fuse: call pipe_buf_release() under pipe lock
[linux/fpc-iii.git] / Documentation / admin-guide / pm / strategies.rst
blobafe4d3f831fe06fb7e04989cf317f1d5caaaebd8
1 ===========================
2 Power Management Strategies
3 ===========================
5 ::
7  Copyright (c) 2017 Intel Corp., Rafael J. Wysocki <rafael.j.wysocki@intel.com>
9 The Linux kernel supports two major high-level power management strategies.
11 One of them is based on using global low-power states of the whole system in
12 which user space code cannot be executed and the overall system activity is
13 significantly reduced, referred to as :doc:`sleep states <sleep-states>`.  The
14 kernel puts the system into one of these states when requested by user space
15 and the system stays in it until a special signal is received from one of
16 designated devices, triggering a transition to the ``working state`` in which
17 user space code can run.  Because sleep states are global and the whole system
18 is affected by the state changes, this strategy is referred to as the
19 :doc:`system-wide power management <system-wide>`.
21 The other strategy, referred to as the :doc:`working-state power management
22 <working-state>`, is based on adjusting the power states of individual hardware
23 components of the system, as needed, in the working state.  In consequence, if
24 this strategy is in use, the working state of the system usually does not
25 correspond to any particular physical configuration of it, but can be treated as
26 a metastate covering a range of different power states of the system in which
27 the individual components of it can be either ``active`` (in use) or
28 ``inactive`` (idle).  If they are active, they have to be in power states
29 allowing them to process data and to be accessed by software.  In turn, if they
30 are inactive, ideally, they should be in low-power states in which they may not
31 be accessible.
33 If all of the system components are active, the system as a whole is regarded as
34 "runtime active" and that situation typically corresponds to the maximum power
35 draw (or maximum energy usage) of it.  If all of them are inactive, the system
36 as a whole is regarded as "runtime idle" which may be very close to a sleep
37 state from the physical system configuration and power draw perspective, but
38 then it takes much less time and effort to start executing user space code than
39 for the same system in a sleep state.  However, transitions from sleep states
40 back to the working state can only be started by a limited set of devices, so
41 typically the system can spend much more time in a sleep state than it can be
42 runtime idle in one go.  For this reason, systems usually use less energy in
43 sleep states than when they are runtime idle most of the time.
45 Moreover, the two power management strategies address different usage scenarios.
46 Namely, if the user indicates that the system will not be in use going forward,
47 for example by closing its lid (if the system is a laptop), it probably should
48 go into a sleep state at that point.  On the other hand, if the user simply goes
49 away from the laptop keyboard, it probably should stay in the working state and
50 use the working-state power management in case it becomes idle, because the user
51 may come back to it at any time and then may want the system to be immediately
52 accessible.