Merge tag 'block-5.9-2020-08-14' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / tools / perf / util / machine.c
blob208b813e00ea49219773352ef6e40e7c47757673
1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <inttypes.h>
5 #include <regex.h>
6 #include <stdlib.h>
7 #include "callchain.h"
8 #include "debug.h"
9 #include "dso.h"
10 #include "env.h"
11 #include "event.h"
12 #include "evsel.h"
13 #include "hist.h"
14 #include "machine.h"
15 #include "map.h"
16 #include "map_symbol.h"
17 #include "branch.h"
18 #include "mem-events.h"
19 #include "srcline.h"
20 #include "symbol.h"
21 #include "sort.h"
22 #include "strlist.h"
23 #include "target.h"
24 #include "thread.h"
25 #include "util.h"
26 #include "vdso.h"
27 #include <stdbool.h>
28 #include <sys/types.h>
29 #include <sys/stat.h>
30 #include <unistd.h>
31 #include "unwind.h"
32 #include "linux/hash.h"
33 #include "asm/bug.h"
34 #include "bpf-event.h"
35 #include <internal/lib.h> // page_size
36 #include "cgroup.h"
38 #include <linux/ctype.h>
39 #include <symbol/kallsyms.h>
40 #include <linux/mman.h>
41 #include <linux/string.h>
42 #include <linux/zalloc.h>
44 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
46 static struct dso *machine__kernel_dso(struct machine *machine)
48 return machine->vmlinux_map->dso;
51 static void dsos__init(struct dsos *dsos)
53 INIT_LIST_HEAD(&dsos->head);
54 dsos->root = RB_ROOT;
55 init_rwsem(&dsos->lock);
58 static void machine__threads_init(struct machine *machine)
60 int i;
62 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
63 struct threads *threads = &machine->threads[i];
64 threads->entries = RB_ROOT_CACHED;
65 init_rwsem(&threads->lock);
66 threads->nr = 0;
67 INIT_LIST_HEAD(&threads->dead);
68 threads->last_match = NULL;
72 static int machine__set_mmap_name(struct machine *machine)
74 if (machine__is_host(machine))
75 machine->mmap_name = strdup("[kernel.kallsyms]");
76 else if (machine__is_default_guest(machine))
77 machine->mmap_name = strdup("[guest.kernel.kallsyms]");
78 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
79 machine->pid) < 0)
80 machine->mmap_name = NULL;
82 return machine->mmap_name ? 0 : -ENOMEM;
85 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
87 int err = -ENOMEM;
89 memset(machine, 0, sizeof(*machine));
90 maps__init(&machine->kmaps, machine);
91 RB_CLEAR_NODE(&machine->rb_node);
92 dsos__init(&machine->dsos);
94 machine__threads_init(machine);
96 machine->vdso_info = NULL;
97 machine->env = NULL;
99 machine->pid = pid;
101 machine->id_hdr_size = 0;
102 machine->kptr_restrict_warned = false;
103 machine->comm_exec = false;
104 machine->kernel_start = 0;
105 machine->vmlinux_map = NULL;
107 machine->root_dir = strdup(root_dir);
108 if (machine->root_dir == NULL)
109 return -ENOMEM;
111 if (machine__set_mmap_name(machine))
112 goto out;
114 if (pid != HOST_KERNEL_ID) {
115 struct thread *thread = machine__findnew_thread(machine, -1,
116 pid);
117 char comm[64];
119 if (thread == NULL)
120 goto out;
122 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
123 thread__set_comm(thread, comm, 0);
124 thread__put(thread);
127 machine->current_tid = NULL;
128 err = 0;
130 out:
131 if (err) {
132 zfree(&machine->root_dir);
133 zfree(&machine->mmap_name);
135 return 0;
138 struct machine *machine__new_host(void)
140 struct machine *machine = malloc(sizeof(*machine));
142 if (machine != NULL) {
143 machine__init(machine, "", HOST_KERNEL_ID);
145 if (machine__create_kernel_maps(machine) < 0)
146 goto out_delete;
149 return machine;
150 out_delete:
151 free(machine);
152 return NULL;
155 struct machine *machine__new_kallsyms(void)
157 struct machine *machine = machine__new_host();
159 * FIXME:
160 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
161 * ask for not using the kcore parsing code, once this one is fixed
162 * to create a map per module.
164 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
165 machine__delete(machine);
166 machine = NULL;
169 return machine;
172 static void dsos__purge(struct dsos *dsos)
174 struct dso *pos, *n;
176 down_write(&dsos->lock);
178 list_for_each_entry_safe(pos, n, &dsos->head, node) {
179 RB_CLEAR_NODE(&pos->rb_node);
180 pos->root = NULL;
181 list_del_init(&pos->node);
182 dso__put(pos);
185 up_write(&dsos->lock);
188 static void dsos__exit(struct dsos *dsos)
190 dsos__purge(dsos);
191 exit_rwsem(&dsos->lock);
194 void machine__delete_threads(struct machine *machine)
196 struct rb_node *nd;
197 int i;
199 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
200 struct threads *threads = &machine->threads[i];
201 down_write(&threads->lock);
202 nd = rb_first_cached(&threads->entries);
203 while (nd) {
204 struct thread *t = rb_entry(nd, struct thread, rb_node);
206 nd = rb_next(nd);
207 __machine__remove_thread(machine, t, false);
209 up_write(&threads->lock);
213 void machine__exit(struct machine *machine)
215 int i;
217 if (machine == NULL)
218 return;
220 machine__destroy_kernel_maps(machine);
221 maps__exit(&machine->kmaps);
222 dsos__exit(&machine->dsos);
223 machine__exit_vdso(machine);
224 zfree(&machine->root_dir);
225 zfree(&machine->mmap_name);
226 zfree(&machine->current_tid);
228 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
229 struct threads *threads = &machine->threads[i];
230 struct thread *thread, *n;
232 * Forget about the dead, at this point whatever threads were
233 * left in the dead lists better have a reference count taken
234 * by who is using them, and then, when they drop those references
235 * and it finally hits zero, thread__put() will check and see that
236 * its not in the dead threads list and will not try to remove it
237 * from there, just calling thread__delete() straight away.
239 list_for_each_entry_safe(thread, n, &threads->dead, node)
240 list_del_init(&thread->node);
242 exit_rwsem(&threads->lock);
246 void machine__delete(struct machine *machine)
248 if (machine) {
249 machine__exit(machine);
250 free(machine);
254 void machines__init(struct machines *machines)
256 machine__init(&machines->host, "", HOST_KERNEL_ID);
257 machines->guests = RB_ROOT_CACHED;
260 void machines__exit(struct machines *machines)
262 machine__exit(&machines->host);
263 /* XXX exit guest */
266 struct machine *machines__add(struct machines *machines, pid_t pid,
267 const char *root_dir)
269 struct rb_node **p = &machines->guests.rb_root.rb_node;
270 struct rb_node *parent = NULL;
271 struct machine *pos, *machine = malloc(sizeof(*machine));
272 bool leftmost = true;
274 if (machine == NULL)
275 return NULL;
277 if (machine__init(machine, root_dir, pid) != 0) {
278 free(machine);
279 return NULL;
282 while (*p != NULL) {
283 parent = *p;
284 pos = rb_entry(parent, struct machine, rb_node);
285 if (pid < pos->pid)
286 p = &(*p)->rb_left;
287 else {
288 p = &(*p)->rb_right;
289 leftmost = false;
293 rb_link_node(&machine->rb_node, parent, p);
294 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
296 return machine;
299 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
301 struct rb_node *nd;
303 machines->host.comm_exec = comm_exec;
305 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
306 struct machine *machine = rb_entry(nd, struct machine, rb_node);
308 machine->comm_exec = comm_exec;
312 struct machine *machines__find(struct machines *machines, pid_t pid)
314 struct rb_node **p = &machines->guests.rb_root.rb_node;
315 struct rb_node *parent = NULL;
316 struct machine *machine;
317 struct machine *default_machine = NULL;
319 if (pid == HOST_KERNEL_ID)
320 return &machines->host;
322 while (*p != NULL) {
323 parent = *p;
324 machine = rb_entry(parent, struct machine, rb_node);
325 if (pid < machine->pid)
326 p = &(*p)->rb_left;
327 else if (pid > machine->pid)
328 p = &(*p)->rb_right;
329 else
330 return machine;
331 if (!machine->pid)
332 default_machine = machine;
335 return default_machine;
338 struct machine *machines__findnew(struct machines *machines, pid_t pid)
340 char path[PATH_MAX];
341 const char *root_dir = "";
342 struct machine *machine = machines__find(machines, pid);
344 if (machine && (machine->pid == pid))
345 goto out;
347 if ((pid != HOST_KERNEL_ID) &&
348 (pid != DEFAULT_GUEST_KERNEL_ID) &&
349 (symbol_conf.guestmount)) {
350 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
351 if (access(path, R_OK)) {
352 static struct strlist *seen;
354 if (!seen)
355 seen = strlist__new(NULL, NULL);
357 if (!strlist__has_entry(seen, path)) {
358 pr_err("Can't access file %s\n", path);
359 strlist__add(seen, path);
361 machine = NULL;
362 goto out;
364 root_dir = path;
367 machine = machines__add(machines, pid, root_dir);
368 out:
369 return machine;
372 void machines__process_guests(struct machines *machines,
373 machine__process_t process, void *data)
375 struct rb_node *nd;
377 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
378 struct machine *pos = rb_entry(nd, struct machine, rb_node);
379 process(pos, data);
383 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
385 struct rb_node *node;
386 struct machine *machine;
388 machines->host.id_hdr_size = id_hdr_size;
390 for (node = rb_first_cached(&machines->guests); node;
391 node = rb_next(node)) {
392 machine = rb_entry(node, struct machine, rb_node);
393 machine->id_hdr_size = id_hdr_size;
396 return;
399 static void machine__update_thread_pid(struct machine *machine,
400 struct thread *th, pid_t pid)
402 struct thread *leader;
404 if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
405 return;
407 th->pid_ = pid;
409 if (th->pid_ == th->tid)
410 return;
412 leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
413 if (!leader)
414 goto out_err;
416 if (!leader->maps)
417 leader->maps = maps__new(machine);
419 if (!leader->maps)
420 goto out_err;
422 if (th->maps == leader->maps)
423 return;
425 if (th->maps) {
427 * Maps are created from MMAP events which provide the pid and
428 * tid. Consequently there never should be any maps on a thread
429 * with an unknown pid. Just print an error if there are.
431 if (!maps__empty(th->maps))
432 pr_err("Discarding thread maps for %d:%d\n",
433 th->pid_, th->tid);
434 maps__put(th->maps);
437 th->maps = maps__get(leader->maps);
438 out_put:
439 thread__put(leader);
440 return;
441 out_err:
442 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
443 goto out_put;
447 * Front-end cache - TID lookups come in blocks,
448 * so most of the time we dont have to look up
449 * the full rbtree:
451 static struct thread*
452 __threads__get_last_match(struct threads *threads, struct machine *machine,
453 int pid, int tid)
455 struct thread *th;
457 th = threads->last_match;
458 if (th != NULL) {
459 if (th->tid == tid) {
460 machine__update_thread_pid(machine, th, pid);
461 return thread__get(th);
464 threads->last_match = NULL;
467 return NULL;
470 static struct thread*
471 threads__get_last_match(struct threads *threads, struct machine *machine,
472 int pid, int tid)
474 struct thread *th = NULL;
476 if (perf_singlethreaded)
477 th = __threads__get_last_match(threads, machine, pid, tid);
479 return th;
482 static void
483 __threads__set_last_match(struct threads *threads, struct thread *th)
485 threads->last_match = th;
488 static void
489 threads__set_last_match(struct threads *threads, struct thread *th)
491 if (perf_singlethreaded)
492 __threads__set_last_match(threads, th);
496 * Caller must eventually drop thread->refcnt returned with a successful
497 * lookup/new thread inserted.
499 static struct thread *____machine__findnew_thread(struct machine *machine,
500 struct threads *threads,
501 pid_t pid, pid_t tid,
502 bool create)
504 struct rb_node **p = &threads->entries.rb_root.rb_node;
505 struct rb_node *parent = NULL;
506 struct thread *th;
507 bool leftmost = true;
509 th = threads__get_last_match(threads, machine, pid, tid);
510 if (th)
511 return th;
513 while (*p != NULL) {
514 parent = *p;
515 th = rb_entry(parent, struct thread, rb_node);
517 if (th->tid == tid) {
518 threads__set_last_match(threads, th);
519 machine__update_thread_pid(machine, th, pid);
520 return thread__get(th);
523 if (tid < th->tid)
524 p = &(*p)->rb_left;
525 else {
526 p = &(*p)->rb_right;
527 leftmost = false;
531 if (!create)
532 return NULL;
534 th = thread__new(pid, tid);
535 if (th != NULL) {
536 rb_link_node(&th->rb_node, parent, p);
537 rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
540 * We have to initialize maps separately after rb tree is updated.
542 * The reason is that we call machine__findnew_thread
543 * within thread__init_maps to find the thread
544 * leader and that would screwed the rb tree.
546 if (thread__init_maps(th, machine)) {
547 rb_erase_cached(&th->rb_node, &threads->entries);
548 RB_CLEAR_NODE(&th->rb_node);
549 thread__put(th);
550 return NULL;
553 * It is now in the rbtree, get a ref
555 thread__get(th);
556 threads__set_last_match(threads, th);
557 ++threads->nr;
560 return th;
563 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
565 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
568 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
569 pid_t tid)
571 struct threads *threads = machine__threads(machine, tid);
572 struct thread *th;
574 down_write(&threads->lock);
575 th = __machine__findnew_thread(machine, pid, tid);
576 up_write(&threads->lock);
577 return th;
580 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
581 pid_t tid)
583 struct threads *threads = machine__threads(machine, tid);
584 struct thread *th;
586 down_read(&threads->lock);
587 th = ____machine__findnew_thread(machine, threads, pid, tid, false);
588 up_read(&threads->lock);
589 return th;
592 struct comm *machine__thread_exec_comm(struct machine *machine,
593 struct thread *thread)
595 if (machine->comm_exec)
596 return thread__exec_comm(thread);
597 else
598 return thread__comm(thread);
601 int machine__process_comm_event(struct machine *machine, union perf_event *event,
602 struct perf_sample *sample)
604 struct thread *thread = machine__findnew_thread(machine,
605 event->comm.pid,
606 event->comm.tid);
607 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
608 int err = 0;
610 if (exec)
611 machine->comm_exec = true;
613 if (dump_trace)
614 perf_event__fprintf_comm(event, stdout);
616 if (thread == NULL ||
617 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
618 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
619 err = -1;
622 thread__put(thread);
624 return err;
627 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
628 union perf_event *event,
629 struct perf_sample *sample __maybe_unused)
631 struct thread *thread = machine__findnew_thread(machine,
632 event->namespaces.pid,
633 event->namespaces.tid);
634 int err = 0;
636 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
637 "\nWARNING: kernel seems to support more namespaces than perf"
638 " tool.\nTry updating the perf tool..\n\n");
640 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
641 "\nWARNING: perf tool seems to support more namespaces than"
642 " the kernel.\nTry updating the kernel..\n\n");
644 if (dump_trace)
645 perf_event__fprintf_namespaces(event, stdout);
647 if (thread == NULL ||
648 thread__set_namespaces(thread, sample->time, &event->namespaces)) {
649 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
650 err = -1;
653 thread__put(thread);
655 return err;
658 int machine__process_cgroup_event(struct machine *machine,
659 union perf_event *event,
660 struct perf_sample *sample __maybe_unused)
662 struct cgroup *cgrp;
664 if (dump_trace)
665 perf_event__fprintf_cgroup(event, stdout);
667 cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path);
668 if (cgrp == NULL)
669 return -ENOMEM;
671 return 0;
674 int machine__process_lost_event(struct machine *machine __maybe_unused,
675 union perf_event *event, struct perf_sample *sample __maybe_unused)
677 dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
678 event->lost.id, event->lost.lost);
679 return 0;
682 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
683 union perf_event *event, struct perf_sample *sample)
685 dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
686 sample->id, event->lost_samples.lost);
687 return 0;
690 static struct dso *machine__findnew_module_dso(struct machine *machine,
691 struct kmod_path *m,
692 const char *filename)
694 struct dso *dso;
696 down_write(&machine->dsos.lock);
698 dso = __dsos__find(&machine->dsos, m->name, true);
699 if (!dso) {
700 dso = __dsos__addnew(&machine->dsos, m->name);
701 if (dso == NULL)
702 goto out_unlock;
704 dso__set_module_info(dso, m, machine);
705 dso__set_long_name(dso, strdup(filename), true);
706 dso->kernel = DSO_SPACE__KERNEL;
709 dso__get(dso);
710 out_unlock:
711 up_write(&machine->dsos.lock);
712 return dso;
715 int machine__process_aux_event(struct machine *machine __maybe_unused,
716 union perf_event *event)
718 if (dump_trace)
719 perf_event__fprintf_aux(event, stdout);
720 return 0;
723 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
724 union perf_event *event)
726 if (dump_trace)
727 perf_event__fprintf_itrace_start(event, stdout);
728 return 0;
731 int machine__process_switch_event(struct machine *machine __maybe_unused,
732 union perf_event *event)
734 if (dump_trace)
735 perf_event__fprintf_switch(event, stdout);
736 return 0;
739 static int is_bpf_image(const char *name)
741 return strncmp(name, "bpf_trampoline_", sizeof("bpf_trampoline_") - 1) == 0 ||
742 strncmp(name, "bpf_dispatcher_", sizeof("bpf_dispatcher_") - 1) == 0;
745 static int machine__process_ksymbol_register(struct machine *machine,
746 union perf_event *event,
747 struct perf_sample *sample __maybe_unused)
749 struct symbol *sym;
750 struct map *map = maps__find(&machine->kmaps, event->ksymbol.addr);
752 if (!map) {
753 struct dso *dso = dso__new(event->ksymbol.name);
755 if (dso) {
756 dso->kernel = DSO_SPACE__KERNEL;
757 map = map__new2(0, dso);
760 if (!dso || !map) {
761 dso__put(dso);
762 return -ENOMEM;
765 if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) {
766 map->dso->binary_type = DSO_BINARY_TYPE__OOL;
767 map->dso->data.file_size = event->ksymbol.len;
768 dso__set_loaded(map->dso);
771 map->start = event->ksymbol.addr;
772 map->end = map->start + event->ksymbol.len;
773 maps__insert(&machine->kmaps, map);
774 dso__set_loaded(dso);
776 if (is_bpf_image(event->ksymbol.name)) {
777 dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE;
778 dso__set_long_name(dso, "", false);
782 sym = symbol__new(map->map_ip(map, map->start),
783 event->ksymbol.len,
784 0, 0, event->ksymbol.name);
785 if (!sym)
786 return -ENOMEM;
787 dso__insert_symbol(map->dso, sym);
788 return 0;
791 static int machine__process_ksymbol_unregister(struct machine *machine,
792 union perf_event *event,
793 struct perf_sample *sample __maybe_unused)
795 struct map *map;
797 map = maps__find(&machine->kmaps, event->ksymbol.addr);
798 if (map)
799 maps__remove(&machine->kmaps, map);
801 return 0;
804 int machine__process_ksymbol(struct machine *machine __maybe_unused,
805 union perf_event *event,
806 struct perf_sample *sample)
808 if (dump_trace)
809 perf_event__fprintf_ksymbol(event, stdout);
811 if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
812 return machine__process_ksymbol_unregister(machine, event,
813 sample);
814 return machine__process_ksymbol_register(machine, event, sample);
817 int machine__process_text_poke(struct machine *machine, union perf_event *event,
818 struct perf_sample *sample __maybe_unused)
820 struct map *map = maps__find(&machine->kmaps, event->text_poke.addr);
821 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
823 if (dump_trace)
824 perf_event__fprintf_text_poke(event, machine, stdout);
826 if (!event->text_poke.new_len)
827 return 0;
829 if (cpumode != PERF_RECORD_MISC_KERNEL) {
830 pr_debug("%s: unsupported cpumode - ignoring\n", __func__);
831 return 0;
834 if (map && map->dso) {
835 u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len;
836 int ret;
839 * Kernel maps might be changed when loading symbols so loading
840 * must be done prior to using kernel maps.
842 map__load(map);
843 ret = dso__data_write_cache_addr(map->dso, map, machine,
844 event->text_poke.addr,
845 new_bytes,
846 event->text_poke.new_len);
847 if (ret != event->text_poke.new_len)
848 pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n",
849 event->text_poke.addr);
850 } else {
851 pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n",
852 event->text_poke.addr);
855 return 0;
858 static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
859 const char *filename)
861 struct map *map = NULL;
862 struct kmod_path m;
863 struct dso *dso;
865 if (kmod_path__parse_name(&m, filename))
866 return NULL;
868 dso = machine__findnew_module_dso(machine, &m, filename);
869 if (dso == NULL)
870 goto out;
872 map = map__new2(start, dso);
873 if (map == NULL)
874 goto out;
876 maps__insert(&machine->kmaps, map);
878 /* Put the map here because maps__insert alread got it */
879 map__put(map);
880 out:
881 /* put the dso here, corresponding to machine__findnew_module_dso */
882 dso__put(dso);
883 zfree(&m.name);
884 return map;
887 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
889 struct rb_node *nd;
890 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
892 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
893 struct machine *pos = rb_entry(nd, struct machine, rb_node);
894 ret += __dsos__fprintf(&pos->dsos.head, fp);
897 return ret;
900 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
901 bool (skip)(struct dso *dso, int parm), int parm)
903 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
906 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
907 bool (skip)(struct dso *dso, int parm), int parm)
909 struct rb_node *nd;
910 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
912 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
913 struct machine *pos = rb_entry(nd, struct machine, rb_node);
914 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
916 return ret;
919 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
921 int i;
922 size_t printed = 0;
923 struct dso *kdso = machine__kernel_dso(machine);
925 if (kdso->has_build_id) {
926 char filename[PATH_MAX];
927 if (dso__build_id_filename(kdso, filename, sizeof(filename),
928 false))
929 printed += fprintf(fp, "[0] %s\n", filename);
932 for (i = 0; i < vmlinux_path__nr_entries; ++i)
933 printed += fprintf(fp, "[%d] %s\n",
934 i + kdso->has_build_id, vmlinux_path[i]);
936 return printed;
939 size_t machine__fprintf(struct machine *machine, FILE *fp)
941 struct rb_node *nd;
942 size_t ret;
943 int i;
945 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
946 struct threads *threads = &machine->threads[i];
948 down_read(&threads->lock);
950 ret = fprintf(fp, "Threads: %u\n", threads->nr);
952 for (nd = rb_first_cached(&threads->entries); nd;
953 nd = rb_next(nd)) {
954 struct thread *pos = rb_entry(nd, struct thread, rb_node);
956 ret += thread__fprintf(pos, fp);
959 up_read(&threads->lock);
961 return ret;
964 static struct dso *machine__get_kernel(struct machine *machine)
966 const char *vmlinux_name = machine->mmap_name;
967 struct dso *kernel;
969 if (machine__is_host(machine)) {
970 if (symbol_conf.vmlinux_name)
971 vmlinux_name = symbol_conf.vmlinux_name;
973 kernel = machine__findnew_kernel(machine, vmlinux_name,
974 "[kernel]", DSO_SPACE__KERNEL);
975 } else {
976 if (symbol_conf.default_guest_vmlinux_name)
977 vmlinux_name = symbol_conf.default_guest_vmlinux_name;
979 kernel = machine__findnew_kernel(machine, vmlinux_name,
980 "[guest.kernel]",
981 DSO_SPACE__KERNEL_GUEST);
984 if (kernel != NULL && (!kernel->has_build_id))
985 dso__read_running_kernel_build_id(kernel, machine);
987 return kernel;
990 struct process_args {
991 u64 start;
994 void machine__get_kallsyms_filename(struct machine *machine, char *buf,
995 size_t bufsz)
997 if (machine__is_default_guest(machine))
998 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
999 else
1000 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
1003 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
1005 /* Figure out the start address of kernel map from /proc/kallsyms.
1006 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
1007 * symbol_name if it's not that important.
1009 static int machine__get_running_kernel_start(struct machine *machine,
1010 const char **symbol_name,
1011 u64 *start, u64 *end)
1013 char filename[PATH_MAX];
1014 int i, err = -1;
1015 const char *name;
1016 u64 addr = 0;
1018 machine__get_kallsyms_filename(machine, filename, PATH_MAX);
1020 if (symbol__restricted_filename(filename, "/proc/kallsyms"))
1021 return 0;
1023 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
1024 err = kallsyms__get_function_start(filename, name, &addr);
1025 if (!err)
1026 break;
1029 if (err)
1030 return -1;
1032 if (symbol_name)
1033 *symbol_name = name;
1035 *start = addr;
1037 err = kallsyms__get_function_start(filename, "_etext", &addr);
1038 if (!err)
1039 *end = addr;
1041 return 0;
1044 int machine__create_extra_kernel_map(struct machine *machine,
1045 struct dso *kernel,
1046 struct extra_kernel_map *xm)
1048 struct kmap *kmap;
1049 struct map *map;
1051 map = map__new2(xm->start, kernel);
1052 if (!map)
1053 return -1;
1055 map->end = xm->end;
1056 map->pgoff = xm->pgoff;
1058 kmap = map__kmap(map);
1060 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1062 maps__insert(&machine->kmaps, map);
1064 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1065 kmap->name, map->start, map->end);
1067 map__put(map);
1069 return 0;
1072 static u64 find_entry_trampoline(struct dso *dso)
1074 /* Duplicates are removed so lookup all aliases */
1075 const char *syms[] = {
1076 "_entry_trampoline",
1077 "__entry_trampoline_start",
1078 "entry_SYSCALL_64_trampoline",
1080 struct symbol *sym = dso__first_symbol(dso);
1081 unsigned int i;
1083 for (; sym; sym = dso__next_symbol(sym)) {
1084 if (sym->binding != STB_GLOBAL)
1085 continue;
1086 for (i = 0; i < ARRAY_SIZE(syms); i++) {
1087 if (!strcmp(sym->name, syms[i]))
1088 return sym->start;
1092 return 0;
1096 * These values can be used for kernels that do not have symbols for the entry
1097 * trampolines in kallsyms.
1099 #define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL
1100 #define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000
1101 #define X86_64_ENTRY_TRAMPOLINE 0x6000
1103 /* Map x86_64 PTI entry trampolines */
1104 int machine__map_x86_64_entry_trampolines(struct machine *machine,
1105 struct dso *kernel)
1107 struct maps *kmaps = &machine->kmaps;
1108 int nr_cpus_avail, cpu;
1109 bool found = false;
1110 struct map *map;
1111 u64 pgoff;
1114 * In the vmlinux case, pgoff is a virtual address which must now be
1115 * mapped to a vmlinux offset.
1117 maps__for_each_entry(kmaps, map) {
1118 struct kmap *kmap = __map__kmap(map);
1119 struct map *dest_map;
1121 if (!kmap || !is_entry_trampoline(kmap->name))
1122 continue;
1124 dest_map = maps__find(kmaps, map->pgoff);
1125 if (dest_map != map)
1126 map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
1127 found = true;
1129 if (found || machine->trampolines_mapped)
1130 return 0;
1132 pgoff = find_entry_trampoline(kernel);
1133 if (!pgoff)
1134 return 0;
1136 nr_cpus_avail = machine__nr_cpus_avail(machine);
1138 /* Add a 1 page map for each CPU's entry trampoline */
1139 for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1140 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1141 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1142 X86_64_ENTRY_TRAMPOLINE;
1143 struct extra_kernel_map xm = {
1144 .start = va,
1145 .end = va + page_size,
1146 .pgoff = pgoff,
1149 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1151 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1152 return -1;
1155 machine->trampolines_mapped = nr_cpus_avail;
1157 return 0;
1160 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1161 struct dso *kernel __maybe_unused)
1163 return 0;
1166 static int
1167 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1169 /* In case of renewal the kernel map, destroy previous one */
1170 machine__destroy_kernel_maps(machine);
1172 machine->vmlinux_map = map__new2(0, kernel);
1173 if (machine->vmlinux_map == NULL)
1174 return -1;
1176 machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1177 maps__insert(&machine->kmaps, machine->vmlinux_map);
1178 return 0;
1181 void machine__destroy_kernel_maps(struct machine *machine)
1183 struct kmap *kmap;
1184 struct map *map = machine__kernel_map(machine);
1186 if (map == NULL)
1187 return;
1189 kmap = map__kmap(map);
1190 maps__remove(&machine->kmaps, map);
1191 if (kmap && kmap->ref_reloc_sym) {
1192 zfree((char **)&kmap->ref_reloc_sym->name);
1193 zfree(&kmap->ref_reloc_sym);
1196 map__zput(machine->vmlinux_map);
1199 int machines__create_guest_kernel_maps(struct machines *machines)
1201 int ret = 0;
1202 struct dirent **namelist = NULL;
1203 int i, items = 0;
1204 char path[PATH_MAX];
1205 pid_t pid;
1206 char *endp;
1208 if (symbol_conf.default_guest_vmlinux_name ||
1209 symbol_conf.default_guest_modules ||
1210 symbol_conf.default_guest_kallsyms) {
1211 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1214 if (symbol_conf.guestmount) {
1215 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1216 if (items <= 0)
1217 return -ENOENT;
1218 for (i = 0; i < items; i++) {
1219 if (!isdigit(namelist[i]->d_name[0])) {
1220 /* Filter out . and .. */
1221 continue;
1223 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1224 if ((*endp != '\0') ||
1225 (endp == namelist[i]->d_name) ||
1226 (errno == ERANGE)) {
1227 pr_debug("invalid directory (%s). Skipping.\n",
1228 namelist[i]->d_name);
1229 continue;
1231 sprintf(path, "%s/%s/proc/kallsyms",
1232 symbol_conf.guestmount,
1233 namelist[i]->d_name);
1234 ret = access(path, R_OK);
1235 if (ret) {
1236 pr_debug("Can't access file %s\n", path);
1237 goto failure;
1239 machines__create_kernel_maps(machines, pid);
1241 failure:
1242 free(namelist);
1245 return ret;
1248 void machines__destroy_kernel_maps(struct machines *machines)
1250 struct rb_node *next = rb_first_cached(&machines->guests);
1252 machine__destroy_kernel_maps(&machines->host);
1254 while (next) {
1255 struct machine *pos = rb_entry(next, struct machine, rb_node);
1257 next = rb_next(&pos->rb_node);
1258 rb_erase_cached(&pos->rb_node, &machines->guests);
1259 machine__delete(pos);
1263 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1265 struct machine *machine = machines__findnew(machines, pid);
1267 if (machine == NULL)
1268 return -1;
1270 return machine__create_kernel_maps(machine);
1273 int machine__load_kallsyms(struct machine *machine, const char *filename)
1275 struct map *map = machine__kernel_map(machine);
1276 int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1278 if (ret > 0) {
1279 dso__set_loaded(map->dso);
1281 * Since /proc/kallsyms will have multiple sessions for the
1282 * kernel, with modules between them, fixup the end of all
1283 * sections.
1285 maps__fixup_end(&machine->kmaps);
1288 return ret;
1291 int machine__load_vmlinux_path(struct machine *machine)
1293 struct map *map = machine__kernel_map(machine);
1294 int ret = dso__load_vmlinux_path(map->dso, map);
1296 if (ret > 0)
1297 dso__set_loaded(map->dso);
1299 return ret;
1302 static char *get_kernel_version(const char *root_dir)
1304 char version[PATH_MAX];
1305 FILE *file;
1306 char *name, *tmp;
1307 const char *prefix = "Linux version ";
1309 sprintf(version, "%s/proc/version", root_dir);
1310 file = fopen(version, "r");
1311 if (!file)
1312 return NULL;
1314 tmp = fgets(version, sizeof(version), file);
1315 fclose(file);
1316 if (!tmp)
1317 return NULL;
1319 name = strstr(version, prefix);
1320 if (!name)
1321 return NULL;
1322 name += strlen(prefix);
1323 tmp = strchr(name, ' ');
1324 if (tmp)
1325 *tmp = '\0';
1327 return strdup(name);
1330 static bool is_kmod_dso(struct dso *dso)
1332 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1333 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1336 static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1338 char *long_name;
1339 struct map *map = maps__find_by_name(maps, m->name);
1341 if (map == NULL)
1342 return 0;
1344 long_name = strdup(path);
1345 if (long_name == NULL)
1346 return -ENOMEM;
1348 dso__set_long_name(map->dso, long_name, true);
1349 dso__kernel_module_get_build_id(map->dso, "");
1352 * Full name could reveal us kmod compression, so
1353 * we need to update the symtab_type if needed.
1355 if (m->comp && is_kmod_dso(map->dso)) {
1356 map->dso->symtab_type++;
1357 map->dso->comp = m->comp;
1360 return 0;
1363 static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
1365 struct dirent *dent;
1366 DIR *dir = opendir(dir_name);
1367 int ret = 0;
1369 if (!dir) {
1370 pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1371 return -1;
1374 while ((dent = readdir(dir)) != NULL) {
1375 char path[PATH_MAX];
1376 struct stat st;
1378 /*sshfs might return bad dent->d_type, so we have to stat*/
1379 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1380 if (stat(path, &st))
1381 continue;
1383 if (S_ISDIR(st.st_mode)) {
1384 if (!strcmp(dent->d_name, ".") ||
1385 !strcmp(dent->d_name, ".."))
1386 continue;
1388 /* Do not follow top-level source and build symlinks */
1389 if (depth == 0) {
1390 if (!strcmp(dent->d_name, "source") ||
1391 !strcmp(dent->d_name, "build"))
1392 continue;
1395 ret = maps__set_modules_path_dir(maps, path, depth + 1);
1396 if (ret < 0)
1397 goto out;
1398 } else {
1399 struct kmod_path m;
1401 ret = kmod_path__parse_name(&m, dent->d_name);
1402 if (ret)
1403 goto out;
1405 if (m.kmod)
1406 ret = maps__set_module_path(maps, path, &m);
1408 zfree(&m.name);
1410 if (ret)
1411 goto out;
1415 out:
1416 closedir(dir);
1417 return ret;
1420 static int machine__set_modules_path(struct machine *machine)
1422 char *version;
1423 char modules_path[PATH_MAX];
1425 version = get_kernel_version(machine->root_dir);
1426 if (!version)
1427 return -1;
1429 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1430 machine->root_dir, version);
1431 free(version);
1433 return maps__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1435 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1436 u64 *size __maybe_unused,
1437 const char *name __maybe_unused)
1439 return 0;
1442 static int machine__create_module(void *arg, const char *name, u64 start,
1443 u64 size)
1445 struct machine *machine = arg;
1446 struct map *map;
1448 if (arch__fix_module_text_start(&start, &size, name) < 0)
1449 return -1;
1451 map = machine__addnew_module_map(machine, start, name);
1452 if (map == NULL)
1453 return -1;
1454 map->end = start + size;
1456 dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1458 return 0;
1461 static int machine__create_modules(struct machine *machine)
1463 const char *modules;
1464 char path[PATH_MAX];
1466 if (machine__is_default_guest(machine)) {
1467 modules = symbol_conf.default_guest_modules;
1468 } else {
1469 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1470 modules = path;
1473 if (symbol__restricted_filename(modules, "/proc/modules"))
1474 return -1;
1476 if (modules__parse(modules, machine, machine__create_module))
1477 return -1;
1479 if (!machine__set_modules_path(machine))
1480 return 0;
1482 pr_debug("Problems setting modules path maps, continuing anyway...\n");
1484 return 0;
1487 static void machine__set_kernel_mmap(struct machine *machine,
1488 u64 start, u64 end)
1490 machine->vmlinux_map->start = start;
1491 machine->vmlinux_map->end = end;
1493 * Be a bit paranoid here, some perf.data file came with
1494 * a zero sized synthesized MMAP event for the kernel.
1496 if (start == 0 && end == 0)
1497 machine->vmlinux_map->end = ~0ULL;
1500 static void machine__update_kernel_mmap(struct machine *machine,
1501 u64 start, u64 end)
1503 struct map *map = machine__kernel_map(machine);
1505 map__get(map);
1506 maps__remove(&machine->kmaps, map);
1508 machine__set_kernel_mmap(machine, start, end);
1510 maps__insert(&machine->kmaps, map);
1511 map__put(map);
1514 int machine__create_kernel_maps(struct machine *machine)
1516 struct dso *kernel = machine__get_kernel(machine);
1517 const char *name = NULL;
1518 struct map *map;
1519 u64 start = 0, end = ~0ULL;
1520 int ret;
1522 if (kernel == NULL)
1523 return -1;
1525 ret = __machine__create_kernel_maps(machine, kernel);
1526 if (ret < 0)
1527 goto out_put;
1529 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1530 if (machine__is_host(machine))
1531 pr_debug("Problems creating module maps, "
1532 "continuing anyway...\n");
1533 else
1534 pr_debug("Problems creating module maps for guest %d, "
1535 "continuing anyway...\n", machine->pid);
1538 if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1539 if (name &&
1540 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1541 machine__destroy_kernel_maps(machine);
1542 ret = -1;
1543 goto out_put;
1547 * we have a real start address now, so re-order the kmaps
1548 * assume it's the last in the kmaps
1550 machine__update_kernel_mmap(machine, start, end);
1553 if (machine__create_extra_kernel_maps(machine, kernel))
1554 pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1556 if (end == ~0ULL) {
1557 /* update end address of the kernel map using adjacent module address */
1558 map = map__next(machine__kernel_map(machine));
1559 if (map)
1560 machine__set_kernel_mmap(machine, start, map->start);
1563 out_put:
1564 dso__put(kernel);
1565 return ret;
1568 static bool machine__uses_kcore(struct machine *machine)
1570 struct dso *dso;
1572 list_for_each_entry(dso, &machine->dsos.head, node) {
1573 if (dso__is_kcore(dso))
1574 return true;
1577 return false;
1580 static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1581 union perf_event *event)
1583 return machine__is(machine, "x86_64") &&
1584 is_entry_trampoline(event->mmap.filename);
1587 static int machine__process_extra_kernel_map(struct machine *machine,
1588 union perf_event *event)
1590 struct dso *kernel = machine__kernel_dso(machine);
1591 struct extra_kernel_map xm = {
1592 .start = event->mmap.start,
1593 .end = event->mmap.start + event->mmap.len,
1594 .pgoff = event->mmap.pgoff,
1597 if (kernel == NULL)
1598 return -1;
1600 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1602 return machine__create_extra_kernel_map(machine, kernel, &xm);
1605 static int machine__process_kernel_mmap_event(struct machine *machine,
1606 union perf_event *event)
1608 struct map *map;
1609 enum dso_space_type dso_space;
1610 bool is_kernel_mmap;
1612 /* If we have maps from kcore then we do not need or want any others */
1613 if (machine__uses_kcore(machine))
1614 return 0;
1616 if (machine__is_host(machine))
1617 dso_space = DSO_SPACE__KERNEL;
1618 else
1619 dso_space = DSO_SPACE__KERNEL_GUEST;
1621 is_kernel_mmap = memcmp(event->mmap.filename,
1622 machine->mmap_name,
1623 strlen(machine->mmap_name) - 1) == 0;
1624 if (event->mmap.filename[0] == '/' ||
1625 (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1626 map = machine__addnew_module_map(machine, event->mmap.start,
1627 event->mmap.filename);
1628 if (map == NULL)
1629 goto out_problem;
1631 map->end = map->start + event->mmap.len;
1632 } else if (is_kernel_mmap) {
1633 const char *symbol_name = (event->mmap.filename +
1634 strlen(machine->mmap_name));
1636 * Should be there already, from the build-id table in
1637 * the header.
1639 struct dso *kernel = NULL;
1640 struct dso *dso;
1642 down_read(&machine->dsos.lock);
1644 list_for_each_entry(dso, &machine->dsos.head, node) {
1647 * The cpumode passed to is_kernel_module is not the
1648 * cpumode of *this* event. If we insist on passing
1649 * correct cpumode to is_kernel_module, we should
1650 * record the cpumode when we adding this dso to the
1651 * linked list.
1653 * However we don't really need passing correct
1654 * cpumode. We know the correct cpumode must be kernel
1655 * mode (if not, we should not link it onto kernel_dsos
1656 * list).
1658 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1659 * is_kernel_module() treats it as a kernel cpumode.
1662 if (!dso->kernel ||
1663 is_kernel_module(dso->long_name,
1664 PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1665 continue;
1668 kernel = dso;
1669 break;
1672 up_read(&machine->dsos.lock);
1674 if (kernel == NULL)
1675 kernel = machine__findnew_dso(machine, machine->mmap_name);
1676 if (kernel == NULL)
1677 goto out_problem;
1679 kernel->kernel = dso_space;
1680 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1681 dso__put(kernel);
1682 goto out_problem;
1685 if (strstr(kernel->long_name, "vmlinux"))
1686 dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1688 machine__update_kernel_mmap(machine, event->mmap.start,
1689 event->mmap.start + event->mmap.len);
1692 * Avoid using a zero address (kptr_restrict) for the ref reloc
1693 * symbol. Effectively having zero here means that at record
1694 * time /proc/sys/kernel/kptr_restrict was non zero.
1696 if (event->mmap.pgoff != 0) {
1697 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1698 symbol_name,
1699 event->mmap.pgoff);
1702 if (machine__is_default_guest(machine)) {
1704 * preload dso of guest kernel and modules
1706 dso__load(kernel, machine__kernel_map(machine));
1708 } else if (perf_event__is_extra_kernel_mmap(machine, event)) {
1709 return machine__process_extra_kernel_map(machine, event);
1711 return 0;
1712 out_problem:
1713 return -1;
1716 int machine__process_mmap2_event(struct machine *machine,
1717 union perf_event *event,
1718 struct perf_sample *sample)
1720 struct thread *thread;
1721 struct map *map;
1722 struct dso_id dso_id = {
1723 .maj = event->mmap2.maj,
1724 .min = event->mmap2.min,
1725 .ino = event->mmap2.ino,
1726 .ino_generation = event->mmap2.ino_generation,
1728 int ret = 0;
1730 if (dump_trace)
1731 perf_event__fprintf_mmap2(event, stdout);
1733 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1734 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1735 ret = machine__process_kernel_mmap_event(machine, event);
1736 if (ret < 0)
1737 goto out_problem;
1738 return 0;
1741 thread = machine__findnew_thread(machine, event->mmap2.pid,
1742 event->mmap2.tid);
1743 if (thread == NULL)
1744 goto out_problem;
1746 map = map__new(machine, event->mmap2.start,
1747 event->mmap2.len, event->mmap2.pgoff,
1748 &dso_id, event->mmap2.prot,
1749 event->mmap2.flags,
1750 event->mmap2.filename, thread);
1752 if (map == NULL)
1753 goto out_problem_map;
1755 ret = thread__insert_map(thread, map);
1756 if (ret)
1757 goto out_problem_insert;
1759 thread__put(thread);
1760 map__put(map);
1761 return 0;
1763 out_problem_insert:
1764 map__put(map);
1765 out_problem_map:
1766 thread__put(thread);
1767 out_problem:
1768 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1769 return 0;
1772 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1773 struct perf_sample *sample)
1775 struct thread *thread;
1776 struct map *map;
1777 u32 prot = 0;
1778 int ret = 0;
1780 if (dump_trace)
1781 perf_event__fprintf_mmap(event, stdout);
1783 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1784 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1785 ret = machine__process_kernel_mmap_event(machine, event);
1786 if (ret < 0)
1787 goto out_problem;
1788 return 0;
1791 thread = machine__findnew_thread(machine, event->mmap.pid,
1792 event->mmap.tid);
1793 if (thread == NULL)
1794 goto out_problem;
1796 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1797 prot = PROT_EXEC;
1799 map = map__new(machine, event->mmap.start,
1800 event->mmap.len, event->mmap.pgoff,
1801 NULL, prot, 0, event->mmap.filename, thread);
1803 if (map == NULL)
1804 goto out_problem_map;
1806 ret = thread__insert_map(thread, map);
1807 if (ret)
1808 goto out_problem_insert;
1810 thread__put(thread);
1811 map__put(map);
1812 return 0;
1814 out_problem_insert:
1815 map__put(map);
1816 out_problem_map:
1817 thread__put(thread);
1818 out_problem:
1819 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1820 return 0;
1823 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1825 struct threads *threads = machine__threads(machine, th->tid);
1827 if (threads->last_match == th)
1828 threads__set_last_match(threads, NULL);
1830 if (lock)
1831 down_write(&threads->lock);
1833 BUG_ON(refcount_read(&th->refcnt) == 0);
1835 rb_erase_cached(&th->rb_node, &threads->entries);
1836 RB_CLEAR_NODE(&th->rb_node);
1837 --threads->nr;
1839 * Move it first to the dead_threads list, then drop the reference,
1840 * if this is the last reference, then the thread__delete destructor
1841 * will be called and we will remove it from the dead_threads list.
1843 list_add_tail(&th->node, &threads->dead);
1846 * We need to do the put here because if this is the last refcount,
1847 * then we will be touching the threads->dead head when removing the
1848 * thread.
1850 thread__put(th);
1852 if (lock)
1853 up_write(&threads->lock);
1856 void machine__remove_thread(struct machine *machine, struct thread *th)
1858 return __machine__remove_thread(machine, th, true);
1861 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1862 struct perf_sample *sample)
1864 struct thread *thread = machine__find_thread(machine,
1865 event->fork.pid,
1866 event->fork.tid);
1867 struct thread *parent = machine__findnew_thread(machine,
1868 event->fork.ppid,
1869 event->fork.ptid);
1870 bool do_maps_clone = true;
1871 int err = 0;
1873 if (dump_trace)
1874 perf_event__fprintf_task(event, stdout);
1877 * There may be an existing thread that is not actually the parent,
1878 * either because we are processing events out of order, or because the
1879 * (fork) event that would have removed the thread was lost. Assume the
1880 * latter case and continue on as best we can.
1882 if (parent->pid_ != (pid_t)event->fork.ppid) {
1883 dump_printf("removing erroneous parent thread %d/%d\n",
1884 parent->pid_, parent->tid);
1885 machine__remove_thread(machine, parent);
1886 thread__put(parent);
1887 parent = machine__findnew_thread(machine, event->fork.ppid,
1888 event->fork.ptid);
1891 /* if a thread currently exists for the thread id remove it */
1892 if (thread != NULL) {
1893 machine__remove_thread(machine, thread);
1894 thread__put(thread);
1897 thread = machine__findnew_thread(machine, event->fork.pid,
1898 event->fork.tid);
1900 * When synthesizing FORK events, we are trying to create thread
1901 * objects for the already running tasks on the machine.
1903 * Normally, for a kernel FORK event, we want to clone the parent's
1904 * maps because that is what the kernel just did.
1906 * But when synthesizing, this should not be done. If we do, we end up
1907 * with overlapping maps as we process the sythesized MMAP2 events that
1908 * get delivered shortly thereafter.
1910 * Use the FORK event misc flags in an internal way to signal this
1911 * situation, so we can elide the map clone when appropriate.
1913 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1914 do_maps_clone = false;
1916 if (thread == NULL || parent == NULL ||
1917 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1918 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1919 err = -1;
1921 thread__put(thread);
1922 thread__put(parent);
1924 return err;
1927 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1928 struct perf_sample *sample __maybe_unused)
1930 struct thread *thread = machine__find_thread(machine,
1931 event->fork.pid,
1932 event->fork.tid);
1934 if (dump_trace)
1935 perf_event__fprintf_task(event, stdout);
1937 if (thread != NULL) {
1938 thread__exited(thread);
1939 thread__put(thread);
1942 return 0;
1945 int machine__process_event(struct machine *machine, union perf_event *event,
1946 struct perf_sample *sample)
1948 int ret;
1950 switch (event->header.type) {
1951 case PERF_RECORD_COMM:
1952 ret = machine__process_comm_event(machine, event, sample); break;
1953 case PERF_RECORD_MMAP:
1954 ret = machine__process_mmap_event(machine, event, sample); break;
1955 case PERF_RECORD_NAMESPACES:
1956 ret = machine__process_namespaces_event(machine, event, sample); break;
1957 case PERF_RECORD_CGROUP:
1958 ret = machine__process_cgroup_event(machine, event, sample); break;
1959 case PERF_RECORD_MMAP2:
1960 ret = machine__process_mmap2_event(machine, event, sample); break;
1961 case PERF_RECORD_FORK:
1962 ret = machine__process_fork_event(machine, event, sample); break;
1963 case PERF_RECORD_EXIT:
1964 ret = machine__process_exit_event(machine, event, sample); break;
1965 case PERF_RECORD_LOST:
1966 ret = machine__process_lost_event(machine, event, sample); break;
1967 case PERF_RECORD_AUX:
1968 ret = machine__process_aux_event(machine, event); break;
1969 case PERF_RECORD_ITRACE_START:
1970 ret = machine__process_itrace_start_event(machine, event); break;
1971 case PERF_RECORD_LOST_SAMPLES:
1972 ret = machine__process_lost_samples_event(machine, event, sample); break;
1973 case PERF_RECORD_SWITCH:
1974 case PERF_RECORD_SWITCH_CPU_WIDE:
1975 ret = machine__process_switch_event(machine, event); break;
1976 case PERF_RECORD_KSYMBOL:
1977 ret = machine__process_ksymbol(machine, event, sample); break;
1978 case PERF_RECORD_BPF_EVENT:
1979 ret = machine__process_bpf(machine, event, sample); break;
1980 case PERF_RECORD_TEXT_POKE:
1981 ret = machine__process_text_poke(machine, event, sample); break;
1982 default:
1983 ret = -1;
1984 break;
1987 return ret;
1990 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1992 if (!regexec(regex, sym->name, 0, NULL, 0))
1993 return 1;
1994 return 0;
1997 static void ip__resolve_ams(struct thread *thread,
1998 struct addr_map_symbol *ams,
1999 u64 ip)
2001 struct addr_location al;
2003 memset(&al, 0, sizeof(al));
2005 * We cannot use the header.misc hint to determine whether a
2006 * branch stack address is user, kernel, guest, hypervisor.
2007 * Branches may straddle the kernel/user/hypervisor boundaries.
2008 * Thus, we have to try consecutively until we find a match
2009 * or else, the symbol is unknown
2011 thread__find_cpumode_addr_location(thread, ip, &al);
2013 ams->addr = ip;
2014 ams->al_addr = al.addr;
2015 ams->ms.maps = al.maps;
2016 ams->ms.sym = al.sym;
2017 ams->ms.map = al.map;
2018 ams->phys_addr = 0;
2021 static void ip__resolve_data(struct thread *thread,
2022 u8 m, struct addr_map_symbol *ams,
2023 u64 addr, u64 phys_addr)
2025 struct addr_location al;
2027 memset(&al, 0, sizeof(al));
2029 thread__find_symbol(thread, m, addr, &al);
2031 ams->addr = addr;
2032 ams->al_addr = al.addr;
2033 ams->ms.maps = al.maps;
2034 ams->ms.sym = al.sym;
2035 ams->ms.map = al.map;
2036 ams->phys_addr = phys_addr;
2039 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
2040 struct addr_location *al)
2042 struct mem_info *mi = mem_info__new();
2044 if (!mi)
2045 return NULL;
2047 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
2048 ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
2049 sample->addr, sample->phys_addr);
2050 mi->data_src.val = sample->data_src;
2052 return mi;
2055 static char *callchain_srcline(struct map_symbol *ms, u64 ip)
2057 struct map *map = ms->map;
2058 char *srcline = NULL;
2060 if (!map || callchain_param.key == CCKEY_FUNCTION)
2061 return srcline;
2063 srcline = srcline__tree_find(&map->dso->srclines, ip);
2064 if (!srcline) {
2065 bool show_sym = false;
2066 bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2068 srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
2069 ms->sym, show_sym, show_addr, ip);
2070 srcline__tree_insert(&map->dso->srclines, ip, srcline);
2073 return srcline;
2076 struct iterations {
2077 int nr_loop_iter;
2078 u64 cycles;
2081 static int add_callchain_ip(struct thread *thread,
2082 struct callchain_cursor *cursor,
2083 struct symbol **parent,
2084 struct addr_location *root_al,
2085 u8 *cpumode,
2086 u64 ip,
2087 bool branch,
2088 struct branch_flags *flags,
2089 struct iterations *iter,
2090 u64 branch_from)
2092 struct map_symbol ms;
2093 struct addr_location al;
2094 int nr_loop_iter = 0;
2095 u64 iter_cycles = 0;
2096 const char *srcline = NULL;
2098 al.filtered = 0;
2099 al.sym = NULL;
2100 if (!cpumode) {
2101 thread__find_cpumode_addr_location(thread, ip, &al);
2102 } else {
2103 if (ip >= PERF_CONTEXT_MAX) {
2104 switch (ip) {
2105 case PERF_CONTEXT_HV:
2106 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
2107 break;
2108 case PERF_CONTEXT_KERNEL:
2109 *cpumode = PERF_RECORD_MISC_KERNEL;
2110 break;
2111 case PERF_CONTEXT_USER:
2112 *cpumode = PERF_RECORD_MISC_USER;
2113 break;
2114 default:
2115 pr_debug("invalid callchain context: "
2116 "%"PRId64"\n", (s64) ip);
2118 * It seems the callchain is corrupted.
2119 * Discard all.
2121 callchain_cursor_reset(cursor);
2122 return 1;
2124 return 0;
2126 thread__find_symbol(thread, *cpumode, ip, &al);
2129 if (al.sym != NULL) {
2130 if (perf_hpp_list.parent && !*parent &&
2131 symbol__match_regex(al.sym, &parent_regex))
2132 *parent = al.sym;
2133 else if (have_ignore_callees && root_al &&
2134 symbol__match_regex(al.sym, &ignore_callees_regex)) {
2135 /* Treat this symbol as the root,
2136 forgetting its callees. */
2137 *root_al = al;
2138 callchain_cursor_reset(cursor);
2142 if (symbol_conf.hide_unresolved && al.sym == NULL)
2143 return 0;
2145 if (iter) {
2146 nr_loop_iter = iter->nr_loop_iter;
2147 iter_cycles = iter->cycles;
2150 ms.maps = al.maps;
2151 ms.map = al.map;
2152 ms.sym = al.sym;
2153 srcline = callchain_srcline(&ms, al.addr);
2154 return callchain_cursor_append(cursor, ip, &ms,
2155 branch, flags, nr_loop_iter,
2156 iter_cycles, branch_from, srcline);
2159 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2160 struct addr_location *al)
2162 unsigned int i;
2163 const struct branch_stack *bs = sample->branch_stack;
2164 struct branch_entry *entries = perf_sample__branch_entries(sample);
2165 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2167 if (!bi)
2168 return NULL;
2170 for (i = 0; i < bs->nr; i++) {
2171 ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
2172 ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
2173 bi[i].flags = entries[i].flags;
2175 return bi;
2178 static void save_iterations(struct iterations *iter,
2179 struct branch_entry *be, int nr)
2181 int i;
2183 iter->nr_loop_iter++;
2184 iter->cycles = 0;
2186 for (i = 0; i < nr; i++)
2187 iter->cycles += be[i].flags.cycles;
2190 #define CHASHSZ 127
2191 #define CHASHBITS 7
2192 #define NO_ENTRY 0xff
2194 #define PERF_MAX_BRANCH_DEPTH 127
2196 /* Remove loops. */
2197 static int remove_loops(struct branch_entry *l, int nr,
2198 struct iterations *iter)
2200 int i, j, off;
2201 unsigned char chash[CHASHSZ];
2203 memset(chash, NO_ENTRY, sizeof(chash));
2205 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2207 for (i = 0; i < nr; i++) {
2208 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2210 /* no collision handling for now */
2211 if (chash[h] == NO_ENTRY) {
2212 chash[h] = i;
2213 } else if (l[chash[h]].from == l[i].from) {
2214 bool is_loop = true;
2215 /* check if it is a real loop */
2216 off = 0;
2217 for (j = chash[h]; j < i && i + off < nr; j++, off++)
2218 if (l[j].from != l[i + off].from) {
2219 is_loop = false;
2220 break;
2222 if (is_loop) {
2223 j = nr - (i + off);
2224 if (j > 0) {
2225 save_iterations(iter + i + off,
2226 l + i, off);
2228 memmove(iter + i, iter + i + off,
2229 j * sizeof(*iter));
2231 memmove(l + i, l + i + off,
2232 j * sizeof(*l));
2235 nr -= off;
2239 return nr;
2242 static int lbr_callchain_add_kernel_ip(struct thread *thread,
2243 struct callchain_cursor *cursor,
2244 struct perf_sample *sample,
2245 struct symbol **parent,
2246 struct addr_location *root_al,
2247 u64 branch_from,
2248 bool callee, int end)
2250 struct ip_callchain *chain = sample->callchain;
2251 u8 cpumode = PERF_RECORD_MISC_USER;
2252 int err, i;
2254 if (callee) {
2255 for (i = 0; i < end + 1; i++) {
2256 err = add_callchain_ip(thread, cursor, parent,
2257 root_al, &cpumode, chain->ips[i],
2258 false, NULL, NULL, branch_from);
2259 if (err)
2260 return err;
2262 return 0;
2265 for (i = end; i >= 0; i--) {
2266 err = add_callchain_ip(thread, cursor, parent,
2267 root_al, &cpumode, chain->ips[i],
2268 false, NULL, NULL, branch_from);
2269 if (err)
2270 return err;
2273 return 0;
2276 static void save_lbr_cursor_node(struct thread *thread,
2277 struct callchain_cursor *cursor,
2278 int idx)
2280 struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2282 if (!lbr_stitch)
2283 return;
2285 if (cursor->pos == cursor->nr) {
2286 lbr_stitch->prev_lbr_cursor[idx].valid = false;
2287 return;
2290 if (!cursor->curr)
2291 cursor->curr = cursor->first;
2292 else
2293 cursor->curr = cursor->curr->next;
2294 memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr,
2295 sizeof(struct callchain_cursor_node));
2297 lbr_stitch->prev_lbr_cursor[idx].valid = true;
2298 cursor->pos++;
2301 static int lbr_callchain_add_lbr_ip(struct thread *thread,
2302 struct callchain_cursor *cursor,
2303 struct perf_sample *sample,
2304 struct symbol **parent,
2305 struct addr_location *root_al,
2306 u64 *branch_from,
2307 bool callee)
2309 struct branch_stack *lbr_stack = sample->branch_stack;
2310 struct branch_entry *entries = perf_sample__branch_entries(sample);
2311 u8 cpumode = PERF_RECORD_MISC_USER;
2312 int lbr_nr = lbr_stack->nr;
2313 struct branch_flags *flags;
2314 int err, i;
2315 u64 ip;
2318 * The curr and pos are not used in writing session. They are cleared
2319 * in callchain_cursor_commit() when the writing session is closed.
2320 * Using curr and pos to track the current cursor node.
2322 if (thread->lbr_stitch) {
2323 cursor->curr = NULL;
2324 cursor->pos = cursor->nr;
2325 if (cursor->nr) {
2326 cursor->curr = cursor->first;
2327 for (i = 0; i < (int)(cursor->nr - 1); i++)
2328 cursor->curr = cursor->curr->next;
2332 if (callee) {
2333 /* Add LBR ip from first entries.to */
2334 ip = entries[0].to;
2335 flags = &entries[0].flags;
2336 *branch_from = entries[0].from;
2337 err = add_callchain_ip(thread, cursor, parent,
2338 root_al, &cpumode, ip,
2339 true, flags, NULL,
2340 *branch_from);
2341 if (err)
2342 return err;
2345 * The number of cursor node increases.
2346 * Move the current cursor node.
2347 * But does not need to save current cursor node for entry 0.
2348 * It's impossible to stitch the whole LBRs of previous sample.
2350 if (thread->lbr_stitch && (cursor->pos != cursor->nr)) {
2351 if (!cursor->curr)
2352 cursor->curr = cursor->first;
2353 else
2354 cursor->curr = cursor->curr->next;
2355 cursor->pos++;
2358 /* Add LBR ip from entries.from one by one. */
2359 for (i = 0; i < lbr_nr; i++) {
2360 ip = entries[i].from;
2361 flags = &entries[i].flags;
2362 err = add_callchain_ip(thread, cursor, parent,
2363 root_al, &cpumode, ip,
2364 true, flags, NULL,
2365 *branch_from);
2366 if (err)
2367 return err;
2368 save_lbr_cursor_node(thread, cursor, i);
2370 return 0;
2373 /* Add LBR ip from entries.from one by one. */
2374 for (i = lbr_nr - 1; i >= 0; i--) {
2375 ip = entries[i].from;
2376 flags = &entries[i].flags;
2377 err = add_callchain_ip(thread, cursor, parent,
2378 root_al, &cpumode, ip,
2379 true, flags, NULL,
2380 *branch_from);
2381 if (err)
2382 return err;
2383 save_lbr_cursor_node(thread, cursor, i);
2386 /* Add LBR ip from first entries.to */
2387 ip = entries[0].to;
2388 flags = &entries[0].flags;
2389 *branch_from = entries[0].from;
2390 err = add_callchain_ip(thread, cursor, parent,
2391 root_al, &cpumode, ip,
2392 true, flags, NULL,
2393 *branch_from);
2394 if (err)
2395 return err;
2397 return 0;
2400 static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread,
2401 struct callchain_cursor *cursor)
2403 struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2404 struct callchain_cursor_node *cnode;
2405 struct stitch_list *stitch_node;
2406 int err;
2408 list_for_each_entry(stitch_node, &lbr_stitch->lists, node) {
2409 cnode = &stitch_node->cursor;
2411 err = callchain_cursor_append(cursor, cnode->ip,
2412 &cnode->ms,
2413 cnode->branch,
2414 &cnode->branch_flags,
2415 cnode->nr_loop_iter,
2416 cnode->iter_cycles,
2417 cnode->branch_from,
2418 cnode->srcline);
2419 if (err)
2420 return err;
2422 return 0;
2425 static struct stitch_list *get_stitch_node(struct thread *thread)
2427 struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2428 struct stitch_list *stitch_node;
2430 if (!list_empty(&lbr_stitch->free_lists)) {
2431 stitch_node = list_first_entry(&lbr_stitch->free_lists,
2432 struct stitch_list, node);
2433 list_del(&stitch_node->node);
2435 return stitch_node;
2438 return malloc(sizeof(struct stitch_list));
2441 static bool has_stitched_lbr(struct thread *thread,
2442 struct perf_sample *cur,
2443 struct perf_sample *prev,
2444 unsigned int max_lbr,
2445 bool callee)
2447 struct branch_stack *cur_stack = cur->branch_stack;
2448 struct branch_entry *cur_entries = perf_sample__branch_entries(cur);
2449 struct branch_stack *prev_stack = prev->branch_stack;
2450 struct branch_entry *prev_entries = perf_sample__branch_entries(prev);
2451 struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2452 int i, j, nr_identical_branches = 0;
2453 struct stitch_list *stitch_node;
2454 u64 cur_base, distance;
2456 if (!cur_stack || !prev_stack)
2457 return false;
2459 /* Find the physical index of the base-of-stack for current sample. */
2460 cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1;
2462 distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) :
2463 (max_lbr + prev_stack->hw_idx - cur_base);
2464 /* Previous sample has shorter stack. Nothing can be stitched. */
2465 if (distance + 1 > prev_stack->nr)
2466 return false;
2469 * Check if there are identical LBRs between two samples.
2470 * Identicall LBRs must have same from, to and flags values. Also,
2471 * they have to be saved in the same LBR registers (same physical
2472 * index).
2474 * Starts from the base-of-stack of current sample.
2476 for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) {
2477 if ((prev_entries[i].from != cur_entries[j].from) ||
2478 (prev_entries[i].to != cur_entries[j].to) ||
2479 (prev_entries[i].flags.value != cur_entries[j].flags.value))
2480 break;
2481 nr_identical_branches++;
2484 if (!nr_identical_branches)
2485 return false;
2488 * Save the LBRs between the base-of-stack of previous sample
2489 * and the base-of-stack of current sample into lbr_stitch->lists.
2490 * These LBRs will be stitched later.
2492 for (i = prev_stack->nr - 1; i > (int)distance; i--) {
2494 if (!lbr_stitch->prev_lbr_cursor[i].valid)
2495 continue;
2497 stitch_node = get_stitch_node(thread);
2498 if (!stitch_node)
2499 return false;
2501 memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i],
2502 sizeof(struct callchain_cursor_node));
2504 if (callee)
2505 list_add(&stitch_node->node, &lbr_stitch->lists);
2506 else
2507 list_add_tail(&stitch_node->node, &lbr_stitch->lists);
2510 return true;
2513 static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr)
2515 if (thread->lbr_stitch)
2516 return true;
2518 thread->lbr_stitch = zalloc(sizeof(*thread->lbr_stitch));
2519 if (!thread->lbr_stitch)
2520 goto err;
2522 thread->lbr_stitch->prev_lbr_cursor = calloc(max_lbr + 1, sizeof(struct callchain_cursor_node));
2523 if (!thread->lbr_stitch->prev_lbr_cursor)
2524 goto free_lbr_stitch;
2526 INIT_LIST_HEAD(&thread->lbr_stitch->lists);
2527 INIT_LIST_HEAD(&thread->lbr_stitch->free_lists);
2529 return true;
2531 free_lbr_stitch:
2532 zfree(&thread->lbr_stitch);
2533 err:
2534 pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n");
2535 thread->lbr_stitch_enable = false;
2536 return false;
2540 * Recolve LBR callstack chain sample
2541 * Return:
2542 * 1 on success get LBR callchain information
2543 * 0 no available LBR callchain information, should try fp
2544 * negative error code on other errors.
2546 static int resolve_lbr_callchain_sample(struct thread *thread,
2547 struct callchain_cursor *cursor,
2548 struct perf_sample *sample,
2549 struct symbol **parent,
2550 struct addr_location *root_al,
2551 int max_stack,
2552 unsigned int max_lbr)
2554 bool callee = (callchain_param.order == ORDER_CALLEE);
2555 struct ip_callchain *chain = sample->callchain;
2556 int chain_nr = min(max_stack, (int)chain->nr), i;
2557 struct lbr_stitch *lbr_stitch;
2558 bool stitched_lbr = false;
2559 u64 branch_from = 0;
2560 int err;
2562 for (i = 0; i < chain_nr; i++) {
2563 if (chain->ips[i] == PERF_CONTEXT_USER)
2564 break;
2567 /* LBR only affects the user callchain */
2568 if (i == chain_nr)
2569 return 0;
2571 if (thread->lbr_stitch_enable && !sample->no_hw_idx &&
2572 (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) {
2573 lbr_stitch = thread->lbr_stitch;
2575 stitched_lbr = has_stitched_lbr(thread, sample,
2576 &lbr_stitch->prev_sample,
2577 max_lbr, callee);
2579 if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) {
2580 list_replace_init(&lbr_stitch->lists,
2581 &lbr_stitch->free_lists);
2583 memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample));
2586 if (callee) {
2587 /* Add kernel ip */
2588 err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2589 parent, root_al, branch_from,
2590 true, i);
2591 if (err)
2592 goto error;
2594 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2595 root_al, &branch_from, true);
2596 if (err)
2597 goto error;
2599 if (stitched_lbr) {
2600 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2601 if (err)
2602 goto error;
2605 } else {
2606 if (stitched_lbr) {
2607 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2608 if (err)
2609 goto error;
2611 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2612 root_al, &branch_from, false);
2613 if (err)
2614 goto error;
2616 /* Add kernel ip */
2617 err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2618 parent, root_al, branch_from,
2619 false, i);
2620 if (err)
2621 goto error;
2623 return 1;
2625 error:
2626 return (err < 0) ? err : 0;
2629 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2630 struct callchain_cursor *cursor,
2631 struct symbol **parent,
2632 struct addr_location *root_al,
2633 u8 *cpumode, int ent)
2635 int err = 0;
2637 while (--ent >= 0) {
2638 u64 ip = chain->ips[ent];
2640 if (ip >= PERF_CONTEXT_MAX) {
2641 err = add_callchain_ip(thread, cursor, parent,
2642 root_al, cpumode, ip,
2643 false, NULL, NULL, 0);
2644 break;
2647 return err;
2650 static int thread__resolve_callchain_sample(struct thread *thread,
2651 struct callchain_cursor *cursor,
2652 struct evsel *evsel,
2653 struct perf_sample *sample,
2654 struct symbol **parent,
2655 struct addr_location *root_al,
2656 int max_stack)
2658 struct branch_stack *branch = sample->branch_stack;
2659 struct branch_entry *entries = perf_sample__branch_entries(sample);
2660 struct ip_callchain *chain = sample->callchain;
2661 int chain_nr = 0;
2662 u8 cpumode = PERF_RECORD_MISC_USER;
2663 int i, j, err, nr_entries;
2664 int skip_idx = -1;
2665 int first_call = 0;
2667 if (chain)
2668 chain_nr = chain->nr;
2670 if (evsel__has_branch_callstack(evsel)) {
2671 struct perf_env *env = evsel__env(evsel);
2673 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2674 root_al, max_stack,
2675 !env ? 0 : env->max_branches);
2676 if (err)
2677 return (err < 0) ? err : 0;
2681 * Based on DWARF debug information, some architectures skip
2682 * a callchain entry saved by the kernel.
2684 skip_idx = arch_skip_callchain_idx(thread, chain);
2687 * Add branches to call stack for easier browsing. This gives
2688 * more context for a sample than just the callers.
2690 * This uses individual histograms of paths compared to the
2691 * aggregated histograms the normal LBR mode uses.
2693 * Limitations for now:
2694 * - No extra filters
2695 * - No annotations (should annotate somehow)
2698 if (branch && callchain_param.branch_callstack) {
2699 int nr = min(max_stack, (int)branch->nr);
2700 struct branch_entry be[nr];
2701 struct iterations iter[nr];
2703 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2704 pr_warning("corrupted branch chain. skipping...\n");
2705 goto check_calls;
2708 for (i = 0; i < nr; i++) {
2709 if (callchain_param.order == ORDER_CALLEE) {
2710 be[i] = entries[i];
2712 if (chain == NULL)
2713 continue;
2716 * Check for overlap into the callchain.
2717 * The return address is one off compared to
2718 * the branch entry. To adjust for this
2719 * assume the calling instruction is not longer
2720 * than 8 bytes.
2722 if (i == skip_idx ||
2723 chain->ips[first_call] >= PERF_CONTEXT_MAX)
2724 first_call++;
2725 else if (be[i].from < chain->ips[first_call] &&
2726 be[i].from >= chain->ips[first_call] - 8)
2727 first_call++;
2728 } else
2729 be[i] = entries[branch->nr - i - 1];
2732 memset(iter, 0, sizeof(struct iterations) * nr);
2733 nr = remove_loops(be, nr, iter);
2735 for (i = 0; i < nr; i++) {
2736 err = add_callchain_ip(thread, cursor, parent,
2737 root_al,
2738 NULL, be[i].to,
2739 true, &be[i].flags,
2740 NULL, be[i].from);
2742 if (!err)
2743 err = add_callchain_ip(thread, cursor, parent, root_al,
2744 NULL, be[i].from,
2745 true, &be[i].flags,
2746 &iter[i], 0);
2747 if (err == -EINVAL)
2748 break;
2749 if (err)
2750 return err;
2753 if (chain_nr == 0)
2754 return 0;
2756 chain_nr -= nr;
2759 check_calls:
2760 if (chain && callchain_param.order != ORDER_CALLEE) {
2761 err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2762 &cpumode, chain->nr - first_call);
2763 if (err)
2764 return (err < 0) ? err : 0;
2766 for (i = first_call, nr_entries = 0;
2767 i < chain_nr && nr_entries < max_stack; i++) {
2768 u64 ip;
2770 if (callchain_param.order == ORDER_CALLEE)
2771 j = i;
2772 else
2773 j = chain->nr - i - 1;
2775 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2776 if (j == skip_idx)
2777 continue;
2778 #endif
2779 ip = chain->ips[j];
2780 if (ip < PERF_CONTEXT_MAX)
2781 ++nr_entries;
2782 else if (callchain_param.order != ORDER_CALLEE) {
2783 err = find_prev_cpumode(chain, thread, cursor, parent,
2784 root_al, &cpumode, j);
2785 if (err)
2786 return (err < 0) ? err : 0;
2787 continue;
2790 err = add_callchain_ip(thread, cursor, parent,
2791 root_al, &cpumode, ip,
2792 false, NULL, NULL, 0);
2794 if (err)
2795 return (err < 0) ? err : 0;
2798 return 0;
2801 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
2803 struct symbol *sym = ms->sym;
2804 struct map *map = ms->map;
2805 struct inline_node *inline_node;
2806 struct inline_list *ilist;
2807 u64 addr;
2808 int ret = 1;
2810 if (!symbol_conf.inline_name || !map || !sym)
2811 return ret;
2813 addr = map__map_ip(map, ip);
2814 addr = map__rip_2objdump(map, addr);
2816 inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2817 if (!inline_node) {
2818 inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2819 if (!inline_node)
2820 return ret;
2821 inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2824 list_for_each_entry(ilist, &inline_node->val, list) {
2825 struct map_symbol ilist_ms = {
2826 .maps = ms->maps,
2827 .map = map,
2828 .sym = ilist->symbol,
2830 ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
2831 NULL, 0, 0, 0, ilist->srcline);
2833 if (ret != 0)
2834 return ret;
2837 return ret;
2840 static int unwind_entry(struct unwind_entry *entry, void *arg)
2842 struct callchain_cursor *cursor = arg;
2843 const char *srcline = NULL;
2844 u64 addr = entry->ip;
2846 if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
2847 return 0;
2849 if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
2850 return 0;
2853 * Convert entry->ip from a virtual address to an offset in
2854 * its corresponding binary.
2856 if (entry->ms.map)
2857 addr = map__map_ip(entry->ms.map, entry->ip);
2859 srcline = callchain_srcline(&entry->ms, addr);
2860 return callchain_cursor_append(cursor, entry->ip, &entry->ms,
2861 false, NULL, 0, 0, 0, srcline);
2864 static int thread__resolve_callchain_unwind(struct thread *thread,
2865 struct callchain_cursor *cursor,
2866 struct evsel *evsel,
2867 struct perf_sample *sample,
2868 int max_stack)
2870 /* Can we do dwarf post unwind? */
2871 if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2872 (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2873 return 0;
2875 /* Bail out if nothing was captured. */
2876 if ((!sample->user_regs.regs) ||
2877 (!sample->user_stack.size))
2878 return 0;
2880 return unwind__get_entries(unwind_entry, cursor,
2881 thread, sample, max_stack);
2884 int thread__resolve_callchain(struct thread *thread,
2885 struct callchain_cursor *cursor,
2886 struct evsel *evsel,
2887 struct perf_sample *sample,
2888 struct symbol **parent,
2889 struct addr_location *root_al,
2890 int max_stack)
2892 int ret = 0;
2894 callchain_cursor_reset(cursor);
2896 if (callchain_param.order == ORDER_CALLEE) {
2897 ret = thread__resolve_callchain_sample(thread, cursor,
2898 evsel, sample,
2899 parent, root_al,
2900 max_stack);
2901 if (ret)
2902 return ret;
2903 ret = thread__resolve_callchain_unwind(thread, cursor,
2904 evsel, sample,
2905 max_stack);
2906 } else {
2907 ret = thread__resolve_callchain_unwind(thread, cursor,
2908 evsel, sample,
2909 max_stack);
2910 if (ret)
2911 return ret;
2912 ret = thread__resolve_callchain_sample(thread, cursor,
2913 evsel, sample,
2914 parent, root_al,
2915 max_stack);
2918 return ret;
2921 int machine__for_each_thread(struct machine *machine,
2922 int (*fn)(struct thread *thread, void *p),
2923 void *priv)
2925 struct threads *threads;
2926 struct rb_node *nd;
2927 struct thread *thread;
2928 int rc = 0;
2929 int i;
2931 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2932 threads = &machine->threads[i];
2933 for (nd = rb_first_cached(&threads->entries); nd;
2934 nd = rb_next(nd)) {
2935 thread = rb_entry(nd, struct thread, rb_node);
2936 rc = fn(thread, priv);
2937 if (rc != 0)
2938 return rc;
2941 list_for_each_entry(thread, &threads->dead, node) {
2942 rc = fn(thread, priv);
2943 if (rc != 0)
2944 return rc;
2947 return rc;
2950 int machines__for_each_thread(struct machines *machines,
2951 int (*fn)(struct thread *thread, void *p),
2952 void *priv)
2954 struct rb_node *nd;
2955 int rc = 0;
2957 rc = machine__for_each_thread(&machines->host, fn, priv);
2958 if (rc != 0)
2959 return rc;
2961 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
2962 struct machine *machine = rb_entry(nd, struct machine, rb_node);
2964 rc = machine__for_each_thread(machine, fn, priv);
2965 if (rc != 0)
2966 return rc;
2968 return rc;
2971 pid_t machine__get_current_tid(struct machine *machine, int cpu)
2973 int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2975 if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid)
2976 return -1;
2978 return machine->current_tid[cpu];
2981 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2982 pid_t tid)
2984 struct thread *thread;
2985 int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2987 if (cpu < 0)
2988 return -EINVAL;
2990 if (!machine->current_tid) {
2991 int i;
2993 machine->current_tid = calloc(nr_cpus, sizeof(pid_t));
2994 if (!machine->current_tid)
2995 return -ENOMEM;
2996 for (i = 0; i < nr_cpus; i++)
2997 machine->current_tid[i] = -1;
3000 if (cpu >= nr_cpus) {
3001 pr_err("Requested CPU %d too large. ", cpu);
3002 pr_err("Consider raising MAX_NR_CPUS\n");
3003 return -EINVAL;
3006 machine->current_tid[cpu] = tid;
3008 thread = machine__findnew_thread(machine, pid, tid);
3009 if (!thread)
3010 return -ENOMEM;
3012 thread->cpu = cpu;
3013 thread__put(thread);
3015 return 0;
3019 * Compares the raw arch string. N.B. see instead perf_env__arch() if a
3020 * normalized arch is needed.
3022 bool machine__is(struct machine *machine, const char *arch)
3024 return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
3027 int machine__nr_cpus_avail(struct machine *machine)
3029 return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
3032 int machine__get_kernel_start(struct machine *machine)
3034 struct map *map = machine__kernel_map(machine);
3035 int err = 0;
3038 * The only addresses above 2^63 are kernel addresses of a 64-bit
3039 * kernel. Note that addresses are unsigned so that on a 32-bit system
3040 * all addresses including kernel addresses are less than 2^32. In
3041 * that case (32-bit system), if the kernel mapping is unknown, all
3042 * addresses will be assumed to be in user space - see
3043 * machine__kernel_ip().
3045 machine->kernel_start = 1ULL << 63;
3046 if (map) {
3047 err = map__load(map);
3049 * On x86_64, PTI entry trampolines are less than the
3050 * start of kernel text, but still above 2^63. So leave
3051 * kernel_start = 1ULL << 63 for x86_64.
3053 if (!err && !machine__is(machine, "x86_64"))
3054 machine->kernel_start = map->start;
3056 return err;
3059 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
3061 u8 addr_cpumode = cpumode;
3062 bool kernel_ip;
3064 if (!machine->single_address_space)
3065 goto out;
3067 kernel_ip = machine__kernel_ip(machine, addr);
3068 switch (cpumode) {
3069 case PERF_RECORD_MISC_KERNEL:
3070 case PERF_RECORD_MISC_USER:
3071 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
3072 PERF_RECORD_MISC_USER;
3073 break;
3074 case PERF_RECORD_MISC_GUEST_KERNEL:
3075 case PERF_RECORD_MISC_GUEST_USER:
3076 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
3077 PERF_RECORD_MISC_GUEST_USER;
3078 break;
3079 default:
3080 break;
3082 out:
3083 return addr_cpumode;
3086 struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id)
3088 return dsos__findnew_id(&machine->dsos, filename, id);
3091 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
3093 return machine__findnew_dso_id(machine, filename, NULL);
3096 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
3098 struct machine *machine = vmachine;
3099 struct map *map;
3100 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
3102 if (sym == NULL)
3103 return NULL;
3105 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
3106 *addrp = map->unmap_ip(map, sym->start);
3107 return sym->name;