hyperv: Remove recv_pkt_list and lock
[linux/fpc-iii.git] / drivers / scsi / hpsa.c
blob8cf4a0c69baf4cebfc5ecb4fb28c029c4455d886
1 /*
2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2000, 2014 Hewlett-Packard Development Company, L.P.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12 * NON INFRINGEMENT. See the GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/fs.h>
31 #include <linux/timer.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/compat.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/uaccess.h>
37 #include <linux/io.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/completion.h>
40 #include <linux/moduleparam.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_device.h>
44 #include <scsi/scsi_host.h>
45 #include <scsi/scsi_tcq.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <linux/atomic.h>
50 #include <linux/jiffies.h>
51 #include <asm/div64.h>
52 #include "hpsa_cmd.h"
53 #include "hpsa.h"
55 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
56 #define HPSA_DRIVER_VERSION "3.4.4-1"
57 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
58 #define HPSA "hpsa"
60 /* How long to wait (in milliseconds) for board to go into simple mode */
61 #define MAX_CONFIG_WAIT 30000
62 #define MAX_IOCTL_CONFIG_WAIT 1000
64 /*define how many times we will try a command because of bus resets */
65 #define MAX_CMD_RETRIES 3
67 /* Embedded module documentation macros - see modules.h */
68 MODULE_AUTHOR("Hewlett-Packard Company");
69 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
70 HPSA_DRIVER_VERSION);
71 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
72 MODULE_VERSION(HPSA_DRIVER_VERSION);
73 MODULE_LICENSE("GPL");
75 static int hpsa_allow_any;
76 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
77 MODULE_PARM_DESC(hpsa_allow_any,
78 "Allow hpsa driver to access unknown HP Smart Array hardware");
79 static int hpsa_simple_mode;
80 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
81 MODULE_PARM_DESC(hpsa_simple_mode,
82 "Use 'simple mode' rather than 'performant mode'");
84 /* define the PCI info for the cards we can control */
85 static const struct pci_device_id hpsa_pci_device_id[] = {
86 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
87 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
88 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
89 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
90 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
91 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
92 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233},
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356},
101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1921},
102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1922},
103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1923},
104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1924},
105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1925},
106 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1926},
107 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1928},
108 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1929},
109 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BD},
110 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BE},
111 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BF},
112 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C0},
113 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C1},
114 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C2},
115 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C3},
116 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C4},
117 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C5},
118 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C7},
119 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C8},
120 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C9},
121 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
122 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
123 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
124 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
125 {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
126 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
127 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
128 {0,}
131 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
133 /* board_id = Subsystem Device ID & Vendor ID
134 * product = Marketing Name for the board
135 * access = Address of the struct of function pointers
137 static struct board_type products[] = {
138 {0x3241103C, "Smart Array P212", &SA5_access},
139 {0x3243103C, "Smart Array P410", &SA5_access},
140 {0x3245103C, "Smart Array P410i", &SA5_access},
141 {0x3247103C, "Smart Array P411", &SA5_access},
142 {0x3249103C, "Smart Array P812", &SA5_access},
143 {0x324A103C, "Smart Array P712m", &SA5_access},
144 {0x324B103C, "Smart Array P711m", &SA5_access},
145 {0x3350103C, "Smart Array P222", &SA5_access},
146 {0x3351103C, "Smart Array P420", &SA5_access},
147 {0x3352103C, "Smart Array P421", &SA5_access},
148 {0x3353103C, "Smart Array P822", &SA5_access},
149 {0x3354103C, "Smart Array P420i", &SA5_access},
150 {0x3355103C, "Smart Array P220i", &SA5_access},
151 {0x3356103C, "Smart Array P721m", &SA5_access},
152 {0x1921103C, "Smart Array P830i", &SA5_access},
153 {0x1922103C, "Smart Array P430", &SA5_access},
154 {0x1923103C, "Smart Array P431", &SA5_access},
155 {0x1924103C, "Smart Array P830", &SA5_access},
156 {0x1926103C, "Smart Array P731m", &SA5_access},
157 {0x1928103C, "Smart Array P230i", &SA5_access},
158 {0x1929103C, "Smart Array P530", &SA5_access},
159 {0x21BD103C, "Smart Array", &SA5_access},
160 {0x21BE103C, "Smart Array", &SA5_access},
161 {0x21BF103C, "Smart Array", &SA5_access},
162 {0x21C0103C, "Smart Array", &SA5_access},
163 {0x21C1103C, "Smart Array", &SA5_access},
164 {0x21C2103C, "Smart Array", &SA5_access},
165 {0x21C3103C, "Smart Array", &SA5_access},
166 {0x21C4103C, "Smart Array", &SA5_access},
167 {0x21C5103C, "Smart Array", &SA5_access},
168 {0x21C7103C, "Smart Array", &SA5_access},
169 {0x21C8103C, "Smart Array", &SA5_access},
170 {0x21C9103C, "Smart Array", &SA5_access},
171 {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
172 {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
173 {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
174 {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
175 {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
176 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
179 static int number_of_controllers;
181 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
182 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
183 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
184 static void start_io(struct ctlr_info *h);
186 #ifdef CONFIG_COMPAT
187 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
188 #endif
190 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
191 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
192 static struct CommandList *cmd_alloc(struct ctlr_info *h);
193 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
194 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
195 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
196 int cmd_type);
197 #define VPD_PAGE (1 << 8)
199 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
200 static void hpsa_scan_start(struct Scsi_Host *);
201 static int hpsa_scan_finished(struct Scsi_Host *sh,
202 unsigned long elapsed_time);
203 static int hpsa_change_queue_depth(struct scsi_device *sdev,
204 int qdepth, int reason);
206 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
207 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
208 static int hpsa_slave_alloc(struct scsi_device *sdev);
209 static void hpsa_slave_destroy(struct scsi_device *sdev);
211 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
212 static int check_for_unit_attention(struct ctlr_info *h,
213 struct CommandList *c);
214 static void check_ioctl_unit_attention(struct ctlr_info *h,
215 struct CommandList *c);
216 /* performant mode helper functions */
217 static void calc_bucket_map(int *bucket, int num_buckets,
218 int nsgs, int min_blocks, int *bucket_map);
219 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
220 static inline u32 next_command(struct ctlr_info *h, u8 q);
221 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
222 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
223 u64 *cfg_offset);
224 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
225 unsigned long *memory_bar);
226 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
227 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
228 int wait_for_ready);
229 static inline void finish_cmd(struct CommandList *c);
230 static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
231 #define BOARD_NOT_READY 0
232 #define BOARD_READY 1
233 static void hpsa_drain_accel_commands(struct ctlr_info *h);
234 static void hpsa_flush_cache(struct ctlr_info *h);
235 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
236 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
237 u8 *scsi3addr);
239 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
241 unsigned long *priv = shost_priv(sdev->host);
242 return (struct ctlr_info *) *priv;
245 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
247 unsigned long *priv = shost_priv(sh);
248 return (struct ctlr_info *) *priv;
251 static int check_for_unit_attention(struct ctlr_info *h,
252 struct CommandList *c)
254 if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
255 return 0;
257 switch (c->err_info->SenseInfo[12]) {
258 case STATE_CHANGED:
259 dev_warn(&h->pdev->dev, HPSA "%d: a state change "
260 "detected, command retried\n", h->ctlr);
261 break;
262 case LUN_FAILED:
263 dev_warn(&h->pdev->dev, HPSA "%d: LUN failure "
264 "detected, action required\n", h->ctlr);
265 break;
266 case REPORT_LUNS_CHANGED:
267 dev_warn(&h->pdev->dev, HPSA "%d: report LUN data "
268 "changed, action required\n", h->ctlr);
270 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
271 * target (array) devices.
273 break;
274 case POWER_OR_RESET:
275 dev_warn(&h->pdev->dev, HPSA "%d: a power on "
276 "or device reset detected\n", h->ctlr);
277 break;
278 case UNIT_ATTENTION_CLEARED:
279 dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
280 "cleared by another initiator\n", h->ctlr);
281 break;
282 default:
283 dev_warn(&h->pdev->dev, HPSA "%d: unknown "
284 "unit attention detected\n", h->ctlr);
285 break;
287 return 1;
290 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
292 if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
293 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
294 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
295 return 0;
296 dev_warn(&h->pdev->dev, HPSA "device busy");
297 return 1;
300 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
301 struct device_attribute *attr,
302 const char *buf, size_t count)
304 int status, len;
305 struct ctlr_info *h;
306 struct Scsi_Host *shost = class_to_shost(dev);
307 char tmpbuf[10];
309 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
310 return -EACCES;
311 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
312 strncpy(tmpbuf, buf, len);
313 tmpbuf[len] = '\0';
314 if (sscanf(tmpbuf, "%d", &status) != 1)
315 return -EINVAL;
316 h = shost_to_hba(shost);
317 h->acciopath_status = !!status;
318 dev_warn(&h->pdev->dev,
319 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
320 h->acciopath_status ? "enabled" : "disabled");
321 return count;
324 static ssize_t host_store_raid_offload_debug(struct device *dev,
325 struct device_attribute *attr,
326 const char *buf, size_t count)
328 int debug_level, len;
329 struct ctlr_info *h;
330 struct Scsi_Host *shost = class_to_shost(dev);
331 char tmpbuf[10];
333 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
334 return -EACCES;
335 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
336 strncpy(tmpbuf, buf, len);
337 tmpbuf[len] = '\0';
338 if (sscanf(tmpbuf, "%d", &debug_level) != 1)
339 return -EINVAL;
340 if (debug_level < 0)
341 debug_level = 0;
342 h = shost_to_hba(shost);
343 h->raid_offload_debug = debug_level;
344 dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
345 h->raid_offload_debug);
346 return count;
349 static ssize_t host_store_rescan(struct device *dev,
350 struct device_attribute *attr,
351 const char *buf, size_t count)
353 struct ctlr_info *h;
354 struct Scsi_Host *shost = class_to_shost(dev);
355 h = shost_to_hba(shost);
356 hpsa_scan_start(h->scsi_host);
357 return count;
360 static ssize_t host_show_firmware_revision(struct device *dev,
361 struct device_attribute *attr, char *buf)
363 struct ctlr_info *h;
364 struct Scsi_Host *shost = class_to_shost(dev);
365 unsigned char *fwrev;
367 h = shost_to_hba(shost);
368 if (!h->hba_inquiry_data)
369 return 0;
370 fwrev = &h->hba_inquiry_data[32];
371 return snprintf(buf, 20, "%c%c%c%c\n",
372 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
375 static ssize_t host_show_commands_outstanding(struct device *dev,
376 struct device_attribute *attr, char *buf)
378 struct Scsi_Host *shost = class_to_shost(dev);
379 struct ctlr_info *h = shost_to_hba(shost);
381 return snprintf(buf, 20, "%d\n", h->commands_outstanding);
384 static ssize_t host_show_transport_mode(struct device *dev,
385 struct device_attribute *attr, char *buf)
387 struct ctlr_info *h;
388 struct Scsi_Host *shost = class_to_shost(dev);
390 h = shost_to_hba(shost);
391 return snprintf(buf, 20, "%s\n",
392 h->transMethod & CFGTBL_Trans_Performant ?
393 "performant" : "simple");
396 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
397 struct device_attribute *attr, char *buf)
399 struct ctlr_info *h;
400 struct Scsi_Host *shost = class_to_shost(dev);
402 h = shost_to_hba(shost);
403 return snprintf(buf, 30, "HP SSD Smart Path %s\n",
404 (h->acciopath_status == 1) ? "enabled" : "disabled");
407 /* List of controllers which cannot be hard reset on kexec with reset_devices */
408 static u32 unresettable_controller[] = {
409 0x324a103C, /* Smart Array P712m */
410 0x324b103C, /* SmartArray P711m */
411 0x3223103C, /* Smart Array P800 */
412 0x3234103C, /* Smart Array P400 */
413 0x3235103C, /* Smart Array P400i */
414 0x3211103C, /* Smart Array E200i */
415 0x3212103C, /* Smart Array E200 */
416 0x3213103C, /* Smart Array E200i */
417 0x3214103C, /* Smart Array E200i */
418 0x3215103C, /* Smart Array E200i */
419 0x3237103C, /* Smart Array E500 */
420 0x323D103C, /* Smart Array P700m */
421 0x40800E11, /* Smart Array 5i */
422 0x409C0E11, /* Smart Array 6400 */
423 0x409D0E11, /* Smart Array 6400 EM */
424 0x40700E11, /* Smart Array 5300 */
425 0x40820E11, /* Smart Array 532 */
426 0x40830E11, /* Smart Array 5312 */
427 0x409A0E11, /* Smart Array 641 */
428 0x409B0E11, /* Smart Array 642 */
429 0x40910E11, /* Smart Array 6i */
432 /* List of controllers which cannot even be soft reset */
433 static u32 soft_unresettable_controller[] = {
434 0x40800E11, /* Smart Array 5i */
435 0x40700E11, /* Smart Array 5300 */
436 0x40820E11, /* Smart Array 532 */
437 0x40830E11, /* Smart Array 5312 */
438 0x409A0E11, /* Smart Array 641 */
439 0x409B0E11, /* Smart Array 642 */
440 0x40910E11, /* Smart Array 6i */
441 /* Exclude 640x boards. These are two pci devices in one slot
442 * which share a battery backed cache module. One controls the
443 * cache, the other accesses the cache through the one that controls
444 * it. If we reset the one controlling the cache, the other will
445 * likely not be happy. Just forbid resetting this conjoined mess.
446 * The 640x isn't really supported by hpsa anyway.
448 0x409C0E11, /* Smart Array 6400 */
449 0x409D0E11, /* Smart Array 6400 EM */
452 static int ctlr_is_hard_resettable(u32 board_id)
454 int i;
456 for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
457 if (unresettable_controller[i] == board_id)
458 return 0;
459 return 1;
462 static int ctlr_is_soft_resettable(u32 board_id)
464 int i;
466 for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
467 if (soft_unresettable_controller[i] == board_id)
468 return 0;
469 return 1;
472 static int ctlr_is_resettable(u32 board_id)
474 return ctlr_is_hard_resettable(board_id) ||
475 ctlr_is_soft_resettable(board_id);
478 static ssize_t host_show_resettable(struct device *dev,
479 struct device_attribute *attr, char *buf)
481 struct ctlr_info *h;
482 struct Scsi_Host *shost = class_to_shost(dev);
484 h = shost_to_hba(shost);
485 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
488 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
490 return (scsi3addr[3] & 0xC0) == 0x40;
493 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
494 "1(ADM)", "UNKNOWN"
496 #define HPSA_RAID_0 0
497 #define HPSA_RAID_4 1
498 #define HPSA_RAID_1 2 /* also used for RAID 10 */
499 #define HPSA_RAID_5 3 /* also used for RAID 50 */
500 #define HPSA_RAID_51 4
501 #define HPSA_RAID_6 5 /* also used for RAID 60 */
502 #define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */
503 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
505 static ssize_t raid_level_show(struct device *dev,
506 struct device_attribute *attr, char *buf)
508 ssize_t l = 0;
509 unsigned char rlevel;
510 struct ctlr_info *h;
511 struct scsi_device *sdev;
512 struct hpsa_scsi_dev_t *hdev;
513 unsigned long flags;
515 sdev = to_scsi_device(dev);
516 h = sdev_to_hba(sdev);
517 spin_lock_irqsave(&h->lock, flags);
518 hdev = sdev->hostdata;
519 if (!hdev) {
520 spin_unlock_irqrestore(&h->lock, flags);
521 return -ENODEV;
524 /* Is this even a logical drive? */
525 if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
526 spin_unlock_irqrestore(&h->lock, flags);
527 l = snprintf(buf, PAGE_SIZE, "N/A\n");
528 return l;
531 rlevel = hdev->raid_level;
532 spin_unlock_irqrestore(&h->lock, flags);
533 if (rlevel > RAID_UNKNOWN)
534 rlevel = RAID_UNKNOWN;
535 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
536 return l;
539 static ssize_t lunid_show(struct device *dev,
540 struct device_attribute *attr, char *buf)
542 struct ctlr_info *h;
543 struct scsi_device *sdev;
544 struct hpsa_scsi_dev_t *hdev;
545 unsigned long flags;
546 unsigned char lunid[8];
548 sdev = to_scsi_device(dev);
549 h = sdev_to_hba(sdev);
550 spin_lock_irqsave(&h->lock, flags);
551 hdev = sdev->hostdata;
552 if (!hdev) {
553 spin_unlock_irqrestore(&h->lock, flags);
554 return -ENODEV;
556 memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
557 spin_unlock_irqrestore(&h->lock, flags);
558 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
559 lunid[0], lunid[1], lunid[2], lunid[3],
560 lunid[4], lunid[5], lunid[6], lunid[7]);
563 static ssize_t unique_id_show(struct device *dev,
564 struct device_attribute *attr, char *buf)
566 struct ctlr_info *h;
567 struct scsi_device *sdev;
568 struct hpsa_scsi_dev_t *hdev;
569 unsigned long flags;
570 unsigned char sn[16];
572 sdev = to_scsi_device(dev);
573 h = sdev_to_hba(sdev);
574 spin_lock_irqsave(&h->lock, flags);
575 hdev = sdev->hostdata;
576 if (!hdev) {
577 spin_unlock_irqrestore(&h->lock, flags);
578 return -ENODEV;
580 memcpy(sn, hdev->device_id, sizeof(sn));
581 spin_unlock_irqrestore(&h->lock, flags);
582 return snprintf(buf, 16 * 2 + 2,
583 "%02X%02X%02X%02X%02X%02X%02X%02X"
584 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
585 sn[0], sn[1], sn[2], sn[3],
586 sn[4], sn[5], sn[6], sn[7],
587 sn[8], sn[9], sn[10], sn[11],
588 sn[12], sn[13], sn[14], sn[15]);
591 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
592 struct device_attribute *attr, char *buf)
594 struct ctlr_info *h;
595 struct scsi_device *sdev;
596 struct hpsa_scsi_dev_t *hdev;
597 unsigned long flags;
598 int offload_enabled;
600 sdev = to_scsi_device(dev);
601 h = sdev_to_hba(sdev);
602 spin_lock_irqsave(&h->lock, flags);
603 hdev = sdev->hostdata;
604 if (!hdev) {
605 spin_unlock_irqrestore(&h->lock, flags);
606 return -ENODEV;
608 offload_enabled = hdev->offload_enabled;
609 spin_unlock_irqrestore(&h->lock, flags);
610 return snprintf(buf, 20, "%d\n", offload_enabled);
613 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
614 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
615 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
616 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
617 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
618 host_show_hp_ssd_smart_path_enabled, NULL);
619 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
620 host_show_hp_ssd_smart_path_status,
621 host_store_hp_ssd_smart_path_status);
622 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
623 host_store_raid_offload_debug);
624 static DEVICE_ATTR(firmware_revision, S_IRUGO,
625 host_show_firmware_revision, NULL);
626 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
627 host_show_commands_outstanding, NULL);
628 static DEVICE_ATTR(transport_mode, S_IRUGO,
629 host_show_transport_mode, NULL);
630 static DEVICE_ATTR(resettable, S_IRUGO,
631 host_show_resettable, NULL);
633 static struct device_attribute *hpsa_sdev_attrs[] = {
634 &dev_attr_raid_level,
635 &dev_attr_lunid,
636 &dev_attr_unique_id,
637 &dev_attr_hp_ssd_smart_path_enabled,
638 NULL,
641 static struct device_attribute *hpsa_shost_attrs[] = {
642 &dev_attr_rescan,
643 &dev_attr_firmware_revision,
644 &dev_attr_commands_outstanding,
645 &dev_attr_transport_mode,
646 &dev_attr_resettable,
647 &dev_attr_hp_ssd_smart_path_status,
648 &dev_attr_raid_offload_debug,
649 NULL,
652 static struct scsi_host_template hpsa_driver_template = {
653 .module = THIS_MODULE,
654 .name = HPSA,
655 .proc_name = HPSA,
656 .queuecommand = hpsa_scsi_queue_command,
657 .scan_start = hpsa_scan_start,
658 .scan_finished = hpsa_scan_finished,
659 .change_queue_depth = hpsa_change_queue_depth,
660 .this_id = -1,
661 .use_clustering = ENABLE_CLUSTERING,
662 .eh_abort_handler = hpsa_eh_abort_handler,
663 .eh_device_reset_handler = hpsa_eh_device_reset_handler,
664 .ioctl = hpsa_ioctl,
665 .slave_alloc = hpsa_slave_alloc,
666 .slave_destroy = hpsa_slave_destroy,
667 #ifdef CONFIG_COMPAT
668 .compat_ioctl = hpsa_compat_ioctl,
669 #endif
670 .sdev_attrs = hpsa_sdev_attrs,
671 .shost_attrs = hpsa_shost_attrs,
672 .max_sectors = 8192,
673 .no_write_same = 1,
677 /* Enqueuing and dequeuing functions for cmdlists. */
678 static inline void addQ(struct list_head *list, struct CommandList *c)
680 list_add_tail(&c->list, list);
683 static inline u32 next_command(struct ctlr_info *h, u8 q)
685 u32 a;
686 struct reply_pool *rq = &h->reply_queue[q];
687 unsigned long flags;
689 if (h->transMethod & CFGTBL_Trans_io_accel1)
690 return h->access.command_completed(h, q);
692 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
693 return h->access.command_completed(h, q);
695 if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
696 a = rq->head[rq->current_entry];
697 rq->current_entry++;
698 spin_lock_irqsave(&h->lock, flags);
699 h->commands_outstanding--;
700 spin_unlock_irqrestore(&h->lock, flags);
701 } else {
702 a = FIFO_EMPTY;
704 /* Check for wraparound */
705 if (rq->current_entry == h->max_commands) {
706 rq->current_entry = 0;
707 rq->wraparound ^= 1;
709 return a;
713 * There are some special bits in the bus address of the
714 * command that we have to set for the controller to know
715 * how to process the command:
717 * Normal performant mode:
718 * bit 0: 1 means performant mode, 0 means simple mode.
719 * bits 1-3 = block fetch table entry
720 * bits 4-6 = command type (== 0)
722 * ioaccel1 mode:
723 * bit 0 = "performant mode" bit.
724 * bits 1-3 = block fetch table entry
725 * bits 4-6 = command type (== 110)
726 * (command type is needed because ioaccel1 mode
727 * commands are submitted through the same register as normal
728 * mode commands, so this is how the controller knows whether
729 * the command is normal mode or ioaccel1 mode.)
731 * ioaccel2 mode:
732 * bit 0 = "performant mode" bit.
733 * bits 1-4 = block fetch table entry (note extra bit)
734 * bits 4-6 = not needed, because ioaccel2 mode has
735 * a separate special register for submitting commands.
738 /* set_performant_mode: Modify the tag for cciss performant
739 * set bit 0 for pull model, bits 3-1 for block fetch
740 * register number
742 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
744 if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
745 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
746 if (likely(h->msix_vector > 0))
747 c->Header.ReplyQueue =
748 raw_smp_processor_id() % h->nreply_queues;
752 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
753 struct CommandList *c)
755 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
757 /* Tell the controller to post the reply to the queue for this
758 * processor. This seems to give the best I/O throughput.
760 cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
761 /* Set the bits in the address sent down to include:
762 * - performant mode bit (bit 0)
763 * - pull count (bits 1-3)
764 * - command type (bits 4-6)
766 c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
767 IOACCEL1_BUSADDR_CMDTYPE;
770 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
771 struct CommandList *c)
773 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
775 /* Tell the controller to post the reply to the queue for this
776 * processor. This seems to give the best I/O throughput.
778 cp->reply_queue = smp_processor_id() % h->nreply_queues;
779 /* Set the bits in the address sent down to include:
780 * - performant mode bit not used in ioaccel mode 2
781 * - pull count (bits 0-3)
782 * - command type isn't needed for ioaccel2
784 c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
787 static int is_firmware_flash_cmd(u8 *cdb)
789 return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
793 * During firmware flash, the heartbeat register may not update as frequently
794 * as it should. So we dial down lockup detection during firmware flash. and
795 * dial it back up when firmware flash completes.
797 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
798 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
799 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
800 struct CommandList *c)
802 if (!is_firmware_flash_cmd(c->Request.CDB))
803 return;
804 atomic_inc(&h->firmware_flash_in_progress);
805 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
808 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
809 struct CommandList *c)
811 if (is_firmware_flash_cmd(c->Request.CDB) &&
812 atomic_dec_and_test(&h->firmware_flash_in_progress))
813 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
816 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
817 struct CommandList *c)
819 unsigned long flags;
821 switch (c->cmd_type) {
822 case CMD_IOACCEL1:
823 set_ioaccel1_performant_mode(h, c);
824 break;
825 case CMD_IOACCEL2:
826 set_ioaccel2_performant_mode(h, c);
827 break;
828 default:
829 set_performant_mode(h, c);
831 dial_down_lockup_detection_during_fw_flash(h, c);
832 spin_lock_irqsave(&h->lock, flags);
833 addQ(&h->reqQ, c);
834 h->Qdepth++;
835 spin_unlock_irqrestore(&h->lock, flags);
836 start_io(h);
839 static inline void removeQ(struct CommandList *c)
841 if (WARN_ON(list_empty(&c->list)))
842 return;
843 list_del_init(&c->list);
846 static inline int is_hba_lunid(unsigned char scsi3addr[])
848 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
851 static inline int is_scsi_rev_5(struct ctlr_info *h)
853 if (!h->hba_inquiry_data)
854 return 0;
855 if ((h->hba_inquiry_data[2] & 0x07) == 5)
856 return 1;
857 return 0;
860 static int hpsa_find_target_lun(struct ctlr_info *h,
861 unsigned char scsi3addr[], int bus, int *target, int *lun)
863 /* finds an unused bus, target, lun for a new physical device
864 * assumes h->devlock is held
866 int i, found = 0;
867 DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
869 bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
871 for (i = 0; i < h->ndevices; i++) {
872 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
873 __set_bit(h->dev[i]->target, lun_taken);
876 i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
877 if (i < HPSA_MAX_DEVICES) {
878 /* *bus = 1; */
879 *target = i;
880 *lun = 0;
881 found = 1;
883 return !found;
886 /* Add an entry into h->dev[] array. */
887 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
888 struct hpsa_scsi_dev_t *device,
889 struct hpsa_scsi_dev_t *added[], int *nadded)
891 /* assumes h->devlock is held */
892 int n = h->ndevices;
893 int i;
894 unsigned char addr1[8], addr2[8];
895 struct hpsa_scsi_dev_t *sd;
897 if (n >= HPSA_MAX_DEVICES) {
898 dev_err(&h->pdev->dev, "too many devices, some will be "
899 "inaccessible.\n");
900 return -1;
903 /* physical devices do not have lun or target assigned until now. */
904 if (device->lun != -1)
905 /* Logical device, lun is already assigned. */
906 goto lun_assigned;
908 /* If this device a non-zero lun of a multi-lun device
909 * byte 4 of the 8-byte LUN addr will contain the logical
910 * unit no, zero otherise.
912 if (device->scsi3addr[4] == 0) {
913 /* This is not a non-zero lun of a multi-lun device */
914 if (hpsa_find_target_lun(h, device->scsi3addr,
915 device->bus, &device->target, &device->lun) != 0)
916 return -1;
917 goto lun_assigned;
920 /* This is a non-zero lun of a multi-lun device.
921 * Search through our list and find the device which
922 * has the same 8 byte LUN address, excepting byte 4.
923 * Assign the same bus and target for this new LUN.
924 * Use the logical unit number from the firmware.
926 memcpy(addr1, device->scsi3addr, 8);
927 addr1[4] = 0;
928 for (i = 0; i < n; i++) {
929 sd = h->dev[i];
930 memcpy(addr2, sd->scsi3addr, 8);
931 addr2[4] = 0;
932 /* differ only in byte 4? */
933 if (memcmp(addr1, addr2, 8) == 0) {
934 device->bus = sd->bus;
935 device->target = sd->target;
936 device->lun = device->scsi3addr[4];
937 break;
940 if (device->lun == -1) {
941 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
942 " suspect firmware bug or unsupported hardware "
943 "configuration.\n");
944 return -1;
947 lun_assigned:
949 h->dev[n] = device;
950 h->ndevices++;
951 added[*nadded] = device;
952 (*nadded)++;
954 /* initially, (before registering with scsi layer) we don't
955 * know our hostno and we don't want to print anything first
956 * time anyway (the scsi layer's inquiries will show that info)
958 /* if (hostno != -1) */
959 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
960 scsi_device_type(device->devtype), hostno,
961 device->bus, device->target, device->lun);
962 return 0;
965 /* Update an entry in h->dev[] array. */
966 static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
967 int entry, struct hpsa_scsi_dev_t *new_entry)
969 /* assumes h->devlock is held */
970 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
972 /* Raid level changed. */
973 h->dev[entry]->raid_level = new_entry->raid_level;
975 /* Raid offload parameters changed. */
976 h->dev[entry]->offload_config = new_entry->offload_config;
977 h->dev[entry]->offload_enabled = new_entry->offload_enabled;
978 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
979 h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
980 h->dev[entry]->raid_map = new_entry->raid_map;
982 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d updated.\n",
983 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
984 new_entry->target, new_entry->lun);
987 /* Replace an entry from h->dev[] array. */
988 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
989 int entry, struct hpsa_scsi_dev_t *new_entry,
990 struct hpsa_scsi_dev_t *added[], int *nadded,
991 struct hpsa_scsi_dev_t *removed[], int *nremoved)
993 /* assumes h->devlock is held */
994 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
995 removed[*nremoved] = h->dev[entry];
996 (*nremoved)++;
999 * New physical devices won't have target/lun assigned yet
1000 * so we need to preserve the values in the slot we are replacing.
1002 if (new_entry->target == -1) {
1003 new_entry->target = h->dev[entry]->target;
1004 new_entry->lun = h->dev[entry]->lun;
1007 h->dev[entry] = new_entry;
1008 added[*nadded] = new_entry;
1009 (*nadded)++;
1010 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
1011 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
1012 new_entry->target, new_entry->lun);
1015 /* Remove an entry from h->dev[] array. */
1016 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
1017 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1019 /* assumes h->devlock is held */
1020 int i;
1021 struct hpsa_scsi_dev_t *sd;
1023 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1025 sd = h->dev[entry];
1026 removed[*nremoved] = h->dev[entry];
1027 (*nremoved)++;
1029 for (i = entry; i < h->ndevices-1; i++)
1030 h->dev[i] = h->dev[i+1];
1031 h->ndevices--;
1032 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
1033 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
1034 sd->lun);
1037 #define SCSI3ADDR_EQ(a, b) ( \
1038 (a)[7] == (b)[7] && \
1039 (a)[6] == (b)[6] && \
1040 (a)[5] == (b)[5] && \
1041 (a)[4] == (b)[4] && \
1042 (a)[3] == (b)[3] && \
1043 (a)[2] == (b)[2] && \
1044 (a)[1] == (b)[1] && \
1045 (a)[0] == (b)[0])
1047 static void fixup_botched_add(struct ctlr_info *h,
1048 struct hpsa_scsi_dev_t *added)
1050 /* called when scsi_add_device fails in order to re-adjust
1051 * h->dev[] to match the mid layer's view.
1053 unsigned long flags;
1054 int i, j;
1056 spin_lock_irqsave(&h->lock, flags);
1057 for (i = 0; i < h->ndevices; i++) {
1058 if (h->dev[i] == added) {
1059 for (j = i; j < h->ndevices-1; j++)
1060 h->dev[j] = h->dev[j+1];
1061 h->ndevices--;
1062 break;
1065 spin_unlock_irqrestore(&h->lock, flags);
1066 kfree(added);
1069 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1070 struct hpsa_scsi_dev_t *dev2)
1072 /* we compare everything except lun and target as these
1073 * are not yet assigned. Compare parts likely
1074 * to differ first
1076 if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1077 sizeof(dev1->scsi3addr)) != 0)
1078 return 0;
1079 if (memcmp(dev1->device_id, dev2->device_id,
1080 sizeof(dev1->device_id)) != 0)
1081 return 0;
1082 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1083 return 0;
1084 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1085 return 0;
1086 if (dev1->devtype != dev2->devtype)
1087 return 0;
1088 if (dev1->bus != dev2->bus)
1089 return 0;
1090 return 1;
1093 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1094 struct hpsa_scsi_dev_t *dev2)
1096 /* Device attributes that can change, but don't mean
1097 * that the device is a different device, nor that the OS
1098 * needs to be told anything about the change.
1100 if (dev1->raid_level != dev2->raid_level)
1101 return 1;
1102 if (dev1->offload_config != dev2->offload_config)
1103 return 1;
1104 if (dev1->offload_enabled != dev2->offload_enabled)
1105 return 1;
1106 return 0;
1109 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
1110 * and return needle location in *index. If scsi3addr matches, but not
1111 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1112 * location in *index.
1113 * In the case of a minor device attribute change, such as RAID level, just
1114 * return DEVICE_UPDATED, along with the updated device's location in index.
1115 * If needle not found, return DEVICE_NOT_FOUND.
1117 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1118 struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1119 int *index)
1121 int i;
1122 #define DEVICE_NOT_FOUND 0
1123 #define DEVICE_CHANGED 1
1124 #define DEVICE_SAME 2
1125 #define DEVICE_UPDATED 3
1126 for (i = 0; i < haystack_size; i++) {
1127 if (haystack[i] == NULL) /* previously removed. */
1128 continue;
1129 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1130 *index = i;
1131 if (device_is_the_same(needle, haystack[i])) {
1132 if (device_updated(needle, haystack[i]))
1133 return DEVICE_UPDATED;
1134 return DEVICE_SAME;
1135 } else {
1136 /* Keep offline devices offline */
1137 if (needle->volume_offline)
1138 return DEVICE_NOT_FOUND;
1139 return DEVICE_CHANGED;
1143 *index = -1;
1144 return DEVICE_NOT_FOUND;
1147 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1148 unsigned char scsi3addr[])
1150 struct offline_device_entry *device;
1151 unsigned long flags;
1153 /* Check to see if device is already on the list */
1154 spin_lock_irqsave(&h->offline_device_lock, flags);
1155 list_for_each_entry(device, &h->offline_device_list, offline_list) {
1156 if (memcmp(device->scsi3addr, scsi3addr,
1157 sizeof(device->scsi3addr)) == 0) {
1158 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1159 return;
1162 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1164 /* Device is not on the list, add it. */
1165 device = kmalloc(sizeof(*device), GFP_KERNEL);
1166 if (!device) {
1167 dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1168 return;
1170 memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1171 spin_lock_irqsave(&h->offline_device_lock, flags);
1172 list_add_tail(&device->offline_list, &h->offline_device_list);
1173 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1176 /* Print a message explaining various offline volume states */
1177 static void hpsa_show_volume_status(struct ctlr_info *h,
1178 struct hpsa_scsi_dev_t *sd)
1180 if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1181 dev_info(&h->pdev->dev,
1182 "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1183 h->scsi_host->host_no,
1184 sd->bus, sd->target, sd->lun);
1185 switch (sd->volume_offline) {
1186 case HPSA_LV_OK:
1187 break;
1188 case HPSA_LV_UNDERGOING_ERASE:
1189 dev_info(&h->pdev->dev,
1190 "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1191 h->scsi_host->host_no,
1192 sd->bus, sd->target, sd->lun);
1193 break;
1194 case HPSA_LV_UNDERGOING_RPI:
1195 dev_info(&h->pdev->dev,
1196 "C%d:B%d:T%d:L%d Volume is undergoing rapid parity initialization process.\n",
1197 h->scsi_host->host_no,
1198 sd->bus, sd->target, sd->lun);
1199 break;
1200 case HPSA_LV_PENDING_RPI:
1201 dev_info(&h->pdev->dev,
1202 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1203 h->scsi_host->host_no,
1204 sd->bus, sd->target, sd->lun);
1205 break;
1206 case HPSA_LV_ENCRYPTED_NO_KEY:
1207 dev_info(&h->pdev->dev,
1208 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1209 h->scsi_host->host_no,
1210 sd->bus, sd->target, sd->lun);
1211 break;
1212 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1213 dev_info(&h->pdev->dev,
1214 "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1215 h->scsi_host->host_no,
1216 sd->bus, sd->target, sd->lun);
1217 break;
1218 case HPSA_LV_UNDERGOING_ENCRYPTION:
1219 dev_info(&h->pdev->dev,
1220 "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1221 h->scsi_host->host_no,
1222 sd->bus, sd->target, sd->lun);
1223 break;
1224 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1225 dev_info(&h->pdev->dev,
1226 "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1227 h->scsi_host->host_no,
1228 sd->bus, sd->target, sd->lun);
1229 break;
1230 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1231 dev_info(&h->pdev->dev,
1232 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1233 h->scsi_host->host_no,
1234 sd->bus, sd->target, sd->lun);
1235 break;
1236 case HPSA_LV_PENDING_ENCRYPTION:
1237 dev_info(&h->pdev->dev,
1238 "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1239 h->scsi_host->host_no,
1240 sd->bus, sd->target, sd->lun);
1241 break;
1242 case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1243 dev_info(&h->pdev->dev,
1244 "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1245 h->scsi_host->host_no,
1246 sd->bus, sd->target, sd->lun);
1247 break;
1251 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
1252 struct hpsa_scsi_dev_t *sd[], int nsds)
1254 /* sd contains scsi3 addresses and devtypes, and inquiry
1255 * data. This function takes what's in sd to be the current
1256 * reality and updates h->dev[] to reflect that reality.
1258 int i, entry, device_change, changes = 0;
1259 struct hpsa_scsi_dev_t *csd;
1260 unsigned long flags;
1261 struct hpsa_scsi_dev_t **added, **removed;
1262 int nadded, nremoved;
1263 struct Scsi_Host *sh = NULL;
1265 added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1266 removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1268 if (!added || !removed) {
1269 dev_warn(&h->pdev->dev, "out of memory in "
1270 "adjust_hpsa_scsi_table\n");
1271 goto free_and_out;
1274 spin_lock_irqsave(&h->devlock, flags);
1276 /* find any devices in h->dev[] that are not in
1277 * sd[] and remove them from h->dev[], and for any
1278 * devices which have changed, remove the old device
1279 * info and add the new device info.
1280 * If minor device attributes change, just update
1281 * the existing device structure.
1283 i = 0;
1284 nremoved = 0;
1285 nadded = 0;
1286 while (i < h->ndevices) {
1287 csd = h->dev[i];
1288 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1289 if (device_change == DEVICE_NOT_FOUND) {
1290 changes++;
1291 hpsa_scsi_remove_entry(h, hostno, i,
1292 removed, &nremoved);
1293 continue; /* remove ^^^, hence i not incremented */
1294 } else if (device_change == DEVICE_CHANGED) {
1295 changes++;
1296 hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
1297 added, &nadded, removed, &nremoved);
1298 /* Set it to NULL to prevent it from being freed
1299 * at the bottom of hpsa_update_scsi_devices()
1301 sd[entry] = NULL;
1302 } else if (device_change == DEVICE_UPDATED) {
1303 hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
1305 i++;
1308 /* Now, make sure every device listed in sd[] is also
1309 * listed in h->dev[], adding them if they aren't found
1312 for (i = 0; i < nsds; i++) {
1313 if (!sd[i]) /* if already added above. */
1314 continue;
1316 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1317 * as the SCSI mid-layer does not handle such devices well.
1318 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1319 * at 160Hz, and prevents the system from coming up.
1321 if (sd[i]->volume_offline) {
1322 hpsa_show_volume_status(h, sd[i]);
1323 dev_info(&h->pdev->dev, "c%db%dt%dl%d: temporarily offline\n",
1324 h->scsi_host->host_no,
1325 sd[i]->bus, sd[i]->target, sd[i]->lun);
1326 continue;
1329 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1330 h->ndevices, &entry);
1331 if (device_change == DEVICE_NOT_FOUND) {
1332 changes++;
1333 if (hpsa_scsi_add_entry(h, hostno, sd[i],
1334 added, &nadded) != 0)
1335 break;
1336 sd[i] = NULL; /* prevent from being freed later. */
1337 } else if (device_change == DEVICE_CHANGED) {
1338 /* should never happen... */
1339 changes++;
1340 dev_warn(&h->pdev->dev,
1341 "device unexpectedly changed.\n");
1342 /* but if it does happen, we just ignore that device */
1345 spin_unlock_irqrestore(&h->devlock, flags);
1347 /* Monitor devices which are in one of several NOT READY states to be
1348 * brought online later. This must be done without holding h->devlock,
1349 * so don't touch h->dev[]
1351 for (i = 0; i < nsds; i++) {
1352 if (!sd[i]) /* if already added above. */
1353 continue;
1354 if (sd[i]->volume_offline)
1355 hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1358 /* Don't notify scsi mid layer of any changes the first time through
1359 * (or if there are no changes) scsi_scan_host will do it later the
1360 * first time through.
1362 if (hostno == -1 || !changes)
1363 goto free_and_out;
1365 sh = h->scsi_host;
1366 /* Notify scsi mid layer of any removed devices */
1367 for (i = 0; i < nremoved; i++) {
1368 struct scsi_device *sdev =
1369 scsi_device_lookup(sh, removed[i]->bus,
1370 removed[i]->target, removed[i]->lun);
1371 if (sdev != NULL) {
1372 scsi_remove_device(sdev);
1373 scsi_device_put(sdev);
1374 } else {
1375 /* We don't expect to get here.
1376 * future cmds to this device will get selection
1377 * timeout as if the device was gone.
1379 dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
1380 " for removal.", hostno, removed[i]->bus,
1381 removed[i]->target, removed[i]->lun);
1383 kfree(removed[i]);
1384 removed[i] = NULL;
1387 /* Notify scsi mid layer of any added devices */
1388 for (i = 0; i < nadded; i++) {
1389 if (scsi_add_device(sh, added[i]->bus,
1390 added[i]->target, added[i]->lun) == 0)
1391 continue;
1392 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
1393 "device not added.\n", hostno, added[i]->bus,
1394 added[i]->target, added[i]->lun);
1395 /* now we have to remove it from h->dev,
1396 * since it didn't get added to scsi mid layer
1398 fixup_botched_add(h, added[i]);
1401 free_and_out:
1402 kfree(added);
1403 kfree(removed);
1407 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1408 * Assume's h->devlock is held.
1410 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1411 int bus, int target, int lun)
1413 int i;
1414 struct hpsa_scsi_dev_t *sd;
1416 for (i = 0; i < h->ndevices; i++) {
1417 sd = h->dev[i];
1418 if (sd->bus == bus && sd->target == target && sd->lun == lun)
1419 return sd;
1421 return NULL;
1424 /* link sdev->hostdata to our per-device structure. */
1425 static int hpsa_slave_alloc(struct scsi_device *sdev)
1427 struct hpsa_scsi_dev_t *sd;
1428 unsigned long flags;
1429 struct ctlr_info *h;
1431 h = sdev_to_hba(sdev);
1432 spin_lock_irqsave(&h->devlock, flags);
1433 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1434 sdev_id(sdev), sdev->lun);
1435 if (sd != NULL)
1436 sdev->hostdata = sd;
1437 spin_unlock_irqrestore(&h->devlock, flags);
1438 return 0;
1441 static void hpsa_slave_destroy(struct scsi_device *sdev)
1443 /* nothing to do. */
1446 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1448 int i;
1450 if (!h->cmd_sg_list)
1451 return;
1452 for (i = 0; i < h->nr_cmds; i++) {
1453 kfree(h->cmd_sg_list[i]);
1454 h->cmd_sg_list[i] = NULL;
1456 kfree(h->cmd_sg_list);
1457 h->cmd_sg_list = NULL;
1460 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
1462 int i;
1464 if (h->chainsize <= 0)
1465 return 0;
1467 h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1468 GFP_KERNEL);
1469 if (!h->cmd_sg_list)
1470 return -ENOMEM;
1471 for (i = 0; i < h->nr_cmds; i++) {
1472 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1473 h->chainsize, GFP_KERNEL);
1474 if (!h->cmd_sg_list[i])
1475 goto clean;
1477 return 0;
1479 clean:
1480 hpsa_free_sg_chain_blocks(h);
1481 return -ENOMEM;
1484 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
1485 struct CommandList *c)
1487 struct SGDescriptor *chain_sg, *chain_block;
1488 u64 temp64;
1490 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1491 chain_block = h->cmd_sg_list[c->cmdindex];
1492 chain_sg->Ext = HPSA_SG_CHAIN;
1493 chain_sg->Len = sizeof(*chain_sg) *
1494 (c->Header.SGTotal - h->max_cmd_sg_entries);
1495 temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
1496 PCI_DMA_TODEVICE);
1497 if (dma_mapping_error(&h->pdev->dev, temp64)) {
1498 /* prevent subsequent unmapping */
1499 chain_sg->Addr.lower = 0;
1500 chain_sg->Addr.upper = 0;
1501 return -1;
1503 chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
1504 chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
1505 return 0;
1508 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1509 struct CommandList *c)
1511 struct SGDescriptor *chain_sg;
1512 union u64bit temp64;
1514 if (c->Header.SGTotal <= h->max_cmd_sg_entries)
1515 return;
1517 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1518 temp64.val32.lower = chain_sg->Addr.lower;
1519 temp64.val32.upper = chain_sg->Addr.upper;
1520 pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
1524 /* Decode the various types of errors on ioaccel2 path.
1525 * Return 1 for any error that should generate a RAID path retry.
1526 * Return 0 for errors that don't require a RAID path retry.
1528 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
1529 struct CommandList *c,
1530 struct scsi_cmnd *cmd,
1531 struct io_accel2_cmd *c2)
1533 int data_len;
1534 int retry = 0;
1536 switch (c2->error_data.serv_response) {
1537 case IOACCEL2_SERV_RESPONSE_COMPLETE:
1538 switch (c2->error_data.status) {
1539 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
1540 break;
1541 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
1542 dev_warn(&h->pdev->dev,
1543 "%s: task complete with check condition.\n",
1544 "HP SSD Smart Path");
1545 if (c2->error_data.data_present !=
1546 IOACCEL2_SENSE_DATA_PRESENT)
1547 break;
1548 /* copy the sense data */
1549 data_len = c2->error_data.sense_data_len;
1550 if (data_len > SCSI_SENSE_BUFFERSIZE)
1551 data_len = SCSI_SENSE_BUFFERSIZE;
1552 if (data_len > sizeof(c2->error_data.sense_data_buff))
1553 data_len =
1554 sizeof(c2->error_data.sense_data_buff);
1555 memcpy(cmd->sense_buffer,
1556 c2->error_data.sense_data_buff, data_len);
1557 cmd->result |= SAM_STAT_CHECK_CONDITION;
1558 retry = 1;
1559 break;
1560 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
1561 dev_warn(&h->pdev->dev,
1562 "%s: task complete with BUSY status.\n",
1563 "HP SSD Smart Path");
1564 retry = 1;
1565 break;
1566 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
1567 dev_warn(&h->pdev->dev,
1568 "%s: task complete with reservation conflict.\n",
1569 "HP SSD Smart Path");
1570 retry = 1;
1571 break;
1572 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
1573 /* Make scsi midlayer do unlimited retries */
1574 cmd->result = DID_IMM_RETRY << 16;
1575 break;
1576 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
1577 dev_warn(&h->pdev->dev,
1578 "%s: task complete with aborted status.\n",
1579 "HP SSD Smart Path");
1580 retry = 1;
1581 break;
1582 default:
1583 dev_warn(&h->pdev->dev,
1584 "%s: task complete with unrecognized status: 0x%02x\n",
1585 "HP SSD Smart Path", c2->error_data.status);
1586 retry = 1;
1587 break;
1589 break;
1590 case IOACCEL2_SERV_RESPONSE_FAILURE:
1591 /* don't expect to get here. */
1592 dev_warn(&h->pdev->dev,
1593 "unexpected delivery or target failure, status = 0x%02x\n",
1594 c2->error_data.status);
1595 retry = 1;
1596 break;
1597 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
1598 break;
1599 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
1600 break;
1601 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
1602 dev_warn(&h->pdev->dev, "task management function rejected.\n");
1603 retry = 1;
1604 break;
1605 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
1606 dev_warn(&h->pdev->dev, "task management function invalid LUN\n");
1607 break;
1608 default:
1609 dev_warn(&h->pdev->dev,
1610 "%s: Unrecognized server response: 0x%02x\n",
1611 "HP SSD Smart Path",
1612 c2->error_data.serv_response);
1613 retry = 1;
1614 break;
1617 return retry; /* retry on raid path? */
1620 static void process_ioaccel2_completion(struct ctlr_info *h,
1621 struct CommandList *c, struct scsi_cmnd *cmd,
1622 struct hpsa_scsi_dev_t *dev)
1624 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
1625 int raid_retry = 0;
1627 /* check for good status */
1628 if (likely(c2->error_data.serv_response == 0 &&
1629 c2->error_data.status == 0)) {
1630 cmd_free(h, c);
1631 cmd->scsi_done(cmd);
1632 return;
1635 /* Any RAID offload error results in retry which will use
1636 * the normal I/O path so the controller can handle whatever's
1637 * wrong.
1639 if (is_logical_dev_addr_mode(dev->scsi3addr) &&
1640 c2->error_data.serv_response ==
1641 IOACCEL2_SERV_RESPONSE_FAILURE) {
1642 if (c2->error_data.status ==
1643 IOACCEL2_STATUS_SR_IOACCEL_DISABLED)
1644 dev_warn(&h->pdev->dev,
1645 "%s: Path is unavailable, retrying on standard path.\n",
1646 "HP SSD Smart Path");
1647 else
1648 dev_warn(&h->pdev->dev,
1649 "%s: Error 0x%02x, retrying on standard path.\n",
1650 "HP SSD Smart Path", c2->error_data.status);
1652 dev->offload_enabled = 0;
1653 h->drv_req_rescan = 1; /* schedule controller for a rescan */
1654 cmd->result = DID_SOFT_ERROR << 16;
1655 cmd_free(h, c);
1656 cmd->scsi_done(cmd);
1657 return;
1659 raid_retry = handle_ioaccel_mode2_error(h, c, cmd, c2);
1660 /* If error found, disable Smart Path, schedule a rescan,
1661 * and force a retry on the standard path.
1663 if (raid_retry) {
1664 dev_warn(&h->pdev->dev, "%s: Retrying on standard path.\n",
1665 "HP SSD Smart Path");
1666 dev->offload_enabled = 0; /* Disable Smart Path */
1667 h->drv_req_rescan = 1; /* schedule controller rescan */
1668 cmd->result = DID_SOFT_ERROR << 16;
1670 cmd_free(h, c);
1671 cmd->scsi_done(cmd);
1674 static void complete_scsi_command(struct CommandList *cp)
1676 struct scsi_cmnd *cmd;
1677 struct ctlr_info *h;
1678 struct ErrorInfo *ei;
1679 struct hpsa_scsi_dev_t *dev;
1681 unsigned char sense_key;
1682 unsigned char asc; /* additional sense code */
1683 unsigned char ascq; /* additional sense code qualifier */
1684 unsigned long sense_data_size;
1686 ei = cp->err_info;
1687 cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1688 h = cp->h;
1689 dev = cmd->device->hostdata;
1691 scsi_dma_unmap(cmd); /* undo the DMA mappings */
1692 if ((cp->cmd_type == CMD_SCSI) &&
1693 (cp->Header.SGTotal > h->max_cmd_sg_entries))
1694 hpsa_unmap_sg_chain_block(h, cp);
1696 cmd->result = (DID_OK << 16); /* host byte */
1697 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
1699 if (cp->cmd_type == CMD_IOACCEL2)
1700 return process_ioaccel2_completion(h, cp, cmd, dev);
1702 cmd->result |= ei->ScsiStatus;
1704 /* copy the sense data whether we need to or not. */
1705 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1706 sense_data_size = SCSI_SENSE_BUFFERSIZE;
1707 else
1708 sense_data_size = sizeof(ei->SenseInfo);
1709 if (ei->SenseLen < sense_data_size)
1710 sense_data_size = ei->SenseLen;
1712 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1713 scsi_set_resid(cmd, ei->ResidualCnt);
1715 if (ei->CommandStatus == 0) {
1716 cmd_free(h, cp);
1717 cmd->scsi_done(cmd);
1718 return;
1721 /* For I/O accelerator commands, copy over some fields to the normal
1722 * CISS header used below for error handling.
1724 if (cp->cmd_type == CMD_IOACCEL1) {
1725 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
1726 cp->Header.SGList = cp->Header.SGTotal = scsi_sg_count(cmd);
1727 cp->Request.CDBLen = c->io_flags & IOACCEL1_IOFLAGS_CDBLEN_MASK;
1728 cp->Header.Tag.lower = c->Tag.lower;
1729 cp->Header.Tag.upper = c->Tag.upper;
1730 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
1731 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
1733 /* Any RAID offload error results in retry which will use
1734 * the normal I/O path so the controller can handle whatever's
1735 * wrong.
1737 if (is_logical_dev_addr_mode(dev->scsi3addr)) {
1738 if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
1739 dev->offload_enabled = 0;
1740 cmd->result = DID_SOFT_ERROR << 16;
1741 cmd_free(h, cp);
1742 cmd->scsi_done(cmd);
1743 return;
1747 /* an error has occurred */
1748 switch (ei->CommandStatus) {
1750 case CMD_TARGET_STATUS:
1751 if (ei->ScsiStatus) {
1752 /* Get sense key */
1753 sense_key = 0xf & ei->SenseInfo[2];
1754 /* Get additional sense code */
1755 asc = ei->SenseInfo[12];
1756 /* Get addition sense code qualifier */
1757 ascq = ei->SenseInfo[13];
1760 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1761 if (check_for_unit_attention(h, cp))
1762 break;
1763 if (sense_key == ILLEGAL_REQUEST) {
1765 * SCSI REPORT_LUNS is commonly unsupported on
1766 * Smart Array. Suppress noisy complaint.
1768 if (cp->Request.CDB[0] == REPORT_LUNS)
1769 break;
1771 /* If ASC/ASCQ indicate Logical Unit
1772 * Not Supported condition,
1774 if ((asc == 0x25) && (ascq == 0x0)) {
1775 dev_warn(&h->pdev->dev, "cp %p "
1776 "has check condition\n", cp);
1777 break;
1781 if (sense_key == NOT_READY) {
1782 /* If Sense is Not Ready, Logical Unit
1783 * Not ready, Manual Intervention
1784 * required
1786 if ((asc == 0x04) && (ascq == 0x03)) {
1787 dev_warn(&h->pdev->dev, "cp %p "
1788 "has check condition: unit "
1789 "not ready, manual "
1790 "intervention required\n", cp);
1791 break;
1794 if (sense_key == ABORTED_COMMAND) {
1795 /* Aborted command is retryable */
1796 dev_warn(&h->pdev->dev, "cp %p "
1797 "has check condition: aborted command: "
1798 "ASC: 0x%x, ASCQ: 0x%x\n",
1799 cp, asc, ascq);
1800 cmd->result |= DID_SOFT_ERROR << 16;
1801 break;
1803 /* Must be some other type of check condition */
1804 dev_dbg(&h->pdev->dev, "cp %p has check condition: "
1805 "unknown type: "
1806 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1807 "Returning result: 0x%x, "
1808 "cmd=[%02x %02x %02x %02x %02x "
1809 "%02x %02x %02x %02x %02x %02x "
1810 "%02x %02x %02x %02x %02x]\n",
1811 cp, sense_key, asc, ascq,
1812 cmd->result,
1813 cmd->cmnd[0], cmd->cmnd[1],
1814 cmd->cmnd[2], cmd->cmnd[3],
1815 cmd->cmnd[4], cmd->cmnd[5],
1816 cmd->cmnd[6], cmd->cmnd[7],
1817 cmd->cmnd[8], cmd->cmnd[9],
1818 cmd->cmnd[10], cmd->cmnd[11],
1819 cmd->cmnd[12], cmd->cmnd[13],
1820 cmd->cmnd[14], cmd->cmnd[15]);
1821 break;
1825 /* Problem was not a check condition
1826 * Pass it up to the upper layers...
1828 if (ei->ScsiStatus) {
1829 dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1830 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1831 "Returning result: 0x%x\n",
1832 cp, ei->ScsiStatus,
1833 sense_key, asc, ascq,
1834 cmd->result);
1835 } else { /* scsi status is zero??? How??? */
1836 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1837 "Returning no connection.\n", cp),
1839 /* Ordinarily, this case should never happen,
1840 * but there is a bug in some released firmware
1841 * revisions that allows it to happen if, for
1842 * example, a 4100 backplane loses power and
1843 * the tape drive is in it. We assume that
1844 * it's a fatal error of some kind because we
1845 * can't show that it wasn't. We will make it
1846 * look like selection timeout since that is
1847 * the most common reason for this to occur,
1848 * and it's severe enough.
1851 cmd->result = DID_NO_CONNECT << 16;
1853 break;
1855 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1856 break;
1857 case CMD_DATA_OVERRUN:
1858 dev_warn(&h->pdev->dev, "cp %p has"
1859 " completed with data overrun "
1860 "reported\n", cp);
1861 break;
1862 case CMD_INVALID: {
1863 /* print_bytes(cp, sizeof(*cp), 1, 0);
1864 print_cmd(cp); */
1865 /* We get CMD_INVALID if you address a non-existent device
1866 * instead of a selection timeout (no response). You will
1867 * see this if you yank out a drive, then try to access it.
1868 * This is kind of a shame because it means that any other
1869 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1870 * missing target. */
1871 cmd->result = DID_NO_CONNECT << 16;
1873 break;
1874 case CMD_PROTOCOL_ERR:
1875 cmd->result = DID_ERROR << 16;
1876 dev_warn(&h->pdev->dev, "cp %p has "
1877 "protocol error\n", cp);
1878 break;
1879 case CMD_HARDWARE_ERR:
1880 cmd->result = DID_ERROR << 16;
1881 dev_warn(&h->pdev->dev, "cp %p had hardware error\n", cp);
1882 break;
1883 case CMD_CONNECTION_LOST:
1884 cmd->result = DID_ERROR << 16;
1885 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1886 break;
1887 case CMD_ABORTED:
1888 cmd->result = DID_ABORT << 16;
1889 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1890 cp, ei->ScsiStatus);
1891 break;
1892 case CMD_ABORT_FAILED:
1893 cmd->result = DID_ERROR << 16;
1894 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1895 break;
1896 case CMD_UNSOLICITED_ABORT:
1897 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1898 dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1899 "abort\n", cp);
1900 break;
1901 case CMD_TIMEOUT:
1902 cmd->result = DID_TIME_OUT << 16;
1903 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1904 break;
1905 case CMD_UNABORTABLE:
1906 cmd->result = DID_ERROR << 16;
1907 dev_warn(&h->pdev->dev, "Command unabortable\n");
1908 break;
1909 case CMD_IOACCEL_DISABLED:
1910 /* This only handles the direct pass-through case since RAID
1911 * offload is handled above. Just attempt a retry.
1913 cmd->result = DID_SOFT_ERROR << 16;
1914 dev_warn(&h->pdev->dev,
1915 "cp %p had HP SSD Smart Path error\n", cp);
1916 break;
1917 default:
1918 cmd->result = DID_ERROR << 16;
1919 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1920 cp, ei->CommandStatus);
1922 cmd_free(h, cp);
1923 cmd->scsi_done(cmd);
1926 static void hpsa_pci_unmap(struct pci_dev *pdev,
1927 struct CommandList *c, int sg_used, int data_direction)
1929 int i;
1930 union u64bit addr64;
1932 for (i = 0; i < sg_used; i++) {
1933 addr64.val32.lower = c->SG[i].Addr.lower;
1934 addr64.val32.upper = c->SG[i].Addr.upper;
1935 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1936 data_direction);
1940 static int hpsa_map_one(struct pci_dev *pdev,
1941 struct CommandList *cp,
1942 unsigned char *buf,
1943 size_t buflen,
1944 int data_direction)
1946 u64 addr64;
1948 if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1949 cp->Header.SGList = 0;
1950 cp->Header.SGTotal = 0;
1951 return 0;
1954 addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1955 if (dma_mapping_error(&pdev->dev, addr64)) {
1956 /* Prevent subsequent unmap of something never mapped */
1957 cp->Header.SGList = 0;
1958 cp->Header.SGTotal = 0;
1959 return -1;
1961 cp->SG[0].Addr.lower =
1962 (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1963 cp->SG[0].Addr.upper =
1964 (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1965 cp->SG[0].Len = buflen;
1966 cp->SG[0].Ext = HPSA_SG_LAST; /* we are not chaining */
1967 cp->Header.SGList = (u8) 1; /* no. SGs contig in this cmd */
1968 cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1969 return 0;
1972 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1973 struct CommandList *c)
1975 DECLARE_COMPLETION_ONSTACK(wait);
1977 c->waiting = &wait;
1978 enqueue_cmd_and_start_io(h, c);
1979 wait_for_completion(&wait);
1982 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
1983 struct CommandList *c)
1985 unsigned long flags;
1987 /* If controller lockup detected, fake a hardware error. */
1988 spin_lock_irqsave(&h->lock, flags);
1989 if (unlikely(h->lockup_detected)) {
1990 spin_unlock_irqrestore(&h->lock, flags);
1991 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
1992 } else {
1993 spin_unlock_irqrestore(&h->lock, flags);
1994 hpsa_scsi_do_simple_cmd_core(h, c);
1998 #define MAX_DRIVER_CMD_RETRIES 25
1999 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2000 struct CommandList *c, int data_direction)
2002 int backoff_time = 10, retry_count = 0;
2004 do {
2005 memset(c->err_info, 0, sizeof(*c->err_info));
2006 hpsa_scsi_do_simple_cmd_core(h, c);
2007 retry_count++;
2008 if (retry_count > 3) {
2009 msleep(backoff_time);
2010 if (backoff_time < 1000)
2011 backoff_time *= 2;
2013 } while ((check_for_unit_attention(h, c) ||
2014 check_for_busy(h, c)) &&
2015 retry_count <= MAX_DRIVER_CMD_RETRIES);
2016 hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2019 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2020 struct CommandList *c)
2022 const u8 *cdb = c->Request.CDB;
2023 const u8 *lun = c->Header.LUN.LunAddrBytes;
2025 dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2026 " CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2027 txt, lun[0], lun[1], lun[2], lun[3],
2028 lun[4], lun[5], lun[6], lun[7],
2029 cdb[0], cdb[1], cdb[2], cdb[3],
2030 cdb[4], cdb[5], cdb[6], cdb[7],
2031 cdb[8], cdb[9], cdb[10], cdb[11],
2032 cdb[12], cdb[13], cdb[14], cdb[15]);
2035 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2036 struct CommandList *cp)
2038 const struct ErrorInfo *ei = cp->err_info;
2039 struct device *d = &cp->h->pdev->dev;
2040 const u8 *sd = ei->SenseInfo;
2042 switch (ei->CommandStatus) {
2043 case CMD_TARGET_STATUS:
2044 hpsa_print_cmd(h, "SCSI status", cp);
2045 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2046 dev_warn(d, "SCSI Status = 02, Sense key = %02x, ASC = %02x, ASCQ = %02x\n",
2047 sd[2] & 0x0f, sd[12], sd[13]);
2048 else
2049 dev_warn(d, "SCSI Status = %02x\n", ei->ScsiStatus);
2050 if (ei->ScsiStatus == 0)
2051 dev_warn(d, "SCSI status is abnormally zero. "
2052 "(probably indicates selection timeout "
2053 "reported incorrectly due to a known "
2054 "firmware bug, circa July, 2001.)\n");
2055 break;
2056 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2057 break;
2058 case CMD_DATA_OVERRUN:
2059 hpsa_print_cmd(h, "overrun condition", cp);
2060 break;
2061 case CMD_INVALID: {
2062 /* controller unfortunately reports SCSI passthru's
2063 * to non-existent targets as invalid commands.
2065 hpsa_print_cmd(h, "invalid command", cp);
2066 dev_warn(d, "probably means device no longer present\n");
2068 break;
2069 case CMD_PROTOCOL_ERR:
2070 hpsa_print_cmd(h, "protocol error", cp);
2071 break;
2072 case CMD_HARDWARE_ERR:
2073 hpsa_print_cmd(h, "hardware error", cp);
2074 break;
2075 case CMD_CONNECTION_LOST:
2076 hpsa_print_cmd(h, "connection lost", cp);
2077 break;
2078 case CMD_ABORTED:
2079 hpsa_print_cmd(h, "aborted", cp);
2080 break;
2081 case CMD_ABORT_FAILED:
2082 hpsa_print_cmd(h, "abort failed", cp);
2083 break;
2084 case CMD_UNSOLICITED_ABORT:
2085 hpsa_print_cmd(h, "unsolicited abort", cp);
2086 break;
2087 case CMD_TIMEOUT:
2088 hpsa_print_cmd(h, "timed out", cp);
2089 break;
2090 case CMD_UNABORTABLE:
2091 hpsa_print_cmd(h, "unabortable", cp);
2092 break;
2093 default:
2094 hpsa_print_cmd(h, "unknown status", cp);
2095 dev_warn(d, "Unknown command status %x\n",
2096 ei->CommandStatus);
2100 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2101 u16 page, unsigned char *buf,
2102 unsigned char bufsize)
2104 int rc = IO_OK;
2105 struct CommandList *c;
2106 struct ErrorInfo *ei;
2108 c = cmd_special_alloc(h);
2110 if (c == NULL) { /* trouble... */
2111 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2112 return -ENOMEM;
2115 if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2116 page, scsi3addr, TYPE_CMD)) {
2117 rc = -1;
2118 goto out;
2120 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2121 ei = c->err_info;
2122 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2123 hpsa_scsi_interpret_error(h, c);
2124 rc = -1;
2126 out:
2127 cmd_special_free(h, c);
2128 return rc;
2131 static int hpsa_bmic_ctrl_mode_sense(struct ctlr_info *h,
2132 unsigned char *scsi3addr, unsigned char page,
2133 struct bmic_controller_parameters *buf, size_t bufsize)
2135 int rc = IO_OK;
2136 struct CommandList *c;
2137 struct ErrorInfo *ei;
2139 c = cmd_special_alloc(h);
2141 if (c == NULL) { /* trouble... */
2142 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2143 return -ENOMEM;
2146 if (fill_cmd(c, BMIC_SENSE_CONTROLLER_PARAMETERS, h, buf, bufsize,
2147 page, scsi3addr, TYPE_CMD)) {
2148 rc = -1;
2149 goto out;
2151 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2152 ei = c->err_info;
2153 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2154 hpsa_scsi_interpret_error(h, c);
2155 rc = -1;
2157 out:
2158 cmd_special_free(h, c);
2159 return rc;
2162 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2163 u8 reset_type)
2165 int rc = IO_OK;
2166 struct CommandList *c;
2167 struct ErrorInfo *ei;
2169 c = cmd_special_alloc(h);
2171 if (c == NULL) { /* trouble... */
2172 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2173 return -ENOMEM;
2176 /* fill_cmd can't fail here, no data buffer to map. */
2177 (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
2178 scsi3addr, TYPE_MSG);
2179 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to LUN reset */
2180 hpsa_scsi_do_simple_cmd_core(h, c);
2181 /* no unmap needed here because no data xfer. */
2183 ei = c->err_info;
2184 if (ei->CommandStatus != 0) {
2185 hpsa_scsi_interpret_error(h, c);
2186 rc = -1;
2188 cmd_special_free(h, c);
2189 return rc;
2192 static void hpsa_get_raid_level(struct ctlr_info *h,
2193 unsigned char *scsi3addr, unsigned char *raid_level)
2195 int rc;
2196 unsigned char *buf;
2198 *raid_level = RAID_UNKNOWN;
2199 buf = kzalloc(64, GFP_KERNEL);
2200 if (!buf)
2201 return;
2202 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
2203 if (rc == 0)
2204 *raid_level = buf[8];
2205 if (*raid_level > RAID_UNKNOWN)
2206 *raid_level = RAID_UNKNOWN;
2207 kfree(buf);
2208 return;
2211 #define HPSA_MAP_DEBUG
2212 #ifdef HPSA_MAP_DEBUG
2213 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
2214 struct raid_map_data *map_buff)
2216 struct raid_map_disk_data *dd = &map_buff->data[0];
2217 int map, row, col;
2218 u16 map_cnt, row_cnt, disks_per_row;
2220 if (rc != 0)
2221 return;
2223 /* Show details only if debugging has been activated. */
2224 if (h->raid_offload_debug < 2)
2225 return;
2227 dev_info(&h->pdev->dev, "structure_size = %u\n",
2228 le32_to_cpu(map_buff->structure_size));
2229 dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
2230 le32_to_cpu(map_buff->volume_blk_size));
2231 dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
2232 le64_to_cpu(map_buff->volume_blk_cnt));
2233 dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
2234 map_buff->phys_blk_shift);
2235 dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
2236 map_buff->parity_rotation_shift);
2237 dev_info(&h->pdev->dev, "strip_size = %u\n",
2238 le16_to_cpu(map_buff->strip_size));
2239 dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
2240 le64_to_cpu(map_buff->disk_starting_blk));
2241 dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
2242 le64_to_cpu(map_buff->disk_blk_cnt));
2243 dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
2244 le16_to_cpu(map_buff->data_disks_per_row));
2245 dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
2246 le16_to_cpu(map_buff->metadata_disks_per_row));
2247 dev_info(&h->pdev->dev, "row_cnt = %u\n",
2248 le16_to_cpu(map_buff->row_cnt));
2249 dev_info(&h->pdev->dev, "layout_map_count = %u\n",
2250 le16_to_cpu(map_buff->layout_map_count));
2251 dev_info(&h->pdev->dev, "flags = %u\n",
2252 le16_to_cpu(map_buff->flags));
2253 if (map_buff->flags & RAID_MAP_FLAG_ENCRYPT_ON)
2254 dev_info(&h->pdev->dev, "encrypytion = ON\n");
2255 else
2256 dev_info(&h->pdev->dev, "encrypytion = OFF\n");
2257 dev_info(&h->pdev->dev, "dekindex = %u\n",
2258 le16_to_cpu(map_buff->dekindex));
2260 map_cnt = le16_to_cpu(map_buff->layout_map_count);
2261 for (map = 0; map < map_cnt; map++) {
2262 dev_info(&h->pdev->dev, "Map%u:\n", map);
2263 row_cnt = le16_to_cpu(map_buff->row_cnt);
2264 for (row = 0; row < row_cnt; row++) {
2265 dev_info(&h->pdev->dev, " Row%u:\n", row);
2266 disks_per_row =
2267 le16_to_cpu(map_buff->data_disks_per_row);
2268 for (col = 0; col < disks_per_row; col++, dd++)
2269 dev_info(&h->pdev->dev,
2270 " D%02u: h=0x%04x xor=%u,%u\n",
2271 col, dd->ioaccel_handle,
2272 dd->xor_mult[0], dd->xor_mult[1]);
2273 disks_per_row =
2274 le16_to_cpu(map_buff->metadata_disks_per_row);
2275 for (col = 0; col < disks_per_row; col++, dd++)
2276 dev_info(&h->pdev->dev,
2277 " M%02u: h=0x%04x xor=%u,%u\n",
2278 col, dd->ioaccel_handle,
2279 dd->xor_mult[0], dd->xor_mult[1]);
2283 #else
2284 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
2285 __attribute__((unused)) int rc,
2286 __attribute__((unused)) struct raid_map_data *map_buff)
2289 #endif
2291 static int hpsa_get_raid_map(struct ctlr_info *h,
2292 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2294 int rc = 0;
2295 struct CommandList *c;
2296 struct ErrorInfo *ei;
2298 c = cmd_special_alloc(h);
2299 if (c == NULL) {
2300 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2301 return -ENOMEM;
2303 if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
2304 sizeof(this_device->raid_map), 0,
2305 scsi3addr, TYPE_CMD)) {
2306 dev_warn(&h->pdev->dev, "Out of memory in hpsa_get_raid_map()\n");
2307 cmd_special_free(h, c);
2308 return -ENOMEM;
2310 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2311 ei = c->err_info;
2312 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2313 hpsa_scsi_interpret_error(h, c);
2314 cmd_special_free(h, c);
2315 return -1;
2317 cmd_special_free(h, c);
2319 /* @todo in the future, dynamically allocate RAID map memory */
2320 if (le32_to_cpu(this_device->raid_map.structure_size) >
2321 sizeof(this_device->raid_map)) {
2322 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
2323 rc = -1;
2325 hpsa_debug_map_buff(h, rc, &this_device->raid_map);
2326 return rc;
2329 static int hpsa_vpd_page_supported(struct ctlr_info *h,
2330 unsigned char scsi3addr[], u8 page)
2332 int rc;
2333 int i;
2334 int pages;
2335 unsigned char *buf, bufsize;
2337 buf = kzalloc(256, GFP_KERNEL);
2338 if (!buf)
2339 return 0;
2341 /* Get the size of the page list first */
2342 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2343 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
2344 buf, HPSA_VPD_HEADER_SZ);
2345 if (rc != 0)
2346 goto exit_unsupported;
2347 pages = buf[3];
2348 if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
2349 bufsize = pages + HPSA_VPD_HEADER_SZ;
2350 else
2351 bufsize = 255;
2353 /* Get the whole VPD page list */
2354 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2355 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
2356 buf, bufsize);
2357 if (rc != 0)
2358 goto exit_unsupported;
2360 pages = buf[3];
2361 for (i = 1; i <= pages; i++)
2362 if (buf[3 + i] == page)
2363 goto exit_supported;
2364 exit_unsupported:
2365 kfree(buf);
2366 return 0;
2367 exit_supported:
2368 kfree(buf);
2369 return 1;
2372 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
2373 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2375 int rc;
2376 unsigned char *buf;
2377 u8 ioaccel_status;
2379 this_device->offload_config = 0;
2380 this_device->offload_enabled = 0;
2382 buf = kzalloc(64, GFP_KERNEL);
2383 if (!buf)
2384 return;
2385 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
2386 goto out;
2387 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2388 VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
2389 if (rc != 0)
2390 goto out;
2392 #define IOACCEL_STATUS_BYTE 4
2393 #define OFFLOAD_CONFIGURED_BIT 0x01
2394 #define OFFLOAD_ENABLED_BIT 0x02
2395 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
2396 this_device->offload_config =
2397 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
2398 if (this_device->offload_config) {
2399 this_device->offload_enabled =
2400 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
2401 if (hpsa_get_raid_map(h, scsi3addr, this_device))
2402 this_device->offload_enabled = 0;
2404 out:
2405 kfree(buf);
2406 return;
2409 /* Get the device id from inquiry page 0x83 */
2410 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
2411 unsigned char *device_id, int buflen)
2413 int rc;
2414 unsigned char *buf;
2416 if (buflen > 16)
2417 buflen = 16;
2418 buf = kzalloc(64, GFP_KERNEL);
2419 if (!buf)
2420 return -1;
2421 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
2422 if (rc == 0)
2423 memcpy(device_id, &buf[8], buflen);
2424 kfree(buf);
2425 return rc != 0;
2428 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
2429 struct ReportLUNdata *buf, int bufsize,
2430 int extended_response)
2432 int rc = IO_OK;
2433 struct CommandList *c;
2434 unsigned char scsi3addr[8];
2435 struct ErrorInfo *ei;
2437 c = cmd_special_alloc(h);
2438 if (c == NULL) { /* trouble... */
2439 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2440 return -1;
2442 /* address the controller */
2443 memset(scsi3addr, 0, sizeof(scsi3addr));
2444 if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
2445 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
2446 rc = -1;
2447 goto out;
2449 if (extended_response)
2450 c->Request.CDB[1] = extended_response;
2451 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2452 ei = c->err_info;
2453 if (ei->CommandStatus != 0 &&
2454 ei->CommandStatus != CMD_DATA_UNDERRUN) {
2455 hpsa_scsi_interpret_error(h, c);
2456 rc = -1;
2457 } else {
2458 if (buf->extended_response_flag != extended_response) {
2459 dev_err(&h->pdev->dev,
2460 "report luns requested format %u, got %u\n",
2461 extended_response,
2462 buf->extended_response_flag);
2463 rc = -1;
2466 out:
2467 cmd_special_free(h, c);
2468 return rc;
2471 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
2472 struct ReportLUNdata *buf,
2473 int bufsize, int extended_response)
2475 return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
2478 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
2479 struct ReportLUNdata *buf, int bufsize)
2481 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
2484 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
2485 int bus, int target, int lun)
2487 device->bus = bus;
2488 device->target = target;
2489 device->lun = lun;
2492 /* Use VPD inquiry to get details of volume status */
2493 static int hpsa_get_volume_status(struct ctlr_info *h,
2494 unsigned char scsi3addr[])
2496 int rc;
2497 int status;
2498 int size;
2499 unsigned char *buf;
2501 buf = kzalloc(64, GFP_KERNEL);
2502 if (!buf)
2503 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
2505 /* Does controller have VPD for logical volume status? */
2506 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS)) {
2507 dev_warn(&h->pdev->dev, "Logical volume status VPD page is unsupported.\n");
2508 goto exit_failed;
2511 /* Get the size of the VPD return buffer */
2512 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
2513 buf, HPSA_VPD_HEADER_SZ);
2514 if (rc != 0) {
2515 dev_warn(&h->pdev->dev, "Logical volume status VPD inquiry failed.\n");
2516 goto exit_failed;
2518 size = buf[3];
2520 /* Now get the whole VPD buffer */
2521 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
2522 buf, size + HPSA_VPD_HEADER_SZ);
2523 if (rc != 0) {
2524 dev_warn(&h->pdev->dev, "Logical volume status VPD inquiry failed.\n");
2525 goto exit_failed;
2527 status = buf[4]; /* status byte */
2529 kfree(buf);
2530 return status;
2531 exit_failed:
2532 kfree(buf);
2533 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
2536 /* Determine offline status of a volume.
2537 * Return either:
2538 * 0 (not offline)
2539 * -1 (offline for unknown reasons)
2540 * # (integer code indicating one of several NOT READY states
2541 * describing why a volume is to be kept offline)
2543 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
2544 unsigned char scsi3addr[])
2546 struct CommandList *c;
2547 unsigned char *sense, sense_key, asc, ascq;
2548 int ldstat = 0;
2549 u16 cmd_status;
2550 u8 scsi_status;
2551 #define ASC_LUN_NOT_READY 0x04
2552 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
2553 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
2555 c = cmd_alloc(h);
2556 if (!c)
2557 return 0;
2558 (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
2559 hpsa_scsi_do_simple_cmd_core(h, c);
2560 sense = c->err_info->SenseInfo;
2561 sense_key = sense[2];
2562 asc = sense[12];
2563 ascq = sense[13];
2564 cmd_status = c->err_info->CommandStatus;
2565 scsi_status = c->err_info->ScsiStatus;
2566 cmd_free(h, c);
2567 /* Is the volume 'not ready'? */
2568 if (cmd_status != CMD_TARGET_STATUS ||
2569 scsi_status != SAM_STAT_CHECK_CONDITION ||
2570 sense_key != NOT_READY ||
2571 asc != ASC_LUN_NOT_READY) {
2572 return 0;
2575 /* Determine the reason for not ready state */
2576 ldstat = hpsa_get_volume_status(h, scsi3addr);
2578 /* Keep volume offline in certain cases: */
2579 switch (ldstat) {
2580 case HPSA_LV_UNDERGOING_ERASE:
2581 case HPSA_LV_UNDERGOING_RPI:
2582 case HPSA_LV_PENDING_RPI:
2583 case HPSA_LV_ENCRYPTED_NO_KEY:
2584 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
2585 case HPSA_LV_UNDERGOING_ENCRYPTION:
2586 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
2587 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
2588 return ldstat;
2589 case HPSA_VPD_LV_STATUS_UNSUPPORTED:
2590 /* If VPD status page isn't available,
2591 * use ASC/ASCQ to determine state
2593 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
2594 (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
2595 return ldstat;
2596 break;
2597 default:
2598 break;
2600 return 0;
2603 static int hpsa_update_device_info(struct ctlr_info *h,
2604 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
2605 unsigned char *is_OBDR_device)
2608 #define OBDR_SIG_OFFSET 43
2609 #define OBDR_TAPE_SIG "$DR-10"
2610 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
2611 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
2613 unsigned char *inq_buff;
2614 unsigned char *obdr_sig;
2616 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
2617 if (!inq_buff)
2618 goto bail_out;
2620 /* Do an inquiry to the device to see what it is. */
2621 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
2622 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
2623 /* Inquiry failed (msg printed already) */
2624 dev_err(&h->pdev->dev,
2625 "hpsa_update_device_info: inquiry failed\n");
2626 goto bail_out;
2629 this_device->devtype = (inq_buff[0] & 0x1f);
2630 memcpy(this_device->scsi3addr, scsi3addr, 8);
2631 memcpy(this_device->vendor, &inq_buff[8],
2632 sizeof(this_device->vendor));
2633 memcpy(this_device->model, &inq_buff[16],
2634 sizeof(this_device->model));
2635 memset(this_device->device_id, 0,
2636 sizeof(this_device->device_id));
2637 hpsa_get_device_id(h, scsi3addr, this_device->device_id,
2638 sizeof(this_device->device_id));
2640 if (this_device->devtype == TYPE_DISK &&
2641 is_logical_dev_addr_mode(scsi3addr)) {
2642 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
2643 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
2644 hpsa_get_ioaccel_status(h, scsi3addr, this_device);
2645 this_device->volume_offline =
2646 hpsa_volume_offline(h, scsi3addr);
2647 } else {
2648 this_device->raid_level = RAID_UNKNOWN;
2649 this_device->offload_config = 0;
2650 this_device->offload_enabled = 0;
2651 this_device->volume_offline = 0;
2654 if (is_OBDR_device) {
2655 /* See if this is a One-Button-Disaster-Recovery device
2656 * by looking for "$DR-10" at offset 43 in inquiry data.
2658 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
2659 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
2660 strncmp(obdr_sig, OBDR_TAPE_SIG,
2661 OBDR_SIG_LEN) == 0);
2664 kfree(inq_buff);
2665 return 0;
2667 bail_out:
2668 kfree(inq_buff);
2669 return 1;
2672 static unsigned char *ext_target_model[] = {
2673 "MSA2012",
2674 "MSA2024",
2675 "MSA2312",
2676 "MSA2324",
2677 "P2000 G3 SAS",
2678 "MSA 2040 SAS",
2679 NULL,
2682 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
2684 int i;
2686 for (i = 0; ext_target_model[i]; i++)
2687 if (strncmp(device->model, ext_target_model[i],
2688 strlen(ext_target_model[i])) == 0)
2689 return 1;
2690 return 0;
2693 /* Helper function to assign bus, target, lun mapping of devices.
2694 * Puts non-external target logical volumes on bus 0, external target logical
2695 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
2696 * Logical drive target and lun are assigned at this time, but
2697 * physical device lun and target assignment are deferred (assigned
2698 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
2700 static void figure_bus_target_lun(struct ctlr_info *h,
2701 u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
2703 u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
2705 if (!is_logical_dev_addr_mode(lunaddrbytes)) {
2706 /* physical device, target and lun filled in later */
2707 if (is_hba_lunid(lunaddrbytes))
2708 hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
2709 else
2710 /* defer target, lun assignment for physical devices */
2711 hpsa_set_bus_target_lun(device, 2, -1, -1);
2712 return;
2714 /* It's a logical device */
2715 if (is_ext_target(h, device)) {
2716 /* external target way, put logicals on bus 1
2717 * and match target/lun numbers box
2718 * reports, other smart array, bus 0, target 0, match lunid
2720 hpsa_set_bus_target_lun(device,
2721 1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
2722 return;
2724 hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
2728 * If there is no lun 0 on a target, linux won't find any devices.
2729 * For the external targets (arrays), we have to manually detect the enclosure
2730 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
2731 * it for some reason. *tmpdevice is the target we're adding,
2732 * this_device is a pointer into the current element of currentsd[]
2733 * that we're building up in update_scsi_devices(), below.
2734 * lunzerobits is a bitmap that tracks which targets already have a
2735 * lun 0 assigned.
2736 * Returns 1 if an enclosure was added, 0 if not.
2738 static int add_ext_target_dev(struct ctlr_info *h,
2739 struct hpsa_scsi_dev_t *tmpdevice,
2740 struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
2741 unsigned long lunzerobits[], int *n_ext_target_devs)
2743 unsigned char scsi3addr[8];
2745 if (test_bit(tmpdevice->target, lunzerobits))
2746 return 0; /* There is already a lun 0 on this target. */
2748 if (!is_logical_dev_addr_mode(lunaddrbytes))
2749 return 0; /* It's the logical targets that may lack lun 0. */
2751 if (!is_ext_target(h, tmpdevice))
2752 return 0; /* Only external target devices have this problem. */
2754 if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
2755 return 0;
2757 memset(scsi3addr, 0, 8);
2758 scsi3addr[3] = tmpdevice->target;
2759 if (is_hba_lunid(scsi3addr))
2760 return 0; /* Don't add the RAID controller here. */
2762 if (is_scsi_rev_5(h))
2763 return 0; /* p1210m doesn't need to do this. */
2765 if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
2766 dev_warn(&h->pdev->dev, "Maximum number of external "
2767 "target devices exceeded. Check your hardware "
2768 "configuration.");
2769 return 0;
2772 if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
2773 return 0;
2774 (*n_ext_target_devs)++;
2775 hpsa_set_bus_target_lun(this_device,
2776 tmpdevice->bus, tmpdevice->target, 0);
2777 set_bit(tmpdevice->target, lunzerobits);
2778 return 1;
2782 * Get address of physical disk used for an ioaccel2 mode command:
2783 * 1. Extract ioaccel2 handle from the command.
2784 * 2. Find a matching ioaccel2 handle from list of physical disks.
2785 * 3. Return:
2786 * 1 and set scsi3addr to address of matching physical
2787 * 0 if no matching physical disk was found.
2789 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
2790 struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
2792 struct ReportExtendedLUNdata *physicals = NULL;
2793 int responsesize = 24; /* size of physical extended response */
2794 int extended = 2; /* flag forces reporting 'other dev info'. */
2795 int reportsize = sizeof(*physicals) + HPSA_MAX_PHYS_LUN * responsesize;
2796 u32 nphysicals = 0; /* number of reported physical devs */
2797 int found = 0; /* found match (1) or not (0) */
2798 u32 find; /* handle we need to match */
2799 int i;
2800 struct scsi_cmnd *scmd; /* scsi command within request being aborted */
2801 struct hpsa_scsi_dev_t *d; /* device of request being aborted */
2802 struct io_accel2_cmd *c2a; /* ioaccel2 command to abort */
2803 u32 it_nexus; /* 4 byte device handle for the ioaccel2 cmd */
2804 u32 scsi_nexus; /* 4 byte device handle for the ioaccel2 cmd */
2806 if (ioaccel2_cmd_to_abort->cmd_type != CMD_IOACCEL2)
2807 return 0; /* no match */
2809 /* point to the ioaccel2 device handle */
2810 c2a = &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
2811 if (c2a == NULL)
2812 return 0; /* no match */
2814 scmd = (struct scsi_cmnd *) ioaccel2_cmd_to_abort->scsi_cmd;
2815 if (scmd == NULL)
2816 return 0; /* no match */
2818 d = scmd->device->hostdata;
2819 if (d == NULL)
2820 return 0; /* no match */
2822 it_nexus = cpu_to_le32((u32) d->ioaccel_handle);
2823 scsi_nexus = cpu_to_le32((u32) c2a->scsi_nexus);
2824 find = c2a->scsi_nexus;
2826 if (h->raid_offload_debug > 0)
2827 dev_info(&h->pdev->dev,
2828 "%s: scsi_nexus:0x%08x device id: 0x%02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
2829 __func__, scsi_nexus,
2830 d->device_id[0], d->device_id[1], d->device_id[2],
2831 d->device_id[3], d->device_id[4], d->device_id[5],
2832 d->device_id[6], d->device_id[7], d->device_id[8],
2833 d->device_id[9], d->device_id[10], d->device_id[11],
2834 d->device_id[12], d->device_id[13], d->device_id[14],
2835 d->device_id[15]);
2837 /* Get the list of physical devices */
2838 physicals = kzalloc(reportsize, GFP_KERNEL);
2839 if (hpsa_scsi_do_report_phys_luns(h, (struct ReportLUNdata *) physicals,
2840 reportsize, extended)) {
2841 dev_err(&h->pdev->dev,
2842 "Can't lookup %s device handle: report physical LUNs failed.\n",
2843 "HP SSD Smart Path");
2844 kfree(physicals);
2845 return 0;
2847 nphysicals = be32_to_cpu(*((__be32 *)physicals->LUNListLength)) /
2848 responsesize;
2851 /* find ioaccel2 handle in list of physicals: */
2852 for (i = 0; i < nphysicals; i++) {
2853 /* handle is in bytes 28-31 of each lun */
2854 if (memcmp(&((struct ReportExtendedLUNdata *)
2855 physicals)->LUN[i][20], &find, 4) != 0) {
2856 continue; /* didn't match */
2858 found = 1;
2859 memcpy(scsi3addr, &((struct ReportExtendedLUNdata *)
2860 physicals)->LUN[i][0], 8);
2861 if (h->raid_offload_debug > 0)
2862 dev_info(&h->pdev->dev,
2863 "%s: Searched h=0x%08x, Found h=0x%08x, scsiaddr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2864 __func__, find,
2865 ((struct ReportExtendedLUNdata *)
2866 physicals)->LUN[i][20],
2867 scsi3addr[0], scsi3addr[1], scsi3addr[2],
2868 scsi3addr[3], scsi3addr[4], scsi3addr[5],
2869 scsi3addr[6], scsi3addr[7]);
2870 break; /* found it */
2873 kfree(physicals);
2874 if (found)
2875 return 1;
2876 else
2877 return 0;
2881 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
2882 * logdev. The number of luns in physdev and logdev are returned in
2883 * *nphysicals and *nlogicals, respectively.
2884 * Returns 0 on success, -1 otherwise.
2886 static int hpsa_gather_lun_info(struct ctlr_info *h,
2887 int reportlunsize,
2888 struct ReportLUNdata *physdev, u32 *nphysicals, int *physical_mode,
2889 struct ReportLUNdata *logdev, u32 *nlogicals)
2891 int physical_entry_size = 8;
2893 *physical_mode = 0;
2895 /* For I/O accelerator mode we need to read physical device handles */
2896 if (h->transMethod & CFGTBL_Trans_io_accel1 ||
2897 h->transMethod & CFGTBL_Trans_io_accel2) {
2898 *physical_mode = HPSA_REPORT_PHYS_EXTENDED;
2899 physical_entry_size = 24;
2901 if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize,
2902 *physical_mode)) {
2903 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
2904 return -1;
2906 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) /
2907 physical_entry_size;
2908 if (*nphysicals > HPSA_MAX_PHYS_LUN) {
2909 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
2910 " %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
2911 *nphysicals - HPSA_MAX_PHYS_LUN);
2912 *nphysicals = HPSA_MAX_PHYS_LUN;
2914 if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
2915 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
2916 return -1;
2918 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
2919 /* Reject Logicals in excess of our max capability. */
2920 if (*nlogicals > HPSA_MAX_LUN) {
2921 dev_warn(&h->pdev->dev,
2922 "maximum logical LUNs (%d) exceeded. "
2923 "%d LUNs ignored.\n", HPSA_MAX_LUN,
2924 *nlogicals - HPSA_MAX_LUN);
2925 *nlogicals = HPSA_MAX_LUN;
2927 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
2928 dev_warn(&h->pdev->dev,
2929 "maximum logical + physical LUNs (%d) exceeded. "
2930 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
2931 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
2932 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
2934 return 0;
2937 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
2938 int nphysicals, int nlogicals,
2939 struct ReportExtendedLUNdata *physdev_list,
2940 struct ReportLUNdata *logdev_list)
2942 /* Helper function, figure out where the LUN ID info is coming from
2943 * given index i, lists of physical and logical devices, where in
2944 * the list the raid controller is supposed to appear (first or last)
2947 int logicals_start = nphysicals + (raid_ctlr_position == 0);
2948 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
2950 if (i == raid_ctlr_position)
2951 return RAID_CTLR_LUNID;
2953 if (i < logicals_start)
2954 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
2956 if (i < last_device)
2957 return &logdev_list->LUN[i - nphysicals -
2958 (raid_ctlr_position == 0)][0];
2959 BUG();
2960 return NULL;
2963 static int hpsa_hba_mode_enabled(struct ctlr_info *h)
2965 int rc;
2966 struct bmic_controller_parameters *ctlr_params;
2967 ctlr_params = kzalloc(sizeof(struct bmic_controller_parameters),
2968 GFP_KERNEL);
2970 if (!ctlr_params)
2971 return 0;
2972 rc = hpsa_bmic_ctrl_mode_sense(h, RAID_CTLR_LUNID, 0, ctlr_params,
2973 sizeof(struct bmic_controller_parameters));
2974 if (rc != 0) {
2975 kfree(ctlr_params);
2976 return 0;
2978 return ctlr_params->nvram_flags & (1 << 3) ? 1 : 0;
2981 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
2983 /* the idea here is we could get notified
2984 * that some devices have changed, so we do a report
2985 * physical luns and report logical luns cmd, and adjust
2986 * our list of devices accordingly.
2988 * The scsi3addr's of devices won't change so long as the
2989 * adapter is not reset. That means we can rescan and
2990 * tell which devices we already know about, vs. new
2991 * devices, vs. disappearing devices.
2993 struct ReportExtendedLUNdata *physdev_list = NULL;
2994 struct ReportLUNdata *logdev_list = NULL;
2995 u32 nphysicals = 0;
2996 u32 nlogicals = 0;
2997 int physical_mode = 0;
2998 u32 ndev_allocated = 0;
2999 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
3000 int ncurrent = 0;
3001 int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 24;
3002 int i, n_ext_target_devs, ndevs_to_allocate;
3003 int raid_ctlr_position;
3004 u8 rescan_hba_mode;
3005 DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
3007 currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
3008 physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
3009 logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
3010 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
3012 if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
3013 dev_err(&h->pdev->dev, "out of memory\n");
3014 goto out;
3016 memset(lunzerobits, 0, sizeof(lunzerobits));
3018 rescan_hba_mode = hpsa_hba_mode_enabled(h);
3020 if (!h->hba_mode_enabled && rescan_hba_mode)
3021 dev_warn(&h->pdev->dev, "HBA mode enabled\n");
3022 else if (h->hba_mode_enabled && !rescan_hba_mode)
3023 dev_warn(&h->pdev->dev, "HBA mode disabled\n");
3025 h->hba_mode_enabled = rescan_hba_mode;
3027 if (hpsa_gather_lun_info(h, reportlunsize,
3028 (struct ReportLUNdata *) physdev_list, &nphysicals,
3029 &physical_mode, logdev_list, &nlogicals))
3030 goto out;
3032 /* We might see up to the maximum number of logical and physical disks
3033 * plus external target devices, and a device for the local RAID
3034 * controller.
3036 ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
3038 /* Allocate the per device structures */
3039 for (i = 0; i < ndevs_to_allocate; i++) {
3040 if (i >= HPSA_MAX_DEVICES) {
3041 dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
3042 " %d devices ignored.\n", HPSA_MAX_DEVICES,
3043 ndevs_to_allocate - HPSA_MAX_DEVICES);
3044 break;
3047 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
3048 if (!currentsd[i]) {
3049 dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
3050 __FILE__, __LINE__);
3051 goto out;
3053 ndev_allocated++;
3056 if (unlikely(is_scsi_rev_5(h)))
3057 raid_ctlr_position = 0;
3058 else
3059 raid_ctlr_position = nphysicals + nlogicals;
3061 /* adjust our table of devices */
3062 n_ext_target_devs = 0;
3063 for (i = 0; i < nphysicals + nlogicals + 1; i++) {
3064 u8 *lunaddrbytes, is_OBDR = 0;
3066 /* Figure out where the LUN ID info is coming from */
3067 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
3068 i, nphysicals, nlogicals, physdev_list, logdev_list);
3069 /* skip masked physical devices. */
3070 if (lunaddrbytes[3] & 0xC0 &&
3071 i < nphysicals + (raid_ctlr_position == 0))
3072 continue;
3074 /* Get device type, vendor, model, device id */
3075 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
3076 &is_OBDR))
3077 continue; /* skip it if we can't talk to it. */
3078 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
3079 this_device = currentsd[ncurrent];
3082 * For external target devices, we have to insert a LUN 0 which
3083 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
3084 * is nonetheless an enclosure device there. We have to
3085 * present that otherwise linux won't find anything if
3086 * there is no lun 0.
3088 if (add_ext_target_dev(h, tmpdevice, this_device,
3089 lunaddrbytes, lunzerobits,
3090 &n_ext_target_devs)) {
3091 ncurrent++;
3092 this_device = currentsd[ncurrent];
3095 *this_device = *tmpdevice;
3097 switch (this_device->devtype) {
3098 case TYPE_ROM:
3099 /* We don't *really* support actual CD-ROM devices,
3100 * just "One Button Disaster Recovery" tape drive
3101 * which temporarily pretends to be a CD-ROM drive.
3102 * So we check that the device is really an OBDR tape
3103 * device by checking for "$DR-10" in bytes 43-48 of
3104 * the inquiry data.
3106 if (is_OBDR)
3107 ncurrent++;
3108 break;
3109 case TYPE_DISK:
3110 if (h->hba_mode_enabled) {
3111 /* never use raid mapper in HBA mode */
3112 this_device->offload_enabled = 0;
3113 ncurrent++;
3114 break;
3115 } else if (h->acciopath_status) {
3116 if (i >= nphysicals) {
3117 ncurrent++;
3118 break;
3120 } else {
3121 if (i < nphysicals)
3122 break;
3123 ncurrent++;
3124 break;
3126 if (physical_mode == HPSA_REPORT_PHYS_EXTENDED) {
3127 memcpy(&this_device->ioaccel_handle,
3128 &lunaddrbytes[20],
3129 sizeof(this_device->ioaccel_handle));
3130 ncurrent++;
3132 break;
3133 case TYPE_TAPE:
3134 case TYPE_MEDIUM_CHANGER:
3135 ncurrent++;
3136 break;
3137 case TYPE_RAID:
3138 /* Only present the Smartarray HBA as a RAID controller.
3139 * If it's a RAID controller other than the HBA itself
3140 * (an external RAID controller, MSA500 or similar)
3141 * don't present it.
3143 if (!is_hba_lunid(lunaddrbytes))
3144 break;
3145 ncurrent++;
3146 break;
3147 default:
3148 break;
3150 if (ncurrent >= HPSA_MAX_DEVICES)
3151 break;
3153 adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
3154 out:
3155 kfree(tmpdevice);
3156 for (i = 0; i < ndev_allocated; i++)
3157 kfree(currentsd[i]);
3158 kfree(currentsd);
3159 kfree(physdev_list);
3160 kfree(logdev_list);
3163 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
3164 * dma mapping and fills in the scatter gather entries of the
3165 * hpsa command, cp.
3167 static int hpsa_scatter_gather(struct ctlr_info *h,
3168 struct CommandList *cp,
3169 struct scsi_cmnd *cmd)
3171 unsigned int len;
3172 struct scatterlist *sg;
3173 u64 addr64;
3174 int use_sg, i, sg_index, chained;
3175 struct SGDescriptor *curr_sg;
3177 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
3179 use_sg = scsi_dma_map(cmd);
3180 if (use_sg < 0)
3181 return use_sg;
3183 if (!use_sg)
3184 goto sglist_finished;
3186 curr_sg = cp->SG;
3187 chained = 0;
3188 sg_index = 0;
3189 scsi_for_each_sg(cmd, sg, use_sg, i) {
3190 if (i == h->max_cmd_sg_entries - 1 &&
3191 use_sg > h->max_cmd_sg_entries) {
3192 chained = 1;
3193 curr_sg = h->cmd_sg_list[cp->cmdindex];
3194 sg_index = 0;
3196 addr64 = (u64) sg_dma_address(sg);
3197 len = sg_dma_len(sg);
3198 curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
3199 curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
3200 curr_sg->Len = len;
3201 curr_sg->Ext = (i < scsi_sg_count(cmd) - 1) ? 0 : HPSA_SG_LAST;
3202 curr_sg++;
3205 if (use_sg + chained > h->maxSG)
3206 h->maxSG = use_sg + chained;
3208 if (chained) {
3209 cp->Header.SGList = h->max_cmd_sg_entries;
3210 cp->Header.SGTotal = (u16) (use_sg + 1);
3211 if (hpsa_map_sg_chain_block(h, cp)) {
3212 scsi_dma_unmap(cmd);
3213 return -1;
3215 return 0;
3218 sglist_finished:
3220 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */
3221 cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
3222 return 0;
3225 #define IO_ACCEL_INELIGIBLE (1)
3226 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
3228 int is_write = 0;
3229 u32 block;
3230 u32 block_cnt;
3232 /* Perform some CDB fixups if needed using 10 byte reads/writes only */
3233 switch (cdb[0]) {
3234 case WRITE_6:
3235 case WRITE_12:
3236 is_write = 1;
3237 case READ_6:
3238 case READ_12:
3239 if (*cdb_len == 6) {
3240 block = (((u32) cdb[2]) << 8) | cdb[3];
3241 block_cnt = cdb[4];
3242 } else {
3243 BUG_ON(*cdb_len != 12);
3244 block = (((u32) cdb[2]) << 24) |
3245 (((u32) cdb[3]) << 16) |
3246 (((u32) cdb[4]) << 8) |
3247 cdb[5];
3248 block_cnt =
3249 (((u32) cdb[6]) << 24) |
3250 (((u32) cdb[7]) << 16) |
3251 (((u32) cdb[8]) << 8) |
3252 cdb[9];
3254 if (block_cnt > 0xffff)
3255 return IO_ACCEL_INELIGIBLE;
3257 cdb[0] = is_write ? WRITE_10 : READ_10;
3258 cdb[1] = 0;
3259 cdb[2] = (u8) (block >> 24);
3260 cdb[3] = (u8) (block >> 16);
3261 cdb[4] = (u8) (block >> 8);
3262 cdb[5] = (u8) (block);
3263 cdb[6] = 0;
3264 cdb[7] = (u8) (block_cnt >> 8);
3265 cdb[8] = (u8) (block_cnt);
3266 cdb[9] = 0;
3267 *cdb_len = 10;
3268 break;
3270 return 0;
3273 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
3274 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3275 u8 *scsi3addr)
3277 struct scsi_cmnd *cmd = c->scsi_cmd;
3278 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
3279 unsigned int len;
3280 unsigned int total_len = 0;
3281 struct scatterlist *sg;
3282 u64 addr64;
3283 int use_sg, i;
3284 struct SGDescriptor *curr_sg;
3285 u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
3287 /* TODO: implement chaining support */
3288 if (scsi_sg_count(cmd) > h->ioaccel_maxsg)
3289 return IO_ACCEL_INELIGIBLE;
3291 BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
3293 if (fixup_ioaccel_cdb(cdb, &cdb_len))
3294 return IO_ACCEL_INELIGIBLE;
3296 c->cmd_type = CMD_IOACCEL1;
3298 /* Adjust the DMA address to point to the accelerated command buffer */
3299 c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
3300 (c->cmdindex * sizeof(*cp));
3301 BUG_ON(c->busaddr & 0x0000007F);
3303 use_sg = scsi_dma_map(cmd);
3304 if (use_sg < 0)
3305 return use_sg;
3307 if (use_sg) {
3308 curr_sg = cp->SG;
3309 scsi_for_each_sg(cmd, sg, use_sg, i) {
3310 addr64 = (u64) sg_dma_address(sg);
3311 len = sg_dma_len(sg);
3312 total_len += len;
3313 curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
3314 curr_sg->Addr.upper =
3315 (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
3316 curr_sg->Len = len;
3318 if (i == (scsi_sg_count(cmd) - 1))
3319 curr_sg->Ext = HPSA_SG_LAST;
3320 else
3321 curr_sg->Ext = 0; /* we are not chaining */
3322 curr_sg++;
3325 switch (cmd->sc_data_direction) {
3326 case DMA_TO_DEVICE:
3327 control |= IOACCEL1_CONTROL_DATA_OUT;
3328 break;
3329 case DMA_FROM_DEVICE:
3330 control |= IOACCEL1_CONTROL_DATA_IN;
3331 break;
3332 case DMA_NONE:
3333 control |= IOACCEL1_CONTROL_NODATAXFER;
3334 break;
3335 default:
3336 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
3337 cmd->sc_data_direction);
3338 BUG();
3339 break;
3341 } else {
3342 control |= IOACCEL1_CONTROL_NODATAXFER;
3345 c->Header.SGList = use_sg;
3346 /* Fill out the command structure to submit */
3347 cp->dev_handle = ioaccel_handle & 0xFFFF;
3348 cp->transfer_len = total_len;
3349 cp->io_flags = IOACCEL1_IOFLAGS_IO_REQ |
3350 (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK);
3351 cp->control = control;
3352 memcpy(cp->CDB, cdb, cdb_len);
3353 memcpy(cp->CISS_LUN, scsi3addr, 8);
3354 /* Tag was already set at init time. */
3355 enqueue_cmd_and_start_io(h, c);
3356 return 0;
3360 * Queue a command directly to a device behind the controller using the
3361 * I/O accelerator path.
3363 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
3364 struct CommandList *c)
3366 struct scsi_cmnd *cmd = c->scsi_cmd;
3367 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3369 return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
3370 cmd->cmnd, cmd->cmd_len, dev->scsi3addr);
3374 * Set encryption parameters for the ioaccel2 request
3376 static void set_encrypt_ioaccel2(struct ctlr_info *h,
3377 struct CommandList *c, struct io_accel2_cmd *cp)
3379 struct scsi_cmnd *cmd = c->scsi_cmd;
3380 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3381 struct raid_map_data *map = &dev->raid_map;
3382 u64 first_block;
3384 BUG_ON(!(dev->offload_config && dev->offload_enabled));
3386 /* Are we doing encryption on this device */
3387 if (!(map->flags & RAID_MAP_FLAG_ENCRYPT_ON))
3388 return;
3389 /* Set the data encryption key index. */
3390 cp->dekindex = map->dekindex;
3392 /* Set the encryption enable flag, encoded into direction field. */
3393 cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
3395 /* Set encryption tweak values based on logical block address
3396 * If block size is 512, tweak value is LBA.
3397 * For other block sizes, tweak is (LBA * block size)/ 512)
3399 switch (cmd->cmnd[0]) {
3400 /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
3401 case WRITE_6:
3402 case READ_6:
3403 if (map->volume_blk_size == 512) {
3404 cp->tweak_lower =
3405 (((u32) cmd->cmnd[2]) << 8) |
3406 cmd->cmnd[3];
3407 cp->tweak_upper = 0;
3408 } else {
3409 first_block =
3410 (((u64) cmd->cmnd[2]) << 8) |
3411 cmd->cmnd[3];
3412 first_block = (first_block * map->volume_blk_size)/512;
3413 cp->tweak_lower = (u32)first_block;
3414 cp->tweak_upper = (u32)(first_block >> 32);
3416 break;
3417 case WRITE_10:
3418 case READ_10:
3419 if (map->volume_blk_size == 512) {
3420 cp->tweak_lower =
3421 (((u32) cmd->cmnd[2]) << 24) |
3422 (((u32) cmd->cmnd[3]) << 16) |
3423 (((u32) cmd->cmnd[4]) << 8) |
3424 cmd->cmnd[5];
3425 cp->tweak_upper = 0;
3426 } else {
3427 first_block =
3428 (((u64) cmd->cmnd[2]) << 24) |
3429 (((u64) cmd->cmnd[3]) << 16) |
3430 (((u64) cmd->cmnd[4]) << 8) |
3431 cmd->cmnd[5];
3432 first_block = (first_block * map->volume_blk_size)/512;
3433 cp->tweak_lower = (u32)first_block;
3434 cp->tweak_upper = (u32)(first_block >> 32);
3436 break;
3437 /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
3438 case WRITE_12:
3439 case READ_12:
3440 if (map->volume_blk_size == 512) {
3441 cp->tweak_lower =
3442 (((u32) cmd->cmnd[2]) << 24) |
3443 (((u32) cmd->cmnd[3]) << 16) |
3444 (((u32) cmd->cmnd[4]) << 8) |
3445 cmd->cmnd[5];
3446 cp->tweak_upper = 0;
3447 } else {
3448 first_block =
3449 (((u64) cmd->cmnd[2]) << 24) |
3450 (((u64) cmd->cmnd[3]) << 16) |
3451 (((u64) cmd->cmnd[4]) << 8) |
3452 cmd->cmnd[5];
3453 first_block = (first_block * map->volume_blk_size)/512;
3454 cp->tweak_lower = (u32)first_block;
3455 cp->tweak_upper = (u32)(first_block >> 32);
3457 break;
3458 case WRITE_16:
3459 case READ_16:
3460 if (map->volume_blk_size == 512) {
3461 cp->tweak_lower =
3462 (((u32) cmd->cmnd[6]) << 24) |
3463 (((u32) cmd->cmnd[7]) << 16) |
3464 (((u32) cmd->cmnd[8]) << 8) |
3465 cmd->cmnd[9];
3466 cp->tweak_upper =
3467 (((u32) cmd->cmnd[2]) << 24) |
3468 (((u32) cmd->cmnd[3]) << 16) |
3469 (((u32) cmd->cmnd[4]) << 8) |
3470 cmd->cmnd[5];
3471 } else {
3472 first_block =
3473 (((u64) cmd->cmnd[2]) << 56) |
3474 (((u64) cmd->cmnd[3]) << 48) |
3475 (((u64) cmd->cmnd[4]) << 40) |
3476 (((u64) cmd->cmnd[5]) << 32) |
3477 (((u64) cmd->cmnd[6]) << 24) |
3478 (((u64) cmd->cmnd[7]) << 16) |
3479 (((u64) cmd->cmnd[8]) << 8) |
3480 cmd->cmnd[9];
3481 first_block = (first_block * map->volume_blk_size)/512;
3482 cp->tweak_lower = (u32)first_block;
3483 cp->tweak_upper = (u32)(first_block >> 32);
3485 break;
3486 default:
3487 dev_err(&h->pdev->dev,
3488 "ERROR: %s: IOACCEL request CDB size not supported for encryption\n",
3489 __func__);
3490 BUG();
3491 break;
3495 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
3496 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3497 u8 *scsi3addr)
3499 struct scsi_cmnd *cmd = c->scsi_cmd;
3500 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
3501 struct ioaccel2_sg_element *curr_sg;
3502 int use_sg, i;
3503 struct scatterlist *sg;
3504 u64 addr64;
3505 u32 len;
3506 u32 total_len = 0;
3508 if (scsi_sg_count(cmd) > h->ioaccel_maxsg)
3509 return IO_ACCEL_INELIGIBLE;
3511 if (fixup_ioaccel_cdb(cdb, &cdb_len))
3512 return IO_ACCEL_INELIGIBLE;
3513 c->cmd_type = CMD_IOACCEL2;
3514 /* Adjust the DMA address to point to the accelerated command buffer */
3515 c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
3516 (c->cmdindex * sizeof(*cp));
3517 BUG_ON(c->busaddr & 0x0000007F);
3519 memset(cp, 0, sizeof(*cp));
3520 cp->IU_type = IOACCEL2_IU_TYPE;
3522 use_sg = scsi_dma_map(cmd);
3523 if (use_sg < 0)
3524 return use_sg;
3526 if (use_sg) {
3527 BUG_ON(use_sg > IOACCEL2_MAXSGENTRIES);
3528 curr_sg = cp->sg;
3529 scsi_for_each_sg(cmd, sg, use_sg, i) {
3530 addr64 = (u64) sg_dma_address(sg);
3531 len = sg_dma_len(sg);
3532 total_len += len;
3533 curr_sg->address = cpu_to_le64(addr64);
3534 curr_sg->length = cpu_to_le32(len);
3535 curr_sg->reserved[0] = 0;
3536 curr_sg->reserved[1] = 0;
3537 curr_sg->reserved[2] = 0;
3538 curr_sg->chain_indicator = 0;
3539 curr_sg++;
3542 switch (cmd->sc_data_direction) {
3543 case DMA_TO_DEVICE:
3544 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3545 cp->direction |= IOACCEL2_DIR_DATA_OUT;
3546 break;
3547 case DMA_FROM_DEVICE:
3548 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3549 cp->direction |= IOACCEL2_DIR_DATA_IN;
3550 break;
3551 case DMA_NONE:
3552 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3553 cp->direction |= IOACCEL2_DIR_NO_DATA;
3554 break;
3555 default:
3556 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
3557 cmd->sc_data_direction);
3558 BUG();
3559 break;
3561 } else {
3562 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3563 cp->direction |= IOACCEL2_DIR_NO_DATA;
3566 /* Set encryption parameters, if necessary */
3567 set_encrypt_ioaccel2(h, c, cp);
3569 cp->scsi_nexus = ioaccel_handle;
3570 cp->Tag = (c->cmdindex << DIRECT_LOOKUP_SHIFT) |
3571 DIRECT_LOOKUP_BIT;
3572 memcpy(cp->cdb, cdb, sizeof(cp->cdb));
3574 /* fill in sg elements */
3575 cp->sg_count = (u8) use_sg;
3577 cp->data_len = cpu_to_le32(total_len);
3578 cp->err_ptr = cpu_to_le64(c->busaddr +
3579 offsetof(struct io_accel2_cmd, error_data));
3580 cp->err_len = cpu_to_le32((u32) sizeof(cp->error_data));
3582 enqueue_cmd_and_start_io(h, c);
3583 return 0;
3587 * Queue a command to the correct I/O accelerator path.
3589 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
3590 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3591 u8 *scsi3addr)
3593 if (h->transMethod & CFGTBL_Trans_io_accel1)
3594 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
3595 cdb, cdb_len, scsi3addr);
3596 else
3597 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
3598 cdb, cdb_len, scsi3addr);
3601 static void raid_map_helper(struct raid_map_data *map,
3602 int offload_to_mirror, u32 *map_index, u32 *current_group)
3604 if (offload_to_mirror == 0) {
3605 /* use physical disk in the first mirrored group. */
3606 *map_index %= map->data_disks_per_row;
3607 return;
3609 do {
3610 /* determine mirror group that *map_index indicates */
3611 *current_group = *map_index / map->data_disks_per_row;
3612 if (offload_to_mirror == *current_group)
3613 continue;
3614 if (*current_group < (map->layout_map_count - 1)) {
3615 /* select map index from next group */
3616 *map_index += map->data_disks_per_row;
3617 (*current_group)++;
3618 } else {
3619 /* select map index from first group */
3620 *map_index %= map->data_disks_per_row;
3621 *current_group = 0;
3623 } while (offload_to_mirror != *current_group);
3627 * Attempt to perform offload RAID mapping for a logical volume I/O.
3629 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
3630 struct CommandList *c)
3632 struct scsi_cmnd *cmd = c->scsi_cmd;
3633 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3634 struct raid_map_data *map = &dev->raid_map;
3635 struct raid_map_disk_data *dd = &map->data[0];
3636 int is_write = 0;
3637 u32 map_index;
3638 u64 first_block, last_block;
3639 u32 block_cnt;
3640 u32 blocks_per_row;
3641 u64 first_row, last_row;
3642 u32 first_row_offset, last_row_offset;
3643 u32 first_column, last_column;
3644 u64 r0_first_row, r0_last_row;
3645 u32 r5or6_blocks_per_row;
3646 u64 r5or6_first_row, r5or6_last_row;
3647 u32 r5or6_first_row_offset, r5or6_last_row_offset;
3648 u32 r5or6_first_column, r5or6_last_column;
3649 u32 total_disks_per_row;
3650 u32 stripesize;
3651 u32 first_group, last_group, current_group;
3652 u32 map_row;
3653 u32 disk_handle;
3654 u64 disk_block;
3655 u32 disk_block_cnt;
3656 u8 cdb[16];
3657 u8 cdb_len;
3658 #if BITS_PER_LONG == 32
3659 u64 tmpdiv;
3660 #endif
3661 int offload_to_mirror;
3663 BUG_ON(!(dev->offload_config && dev->offload_enabled));
3665 /* check for valid opcode, get LBA and block count */
3666 switch (cmd->cmnd[0]) {
3667 case WRITE_6:
3668 is_write = 1;
3669 case READ_6:
3670 first_block =
3671 (((u64) cmd->cmnd[2]) << 8) |
3672 cmd->cmnd[3];
3673 block_cnt = cmd->cmnd[4];
3674 break;
3675 case WRITE_10:
3676 is_write = 1;
3677 case READ_10:
3678 first_block =
3679 (((u64) cmd->cmnd[2]) << 24) |
3680 (((u64) cmd->cmnd[3]) << 16) |
3681 (((u64) cmd->cmnd[4]) << 8) |
3682 cmd->cmnd[5];
3683 block_cnt =
3684 (((u32) cmd->cmnd[7]) << 8) |
3685 cmd->cmnd[8];
3686 break;
3687 case WRITE_12:
3688 is_write = 1;
3689 case READ_12:
3690 first_block =
3691 (((u64) cmd->cmnd[2]) << 24) |
3692 (((u64) cmd->cmnd[3]) << 16) |
3693 (((u64) cmd->cmnd[4]) << 8) |
3694 cmd->cmnd[5];
3695 block_cnt =
3696 (((u32) cmd->cmnd[6]) << 24) |
3697 (((u32) cmd->cmnd[7]) << 16) |
3698 (((u32) cmd->cmnd[8]) << 8) |
3699 cmd->cmnd[9];
3700 break;
3701 case WRITE_16:
3702 is_write = 1;
3703 case READ_16:
3704 first_block =
3705 (((u64) cmd->cmnd[2]) << 56) |
3706 (((u64) cmd->cmnd[3]) << 48) |
3707 (((u64) cmd->cmnd[4]) << 40) |
3708 (((u64) cmd->cmnd[5]) << 32) |
3709 (((u64) cmd->cmnd[6]) << 24) |
3710 (((u64) cmd->cmnd[7]) << 16) |
3711 (((u64) cmd->cmnd[8]) << 8) |
3712 cmd->cmnd[9];
3713 block_cnt =
3714 (((u32) cmd->cmnd[10]) << 24) |
3715 (((u32) cmd->cmnd[11]) << 16) |
3716 (((u32) cmd->cmnd[12]) << 8) |
3717 cmd->cmnd[13];
3718 break;
3719 default:
3720 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
3722 BUG_ON(block_cnt == 0);
3723 last_block = first_block + block_cnt - 1;
3725 /* check for write to non-RAID-0 */
3726 if (is_write && dev->raid_level != 0)
3727 return IO_ACCEL_INELIGIBLE;
3729 /* check for invalid block or wraparound */
3730 if (last_block >= map->volume_blk_cnt || last_block < first_block)
3731 return IO_ACCEL_INELIGIBLE;
3733 /* calculate stripe information for the request */
3734 blocks_per_row = map->data_disks_per_row * map->strip_size;
3735 #if BITS_PER_LONG == 32
3736 tmpdiv = first_block;
3737 (void) do_div(tmpdiv, blocks_per_row);
3738 first_row = tmpdiv;
3739 tmpdiv = last_block;
3740 (void) do_div(tmpdiv, blocks_per_row);
3741 last_row = tmpdiv;
3742 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
3743 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
3744 tmpdiv = first_row_offset;
3745 (void) do_div(tmpdiv, map->strip_size);
3746 first_column = tmpdiv;
3747 tmpdiv = last_row_offset;
3748 (void) do_div(tmpdiv, map->strip_size);
3749 last_column = tmpdiv;
3750 #else
3751 first_row = first_block / blocks_per_row;
3752 last_row = last_block / blocks_per_row;
3753 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
3754 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
3755 first_column = first_row_offset / map->strip_size;
3756 last_column = last_row_offset / map->strip_size;
3757 #endif
3759 /* if this isn't a single row/column then give to the controller */
3760 if ((first_row != last_row) || (first_column != last_column))
3761 return IO_ACCEL_INELIGIBLE;
3763 /* proceeding with driver mapping */
3764 total_disks_per_row = map->data_disks_per_row +
3765 map->metadata_disks_per_row;
3766 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
3767 map->row_cnt;
3768 map_index = (map_row * total_disks_per_row) + first_column;
3770 switch (dev->raid_level) {
3771 case HPSA_RAID_0:
3772 break; /* nothing special to do */
3773 case HPSA_RAID_1:
3774 /* Handles load balance across RAID 1 members.
3775 * (2-drive R1 and R10 with even # of drives.)
3776 * Appropriate for SSDs, not optimal for HDDs
3778 BUG_ON(map->layout_map_count != 2);
3779 if (dev->offload_to_mirror)
3780 map_index += map->data_disks_per_row;
3781 dev->offload_to_mirror = !dev->offload_to_mirror;
3782 break;
3783 case HPSA_RAID_ADM:
3784 /* Handles N-way mirrors (R1-ADM)
3785 * and R10 with # of drives divisible by 3.)
3787 BUG_ON(map->layout_map_count != 3);
3789 offload_to_mirror = dev->offload_to_mirror;
3790 raid_map_helper(map, offload_to_mirror,
3791 &map_index, &current_group);
3792 /* set mirror group to use next time */
3793 offload_to_mirror =
3794 (offload_to_mirror >= map->layout_map_count - 1)
3795 ? 0 : offload_to_mirror + 1;
3796 /* FIXME: remove after debug/dev */
3797 BUG_ON(offload_to_mirror >= map->layout_map_count);
3798 dev_warn(&h->pdev->dev,
3799 "DEBUG: Using physical disk map index %d from mirror group %d\n",
3800 map_index, offload_to_mirror);
3801 dev->offload_to_mirror = offload_to_mirror;
3802 /* Avoid direct use of dev->offload_to_mirror within this
3803 * function since multiple threads might simultaneously
3804 * increment it beyond the range of dev->layout_map_count -1.
3806 break;
3807 case HPSA_RAID_5:
3808 case HPSA_RAID_6:
3809 if (map->layout_map_count <= 1)
3810 break;
3812 /* Verify first and last block are in same RAID group */
3813 r5or6_blocks_per_row =
3814 map->strip_size * map->data_disks_per_row;
3815 BUG_ON(r5or6_blocks_per_row == 0);
3816 stripesize = r5or6_blocks_per_row * map->layout_map_count;
3817 #if BITS_PER_LONG == 32
3818 tmpdiv = first_block;
3819 first_group = do_div(tmpdiv, stripesize);
3820 tmpdiv = first_group;
3821 (void) do_div(tmpdiv, r5or6_blocks_per_row);
3822 first_group = tmpdiv;
3823 tmpdiv = last_block;
3824 last_group = do_div(tmpdiv, stripesize);
3825 tmpdiv = last_group;
3826 (void) do_div(tmpdiv, r5or6_blocks_per_row);
3827 last_group = tmpdiv;
3828 #else
3829 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
3830 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
3831 #endif
3832 if (first_group != last_group)
3833 return IO_ACCEL_INELIGIBLE;
3835 /* Verify request is in a single row of RAID 5/6 */
3836 #if BITS_PER_LONG == 32
3837 tmpdiv = first_block;
3838 (void) do_div(tmpdiv, stripesize);
3839 first_row = r5or6_first_row = r0_first_row = tmpdiv;
3840 tmpdiv = last_block;
3841 (void) do_div(tmpdiv, stripesize);
3842 r5or6_last_row = r0_last_row = tmpdiv;
3843 #else
3844 first_row = r5or6_first_row = r0_first_row =
3845 first_block / stripesize;
3846 r5or6_last_row = r0_last_row = last_block / stripesize;
3847 #endif
3848 if (r5or6_first_row != r5or6_last_row)
3849 return IO_ACCEL_INELIGIBLE;
3852 /* Verify request is in a single column */
3853 #if BITS_PER_LONG == 32
3854 tmpdiv = first_block;
3855 first_row_offset = do_div(tmpdiv, stripesize);
3856 tmpdiv = first_row_offset;
3857 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
3858 r5or6_first_row_offset = first_row_offset;
3859 tmpdiv = last_block;
3860 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
3861 tmpdiv = r5or6_last_row_offset;
3862 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
3863 tmpdiv = r5or6_first_row_offset;
3864 (void) do_div(tmpdiv, map->strip_size);
3865 first_column = r5or6_first_column = tmpdiv;
3866 tmpdiv = r5or6_last_row_offset;
3867 (void) do_div(tmpdiv, map->strip_size);
3868 r5or6_last_column = tmpdiv;
3869 #else
3870 first_row_offset = r5or6_first_row_offset =
3871 (u32)((first_block % stripesize) %
3872 r5or6_blocks_per_row);
3874 r5or6_last_row_offset =
3875 (u32)((last_block % stripesize) %
3876 r5or6_blocks_per_row);
3878 first_column = r5or6_first_column =
3879 r5or6_first_row_offset / map->strip_size;
3880 r5or6_last_column =
3881 r5or6_last_row_offset / map->strip_size;
3882 #endif
3883 if (r5or6_first_column != r5or6_last_column)
3884 return IO_ACCEL_INELIGIBLE;
3886 /* Request is eligible */
3887 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
3888 map->row_cnt;
3890 map_index = (first_group *
3891 (map->row_cnt * total_disks_per_row)) +
3892 (map_row * total_disks_per_row) + first_column;
3893 break;
3894 default:
3895 return IO_ACCEL_INELIGIBLE;
3898 disk_handle = dd[map_index].ioaccel_handle;
3899 disk_block = map->disk_starting_blk + (first_row * map->strip_size) +
3900 (first_row_offset - (first_column * map->strip_size));
3901 disk_block_cnt = block_cnt;
3903 /* handle differing logical/physical block sizes */
3904 if (map->phys_blk_shift) {
3905 disk_block <<= map->phys_blk_shift;
3906 disk_block_cnt <<= map->phys_blk_shift;
3908 BUG_ON(disk_block_cnt > 0xffff);
3910 /* build the new CDB for the physical disk I/O */
3911 if (disk_block > 0xffffffff) {
3912 cdb[0] = is_write ? WRITE_16 : READ_16;
3913 cdb[1] = 0;
3914 cdb[2] = (u8) (disk_block >> 56);
3915 cdb[3] = (u8) (disk_block >> 48);
3916 cdb[4] = (u8) (disk_block >> 40);
3917 cdb[5] = (u8) (disk_block >> 32);
3918 cdb[6] = (u8) (disk_block >> 24);
3919 cdb[7] = (u8) (disk_block >> 16);
3920 cdb[8] = (u8) (disk_block >> 8);
3921 cdb[9] = (u8) (disk_block);
3922 cdb[10] = (u8) (disk_block_cnt >> 24);
3923 cdb[11] = (u8) (disk_block_cnt >> 16);
3924 cdb[12] = (u8) (disk_block_cnt >> 8);
3925 cdb[13] = (u8) (disk_block_cnt);
3926 cdb[14] = 0;
3927 cdb[15] = 0;
3928 cdb_len = 16;
3929 } else {
3930 cdb[0] = is_write ? WRITE_10 : READ_10;
3931 cdb[1] = 0;
3932 cdb[2] = (u8) (disk_block >> 24);
3933 cdb[3] = (u8) (disk_block >> 16);
3934 cdb[4] = (u8) (disk_block >> 8);
3935 cdb[5] = (u8) (disk_block);
3936 cdb[6] = 0;
3937 cdb[7] = (u8) (disk_block_cnt >> 8);
3938 cdb[8] = (u8) (disk_block_cnt);
3939 cdb[9] = 0;
3940 cdb_len = 10;
3942 return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
3943 dev->scsi3addr);
3946 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
3947 void (*done)(struct scsi_cmnd *))
3949 struct ctlr_info *h;
3950 struct hpsa_scsi_dev_t *dev;
3951 unsigned char scsi3addr[8];
3952 struct CommandList *c;
3953 unsigned long flags;
3954 int rc = 0;
3956 /* Get the ptr to our adapter structure out of cmd->host. */
3957 h = sdev_to_hba(cmd->device);
3958 dev = cmd->device->hostdata;
3959 if (!dev) {
3960 cmd->result = DID_NO_CONNECT << 16;
3961 done(cmd);
3962 return 0;
3964 memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
3966 spin_lock_irqsave(&h->lock, flags);
3967 if (unlikely(h->lockup_detected)) {
3968 spin_unlock_irqrestore(&h->lock, flags);
3969 cmd->result = DID_ERROR << 16;
3970 done(cmd);
3971 return 0;
3973 spin_unlock_irqrestore(&h->lock, flags);
3974 c = cmd_alloc(h);
3975 if (c == NULL) { /* trouble... */
3976 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
3977 return SCSI_MLQUEUE_HOST_BUSY;
3980 /* Fill in the command list header */
3982 cmd->scsi_done = done; /* save this for use by completion code */
3984 /* save c in case we have to abort it */
3985 cmd->host_scribble = (unsigned char *) c;
3987 c->cmd_type = CMD_SCSI;
3988 c->scsi_cmd = cmd;
3990 /* Call alternate submit routine for I/O accelerated commands.
3991 * Retries always go down the normal I/O path.
3993 if (likely(cmd->retries == 0 &&
3994 cmd->request->cmd_type == REQ_TYPE_FS &&
3995 h->acciopath_status)) {
3996 if (dev->offload_enabled) {
3997 rc = hpsa_scsi_ioaccel_raid_map(h, c);
3998 if (rc == 0)
3999 return 0; /* Sent on ioaccel path */
4000 if (rc < 0) { /* scsi_dma_map failed. */
4001 cmd_free(h, c);
4002 return SCSI_MLQUEUE_HOST_BUSY;
4004 } else if (dev->ioaccel_handle) {
4005 rc = hpsa_scsi_ioaccel_direct_map(h, c);
4006 if (rc == 0)
4007 return 0; /* Sent on direct map path */
4008 if (rc < 0) { /* scsi_dma_map failed. */
4009 cmd_free(h, c);
4010 return SCSI_MLQUEUE_HOST_BUSY;
4015 c->Header.ReplyQueue = 0; /* unused in simple mode */
4016 memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
4017 c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
4018 c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
4020 /* Fill in the request block... */
4022 c->Request.Timeout = 0;
4023 memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
4024 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
4025 c->Request.CDBLen = cmd->cmd_len;
4026 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
4027 c->Request.Type.Type = TYPE_CMD;
4028 c->Request.Type.Attribute = ATTR_SIMPLE;
4029 switch (cmd->sc_data_direction) {
4030 case DMA_TO_DEVICE:
4031 c->Request.Type.Direction = XFER_WRITE;
4032 break;
4033 case DMA_FROM_DEVICE:
4034 c->Request.Type.Direction = XFER_READ;
4035 break;
4036 case DMA_NONE:
4037 c->Request.Type.Direction = XFER_NONE;
4038 break;
4039 case DMA_BIDIRECTIONAL:
4040 /* This can happen if a buggy application does a scsi passthru
4041 * and sets both inlen and outlen to non-zero. ( see
4042 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
4045 c->Request.Type.Direction = XFER_RSVD;
4046 /* This is technically wrong, and hpsa controllers should
4047 * reject it with CMD_INVALID, which is the most correct
4048 * response, but non-fibre backends appear to let it
4049 * slide by, and give the same results as if this field
4050 * were set correctly. Either way is acceptable for
4051 * our purposes here.
4054 break;
4056 default:
4057 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4058 cmd->sc_data_direction);
4059 BUG();
4060 break;
4063 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
4064 cmd_free(h, c);
4065 return SCSI_MLQUEUE_HOST_BUSY;
4067 enqueue_cmd_and_start_io(h, c);
4068 /* the cmd'll come back via intr handler in complete_scsi_command() */
4069 return 0;
4072 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
4074 static int do_not_scan_if_controller_locked_up(struct ctlr_info *h)
4076 unsigned long flags;
4079 * Don't let rescans be initiated on a controller known
4080 * to be locked up. If the controller locks up *during*
4081 * a rescan, that thread is probably hosed, but at least
4082 * we can prevent new rescan threads from piling up on a
4083 * locked up controller.
4085 spin_lock_irqsave(&h->lock, flags);
4086 if (unlikely(h->lockup_detected)) {
4087 spin_unlock_irqrestore(&h->lock, flags);
4088 spin_lock_irqsave(&h->scan_lock, flags);
4089 h->scan_finished = 1;
4090 wake_up_all(&h->scan_wait_queue);
4091 spin_unlock_irqrestore(&h->scan_lock, flags);
4092 return 1;
4094 spin_unlock_irqrestore(&h->lock, flags);
4095 return 0;
4098 static void hpsa_scan_start(struct Scsi_Host *sh)
4100 struct ctlr_info *h = shost_to_hba(sh);
4101 unsigned long flags;
4103 if (do_not_scan_if_controller_locked_up(h))
4104 return;
4106 /* wait until any scan already in progress is finished. */
4107 while (1) {
4108 spin_lock_irqsave(&h->scan_lock, flags);
4109 if (h->scan_finished)
4110 break;
4111 spin_unlock_irqrestore(&h->scan_lock, flags);
4112 wait_event(h->scan_wait_queue, h->scan_finished);
4113 /* Note: We don't need to worry about a race between this
4114 * thread and driver unload because the midlayer will
4115 * have incremented the reference count, so unload won't
4116 * happen if we're in here.
4119 h->scan_finished = 0; /* mark scan as in progress */
4120 spin_unlock_irqrestore(&h->scan_lock, flags);
4122 if (do_not_scan_if_controller_locked_up(h))
4123 return;
4125 hpsa_update_scsi_devices(h, h->scsi_host->host_no);
4127 spin_lock_irqsave(&h->scan_lock, flags);
4128 h->scan_finished = 1; /* mark scan as finished. */
4129 wake_up_all(&h->scan_wait_queue);
4130 spin_unlock_irqrestore(&h->scan_lock, flags);
4133 static int hpsa_scan_finished(struct Scsi_Host *sh,
4134 unsigned long elapsed_time)
4136 struct ctlr_info *h = shost_to_hba(sh);
4137 unsigned long flags;
4138 int finished;
4140 spin_lock_irqsave(&h->scan_lock, flags);
4141 finished = h->scan_finished;
4142 spin_unlock_irqrestore(&h->scan_lock, flags);
4143 return finished;
4146 static int hpsa_change_queue_depth(struct scsi_device *sdev,
4147 int qdepth, int reason)
4149 struct ctlr_info *h = sdev_to_hba(sdev);
4151 if (reason != SCSI_QDEPTH_DEFAULT)
4152 return -ENOTSUPP;
4154 if (qdepth < 1)
4155 qdepth = 1;
4156 else
4157 if (qdepth > h->nr_cmds)
4158 qdepth = h->nr_cmds;
4159 scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
4160 return sdev->queue_depth;
4163 static void hpsa_unregister_scsi(struct ctlr_info *h)
4165 /* we are being forcibly unloaded, and may not refuse. */
4166 scsi_remove_host(h->scsi_host);
4167 scsi_host_put(h->scsi_host);
4168 h->scsi_host = NULL;
4171 static int hpsa_register_scsi(struct ctlr_info *h)
4173 struct Scsi_Host *sh;
4174 int error;
4176 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
4177 if (sh == NULL)
4178 goto fail;
4180 sh->io_port = 0;
4181 sh->n_io_port = 0;
4182 sh->this_id = -1;
4183 sh->max_channel = 3;
4184 sh->max_cmd_len = MAX_COMMAND_SIZE;
4185 sh->max_lun = HPSA_MAX_LUN;
4186 sh->max_id = HPSA_MAX_LUN;
4187 sh->can_queue = h->nr_cmds;
4188 if (h->hba_mode_enabled)
4189 sh->cmd_per_lun = 7;
4190 else
4191 sh->cmd_per_lun = h->nr_cmds;
4192 sh->sg_tablesize = h->maxsgentries;
4193 h->scsi_host = sh;
4194 sh->hostdata[0] = (unsigned long) h;
4195 sh->irq = h->intr[h->intr_mode];
4196 sh->unique_id = sh->irq;
4197 error = scsi_add_host(sh, &h->pdev->dev);
4198 if (error)
4199 goto fail_host_put;
4200 scsi_scan_host(sh);
4201 return 0;
4203 fail_host_put:
4204 dev_err(&h->pdev->dev, "%s: scsi_add_host"
4205 " failed for controller %d\n", __func__, h->ctlr);
4206 scsi_host_put(sh);
4207 return error;
4208 fail:
4209 dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
4210 " failed for controller %d\n", __func__, h->ctlr);
4211 return -ENOMEM;
4214 static int wait_for_device_to_become_ready(struct ctlr_info *h,
4215 unsigned char lunaddr[])
4217 int rc;
4218 int count = 0;
4219 int waittime = 1; /* seconds */
4220 struct CommandList *c;
4222 c = cmd_special_alloc(h);
4223 if (!c) {
4224 dev_warn(&h->pdev->dev, "out of memory in "
4225 "wait_for_device_to_become_ready.\n");
4226 return IO_ERROR;
4229 /* Send test unit ready until device ready, or give up. */
4230 while (count < HPSA_TUR_RETRY_LIMIT) {
4232 /* Wait for a bit. do this first, because if we send
4233 * the TUR right away, the reset will just abort it.
4235 msleep(1000 * waittime);
4236 count++;
4237 rc = 0; /* Device ready. */
4239 /* Increase wait time with each try, up to a point. */
4240 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
4241 waittime = waittime * 2;
4243 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
4244 (void) fill_cmd(c, TEST_UNIT_READY, h,
4245 NULL, 0, 0, lunaddr, TYPE_CMD);
4246 hpsa_scsi_do_simple_cmd_core(h, c);
4247 /* no unmap needed here because no data xfer. */
4249 if (c->err_info->CommandStatus == CMD_SUCCESS)
4250 break;
4252 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
4253 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
4254 (c->err_info->SenseInfo[2] == NO_SENSE ||
4255 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
4256 break;
4258 dev_warn(&h->pdev->dev, "waiting %d secs "
4259 "for device to become ready.\n", waittime);
4260 rc = 1; /* device not ready. */
4263 if (rc)
4264 dev_warn(&h->pdev->dev, "giving up on device.\n");
4265 else
4266 dev_warn(&h->pdev->dev, "device is ready.\n");
4268 cmd_special_free(h, c);
4269 return rc;
4272 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
4273 * complaining. Doing a host- or bus-reset can't do anything good here.
4275 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
4277 int rc;
4278 struct ctlr_info *h;
4279 struct hpsa_scsi_dev_t *dev;
4281 /* find the controller to which the command to be aborted was sent */
4282 h = sdev_to_hba(scsicmd->device);
4283 if (h == NULL) /* paranoia */
4284 return FAILED;
4285 dev = scsicmd->device->hostdata;
4286 if (!dev) {
4287 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
4288 "device lookup failed.\n");
4289 return FAILED;
4291 dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
4292 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
4293 /* send a reset to the SCSI LUN which the command was sent to */
4294 rc = hpsa_send_reset(h, dev->scsi3addr, HPSA_RESET_TYPE_LUN);
4295 if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
4296 return SUCCESS;
4298 dev_warn(&h->pdev->dev, "resetting device failed.\n");
4299 return FAILED;
4302 static void swizzle_abort_tag(u8 *tag)
4304 u8 original_tag[8];
4306 memcpy(original_tag, tag, 8);
4307 tag[0] = original_tag[3];
4308 tag[1] = original_tag[2];
4309 tag[2] = original_tag[1];
4310 tag[3] = original_tag[0];
4311 tag[4] = original_tag[7];
4312 tag[5] = original_tag[6];
4313 tag[6] = original_tag[5];
4314 tag[7] = original_tag[4];
4317 static void hpsa_get_tag(struct ctlr_info *h,
4318 struct CommandList *c, u32 *taglower, u32 *tagupper)
4320 if (c->cmd_type == CMD_IOACCEL1) {
4321 struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
4322 &h->ioaccel_cmd_pool[c->cmdindex];
4323 *tagupper = cm1->Tag.upper;
4324 *taglower = cm1->Tag.lower;
4325 return;
4327 if (c->cmd_type == CMD_IOACCEL2) {
4328 struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
4329 &h->ioaccel2_cmd_pool[c->cmdindex];
4330 /* upper tag not used in ioaccel2 mode */
4331 memset(tagupper, 0, sizeof(*tagupper));
4332 *taglower = cm2->Tag;
4333 return;
4335 *tagupper = c->Header.Tag.upper;
4336 *taglower = c->Header.Tag.lower;
4340 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
4341 struct CommandList *abort, int swizzle)
4343 int rc = IO_OK;
4344 struct CommandList *c;
4345 struct ErrorInfo *ei;
4346 u32 tagupper, taglower;
4348 c = cmd_special_alloc(h);
4349 if (c == NULL) { /* trouble... */
4350 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4351 return -ENOMEM;
4354 /* fill_cmd can't fail here, no buffer to map */
4355 (void) fill_cmd(c, HPSA_ABORT_MSG, h, abort,
4356 0, 0, scsi3addr, TYPE_MSG);
4357 if (swizzle)
4358 swizzle_abort_tag(&c->Request.CDB[4]);
4359 hpsa_scsi_do_simple_cmd_core(h, c);
4360 hpsa_get_tag(h, abort, &taglower, &tagupper);
4361 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n",
4362 __func__, tagupper, taglower);
4363 /* no unmap needed here because no data xfer. */
4365 ei = c->err_info;
4366 switch (ei->CommandStatus) {
4367 case CMD_SUCCESS:
4368 break;
4369 case CMD_UNABORTABLE: /* Very common, don't make noise. */
4370 rc = -1;
4371 break;
4372 default:
4373 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
4374 __func__, tagupper, taglower);
4375 hpsa_scsi_interpret_error(h, c);
4376 rc = -1;
4377 break;
4379 cmd_special_free(h, c);
4380 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
4381 __func__, tagupper, taglower);
4382 return rc;
4386 * hpsa_find_cmd_in_queue
4388 * Used to determine whether a command (find) is still present
4389 * in queue_head. Optionally excludes the last element of queue_head.
4391 * This is used to avoid unnecessary aborts. Commands in h->reqQ have
4392 * not yet been submitted, and so can be aborted by the driver without
4393 * sending an abort to the hardware.
4395 * Returns pointer to command if found in queue, NULL otherwise.
4397 static struct CommandList *hpsa_find_cmd_in_queue(struct ctlr_info *h,
4398 struct scsi_cmnd *find, struct list_head *queue_head)
4400 unsigned long flags;
4401 struct CommandList *c = NULL; /* ptr into cmpQ */
4403 if (!find)
4404 return 0;
4405 spin_lock_irqsave(&h->lock, flags);
4406 list_for_each_entry(c, queue_head, list) {
4407 if (c->scsi_cmd == NULL) /* e.g.: passthru ioctl */
4408 continue;
4409 if (c->scsi_cmd == find) {
4410 spin_unlock_irqrestore(&h->lock, flags);
4411 return c;
4414 spin_unlock_irqrestore(&h->lock, flags);
4415 return NULL;
4418 static struct CommandList *hpsa_find_cmd_in_queue_by_tag(struct ctlr_info *h,
4419 u8 *tag, struct list_head *queue_head)
4421 unsigned long flags;
4422 struct CommandList *c;
4424 spin_lock_irqsave(&h->lock, flags);
4425 list_for_each_entry(c, queue_head, list) {
4426 if (memcmp(&c->Header.Tag, tag, 8) != 0)
4427 continue;
4428 spin_unlock_irqrestore(&h->lock, flags);
4429 return c;
4431 spin_unlock_irqrestore(&h->lock, flags);
4432 return NULL;
4435 /* ioaccel2 path firmware cannot handle abort task requests.
4436 * Change abort requests to physical target reset, and send to the
4437 * address of the physical disk used for the ioaccel 2 command.
4438 * Return 0 on success (IO_OK)
4439 * -1 on failure
4442 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
4443 unsigned char *scsi3addr, struct CommandList *abort)
4445 int rc = IO_OK;
4446 struct scsi_cmnd *scmd; /* scsi command within request being aborted */
4447 struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
4448 unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
4449 unsigned char *psa = &phys_scsi3addr[0];
4451 /* Get a pointer to the hpsa logical device. */
4452 scmd = (struct scsi_cmnd *) abort->scsi_cmd;
4453 dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
4454 if (dev == NULL) {
4455 dev_warn(&h->pdev->dev,
4456 "Cannot abort: no device pointer for command.\n");
4457 return -1; /* not abortable */
4460 if (h->raid_offload_debug > 0)
4461 dev_info(&h->pdev->dev,
4462 "Reset as abort: Abort requested on C%d:B%d:T%d:L%d scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4463 h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
4464 scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
4465 scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
4467 if (!dev->offload_enabled) {
4468 dev_warn(&h->pdev->dev,
4469 "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
4470 return -1; /* not abortable */
4473 /* Incoming scsi3addr is logical addr. We need physical disk addr. */
4474 if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
4475 dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
4476 return -1; /* not abortable */
4479 /* send the reset */
4480 if (h->raid_offload_debug > 0)
4481 dev_info(&h->pdev->dev,
4482 "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4483 psa[0], psa[1], psa[2], psa[3],
4484 psa[4], psa[5], psa[6], psa[7]);
4485 rc = hpsa_send_reset(h, psa, HPSA_RESET_TYPE_TARGET);
4486 if (rc != 0) {
4487 dev_warn(&h->pdev->dev,
4488 "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4489 psa[0], psa[1], psa[2], psa[3],
4490 psa[4], psa[5], psa[6], psa[7]);
4491 return rc; /* failed to reset */
4494 /* wait for device to recover */
4495 if (wait_for_device_to_become_ready(h, psa) != 0) {
4496 dev_warn(&h->pdev->dev,
4497 "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4498 psa[0], psa[1], psa[2], psa[3],
4499 psa[4], psa[5], psa[6], psa[7]);
4500 return -1; /* failed to recover */
4503 /* device recovered */
4504 dev_info(&h->pdev->dev,
4505 "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4506 psa[0], psa[1], psa[2], psa[3],
4507 psa[4], psa[5], psa[6], psa[7]);
4509 return rc; /* success */
4512 /* Some Smart Arrays need the abort tag swizzled, and some don't. It's hard to
4513 * tell which kind we're dealing with, so we send the abort both ways. There
4514 * shouldn't be any collisions between swizzled and unswizzled tags due to the
4515 * way we construct our tags but we check anyway in case the assumptions which
4516 * make this true someday become false.
4518 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
4519 unsigned char *scsi3addr, struct CommandList *abort)
4521 u8 swizzled_tag[8];
4522 struct CommandList *c;
4523 int rc = 0, rc2 = 0;
4525 /* ioccelerator mode 2 commands should be aborted via the
4526 * accelerated path, since RAID path is unaware of these commands,
4527 * but underlying firmware can't handle abort TMF.
4528 * Change abort to physical device reset.
4530 if (abort->cmd_type == CMD_IOACCEL2)
4531 return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr, abort);
4533 /* we do not expect to find the swizzled tag in our queue, but
4534 * check anyway just to be sure the assumptions which make this
4535 * the case haven't become wrong.
4537 memcpy(swizzled_tag, &abort->Request.CDB[4], 8);
4538 swizzle_abort_tag(swizzled_tag);
4539 c = hpsa_find_cmd_in_queue_by_tag(h, swizzled_tag, &h->cmpQ);
4540 if (c != NULL) {
4541 dev_warn(&h->pdev->dev, "Unexpectedly found byte-swapped tag in completion queue.\n");
4542 return hpsa_send_abort(h, scsi3addr, abort, 0);
4544 rc = hpsa_send_abort(h, scsi3addr, abort, 0);
4546 /* if the command is still in our queue, we can't conclude that it was
4547 * aborted (it might have just completed normally) but in any case
4548 * we don't need to try to abort it another way.
4550 c = hpsa_find_cmd_in_queue(h, abort->scsi_cmd, &h->cmpQ);
4551 if (c)
4552 rc2 = hpsa_send_abort(h, scsi3addr, abort, 1);
4553 return rc && rc2;
4556 /* Send an abort for the specified command.
4557 * If the device and controller support it,
4558 * send a task abort request.
4560 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
4563 int i, rc;
4564 struct ctlr_info *h;
4565 struct hpsa_scsi_dev_t *dev;
4566 struct CommandList *abort; /* pointer to command to be aborted */
4567 struct CommandList *found;
4568 struct scsi_cmnd *as; /* ptr to scsi cmd inside aborted command. */
4569 char msg[256]; /* For debug messaging. */
4570 int ml = 0;
4571 u32 tagupper, taglower;
4573 /* Find the controller of the command to be aborted */
4574 h = sdev_to_hba(sc->device);
4575 if (WARN(h == NULL,
4576 "ABORT REQUEST FAILED, Controller lookup failed.\n"))
4577 return FAILED;
4579 /* Check that controller supports some kind of task abort */
4580 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
4581 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
4582 return FAILED;
4584 memset(msg, 0, sizeof(msg));
4585 ml += sprintf(msg+ml, "ABORT REQUEST on C%d:B%d:T%d:L%d ",
4586 h->scsi_host->host_no, sc->device->channel,
4587 sc->device->id, sc->device->lun);
4589 /* Find the device of the command to be aborted */
4590 dev = sc->device->hostdata;
4591 if (!dev) {
4592 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
4593 msg);
4594 return FAILED;
4597 /* Get SCSI command to be aborted */
4598 abort = (struct CommandList *) sc->host_scribble;
4599 if (abort == NULL) {
4600 dev_err(&h->pdev->dev, "%s FAILED, Command to abort is NULL.\n",
4601 msg);
4602 return FAILED;
4604 hpsa_get_tag(h, abort, &taglower, &tagupper);
4605 ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
4606 as = (struct scsi_cmnd *) abort->scsi_cmd;
4607 if (as != NULL)
4608 ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ",
4609 as->cmnd[0], as->serial_number);
4610 dev_dbg(&h->pdev->dev, "%s\n", msg);
4611 dev_warn(&h->pdev->dev, "Abort request on C%d:B%d:T%d:L%d\n",
4612 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
4614 /* Search reqQ to See if command is queued but not submitted,
4615 * if so, complete the command with aborted status and remove
4616 * it from the reqQ.
4618 found = hpsa_find_cmd_in_queue(h, sc, &h->reqQ);
4619 if (found) {
4620 found->err_info->CommandStatus = CMD_ABORTED;
4621 finish_cmd(found);
4622 dev_info(&h->pdev->dev, "%s Request SUCCEEDED (driver queue).\n",
4623 msg);
4624 return SUCCESS;
4627 /* not in reqQ, if also not in cmpQ, must have already completed */
4628 found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
4629 if (!found) {
4630 dev_dbg(&h->pdev->dev, "%s Request SUCCEEDED (not known to driver).\n",
4631 msg);
4632 return SUCCESS;
4636 * Command is in flight, or possibly already completed
4637 * by the firmware (but not to the scsi mid layer) but we can't
4638 * distinguish which. Send the abort down.
4640 rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort);
4641 if (rc != 0) {
4642 dev_dbg(&h->pdev->dev, "%s Request FAILED.\n", msg);
4643 dev_warn(&h->pdev->dev, "FAILED abort on device C%d:B%d:T%d:L%d\n",
4644 h->scsi_host->host_no,
4645 dev->bus, dev->target, dev->lun);
4646 return FAILED;
4648 dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg);
4650 /* If the abort(s) above completed and actually aborted the
4651 * command, then the command to be aborted should already be
4652 * completed. If not, wait around a bit more to see if they
4653 * manage to complete normally.
4655 #define ABORT_COMPLETE_WAIT_SECS 30
4656 for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) {
4657 found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
4658 if (!found)
4659 return SUCCESS;
4660 msleep(100);
4662 dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n",
4663 msg, ABORT_COMPLETE_WAIT_SECS);
4664 return FAILED;
4669 * For operations that cannot sleep, a command block is allocated at init,
4670 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
4671 * which ones are free or in use. Lock must be held when calling this.
4672 * cmd_free() is the complement.
4674 static struct CommandList *cmd_alloc(struct ctlr_info *h)
4676 struct CommandList *c;
4677 int i;
4678 union u64bit temp64;
4679 dma_addr_t cmd_dma_handle, err_dma_handle;
4680 unsigned long flags;
4682 spin_lock_irqsave(&h->lock, flags);
4683 do {
4684 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
4685 if (i == h->nr_cmds) {
4686 spin_unlock_irqrestore(&h->lock, flags);
4687 return NULL;
4689 } while (test_and_set_bit
4690 (i & (BITS_PER_LONG - 1),
4691 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
4692 spin_unlock_irqrestore(&h->lock, flags);
4694 c = h->cmd_pool + i;
4695 memset(c, 0, sizeof(*c));
4696 cmd_dma_handle = h->cmd_pool_dhandle
4697 + i * sizeof(*c);
4698 c->err_info = h->errinfo_pool + i;
4699 memset(c->err_info, 0, sizeof(*c->err_info));
4700 err_dma_handle = h->errinfo_pool_dhandle
4701 + i * sizeof(*c->err_info);
4703 c->cmdindex = i;
4705 INIT_LIST_HEAD(&c->list);
4706 c->busaddr = (u32) cmd_dma_handle;
4707 temp64.val = (u64) err_dma_handle;
4708 c->ErrDesc.Addr.lower = temp64.val32.lower;
4709 c->ErrDesc.Addr.upper = temp64.val32.upper;
4710 c->ErrDesc.Len = sizeof(*c->err_info);
4712 c->h = h;
4713 return c;
4716 /* For operations that can wait for kmalloc to possibly sleep,
4717 * this routine can be called. Lock need not be held to call
4718 * cmd_special_alloc. cmd_special_free() is the complement.
4720 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
4722 struct CommandList *c;
4723 union u64bit temp64;
4724 dma_addr_t cmd_dma_handle, err_dma_handle;
4726 c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
4727 if (c == NULL)
4728 return NULL;
4729 memset(c, 0, sizeof(*c));
4731 c->cmd_type = CMD_SCSI;
4732 c->cmdindex = -1;
4734 c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
4735 &err_dma_handle);
4737 if (c->err_info == NULL) {
4738 pci_free_consistent(h->pdev,
4739 sizeof(*c), c, cmd_dma_handle);
4740 return NULL;
4742 memset(c->err_info, 0, sizeof(*c->err_info));
4744 INIT_LIST_HEAD(&c->list);
4745 c->busaddr = (u32) cmd_dma_handle;
4746 temp64.val = (u64) err_dma_handle;
4747 c->ErrDesc.Addr.lower = temp64.val32.lower;
4748 c->ErrDesc.Addr.upper = temp64.val32.upper;
4749 c->ErrDesc.Len = sizeof(*c->err_info);
4751 c->h = h;
4752 return c;
4755 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
4757 int i;
4758 unsigned long flags;
4760 i = c - h->cmd_pool;
4761 spin_lock_irqsave(&h->lock, flags);
4762 clear_bit(i & (BITS_PER_LONG - 1),
4763 h->cmd_pool_bits + (i / BITS_PER_LONG));
4764 spin_unlock_irqrestore(&h->lock, flags);
4767 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
4769 union u64bit temp64;
4771 temp64.val32.lower = c->ErrDesc.Addr.lower;
4772 temp64.val32.upper = c->ErrDesc.Addr.upper;
4773 pci_free_consistent(h->pdev, sizeof(*c->err_info),
4774 c->err_info, (dma_addr_t) temp64.val);
4775 pci_free_consistent(h->pdev, sizeof(*c),
4776 c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
4779 #ifdef CONFIG_COMPAT
4781 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
4783 IOCTL32_Command_struct __user *arg32 =
4784 (IOCTL32_Command_struct __user *) arg;
4785 IOCTL_Command_struct arg64;
4786 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
4787 int err;
4788 u32 cp;
4790 memset(&arg64, 0, sizeof(arg64));
4791 err = 0;
4792 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
4793 sizeof(arg64.LUN_info));
4794 err |= copy_from_user(&arg64.Request, &arg32->Request,
4795 sizeof(arg64.Request));
4796 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
4797 sizeof(arg64.error_info));
4798 err |= get_user(arg64.buf_size, &arg32->buf_size);
4799 err |= get_user(cp, &arg32->buf);
4800 arg64.buf = compat_ptr(cp);
4801 err |= copy_to_user(p, &arg64, sizeof(arg64));
4803 if (err)
4804 return -EFAULT;
4806 err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
4807 if (err)
4808 return err;
4809 err |= copy_in_user(&arg32->error_info, &p->error_info,
4810 sizeof(arg32->error_info));
4811 if (err)
4812 return -EFAULT;
4813 return err;
4816 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
4817 int cmd, void *arg)
4819 BIG_IOCTL32_Command_struct __user *arg32 =
4820 (BIG_IOCTL32_Command_struct __user *) arg;
4821 BIG_IOCTL_Command_struct arg64;
4822 BIG_IOCTL_Command_struct __user *p =
4823 compat_alloc_user_space(sizeof(arg64));
4824 int err;
4825 u32 cp;
4827 memset(&arg64, 0, sizeof(arg64));
4828 err = 0;
4829 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
4830 sizeof(arg64.LUN_info));
4831 err |= copy_from_user(&arg64.Request, &arg32->Request,
4832 sizeof(arg64.Request));
4833 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
4834 sizeof(arg64.error_info));
4835 err |= get_user(arg64.buf_size, &arg32->buf_size);
4836 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
4837 err |= get_user(cp, &arg32->buf);
4838 arg64.buf = compat_ptr(cp);
4839 err |= copy_to_user(p, &arg64, sizeof(arg64));
4841 if (err)
4842 return -EFAULT;
4844 err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
4845 if (err)
4846 return err;
4847 err |= copy_in_user(&arg32->error_info, &p->error_info,
4848 sizeof(arg32->error_info));
4849 if (err)
4850 return -EFAULT;
4851 return err;
4854 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
4856 switch (cmd) {
4857 case CCISS_GETPCIINFO:
4858 case CCISS_GETINTINFO:
4859 case CCISS_SETINTINFO:
4860 case CCISS_GETNODENAME:
4861 case CCISS_SETNODENAME:
4862 case CCISS_GETHEARTBEAT:
4863 case CCISS_GETBUSTYPES:
4864 case CCISS_GETFIRMVER:
4865 case CCISS_GETDRIVVER:
4866 case CCISS_REVALIDVOLS:
4867 case CCISS_DEREGDISK:
4868 case CCISS_REGNEWDISK:
4869 case CCISS_REGNEWD:
4870 case CCISS_RESCANDISK:
4871 case CCISS_GETLUNINFO:
4872 return hpsa_ioctl(dev, cmd, arg);
4874 case CCISS_PASSTHRU32:
4875 return hpsa_ioctl32_passthru(dev, cmd, arg);
4876 case CCISS_BIG_PASSTHRU32:
4877 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
4879 default:
4880 return -ENOIOCTLCMD;
4883 #endif
4885 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
4887 struct hpsa_pci_info pciinfo;
4889 if (!argp)
4890 return -EINVAL;
4891 pciinfo.domain = pci_domain_nr(h->pdev->bus);
4892 pciinfo.bus = h->pdev->bus->number;
4893 pciinfo.dev_fn = h->pdev->devfn;
4894 pciinfo.board_id = h->board_id;
4895 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
4896 return -EFAULT;
4897 return 0;
4900 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
4902 DriverVer_type DriverVer;
4903 unsigned char vmaj, vmin, vsubmin;
4904 int rc;
4906 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
4907 &vmaj, &vmin, &vsubmin);
4908 if (rc != 3) {
4909 dev_info(&h->pdev->dev, "driver version string '%s' "
4910 "unrecognized.", HPSA_DRIVER_VERSION);
4911 vmaj = 0;
4912 vmin = 0;
4913 vsubmin = 0;
4915 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
4916 if (!argp)
4917 return -EINVAL;
4918 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
4919 return -EFAULT;
4920 return 0;
4923 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
4925 IOCTL_Command_struct iocommand;
4926 struct CommandList *c;
4927 char *buff = NULL;
4928 union u64bit temp64;
4929 int rc = 0;
4931 if (!argp)
4932 return -EINVAL;
4933 if (!capable(CAP_SYS_RAWIO))
4934 return -EPERM;
4935 if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
4936 return -EFAULT;
4937 if ((iocommand.buf_size < 1) &&
4938 (iocommand.Request.Type.Direction != XFER_NONE)) {
4939 return -EINVAL;
4941 if (iocommand.buf_size > 0) {
4942 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
4943 if (buff == NULL)
4944 return -EFAULT;
4945 if (iocommand.Request.Type.Direction == XFER_WRITE) {
4946 /* Copy the data into the buffer we created */
4947 if (copy_from_user(buff, iocommand.buf,
4948 iocommand.buf_size)) {
4949 rc = -EFAULT;
4950 goto out_kfree;
4952 } else {
4953 memset(buff, 0, iocommand.buf_size);
4956 c = cmd_special_alloc(h);
4957 if (c == NULL) {
4958 rc = -ENOMEM;
4959 goto out_kfree;
4961 /* Fill in the command type */
4962 c->cmd_type = CMD_IOCTL_PEND;
4963 /* Fill in Command Header */
4964 c->Header.ReplyQueue = 0; /* unused in simple mode */
4965 if (iocommand.buf_size > 0) { /* buffer to fill */
4966 c->Header.SGList = 1;
4967 c->Header.SGTotal = 1;
4968 } else { /* no buffers to fill */
4969 c->Header.SGList = 0;
4970 c->Header.SGTotal = 0;
4972 memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
4973 /* use the kernel address the cmd block for tag */
4974 c->Header.Tag.lower = c->busaddr;
4976 /* Fill in Request block */
4977 memcpy(&c->Request, &iocommand.Request,
4978 sizeof(c->Request));
4980 /* Fill in the scatter gather information */
4981 if (iocommand.buf_size > 0) {
4982 temp64.val = pci_map_single(h->pdev, buff,
4983 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
4984 if (dma_mapping_error(&h->pdev->dev, temp64.val)) {
4985 c->SG[0].Addr.lower = 0;
4986 c->SG[0].Addr.upper = 0;
4987 c->SG[0].Len = 0;
4988 rc = -ENOMEM;
4989 goto out;
4991 c->SG[0].Addr.lower = temp64.val32.lower;
4992 c->SG[0].Addr.upper = temp64.val32.upper;
4993 c->SG[0].Len = iocommand.buf_size;
4994 c->SG[0].Ext = HPSA_SG_LAST; /* we are not chaining*/
4996 hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
4997 if (iocommand.buf_size > 0)
4998 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
4999 check_ioctl_unit_attention(h, c);
5001 /* Copy the error information out */
5002 memcpy(&iocommand.error_info, c->err_info,
5003 sizeof(iocommand.error_info));
5004 if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
5005 rc = -EFAULT;
5006 goto out;
5008 if (iocommand.Request.Type.Direction == XFER_READ &&
5009 iocommand.buf_size > 0) {
5010 /* Copy the data out of the buffer we created */
5011 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
5012 rc = -EFAULT;
5013 goto out;
5016 out:
5017 cmd_special_free(h, c);
5018 out_kfree:
5019 kfree(buff);
5020 return rc;
5023 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
5025 BIG_IOCTL_Command_struct *ioc;
5026 struct CommandList *c;
5027 unsigned char **buff = NULL;
5028 int *buff_size = NULL;
5029 union u64bit temp64;
5030 BYTE sg_used = 0;
5031 int status = 0;
5032 int i;
5033 u32 left;
5034 u32 sz;
5035 BYTE __user *data_ptr;
5037 if (!argp)
5038 return -EINVAL;
5039 if (!capable(CAP_SYS_RAWIO))
5040 return -EPERM;
5041 ioc = (BIG_IOCTL_Command_struct *)
5042 kmalloc(sizeof(*ioc), GFP_KERNEL);
5043 if (!ioc) {
5044 status = -ENOMEM;
5045 goto cleanup1;
5047 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
5048 status = -EFAULT;
5049 goto cleanup1;
5051 if ((ioc->buf_size < 1) &&
5052 (ioc->Request.Type.Direction != XFER_NONE)) {
5053 status = -EINVAL;
5054 goto cleanup1;
5056 /* Check kmalloc limits using all SGs */
5057 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
5058 status = -EINVAL;
5059 goto cleanup1;
5061 if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
5062 status = -EINVAL;
5063 goto cleanup1;
5065 buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
5066 if (!buff) {
5067 status = -ENOMEM;
5068 goto cleanup1;
5070 buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
5071 if (!buff_size) {
5072 status = -ENOMEM;
5073 goto cleanup1;
5075 left = ioc->buf_size;
5076 data_ptr = ioc->buf;
5077 while (left) {
5078 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
5079 buff_size[sg_used] = sz;
5080 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
5081 if (buff[sg_used] == NULL) {
5082 status = -ENOMEM;
5083 goto cleanup1;
5085 if (ioc->Request.Type.Direction == XFER_WRITE) {
5086 if (copy_from_user(buff[sg_used], data_ptr, sz)) {
5087 status = -ENOMEM;
5088 goto cleanup1;
5090 } else
5091 memset(buff[sg_used], 0, sz);
5092 left -= sz;
5093 data_ptr += sz;
5094 sg_used++;
5096 c = cmd_special_alloc(h);
5097 if (c == NULL) {
5098 status = -ENOMEM;
5099 goto cleanup1;
5101 c->cmd_type = CMD_IOCTL_PEND;
5102 c->Header.ReplyQueue = 0;
5103 c->Header.SGList = c->Header.SGTotal = sg_used;
5104 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
5105 c->Header.Tag.lower = c->busaddr;
5106 memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
5107 if (ioc->buf_size > 0) {
5108 int i;
5109 for (i = 0; i < sg_used; i++) {
5110 temp64.val = pci_map_single(h->pdev, buff[i],
5111 buff_size[i], PCI_DMA_BIDIRECTIONAL);
5112 if (dma_mapping_error(&h->pdev->dev, temp64.val)) {
5113 c->SG[i].Addr.lower = 0;
5114 c->SG[i].Addr.upper = 0;
5115 c->SG[i].Len = 0;
5116 hpsa_pci_unmap(h->pdev, c, i,
5117 PCI_DMA_BIDIRECTIONAL);
5118 status = -ENOMEM;
5119 goto cleanup0;
5121 c->SG[i].Addr.lower = temp64.val32.lower;
5122 c->SG[i].Addr.upper = temp64.val32.upper;
5123 c->SG[i].Len = buff_size[i];
5124 c->SG[i].Ext = i < sg_used - 1 ? 0 : HPSA_SG_LAST;
5127 hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
5128 if (sg_used)
5129 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
5130 check_ioctl_unit_attention(h, c);
5131 /* Copy the error information out */
5132 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
5133 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
5134 status = -EFAULT;
5135 goto cleanup0;
5137 if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
5138 /* Copy the data out of the buffer we created */
5139 BYTE __user *ptr = ioc->buf;
5140 for (i = 0; i < sg_used; i++) {
5141 if (copy_to_user(ptr, buff[i], buff_size[i])) {
5142 status = -EFAULT;
5143 goto cleanup0;
5145 ptr += buff_size[i];
5148 status = 0;
5149 cleanup0:
5150 cmd_special_free(h, c);
5151 cleanup1:
5152 if (buff) {
5153 for (i = 0; i < sg_used; i++)
5154 kfree(buff[i]);
5155 kfree(buff);
5157 kfree(buff_size);
5158 kfree(ioc);
5159 return status;
5162 static void check_ioctl_unit_attention(struct ctlr_info *h,
5163 struct CommandList *c)
5165 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5166 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
5167 (void) check_for_unit_attention(h, c);
5170 static int increment_passthru_count(struct ctlr_info *h)
5172 unsigned long flags;
5174 spin_lock_irqsave(&h->passthru_count_lock, flags);
5175 if (h->passthru_count >= HPSA_MAX_CONCURRENT_PASSTHRUS) {
5176 spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5177 return -1;
5179 h->passthru_count++;
5180 spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5181 return 0;
5184 static void decrement_passthru_count(struct ctlr_info *h)
5186 unsigned long flags;
5188 spin_lock_irqsave(&h->passthru_count_lock, flags);
5189 if (h->passthru_count <= 0) {
5190 spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5191 /* not expecting to get here. */
5192 dev_warn(&h->pdev->dev, "Bug detected, passthru_count seems to be incorrect.\n");
5193 return;
5195 h->passthru_count--;
5196 spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5200 * ioctl
5202 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
5204 struct ctlr_info *h;
5205 void __user *argp = (void __user *)arg;
5206 int rc;
5208 h = sdev_to_hba(dev);
5210 switch (cmd) {
5211 case CCISS_DEREGDISK:
5212 case CCISS_REGNEWDISK:
5213 case CCISS_REGNEWD:
5214 hpsa_scan_start(h->scsi_host);
5215 return 0;
5216 case CCISS_GETPCIINFO:
5217 return hpsa_getpciinfo_ioctl(h, argp);
5218 case CCISS_GETDRIVVER:
5219 return hpsa_getdrivver_ioctl(h, argp);
5220 case CCISS_PASSTHRU:
5221 if (increment_passthru_count(h))
5222 return -EAGAIN;
5223 rc = hpsa_passthru_ioctl(h, argp);
5224 decrement_passthru_count(h);
5225 return rc;
5226 case CCISS_BIG_PASSTHRU:
5227 if (increment_passthru_count(h))
5228 return -EAGAIN;
5229 rc = hpsa_big_passthru_ioctl(h, argp);
5230 decrement_passthru_count(h);
5231 return rc;
5232 default:
5233 return -ENOTTY;
5237 static int hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
5238 u8 reset_type)
5240 struct CommandList *c;
5242 c = cmd_alloc(h);
5243 if (!c)
5244 return -ENOMEM;
5245 /* fill_cmd can't fail here, no data buffer to map */
5246 (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
5247 RAID_CTLR_LUNID, TYPE_MSG);
5248 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
5249 c->waiting = NULL;
5250 enqueue_cmd_and_start_io(h, c);
5251 /* Don't wait for completion, the reset won't complete. Don't free
5252 * the command either. This is the last command we will send before
5253 * re-initializing everything, so it doesn't matter and won't leak.
5255 return 0;
5258 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
5259 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
5260 int cmd_type)
5262 int pci_dir = XFER_NONE;
5263 struct CommandList *a; /* for commands to be aborted */
5265 c->cmd_type = CMD_IOCTL_PEND;
5266 c->Header.ReplyQueue = 0;
5267 if (buff != NULL && size > 0) {
5268 c->Header.SGList = 1;
5269 c->Header.SGTotal = 1;
5270 } else {
5271 c->Header.SGList = 0;
5272 c->Header.SGTotal = 0;
5274 c->Header.Tag.lower = c->busaddr;
5275 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
5277 c->Request.Type.Type = cmd_type;
5278 if (cmd_type == TYPE_CMD) {
5279 switch (cmd) {
5280 case HPSA_INQUIRY:
5281 /* are we trying to read a vital product page */
5282 if (page_code & VPD_PAGE) {
5283 c->Request.CDB[1] = 0x01;
5284 c->Request.CDB[2] = (page_code & 0xff);
5286 c->Request.CDBLen = 6;
5287 c->Request.Type.Attribute = ATTR_SIMPLE;
5288 c->Request.Type.Direction = XFER_READ;
5289 c->Request.Timeout = 0;
5290 c->Request.CDB[0] = HPSA_INQUIRY;
5291 c->Request.CDB[4] = size & 0xFF;
5292 break;
5293 case HPSA_REPORT_LOG:
5294 case HPSA_REPORT_PHYS:
5295 /* Talking to controller so It's a physical command
5296 mode = 00 target = 0. Nothing to write.
5298 c->Request.CDBLen = 12;
5299 c->Request.Type.Attribute = ATTR_SIMPLE;
5300 c->Request.Type.Direction = XFER_READ;
5301 c->Request.Timeout = 0;
5302 c->Request.CDB[0] = cmd;
5303 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
5304 c->Request.CDB[7] = (size >> 16) & 0xFF;
5305 c->Request.CDB[8] = (size >> 8) & 0xFF;
5306 c->Request.CDB[9] = size & 0xFF;
5307 break;
5308 case HPSA_CACHE_FLUSH:
5309 c->Request.CDBLen = 12;
5310 c->Request.Type.Attribute = ATTR_SIMPLE;
5311 c->Request.Type.Direction = XFER_WRITE;
5312 c->Request.Timeout = 0;
5313 c->Request.CDB[0] = BMIC_WRITE;
5314 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
5315 c->Request.CDB[7] = (size >> 8) & 0xFF;
5316 c->Request.CDB[8] = size & 0xFF;
5317 break;
5318 case TEST_UNIT_READY:
5319 c->Request.CDBLen = 6;
5320 c->Request.Type.Attribute = ATTR_SIMPLE;
5321 c->Request.Type.Direction = XFER_NONE;
5322 c->Request.Timeout = 0;
5323 break;
5324 case HPSA_GET_RAID_MAP:
5325 c->Request.CDBLen = 12;
5326 c->Request.Type.Attribute = ATTR_SIMPLE;
5327 c->Request.Type.Direction = XFER_READ;
5328 c->Request.Timeout = 0;
5329 c->Request.CDB[0] = HPSA_CISS_READ;
5330 c->Request.CDB[1] = cmd;
5331 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
5332 c->Request.CDB[7] = (size >> 16) & 0xFF;
5333 c->Request.CDB[8] = (size >> 8) & 0xFF;
5334 c->Request.CDB[9] = size & 0xFF;
5335 break;
5336 case BMIC_SENSE_CONTROLLER_PARAMETERS:
5337 c->Request.CDBLen = 10;
5338 c->Request.Type.Attribute = ATTR_SIMPLE;
5339 c->Request.Type.Direction = XFER_READ;
5340 c->Request.Timeout = 0;
5341 c->Request.CDB[0] = BMIC_READ;
5342 c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
5343 c->Request.CDB[7] = (size >> 16) & 0xFF;
5344 c->Request.CDB[8] = (size >> 8) & 0xFF;
5345 break;
5346 default:
5347 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
5348 BUG();
5349 return -1;
5351 } else if (cmd_type == TYPE_MSG) {
5352 switch (cmd) {
5354 case HPSA_DEVICE_RESET_MSG:
5355 c->Request.CDBLen = 16;
5356 c->Request.Type.Type = 1; /* It is a MSG not a CMD */
5357 c->Request.Type.Attribute = ATTR_SIMPLE;
5358 c->Request.Type.Direction = XFER_NONE;
5359 c->Request.Timeout = 0; /* Don't time out */
5360 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
5361 c->Request.CDB[0] = cmd;
5362 c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
5363 /* If bytes 4-7 are zero, it means reset the */
5364 /* LunID device */
5365 c->Request.CDB[4] = 0x00;
5366 c->Request.CDB[5] = 0x00;
5367 c->Request.CDB[6] = 0x00;
5368 c->Request.CDB[7] = 0x00;
5369 break;
5370 case HPSA_ABORT_MSG:
5371 a = buff; /* point to command to be aborted */
5372 dev_dbg(&h->pdev->dev, "Abort Tag:0x%08x:%08x using request Tag:0x%08x:%08x\n",
5373 a->Header.Tag.upper, a->Header.Tag.lower,
5374 c->Header.Tag.upper, c->Header.Tag.lower);
5375 c->Request.CDBLen = 16;
5376 c->Request.Type.Type = TYPE_MSG;
5377 c->Request.Type.Attribute = ATTR_SIMPLE;
5378 c->Request.Type.Direction = XFER_WRITE;
5379 c->Request.Timeout = 0; /* Don't time out */
5380 c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
5381 c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
5382 c->Request.CDB[2] = 0x00; /* reserved */
5383 c->Request.CDB[3] = 0x00; /* reserved */
5384 /* Tag to abort goes in CDB[4]-CDB[11] */
5385 c->Request.CDB[4] = a->Header.Tag.lower & 0xFF;
5386 c->Request.CDB[5] = (a->Header.Tag.lower >> 8) & 0xFF;
5387 c->Request.CDB[6] = (a->Header.Tag.lower >> 16) & 0xFF;
5388 c->Request.CDB[7] = (a->Header.Tag.lower >> 24) & 0xFF;
5389 c->Request.CDB[8] = a->Header.Tag.upper & 0xFF;
5390 c->Request.CDB[9] = (a->Header.Tag.upper >> 8) & 0xFF;
5391 c->Request.CDB[10] = (a->Header.Tag.upper >> 16) & 0xFF;
5392 c->Request.CDB[11] = (a->Header.Tag.upper >> 24) & 0xFF;
5393 c->Request.CDB[12] = 0x00; /* reserved */
5394 c->Request.CDB[13] = 0x00; /* reserved */
5395 c->Request.CDB[14] = 0x00; /* reserved */
5396 c->Request.CDB[15] = 0x00; /* reserved */
5397 break;
5398 default:
5399 dev_warn(&h->pdev->dev, "unknown message type %d\n",
5400 cmd);
5401 BUG();
5403 } else {
5404 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
5405 BUG();
5408 switch (c->Request.Type.Direction) {
5409 case XFER_READ:
5410 pci_dir = PCI_DMA_FROMDEVICE;
5411 break;
5412 case XFER_WRITE:
5413 pci_dir = PCI_DMA_TODEVICE;
5414 break;
5415 case XFER_NONE:
5416 pci_dir = PCI_DMA_NONE;
5417 break;
5418 default:
5419 pci_dir = PCI_DMA_BIDIRECTIONAL;
5421 if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
5422 return -1;
5423 return 0;
5427 * Map (physical) PCI mem into (virtual) kernel space
5429 static void __iomem *remap_pci_mem(ulong base, ulong size)
5431 ulong page_base = ((ulong) base) & PAGE_MASK;
5432 ulong page_offs = ((ulong) base) - page_base;
5433 void __iomem *page_remapped = ioremap_nocache(page_base,
5434 page_offs + size);
5436 return page_remapped ? (page_remapped + page_offs) : NULL;
5439 /* Takes cmds off the submission queue and sends them to the hardware,
5440 * then puts them on the queue of cmds waiting for completion.
5442 static void start_io(struct ctlr_info *h)
5444 struct CommandList *c;
5445 unsigned long flags;
5447 spin_lock_irqsave(&h->lock, flags);
5448 while (!list_empty(&h->reqQ)) {
5449 c = list_entry(h->reqQ.next, struct CommandList, list);
5450 /* can't do anything if fifo is full */
5451 if ((h->access.fifo_full(h))) {
5452 h->fifo_recently_full = 1;
5453 dev_warn(&h->pdev->dev, "fifo full\n");
5454 break;
5456 h->fifo_recently_full = 0;
5458 /* Get the first entry from the Request Q */
5459 removeQ(c);
5460 h->Qdepth--;
5462 /* Put job onto the completed Q */
5463 addQ(&h->cmpQ, c);
5465 /* Must increment commands_outstanding before unlocking
5466 * and submitting to avoid race checking for fifo full
5467 * condition.
5469 h->commands_outstanding++;
5470 if (h->commands_outstanding > h->max_outstanding)
5471 h->max_outstanding = h->commands_outstanding;
5473 /* Tell the controller execute command */
5474 spin_unlock_irqrestore(&h->lock, flags);
5475 h->access.submit_command(h, c);
5476 spin_lock_irqsave(&h->lock, flags);
5478 spin_unlock_irqrestore(&h->lock, flags);
5481 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
5483 return h->access.command_completed(h, q);
5486 static inline bool interrupt_pending(struct ctlr_info *h)
5488 return h->access.intr_pending(h);
5491 static inline long interrupt_not_for_us(struct ctlr_info *h)
5493 return (h->access.intr_pending(h) == 0) ||
5494 (h->interrupts_enabled == 0);
5497 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
5498 u32 raw_tag)
5500 if (unlikely(tag_index >= h->nr_cmds)) {
5501 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
5502 return 1;
5504 return 0;
5507 static inline void finish_cmd(struct CommandList *c)
5509 unsigned long flags;
5510 int io_may_be_stalled = 0;
5511 struct ctlr_info *h = c->h;
5513 spin_lock_irqsave(&h->lock, flags);
5514 removeQ(c);
5517 * Check for possibly stalled i/o.
5519 * If a fifo_full condition is encountered, requests will back up
5520 * in h->reqQ. This queue is only emptied out by start_io which is
5521 * only called when a new i/o request comes in. If no i/o's are
5522 * forthcoming, the i/o's in h->reqQ can get stuck. So we call
5523 * start_io from here if we detect such a danger.
5525 * Normally, we shouldn't hit this case, but pounding on the
5526 * CCISS_PASSTHRU ioctl can provoke it. Only call start_io if
5527 * commands_outstanding is low. We want to avoid calling
5528 * start_io from in here as much as possible, and esp. don't
5529 * want to get in a cycle where we call start_io every time
5530 * through here.
5532 if (unlikely(h->fifo_recently_full) &&
5533 h->commands_outstanding < 5)
5534 io_may_be_stalled = 1;
5536 spin_unlock_irqrestore(&h->lock, flags);
5538 dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
5539 if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
5540 || c->cmd_type == CMD_IOACCEL2))
5541 complete_scsi_command(c);
5542 else if (c->cmd_type == CMD_IOCTL_PEND)
5543 complete(c->waiting);
5544 if (unlikely(io_may_be_stalled))
5545 start_io(h);
5548 static inline u32 hpsa_tag_contains_index(u32 tag)
5550 return tag & DIRECT_LOOKUP_BIT;
5553 static inline u32 hpsa_tag_to_index(u32 tag)
5555 return tag >> DIRECT_LOOKUP_SHIFT;
5559 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
5561 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
5562 #define HPSA_SIMPLE_ERROR_BITS 0x03
5563 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
5564 return tag & ~HPSA_SIMPLE_ERROR_BITS;
5565 return tag & ~HPSA_PERF_ERROR_BITS;
5568 /* process completion of an indexed ("direct lookup") command */
5569 static inline void process_indexed_cmd(struct ctlr_info *h,
5570 u32 raw_tag)
5572 u32 tag_index;
5573 struct CommandList *c;
5575 tag_index = hpsa_tag_to_index(raw_tag);
5576 if (!bad_tag(h, tag_index, raw_tag)) {
5577 c = h->cmd_pool + tag_index;
5578 finish_cmd(c);
5582 /* process completion of a non-indexed command */
5583 static inline void process_nonindexed_cmd(struct ctlr_info *h,
5584 u32 raw_tag)
5586 u32 tag;
5587 struct CommandList *c = NULL;
5588 unsigned long flags;
5590 tag = hpsa_tag_discard_error_bits(h, raw_tag);
5591 spin_lock_irqsave(&h->lock, flags);
5592 list_for_each_entry(c, &h->cmpQ, list) {
5593 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
5594 spin_unlock_irqrestore(&h->lock, flags);
5595 finish_cmd(c);
5596 return;
5599 spin_unlock_irqrestore(&h->lock, flags);
5600 bad_tag(h, h->nr_cmds + 1, raw_tag);
5603 /* Some controllers, like p400, will give us one interrupt
5604 * after a soft reset, even if we turned interrupts off.
5605 * Only need to check for this in the hpsa_xxx_discard_completions
5606 * functions.
5608 static int ignore_bogus_interrupt(struct ctlr_info *h)
5610 if (likely(!reset_devices))
5611 return 0;
5613 if (likely(h->interrupts_enabled))
5614 return 0;
5616 dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
5617 "(known firmware bug.) Ignoring.\n");
5619 return 1;
5623 * Convert &h->q[x] (passed to interrupt handlers) back to h.
5624 * Relies on (h-q[x] == x) being true for x such that
5625 * 0 <= x < MAX_REPLY_QUEUES.
5627 static struct ctlr_info *queue_to_hba(u8 *queue)
5629 return container_of((queue - *queue), struct ctlr_info, q[0]);
5632 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
5634 struct ctlr_info *h = queue_to_hba(queue);
5635 u8 q = *(u8 *) queue;
5636 u32 raw_tag;
5638 if (ignore_bogus_interrupt(h))
5639 return IRQ_NONE;
5641 if (interrupt_not_for_us(h))
5642 return IRQ_NONE;
5643 h->last_intr_timestamp = get_jiffies_64();
5644 while (interrupt_pending(h)) {
5645 raw_tag = get_next_completion(h, q);
5646 while (raw_tag != FIFO_EMPTY)
5647 raw_tag = next_command(h, q);
5649 return IRQ_HANDLED;
5652 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
5654 struct ctlr_info *h = queue_to_hba(queue);
5655 u32 raw_tag;
5656 u8 q = *(u8 *) queue;
5658 if (ignore_bogus_interrupt(h))
5659 return IRQ_NONE;
5661 h->last_intr_timestamp = get_jiffies_64();
5662 raw_tag = get_next_completion(h, q);
5663 while (raw_tag != FIFO_EMPTY)
5664 raw_tag = next_command(h, q);
5665 return IRQ_HANDLED;
5668 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
5670 struct ctlr_info *h = queue_to_hba((u8 *) queue);
5671 u32 raw_tag;
5672 u8 q = *(u8 *) queue;
5674 if (interrupt_not_for_us(h))
5675 return IRQ_NONE;
5676 h->last_intr_timestamp = get_jiffies_64();
5677 while (interrupt_pending(h)) {
5678 raw_tag = get_next_completion(h, q);
5679 while (raw_tag != FIFO_EMPTY) {
5680 if (likely(hpsa_tag_contains_index(raw_tag)))
5681 process_indexed_cmd(h, raw_tag);
5682 else
5683 process_nonindexed_cmd(h, raw_tag);
5684 raw_tag = next_command(h, q);
5687 return IRQ_HANDLED;
5690 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
5692 struct ctlr_info *h = queue_to_hba(queue);
5693 u32 raw_tag;
5694 u8 q = *(u8 *) queue;
5696 h->last_intr_timestamp = get_jiffies_64();
5697 raw_tag = get_next_completion(h, q);
5698 while (raw_tag != FIFO_EMPTY) {
5699 if (likely(hpsa_tag_contains_index(raw_tag)))
5700 process_indexed_cmd(h, raw_tag);
5701 else
5702 process_nonindexed_cmd(h, raw_tag);
5703 raw_tag = next_command(h, q);
5705 return IRQ_HANDLED;
5708 /* Send a message CDB to the firmware. Careful, this only works
5709 * in simple mode, not performant mode due to the tag lookup.
5710 * We only ever use this immediately after a controller reset.
5712 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
5713 unsigned char type)
5715 struct Command {
5716 struct CommandListHeader CommandHeader;
5717 struct RequestBlock Request;
5718 struct ErrDescriptor ErrorDescriptor;
5720 struct Command *cmd;
5721 static const size_t cmd_sz = sizeof(*cmd) +
5722 sizeof(cmd->ErrorDescriptor);
5723 dma_addr_t paddr64;
5724 uint32_t paddr32, tag;
5725 void __iomem *vaddr;
5726 int i, err;
5728 vaddr = pci_ioremap_bar(pdev, 0);
5729 if (vaddr == NULL)
5730 return -ENOMEM;
5732 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
5733 * CCISS commands, so they must be allocated from the lower 4GiB of
5734 * memory.
5736 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
5737 if (err) {
5738 iounmap(vaddr);
5739 return -ENOMEM;
5742 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
5743 if (cmd == NULL) {
5744 iounmap(vaddr);
5745 return -ENOMEM;
5748 /* This must fit, because of the 32-bit consistent DMA mask. Also,
5749 * although there's no guarantee, we assume that the address is at
5750 * least 4-byte aligned (most likely, it's page-aligned).
5752 paddr32 = paddr64;
5754 cmd->CommandHeader.ReplyQueue = 0;
5755 cmd->CommandHeader.SGList = 0;
5756 cmd->CommandHeader.SGTotal = 0;
5757 cmd->CommandHeader.Tag.lower = paddr32;
5758 cmd->CommandHeader.Tag.upper = 0;
5759 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
5761 cmd->Request.CDBLen = 16;
5762 cmd->Request.Type.Type = TYPE_MSG;
5763 cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
5764 cmd->Request.Type.Direction = XFER_NONE;
5765 cmd->Request.Timeout = 0; /* Don't time out */
5766 cmd->Request.CDB[0] = opcode;
5767 cmd->Request.CDB[1] = type;
5768 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
5769 cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
5770 cmd->ErrorDescriptor.Addr.upper = 0;
5771 cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
5773 writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
5775 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
5776 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
5777 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
5778 break;
5779 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
5782 iounmap(vaddr);
5784 /* we leak the DMA buffer here ... no choice since the controller could
5785 * still complete the command.
5787 if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
5788 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
5789 opcode, type);
5790 return -ETIMEDOUT;
5793 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
5795 if (tag & HPSA_ERROR_BIT) {
5796 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
5797 opcode, type);
5798 return -EIO;
5801 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
5802 opcode, type);
5803 return 0;
5806 #define hpsa_noop(p) hpsa_message(p, 3, 0)
5808 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
5809 void * __iomem vaddr, u32 use_doorbell)
5811 u16 pmcsr;
5812 int pos;
5814 if (use_doorbell) {
5815 /* For everything after the P600, the PCI power state method
5816 * of resetting the controller doesn't work, so we have this
5817 * other way using the doorbell register.
5819 dev_info(&pdev->dev, "using doorbell to reset controller\n");
5820 writel(use_doorbell, vaddr + SA5_DOORBELL);
5822 /* PMC hardware guys tell us we need a 5 second delay after
5823 * doorbell reset and before any attempt to talk to the board
5824 * at all to ensure that this actually works and doesn't fall
5825 * over in some weird corner cases.
5827 msleep(5000);
5828 } else { /* Try to do it the PCI power state way */
5830 /* Quoting from the Open CISS Specification: "The Power
5831 * Management Control/Status Register (CSR) controls the power
5832 * state of the device. The normal operating state is D0,
5833 * CSR=00h. The software off state is D3, CSR=03h. To reset
5834 * the controller, place the interface device in D3 then to D0,
5835 * this causes a secondary PCI reset which will reset the
5836 * controller." */
5838 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
5839 if (pos == 0) {
5840 dev_err(&pdev->dev,
5841 "hpsa_reset_controller: "
5842 "PCI PM not supported\n");
5843 return -ENODEV;
5845 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
5846 /* enter the D3hot power management state */
5847 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
5848 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
5849 pmcsr |= PCI_D3hot;
5850 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
5852 msleep(500);
5854 /* enter the D0 power management state */
5855 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
5856 pmcsr |= PCI_D0;
5857 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
5860 * The P600 requires a small delay when changing states.
5861 * Otherwise we may think the board did not reset and we bail.
5862 * This for kdump only and is particular to the P600.
5864 msleep(500);
5866 return 0;
5869 static void init_driver_version(char *driver_version, int len)
5871 memset(driver_version, 0, len);
5872 strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
5875 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
5877 char *driver_version;
5878 int i, size = sizeof(cfgtable->driver_version);
5880 driver_version = kmalloc(size, GFP_KERNEL);
5881 if (!driver_version)
5882 return -ENOMEM;
5884 init_driver_version(driver_version, size);
5885 for (i = 0; i < size; i++)
5886 writeb(driver_version[i], &cfgtable->driver_version[i]);
5887 kfree(driver_version);
5888 return 0;
5891 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
5892 unsigned char *driver_ver)
5894 int i;
5896 for (i = 0; i < sizeof(cfgtable->driver_version); i++)
5897 driver_ver[i] = readb(&cfgtable->driver_version[i]);
5900 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
5903 char *driver_ver, *old_driver_ver;
5904 int rc, size = sizeof(cfgtable->driver_version);
5906 old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
5907 if (!old_driver_ver)
5908 return -ENOMEM;
5909 driver_ver = old_driver_ver + size;
5911 /* After a reset, the 32 bytes of "driver version" in the cfgtable
5912 * should have been changed, otherwise we know the reset failed.
5914 init_driver_version(old_driver_ver, size);
5915 read_driver_ver_from_cfgtable(cfgtable, driver_ver);
5916 rc = !memcmp(driver_ver, old_driver_ver, size);
5917 kfree(old_driver_ver);
5918 return rc;
5920 /* This does a hard reset of the controller using PCI power management
5921 * states or the using the doorbell register.
5923 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
5925 u64 cfg_offset;
5926 u32 cfg_base_addr;
5927 u64 cfg_base_addr_index;
5928 void __iomem *vaddr;
5929 unsigned long paddr;
5930 u32 misc_fw_support;
5931 int rc;
5932 struct CfgTable __iomem *cfgtable;
5933 u32 use_doorbell;
5934 u32 board_id;
5935 u16 command_register;
5937 /* For controllers as old as the P600, this is very nearly
5938 * the same thing as
5940 * pci_save_state(pci_dev);
5941 * pci_set_power_state(pci_dev, PCI_D3hot);
5942 * pci_set_power_state(pci_dev, PCI_D0);
5943 * pci_restore_state(pci_dev);
5945 * For controllers newer than the P600, the pci power state
5946 * method of resetting doesn't work so we have another way
5947 * using the doorbell register.
5950 rc = hpsa_lookup_board_id(pdev, &board_id);
5951 if (rc < 0 || !ctlr_is_resettable(board_id)) {
5952 dev_warn(&pdev->dev, "Not resetting device.\n");
5953 return -ENODEV;
5956 /* if controller is soft- but not hard resettable... */
5957 if (!ctlr_is_hard_resettable(board_id))
5958 return -ENOTSUPP; /* try soft reset later. */
5960 /* Save the PCI command register */
5961 pci_read_config_word(pdev, 4, &command_register);
5962 /* Turn the board off. This is so that later pci_restore_state()
5963 * won't turn the board on before the rest of config space is ready.
5965 pci_disable_device(pdev);
5966 pci_save_state(pdev);
5968 /* find the first memory BAR, so we can find the cfg table */
5969 rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
5970 if (rc)
5971 return rc;
5972 vaddr = remap_pci_mem(paddr, 0x250);
5973 if (!vaddr)
5974 return -ENOMEM;
5976 /* find cfgtable in order to check if reset via doorbell is supported */
5977 rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
5978 &cfg_base_addr_index, &cfg_offset);
5979 if (rc)
5980 goto unmap_vaddr;
5981 cfgtable = remap_pci_mem(pci_resource_start(pdev,
5982 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
5983 if (!cfgtable) {
5984 rc = -ENOMEM;
5985 goto unmap_vaddr;
5987 rc = write_driver_ver_to_cfgtable(cfgtable);
5988 if (rc)
5989 goto unmap_vaddr;
5991 /* If reset via doorbell register is supported, use that.
5992 * There are two such methods. Favor the newest method.
5994 misc_fw_support = readl(&cfgtable->misc_fw_support);
5995 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
5996 if (use_doorbell) {
5997 use_doorbell = DOORBELL_CTLR_RESET2;
5998 } else {
5999 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
6000 if (use_doorbell) {
6001 dev_warn(&pdev->dev, "Soft reset not supported. "
6002 "Firmware update is required.\n");
6003 rc = -ENOTSUPP; /* try soft reset */
6004 goto unmap_cfgtable;
6008 rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
6009 if (rc)
6010 goto unmap_cfgtable;
6012 pci_restore_state(pdev);
6013 rc = pci_enable_device(pdev);
6014 if (rc) {
6015 dev_warn(&pdev->dev, "failed to enable device.\n");
6016 goto unmap_cfgtable;
6018 pci_write_config_word(pdev, 4, command_register);
6020 /* Some devices (notably the HP Smart Array 5i Controller)
6021 need a little pause here */
6022 msleep(HPSA_POST_RESET_PAUSE_MSECS);
6024 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
6025 if (rc) {
6026 dev_warn(&pdev->dev,
6027 "failed waiting for board to become ready "
6028 "after hard reset\n");
6029 goto unmap_cfgtable;
6032 rc = controller_reset_failed(vaddr);
6033 if (rc < 0)
6034 goto unmap_cfgtable;
6035 if (rc) {
6036 dev_warn(&pdev->dev, "Unable to successfully reset "
6037 "controller. Will try soft reset.\n");
6038 rc = -ENOTSUPP;
6039 } else {
6040 dev_info(&pdev->dev, "board ready after hard reset.\n");
6043 unmap_cfgtable:
6044 iounmap(cfgtable);
6046 unmap_vaddr:
6047 iounmap(vaddr);
6048 return rc;
6052 * We cannot read the structure directly, for portability we must use
6053 * the io functions.
6054 * This is for debug only.
6056 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
6058 #ifdef HPSA_DEBUG
6059 int i;
6060 char temp_name[17];
6062 dev_info(dev, "Controller Configuration information\n");
6063 dev_info(dev, "------------------------------------\n");
6064 for (i = 0; i < 4; i++)
6065 temp_name[i] = readb(&(tb->Signature[i]));
6066 temp_name[4] = '\0';
6067 dev_info(dev, " Signature = %s\n", temp_name);
6068 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence)));
6069 dev_info(dev, " Transport methods supported = 0x%x\n",
6070 readl(&(tb->TransportSupport)));
6071 dev_info(dev, " Transport methods active = 0x%x\n",
6072 readl(&(tb->TransportActive)));
6073 dev_info(dev, " Requested transport Method = 0x%x\n",
6074 readl(&(tb->HostWrite.TransportRequest)));
6075 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n",
6076 readl(&(tb->HostWrite.CoalIntDelay)));
6077 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n",
6078 readl(&(tb->HostWrite.CoalIntCount)));
6079 dev_info(dev, " Max outstanding commands = 0x%d\n",
6080 readl(&(tb->CmdsOutMax)));
6081 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
6082 for (i = 0; i < 16; i++)
6083 temp_name[i] = readb(&(tb->ServerName[i]));
6084 temp_name[16] = '\0';
6085 dev_info(dev, " Server Name = %s\n", temp_name);
6086 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n",
6087 readl(&(tb->HeartBeat)));
6088 #endif /* HPSA_DEBUG */
6091 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
6093 int i, offset, mem_type, bar_type;
6095 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
6096 return 0;
6097 offset = 0;
6098 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
6099 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
6100 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
6101 offset += 4;
6102 else {
6103 mem_type = pci_resource_flags(pdev, i) &
6104 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
6105 switch (mem_type) {
6106 case PCI_BASE_ADDRESS_MEM_TYPE_32:
6107 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
6108 offset += 4; /* 32 bit */
6109 break;
6110 case PCI_BASE_ADDRESS_MEM_TYPE_64:
6111 offset += 8;
6112 break;
6113 default: /* reserved in PCI 2.2 */
6114 dev_warn(&pdev->dev,
6115 "base address is invalid\n");
6116 return -1;
6117 break;
6120 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
6121 return i + 1;
6123 return -1;
6126 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
6127 * controllers that are capable. If not, we use IO-APIC mode.
6130 static void hpsa_interrupt_mode(struct ctlr_info *h)
6132 #ifdef CONFIG_PCI_MSI
6133 int err, i;
6134 struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
6136 for (i = 0; i < MAX_REPLY_QUEUES; i++) {
6137 hpsa_msix_entries[i].vector = 0;
6138 hpsa_msix_entries[i].entry = i;
6141 /* Some boards advertise MSI but don't really support it */
6142 if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
6143 (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
6144 goto default_int_mode;
6145 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
6146 dev_info(&h->pdev->dev, "MSIX\n");
6147 h->msix_vector = MAX_REPLY_QUEUES;
6148 err = pci_enable_msix(h->pdev, hpsa_msix_entries,
6149 h->msix_vector);
6150 if (err > 0) {
6151 dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
6152 "available\n", err);
6153 h->msix_vector = err;
6154 err = pci_enable_msix(h->pdev, hpsa_msix_entries,
6155 h->msix_vector);
6157 if (!err) {
6158 for (i = 0; i < h->msix_vector; i++)
6159 h->intr[i] = hpsa_msix_entries[i].vector;
6160 return;
6161 } else {
6162 dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
6163 err);
6164 h->msix_vector = 0;
6165 goto default_int_mode;
6168 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
6169 dev_info(&h->pdev->dev, "MSI\n");
6170 if (!pci_enable_msi(h->pdev))
6171 h->msi_vector = 1;
6172 else
6173 dev_warn(&h->pdev->dev, "MSI init failed\n");
6175 default_int_mode:
6176 #endif /* CONFIG_PCI_MSI */
6177 /* if we get here we're going to use the default interrupt mode */
6178 h->intr[h->intr_mode] = h->pdev->irq;
6181 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
6183 int i;
6184 u32 subsystem_vendor_id, subsystem_device_id;
6186 subsystem_vendor_id = pdev->subsystem_vendor;
6187 subsystem_device_id = pdev->subsystem_device;
6188 *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
6189 subsystem_vendor_id;
6191 for (i = 0; i < ARRAY_SIZE(products); i++)
6192 if (*board_id == products[i].board_id)
6193 return i;
6195 if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
6196 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
6197 !hpsa_allow_any) {
6198 dev_warn(&pdev->dev, "unrecognized board ID: "
6199 "0x%08x, ignoring.\n", *board_id);
6200 return -ENODEV;
6202 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
6205 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
6206 unsigned long *memory_bar)
6208 int i;
6210 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
6211 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
6212 /* addressing mode bits already removed */
6213 *memory_bar = pci_resource_start(pdev, i);
6214 dev_dbg(&pdev->dev, "memory BAR = %lx\n",
6215 *memory_bar);
6216 return 0;
6218 dev_warn(&pdev->dev, "no memory BAR found\n");
6219 return -ENODEV;
6222 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
6223 int wait_for_ready)
6225 int i, iterations;
6226 u32 scratchpad;
6227 if (wait_for_ready)
6228 iterations = HPSA_BOARD_READY_ITERATIONS;
6229 else
6230 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
6232 for (i = 0; i < iterations; i++) {
6233 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
6234 if (wait_for_ready) {
6235 if (scratchpad == HPSA_FIRMWARE_READY)
6236 return 0;
6237 } else {
6238 if (scratchpad != HPSA_FIRMWARE_READY)
6239 return 0;
6241 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
6243 dev_warn(&pdev->dev, "board not ready, timed out.\n");
6244 return -ENODEV;
6247 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
6248 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
6249 u64 *cfg_offset)
6251 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
6252 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
6253 *cfg_base_addr &= (u32) 0x0000ffff;
6254 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
6255 if (*cfg_base_addr_index == -1) {
6256 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
6257 return -ENODEV;
6259 return 0;
6262 static int hpsa_find_cfgtables(struct ctlr_info *h)
6264 u64 cfg_offset;
6265 u32 cfg_base_addr;
6266 u64 cfg_base_addr_index;
6267 u32 trans_offset;
6268 int rc;
6270 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
6271 &cfg_base_addr_index, &cfg_offset);
6272 if (rc)
6273 return rc;
6274 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
6275 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
6276 if (!h->cfgtable)
6277 return -ENOMEM;
6278 rc = write_driver_ver_to_cfgtable(h->cfgtable);
6279 if (rc)
6280 return rc;
6281 /* Find performant mode table. */
6282 trans_offset = readl(&h->cfgtable->TransMethodOffset);
6283 h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
6284 cfg_base_addr_index)+cfg_offset+trans_offset,
6285 sizeof(*h->transtable));
6286 if (!h->transtable)
6287 return -ENOMEM;
6288 return 0;
6291 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
6293 h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
6295 /* Limit commands in memory limited kdump scenario. */
6296 if (reset_devices && h->max_commands > 32)
6297 h->max_commands = 32;
6299 if (h->max_commands < 16) {
6300 dev_warn(&h->pdev->dev, "Controller reports "
6301 "max supported commands of %d, an obvious lie. "
6302 "Using 16. Ensure that firmware is up to date.\n",
6303 h->max_commands);
6304 h->max_commands = 16;
6308 /* Interrogate the hardware for some limits:
6309 * max commands, max SG elements without chaining, and with chaining,
6310 * SG chain block size, etc.
6312 static void hpsa_find_board_params(struct ctlr_info *h)
6314 hpsa_get_max_perf_mode_cmds(h);
6315 h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
6316 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
6317 h->fw_support = readl(&(h->cfgtable->misc_fw_support));
6319 * Limit in-command s/g elements to 32 save dma'able memory.
6320 * Howvever spec says if 0, use 31
6322 h->max_cmd_sg_entries = 31;
6323 if (h->maxsgentries > 512) {
6324 h->max_cmd_sg_entries = 32;
6325 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
6326 h->maxsgentries--; /* save one for chain pointer */
6327 } else {
6328 h->maxsgentries = 31; /* default to traditional values */
6329 h->chainsize = 0;
6332 /* Find out what task management functions are supported and cache */
6333 h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
6334 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
6335 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
6336 if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
6337 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
6340 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
6342 if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
6343 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
6344 return false;
6346 return true;
6349 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
6351 u32 driver_support;
6353 #ifdef CONFIG_X86
6354 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
6355 driver_support = readl(&(h->cfgtable->driver_support));
6356 driver_support |= ENABLE_SCSI_PREFETCH;
6357 #endif
6358 driver_support |= ENABLE_UNIT_ATTN;
6359 writel(driver_support, &(h->cfgtable->driver_support));
6362 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
6363 * in a prefetch beyond physical memory.
6365 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
6367 u32 dma_prefetch;
6369 if (h->board_id != 0x3225103C)
6370 return;
6371 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
6372 dma_prefetch |= 0x8000;
6373 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
6376 static void hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
6378 int i;
6379 u32 doorbell_value;
6380 unsigned long flags;
6381 /* wait until the clear_event_notify bit 6 is cleared by controller. */
6382 for (i = 0; i < MAX_CONFIG_WAIT; i++) {
6383 spin_lock_irqsave(&h->lock, flags);
6384 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
6385 spin_unlock_irqrestore(&h->lock, flags);
6386 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
6387 break;
6388 /* delay and try again */
6389 msleep(20);
6393 static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
6395 int i;
6396 u32 doorbell_value;
6397 unsigned long flags;
6399 /* under certain very rare conditions, this can take awhile.
6400 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
6401 * as we enter this code.)
6403 for (i = 0; i < MAX_CONFIG_WAIT; i++) {
6404 spin_lock_irqsave(&h->lock, flags);
6405 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
6406 spin_unlock_irqrestore(&h->lock, flags);
6407 if (!(doorbell_value & CFGTBL_ChangeReq))
6408 break;
6409 /* delay and try again */
6410 usleep_range(10000, 20000);
6414 static int hpsa_enter_simple_mode(struct ctlr_info *h)
6416 u32 trans_support;
6418 trans_support = readl(&(h->cfgtable->TransportSupport));
6419 if (!(trans_support & SIMPLE_MODE))
6420 return -ENOTSUPP;
6422 h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
6424 /* Update the field, and then ring the doorbell */
6425 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
6426 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
6427 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
6428 hpsa_wait_for_mode_change_ack(h);
6429 print_cfg_table(&h->pdev->dev, h->cfgtable);
6430 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
6431 goto error;
6432 h->transMethod = CFGTBL_Trans_Simple;
6433 return 0;
6434 error:
6435 dev_warn(&h->pdev->dev, "unable to get board into simple mode\n");
6436 return -ENODEV;
6439 static int hpsa_pci_init(struct ctlr_info *h)
6441 int prod_index, err;
6443 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
6444 if (prod_index < 0)
6445 return -ENODEV;
6446 h->product_name = products[prod_index].product_name;
6447 h->access = *(products[prod_index].access);
6449 pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
6450 PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
6452 err = pci_enable_device(h->pdev);
6453 if (err) {
6454 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
6455 return err;
6458 /* Enable bus mastering (pci_disable_device may disable this) */
6459 pci_set_master(h->pdev);
6461 err = pci_request_regions(h->pdev, HPSA);
6462 if (err) {
6463 dev_err(&h->pdev->dev,
6464 "cannot obtain PCI resources, aborting\n");
6465 return err;
6467 hpsa_interrupt_mode(h);
6468 err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
6469 if (err)
6470 goto err_out_free_res;
6471 h->vaddr = remap_pci_mem(h->paddr, 0x250);
6472 if (!h->vaddr) {
6473 err = -ENOMEM;
6474 goto err_out_free_res;
6476 err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
6477 if (err)
6478 goto err_out_free_res;
6479 err = hpsa_find_cfgtables(h);
6480 if (err)
6481 goto err_out_free_res;
6482 hpsa_find_board_params(h);
6484 if (!hpsa_CISS_signature_present(h)) {
6485 err = -ENODEV;
6486 goto err_out_free_res;
6488 hpsa_set_driver_support_bits(h);
6489 hpsa_p600_dma_prefetch_quirk(h);
6490 err = hpsa_enter_simple_mode(h);
6491 if (err)
6492 goto err_out_free_res;
6493 return 0;
6495 err_out_free_res:
6496 if (h->transtable)
6497 iounmap(h->transtable);
6498 if (h->cfgtable)
6499 iounmap(h->cfgtable);
6500 if (h->vaddr)
6501 iounmap(h->vaddr);
6502 pci_disable_device(h->pdev);
6503 pci_release_regions(h->pdev);
6504 return err;
6507 static void hpsa_hba_inquiry(struct ctlr_info *h)
6509 int rc;
6511 #define HBA_INQUIRY_BYTE_COUNT 64
6512 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
6513 if (!h->hba_inquiry_data)
6514 return;
6515 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
6516 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
6517 if (rc != 0) {
6518 kfree(h->hba_inquiry_data);
6519 h->hba_inquiry_data = NULL;
6523 static int hpsa_init_reset_devices(struct pci_dev *pdev)
6525 int rc, i;
6527 if (!reset_devices)
6528 return 0;
6530 /* Reset the controller with a PCI power-cycle or via doorbell */
6531 rc = hpsa_kdump_hard_reset_controller(pdev);
6533 /* -ENOTSUPP here means we cannot reset the controller
6534 * but it's already (and still) up and running in
6535 * "performant mode". Or, it might be 640x, which can't reset
6536 * due to concerns about shared bbwc between 6402/6404 pair.
6538 if (rc == -ENOTSUPP)
6539 return rc; /* just try to do the kdump anyhow. */
6540 if (rc)
6541 return -ENODEV;
6543 /* Now try to get the controller to respond to a no-op */
6544 dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
6545 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
6546 if (hpsa_noop(pdev) == 0)
6547 break;
6548 else
6549 dev_warn(&pdev->dev, "no-op failed%s\n",
6550 (i < 11 ? "; re-trying" : ""));
6552 return 0;
6555 static int hpsa_allocate_cmd_pool(struct ctlr_info *h)
6557 h->cmd_pool_bits = kzalloc(
6558 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
6559 sizeof(unsigned long), GFP_KERNEL);
6560 h->cmd_pool = pci_alloc_consistent(h->pdev,
6561 h->nr_cmds * sizeof(*h->cmd_pool),
6562 &(h->cmd_pool_dhandle));
6563 h->errinfo_pool = pci_alloc_consistent(h->pdev,
6564 h->nr_cmds * sizeof(*h->errinfo_pool),
6565 &(h->errinfo_pool_dhandle));
6566 if ((h->cmd_pool_bits == NULL)
6567 || (h->cmd_pool == NULL)
6568 || (h->errinfo_pool == NULL)) {
6569 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
6570 return -ENOMEM;
6572 return 0;
6575 static void hpsa_free_cmd_pool(struct ctlr_info *h)
6577 kfree(h->cmd_pool_bits);
6578 if (h->cmd_pool)
6579 pci_free_consistent(h->pdev,
6580 h->nr_cmds * sizeof(struct CommandList),
6581 h->cmd_pool, h->cmd_pool_dhandle);
6582 if (h->ioaccel2_cmd_pool)
6583 pci_free_consistent(h->pdev,
6584 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
6585 h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle);
6586 if (h->errinfo_pool)
6587 pci_free_consistent(h->pdev,
6588 h->nr_cmds * sizeof(struct ErrorInfo),
6589 h->errinfo_pool,
6590 h->errinfo_pool_dhandle);
6591 if (h->ioaccel_cmd_pool)
6592 pci_free_consistent(h->pdev,
6593 h->nr_cmds * sizeof(struct io_accel1_cmd),
6594 h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle);
6597 static int hpsa_request_irq(struct ctlr_info *h,
6598 irqreturn_t (*msixhandler)(int, void *),
6599 irqreturn_t (*intxhandler)(int, void *))
6601 int rc, i;
6604 * initialize h->q[x] = x so that interrupt handlers know which
6605 * queue to process.
6607 for (i = 0; i < MAX_REPLY_QUEUES; i++)
6608 h->q[i] = (u8) i;
6610 if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
6611 /* If performant mode and MSI-X, use multiple reply queues */
6612 for (i = 0; i < h->msix_vector; i++)
6613 rc = request_irq(h->intr[i], msixhandler,
6614 0, h->devname,
6615 &h->q[i]);
6616 } else {
6617 /* Use single reply pool */
6618 if (h->msix_vector > 0 || h->msi_vector) {
6619 rc = request_irq(h->intr[h->intr_mode],
6620 msixhandler, 0, h->devname,
6621 &h->q[h->intr_mode]);
6622 } else {
6623 rc = request_irq(h->intr[h->intr_mode],
6624 intxhandler, IRQF_SHARED, h->devname,
6625 &h->q[h->intr_mode]);
6628 if (rc) {
6629 dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
6630 h->intr[h->intr_mode], h->devname);
6631 return -ENODEV;
6633 return 0;
6636 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
6638 if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
6639 HPSA_RESET_TYPE_CONTROLLER)) {
6640 dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
6641 return -EIO;
6644 dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
6645 if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
6646 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
6647 return -1;
6650 dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
6651 if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
6652 dev_warn(&h->pdev->dev, "Board failed to become ready "
6653 "after soft reset.\n");
6654 return -1;
6657 return 0;
6660 static void free_irqs(struct ctlr_info *h)
6662 int i;
6664 if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
6665 /* Single reply queue, only one irq to free */
6666 i = h->intr_mode;
6667 free_irq(h->intr[i], &h->q[i]);
6668 return;
6671 for (i = 0; i < h->msix_vector; i++)
6672 free_irq(h->intr[i], &h->q[i]);
6675 static void hpsa_free_irqs_and_disable_msix(struct ctlr_info *h)
6677 free_irqs(h);
6678 #ifdef CONFIG_PCI_MSI
6679 if (h->msix_vector) {
6680 if (h->pdev->msix_enabled)
6681 pci_disable_msix(h->pdev);
6682 } else if (h->msi_vector) {
6683 if (h->pdev->msi_enabled)
6684 pci_disable_msi(h->pdev);
6686 #endif /* CONFIG_PCI_MSI */
6689 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
6691 hpsa_free_irqs_and_disable_msix(h);
6692 hpsa_free_sg_chain_blocks(h);
6693 hpsa_free_cmd_pool(h);
6694 kfree(h->ioaccel1_blockFetchTable);
6695 kfree(h->blockFetchTable);
6696 pci_free_consistent(h->pdev, h->reply_pool_size,
6697 h->reply_pool, h->reply_pool_dhandle);
6698 if (h->vaddr)
6699 iounmap(h->vaddr);
6700 if (h->transtable)
6701 iounmap(h->transtable);
6702 if (h->cfgtable)
6703 iounmap(h->cfgtable);
6704 pci_release_regions(h->pdev);
6705 kfree(h);
6708 /* Called when controller lockup detected. */
6709 static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list)
6711 struct CommandList *c = NULL;
6713 assert_spin_locked(&h->lock);
6714 /* Mark all outstanding commands as failed and complete them. */
6715 while (!list_empty(list)) {
6716 c = list_entry(list->next, struct CommandList, list);
6717 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
6718 finish_cmd(c);
6722 static void controller_lockup_detected(struct ctlr_info *h)
6724 unsigned long flags;
6726 h->access.set_intr_mask(h, HPSA_INTR_OFF);
6727 spin_lock_irqsave(&h->lock, flags);
6728 h->lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
6729 spin_unlock_irqrestore(&h->lock, flags);
6730 dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
6731 h->lockup_detected);
6732 pci_disable_device(h->pdev);
6733 spin_lock_irqsave(&h->lock, flags);
6734 fail_all_cmds_on_list(h, &h->cmpQ);
6735 fail_all_cmds_on_list(h, &h->reqQ);
6736 spin_unlock_irqrestore(&h->lock, flags);
6739 static void detect_controller_lockup(struct ctlr_info *h)
6741 u64 now;
6742 u32 heartbeat;
6743 unsigned long flags;
6745 now = get_jiffies_64();
6746 /* If we've received an interrupt recently, we're ok. */
6747 if (time_after64(h->last_intr_timestamp +
6748 (h->heartbeat_sample_interval), now))
6749 return;
6752 * If we've already checked the heartbeat recently, we're ok.
6753 * This could happen if someone sends us a signal. We
6754 * otherwise don't care about signals in this thread.
6756 if (time_after64(h->last_heartbeat_timestamp +
6757 (h->heartbeat_sample_interval), now))
6758 return;
6760 /* If heartbeat has not changed since we last looked, we're not ok. */
6761 spin_lock_irqsave(&h->lock, flags);
6762 heartbeat = readl(&h->cfgtable->HeartBeat);
6763 spin_unlock_irqrestore(&h->lock, flags);
6764 if (h->last_heartbeat == heartbeat) {
6765 controller_lockup_detected(h);
6766 return;
6769 /* We're ok. */
6770 h->last_heartbeat = heartbeat;
6771 h->last_heartbeat_timestamp = now;
6774 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
6776 int i;
6777 char *event_type;
6779 /* Clear the driver-requested rescan flag */
6780 h->drv_req_rescan = 0;
6782 /* Ask the controller to clear the events we're handling. */
6783 if ((h->transMethod & (CFGTBL_Trans_io_accel1
6784 | CFGTBL_Trans_io_accel2)) &&
6785 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
6786 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
6788 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
6789 event_type = "state change";
6790 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
6791 event_type = "configuration change";
6792 /* Stop sending new RAID offload reqs via the IO accelerator */
6793 scsi_block_requests(h->scsi_host);
6794 for (i = 0; i < h->ndevices; i++)
6795 h->dev[i]->offload_enabled = 0;
6796 hpsa_drain_accel_commands(h);
6797 /* Set 'accelerator path config change' bit */
6798 dev_warn(&h->pdev->dev,
6799 "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
6800 h->events, event_type);
6801 writel(h->events, &(h->cfgtable->clear_event_notify));
6802 /* Set the "clear event notify field update" bit 6 */
6803 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
6804 /* Wait until ctlr clears 'clear event notify field', bit 6 */
6805 hpsa_wait_for_clear_event_notify_ack(h);
6806 scsi_unblock_requests(h->scsi_host);
6807 } else {
6808 /* Acknowledge controller notification events. */
6809 writel(h->events, &(h->cfgtable->clear_event_notify));
6810 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
6811 hpsa_wait_for_clear_event_notify_ack(h);
6812 #if 0
6813 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
6814 hpsa_wait_for_mode_change_ack(h);
6815 #endif
6817 return;
6820 /* Check a register on the controller to see if there are configuration
6821 * changes (added/changed/removed logical drives, etc.) which mean that
6822 * we should rescan the controller for devices.
6823 * Also check flag for driver-initiated rescan.
6825 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
6827 if (h->drv_req_rescan)
6828 return 1;
6830 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
6831 return 0;
6833 h->events = readl(&(h->cfgtable->event_notify));
6834 return h->events & RESCAN_REQUIRED_EVENT_BITS;
6838 * Check if any of the offline devices have become ready
6840 static int hpsa_offline_devices_ready(struct ctlr_info *h)
6842 unsigned long flags;
6843 struct offline_device_entry *d;
6844 struct list_head *this, *tmp;
6846 spin_lock_irqsave(&h->offline_device_lock, flags);
6847 list_for_each_safe(this, tmp, &h->offline_device_list) {
6848 d = list_entry(this, struct offline_device_entry,
6849 offline_list);
6850 spin_unlock_irqrestore(&h->offline_device_lock, flags);
6851 if (!hpsa_volume_offline(h, d->scsi3addr))
6852 return 1;
6853 spin_lock_irqsave(&h->offline_device_lock, flags);
6855 spin_unlock_irqrestore(&h->offline_device_lock, flags);
6856 return 0;
6860 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
6862 unsigned long flags;
6863 struct ctlr_info *h = container_of(to_delayed_work(work),
6864 struct ctlr_info, monitor_ctlr_work);
6865 detect_controller_lockup(h);
6866 if (h->lockup_detected)
6867 return;
6869 if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
6870 scsi_host_get(h->scsi_host);
6871 h->drv_req_rescan = 0;
6872 hpsa_ack_ctlr_events(h);
6873 hpsa_scan_start(h->scsi_host);
6874 scsi_host_put(h->scsi_host);
6877 spin_lock_irqsave(&h->lock, flags);
6878 if (h->remove_in_progress) {
6879 spin_unlock_irqrestore(&h->lock, flags);
6880 return;
6882 schedule_delayed_work(&h->monitor_ctlr_work,
6883 h->heartbeat_sample_interval);
6884 spin_unlock_irqrestore(&h->lock, flags);
6887 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6889 int dac, rc;
6890 struct ctlr_info *h;
6891 int try_soft_reset = 0;
6892 unsigned long flags;
6894 if (number_of_controllers == 0)
6895 printk(KERN_INFO DRIVER_NAME "\n");
6897 rc = hpsa_init_reset_devices(pdev);
6898 if (rc) {
6899 if (rc != -ENOTSUPP)
6900 return rc;
6901 /* If the reset fails in a particular way (it has no way to do
6902 * a proper hard reset, so returns -ENOTSUPP) we can try to do
6903 * a soft reset once we get the controller configured up to the
6904 * point that it can accept a command.
6906 try_soft_reset = 1;
6907 rc = 0;
6910 reinit_after_soft_reset:
6912 /* Command structures must be aligned on a 32-byte boundary because
6913 * the 5 lower bits of the address are used by the hardware. and by
6914 * the driver. See comments in hpsa.h for more info.
6916 #define COMMANDLIST_ALIGNMENT 128
6917 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
6918 h = kzalloc(sizeof(*h), GFP_KERNEL);
6919 if (!h)
6920 return -ENOMEM;
6922 h->pdev = pdev;
6923 h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
6924 INIT_LIST_HEAD(&h->cmpQ);
6925 INIT_LIST_HEAD(&h->reqQ);
6926 INIT_LIST_HEAD(&h->offline_device_list);
6927 spin_lock_init(&h->lock);
6928 spin_lock_init(&h->offline_device_lock);
6929 spin_lock_init(&h->scan_lock);
6930 spin_lock_init(&h->passthru_count_lock);
6931 rc = hpsa_pci_init(h);
6932 if (rc != 0)
6933 goto clean1;
6935 sprintf(h->devname, HPSA "%d", number_of_controllers);
6936 h->ctlr = number_of_controllers;
6937 number_of_controllers++;
6939 /* configure PCI DMA stuff */
6940 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
6941 if (rc == 0) {
6942 dac = 1;
6943 } else {
6944 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
6945 if (rc == 0) {
6946 dac = 0;
6947 } else {
6948 dev_err(&pdev->dev, "no suitable DMA available\n");
6949 goto clean1;
6953 /* make sure the board interrupts are off */
6954 h->access.set_intr_mask(h, HPSA_INTR_OFF);
6956 if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
6957 goto clean2;
6958 dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
6959 h->devname, pdev->device,
6960 h->intr[h->intr_mode], dac ? "" : " not");
6961 if (hpsa_allocate_cmd_pool(h))
6962 goto clean4;
6963 if (hpsa_allocate_sg_chain_blocks(h))
6964 goto clean4;
6965 init_waitqueue_head(&h->scan_wait_queue);
6966 h->scan_finished = 1; /* no scan currently in progress */
6968 pci_set_drvdata(pdev, h);
6969 h->ndevices = 0;
6970 h->hba_mode_enabled = 0;
6971 h->scsi_host = NULL;
6972 spin_lock_init(&h->devlock);
6973 hpsa_put_ctlr_into_performant_mode(h);
6975 /* At this point, the controller is ready to take commands.
6976 * Now, if reset_devices and the hard reset didn't work, try
6977 * the soft reset and see if that works.
6979 if (try_soft_reset) {
6981 /* This is kind of gross. We may or may not get a completion
6982 * from the soft reset command, and if we do, then the value
6983 * from the fifo may or may not be valid. So, we wait 10 secs
6984 * after the reset throwing away any completions we get during
6985 * that time. Unregister the interrupt handler and register
6986 * fake ones to scoop up any residual completions.
6988 spin_lock_irqsave(&h->lock, flags);
6989 h->access.set_intr_mask(h, HPSA_INTR_OFF);
6990 spin_unlock_irqrestore(&h->lock, flags);
6991 free_irqs(h);
6992 rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
6993 hpsa_intx_discard_completions);
6994 if (rc) {
6995 dev_warn(&h->pdev->dev, "Failed to request_irq after "
6996 "soft reset.\n");
6997 goto clean4;
7000 rc = hpsa_kdump_soft_reset(h);
7001 if (rc)
7002 /* Neither hard nor soft reset worked, we're hosed. */
7003 goto clean4;
7005 dev_info(&h->pdev->dev, "Board READY.\n");
7006 dev_info(&h->pdev->dev,
7007 "Waiting for stale completions to drain.\n");
7008 h->access.set_intr_mask(h, HPSA_INTR_ON);
7009 msleep(10000);
7010 h->access.set_intr_mask(h, HPSA_INTR_OFF);
7012 rc = controller_reset_failed(h->cfgtable);
7013 if (rc)
7014 dev_info(&h->pdev->dev,
7015 "Soft reset appears to have failed.\n");
7017 /* since the controller's reset, we have to go back and re-init
7018 * everything. Easiest to just forget what we've done and do it
7019 * all over again.
7021 hpsa_undo_allocations_after_kdump_soft_reset(h);
7022 try_soft_reset = 0;
7023 if (rc)
7024 /* don't go to clean4, we already unallocated */
7025 return -ENODEV;
7027 goto reinit_after_soft_reset;
7030 /* Enable Accelerated IO path at driver layer */
7031 h->acciopath_status = 1;
7033 h->drv_req_rescan = 0;
7035 /* Turn the interrupts on so we can service requests */
7036 h->access.set_intr_mask(h, HPSA_INTR_ON);
7038 hpsa_hba_inquiry(h);
7039 hpsa_register_scsi(h); /* hook ourselves into SCSI subsystem */
7041 /* Monitor the controller for firmware lockups */
7042 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
7043 INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
7044 schedule_delayed_work(&h->monitor_ctlr_work,
7045 h->heartbeat_sample_interval);
7046 return 0;
7048 clean4:
7049 hpsa_free_sg_chain_blocks(h);
7050 hpsa_free_cmd_pool(h);
7051 free_irqs(h);
7052 clean2:
7053 clean1:
7054 kfree(h);
7055 return rc;
7058 static void hpsa_flush_cache(struct ctlr_info *h)
7060 char *flush_buf;
7061 struct CommandList *c;
7062 unsigned long flags;
7064 /* Don't bother trying to flush the cache if locked up */
7065 spin_lock_irqsave(&h->lock, flags);
7066 if (unlikely(h->lockup_detected)) {
7067 spin_unlock_irqrestore(&h->lock, flags);
7068 return;
7070 spin_unlock_irqrestore(&h->lock, flags);
7072 flush_buf = kzalloc(4, GFP_KERNEL);
7073 if (!flush_buf)
7074 return;
7076 c = cmd_special_alloc(h);
7077 if (!c) {
7078 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
7079 goto out_of_memory;
7081 if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
7082 RAID_CTLR_LUNID, TYPE_CMD)) {
7083 goto out;
7085 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
7086 if (c->err_info->CommandStatus != 0)
7087 out:
7088 dev_warn(&h->pdev->dev,
7089 "error flushing cache on controller\n");
7090 cmd_special_free(h, c);
7091 out_of_memory:
7092 kfree(flush_buf);
7095 static void hpsa_shutdown(struct pci_dev *pdev)
7097 struct ctlr_info *h;
7099 h = pci_get_drvdata(pdev);
7100 /* Turn board interrupts off and send the flush cache command
7101 * sendcmd will turn off interrupt, and send the flush...
7102 * To write all data in the battery backed cache to disks
7104 hpsa_flush_cache(h);
7105 h->access.set_intr_mask(h, HPSA_INTR_OFF);
7106 hpsa_free_irqs_and_disable_msix(h);
7109 static void hpsa_free_device_info(struct ctlr_info *h)
7111 int i;
7113 for (i = 0; i < h->ndevices; i++)
7114 kfree(h->dev[i]);
7117 static void hpsa_remove_one(struct pci_dev *pdev)
7119 struct ctlr_info *h;
7120 unsigned long flags;
7122 if (pci_get_drvdata(pdev) == NULL) {
7123 dev_err(&pdev->dev, "unable to remove device\n");
7124 return;
7126 h = pci_get_drvdata(pdev);
7128 /* Get rid of any controller monitoring work items */
7129 spin_lock_irqsave(&h->lock, flags);
7130 h->remove_in_progress = 1;
7131 cancel_delayed_work(&h->monitor_ctlr_work);
7132 spin_unlock_irqrestore(&h->lock, flags);
7134 hpsa_unregister_scsi(h); /* unhook from SCSI subsystem */
7135 hpsa_shutdown(pdev);
7136 iounmap(h->vaddr);
7137 iounmap(h->transtable);
7138 iounmap(h->cfgtable);
7139 hpsa_free_device_info(h);
7140 hpsa_free_sg_chain_blocks(h);
7141 pci_free_consistent(h->pdev,
7142 h->nr_cmds * sizeof(struct CommandList),
7143 h->cmd_pool, h->cmd_pool_dhandle);
7144 pci_free_consistent(h->pdev,
7145 h->nr_cmds * sizeof(struct ErrorInfo),
7146 h->errinfo_pool, h->errinfo_pool_dhandle);
7147 pci_free_consistent(h->pdev, h->reply_pool_size,
7148 h->reply_pool, h->reply_pool_dhandle);
7149 kfree(h->cmd_pool_bits);
7150 kfree(h->blockFetchTable);
7151 kfree(h->ioaccel1_blockFetchTable);
7152 kfree(h->ioaccel2_blockFetchTable);
7153 kfree(h->hba_inquiry_data);
7154 pci_disable_device(pdev);
7155 pci_release_regions(pdev);
7156 kfree(h);
7159 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
7160 __attribute__((unused)) pm_message_t state)
7162 return -ENOSYS;
7165 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
7167 return -ENOSYS;
7170 static struct pci_driver hpsa_pci_driver = {
7171 .name = HPSA,
7172 .probe = hpsa_init_one,
7173 .remove = hpsa_remove_one,
7174 .id_table = hpsa_pci_device_id, /* id_table */
7175 .shutdown = hpsa_shutdown,
7176 .suspend = hpsa_suspend,
7177 .resume = hpsa_resume,
7180 /* Fill in bucket_map[], given nsgs (the max number of
7181 * scatter gather elements supported) and bucket[],
7182 * which is an array of 8 integers. The bucket[] array
7183 * contains 8 different DMA transfer sizes (in 16
7184 * byte increments) which the controller uses to fetch
7185 * commands. This function fills in bucket_map[], which
7186 * maps a given number of scatter gather elements to one of
7187 * the 8 DMA transfer sizes. The point of it is to allow the
7188 * controller to only do as much DMA as needed to fetch the
7189 * command, with the DMA transfer size encoded in the lower
7190 * bits of the command address.
7192 static void calc_bucket_map(int bucket[], int num_buckets,
7193 int nsgs, int min_blocks, int *bucket_map)
7195 int i, j, b, size;
7197 /* Note, bucket_map must have nsgs+1 entries. */
7198 for (i = 0; i <= nsgs; i++) {
7199 /* Compute size of a command with i SG entries */
7200 size = i + min_blocks;
7201 b = num_buckets; /* Assume the biggest bucket */
7202 /* Find the bucket that is just big enough */
7203 for (j = 0; j < num_buckets; j++) {
7204 if (bucket[j] >= size) {
7205 b = j;
7206 break;
7209 /* for a command with i SG entries, use bucket b. */
7210 bucket_map[i] = b;
7214 static void hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
7216 int i;
7217 unsigned long register_value;
7218 unsigned long transMethod = CFGTBL_Trans_Performant |
7219 (trans_support & CFGTBL_Trans_use_short_tags) |
7220 CFGTBL_Trans_enable_directed_msix |
7221 (trans_support & (CFGTBL_Trans_io_accel1 |
7222 CFGTBL_Trans_io_accel2));
7223 struct access_method access = SA5_performant_access;
7225 /* This is a bit complicated. There are 8 registers on
7226 * the controller which we write to to tell it 8 different
7227 * sizes of commands which there may be. It's a way of
7228 * reducing the DMA done to fetch each command. Encoded into
7229 * each command's tag are 3 bits which communicate to the controller
7230 * which of the eight sizes that command fits within. The size of
7231 * each command depends on how many scatter gather entries there are.
7232 * Each SG entry requires 16 bytes. The eight registers are programmed
7233 * with the number of 16-byte blocks a command of that size requires.
7234 * The smallest command possible requires 5 such 16 byte blocks.
7235 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
7236 * blocks. Note, this only extends to the SG entries contained
7237 * within the command block, and does not extend to chained blocks
7238 * of SG elements. bft[] contains the eight values we write to
7239 * the registers. They are not evenly distributed, but have more
7240 * sizes for small commands, and fewer sizes for larger commands.
7242 int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
7243 #define MIN_IOACCEL2_BFT_ENTRY 5
7244 #define HPSA_IOACCEL2_HEADER_SZ 4
7245 int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
7246 13, 14, 15, 16, 17, 18, 19,
7247 HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
7248 BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
7249 BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
7250 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
7251 16 * MIN_IOACCEL2_BFT_ENTRY);
7252 BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
7253 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
7254 /* 5 = 1 s/g entry or 4k
7255 * 6 = 2 s/g entry or 8k
7256 * 8 = 4 s/g entry or 16k
7257 * 10 = 6 s/g entry or 24k
7260 /* Controller spec: zero out this buffer. */
7261 memset(h->reply_pool, 0, h->reply_pool_size);
7263 bft[7] = SG_ENTRIES_IN_CMD + 4;
7264 calc_bucket_map(bft, ARRAY_SIZE(bft),
7265 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
7266 for (i = 0; i < 8; i++)
7267 writel(bft[i], &h->transtable->BlockFetch[i]);
7269 /* size of controller ring buffer */
7270 writel(h->max_commands, &h->transtable->RepQSize);
7271 writel(h->nreply_queues, &h->transtable->RepQCount);
7272 writel(0, &h->transtable->RepQCtrAddrLow32);
7273 writel(0, &h->transtable->RepQCtrAddrHigh32);
7275 for (i = 0; i < h->nreply_queues; i++) {
7276 writel(0, &h->transtable->RepQAddr[i].upper);
7277 writel(h->reply_pool_dhandle +
7278 (h->max_commands * sizeof(u64) * i),
7279 &h->transtable->RepQAddr[i].lower);
7282 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7283 writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
7285 * enable outbound interrupt coalescing in accelerator mode;
7287 if (trans_support & CFGTBL_Trans_io_accel1) {
7288 access = SA5_ioaccel_mode1_access;
7289 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
7290 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
7291 } else {
7292 if (trans_support & CFGTBL_Trans_io_accel2) {
7293 access = SA5_ioaccel_mode2_access;
7294 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
7295 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
7298 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7299 hpsa_wait_for_mode_change_ack(h);
7300 register_value = readl(&(h->cfgtable->TransportActive));
7301 if (!(register_value & CFGTBL_Trans_Performant)) {
7302 dev_warn(&h->pdev->dev, "unable to get board into"
7303 " performant mode\n");
7304 return;
7306 /* Change the access methods to the performant access methods */
7307 h->access = access;
7308 h->transMethod = transMethod;
7310 if (!((trans_support & CFGTBL_Trans_io_accel1) ||
7311 (trans_support & CFGTBL_Trans_io_accel2)))
7312 return;
7314 if (trans_support & CFGTBL_Trans_io_accel1) {
7315 /* Set up I/O accelerator mode */
7316 for (i = 0; i < h->nreply_queues; i++) {
7317 writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
7318 h->reply_queue[i].current_entry =
7319 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
7321 bft[7] = h->ioaccel_maxsg + 8;
7322 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
7323 h->ioaccel1_blockFetchTable);
7325 /* initialize all reply queue entries to unused */
7326 memset(h->reply_pool, (u8) IOACCEL_MODE1_REPLY_UNUSED,
7327 h->reply_pool_size);
7329 /* set all the constant fields in the accelerator command
7330 * frames once at init time to save CPU cycles later.
7332 for (i = 0; i < h->nr_cmds; i++) {
7333 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
7335 cp->function = IOACCEL1_FUNCTION_SCSIIO;
7336 cp->err_info = (u32) (h->errinfo_pool_dhandle +
7337 (i * sizeof(struct ErrorInfo)));
7338 cp->err_info_len = sizeof(struct ErrorInfo);
7339 cp->sgl_offset = IOACCEL1_SGLOFFSET;
7340 cp->host_context_flags = IOACCEL1_HCFLAGS_CISS_FORMAT;
7341 cp->timeout_sec = 0;
7342 cp->ReplyQueue = 0;
7343 cp->Tag.lower = (i << DIRECT_LOOKUP_SHIFT) |
7344 DIRECT_LOOKUP_BIT;
7345 cp->Tag.upper = 0;
7346 cp->host_addr.lower =
7347 (u32) (h->ioaccel_cmd_pool_dhandle +
7348 (i * sizeof(struct io_accel1_cmd)));
7349 cp->host_addr.upper = 0;
7351 } else if (trans_support & CFGTBL_Trans_io_accel2) {
7352 u64 cfg_offset, cfg_base_addr_index;
7353 u32 bft2_offset, cfg_base_addr;
7354 int rc;
7356 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7357 &cfg_base_addr_index, &cfg_offset);
7358 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
7359 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
7360 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
7361 4, h->ioaccel2_blockFetchTable);
7362 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
7363 BUILD_BUG_ON(offsetof(struct CfgTable,
7364 io_accel_request_size_offset) != 0xb8);
7365 h->ioaccel2_bft2_regs =
7366 remap_pci_mem(pci_resource_start(h->pdev,
7367 cfg_base_addr_index) +
7368 cfg_offset + bft2_offset,
7369 ARRAY_SIZE(bft2) *
7370 sizeof(*h->ioaccel2_bft2_regs));
7371 for (i = 0; i < ARRAY_SIZE(bft2); i++)
7372 writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
7374 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7375 hpsa_wait_for_mode_change_ack(h);
7378 static int hpsa_alloc_ioaccel_cmd_and_bft(struct ctlr_info *h)
7380 h->ioaccel_maxsg =
7381 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
7382 if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
7383 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
7385 /* Command structures must be aligned on a 128-byte boundary
7386 * because the 7 lower bits of the address are used by the
7387 * hardware.
7389 #define IOACCEL1_COMMANDLIST_ALIGNMENT 128
7390 BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
7391 IOACCEL1_COMMANDLIST_ALIGNMENT);
7392 h->ioaccel_cmd_pool =
7393 pci_alloc_consistent(h->pdev,
7394 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
7395 &(h->ioaccel_cmd_pool_dhandle));
7397 h->ioaccel1_blockFetchTable =
7398 kmalloc(((h->ioaccel_maxsg + 1) *
7399 sizeof(u32)), GFP_KERNEL);
7401 if ((h->ioaccel_cmd_pool == NULL) ||
7402 (h->ioaccel1_blockFetchTable == NULL))
7403 goto clean_up;
7405 memset(h->ioaccel_cmd_pool, 0,
7406 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
7407 return 0;
7409 clean_up:
7410 if (h->ioaccel_cmd_pool)
7411 pci_free_consistent(h->pdev,
7412 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
7413 h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle);
7414 kfree(h->ioaccel1_blockFetchTable);
7415 return 1;
7418 static int ioaccel2_alloc_cmds_and_bft(struct ctlr_info *h)
7420 /* Allocate ioaccel2 mode command blocks and block fetch table */
7422 h->ioaccel_maxsg =
7423 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
7424 if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
7425 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
7427 #define IOACCEL2_COMMANDLIST_ALIGNMENT 128
7428 BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
7429 IOACCEL2_COMMANDLIST_ALIGNMENT);
7430 h->ioaccel2_cmd_pool =
7431 pci_alloc_consistent(h->pdev,
7432 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
7433 &(h->ioaccel2_cmd_pool_dhandle));
7435 h->ioaccel2_blockFetchTable =
7436 kmalloc(((h->ioaccel_maxsg + 1) *
7437 sizeof(u32)), GFP_KERNEL);
7439 if ((h->ioaccel2_cmd_pool == NULL) ||
7440 (h->ioaccel2_blockFetchTable == NULL))
7441 goto clean_up;
7443 memset(h->ioaccel2_cmd_pool, 0,
7444 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
7445 return 0;
7447 clean_up:
7448 if (h->ioaccel2_cmd_pool)
7449 pci_free_consistent(h->pdev,
7450 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
7451 h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle);
7452 kfree(h->ioaccel2_blockFetchTable);
7453 return 1;
7456 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
7458 u32 trans_support;
7459 unsigned long transMethod = CFGTBL_Trans_Performant |
7460 CFGTBL_Trans_use_short_tags;
7461 int i;
7463 if (hpsa_simple_mode)
7464 return;
7466 /* Check for I/O accelerator mode support */
7467 if (trans_support & CFGTBL_Trans_io_accel1) {
7468 transMethod |= CFGTBL_Trans_io_accel1 |
7469 CFGTBL_Trans_enable_directed_msix;
7470 if (hpsa_alloc_ioaccel_cmd_and_bft(h))
7471 goto clean_up;
7472 } else {
7473 if (trans_support & CFGTBL_Trans_io_accel2) {
7474 transMethod |= CFGTBL_Trans_io_accel2 |
7475 CFGTBL_Trans_enable_directed_msix;
7476 if (ioaccel2_alloc_cmds_and_bft(h))
7477 goto clean_up;
7481 /* TODO, check that this next line h->nreply_queues is correct */
7482 trans_support = readl(&(h->cfgtable->TransportSupport));
7483 if (!(trans_support & PERFORMANT_MODE))
7484 return;
7486 h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
7487 hpsa_get_max_perf_mode_cmds(h);
7488 /* Performant mode ring buffer and supporting data structures */
7489 h->reply_pool_size = h->max_commands * sizeof(u64) * h->nreply_queues;
7490 h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
7491 &(h->reply_pool_dhandle));
7493 for (i = 0; i < h->nreply_queues; i++) {
7494 h->reply_queue[i].head = &h->reply_pool[h->max_commands * i];
7495 h->reply_queue[i].size = h->max_commands;
7496 h->reply_queue[i].wraparound = 1; /* spec: init to 1 */
7497 h->reply_queue[i].current_entry = 0;
7500 /* Need a block fetch table for performant mode */
7501 h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
7502 sizeof(u32)), GFP_KERNEL);
7504 if ((h->reply_pool == NULL)
7505 || (h->blockFetchTable == NULL))
7506 goto clean_up;
7508 hpsa_enter_performant_mode(h, trans_support);
7509 return;
7511 clean_up:
7512 if (h->reply_pool)
7513 pci_free_consistent(h->pdev, h->reply_pool_size,
7514 h->reply_pool, h->reply_pool_dhandle);
7515 kfree(h->blockFetchTable);
7518 static int is_accelerated_cmd(struct CommandList *c)
7520 return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
7523 static void hpsa_drain_accel_commands(struct ctlr_info *h)
7525 struct CommandList *c = NULL;
7526 unsigned long flags;
7527 int accel_cmds_out;
7529 do { /* wait for all outstanding commands to drain out */
7530 accel_cmds_out = 0;
7531 spin_lock_irqsave(&h->lock, flags);
7532 list_for_each_entry(c, &h->cmpQ, list)
7533 accel_cmds_out += is_accelerated_cmd(c);
7534 list_for_each_entry(c, &h->reqQ, list)
7535 accel_cmds_out += is_accelerated_cmd(c);
7536 spin_unlock_irqrestore(&h->lock, flags);
7537 if (accel_cmds_out <= 0)
7538 break;
7539 msleep(100);
7540 } while (1);
7544 * This is it. Register the PCI driver information for the cards we control
7545 * the OS will call our registered routines when it finds one of our cards.
7547 static int __init hpsa_init(void)
7549 return pci_register_driver(&hpsa_pci_driver);
7552 static void __exit hpsa_cleanup(void)
7554 pci_unregister_driver(&hpsa_pci_driver);
7557 static void __attribute__((unused)) verify_offsets(void)
7559 #define VERIFY_OFFSET(member, offset) \
7560 BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
7562 VERIFY_OFFSET(structure_size, 0);
7563 VERIFY_OFFSET(volume_blk_size, 4);
7564 VERIFY_OFFSET(volume_blk_cnt, 8);
7565 VERIFY_OFFSET(phys_blk_shift, 16);
7566 VERIFY_OFFSET(parity_rotation_shift, 17);
7567 VERIFY_OFFSET(strip_size, 18);
7568 VERIFY_OFFSET(disk_starting_blk, 20);
7569 VERIFY_OFFSET(disk_blk_cnt, 28);
7570 VERIFY_OFFSET(data_disks_per_row, 36);
7571 VERIFY_OFFSET(metadata_disks_per_row, 38);
7572 VERIFY_OFFSET(row_cnt, 40);
7573 VERIFY_OFFSET(layout_map_count, 42);
7574 VERIFY_OFFSET(flags, 44);
7575 VERIFY_OFFSET(dekindex, 46);
7576 /* VERIFY_OFFSET(reserved, 48 */
7577 VERIFY_OFFSET(data, 64);
7579 #undef VERIFY_OFFSET
7581 #define VERIFY_OFFSET(member, offset) \
7582 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
7584 VERIFY_OFFSET(IU_type, 0);
7585 VERIFY_OFFSET(direction, 1);
7586 VERIFY_OFFSET(reply_queue, 2);
7587 /* VERIFY_OFFSET(reserved1, 3); */
7588 VERIFY_OFFSET(scsi_nexus, 4);
7589 VERIFY_OFFSET(Tag, 8);
7590 VERIFY_OFFSET(cdb, 16);
7591 VERIFY_OFFSET(cciss_lun, 32);
7592 VERIFY_OFFSET(data_len, 40);
7593 VERIFY_OFFSET(cmd_priority_task_attr, 44);
7594 VERIFY_OFFSET(sg_count, 45);
7595 /* VERIFY_OFFSET(reserved3 */
7596 VERIFY_OFFSET(err_ptr, 48);
7597 VERIFY_OFFSET(err_len, 56);
7598 /* VERIFY_OFFSET(reserved4 */
7599 VERIFY_OFFSET(sg, 64);
7601 #undef VERIFY_OFFSET
7603 #define VERIFY_OFFSET(member, offset) \
7604 BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
7606 VERIFY_OFFSET(dev_handle, 0x00);
7607 VERIFY_OFFSET(reserved1, 0x02);
7608 VERIFY_OFFSET(function, 0x03);
7609 VERIFY_OFFSET(reserved2, 0x04);
7610 VERIFY_OFFSET(err_info, 0x0C);
7611 VERIFY_OFFSET(reserved3, 0x10);
7612 VERIFY_OFFSET(err_info_len, 0x12);
7613 VERIFY_OFFSET(reserved4, 0x13);
7614 VERIFY_OFFSET(sgl_offset, 0x14);
7615 VERIFY_OFFSET(reserved5, 0x15);
7616 VERIFY_OFFSET(transfer_len, 0x1C);
7617 VERIFY_OFFSET(reserved6, 0x20);
7618 VERIFY_OFFSET(io_flags, 0x24);
7619 VERIFY_OFFSET(reserved7, 0x26);
7620 VERIFY_OFFSET(LUN, 0x34);
7621 VERIFY_OFFSET(control, 0x3C);
7622 VERIFY_OFFSET(CDB, 0x40);
7623 VERIFY_OFFSET(reserved8, 0x50);
7624 VERIFY_OFFSET(host_context_flags, 0x60);
7625 VERIFY_OFFSET(timeout_sec, 0x62);
7626 VERIFY_OFFSET(ReplyQueue, 0x64);
7627 VERIFY_OFFSET(reserved9, 0x65);
7628 VERIFY_OFFSET(Tag, 0x68);
7629 VERIFY_OFFSET(host_addr, 0x70);
7630 VERIFY_OFFSET(CISS_LUN, 0x78);
7631 VERIFY_OFFSET(SG, 0x78 + 8);
7632 #undef VERIFY_OFFSET
7635 module_init(hpsa_init);
7636 module_exit(hpsa_cleanup);