hyperv: Remove recv_pkt_list and lock
[linux/fpc-iii.git] / drivers / mtd / nand / davinci_nand.c
blob4615d79fc93f795c869687117744e01653219478
1 /*
2 * davinci_nand.c - NAND Flash Driver for DaVinci family chips
4 * Copyright © 2006 Texas Instruments.
6 * Port to 2.6.23 Copyright © 2008 by:
7 * Sander Huijsen <Shuijsen@optelecom-nkf.com>
8 * Troy Kisky <troy.kisky@boundarydevices.com>
9 * Dirk Behme <Dirk.Behme@gmail.com>
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/platform_device.h>
29 #include <linux/err.h>
30 #include <linux/clk.h>
31 #include <linux/io.h>
32 #include <linux/mtd/nand.h>
33 #include <linux/mtd/partitions.h>
34 #include <linux/slab.h>
35 #include <linux/of_device.h>
36 #include <linux/of.h>
37 #include <linux/of_mtd.h>
39 #include <linux/platform_data/mtd-davinci.h>
40 #include <linux/platform_data/mtd-davinci-aemif.h>
43 * This is a device driver for the NAND flash controller found on the
44 * various DaVinci family chips. It handles up to four SoC chipselects,
45 * and some flavors of secondary chipselect (e.g. based on A12) as used
46 * with multichip packages.
48 * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC
49 * available on chips like the DM355 and OMAP-L137 and needed with the
50 * more error-prone MLC NAND chips.
52 * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY
53 * outputs in a "wire-AND" configuration, with no per-chip signals.
55 struct davinci_nand_info {
56 struct mtd_info mtd;
57 struct nand_chip chip;
58 struct nand_ecclayout ecclayout;
60 struct device *dev;
61 struct clk *clk;
63 bool is_readmode;
65 void __iomem *base;
66 void __iomem *vaddr;
68 uint32_t ioaddr;
69 uint32_t current_cs;
71 uint32_t mask_chipsel;
72 uint32_t mask_ale;
73 uint32_t mask_cle;
75 uint32_t core_chipsel;
77 struct davinci_aemif_timing *timing;
80 static DEFINE_SPINLOCK(davinci_nand_lock);
81 static bool ecc4_busy;
83 #define to_davinci_nand(m) container_of(m, struct davinci_nand_info, mtd)
86 static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info,
87 int offset)
89 return __raw_readl(info->base + offset);
92 static inline void davinci_nand_writel(struct davinci_nand_info *info,
93 int offset, unsigned long value)
95 __raw_writel(value, info->base + offset);
98 /*----------------------------------------------------------------------*/
101 * Access to hardware control lines: ALE, CLE, secondary chipselect.
104 static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd,
105 unsigned int ctrl)
107 struct davinci_nand_info *info = to_davinci_nand(mtd);
108 uint32_t addr = info->current_cs;
109 struct nand_chip *nand = mtd->priv;
111 /* Did the control lines change? */
112 if (ctrl & NAND_CTRL_CHANGE) {
113 if ((ctrl & NAND_CTRL_CLE) == NAND_CTRL_CLE)
114 addr |= info->mask_cle;
115 else if ((ctrl & NAND_CTRL_ALE) == NAND_CTRL_ALE)
116 addr |= info->mask_ale;
118 nand->IO_ADDR_W = (void __iomem __force *)addr;
121 if (cmd != NAND_CMD_NONE)
122 iowrite8(cmd, nand->IO_ADDR_W);
125 static void nand_davinci_select_chip(struct mtd_info *mtd, int chip)
127 struct davinci_nand_info *info = to_davinci_nand(mtd);
128 uint32_t addr = info->ioaddr;
130 /* maybe kick in a second chipselect */
131 if (chip > 0)
132 addr |= info->mask_chipsel;
133 info->current_cs = addr;
135 info->chip.IO_ADDR_W = (void __iomem __force *)addr;
136 info->chip.IO_ADDR_R = info->chip.IO_ADDR_W;
139 /*----------------------------------------------------------------------*/
142 * 1-bit hardware ECC ... context maintained for each core chipselect
145 static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd)
147 struct davinci_nand_info *info = to_davinci_nand(mtd);
149 return davinci_nand_readl(info, NANDF1ECC_OFFSET
150 + 4 * info->core_chipsel);
153 static void nand_davinci_hwctl_1bit(struct mtd_info *mtd, int mode)
155 struct davinci_nand_info *info;
156 uint32_t nandcfr;
157 unsigned long flags;
159 info = to_davinci_nand(mtd);
161 /* Reset ECC hardware */
162 nand_davinci_readecc_1bit(mtd);
164 spin_lock_irqsave(&davinci_nand_lock, flags);
166 /* Restart ECC hardware */
167 nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET);
168 nandcfr |= BIT(8 + info->core_chipsel);
169 davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr);
171 spin_unlock_irqrestore(&davinci_nand_lock, flags);
175 * Read hardware ECC value and pack into three bytes
177 static int nand_davinci_calculate_1bit(struct mtd_info *mtd,
178 const u_char *dat, u_char *ecc_code)
180 unsigned int ecc_val = nand_davinci_readecc_1bit(mtd);
181 unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4);
183 /* invert so that erased block ecc is correct */
184 ecc24 = ~ecc24;
185 ecc_code[0] = (u_char)(ecc24);
186 ecc_code[1] = (u_char)(ecc24 >> 8);
187 ecc_code[2] = (u_char)(ecc24 >> 16);
189 return 0;
192 static int nand_davinci_correct_1bit(struct mtd_info *mtd, u_char *dat,
193 u_char *read_ecc, u_char *calc_ecc)
195 struct nand_chip *chip = mtd->priv;
196 uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) |
197 (read_ecc[2] << 16);
198 uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) |
199 (calc_ecc[2] << 16);
200 uint32_t diff = eccCalc ^ eccNand;
202 if (diff) {
203 if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
204 /* Correctable error */
205 if ((diff >> (12 + 3)) < chip->ecc.size) {
206 dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7);
207 return 1;
208 } else {
209 return -1;
211 } else if (!(diff & (diff - 1))) {
212 /* Single bit ECC error in the ECC itself,
213 * nothing to fix */
214 return 1;
215 } else {
216 /* Uncorrectable error */
217 return -1;
221 return 0;
224 /*----------------------------------------------------------------------*/
227 * 4-bit hardware ECC ... context maintained over entire AEMIF
229 * This is a syndrome engine, but we avoid NAND_ECC_HW_SYNDROME
230 * since that forces use of a problematic "infix OOB" layout.
231 * Among other things, it trashes manufacturer bad block markers.
232 * Also, and specific to this hardware, it ECC-protects the "prepad"
233 * in the OOB ... while having ECC protection for parts of OOB would
234 * seem useful, the current MTD stack sometimes wants to update the
235 * OOB without recomputing ECC.
238 static void nand_davinci_hwctl_4bit(struct mtd_info *mtd, int mode)
240 struct davinci_nand_info *info = to_davinci_nand(mtd);
241 unsigned long flags;
242 u32 val;
244 spin_lock_irqsave(&davinci_nand_lock, flags);
246 /* Start 4-bit ECC calculation for read/write */
247 val = davinci_nand_readl(info, NANDFCR_OFFSET);
248 val &= ~(0x03 << 4);
249 val |= (info->core_chipsel << 4) | BIT(12);
250 davinci_nand_writel(info, NANDFCR_OFFSET, val);
252 info->is_readmode = (mode == NAND_ECC_READ);
254 spin_unlock_irqrestore(&davinci_nand_lock, flags);
257 /* Read raw ECC code after writing to NAND. */
258 static void
259 nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4])
261 const u32 mask = 0x03ff03ff;
263 code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask;
264 code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask;
265 code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask;
266 code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask;
269 /* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */
270 static int nand_davinci_calculate_4bit(struct mtd_info *mtd,
271 const u_char *dat, u_char *ecc_code)
273 struct davinci_nand_info *info = to_davinci_nand(mtd);
274 u32 raw_ecc[4], *p;
275 unsigned i;
277 /* After a read, terminate ECC calculation by a dummy read
278 * of some 4-bit ECC register. ECC covers everything that
279 * was read; correct() just uses the hardware state, so
280 * ecc_code is not needed.
282 if (info->is_readmode) {
283 davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
284 return 0;
287 /* Pack eight raw 10-bit ecc values into ten bytes, making
288 * two passes which each convert four values (in upper and
289 * lower halves of two 32-bit words) into five bytes. The
290 * ROM boot loader uses this same packing scheme.
292 nand_davinci_readecc_4bit(info, raw_ecc);
293 for (i = 0, p = raw_ecc; i < 2; i++, p += 2) {
294 *ecc_code++ = p[0] & 0xff;
295 *ecc_code++ = ((p[0] >> 8) & 0x03) | ((p[0] >> 14) & 0xfc);
296 *ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] << 4) & 0xf0);
297 *ecc_code++ = ((p[1] >> 4) & 0x3f) | ((p[1] >> 10) & 0xc0);
298 *ecc_code++ = (p[1] >> 18) & 0xff;
301 return 0;
304 /* Correct up to 4 bits in data we just read, using state left in the
305 * hardware plus the ecc_code computed when it was first written.
307 static int nand_davinci_correct_4bit(struct mtd_info *mtd,
308 u_char *data, u_char *ecc_code, u_char *null)
310 int i;
311 struct davinci_nand_info *info = to_davinci_nand(mtd);
312 unsigned short ecc10[8];
313 unsigned short *ecc16;
314 u32 syndrome[4];
315 u32 ecc_state;
316 unsigned num_errors, corrected;
317 unsigned long timeo;
319 /* All bytes 0xff? It's an erased page; ignore its ECC. */
320 for (i = 0; i < 10; i++) {
321 if (ecc_code[i] != 0xff)
322 goto compare;
324 return 0;
326 compare:
327 /* Unpack ten bytes into eight 10 bit values. We know we're
328 * little-endian, and use type punning for less shifting/masking.
330 if (WARN_ON(0x01 & (unsigned) ecc_code))
331 return -EINVAL;
332 ecc16 = (unsigned short *)ecc_code;
334 ecc10[0] = (ecc16[0] >> 0) & 0x3ff;
335 ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0);
336 ecc10[2] = (ecc16[1] >> 4) & 0x3ff;
337 ecc10[3] = ((ecc16[1] >> 14) & 0x3) | ((ecc16[2] << 2) & 0x3fc);
338 ecc10[4] = (ecc16[2] >> 8) | ((ecc16[3] << 8) & 0x300);
339 ecc10[5] = (ecc16[3] >> 2) & 0x3ff;
340 ecc10[6] = ((ecc16[3] >> 12) & 0xf) | ((ecc16[4] << 4) & 0x3f0);
341 ecc10[7] = (ecc16[4] >> 6) & 0x3ff;
343 /* Tell ECC controller about the expected ECC codes. */
344 for (i = 7; i >= 0; i--)
345 davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]);
347 /* Allow time for syndrome calculation ... then read it.
348 * A syndrome of all zeroes 0 means no detected errors.
350 davinci_nand_readl(info, NANDFSR_OFFSET);
351 nand_davinci_readecc_4bit(info, syndrome);
352 if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3]))
353 return 0;
356 * Clear any previous address calculation by doing a dummy read of an
357 * error address register.
359 davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET);
361 /* Start address calculation, and wait for it to complete.
362 * We _could_ start reading more data while this is working,
363 * to speed up the overall page read.
365 davinci_nand_writel(info, NANDFCR_OFFSET,
366 davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13));
369 * ECC_STATE field reads 0x3 (Error correction complete) immediately
370 * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately
371 * begin trying to poll for the state, you may fall right out of your
372 * loop without any of the correction calculations having taken place.
373 * The recommendation from the hardware team is to initially delay as
374 * long as ECC_STATE reads less than 4. After that, ECC HW has entered
375 * correction state.
377 timeo = jiffies + usecs_to_jiffies(100);
378 do {
379 ecc_state = (davinci_nand_readl(info,
380 NANDFSR_OFFSET) >> 8) & 0x0f;
381 cpu_relax();
382 } while ((ecc_state < 4) && time_before(jiffies, timeo));
384 for (;;) {
385 u32 fsr = davinci_nand_readl(info, NANDFSR_OFFSET);
387 switch ((fsr >> 8) & 0x0f) {
388 case 0: /* no error, should not happen */
389 davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
390 return 0;
391 case 1: /* five or more errors detected */
392 davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
393 return -EIO;
394 case 2: /* error addresses computed */
395 case 3:
396 num_errors = 1 + ((fsr >> 16) & 0x03);
397 goto correct;
398 default: /* still working on it */
399 cpu_relax();
400 continue;
404 correct:
405 /* correct each error */
406 for (i = 0, corrected = 0; i < num_errors; i++) {
407 int error_address, error_value;
409 if (i > 1) {
410 error_address = davinci_nand_readl(info,
411 NAND_ERR_ADD2_OFFSET);
412 error_value = davinci_nand_readl(info,
413 NAND_ERR_ERRVAL2_OFFSET);
414 } else {
415 error_address = davinci_nand_readl(info,
416 NAND_ERR_ADD1_OFFSET);
417 error_value = davinci_nand_readl(info,
418 NAND_ERR_ERRVAL1_OFFSET);
421 if (i & 1) {
422 error_address >>= 16;
423 error_value >>= 16;
425 error_address &= 0x3ff;
426 error_address = (512 + 7) - error_address;
428 if (error_address < 512) {
429 data[error_address] ^= error_value;
430 corrected++;
434 return corrected;
437 /*----------------------------------------------------------------------*/
440 * NOTE: NAND boot requires ALE == EM_A[1], CLE == EM_A[2], so that's
441 * how these chips are normally wired. This translates to both 8 and 16
442 * bit busses using ALE == BIT(3) in byte addresses, and CLE == BIT(4).
444 * For now we assume that configuration, or any other one which ignores
445 * the two LSBs for NAND access ... so we can issue 32-bit reads/writes
446 * and have that transparently morphed into multiple NAND operations.
448 static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
450 struct nand_chip *chip = mtd->priv;
452 if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
453 ioread32_rep(chip->IO_ADDR_R, buf, len >> 2);
454 else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
455 ioread16_rep(chip->IO_ADDR_R, buf, len >> 1);
456 else
457 ioread8_rep(chip->IO_ADDR_R, buf, len);
460 static void nand_davinci_write_buf(struct mtd_info *mtd,
461 const uint8_t *buf, int len)
463 struct nand_chip *chip = mtd->priv;
465 if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
466 iowrite32_rep(chip->IO_ADDR_R, buf, len >> 2);
467 else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
468 iowrite16_rep(chip->IO_ADDR_R, buf, len >> 1);
469 else
470 iowrite8_rep(chip->IO_ADDR_R, buf, len);
474 * Check hardware register for wait status. Returns 1 if device is ready,
475 * 0 if it is still busy.
477 static int nand_davinci_dev_ready(struct mtd_info *mtd)
479 struct davinci_nand_info *info = to_davinci_nand(mtd);
481 return davinci_nand_readl(info, NANDFSR_OFFSET) & BIT(0);
484 /*----------------------------------------------------------------------*/
486 /* An ECC layout for using 4-bit ECC with small-page flash, storing
487 * ten ECC bytes plus the manufacturer's bad block marker byte, and
488 * and not overlapping the default BBT markers.
490 static struct nand_ecclayout hwecc4_small = {
491 .eccbytes = 10,
492 .eccpos = { 0, 1, 2, 3, 4,
493 /* offset 5 holds the badblock marker */
494 6, 7,
495 13, 14, 15, },
496 .oobfree = {
497 {.offset = 8, .length = 5, },
498 {.offset = 16, },
502 /* An ECC layout for using 4-bit ECC with large-page (2048bytes) flash,
503 * storing ten ECC bytes plus the manufacturer's bad block marker byte,
504 * and not overlapping the default BBT markers.
506 static struct nand_ecclayout hwecc4_2048 = {
507 .eccbytes = 40,
508 .eccpos = {
509 /* at the end of spare sector */
510 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
511 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
512 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
513 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
515 .oobfree = {
516 /* 2 bytes at offset 0 hold manufacturer badblock markers */
517 {.offset = 2, .length = 22, },
518 /* 5 bytes at offset 8 hold BBT markers */
519 /* 8 bytes at offset 16 hold JFFS2 clean markers */
523 #if defined(CONFIG_OF)
524 static const struct of_device_id davinci_nand_of_match[] = {
525 {.compatible = "ti,davinci-nand", },
528 MODULE_DEVICE_TABLE(of, davinci_nand_of_match);
530 static struct davinci_nand_pdata
531 *nand_davinci_get_pdata(struct platform_device *pdev)
533 if (!dev_get_platdata(&pdev->dev) && pdev->dev.of_node) {
534 struct davinci_nand_pdata *pdata;
535 const char *mode;
536 u32 prop;
538 pdata = devm_kzalloc(&pdev->dev,
539 sizeof(struct davinci_nand_pdata),
540 GFP_KERNEL);
541 pdev->dev.platform_data = pdata;
542 if (!pdata)
543 return ERR_PTR(-ENOMEM);
544 if (!of_property_read_u32(pdev->dev.of_node,
545 "ti,davinci-chipselect", &prop))
546 pdev->id = prop;
547 else
548 return ERR_PTR(-EINVAL);
550 if (!of_property_read_u32(pdev->dev.of_node,
551 "ti,davinci-mask-ale", &prop))
552 pdata->mask_ale = prop;
553 if (!of_property_read_u32(pdev->dev.of_node,
554 "ti,davinci-mask-cle", &prop))
555 pdata->mask_cle = prop;
556 if (!of_property_read_u32(pdev->dev.of_node,
557 "ti,davinci-mask-chipsel", &prop))
558 pdata->mask_chipsel = prop;
559 if (!of_property_read_string(pdev->dev.of_node,
560 "nand-ecc-mode", &mode) ||
561 !of_property_read_string(pdev->dev.of_node,
562 "ti,davinci-ecc-mode", &mode)) {
563 if (!strncmp("none", mode, 4))
564 pdata->ecc_mode = NAND_ECC_NONE;
565 if (!strncmp("soft", mode, 4))
566 pdata->ecc_mode = NAND_ECC_SOFT;
567 if (!strncmp("hw", mode, 2))
568 pdata->ecc_mode = NAND_ECC_HW;
570 if (!of_property_read_u32(pdev->dev.of_node,
571 "ti,davinci-ecc-bits", &prop))
572 pdata->ecc_bits = prop;
574 prop = of_get_nand_bus_width(pdev->dev.of_node);
575 if (0 < prop || !of_property_read_u32(pdev->dev.of_node,
576 "ti,davinci-nand-buswidth", &prop))
577 if (prop == 16)
578 pdata->options |= NAND_BUSWIDTH_16;
579 if (of_property_read_bool(pdev->dev.of_node,
580 "nand-on-flash-bbt") ||
581 of_property_read_bool(pdev->dev.of_node,
582 "ti,davinci-nand-use-bbt"))
583 pdata->bbt_options = NAND_BBT_USE_FLASH;
586 return dev_get_platdata(&pdev->dev);
588 #else
589 static struct davinci_nand_pdata
590 *nand_davinci_get_pdata(struct platform_device *pdev)
592 return dev_get_platdata(&pdev->dev);
594 #endif
596 static int nand_davinci_probe(struct platform_device *pdev)
598 struct davinci_nand_pdata *pdata;
599 struct davinci_nand_info *info;
600 struct resource *res1;
601 struct resource *res2;
602 void __iomem *vaddr;
603 void __iomem *base;
604 int ret;
605 uint32_t val;
606 nand_ecc_modes_t ecc_mode;
608 pdata = nand_davinci_get_pdata(pdev);
609 if (IS_ERR(pdata))
610 return PTR_ERR(pdata);
612 /* insist on board-specific configuration */
613 if (!pdata)
614 return -ENODEV;
616 /* which external chipselect will we be managing? */
617 if (pdev->id < 0 || pdev->id > 3)
618 return -ENODEV;
620 info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
621 if (!info)
622 return -ENOMEM;
624 platform_set_drvdata(pdev, info);
626 res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
627 res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
628 if (!res1 || !res2) {
629 dev_err(&pdev->dev, "resource missing\n");
630 return -EINVAL;
633 vaddr = devm_ioremap_resource(&pdev->dev, res1);
634 if (IS_ERR(vaddr))
635 return PTR_ERR(vaddr);
638 * This registers range is used to setup NAND settings. In case with
639 * TI AEMIF driver, the same memory address range is requested already
640 * by AEMIF, so we cannot request it twice, just ioremap.
641 * The AEMIF and NAND drivers not use the same registers in this range.
643 base = devm_ioremap(&pdev->dev, res2->start, resource_size(res2));
644 if (!base) {
645 dev_err(&pdev->dev, "ioremap failed for resource %pR\n", res2);
646 return -EADDRNOTAVAIL;
649 info->dev = &pdev->dev;
650 info->base = base;
651 info->vaddr = vaddr;
653 info->mtd.priv = &info->chip;
654 info->mtd.name = dev_name(&pdev->dev);
655 info->mtd.owner = THIS_MODULE;
657 info->mtd.dev.parent = &pdev->dev;
659 info->chip.IO_ADDR_R = vaddr;
660 info->chip.IO_ADDR_W = vaddr;
661 info->chip.chip_delay = 0;
662 info->chip.select_chip = nand_davinci_select_chip;
664 /* options such as NAND_BBT_USE_FLASH */
665 info->chip.bbt_options = pdata->bbt_options;
666 /* options such as 16-bit widths */
667 info->chip.options = pdata->options;
668 info->chip.bbt_td = pdata->bbt_td;
669 info->chip.bbt_md = pdata->bbt_md;
670 info->timing = pdata->timing;
672 info->ioaddr = (uint32_t __force) vaddr;
674 info->current_cs = info->ioaddr;
675 info->core_chipsel = pdev->id;
676 info->mask_chipsel = pdata->mask_chipsel;
678 /* use nandboot-capable ALE/CLE masks by default */
679 info->mask_ale = pdata->mask_ale ? : MASK_ALE;
680 info->mask_cle = pdata->mask_cle ? : MASK_CLE;
682 /* Set address of hardware control function */
683 info->chip.cmd_ctrl = nand_davinci_hwcontrol;
684 info->chip.dev_ready = nand_davinci_dev_ready;
686 /* Speed up buffer I/O */
687 info->chip.read_buf = nand_davinci_read_buf;
688 info->chip.write_buf = nand_davinci_write_buf;
690 /* Use board-specific ECC config */
691 ecc_mode = pdata->ecc_mode;
693 ret = -EINVAL;
694 switch (ecc_mode) {
695 case NAND_ECC_NONE:
696 case NAND_ECC_SOFT:
697 pdata->ecc_bits = 0;
698 break;
699 case NAND_ECC_HW:
700 if (pdata->ecc_bits == 4) {
701 /* No sanity checks: CPUs must support this,
702 * and the chips may not use NAND_BUSWIDTH_16.
705 /* No sharing 4-bit hardware between chipselects yet */
706 spin_lock_irq(&davinci_nand_lock);
707 if (ecc4_busy)
708 ret = -EBUSY;
709 else
710 ecc4_busy = true;
711 spin_unlock_irq(&davinci_nand_lock);
713 if (ret == -EBUSY)
714 return ret;
716 info->chip.ecc.calculate = nand_davinci_calculate_4bit;
717 info->chip.ecc.correct = nand_davinci_correct_4bit;
718 info->chip.ecc.hwctl = nand_davinci_hwctl_4bit;
719 info->chip.ecc.bytes = 10;
720 } else {
721 info->chip.ecc.calculate = nand_davinci_calculate_1bit;
722 info->chip.ecc.correct = nand_davinci_correct_1bit;
723 info->chip.ecc.hwctl = nand_davinci_hwctl_1bit;
724 info->chip.ecc.bytes = 3;
726 info->chip.ecc.size = 512;
727 info->chip.ecc.strength = pdata->ecc_bits;
728 break;
729 default:
730 return -EINVAL;
732 info->chip.ecc.mode = ecc_mode;
734 info->clk = devm_clk_get(&pdev->dev, "aemif");
735 if (IS_ERR(info->clk)) {
736 ret = PTR_ERR(info->clk);
737 dev_dbg(&pdev->dev, "unable to get AEMIF clock, err %d\n", ret);
738 return ret;
741 ret = clk_prepare_enable(info->clk);
742 if (ret < 0) {
743 dev_dbg(&pdev->dev, "unable to enable AEMIF clock, err %d\n",
744 ret);
745 goto err_clk_enable;
748 spin_lock_irq(&davinci_nand_lock);
750 /* put CSxNAND into NAND mode */
751 val = davinci_nand_readl(info, NANDFCR_OFFSET);
752 val |= BIT(info->core_chipsel);
753 davinci_nand_writel(info, NANDFCR_OFFSET, val);
755 spin_unlock_irq(&davinci_nand_lock);
757 /* Scan to find existence of the device(s) */
758 ret = nand_scan_ident(&info->mtd, pdata->mask_chipsel ? 2 : 1, NULL);
759 if (ret < 0) {
760 dev_dbg(&pdev->dev, "no NAND chip(s) found\n");
761 goto err;
764 /* Update ECC layout if needed ... for 1-bit HW ECC, the default
765 * is OK, but it allocates 6 bytes when only 3 are needed (for
766 * each 512 bytes). For the 4-bit HW ECC, that default is not
767 * usable: 10 bytes are needed, not 6.
769 if (pdata->ecc_bits == 4) {
770 int chunks = info->mtd.writesize / 512;
772 if (!chunks || info->mtd.oobsize < 16) {
773 dev_dbg(&pdev->dev, "too small\n");
774 ret = -EINVAL;
775 goto err;
778 /* For small page chips, preserve the manufacturer's
779 * badblock marking data ... and make sure a flash BBT
780 * table marker fits in the free bytes.
782 if (chunks == 1) {
783 info->ecclayout = hwecc4_small;
784 info->ecclayout.oobfree[1].length =
785 info->mtd.oobsize - 16;
786 goto syndrome_done;
788 if (chunks == 4) {
789 info->ecclayout = hwecc4_2048;
790 info->chip.ecc.mode = NAND_ECC_HW_OOB_FIRST;
791 goto syndrome_done;
794 /* 4KiB page chips are not yet supported. The eccpos from
795 * nand_ecclayout cannot hold 80 bytes and change to eccpos[]
796 * breaks userspace ioctl interface with mtd-utils. Once we
797 * resolve this issue, NAND_ECC_HW_OOB_FIRST mode can be used
798 * for the 4KiB page chips.
800 * TODO: Note that nand_ecclayout has now been expanded and can
801 * hold plenty of OOB entries.
803 dev_warn(&pdev->dev, "no 4-bit ECC support yet "
804 "for 4KiB-page NAND\n");
805 ret = -EIO;
806 goto err;
808 syndrome_done:
809 info->chip.ecc.layout = &info->ecclayout;
812 ret = nand_scan_tail(&info->mtd);
813 if (ret < 0)
814 goto err;
816 if (pdata->parts)
817 ret = mtd_device_parse_register(&info->mtd, NULL, NULL,
818 pdata->parts, pdata->nr_parts);
819 else {
820 struct mtd_part_parser_data ppdata;
822 ppdata.of_node = pdev->dev.of_node;
823 ret = mtd_device_parse_register(&info->mtd, NULL, &ppdata,
824 NULL, 0);
826 if (ret < 0)
827 goto err;
829 val = davinci_nand_readl(info, NRCSR_OFFSET);
830 dev_info(&pdev->dev, "controller rev. %d.%d\n",
831 (val >> 8) & 0xff, val & 0xff);
833 return 0;
835 err:
836 clk_disable_unprepare(info->clk);
838 err_clk_enable:
839 spin_lock_irq(&davinci_nand_lock);
840 if (ecc_mode == NAND_ECC_HW_SYNDROME)
841 ecc4_busy = false;
842 spin_unlock_irq(&davinci_nand_lock);
843 return ret;
846 static int nand_davinci_remove(struct platform_device *pdev)
848 struct davinci_nand_info *info = platform_get_drvdata(pdev);
850 spin_lock_irq(&davinci_nand_lock);
851 if (info->chip.ecc.mode == NAND_ECC_HW_SYNDROME)
852 ecc4_busy = false;
853 spin_unlock_irq(&davinci_nand_lock);
855 nand_release(&info->mtd);
857 clk_disable_unprepare(info->clk);
859 return 0;
862 static struct platform_driver nand_davinci_driver = {
863 .probe = nand_davinci_probe,
864 .remove = nand_davinci_remove,
865 .driver = {
866 .name = "davinci_nand",
867 .owner = THIS_MODULE,
868 .of_match_table = of_match_ptr(davinci_nand_of_match),
871 MODULE_ALIAS("platform:davinci_nand");
873 module_platform_driver(nand_davinci_driver);
875 MODULE_LICENSE("GPL");
876 MODULE_AUTHOR("Texas Instruments");
877 MODULE_DESCRIPTION("Davinci NAND flash driver");