hyperv: Remove recv_pkt_list and lock
[linux/fpc-iii.git] / drivers / mtd / nand / docg4.c
blob1b0265e85a066b2b8903d84645d1df918e4a9ee5
1 /*
2 * Copyright © 2012 Mike Dunn <mikedunn@newsguy.com>
4 * mtd nand driver for M-Systems DiskOnChip G4
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * Tested on the Palm Treo 680. The G4 is also present on Toshiba Portege, Asus
12 * P526, some HTC smartphones (Wizard, Prophet, ...), O2 XDA Zinc, maybe others.
13 * Should work on these as well. Let me know!
15 * TODO:
17 * Mechanism for management of password-protected areas
19 * Hamming ecc when reading oob only
21 * According to the M-Sys documentation, this device is also available in a
22 * "dual-die" configuration having a 256MB capacity, but no mechanism for
23 * detecting this variant is documented. Currently this driver assumes 128MB
24 * capacity.
26 * Support for multiple cascaded devices ("floors"). Not sure which gadgets
27 * contain multiple G4s in a cascaded configuration, if any.
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/init.h>
34 #include <linux/string.h>
35 #include <linux/sched.h>
36 #include <linux/delay.h>
37 #include <linux/module.h>
38 #include <linux/export.h>
39 #include <linux/platform_device.h>
40 #include <linux/io.h>
41 #include <linux/bitops.h>
42 #include <linux/mtd/partitions.h>
43 #include <linux/mtd/mtd.h>
44 #include <linux/mtd/nand.h>
45 #include <linux/bch.h>
46 #include <linux/bitrev.h>
47 #include <linux/jiffies.h>
50 * In "reliable mode" consecutive 2k pages are used in parallel (in some
51 * fashion) to store the same data. The data can be read back from the
52 * even-numbered pages in the normal manner; odd-numbered pages will appear to
53 * contain junk. Systems that boot from the docg4 typically write the secondary
54 * program loader (SPL) code in this mode. The SPL is loaded by the initial
55 * program loader (IPL, stored in the docg4's 2k NOR-like region that is mapped
56 * to the reset vector address). This module parameter enables you to use this
57 * driver to write the SPL. When in this mode, no more than 2k of data can be
58 * written at a time, because the addresses do not increment in the normal
59 * manner, and the starting offset must be within an even-numbered 2k region;
60 * i.e., invalid starting offsets are 0x800, 0xa00, 0xc00, 0xe00, 0x1800,
61 * 0x1a00, ... Reliable mode is a special case and should not be used unless
62 * you know what you're doing.
64 static bool reliable_mode;
65 module_param(reliable_mode, bool, 0);
66 MODULE_PARM_DESC(reliable_mode, "pages are programmed in reliable mode");
69 * You'll want to ignore badblocks if you're reading a partition that contains
70 * data written by the TrueFFS library (i.e., by PalmOS, Windows, etc), since
71 * it does not use mtd nand's method for marking bad blocks (using oob area).
72 * This will also skip the check of the "page written" flag.
74 static bool ignore_badblocks;
75 module_param(ignore_badblocks, bool, 0);
76 MODULE_PARM_DESC(ignore_badblocks, "no badblock checking performed");
78 struct docg4_priv {
79 struct mtd_info *mtd;
80 struct device *dev;
81 void __iomem *virtadr;
82 int status;
83 struct {
84 unsigned int command;
85 int column;
86 int page;
87 } last_command;
88 uint8_t oob_buf[16];
89 uint8_t ecc_buf[7];
90 int oob_page;
91 struct bch_control *bch;
95 * Defines prefixed with DOCG4 are unique to the diskonchip G4. All others are
96 * shared with other diskonchip devices (P3, G3 at least).
98 * Functions with names prefixed with docg4_ are mtd / nand interface functions
99 * (though they may also be called internally). All others are internal.
102 #define DOC_IOSPACE_DATA 0x0800
104 /* register offsets */
105 #define DOC_CHIPID 0x1000
106 #define DOC_DEVICESELECT 0x100a
107 #define DOC_ASICMODE 0x100c
108 #define DOC_DATAEND 0x101e
109 #define DOC_NOP 0x103e
111 #define DOC_FLASHSEQUENCE 0x1032
112 #define DOC_FLASHCOMMAND 0x1034
113 #define DOC_FLASHADDRESS 0x1036
114 #define DOC_FLASHCONTROL 0x1038
115 #define DOC_ECCCONF0 0x1040
116 #define DOC_ECCCONF1 0x1042
117 #define DOC_HAMMINGPARITY 0x1046
118 #define DOC_BCH_SYNDROM(idx) (0x1048 + idx)
120 #define DOC_ASICMODECONFIRM 0x1072
121 #define DOC_CHIPID_INV 0x1074
122 #define DOC_POWERMODE 0x107c
124 #define DOCG4_MYSTERY_REG 0x1050
126 /* apparently used only to write oob bytes 6 and 7 */
127 #define DOCG4_OOB_6_7 0x1052
129 /* DOC_FLASHSEQUENCE register commands */
130 #define DOC_SEQ_RESET 0x00
131 #define DOCG4_SEQ_PAGE_READ 0x03
132 #define DOCG4_SEQ_FLUSH 0x29
133 #define DOCG4_SEQ_PAGEWRITE 0x16
134 #define DOCG4_SEQ_PAGEPROG 0x1e
135 #define DOCG4_SEQ_BLOCKERASE 0x24
136 #define DOCG4_SEQ_SETMODE 0x45
138 /* DOC_FLASHCOMMAND register commands */
139 #define DOCG4_CMD_PAGE_READ 0x00
140 #define DOC_CMD_ERASECYCLE2 0xd0
141 #define DOCG4_CMD_FLUSH 0x70
142 #define DOCG4_CMD_READ2 0x30
143 #define DOC_CMD_PROG_BLOCK_ADDR 0x60
144 #define DOCG4_CMD_PAGEWRITE 0x80
145 #define DOC_CMD_PROG_CYCLE2 0x10
146 #define DOCG4_CMD_FAST_MODE 0xa3 /* functionality guessed */
147 #define DOC_CMD_RELIABLE_MODE 0x22
148 #define DOC_CMD_RESET 0xff
150 /* DOC_POWERMODE register bits */
151 #define DOC_POWERDOWN_READY 0x80
153 /* DOC_FLASHCONTROL register bits */
154 #define DOC_CTRL_CE 0x10
155 #define DOC_CTRL_UNKNOWN 0x40
156 #define DOC_CTRL_FLASHREADY 0x01
158 /* DOC_ECCCONF0 register bits */
159 #define DOC_ECCCONF0_READ_MODE 0x8000
160 #define DOC_ECCCONF0_UNKNOWN 0x2000
161 #define DOC_ECCCONF0_ECC_ENABLE 0x1000
162 #define DOC_ECCCONF0_DATA_BYTES_MASK 0x07ff
164 /* DOC_ECCCONF1 register bits */
165 #define DOC_ECCCONF1_BCH_SYNDROM_ERR 0x80
166 #define DOC_ECCCONF1_ECC_ENABLE 0x07
167 #define DOC_ECCCONF1_PAGE_IS_WRITTEN 0x20
169 /* DOC_ASICMODE register bits */
170 #define DOC_ASICMODE_RESET 0x00
171 #define DOC_ASICMODE_NORMAL 0x01
172 #define DOC_ASICMODE_POWERDOWN 0x02
173 #define DOC_ASICMODE_MDWREN 0x04
174 #define DOC_ASICMODE_BDETCT_RESET 0x08
175 #define DOC_ASICMODE_RSTIN_RESET 0x10
176 #define DOC_ASICMODE_RAM_WE 0x20
178 /* good status values read after read/write/erase operations */
179 #define DOCG4_PROGSTATUS_GOOD 0x51
180 #define DOCG4_PROGSTATUS_GOOD_2 0xe0
183 * On read operations (page and oob-only), the first byte read from I/O reg is a
184 * status. On error, it reads 0x73; otherwise, it reads either 0x71 (first read
185 * after reset only) or 0x51, so bit 1 is presumed to be an error indicator.
187 #define DOCG4_READ_ERROR 0x02 /* bit 1 indicates read error */
189 /* anatomy of the device */
190 #define DOCG4_CHIP_SIZE 0x8000000
191 #define DOCG4_PAGE_SIZE 0x200
192 #define DOCG4_PAGES_PER_BLOCK 0x200
193 #define DOCG4_BLOCK_SIZE (DOCG4_PAGES_PER_BLOCK * DOCG4_PAGE_SIZE)
194 #define DOCG4_NUMBLOCKS (DOCG4_CHIP_SIZE / DOCG4_BLOCK_SIZE)
195 #define DOCG4_OOB_SIZE 0x10
196 #define DOCG4_CHIP_SHIFT 27 /* log_2(DOCG4_CHIP_SIZE) */
197 #define DOCG4_PAGE_SHIFT 9 /* log_2(DOCG4_PAGE_SIZE) */
198 #define DOCG4_ERASE_SHIFT 18 /* log_2(DOCG4_BLOCK_SIZE) */
200 /* all but the last byte is included in ecc calculation */
201 #define DOCG4_BCH_SIZE (DOCG4_PAGE_SIZE + DOCG4_OOB_SIZE - 1)
203 #define DOCG4_USERDATA_LEN 520 /* 512 byte page plus 8 oob avail to user */
205 /* expected values from the ID registers */
206 #define DOCG4_IDREG1_VALUE 0x0400
207 #define DOCG4_IDREG2_VALUE 0xfbff
209 /* primitive polynomial used to build the Galois field used by hw ecc gen */
210 #define DOCG4_PRIMITIVE_POLY 0x4443
212 #define DOCG4_M 14 /* Galois field is of order 2^14 */
213 #define DOCG4_T 4 /* BCH alg corrects up to 4 bit errors */
215 #define DOCG4_FACTORY_BBT_PAGE 16 /* page where read-only factory bbt lives */
216 #define DOCG4_REDUNDANT_BBT_PAGE 24 /* page where redundant factory bbt lives */
219 * Bytes 0, 1 are used as badblock marker.
220 * Bytes 2 - 6 are available to the user.
221 * Byte 7 is hamming ecc for first 7 oob bytes only.
222 * Bytes 8 - 14 are hw-generated ecc covering entire page + oob bytes 0 - 14.
223 * Byte 15 (the last) is used by the driver as a "page written" flag.
225 static struct nand_ecclayout docg4_oobinfo = {
226 .eccbytes = 9,
227 .eccpos = {7, 8, 9, 10, 11, 12, 13, 14, 15},
228 .oobavail = 5,
229 .oobfree = { {.offset = 2, .length = 5} }
233 * The device has a nop register which M-Sys claims is for the purpose of
234 * inserting precise delays. But beware; at least some operations fail if the
235 * nop writes are replaced with a generic delay!
237 static inline void write_nop(void __iomem *docptr)
239 writew(0, docptr + DOC_NOP);
242 static void docg4_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
244 int i;
245 struct nand_chip *nand = mtd->priv;
246 uint16_t *p = (uint16_t *) buf;
247 len >>= 1;
249 for (i = 0; i < len; i++)
250 p[i] = readw(nand->IO_ADDR_R);
253 static void docg4_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
255 int i;
256 struct nand_chip *nand = mtd->priv;
257 uint16_t *p = (uint16_t *) buf;
258 len >>= 1;
260 for (i = 0; i < len; i++)
261 writew(p[i], nand->IO_ADDR_W);
264 static int poll_status(struct docg4_priv *doc)
267 * Busy-wait for the FLASHREADY bit to be set in the FLASHCONTROL
268 * register. Operations known to take a long time (e.g., block erase)
269 * should sleep for a while before calling this.
272 uint16_t flash_status;
273 unsigned long timeo;
274 void __iomem *docptr = doc->virtadr;
276 dev_dbg(doc->dev, "%s...\n", __func__);
278 /* hardware quirk requires reading twice initially */
279 flash_status = readw(docptr + DOC_FLASHCONTROL);
281 timeo = jiffies + msecs_to_jiffies(200); /* generous timeout */
282 do {
283 cpu_relax();
284 flash_status = readb(docptr + DOC_FLASHCONTROL);
285 } while (!(flash_status & DOC_CTRL_FLASHREADY) &&
286 time_before(jiffies, timeo));
288 if (unlikely(!(flash_status & DOC_CTRL_FLASHREADY))) {
289 dev_err(doc->dev, "%s: timed out!\n", __func__);
290 return NAND_STATUS_FAIL;
293 return 0;
297 static int docg4_wait(struct mtd_info *mtd, struct nand_chip *nand)
300 struct docg4_priv *doc = nand->priv;
301 int status = NAND_STATUS_WP; /* inverse logic?? */
302 dev_dbg(doc->dev, "%s...\n", __func__);
304 /* report any previously unreported error */
305 if (doc->status) {
306 status |= doc->status;
307 doc->status = 0;
308 return status;
311 status |= poll_status(doc);
312 return status;
315 static void docg4_select_chip(struct mtd_info *mtd, int chip)
318 * Select among multiple cascaded chips ("floors"). Multiple floors are
319 * not yet supported, so the only valid non-negative value is 0.
321 struct nand_chip *nand = mtd->priv;
322 struct docg4_priv *doc = nand->priv;
323 void __iomem *docptr = doc->virtadr;
325 dev_dbg(doc->dev, "%s: chip %d\n", __func__, chip);
327 if (chip < 0)
328 return; /* deselected */
330 if (chip > 0)
331 dev_warn(doc->dev, "multiple floors currently unsupported\n");
333 writew(0, docptr + DOC_DEVICESELECT);
336 static void reset(struct mtd_info *mtd)
338 /* full device reset */
340 struct nand_chip *nand = mtd->priv;
341 struct docg4_priv *doc = nand->priv;
342 void __iomem *docptr = doc->virtadr;
344 writew(DOC_ASICMODE_RESET | DOC_ASICMODE_MDWREN,
345 docptr + DOC_ASICMODE);
346 writew(~(DOC_ASICMODE_RESET | DOC_ASICMODE_MDWREN),
347 docptr + DOC_ASICMODECONFIRM);
348 write_nop(docptr);
350 writew(DOC_ASICMODE_NORMAL | DOC_ASICMODE_MDWREN,
351 docptr + DOC_ASICMODE);
352 writew(~(DOC_ASICMODE_NORMAL | DOC_ASICMODE_MDWREN),
353 docptr + DOC_ASICMODECONFIRM);
355 writew(DOC_ECCCONF1_ECC_ENABLE, docptr + DOC_ECCCONF1);
357 poll_status(doc);
360 static void read_hw_ecc(void __iomem *docptr, uint8_t *ecc_buf)
362 /* read the 7 hw-generated ecc bytes */
364 int i;
365 for (i = 0; i < 7; i++) { /* hw quirk; read twice */
366 ecc_buf[i] = readb(docptr + DOC_BCH_SYNDROM(i));
367 ecc_buf[i] = readb(docptr + DOC_BCH_SYNDROM(i));
371 static int correct_data(struct mtd_info *mtd, uint8_t *buf, int page)
374 * Called after a page read when hardware reports bitflips.
375 * Up to four bitflips can be corrected.
378 struct nand_chip *nand = mtd->priv;
379 struct docg4_priv *doc = nand->priv;
380 void __iomem *docptr = doc->virtadr;
381 int i, numerrs, errpos[4];
382 const uint8_t blank_read_hwecc[8] = {
383 0xcf, 0x72, 0xfc, 0x1b, 0xa9, 0xc7, 0xb9, 0 };
385 read_hw_ecc(docptr, doc->ecc_buf); /* read 7 hw-generated ecc bytes */
387 /* check if read error is due to a blank page */
388 if (!memcmp(doc->ecc_buf, blank_read_hwecc, 7))
389 return 0; /* yes */
391 /* skip additional check of "written flag" if ignore_badblocks */
392 if (ignore_badblocks == false) {
395 * If the hw ecc bytes are not those of a blank page, there's
396 * still a chance that the page is blank, but was read with
397 * errors. Check the "written flag" in last oob byte, which
398 * is set to zero when a page is written. If more than half
399 * the bits are set, assume a blank page. Unfortunately, the
400 * bit flips(s) are not reported in stats.
403 if (nand->oob_poi[15]) {
404 int bit, numsetbits = 0;
405 unsigned long written_flag = nand->oob_poi[15];
406 for_each_set_bit(bit, &written_flag, 8)
407 numsetbits++;
408 if (numsetbits > 4) { /* assume blank */
409 dev_warn(doc->dev,
410 "error(s) in blank page "
411 "at offset %08x\n",
412 page * DOCG4_PAGE_SIZE);
413 return 0;
419 * The hardware ecc unit produces oob_ecc ^ calc_ecc. The kernel's bch
420 * algorithm is used to decode this. However the hw operates on page
421 * data in a bit order that is the reverse of that of the bch alg,
422 * requiring that the bits be reversed on the result. Thanks to Ivan
423 * Djelic for his analysis!
425 for (i = 0; i < 7; i++)
426 doc->ecc_buf[i] = bitrev8(doc->ecc_buf[i]);
428 numerrs = decode_bch(doc->bch, NULL, DOCG4_USERDATA_LEN, NULL,
429 doc->ecc_buf, NULL, errpos);
431 if (numerrs == -EBADMSG) {
432 dev_warn(doc->dev, "uncorrectable errors at offset %08x\n",
433 page * DOCG4_PAGE_SIZE);
434 return -EBADMSG;
437 BUG_ON(numerrs < 0); /* -EINVAL, or anything other than -EBADMSG */
439 /* undo last step in BCH alg (modulo mirroring not needed) */
440 for (i = 0; i < numerrs; i++)
441 errpos[i] = (errpos[i] & ~7)|(7-(errpos[i] & 7));
443 /* fix the errors */
444 for (i = 0; i < numerrs; i++) {
446 /* ignore if error within oob ecc bytes */
447 if (errpos[i] > DOCG4_USERDATA_LEN * 8)
448 continue;
450 /* if error within oob area preceeding ecc bytes... */
451 if (errpos[i] > DOCG4_PAGE_SIZE * 8)
452 change_bit(errpos[i] - DOCG4_PAGE_SIZE * 8,
453 (unsigned long *)nand->oob_poi);
455 else /* error in page data */
456 change_bit(errpos[i], (unsigned long *)buf);
459 dev_notice(doc->dev, "%d error(s) corrected at offset %08x\n",
460 numerrs, page * DOCG4_PAGE_SIZE);
462 return numerrs;
465 static uint8_t docg4_read_byte(struct mtd_info *mtd)
467 struct nand_chip *nand = mtd->priv;
468 struct docg4_priv *doc = nand->priv;
470 dev_dbg(doc->dev, "%s\n", __func__);
472 if (doc->last_command.command == NAND_CMD_STATUS) {
473 int status;
476 * Previous nand command was status request, so nand
477 * infrastructure code expects to read the status here. If an
478 * error occurred in a previous operation, report it.
480 doc->last_command.command = 0;
482 if (doc->status) {
483 status = doc->status;
484 doc->status = 0;
487 /* why is NAND_STATUS_WP inverse logic?? */
488 else
489 status = NAND_STATUS_WP | NAND_STATUS_READY;
491 return status;
494 dev_warn(doc->dev, "unexpected call to read_byte()\n");
496 return 0;
499 static void write_addr(struct docg4_priv *doc, uint32_t docg4_addr)
501 /* write the four address bytes packed in docg4_addr to the device */
503 void __iomem *docptr = doc->virtadr;
504 writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
505 docg4_addr >>= 8;
506 writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
507 docg4_addr >>= 8;
508 writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
509 docg4_addr >>= 8;
510 writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
513 static int read_progstatus(struct docg4_priv *doc)
516 * This apparently checks the status of programming. Done after an
517 * erasure, and after page data is written. On error, the status is
518 * saved, to be later retrieved by the nand infrastructure code.
520 void __iomem *docptr = doc->virtadr;
522 /* status is read from the I/O reg */
523 uint16_t status1 = readw(docptr + DOC_IOSPACE_DATA);
524 uint16_t status2 = readw(docptr + DOC_IOSPACE_DATA);
525 uint16_t status3 = readw(docptr + DOCG4_MYSTERY_REG);
527 dev_dbg(doc->dev, "docg4: %s: %02x %02x %02x\n",
528 __func__, status1, status2, status3);
530 if (status1 != DOCG4_PROGSTATUS_GOOD
531 || status2 != DOCG4_PROGSTATUS_GOOD_2
532 || status3 != DOCG4_PROGSTATUS_GOOD_2) {
533 doc->status = NAND_STATUS_FAIL;
534 dev_warn(doc->dev, "read_progstatus failed: "
535 "%02x, %02x, %02x\n", status1, status2, status3);
536 return -EIO;
538 return 0;
541 static int pageprog(struct mtd_info *mtd)
544 * Final step in writing a page. Writes the contents of its
545 * internal buffer out to the flash array, or some such.
548 struct nand_chip *nand = mtd->priv;
549 struct docg4_priv *doc = nand->priv;
550 void __iomem *docptr = doc->virtadr;
551 int retval = 0;
553 dev_dbg(doc->dev, "docg4: %s\n", __func__);
555 writew(DOCG4_SEQ_PAGEPROG, docptr + DOC_FLASHSEQUENCE);
556 writew(DOC_CMD_PROG_CYCLE2, docptr + DOC_FLASHCOMMAND);
557 write_nop(docptr);
558 write_nop(docptr);
560 /* Just busy-wait; usleep_range() slows things down noticeably. */
561 poll_status(doc);
563 writew(DOCG4_SEQ_FLUSH, docptr + DOC_FLASHSEQUENCE);
564 writew(DOCG4_CMD_FLUSH, docptr + DOC_FLASHCOMMAND);
565 writew(DOC_ECCCONF0_READ_MODE | 4, docptr + DOC_ECCCONF0);
566 write_nop(docptr);
567 write_nop(docptr);
568 write_nop(docptr);
569 write_nop(docptr);
570 write_nop(docptr);
572 retval = read_progstatus(doc);
573 writew(0, docptr + DOC_DATAEND);
574 write_nop(docptr);
575 poll_status(doc);
576 write_nop(docptr);
578 return retval;
581 static void sequence_reset(struct mtd_info *mtd)
583 /* common starting sequence for all operations */
585 struct nand_chip *nand = mtd->priv;
586 struct docg4_priv *doc = nand->priv;
587 void __iomem *docptr = doc->virtadr;
589 writew(DOC_CTRL_UNKNOWN | DOC_CTRL_CE, docptr + DOC_FLASHCONTROL);
590 writew(DOC_SEQ_RESET, docptr + DOC_FLASHSEQUENCE);
591 writew(DOC_CMD_RESET, docptr + DOC_FLASHCOMMAND);
592 write_nop(docptr);
593 write_nop(docptr);
594 poll_status(doc);
595 write_nop(docptr);
598 static void read_page_prologue(struct mtd_info *mtd, uint32_t docg4_addr)
600 /* first step in reading a page */
602 struct nand_chip *nand = mtd->priv;
603 struct docg4_priv *doc = nand->priv;
604 void __iomem *docptr = doc->virtadr;
606 dev_dbg(doc->dev,
607 "docg4: %s: g4 page %08x\n", __func__, docg4_addr);
609 sequence_reset(mtd);
611 writew(DOCG4_SEQ_PAGE_READ, docptr + DOC_FLASHSEQUENCE);
612 writew(DOCG4_CMD_PAGE_READ, docptr + DOC_FLASHCOMMAND);
613 write_nop(docptr);
615 write_addr(doc, docg4_addr);
617 write_nop(docptr);
618 writew(DOCG4_CMD_READ2, docptr + DOC_FLASHCOMMAND);
619 write_nop(docptr);
620 write_nop(docptr);
622 poll_status(doc);
625 static void write_page_prologue(struct mtd_info *mtd, uint32_t docg4_addr)
627 /* first step in writing a page */
629 struct nand_chip *nand = mtd->priv;
630 struct docg4_priv *doc = nand->priv;
631 void __iomem *docptr = doc->virtadr;
633 dev_dbg(doc->dev,
634 "docg4: %s: g4 addr: %x\n", __func__, docg4_addr);
635 sequence_reset(mtd);
637 if (unlikely(reliable_mode)) {
638 writew(DOCG4_SEQ_SETMODE, docptr + DOC_FLASHSEQUENCE);
639 writew(DOCG4_CMD_FAST_MODE, docptr + DOC_FLASHCOMMAND);
640 writew(DOC_CMD_RELIABLE_MODE, docptr + DOC_FLASHCOMMAND);
641 write_nop(docptr);
644 writew(DOCG4_SEQ_PAGEWRITE, docptr + DOC_FLASHSEQUENCE);
645 writew(DOCG4_CMD_PAGEWRITE, docptr + DOC_FLASHCOMMAND);
646 write_nop(docptr);
647 write_addr(doc, docg4_addr);
648 write_nop(docptr);
649 write_nop(docptr);
650 poll_status(doc);
653 static uint32_t mtd_to_docg4_address(int page, int column)
656 * Convert mtd address to format used by the device, 32 bit packed.
658 * Some notes on G4 addressing... The M-Sys documentation on this device
659 * claims that pages are 2K in length, and indeed, the format of the
660 * address used by the device reflects that. But within each page are
661 * four 512 byte "sub-pages", each with its own oob data that is
662 * read/written immediately after the 512 bytes of page data. This oob
663 * data contains the ecc bytes for the preceeding 512 bytes.
665 * Rather than tell the mtd nand infrastructure that page size is 2k,
666 * with four sub-pages each, we engage in a little subterfuge and tell
667 * the infrastructure code that pages are 512 bytes in size. This is
668 * done because during the course of reverse-engineering the device, I
669 * never observed an instance where an entire 2K "page" was read or
670 * written as a unit. Each "sub-page" is always addressed individually,
671 * its data read/written, and ecc handled before the next "sub-page" is
672 * addressed.
674 * This requires us to convert addresses passed by the mtd nand
675 * infrastructure code to those used by the device.
677 * The address that is written to the device consists of four bytes: the
678 * first two are the 2k page number, and the second is the index into
679 * the page. The index is in terms of 16-bit half-words and includes
680 * the preceeding oob data, so e.g., the index into the second
681 * "sub-page" is 0x108, and the full device address of the start of mtd
682 * page 0x201 is 0x00800108.
684 int g4_page = page / 4; /* device's 2K page */
685 int g4_index = (page % 4) * 0x108 + column/2; /* offset into page */
686 return (g4_page << 16) | g4_index; /* pack */
689 static void docg4_command(struct mtd_info *mtd, unsigned command, int column,
690 int page_addr)
692 /* handle standard nand commands */
694 struct nand_chip *nand = mtd->priv;
695 struct docg4_priv *doc = nand->priv;
696 uint32_t g4_addr = mtd_to_docg4_address(page_addr, column);
698 dev_dbg(doc->dev, "%s %x, page_addr=%x, column=%x\n",
699 __func__, command, page_addr, column);
702 * Save the command and its arguments. This enables emulation of
703 * standard flash devices, and also some optimizations.
705 doc->last_command.command = command;
706 doc->last_command.column = column;
707 doc->last_command.page = page_addr;
709 switch (command) {
711 case NAND_CMD_RESET:
712 reset(mtd);
713 break;
715 case NAND_CMD_READ0:
716 read_page_prologue(mtd, g4_addr);
717 break;
719 case NAND_CMD_STATUS:
720 /* next call to read_byte() will expect a status */
721 break;
723 case NAND_CMD_SEQIN:
724 if (unlikely(reliable_mode)) {
725 uint16_t g4_page = g4_addr >> 16;
727 /* writes to odd-numbered 2k pages are invalid */
728 if (g4_page & 0x01)
729 dev_warn(doc->dev,
730 "invalid reliable mode address\n");
733 write_page_prologue(mtd, g4_addr);
735 /* hack for deferred write of oob bytes */
736 if (doc->oob_page == page_addr)
737 memcpy(nand->oob_poi, doc->oob_buf, 16);
738 break;
740 case NAND_CMD_PAGEPROG:
741 pageprog(mtd);
742 break;
744 /* we don't expect these, based on review of nand_base.c */
745 case NAND_CMD_READOOB:
746 case NAND_CMD_READID:
747 case NAND_CMD_ERASE1:
748 case NAND_CMD_ERASE2:
749 dev_warn(doc->dev, "docg4_command: "
750 "unexpected nand command 0x%x\n", command);
751 break;
756 static int read_page(struct mtd_info *mtd, struct nand_chip *nand,
757 uint8_t *buf, int page, bool use_ecc)
759 struct docg4_priv *doc = nand->priv;
760 void __iomem *docptr = doc->virtadr;
761 uint16_t status, edc_err, *buf16;
762 int bits_corrected = 0;
764 dev_dbg(doc->dev, "%s: page %08x\n", __func__, page);
766 writew(DOC_ECCCONF0_READ_MODE |
767 DOC_ECCCONF0_ECC_ENABLE |
768 DOC_ECCCONF0_UNKNOWN |
769 DOCG4_BCH_SIZE,
770 docptr + DOC_ECCCONF0);
771 write_nop(docptr);
772 write_nop(docptr);
773 write_nop(docptr);
774 write_nop(docptr);
775 write_nop(docptr);
777 /* the 1st byte from the I/O reg is a status; the rest is page data */
778 status = readw(docptr + DOC_IOSPACE_DATA);
779 if (status & DOCG4_READ_ERROR) {
780 dev_err(doc->dev,
781 "docg4_read_page: bad status: 0x%02x\n", status);
782 writew(0, docptr + DOC_DATAEND);
783 return -EIO;
786 dev_dbg(doc->dev, "%s: status = 0x%x\n", __func__, status);
788 docg4_read_buf(mtd, buf, DOCG4_PAGE_SIZE); /* read the page data */
790 /* this device always reads oob after page data */
791 /* first 14 oob bytes read from I/O reg */
792 docg4_read_buf(mtd, nand->oob_poi, 14);
794 /* last 2 read from another reg */
795 buf16 = (uint16_t *)(nand->oob_poi + 14);
796 *buf16 = readw(docptr + DOCG4_MYSTERY_REG);
798 write_nop(docptr);
800 if (likely(use_ecc == true)) {
802 /* read the register that tells us if bitflip(s) detected */
803 edc_err = readw(docptr + DOC_ECCCONF1);
804 edc_err = readw(docptr + DOC_ECCCONF1);
805 dev_dbg(doc->dev, "%s: edc_err = 0x%02x\n", __func__, edc_err);
807 /* If bitflips are reported, attempt to correct with ecc */
808 if (edc_err & DOC_ECCCONF1_BCH_SYNDROM_ERR) {
809 bits_corrected = correct_data(mtd, buf, page);
810 if (bits_corrected == -EBADMSG)
811 mtd->ecc_stats.failed++;
812 else
813 mtd->ecc_stats.corrected += bits_corrected;
817 writew(0, docptr + DOC_DATAEND);
818 if (bits_corrected == -EBADMSG) /* uncorrectable errors */
819 return 0;
820 return bits_corrected;
824 static int docg4_read_page_raw(struct mtd_info *mtd, struct nand_chip *nand,
825 uint8_t *buf, int oob_required, int page)
827 return read_page(mtd, nand, buf, page, false);
830 static int docg4_read_page(struct mtd_info *mtd, struct nand_chip *nand,
831 uint8_t *buf, int oob_required, int page)
833 return read_page(mtd, nand, buf, page, true);
836 static int docg4_read_oob(struct mtd_info *mtd, struct nand_chip *nand,
837 int page)
839 struct docg4_priv *doc = nand->priv;
840 void __iomem *docptr = doc->virtadr;
841 uint16_t status;
843 dev_dbg(doc->dev, "%s: page %x\n", __func__, page);
845 docg4_command(mtd, NAND_CMD_READ0, nand->ecc.size, page);
847 writew(DOC_ECCCONF0_READ_MODE | DOCG4_OOB_SIZE, docptr + DOC_ECCCONF0);
848 write_nop(docptr);
849 write_nop(docptr);
850 write_nop(docptr);
851 write_nop(docptr);
852 write_nop(docptr);
854 /* the 1st byte from the I/O reg is a status; the rest is oob data */
855 status = readw(docptr + DOC_IOSPACE_DATA);
856 if (status & DOCG4_READ_ERROR) {
857 dev_warn(doc->dev,
858 "docg4_read_oob failed: status = 0x%02x\n", status);
859 return -EIO;
862 dev_dbg(doc->dev, "%s: status = 0x%x\n", __func__, status);
864 docg4_read_buf(mtd, nand->oob_poi, 16);
866 write_nop(docptr);
867 write_nop(docptr);
868 write_nop(docptr);
869 writew(0, docptr + DOC_DATAEND);
870 write_nop(docptr);
872 return 0;
875 static void docg4_erase_block(struct mtd_info *mtd, int page)
877 struct nand_chip *nand = mtd->priv;
878 struct docg4_priv *doc = nand->priv;
879 void __iomem *docptr = doc->virtadr;
880 uint16_t g4_page;
882 dev_dbg(doc->dev, "%s: page %04x\n", __func__, page);
884 sequence_reset(mtd);
886 writew(DOCG4_SEQ_BLOCKERASE, docptr + DOC_FLASHSEQUENCE);
887 writew(DOC_CMD_PROG_BLOCK_ADDR, docptr + DOC_FLASHCOMMAND);
888 write_nop(docptr);
890 /* only 2 bytes of address are written to specify erase block */
891 g4_page = (uint16_t)(page / 4); /* to g4's 2k page addressing */
892 writeb(g4_page & 0xff, docptr + DOC_FLASHADDRESS);
893 g4_page >>= 8;
894 writeb(g4_page & 0xff, docptr + DOC_FLASHADDRESS);
895 write_nop(docptr);
897 /* start the erasure */
898 writew(DOC_CMD_ERASECYCLE2, docptr + DOC_FLASHCOMMAND);
899 write_nop(docptr);
900 write_nop(docptr);
902 usleep_range(500, 1000); /* erasure is long; take a snooze */
903 poll_status(doc);
904 writew(DOCG4_SEQ_FLUSH, docptr + DOC_FLASHSEQUENCE);
905 writew(DOCG4_CMD_FLUSH, docptr + DOC_FLASHCOMMAND);
906 writew(DOC_ECCCONF0_READ_MODE | 4, docptr + DOC_ECCCONF0);
907 write_nop(docptr);
908 write_nop(docptr);
909 write_nop(docptr);
910 write_nop(docptr);
911 write_nop(docptr);
913 read_progstatus(doc);
915 writew(0, docptr + DOC_DATAEND);
916 write_nop(docptr);
917 poll_status(doc);
918 write_nop(docptr);
921 static int write_page(struct mtd_info *mtd, struct nand_chip *nand,
922 const uint8_t *buf, bool use_ecc)
924 struct docg4_priv *doc = nand->priv;
925 void __iomem *docptr = doc->virtadr;
926 uint8_t ecc_buf[8];
928 dev_dbg(doc->dev, "%s...\n", __func__);
930 writew(DOC_ECCCONF0_ECC_ENABLE |
931 DOC_ECCCONF0_UNKNOWN |
932 DOCG4_BCH_SIZE,
933 docptr + DOC_ECCCONF0);
934 write_nop(docptr);
936 /* write the page data */
937 docg4_write_buf16(mtd, buf, DOCG4_PAGE_SIZE);
939 /* oob bytes 0 through 5 are written to I/O reg */
940 docg4_write_buf16(mtd, nand->oob_poi, 6);
942 /* oob byte 6 written to a separate reg */
943 writew(nand->oob_poi[6], docptr + DOCG4_OOB_6_7);
945 write_nop(docptr);
946 write_nop(docptr);
948 /* write hw-generated ecc bytes to oob */
949 if (likely(use_ecc == true)) {
950 /* oob byte 7 is hamming code */
951 uint8_t hamming = readb(docptr + DOC_HAMMINGPARITY);
952 hamming = readb(docptr + DOC_HAMMINGPARITY); /* 2nd read */
953 writew(hamming, docptr + DOCG4_OOB_6_7);
954 write_nop(docptr);
956 /* read the 7 bch bytes from ecc regs */
957 read_hw_ecc(docptr, ecc_buf);
958 ecc_buf[7] = 0; /* clear the "page written" flag */
961 /* write user-supplied bytes to oob */
962 else {
963 writew(nand->oob_poi[7], docptr + DOCG4_OOB_6_7);
964 write_nop(docptr);
965 memcpy(ecc_buf, &nand->oob_poi[8], 8);
968 docg4_write_buf16(mtd, ecc_buf, 8);
969 write_nop(docptr);
970 write_nop(docptr);
971 writew(0, docptr + DOC_DATAEND);
972 write_nop(docptr);
974 return 0;
977 static int docg4_write_page_raw(struct mtd_info *mtd, struct nand_chip *nand,
978 const uint8_t *buf, int oob_required)
980 return write_page(mtd, nand, buf, false);
983 static int docg4_write_page(struct mtd_info *mtd, struct nand_chip *nand,
984 const uint8_t *buf, int oob_required)
986 return write_page(mtd, nand, buf, true);
989 static int docg4_write_oob(struct mtd_info *mtd, struct nand_chip *nand,
990 int page)
993 * Writing oob-only is not really supported, because MLC nand must write
994 * oob bytes at the same time as page data. Nonetheless, we save the
995 * oob buffer contents here, and then write it along with the page data
996 * if the same page is subsequently written. This allows user space
997 * utilities that write the oob data prior to the page data to work
998 * (e.g., nandwrite). The disdvantage is that, if the intention was to
999 * write oob only, the operation is quietly ignored. Also, oob can get
1000 * corrupted if two concurrent processes are running nandwrite.
1003 /* note that bytes 7..14 are hw generated hamming/ecc and overwritten */
1004 struct docg4_priv *doc = nand->priv;
1005 doc->oob_page = page;
1006 memcpy(doc->oob_buf, nand->oob_poi, 16);
1007 return 0;
1010 static int __init read_factory_bbt(struct mtd_info *mtd)
1013 * The device contains a read-only factory bad block table. Read it and
1014 * update the memory-based bbt accordingly.
1017 struct nand_chip *nand = mtd->priv;
1018 struct docg4_priv *doc = nand->priv;
1019 uint32_t g4_addr = mtd_to_docg4_address(DOCG4_FACTORY_BBT_PAGE, 0);
1020 uint8_t *buf;
1021 int i, block;
1022 __u32 eccfailed_stats = mtd->ecc_stats.failed;
1024 buf = kzalloc(DOCG4_PAGE_SIZE, GFP_KERNEL);
1025 if (buf == NULL)
1026 return -ENOMEM;
1028 read_page_prologue(mtd, g4_addr);
1029 docg4_read_page(mtd, nand, buf, 0, DOCG4_FACTORY_BBT_PAGE);
1032 * If no memory-based bbt was created, exit. This will happen if module
1033 * parameter ignore_badblocks is set. Then why even call this function?
1034 * For an unknown reason, block erase always fails if it's the first
1035 * operation after device power-up. The above read ensures it never is.
1036 * Ugly, I know.
1038 if (nand->bbt == NULL) /* no memory-based bbt */
1039 goto exit;
1041 if (mtd->ecc_stats.failed > eccfailed_stats) {
1043 * Whoops, an ecc failure ocurred reading the factory bbt.
1044 * It is stored redundantly, so we get another chance.
1046 eccfailed_stats = mtd->ecc_stats.failed;
1047 docg4_read_page(mtd, nand, buf, 0, DOCG4_REDUNDANT_BBT_PAGE);
1048 if (mtd->ecc_stats.failed > eccfailed_stats) {
1049 dev_warn(doc->dev,
1050 "The factory bbt could not be read!\n");
1051 goto exit;
1056 * Parse factory bbt and update memory-based bbt. Factory bbt format is
1057 * simple: one bit per block, block numbers increase left to right (msb
1058 * to lsb). Bit clear means bad block.
1060 for (i = block = 0; block < DOCG4_NUMBLOCKS; block += 8, i++) {
1061 int bitnum;
1062 unsigned long bits = ~buf[i];
1063 for_each_set_bit(bitnum, &bits, 8) {
1064 int badblock = block + 7 - bitnum;
1065 nand->bbt[badblock / 4] |=
1066 0x03 << ((badblock % 4) * 2);
1067 mtd->ecc_stats.badblocks++;
1068 dev_notice(doc->dev, "factory-marked bad block: %d\n",
1069 badblock);
1072 exit:
1073 kfree(buf);
1074 return 0;
1077 static int docg4_block_markbad(struct mtd_info *mtd, loff_t ofs)
1080 * Mark a block as bad. Bad blocks are marked in the oob area of the
1081 * first page of the block. The default scan_bbt() in the nand
1082 * infrastructure code works fine for building the memory-based bbt
1083 * during initialization, as does the nand infrastructure function that
1084 * checks if a block is bad by reading the bbt. This function replaces
1085 * the nand default because writes to oob-only are not supported.
1088 int ret, i;
1089 uint8_t *buf;
1090 struct nand_chip *nand = mtd->priv;
1091 struct docg4_priv *doc = nand->priv;
1092 struct nand_bbt_descr *bbtd = nand->badblock_pattern;
1093 int page = (int)(ofs >> nand->page_shift);
1094 uint32_t g4_addr = mtd_to_docg4_address(page, 0);
1096 dev_dbg(doc->dev, "%s: %08llx\n", __func__, ofs);
1098 if (unlikely(ofs & (DOCG4_BLOCK_SIZE - 1)))
1099 dev_warn(doc->dev, "%s: ofs %llx not start of block!\n",
1100 __func__, ofs);
1102 /* allocate blank buffer for page data */
1103 buf = kzalloc(DOCG4_PAGE_SIZE, GFP_KERNEL);
1104 if (buf == NULL)
1105 return -ENOMEM;
1107 /* write bit-wise negation of pattern to oob buffer */
1108 memset(nand->oob_poi, 0xff, mtd->oobsize);
1109 for (i = 0; i < bbtd->len; i++)
1110 nand->oob_poi[bbtd->offs + i] = ~bbtd->pattern[i];
1112 /* write first page of block */
1113 write_page_prologue(mtd, g4_addr);
1114 docg4_write_page(mtd, nand, buf, 1);
1115 ret = pageprog(mtd);
1117 kfree(buf);
1119 return ret;
1122 static int docg4_block_neverbad(struct mtd_info *mtd, loff_t ofs, int getchip)
1124 /* only called when module_param ignore_badblocks is set */
1125 return 0;
1128 static int docg4_suspend(struct platform_device *pdev, pm_message_t state)
1131 * Put the device into "deep power-down" mode. Note that CE# must be
1132 * deasserted for this to take effect. The xscale, e.g., can be
1133 * configured to float this signal when the processor enters power-down,
1134 * and a suitable pull-up ensures its deassertion.
1137 int i;
1138 uint8_t pwr_down;
1139 struct docg4_priv *doc = platform_get_drvdata(pdev);
1140 void __iomem *docptr = doc->virtadr;
1142 dev_dbg(doc->dev, "%s...\n", __func__);
1144 /* poll the register that tells us we're ready to go to sleep */
1145 for (i = 0; i < 10; i++) {
1146 pwr_down = readb(docptr + DOC_POWERMODE);
1147 if (pwr_down & DOC_POWERDOWN_READY)
1148 break;
1149 usleep_range(1000, 4000);
1152 if (pwr_down & DOC_POWERDOWN_READY) {
1153 dev_err(doc->dev, "suspend failed; "
1154 "timeout polling DOC_POWERDOWN_READY\n");
1155 return -EIO;
1158 writew(DOC_ASICMODE_POWERDOWN | DOC_ASICMODE_MDWREN,
1159 docptr + DOC_ASICMODE);
1160 writew(~(DOC_ASICMODE_POWERDOWN | DOC_ASICMODE_MDWREN),
1161 docptr + DOC_ASICMODECONFIRM);
1163 write_nop(docptr);
1165 return 0;
1168 static int docg4_resume(struct platform_device *pdev)
1172 * Exit power-down. Twelve consecutive reads of the address below
1173 * accomplishes this, assuming CE# has been asserted.
1176 struct docg4_priv *doc = platform_get_drvdata(pdev);
1177 void __iomem *docptr = doc->virtadr;
1178 int i;
1180 dev_dbg(doc->dev, "%s...\n", __func__);
1182 for (i = 0; i < 12; i++)
1183 readb(docptr + 0x1fff);
1185 return 0;
1188 static void __init init_mtd_structs(struct mtd_info *mtd)
1190 /* initialize mtd and nand data structures */
1193 * Note that some of the following initializations are not usually
1194 * required within a nand driver because they are performed by the nand
1195 * infrastructure code as part of nand_scan(). In this case they need
1196 * to be initialized here because we skip call to nand_scan_ident() (the
1197 * first half of nand_scan()). The call to nand_scan_ident() is skipped
1198 * because for this device the chip id is not read in the manner of a
1199 * standard nand device. Unfortunately, nand_scan_ident() does other
1200 * things as well, such as call nand_set_defaults().
1203 struct nand_chip *nand = mtd->priv;
1204 struct docg4_priv *doc = nand->priv;
1206 mtd->size = DOCG4_CHIP_SIZE;
1207 mtd->name = "Msys_Diskonchip_G4";
1208 mtd->writesize = DOCG4_PAGE_SIZE;
1209 mtd->erasesize = DOCG4_BLOCK_SIZE;
1210 mtd->oobsize = DOCG4_OOB_SIZE;
1211 nand->chipsize = DOCG4_CHIP_SIZE;
1212 nand->chip_shift = DOCG4_CHIP_SHIFT;
1213 nand->bbt_erase_shift = nand->phys_erase_shift = DOCG4_ERASE_SHIFT;
1214 nand->chip_delay = 20;
1215 nand->page_shift = DOCG4_PAGE_SHIFT;
1216 nand->pagemask = 0x3ffff;
1217 nand->badblockpos = NAND_LARGE_BADBLOCK_POS;
1218 nand->badblockbits = 8;
1219 nand->ecc.layout = &docg4_oobinfo;
1220 nand->ecc.mode = NAND_ECC_HW_SYNDROME;
1221 nand->ecc.size = DOCG4_PAGE_SIZE;
1222 nand->ecc.prepad = 8;
1223 nand->ecc.bytes = 8;
1224 nand->ecc.strength = DOCG4_T;
1225 nand->options = NAND_BUSWIDTH_16 | NAND_NO_SUBPAGE_WRITE;
1226 nand->IO_ADDR_R = nand->IO_ADDR_W = doc->virtadr + DOC_IOSPACE_DATA;
1227 nand->controller = &nand->hwcontrol;
1228 spin_lock_init(&nand->controller->lock);
1229 init_waitqueue_head(&nand->controller->wq);
1231 /* methods */
1232 nand->cmdfunc = docg4_command;
1233 nand->waitfunc = docg4_wait;
1234 nand->select_chip = docg4_select_chip;
1235 nand->read_byte = docg4_read_byte;
1236 nand->block_markbad = docg4_block_markbad;
1237 nand->read_buf = docg4_read_buf;
1238 nand->write_buf = docg4_write_buf16;
1239 nand->erase_cmd = docg4_erase_block;
1240 nand->ecc.read_page = docg4_read_page;
1241 nand->ecc.write_page = docg4_write_page;
1242 nand->ecc.read_page_raw = docg4_read_page_raw;
1243 nand->ecc.write_page_raw = docg4_write_page_raw;
1244 nand->ecc.read_oob = docg4_read_oob;
1245 nand->ecc.write_oob = docg4_write_oob;
1248 * The way the nand infrastructure code is written, a memory-based bbt
1249 * is not created if NAND_SKIP_BBTSCAN is set. With no memory bbt,
1250 * nand->block_bad() is used. So when ignoring bad blocks, we skip the
1251 * scan and define a dummy block_bad() which always returns 0.
1253 if (ignore_badblocks) {
1254 nand->options |= NAND_SKIP_BBTSCAN;
1255 nand->block_bad = docg4_block_neverbad;
1260 static int __init read_id_reg(struct mtd_info *mtd)
1262 struct nand_chip *nand = mtd->priv;
1263 struct docg4_priv *doc = nand->priv;
1264 void __iomem *docptr = doc->virtadr;
1265 uint16_t id1, id2;
1267 /* check for presence of g4 chip by reading id registers */
1268 id1 = readw(docptr + DOC_CHIPID);
1269 id1 = readw(docptr + DOCG4_MYSTERY_REG);
1270 id2 = readw(docptr + DOC_CHIPID_INV);
1271 id2 = readw(docptr + DOCG4_MYSTERY_REG);
1273 if (id1 == DOCG4_IDREG1_VALUE && id2 == DOCG4_IDREG2_VALUE) {
1274 dev_info(doc->dev,
1275 "NAND device: 128MiB Diskonchip G4 detected\n");
1276 return 0;
1279 return -ENODEV;
1282 static char const *part_probes[] = { "cmdlinepart", "saftlpart", NULL };
1284 static int __init probe_docg4(struct platform_device *pdev)
1286 struct mtd_info *mtd;
1287 struct nand_chip *nand;
1288 void __iomem *virtadr;
1289 struct docg4_priv *doc;
1290 int len, retval;
1291 struct resource *r;
1292 struct device *dev = &pdev->dev;
1294 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1295 if (r == NULL) {
1296 dev_err(dev, "no io memory resource defined!\n");
1297 return -ENODEV;
1300 virtadr = ioremap(r->start, resource_size(r));
1301 if (!virtadr) {
1302 dev_err(dev, "Diskonchip ioremap failed: %pR\n", r);
1303 return -EIO;
1306 len = sizeof(struct mtd_info) + sizeof(struct nand_chip) +
1307 sizeof(struct docg4_priv);
1308 mtd = kzalloc(len, GFP_KERNEL);
1309 if (mtd == NULL) {
1310 retval = -ENOMEM;
1311 goto fail;
1313 nand = (struct nand_chip *) (mtd + 1);
1314 doc = (struct docg4_priv *) (nand + 1);
1315 mtd->priv = nand;
1316 nand->priv = doc;
1317 mtd->owner = THIS_MODULE;
1318 doc->virtadr = virtadr;
1319 doc->dev = dev;
1321 init_mtd_structs(mtd);
1323 /* initialize kernel bch algorithm */
1324 doc->bch = init_bch(DOCG4_M, DOCG4_T, DOCG4_PRIMITIVE_POLY);
1325 if (doc->bch == NULL) {
1326 retval = -EINVAL;
1327 goto fail;
1330 platform_set_drvdata(pdev, doc);
1332 reset(mtd);
1333 retval = read_id_reg(mtd);
1334 if (retval == -ENODEV) {
1335 dev_warn(dev, "No diskonchip G4 device found.\n");
1336 goto fail;
1339 retval = nand_scan_tail(mtd);
1340 if (retval)
1341 goto fail;
1343 retval = read_factory_bbt(mtd);
1344 if (retval)
1345 goto fail;
1347 retval = mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0);
1348 if (retval)
1349 goto fail;
1351 doc->mtd = mtd;
1352 return 0;
1354 fail:
1355 iounmap(virtadr);
1356 if (mtd) {
1357 /* re-declarations avoid compiler warning */
1358 struct nand_chip *nand = mtd->priv;
1359 struct docg4_priv *doc = nand->priv;
1360 nand_release(mtd); /* deletes partitions and mtd devices */
1361 free_bch(doc->bch);
1362 kfree(mtd);
1365 return retval;
1368 static int __exit cleanup_docg4(struct platform_device *pdev)
1370 struct docg4_priv *doc = platform_get_drvdata(pdev);
1371 nand_release(doc->mtd);
1372 free_bch(doc->bch);
1373 kfree(doc->mtd);
1374 iounmap(doc->virtadr);
1375 return 0;
1378 static struct platform_driver docg4_driver = {
1379 .driver = {
1380 .name = "docg4",
1381 .owner = THIS_MODULE,
1383 .suspend = docg4_suspend,
1384 .resume = docg4_resume,
1385 .remove = __exit_p(cleanup_docg4),
1388 module_platform_driver_probe(docg4_driver, probe_docg4);
1390 MODULE_LICENSE("GPL");
1391 MODULE_AUTHOR("Mike Dunn");
1392 MODULE_DESCRIPTION("M-Systems DiskOnChip G4 device driver");