1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1999 Linus Torvalds
6 * Copyright (C) 2002 Christoph Hellwig
9 #include <linux/mman.h>
10 #include <linux/pagemap.h>
11 #include <linux/syscalls.h>
12 #include <linux/mempolicy.h>
13 #include <linux/page-isolation.h>
14 #include <linux/page_idle.h>
15 #include <linux/userfaultfd_k.h>
16 #include <linux/hugetlb.h>
17 #include <linux/falloc.h>
18 #include <linux/fadvise.h>
19 #include <linux/sched.h>
20 #include <linux/ksm.h>
22 #include <linux/file.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 #include <linux/pagewalk.h>
26 #include <linux/swap.h>
27 #include <linux/swapops.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/mmu_notifier.h>
35 struct madvise_walk_private
{
36 struct mmu_gather
*tlb
;
41 * Any behaviour which results in changes to the vma->vm_flags needs to
42 * take mmap_sem for writing. Others, which simply traverse vmas, need
43 * to only take it for reading.
45 static int madvise_need_mmap_write(int behavior
)
56 /* be safe, default to 1. list exceptions explicitly */
62 * We can potentially split a vm area into separate
63 * areas, each area with its own behavior.
65 static long madvise_behavior(struct vm_area_struct
*vma
,
66 struct vm_area_struct
**prev
,
67 unsigned long start
, unsigned long end
, int behavior
)
69 struct mm_struct
*mm
= vma
->vm_mm
;
72 unsigned long new_flags
= vma
->vm_flags
;
76 new_flags
= new_flags
& ~VM_RAND_READ
& ~VM_SEQ_READ
;
79 new_flags
= (new_flags
& ~VM_RAND_READ
) | VM_SEQ_READ
;
82 new_flags
= (new_flags
& ~VM_SEQ_READ
) | VM_RAND_READ
;
85 new_flags
|= VM_DONTCOPY
;
88 if (vma
->vm_flags
& VM_IO
) {
92 new_flags
&= ~VM_DONTCOPY
;
95 /* MADV_WIPEONFORK is only supported on anonymous memory. */
96 if (vma
->vm_file
|| vma
->vm_flags
& VM_SHARED
) {
100 new_flags
|= VM_WIPEONFORK
;
102 case MADV_KEEPONFORK
:
103 new_flags
&= ~VM_WIPEONFORK
;
106 new_flags
|= VM_DONTDUMP
;
109 if (!is_vm_hugetlb_page(vma
) && new_flags
& VM_SPECIAL
) {
113 new_flags
&= ~VM_DONTDUMP
;
116 case MADV_UNMERGEABLE
:
117 error
= ksm_madvise(vma
, start
, end
, behavior
, &new_flags
);
119 goto out_convert_errno
;
122 case MADV_NOHUGEPAGE
:
123 error
= hugepage_madvise(vma
, &new_flags
, behavior
);
125 goto out_convert_errno
;
129 if (new_flags
== vma
->vm_flags
) {
134 pgoff
= vma
->vm_pgoff
+ ((start
- vma
->vm_start
) >> PAGE_SHIFT
);
135 *prev
= vma_merge(mm
, *prev
, start
, end
, new_flags
, vma
->anon_vma
,
136 vma
->vm_file
, pgoff
, vma_policy(vma
),
137 vma
->vm_userfaultfd_ctx
);
145 if (start
!= vma
->vm_start
) {
146 if (unlikely(mm
->map_count
>= sysctl_max_map_count
)) {
150 error
= __split_vma(mm
, vma
, start
, 1);
152 goto out_convert_errno
;
155 if (end
!= vma
->vm_end
) {
156 if (unlikely(mm
->map_count
>= sysctl_max_map_count
)) {
160 error
= __split_vma(mm
, vma
, end
, 0);
162 goto out_convert_errno
;
167 * vm_flags is protected by the mmap_sem held in write mode.
169 vma
->vm_flags
= new_flags
;
173 * madvise() returns EAGAIN if kernel resources, such as
174 * slab, are temporarily unavailable.
176 if (error
== -ENOMEM
)
183 static int swapin_walk_pmd_entry(pmd_t
*pmd
, unsigned long start
,
184 unsigned long end
, struct mm_walk
*walk
)
187 struct vm_area_struct
*vma
= walk
->private;
190 if (pmd_none_or_trans_huge_or_clear_bad(pmd
))
193 for (index
= start
; index
!= end
; index
+= PAGE_SIZE
) {
199 orig_pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, start
, &ptl
);
200 pte
= *(orig_pte
+ ((index
- start
) / PAGE_SIZE
));
201 pte_unmap_unlock(orig_pte
, ptl
);
203 if (pte_present(pte
) || pte_none(pte
))
205 entry
= pte_to_swp_entry(pte
);
206 if (unlikely(non_swap_entry(entry
)))
209 page
= read_swap_cache_async(entry
, GFP_HIGHUSER_MOVABLE
,
218 static const struct mm_walk_ops swapin_walk_ops
= {
219 .pmd_entry
= swapin_walk_pmd_entry
,
222 static void force_shm_swapin_readahead(struct vm_area_struct
*vma
,
223 unsigned long start
, unsigned long end
,
224 struct address_space
*mapping
)
230 for (; start
< end
; start
+= PAGE_SIZE
) {
231 index
= ((start
- vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
233 page
= find_get_entry(mapping
, index
);
234 if (!xa_is_value(page
)) {
239 swap
= radix_to_swp_entry(page
);
240 page
= read_swap_cache_async(swap
, GFP_HIGHUSER_MOVABLE
,
246 lru_add_drain(); /* Push any new pages onto the LRU now */
248 #endif /* CONFIG_SWAP */
251 * Schedule all required I/O operations. Do not wait for completion.
253 static long madvise_willneed(struct vm_area_struct
*vma
,
254 struct vm_area_struct
**prev
,
255 unsigned long start
, unsigned long end
)
257 struct file
*file
= vma
->vm_file
;
263 walk_page_range(vma
->vm_mm
, start
, end
, &swapin_walk_ops
, vma
);
264 lru_add_drain(); /* Push any new pages onto the LRU now */
268 if (shmem_mapping(file
->f_mapping
)) {
269 force_shm_swapin_readahead(vma
, start
, end
,
278 if (IS_DAX(file_inode(file
))) {
279 /* no bad return value, but ignore advice */
284 * Filesystem's fadvise may need to take various locks. We need to
285 * explicitly grab a reference because the vma (and hence the
286 * vma's reference to the file) can go away as soon as we drop
289 *prev
= NULL
; /* tell sys_madvise we drop mmap_sem */
291 offset
= (loff_t
)(start
- vma
->vm_start
)
292 + ((loff_t
)vma
->vm_pgoff
<< PAGE_SHIFT
);
293 up_read(¤t
->mm
->mmap_sem
);
294 vfs_fadvise(file
, offset
, end
- start
, POSIX_FADV_WILLNEED
);
296 down_read(¤t
->mm
->mmap_sem
);
300 static int madvise_cold_or_pageout_pte_range(pmd_t
*pmd
,
301 unsigned long addr
, unsigned long end
,
302 struct mm_walk
*walk
)
304 struct madvise_walk_private
*private = walk
->private;
305 struct mmu_gather
*tlb
= private->tlb
;
306 bool pageout
= private->pageout
;
307 struct mm_struct
*mm
= tlb
->mm
;
308 struct vm_area_struct
*vma
= walk
->vma
;
309 pte_t
*orig_pte
, *pte
, ptent
;
311 struct page
*page
= NULL
;
312 LIST_HEAD(page_list
);
314 if (fatal_signal_pending(current
))
317 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
318 if (pmd_trans_huge(*pmd
)) {
320 unsigned long next
= pmd_addr_end(addr
, end
);
322 tlb_change_page_size(tlb
, HPAGE_PMD_SIZE
);
323 ptl
= pmd_trans_huge_lock(pmd
, vma
);
328 if (is_huge_zero_pmd(orig_pmd
))
331 if (unlikely(!pmd_present(orig_pmd
))) {
332 VM_BUG_ON(thp_migration_supported() &&
333 !is_pmd_migration_entry(orig_pmd
));
337 page
= pmd_page(orig_pmd
);
339 /* Do not interfere with other mappings of this page */
340 if (page_mapcount(page
) != 1)
343 if (next
- addr
!= HPAGE_PMD_SIZE
) {
349 err
= split_huge_page(page
);
357 if (pmd_young(orig_pmd
)) {
358 pmdp_invalidate(vma
, addr
, pmd
);
359 orig_pmd
= pmd_mkold(orig_pmd
);
361 set_pmd_at(mm
, addr
, pmd
, orig_pmd
);
362 tlb_remove_pmd_tlb_entry(tlb
, pmd
, addr
);
365 ClearPageReferenced(page
);
366 test_and_clear_page_young(page
);
368 if (!isolate_lru_page(page
)) {
369 if (PageUnevictable(page
))
370 putback_lru_page(page
);
372 list_add(&page
->lru
, &page_list
);
375 deactivate_page(page
);
379 reclaim_pages(&page_list
);
383 if (pmd_trans_unstable(pmd
))
387 tlb_change_page_size(tlb
, PAGE_SIZE
);
388 orig_pte
= pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
389 flush_tlb_batched_pending(mm
);
390 arch_enter_lazy_mmu_mode();
391 for (; addr
< end
; pte
++, addr
+= PAGE_SIZE
) {
397 if (!pte_present(ptent
))
400 page
= vm_normal_page(vma
, addr
, ptent
);
405 * Creating a THP page is expensive so split it only if we
406 * are sure it's worth. Split it if we are only owner.
408 if (PageTransCompound(page
)) {
409 if (page_mapcount(page
) != 1)
412 if (!trylock_page(page
)) {
416 pte_unmap_unlock(orig_pte
, ptl
);
417 if (split_huge_page(page
)) {
420 pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
425 pte
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
431 /* Do not interfere with other mappings of this page */
432 if (page_mapcount(page
) != 1)
435 VM_BUG_ON_PAGE(PageTransCompound(page
), page
);
437 if (pte_young(ptent
)) {
438 ptent
= ptep_get_and_clear_full(mm
, addr
, pte
,
440 ptent
= pte_mkold(ptent
);
441 set_pte_at(mm
, addr
, pte
, ptent
);
442 tlb_remove_tlb_entry(tlb
, pte
, addr
);
446 * We are deactivating a page for accelerating reclaiming.
447 * VM couldn't reclaim the page unless we clear PG_young.
448 * As a side effect, it makes confuse idle-page tracking
449 * because they will miss recent referenced history.
451 ClearPageReferenced(page
);
452 test_and_clear_page_young(page
);
454 if (!isolate_lru_page(page
)) {
455 if (PageUnevictable(page
))
456 putback_lru_page(page
);
458 list_add(&page
->lru
, &page_list
);
461 deactivate_page(page
);
464 arch_leave_lazy_mmu_mode();
465 pte_unmap_unlock(orig_pte
, ptl
);
467 reclaim_pages(&page_list
);
473 static const struct mm_walk_ops cold_walk_ops
= {
474 .pmd_entry
= madvise_cold_or_pageout_pte_range
,
477 static void madvise_cold_page_range(struct mmu_gather
*tlb
,
478 struct vm_area_struct
*vma
,
479 unsigned long addr
, unsigned long end
)
481 struct madvise_walk_private walk_private
= {
486 tlb_start_vma(tlb
, vma
);
487 walk_page_range(vma
->vm_mm
, addr
, end
, &cold_walk_ops
, &walk_private
);
488 tlb_end_vma(tlb
, vma
);
491 static long madvise_cold(struct vm_area_struct
*vma
,
492 struct vm_area_struct
**prev
,
493 unsigned long start_addr
, unsigned long end_addr
)
495 struct mm_struct
*mm
= vma
->vm_mm
;
496 struct mmu_gather tlb
;
499 if (!can_madv_lru_vma(vma
))
503 tlb_gather_mmu(&tlb
, mm
, start_addr
, end_addr
);
504 madvise_cold_page_range(&tlb
, vma
, start_addr
, end_addr
);
505 tlb_finish_mmu(&tlb
, start_addr
, end_addr
);
510 static void madvise_pageout_page_range(struct mmu_gather
*tlb
,
511 struct vm_area_struct
*vma
,
512 unsigned long addr
, unsigned long end
)
514 struct madvise_walk_private walk_private
= {
519 tlb_start_vma(tlb
, vma
);
520 walk_page_range(vma
->vm_mm
, addr
, end
, &cold_walk_ops
, &walk_private
);
521 tlb_end_vma(tlb
, vma
);
524 static inline bool can_do_pageout(struct vm_area_struct
*vma
)
526 if (vma_is_anonymous(vma
))
531 * paging out pagecache only for non-anonymous mappings that correspond
532 * to the files the calling process could (if tried) open for writing;
533 * otherwise we'd be including shared non-exclusive mappings, which
534 * opens a side channel.
536 return inode_owner_or_capable(file_inode(vma
->vm_file
)) ||
537 inode_permission(file_inode(vma
->vm_file
), MAY_WRITE
) == 0;
540 static long madvise_pageout(struct vm_area_struct
*vma
,
541 struct vm_area_struct
**prev
,
542 unsigned long start_addr
, unsigned long end_addr
)
544 struct mm_struct
*mm
= vma
->vm_mm
;
545 struct mmu_gather tlb
;
548 if (!can_madv_lru_vma(vma
))
551 if (!can_do_pageout(vma
))
555 tlb_gather_mmu(&tlb
, mm
, start_addr
, end_addr
);
556 madvise_pageout_page_range(&tlb
, vma
, start_addr
, end_addr
);
557 tlb_finish_mmu(&tlb
, start_addr
, end_addr
);
562 static int madvise_free_pte_range(pmd_t
*pmd
, unsigned long addr
,
563 unsigned long end
, struct mm_walk
*walk
)
566 struct mmu_gather
*tlb
= walk
->private;
567 struct mm_struct
*mm
= tlb
->mm
;
568 struct vm_area_struct
*vma
= walk
->vma
;
570 pte_t
*orig_pte
, *pte
, ptent
;
575 next
= pmd_addr_end(addr
, end
);
576 if (pmd_trans_huge(*pmd
))
577 if (madvise_free_huge_pmd(tlb
, vma
, pmd
, addr
, next
))
580 if (pmd_trans_unstable(pmd
))
583 tlb_change_page_size(tlb
, PAGE_SIZE
);
584 orig_pte
= pte
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
585 flush_tlb_batched_pending(mm
);
586 arch_enter_lazy_mmu_mode();
587 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
) {
593 * If the pte has swp_entry, just clear page table to
594 * prevent swap-in which is more expensive rather than
595 * (page allocation + zeroing).
597 if (!pte_present(ptent
)) {
600 entry
= pte_to_swp_entry(ptent
);
601 if (non_swap_entry(entry
))
604 free_swap_and_cache(entry
);
605 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
609 page
= vm_normal_page(vma
, addr
, ptent
);
614 * If pmd isn't transhuge but the page is THP and
615 * is owned by only this process, split it and
616 * deactivate all pages.
618 if (PageTransCompound(page
)) {
619 if (page_mapcount(page
) != 1)
622 if (!trylock_page(page
)) {
626 pte_unmap_unlock(orig_pte
, ptl
);
627 if (split_huge_page(page
)) {
630 pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
635 pte
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
641 VM_BUG_ON_PAGE(PageTransCompound(page
), page
);
643 if (PageSwapCache(page
) || PageDirty(page
)) {
644 if (!trylock_page(page
))
647 * If page is shared with others, we couldn't clear
648 * PG_dirty of the page.
650 if (page_mapcount(page
) != 1) {
655 if (PageSwapCache(page
) && !try_to_free_swap(page
)) {
660 ClearPageDirty(page
);
664 if (pte_young(ptent
) || pte_dirty(ptent
)) {
666 * Some of architecture(ex, PPC) don't update TLB
667 * with set_pte_at and tlb_remove_tlb_entry so for
668 * the portability, remap the pte with old|clean
669 * after pte clearing.
671 ptent
= ptep_get_and_clear_full(mm
, addr
, pte
,
674 ptent
= pte_mkold(ptent
);
675 ptent
= pte_mkclean(ptent
);
676 set_pte_at(mm
, addr
, pte
, ptent
);
677 tlb_remove_tlb_entry(tlb
, pte
, addr
);
679 mark_page_lazyfree(page
);
683 if (current
->mm
== mm
)
686 add_mm_counter(mm
, MM_SWAPENTS
, nr_swap
);
688 arch_leave_lazy_mmu_mode();
689 pte_unmap_unlock(orig_pte
, ptl
);
695 static const struct mm_walk_ops madvise_free_walk_ops
= {
696 .pmd_entry
= madvise_free_pte_range
,
699 static int madvise_free_single_vma(struct vm_area_struct
*vma
,
700 unsigned long start_addr
, unsigned long end_addr
)
702 struct mm_struct
*mm
= vma
->vm_mm
;
703 struct mmu_notifier_range range
;
704 struct mmu_gather tlb
;
706 /* MADV_FREE works for only anon vma at the moment */
707 if (!vma_is_anonymous(vma
))
710 range
.start
= max(vma
->vm_start
, start_addr
);
711 if (range
.start
>= vma
->vm_end
)
713 range
.end
= min(vma
->vm_end
, end_addr
);
714 if (range
.end
<= vma
->vm_start
)
716 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, vma
, mm
,
717 range
.start
, range
.end
);
720 tlb_gather_mmu(&tlb
, mm
, range
.start
, range
.end
);
721 update_hiwater_rss(mm
);
723 mmu_notifier_invalidate_range_start(&range
);
724 tlb_start_vma(&tlb
, vma
);
725 walk_page_range(vma
->vm_mm
, range
.start
, range
.end
,
726 &madvise_free_walk_ops
, &tlb
);
727 tlb_end_vma(&tlb
, vma
);
728 mmu_notifier_invalidate_range_end(&range
);
729 tlb_finish_mmu(&tlb
, range
.start
, range
.end
);
735 * Application no longer needs these pages. If the pages are dirty,
736 * it's OK to just throw them away. The app will be more careful about
737 * data it wants to keep. Be sure to free swap resources too. The
738 * zap_page_range call sets things up for shrink_active_list to actually free
739 * these pages later if no one else has touched them in the meantime,
740 * although we could add these pages to a global reuse list for
741 * shrink_active_list to pick up before reclaiming other pages.
743 * NB: This interface discards data rather than pushes it out to swap,
744 * as some implementations do. This has performance implications for
745 * applications like large transactional databases which want to discard
746 * pages in anonymous maps after committing to backing store the data
747 * that was kept in them. There is no reason to write this data out to
748 * the swap area if the application is discarding it.
750 * An interface that causes the system to free clean pages and flush
751 * dirty pages is already available as msync(MS_INVALIDATE).
753 static long madvise_dontneed_single_vma(struct vm_area_struct
*vma
,
754 unsigned long start
, unsigned long end
)
756 zap_page_range(vma
, start
, end
- start
);
760 static long madvise_dontneed_free(struct vm_area_struct
*vma
,
761 struct vm_area_struct
**prev
,
762 unsigned long start
, unsigned long end
,
766 if (!can_madv_lru_vma(vma
))
769 if (!userfaultfd_remove(vma
, start
, end
)) {
770 *prev
= NULL
; /* mmap_sem has been dropped, prev is stale */
772 down_read(¤t
->mm
->mmap_sem
);
773 vma
= find_vma(current
->mm
, start
);
776 if (start
< vma
->vm_start
) {
778 * This "vma" under revalidation is the one
779 * with the lowest vma->vm_start where start
780 * is also < vma->vm_end. If start <
781 * vma->vm_start it means an hole materialized
782 * in the user address space within the
783 * virtual range passed to MADV_DONTNEED
788 if (!can_madv_lru_vma(vma
))
790 if (end
> vma
->vm_end
) {
792 * Don't fail if end > vma->vm_end. If the old
793 * vma was splitted while the mmap_sem was
794 * released the effect of the concurrent
795 * operation may not cause madvise() to
796 * have an undefined result. There may be an
797 * adjacent next vma that we'll walk
798 * next. userfaultfd_remove() will generate an
799 * UFFD_EVENT_REMOVE repetition on the
800 * end-vma->vm_end range, but the manager can
801 * handle a repetition fine.
805 VM_WARN_ON(start
>= end
);
808 if (behavior
== MADV_DONTNEED
)
809 return madvise_dontneed_single_vma(vma
, start
, end
);
810 else if (behavior
== MADV_FREE
)
811 return madvise_free_single_vma(vma
, start
, end
);
817 * Application wants to free up the pages and associated backing store.
818 * This is effectively punching a hole into the middle of a file.
820 static long madvise_remove(struct vm_area_struct
*vma
,
821 struct vm_area_struct
**prev
,
822 unsigned long start
, unsigned long end
)
828 *prev
= NULL
; /* tell sys_madvise we drop mmap_sem */
830 if (vma
->vm_flags
& VM_LOCKED
)
835 if (!f
|| !f
->f_mapping
|| !f
->f_mapping
->host
) {
839 if ((vma
->vm_flags
& (VM_SHARED
|VM_WRITE
)) != (VM_SHARED
|VM_WRITE
))
842 offset
= (loff_t
)(start
- vma
->vm_start
)
843 + ((loff_t
)vma
->vm_pgoff
<< PAGE_SHIFT
);
846 * Filesystem's fallocate may need to take i_mutex. We need to
847 * explicitly grab a reference because the vma (and hence the
848 * vma's reference to the file) can go away as soon as we drop
852 if (userfaultfd_remove(vma
, start
, end
)) {
853 /* mmap_sem was not released by userfaultfd_remove() */
854 up_read(¤t
->mm
->mmap_sem
);
856 error
= vfs_fallocate(f
,
857 FALLOC_FL_PUNCH_HOLE
| FALLOC_FL_KEEP_SIZE
,
858 offset
, end
- start
);
860 down_read(¤t
->mm
->mmap_sem
);
864 #ifdef CONFIG_MEMORY_FAILURE
866 * Error injection support for memory error handling.
868 static int madvise_inject_error(int behavior
,
869 unsigned long start
, unsigned long end
)
875 if (!capable(CAP_SYS_ADMIN
))
879 for (; start
< end
; start
+= PAGE_SIZE
<< order
) {
883 ret
= get_user_pages_fast(start
, 1, 0, &page
);
886 pfn
= page_to_pfn(page
);
889 * When soft offlining hugepages, after migrating the page
890 * we dissolve it, therefore in the second loop "page" will
891 * no longer be a compound page, and order will be 0.
893 order
= compound_order(compound_head(page
));
895 if (PageHWPoison(page
)) {
900 if (behavior
== MADV_SOFT_OFFLINE
) {
901 pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n",
904 ret
= soft_offline_page(page
, MF_COUNT_INCREASED
);
910 pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n",
914 * Drop the page reference taken by get_user_pages_fast(). In
915 * the absence of MF_COUNT_INCREASED the memory_failure()
916 * routine is responsible for pinning the page to prevent it
917 * from being released back to the page allocator.
920 ret
= memory_failure(pfn
, 0);
925 /* Ensure that all poisoned pages are removed from per-cpu lists */
926 for_each_populated_zone(zone
)
927 drain_all_pages(zone
);
934 madvise_vma(struct vm_area_struct
*vma
, struct vm_area_struct
**prev
,
935 unsigned long start
, unsigned long end
, int behavior
)
939 return madvise_remove(vma
, prev
, start
, end
);
941 return madvise_willneed(vma
, prev
, start
, end
);
943 return madvise_cold(vma
, prev
, start
, end
);
945 return madvise_pageout(vma
, prev
, start
, end
);
948 return madvise_dontneed_free(vma
, prev
, start
, end
, behavior
);
950 return madvise_behavior(vma
, prev
, start
, end
, behavior
);
955 madvise_behavior_valid(int behavior
)
961 case MADV_SEQUENTIAL
:
971 case MADV_UNMERGEABLE
:
973 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
975 case MADV_NOHUGEPAGE
:
979 case MADV_WIPEONFORK
:
980 case MADV_KEEPONFORK
:
981 #ifdef CONFIG_MEMORY_FAILURE
982 case MADV_SOFT_OFFLINE
:
993 * The madvise(2) system call.
995 * Applications can use madvise() to advise the kernel how it should
996 * handle paging I/O in this VM area. The idea is to help the kernel
997 * use appropriate read-ahead and caching techniques. The information
998 * provided is advisory only, and can be safely disregarded by the
999 * kernel without affecting the correct operation of the application.
1002 * MADV_NORMAL - the default behavior is to read clusters. This
1003 * results in some read-ahead and read-behind.
1004 * MADV_RANDOM - the system should read the minimum amount of data
1005 * on any access, since it is unlikely that the appli-
1006 * cation will need more than what it asks for.
1007 * MADV_SEQUENTIAL - pages in the given range will probably be accessed
1008 * once, so they can be aggressively read ahead, and
1009 * can be freed soon after they are accessed.
1010 * MADV_WILLNEED - the application is notifying the system to read
1012 * MADV_DONTNEED - the application is finished with the given range,
1013 * so the kernel can free resources associated with it.
1014 * MADV_FREE - the application marks pages in the given range as lazy free,
1015 * where actual purges are postponed until memory pressure happens.
1016 * MADV_REMOVE - the application wants to free up the given range of
1017 * pages and associated backing store.
1018 * MADV_DONTFORK - omit this area from child's address space when forking:
1019 * typically, to avoid COWing pages pinned by get_user_pages().
1020 * MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
1021 * MADV_WIPEONFORK - present the child process with zero-filled memory in this
1022 * range after a fork.
1023 * MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK
1024 * MADV_HWPOISON - trigger memory error handler as if the given memory range
1025 * were corrupted by unrecoverable hardware memory failure.
1026 * MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
1027 * MADV_MERGEABLE - the application recommends that KSM try to merge pages in
1028 * this area with pages of identical content from other such areas.
1029 * MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
1030 * MADV_HUGEPAGE - the application wants to back the given range by transparent
1031 * huge pages in the future. Existing pages might be coalesced and
1032 * new pages might be allocated as THP.
1033 * MADV_NOHUGEPAGE - mark the given range as not worth being backed by
1034 * transparent huge pages so the existing pages will not be
1035 * coalesced into THP and new pages will not be allocated as THP.
1036 * MADV_DONTDUMP - the application wants to prevent pages in the given range
1037 * from being included in its core dump.
1038 * MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
1042 * -EINVAL - start + len < 0, start is not page-aligned,
1043 * "behavior" is not a valid value, or application
1044 * is attempting to release locked or shared pages,
1045 * or the specified address range includes file, Huge TLB,
1046 * MAP_SHARED or VMPFNMAP range.
1047 * -ENOMEM - addresses in the specified range are not currently
1048 * mapped, or are outside the AS of the process.
1049 * -EIO - an I/O error occurred while paging in data.
1050 * -EBADF - map exists, but area maps something that isn't a file.
1051 * -EAGAIN - a kernel resource was temporarily unavailable.
1053 SYSCALL_DEFINE3(madvise
, unsigned long, start
, size_t, len_in
, int, behavior
)
1055 unsigned long end
, tmp
;
1056 struct vm_area_struct
*vma
, *prev
;
1057 int unmapped_error
= 0;
1058 int error
= -EINVAL
;
1061 struct blk_plug plug
;
1063 start
= untagged_addr(start
);
1065 if (!madvise_behavior_valid(behavior
))
1068 if (start
& ~PAGE_MASK
)
1070 len
= (len_in
+ ~PAGE_MASK
) & PAGE_MASK
;
1072 /* Check to see whether len was rounded up from small -ve to zero */
1084 #ifdef CONFIG_MEMORY_FAILURE
1085 if (behavior
== MADV_HWPOISON
|| behavior
== MADV_SOFT_OFFLINE
)
1086 return madvise_inject_error(behavior
, start
, start
+ len_in
);
1089 write
= madvise_need_mmap_write(behavior
);
1091 if (down_write_killable(¤t
->mm
->mmap_sem
))
1094 down_read(¤t
->mm
->mmap_sem
);
1098 * If the interval [start,end) covers some unmapped address
1099 * ranges, just ignore them, but return -ENOMEM at the end.
1100 * - different from the way of handling in mlock etc.
1102 vma
= find_vma_prev(current
->mm
, start
, &prev
);
1103 if (vma
&& start
> vma
->vm_start
)
1106 blk_start_plug(&plug
);
1108 /* Still start < end. */
1113 /* Here start < (end|vma->vm_end). */
1114 if (start
< vma
->vm_start
) {
1115 unmapped_error
= -ENOMEM
;
1116 start
= vma
->vm_start
;
1121 /* Here vma->vm_start <= start < (end|vma->vm_end) */
1126 /* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
1127 error
= madvise_vma(vma
, &prev
, start
, tmp
, behavior
);
1131 if (prev
&& start
< prev
->vm_end
)
1132 start
= prev
->vm_end
;
1133 error
= unmapped_error
;
1137 vma
= prev
->vm_next
;
1138 else /* madvise_remove dropped mmap_sem */
1139 vma
= find_vma(current
->mm
, start
);
1142 blk_finish_plug(&plug
);
1144 up_write(¤t
->mm
->mmap_sem
);
1146 up_read(¤t
->mm
->mmap_sem
);