfer
->rx_dma
);
923 if (as
->current_remaining_bytes
) {
924 len
= as
->current_remaining_bytes
;
925 atmel_spi_next_xfer_data(master
, xfer
, &tx_dma
, &rx_dma
, &len
);
926 as
->current_remaining_bytes
-= len
;
928 spi_writel(as
, RNPR
, rx_dma
);
929 spi_writel(as
, TNPR
, tx_dma
);
931 if (msg
->spi
->bits_per_word
> 8)
933 spi_writel(as
, RNCR
, len
);
934 spi_writel(as
, TNCR
, len
);
936 dev_dbg(&msg
->spi
->dev
,
937 " next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
938 xfer
, xfer
->len
, xfer
->tx_buf
,
939 (unsigned long long)xfer
->tx_dma
, xfer
->rx_buf
,
940 (unsigned long long)xfer
->rx_dma
);
943 /* REVISIT: We're waiting for RXBUFF before we start the next
944 * transfer because we need to handle some difficult timing
945 * issues otherwise. If we wait for TXBUFE in one transfer and
946 * then starts waiting for RXBUFF in the next, it's difficult
947 * to tell the difference between the RXBUFF interrupt we're
948 * actually waiting for and the RXBUFF interrupt of the
951 * It should be doable, though. Just not now...
953 spi_writel(as
, IER
, SPI_BIT(RXBUFF
) | SPI_BIT(OVRES
));
954 spi_writel(as
, PTCR
, SPI_BIT(TXTEN
) | SPI_BIT(RXTEN
));
958 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
959 * - The buffer is either valid for CPU access, else NULL
960 * - If the buffer is valid, so is its DMA address
962 * This driver manages the dma address unless message->is_dma_mapped.
965 atmel_spi_dma_map_xfer(struct atmel_spi
*as
, struct spi_transfer
*xfer
)
967 struct device
*dev
= &as
->pdev
->dev
;
969 xfer
->tx_dma
= xfer
->rx_dma
= INVALID_DMA_ADDRESS
;
971 /* tx_buf is a const void* where we need a void * for the dma
973 void *nonconst_tx
= (void *)xfer
->tx_buf
;
975 xfer
->tx_dma
= dma_map_single(dev
,
976 nonconst_tx
, xfer
->len
,
978 if (dma_mapping_error(dev
, xfer
->tx_dma
))
982 xfer
->rx_dma
= dma_map_single(dev
,
983 xfer
->rx_buf
, xfer
->len
,
985 if (dma_mapping_error(dev
, xfer
->rx_dma
)) {
987 dma_unmap_single(dev
,
988 xfer
->tx_dma
, xfer
->len
,
996 static void atmel_spi_dma_unmap_xfer(struct spi_master
*master
,
997 struct spi_transfer
*xfer
)
999 if (xfer
->tx_dma
!= INVALID_DMA_ADDRESS
)
1000 dma_unmap_single(master
->dev
.parent
, xfer
->tx_dma
,
1001 xfer
->len
, DMA_TO_DEVICE
);
1002 if (xfer
->rx_dma
!= INVALID_DMA_ADDRESS
)
1003 dma_unmap_single(master
->dev
.parent
, xfer
->rx_dma
,
1004 xfer
->len
, DMA_FROM_DEVICE
);
1007 static void atmel_spi_disable_pdc_transfer(struct atmel_spi
*as
)
1009 spi_writel(as
, PTCR
, SPI_BIT(RXTDIS
) | SPI_BIT(TXTDIS
));
1013 atmel_spi_pump_single_data(struct atmel_spi
*as
, struct spi_transfer
*xfer
)
1017 unsigned long xfer_pos
= xfer
->len
- as
->current_remaining_bytes
;
1019 if (xfer
->bits_per_word
> 8) {
1020 rxp16
= (u16
*)(((u8
*)xfer
->rx_buf
) + xfer_pos
);
1021 *rxp16
= spi_readl(as
, RDR
);
1023 rxp
= ((u8
*)xfer
->rx_buf
) + xfer_pos
;
1024 *rxp
= spi_readl(as
, RDR
);
1026 if (xfer
->bits_per_word
> 8) {
1027 if (as
->current_remaining_bytes
> 2)
1028 as
->current_remaining_bytes
-= 2;
1030 as
->current_remaining_bytes
= 0;
1032 as
->current_remaining_bytes
--;
1037 atmel_spi_pump_fifo_data(struct atmel_spi
*as
, struct spi_transfer
*xfer
)
1039 u32 fifolr
= spi_readl(as
, FLR
);
1040 u32 num_bytes
, num_data
= SPI_BFEXT(RXFL
, fifolr
);
1041 u32 offset
= xfer
->len
- as
->current_remaining_bytes
;
1042 u16
*words
= (u16
*)((u8
*)xfer
->rx_buf
+ offset
);
1043 u8
*bytes
= (u8
*)((u8
*)xfer
->rx_buf
+ offset
);
1044 u16 rd
; /* RD field is the lowest 16 bits of RDR */
1046 /* Update the number of remaining bytes to transfer */
1047 num_bytes
= ((xfer
->bits_per_word
> 8) ?
1051 if (as
->current_remaining_bytes
> num_bytes
)
1052 as
->current_remaining_bytes
-= num_bytes
;
1054 as
->current_remaining_bytes
= 0;
1056 /* Handle odd number of bytes when data are more than 8bit width */
1057 if (xfer
->bits_per_word
> 8)
1058 as
->current_remaining_bytes
&= ~0x1;
1062 rd
= spi_readl(as
, RDR
);
1063 if (xfer
->bits_per_word
> 8)
1073 * Must update "current_remaining_bytes" to keep track of data
1077 atmel_spi_pump_pio_data(struct atmel_spi
*as
, struct spi_transfer
*xfer
)
1080 atmel_spi_pump_fifo_data(as
, xfer
);
1082 atmel_spi_pump_single_data(as
, xfer
);
1087 * No need for locking in this Interrupt handler: done_status is the
1088 * only information modified.
1091 atmel_spi_pio_interrupt(int irq
, void *dev_id
)
1093 struct spi_master
*master
= dev_id
;
1094 struct atmel_spi
*as
= spi_master_get_devdata(master
);
1095 u32 status
, pending
, imr
;
1096 struct spi_transfer
*xfer
;
1099 imr
= spi_readl(as
, IMR
);
1100 status
= spi_readl(as
, SR
);
1101 pending
= status
& imr
;
1103 if (pending
& SPI_BIT(OVRES
)) {
1105 spi_writel(as
, IDR
, SPI_BIT(OVRES
));
1106 dev_warn(master
->dev
.parent
, "overrun\n");
1109 * When we get an overrun, we disregard the current
1110 * transfer. Data will not be copied back from any
1111 * bounce buffer and msg->actual_len will not be
1112 * updated with the last xfer.
1114 * We will also not process any remaning transfers in
1117 as
->done_status
= -EIO
;
1120 /* Clear any overrun happening while cleaning up */
1123 complete(&as
->xfer_completion
);
1125 } else if (pending
& (SPI_BIT(RDRF
) | SPI_BIT(RXFTHF
))) {
1128 if (as
->current_remaining_bytes
) {
1130 xfer
= as
->current_transfer
;
1131 atmel_spi_pump_pio_data(as
, xfer
);
1132 if (!as
->current_remaining_bytes
)
1133 spi_writel(as
, IDR
, pending
);
1135 complete(&as
->xfer_completion
);
1138 atmel_spi_unlock(as
);
1140 WARN_ONCE(pending
, "IRQ not handled, pending = %x\n", pending
);
1142 spi_writel(as
, IDR
, pending
);
1149 atmel_spi_pdc_interrupt(int irq
, void *dev_id
)
1151 struct spi_master
*master
= dev_id
;
1152 struct atmel_spi
*as
= spi_master_get_devdata(master
);
1153 u32 status
, pending
, imr
;
1156 imr
= spi_readl(as
, IMR
);
1157 status
= spi_readl(as
, SR
);
1158 pending
= status
& imr
;
1160 if (pending
& SPI_BIT(OVRES
)) {
1164 spi_writel(as
, IDR
, (SPI_BIT(RXBUFF
) | SPI_BIT(ENDRX
)
1167 /* Clear any overrun happening while cleaning up */
1170 as
->done_status
= -EIO
;
1172 complete(&as
->xfer_completion
);
1174 } else if (pending
& (SPI_BIT(RXBUFF
) | SPI_BIT(ENDRX
))) {
1177 spi_writel(as
, IDR
, pending
);
1179 complete(&as
->xfer_completion
);
1185 static int atmel_spi_setup(struct spi_device
*spi
)
1187 struct atmel_spi
*as
;
1188 struct atmel_spi_device
*asd
;
1190 unsigned int bits
= spi
->bits_per_word
;
1191 unsigned int npcs_pin
;
1193 as
= spi_master_get_devdata(spi
->master
);
1195 /* see notes above re chipselect */
1196 if (!atmel_spi_is_v2(as
)
1197 && spi
->chip_select
== 0
1198 && (spi
->mode
& SPI_CS_HIGH
)) {
1199 dev_dbg(&spi
->dev
, "setup: can't be active-high\n");
1203 csr
= SPI_BF(BITS
, bits
- 8);
1204 if (spi
->mode
& SPI_CPOL
)
1205 csr
|= SPI_BIT(CPOL
);
1206 if (!(spi
->mode
& SPI_CPHA
))
1207 csr
|= SPI_BIT(NCPHA
);
1208 if (!as
->use_cs_gpios
)
1209 csr
|= SPI_BIT(CSAAT
);
1211 /* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
1213 * DLYBCT would add delays between words, slowing down transfers.
1214 * It could potentially be useful to cope with DMA bottlenecks, but
1215 * in those cases it's probably best to just use a lower bitrate.
1217 csr
|= SPI_BF(DLYBS
, 0);
1218 csr
|= SPI_BF(DLYBCT
, 0);
1220 /* chipselect must have been muxed as GPIO (e.g. in board setup) */
1221 npcs_pin
= (unsigned long)spi
->controller_data
;
1223 if (!as
->use_cs_gpios
)
1224 npcs_pin
= spi
->chip_select
;
1225 else if (gpio_is_valid(spi
->cs_gpio
))
1226 npcs_pin
= spi
->cs_gpio
;
1228 asd
= spi
->controller_state
;
1230 asd
= kzalloc(sizeof(struct atmel_spi_device
), GFP_KERNEL
);
1234 if (as
->use_cs_gpios
)
1235 gpio_direction_output(npcs_pin
,
1236 !(spi
->mode
& SPI_CS_HIGH
));
1238 asd
->npcs_pin
= npcs_pin
;
1239 spi
->controller_state
= asd
;
1245 "setup: bpw %u mode 0x%x -> csr%d %08x\n",
1246 bits
, spi
->mode
, spi
->chip_select
, csr
);
1248 if (!atmel_spi_is_v2(as
))
1249 spi_writel(as
, CSR0
+ 4 * spi
->chip_select
, csr
);
1254 static int atmel_spi_one_transfer(struct spi_master
*master
,
1255 struct spi_message
*msg
,
1256 struct spi_transfer
*xfer
)
1258 struct atmel_spi
*as
;
1259 struct spi_device
*spi
= msg
->spi
;
1262 struct atmel_spi_device
*asd
;
1265 unsigned long dma_timeout
;
1267 as
= spi_master_get_devdata(master
);
1269 if (!(xfer
->tx_buf
|| xfer
->rx_buf
) && xfer
->len
) {
1270 dev_dbg(&spi
->dev
, "missing rx or tx buf\n");
1274 asd
= spi
->controller_state
;
1275 bits
= (asd
->csr
>> 4) & 0xf;
1276 if (bits
!= xfer
->bits_per_word
- 8) {
1278 "you can't yet change bits_per_word in transfers\n");
1279 return -ENOPROTOOPT
;
1283 * DMA map early, for performance (empties dcache ASAP) and
1284 * better fault reporting.
1286 if ((!msg
->is_dma_mapped
)
1288 if (atmel_spi_dma_map_xfer(as
, xfer
) < 0)
1292 atmel_spi_set_xfer_speed(as
, msg
->spi
, xfer
);
1294 as
->done_status
= 0;
1295 as
->current_transfer
= xfer
;
1296 as
->current_remaining_bytes
= xfer
->len
;
1297 while (as
->current_remaining_bytes
) {
1298 reinit_completion(&as
->xfer_completion
);
1301 atmel_spi_pdc_next_xfer(master
, msg
, xfer
);
1302 } else if (atmel_spi_use_dma(as
, xfer
)) {
1303 len
= as
->current_remaining_bytes
;
1304 ret
= atmel_spi_next_xfer_dma_submit(master
,
1308 "unable to use DMA, fallback to PIO\n");
1309 atmel_spi_next_xfer_pio(master
, xfer
);
1311 as
->current_remaining_bytes
-= len
;
1312 if (as
->current_remaining_bytes
< 0)
1313 as
->current_remaining_bytes
= 0;
1316 atmel_spi_next_xfer_pio(master
, xfer
);
1319 /* interrupts are disabled, so free the lock for schedule */
1320 atmel_spi_unlock(as
);
1321 dma_timeout
= wait_for_completion_timeout(&as
->xfer_completion
,
1324 if (WARN_ON(dma_timeout
== 0)) {
1325 dev_err(&spi
->dev
, "spi transfer timeout\n");
1326 as
->done_status
= -EIO
;
1329 if (as
->done_status
)
1333 if (as
->done_status
) {
1335 dev_warn(master
->dev
.parent
,
1336 "overrun (%u/%u remaining)\n",
1337 spi_readl(as
, TCR
), spi_readl(as
, RCR
));
1340 * Clean up DMA registers and make sure the data
1341 * registers are empty.
1343 spi_writel(as
, RNCR
, 0);
1344 spi_writel(as
, TNCR
, 0);
1345 spi_writel(as
, RCR
, 0);
1346 spi_writel(as
, TCR
, 0);
1347 for (timeout
= 1000; timeout
; timeout
--)
1348 if (spi_readl(as
, SR
) & SPI_BIT(TXEMPTY
))
1351 dev_warn(master
->dev
.parent
,
1352 "timeout waiting for TXEMPTY");
1353 while (spi_readl(as
, SR
) & SPI_BIT(RDRF
))
1356 /* Clear any overrun happening while cleaning up */
1359 } else if (atmel_spi_use_dma(as
, xfer
)) {
1360 atmel_spi_stop_dma(master
);
1363 if (!msg
->is_dma_mapped
1365 atmel_spi_dma_unmap_xfer(master
, xfer
);
1370 /* only update length if no error */
1371 msg
->actual_length
+= xfer
->len
;
1374 if (!msg
->is_dma_mapped
1376 atmel_spi_dma_unmap_xfer(master
, xfer
);
1378 if (xfer
->delay_usecs
)
1379 udelay(xfer
->delay_usecs
);
1381 if (xfer
->cs_change
) {
1382 if (list_is_last(&xfer
->transfer_list
,
1386 as
->cs_active
= !as
->cs_active
;
1388 cs_activate(as
, msg
->spi
);
1390 cs_deactivate(as
, msg
->spi
);
1397 static int atmel_spi_transfer_one_message(struct spi_master
*master
,
1398 struct spi_message
*msg
)
1400 struct atmel_spi
*as
;
1401 struct spi_transfer
*xfer
;
1402 struct spi_device
*spi
= msg
->spi
;
1405 as
= spi_master_get_devdata(master
);
1407 dev_dbg(&spi
->dev
, "new message %p submitted for %s\n",
1408 msg
, dev_name(&spi
->dev
));
1411 cs_activate(as
, spi
);
1413 as
->cs_active
= true;
1414 as
->keep_cs
= false;
1417 msg
->actual_length
= 0;
1419 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
1420 ret
= atmel_spi_one_transfer(master
, msg
, xfer
);
1426 atmel_spi_disable_pdc_transfer(as
);
1428 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
1430 " xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1432 xfer
->tx_buf
, &xfer
->tx_dma
,
1433 xfer
->rx_buf
, &xfer
->rx_dma
);
1438 cs_deactivate(as
, msg
->spi
);
1440 atmel_spi_unlock(as
);
1442 msg
->status
= as
->done_status
;
1443 spi_finalize_current_message(spi
->master
);
1448 static void atmel_spi_cleanup(struct spi_device
*spi
)
1450 struct atmel_spi_device
*asd
= spi
->controller_state
;
1455 spi
->controller_state
= NULL
;
1459 static inline unsigned int atmel_get_version(struct atmel_spi
*as
)
1461 return spi_readl(as
, VERSION
) & 0x00000fff;
1464 static void atmel_get_caps(struct atmel_spi
*as
)
1466 unsigned int version
;
1468 version
= atmel_get_version(as
);
1470 as
->caps
.is_spi2
= version
> 0x121;
1471 as
->caps
.has_wdrbt
= version
>= 0x210;
1472 as
->caps
.has_dma_support
= version
>= 0x212;
1473 as
->caps
.has_pdc_support
= version
< 0x212;
1476 /*-------------------------------------------------------------------------*/
1477 static int atmel_spi_gpio_cs(struct platform_device
*pdev
)
1479 struct spi_master
*master
= platform_get_drvdata(pdev
);
1480 struct atmel_spi
*as
= spi_master_get_devdata(master
);
1481 struct device_node
*np
= master
->dev
.of_node
;
1486 if (!as
->use_cs_gpios
)
1492 nb
= of_gpio_named_count(np
, "cs-gpios");
1493 for (i
= 0; i
< nb
; i
++) {
1494 int cs_gpio
= of_get_named_gpio(pdev
->dev
.of_node
,
1497 if (cs_gpio
== -EPROBE_DEFER
)
1500 if (gpio_is_valid(cs_gpio
)) {
1501 ret
= devm_gpio_request(&pdev
->dev
, cs_gpio
,
1502 dev_name(&pdev
->dev
));
1511 static void atmel_spi_init(struct atmel_spi
*as
)
1513 spi_writel(as
, CR
, SPI_BIT(SWRST
));
1514 spi_writel(as
, CR
, SPI_BIT(SWRST
)); /* AT91SAM9263 Rev B workaround */
1516 /* It is recommended to enable FIFOs first thing after reset */
1518 spi_writel(as
, CR
, SPI_BIT(FIFOEN
));
1520 if (as
->caps
.has_wdrbt
) {
1521 spi_writel(as
, MR
, SPI_BIT(WDRBT
) | SPI_BIT(MODFDIS
)
1524 spi_writel(as
, MR
, SPI_BIT(MSTR
) | SPI_BIT(MODFDIS
));
1528 spi_writel(as
, PTCR
, SPI_BIT(RXTDIS
) | SPI_BIT(TXTDIS
));
1529 spi_writel(as
, CR
, SPI_BIT(SPIEN
));
1532 static int atmel_spi_probe(struct platform_device
*pdev
)
1534 struct resource
*regs
;
1538 struct spi_master
*master
;
1539 struct atmel_spi
*as
;
1541 /* Select default pin state */
1542 pinctrl_pm_select_default_state(&pdev
->dev
);
1544 regs
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1548 irq
= platform_get_irq(pdev
, 0);
1552 clk
= devm_clk_get(&pdev
->dev
, "spi_clk");
1554 return PTR_ERR(clk
);
1556 /* setup spi core then atmel-specific driver state */
1558 master
= spi_alloc_master(&pdev
->dev
, sizeof(*as
));
1562 /* the spi->mode bits understood by this driver: */
1563 master
->mode_bits
= SPI_CPOL
| SPI_CPHA
| SPI_CS_HIGH
;
1564 master
->bits_per_word_mask
= SPI_BPW_RANGE_MASK(8, 16);
1565 master
->dev
.of_node
= pdev
->dev
.of_node
;
1566 master
->bus_num
= pdev
->id
;
1567 master
->num_chipselect
= master
->dev
.of_node
? 0 : 4;
1568 master
->setup
= atmel_spi_setup
;
1569 master
->flags
= (SPI_MASTER_MUST_RX
| SPI_MASTER_MUST_TX
);
1570 master
->transfer_one_message
= atmel_spi_transfer_one_message
;
1571 master
->cleanup
= atmel_spi_cleanup
;
1572 master
->auto_runtime_pm
= true;
1573 master
->max_dma_len
= SPI_MAX_DMA_XFER
;
1574 master
->can_dma
= atmel_spi_can_dma
;
1575 platform_set_drvdata(pdev
, master
);
1577 as
= spi_master_get_devdata(master
);
1579 spin_lock_init(&as
->lock
);
1582 as
->regs
= devm_ioremap_resource(&pdev
->dev
, regs
);
1583 if (IS_ERR(as
->regs
)) {
1584 ret
= PTR_ERR(as
->regs
);
1585 goto out_unmap_regs
;
1587 as
->phybase
= regs
->start
;
1591 init_completion(&as
->xfer_completion
);
1595 as
->use_cs_gpios
= true;
1596 if (atmel_spi_is_v2(as
) &&
1597 pdev
->dev
.of_node
&&
1598 !of_get_property(pdev
->dev
.of_node
, "cs-gpios", NULL
)) {
1599 as
->use_cs_gpios
= false;
1600 master
->num_chipselect
= 4;
1603 ret
= atmel_spi_gpio_cs(pdev
);
1605 goto out_unmap_regs
;
1607 as
->use_dma
= false;
1608 as
->use_pdc
= false;
1609 if (as
->caps
.has_dma_support
) {
1610 ret
= atmel_spi_configure_dma(master
, as
);
1613 } else if (ret
== -EPROBE_DEFER
) {
1616 } else if (as
->caps
.has_pdc_support
) {
1620 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5
)) {
1621 as
->addr_rx_bbuf
= dma_alloc_coherent(&pdev
->dev
,
1623 &as
->dma_addr_rx_bbuf
,
1624 GFP_KERNEL
| GFP_DMA
);
1625 if (!as
->addr_rx_bbuf
) {
1626 as
->use_dma
= false;
1628 as
->addr_tx_bbuf
= dma_alloc_coherent(&pdev
->dev
,
1630 &as
->dma_addr_tx_bbuf
,
1631 GFP_KERNEL
| GFP_DMA
);
1632 if (!as
->addr_tx_bbuf
) {
1633 as
->use_dma
= false;
1634 dma_free_coherent(&pdev
->dev
, SPI_MAX_DMA_XFER
,
1636 as
->dma_addr_rx_bbuf
);
1640 dev_info(master
->dev
.parent
,
1641 " can not allocate dma coherent memory\n");
1644 if (as
->caps
.has_dma_support
&& !as
->use_dma
)
1645 dev_info(&pdev
->dev
, "Atmel SPI Controller using PIO only\n");
1648 ret
= devm_request_irq(&pdev
->dev
, irq
, atmel_spi_pdc_interrupt
,
1649 0, dev_name(&pdev
->dev
), master
);
1651 ret
= devm_request_irq(&pdev
->dev
, irq
, atmel_spi_pio_interrupt
,
1652 0, dev_name(&pdev
->dev
), master
);
1655 goto out_unmap_regs
;
1657 /* Initialize the hardware */
1658 ret
= clk_prepare_enable(clk
);
1662 as
->spi_clk
= clk_get_rate(clk
);
1665 if (!of_property_read_u32(pdev
->dev
.of_node
, "atmel,fifo-size",
1667 dev_info(&pdev
->dev
, "Using FIFO (%u data)\n", as
->fifo_size
);
1672 pm_runtime_set_autosuspend_delay(&pdev
->dev
, AUTOSUSPEND_TIMEOUT
);
1673 pm_runtime_use_autosuspend(&pdev
->dev
);
1674 pm_runtime_set_active(&pdev
->dev
);
1675 pm_runtime_enable(&pdev
->dev
);
1677 ret
= devm_spi_register_master(&pdev
->dev
, master
);
1682 dev_info(&pdev
->dev
, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
1683 atmel_get_version(as
), (unsigned long)regs
->start
,
1689 pm_runtime_disable(&pdev
->dev
);
1690 pm_runtime_set_suspended(&pdev
->dev
);
1693 atmel_spi_release_dma(master
);
1695 spi_writel(as
, CR
, SPI_BIT(SWRST
));
1696 spi_writel(as
, CR
, SPI_BIT(SWRST
)); /* AT91SAM9263 Rev B workaround */
1697 clk_disable_unprepare(clk
);
1701 spi_master_put(master
);
1705 static int atmel_spi_remove(struct platform_device
*pdev
)
1707 struct spi_master
*master
= platform_get_drvdata(pdev
);
1708 struct atmel_spi
*as
= spi_master_get_devdata(master
);
1710 pm_runtime_get_sync(&pdev
->dev
);
1712 /* reset the hardware and block queue progress */
1714 atmel_spi_stop_dma(master
);
1715 atmel_spi_release_dma(master
);
1716 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5
)) {
1717 dma_free_coherent(&pdev
->dev
, SPI_MAX_DMA_XFER
,
1719 as
->dma_addr_tx_bbuf
);
1720 dma_free_coherent(&pdev
->dev
, SPI_MAX_DMA_XFER
,
1722 as
->dma_addr_rx_bbuf
);
1726 spin_lock_irq(&as
->lock
);
1727 spi_writel(as
, CR
, SPI_BIT(SWRST
));
1728 spi_writel(as
, CR
, SPI_BIT(SWRST
)); /* AT91SAM9263 Rev B workaround */
1730 spin_unlock_irq(&as
->lock
);
1732 clk_disable_unprepare(as
->clk
);
1734 pm_runtime_put_noidle(&pdev
->dev
);
1735 pm_runtime_disable(&pdev
->dev
);
1741 static int atmel_spi_runtime_suspend(struct device
*dev
)
1743 struct spi_master
*master
= dev_get_drvdata(dev
);
1744 struct atmel_spi
*as
= spi_master_get_devdata(master
);
1746 clk_disable_unprepare(as
->clk
);
1747 pinctrl_pm_select_sleep_state(dev
);
1752 static int atmel_spi_runtime_resume(struct device
*dev
)
1754 struct spi_master
*master
= dev_get_drvdata(dev
);
1755 struct atmel_spi
*as
= spi_master_get_devdata(master
);
1757 pinctrl_pm_select_default_state(dev
);
1759 return clk_prepare_enable(as
->clk
);
1762 #ifdef CONFIG_PM_SLEEP
1763 static int atmel_spi_suspend(struct device
*dev
)
1765 struct spi_master
*master
= dev_get_drvdata(dev
);
1768 /* Stop the queue running */
1769 ret
= spi_master_suspend(master
);
1771 dev_warn(dev
, "cannot suspend master\n");
1775 if (!pm_runtime_suspended(dev
))
1776 atmel_spi_runtime_suspend(dev
);
1781 static int atmel_spi_resume(struct device
*dev
)
1783 struct spi_master
*master
= dev_get_drvdata(dev
);
1784 struct atmel_spi
*as
= spi_master_get_devdata(master
);
1787 ret
= clk_prepare_enable(as
->clk
);
1793 clk_disable_unprepare(as
->clk
);
1795 if (!pm_runtime_suspended(dev
)) {
1796 ret
= atmel_spi_runtime_resume(dev
);
1801 /* Start the queue running */
1802 ret
= spi_master_resume(master
);
1804 dev_err(dev
, "problem starting queue (%d)\n", ret
);
1810 static const struct dev_pm_ops atmel_spi_pm_ops
= {
1811 SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend
, atmel_spi_resume
)
1812 SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend
,
1813 atmel_spi_runtime_resume
, NULL
)
1815 #define ATMEL_SPI_PM_OPS (&atmel_spi_pm_ops)
1817 #define ATMEL_SPI_PM_OPS NULL
1820 #if defined(CONFIG_OF)
1821 static const struct of_device_id atmel_spi_dt_ids
[] = {
1822 { .compatible
= "atmel,at91rm9200-spi" },
1826 MODULE_DEVICE_TABLE(of
, atmel_spi_dt_ids
);
1829 static struct platform_driver atmel_spi_driver
= {
1831 .name
= "atmel_spi",
1832 .pm
= ATMEL_SPI_PM_OPS
,
1833 .of_match_table
= of_match_ptr(atmel_spi_dt_ids
),
1835 .probe
= atmel_spi_probe
,
1836 .remove
= atmel_spi_remove
,
1838 module_platform_driver(atmel_spi_driver
);
1840 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1841 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1842 MODULE_LICENSE("GPL");
1843 MODULE_ALIAS("platform:atmel_spi");