1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/mm/page_alloc.c
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
18 #include <linux/stddef.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/lockdep.h>
69 #include <linux/nmi.h>
70 #include <linux/psi.h>
72 #include <asm/sections.h>
73 #include <asm/tlbflush.h>
74 #include <asm/div64.h>
78 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
79 static DEFINE_MUTEX(pcp_batch_high_lock
);
80 #define MIN_PERCPU_PAGELIST_FRACTION (8)
82 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
83 DEFINE_PER_CPU(int, numa_node
);
84 EXPORT_PER_CPU_SYMBOL(numa_node
);
87 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key
);
89 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
91 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
92 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
93 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
94 * defined in <linux/topology.h>.
96 DEFINE_PER_CPU(int, _numa_mem_
); /* Kernel "local memory" node */
97 EXPORT_PER_CPU_SYMBOL(_numa_mem_
);
98 int _node_numa_mem_
[MAX_NUMNODES
];
101 /* work_structs for global per-cpu drains */
104 struct work_struct work
;
106 DEFINE_MUTEX(pcpu_drain_mutex
);
107 DEFINE_PER_CPU(struct pcpu_drain
, pcpu_drain
);
109 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
110 volatile unsigned long latent_entropy __latent_entropy
;
111 EXPORT_SYMBOL(latent_entropy
);
115 * Array of node states.
117 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
118 [N_POSSIBLE
] = NODE_MASK_ALL
,
119 [N_ONLINE
] = { { [0] = 1UL } },
121 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
122 #ifdef CONFIG_HIGHMEM
123 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
125 [N_MEMORY
] = { { [0] = 1UL } },
126 [N_CPU
] = { { [0] = 1UL } },
129 EXPORT_SYMBOL(node_states
);
131 atomic_long_t _totalram_pages __read_mostly
;
132 EXPORT_SYMBOL(_totalram_pages
);
133 unsigned long totalreserve_pages __read_mostly
;
134 unsigned long totalcma_pages __read_mostly
;
136 int percpu_pagelist_fraction
;
137 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
138 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
139 DEFINE_STATIC_KEY_TRUE(init_on_alloc
);
141 DEFINE_STATIC_KEY_FALSE(init_on_alloc
);
143 EXPORT_SYMBOL(init_on_alloc
);
145 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
146 DEFINE_STATIC_KEY_TRUE(init_on_free
);
148 DEFINE_STATIC_KEY_FALSE(init_on_free
);
150 EXPORT_SYMBOL(init_on_free
);
152 static int __init
early_init_on_alloc(char *buf
)
159 ret
= kstrtobool(buf
, &bool_result
);
160 if (bool_result
&& page_poisoning_enabled())
161 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
163 static_branch_enable(&init_on_alloc
);
165 static_branch_disable(&init_on_alloc
);
168 early_param("init_on_alloc", early_init_on_alloc
);
170 static int __init
early_init_on_free(char *buf
)
177 ret
= kstrtobool(buf
, &bool_result
);
178 if (bool_result
&& page_poisoning_enabled())
179 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
181 static_branch_enable(&init_on_free
);
183 static_branch_disable(&init_on_free
);
186 early_param("init_on_free", early_init_on_free
);
189 * A cached value of the page's pageblock's migratetype, used when the page is
190 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
191 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
192 * Also the migratetype set in the page does not necessarily match the pcplist
193 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
194 * other index - this ensures that it will be put on the correct CMA freelist.
196 static inline int get_pcppage_migratetype(struct page
*page
)
201 static inline void set_pcppage_migratetype(struct page
*page
, int migratetype
)
203 page
->index
= migratetype
;
206 #ifdef CONFIG_PM_SLEEP
208 * The following functions are used by the suspend/hibernate code to temporarily
209 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
210 * while devices are suspended. To avoid races with the suspend/hibernate code,
211 * they should always be called with system_transition_mutex held
212 * (gfp_allowed_mask also should only be modified with system_transition_mutex
213 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
214 * with that modification).
217 static gfp_t saved_gfp_mask
;
219 void pm_restore_gfp_mask(void)
221 WARN_ON(!mutex_is_locked(&system_transition_mutex
));
222 if (saved_gfp_mask
) {
223 gfp_allowed_mask
= saved_gfp_mask
;
228 void pm_restrict_gfp_mask(void)
230 WARN_ON(!mutex_is_locked(&system_transition_mutex
));
231 WARN_ON(saved_gfp_mask
);
232 saved_gfp_mask
= gfp_allowed_mask
;
233 gfp_allowed_mask
&= ~(__GFP_IO
| __GFP_FS
);
236 bool pm_suspended_storage(void)
238 if ((gfp_allowed_mask
& (__GFP_IO
| __GFP_FS
)) == (__GFP_IO
| __GFP_FS
))
242 #endif /* CONFIG_PM_SLEEP */
244 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
245 unsigned int pageblock_order __read_mostly
;
248 static void __free_pages_ok(struct page
*page
, unsigned int order
);
251 * results with 256, 32 in the lowmem_reserve sysctl:
252 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
253 * 1G machine -> (16M dma, 784M normal, 224M high)
254 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
255 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
256 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
258 * TBD: should special case ZONE_DMA32 machines here - in those we normally
259 * don't need any ZONE_NORMAL reservation
261 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
] = {
262 #ifdef CONFIG_ZONE_DMA
265 #ifdef CONFIG_ZONE_DMA32
269 #ifdef CONFIG_HIGHMEM
275 static char * const zone_names
[MAX_NR_ZONES
] = {
276 #ifdef CONFIG_ZONE_DMA
279 #ifdef CONFIG_ZONE_DMA32
283 #ifdef CONFIG_HIGHMEM
287 #ifdef CONFIG_ZONE_DEVICE
292 const char * const migratetype_names
[MIGRATE_TYPES
] = {
300 #ifdef CONFIG_MEMORY_ISOLATION
305 compound_page_dtor
* const compound_page_dtors
[] = {
308 #ifdef CONFIG_HUGETLB_PAGE
311 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
316 int min_free_kbytes
= 1024;
317 int user_min_free_kbytes
= -1;
318 #ifdef CONFIG_DISCONTIGMEM
320 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
321 * are not on separate NUMA nodes. Functionally this works but with
322 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
323 * quite small. By default, do not boost watermarks on discontigmem as in
324 * many cases very high-order allocations like THP are likely to be
325 * unsupported and the premature reclaim offsets the advantage of long-term
326 * fragmentation avoidance.
328 int watermark_boost_factor __read_mostly
;
330 int watermark_boost_factor __read_mostly
= 15000;
332 int watermark_scale_factor
= 10;
334 static unsigned long nr_kernel_pages __initdata
;
335 static unsigned long nr_all_pages __initdata
;
336 static unsigned long dma_reserve __initdata
;
338 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
339 static unsigned long arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
] __initdata
;
340 static unsigned long arch_zone_highest_possible_pfn
[MAX_NR_ZONES
] __initdata
;
341 static unsigned long required_kernelcore __initdata
;
342 static unsigned long required_kernelcore_percent __initdata
;
343 static unsigned long required_movablecore __initdata
;
344 static unsigned long required_movablecore_percent __initdata
;
345 static unsigned long zone_movable_pfn
[MAX_NUMNODES
] __initdata
;
346 static bool mirrored_kernelcore __meminitdata
;
348 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
350 EXPORT_SYMBOL(movable_zone
);
351 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
354 unsigned int nr_node_ids __read_mostly
= MAX_NUMNODES
;
355 unsigned int nr_online_nodes __read_mostly
= 1;
356 EXPORT_SYMBOL(nr_node_ids
);
357 EXPORT_SYMBOL(nr_online_nodes
);
360 int page_group_by_mobility_disabled __read_mostly
;
362 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
364 * During boot we initialize deferred pages on-demand, as needed, but once
365 * page_alloc_init_late() has finished, the deferred pages are all initialized,
366 * and we can permanently disable that path.
368 static DEFINE_STATIC_KEY_TRUE(deferred_pages
);
371 * Calling kasan_free_pages() only after deferred memory initialization
372 * has completed. Poisoning pages during deferred memory init will greatly
373 * lengthen the process and cause problem in large memory systems as the
374 * deferred pages initialization is done with interrupt disabled.
376 * Assuming that there will be no reference to those newly initialized
377 * pages before they are ever allocated, this should have no effect on
378 * KASAN memory tracking as the poison will be properly inserted at page
379 * allocation time. The only corner case is when pages are allocated by
380 * on-demand allocation and then freed again before the deferred pages
381 * initialization is done, but this is not likely to happen.
383 static inline void kasan_free_nondeferred_pages(struct page
*page
, int order
)
385 if (!static_branch_unlikely(&deferred_pages
))
386 kasan_free_pages(page
, order
);
389 /* Returns true if the struct page for the pfn is uninitialised */
390 static inline bool __meminit
early_page_uninitialised(unsigned long pfn
)
392 int nid
= early_pfn_to_nid(pfn
);
394 if (node_online(nid
) && pfn
>= NODE_DATA(nid
)->first_deferred_pfn
)
401 * Returns true when the remaining initialisation should be deferred until
402 * later in the boot cycle when it can be parallelised.
404 static bool __meminit
405 defer_init(int nid
, unsigned long pfn
, unsigned long end_pfn
)
407 static unsigned long prev_end_pfn
, nr_initialised
;
410 * prev_end_pfn static that contains the end of previous zone
411 * No need to protect because called very early in boot before smp_init.
413 if (prev_end_pfn
!= end_pfn
) {
414 prev_end_pfn
= end_pfn
;
418 /* Always populate low zones for address-constrained allocations */
419 if (end_pfn
< pgdat_end_pfn(NODE_DATA(nid
)))
423 * We start only with one section of pages, more pages are added as
424 * needed until the rest of deferred pages are initialized.
427 if ((nr_initialised
> PAGES_PER_SECTION
) &&
428 (pfn
& (PAGES_PER_SECTION
- 1)) == 0) {
429 NODE_DATA(nid
)->first_deferred_pfn
= pfn
;
435 #define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
437 static inline bool early_page_uninitialised(unsigned long pfn
)
442 static inline bool defer_init(int nid
, unsigned long pfn
, unsigned long end_pfn
)
448 /* Return a pointer to the bitmap storing bits affecting a block of pages */
449 static inline unsigned long *get_pageblock_bitmap(struct page
*page
,
452 #ifdef CONFIG_SPARSEMEM
453 return section_to_usemap(__pfn_to_section(pfn
));
455 return page_zone(page
)->pageblock_flags
;
456 #endif /* CONFIG_SPARSEMEM */
459 static inline int pfn_to_bitidx(struct page
*page
, unsigned long pfn
)
461 #ifdef CONFIG_SPARSEMEM
462 pfn
&= (PAGES_PER_SECTION
-1);
463 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
465 pfn
= pfn
- round_down(page_zone(page
)->zone_start_pfn
, pageblock_nr_pages
);
466 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
467 #endif /* CONFIG_SPARSEMEM */
471 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
472 * @page: The page within the block of interest
473 * @pfn: The target page frame number
474 * @end_bitidx: The last bit of interest to retrieve
475 * @mask: mask of bits that the caller is interested in
477 * Return: pageblock_bits flags
479 static __always_inline
unsigned long __get_pfnblock_flags_mask(struct page
*page
,
481 unsigned long end_bitidx
,
484 unsigned long *bitmap
;
485 unsigned long bitidx
, word_bitidx
;
488 bitmap
= get_pageblock_bitmap(page
, pfn
);
489 bitidx
= pfn_to_bitidx(page
, pfn
);
490 word_bitidx
= bitidx
/ BITS_PER_LONG
;
491 bitidx
&= (BITS_PER_LONG
-1);
493 word
= bitmap
[word_bitidx
];
494 bitidx
+= end_bitidx
;
495 return (word
>> (BITS_PER_LONG
- bitidx
- 1)) & mask
;
498 unsigned long get_pfnblock_flags_mask(struct page
*page
, unsigned long pfn
,
499 unsigned long end_bitidx
,
502 return __get_pfnblock_flags_mask(page
, pfn
, end_bitidx
, mask
);
505 static __always_inline
int get_pfnblock_migratetype(struct page
*page
, unsigned long pfn
)
507 return __get_pfnblock_flags_mask(page
, pfn
, PB_migrate_end
, MIGRATETYPE_MASK
);
511 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
512 * @page: The page within the block of interest
513 * @flags: The flags to set
514 * @pfn: The target page frame number
515 * @end_bitidx: The last bit of interest
516 * @mask: mask of bits that the caller is interested in
518 void set_pfnblock_flags_mask(struct page
*page
, unsigned long flags
,
520 unsigned long end_bitidx
,
523 unsigned long *bitmap
;
524 unsigned long bitidx
, word_bitidx
;
525 unsigned long old_word
, word
;
527 BUILD_BUG_ON(NR_PAGEBLOCK_BITS
!= 4);
528 BUILD_BUG_ON(MIGRATE_TYPES
> (1 << PB_migratetype_bits
));
530 bitmap
= get_pageblock_bitmap(page
, pfn
);
531 bitidx
= pfn_to_bitidx(page
, pfn
);
532 word_bitidx
= bitidx
/ BITS_PER_LONG
;
533 bitidx
&= (BITS_PER_LONG
-1);
535 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page
), pfn
), page
);
537 bitidx
+= end_bitidx
;
538 mask
<<= (BITS_PER_LONG
- bitidx
- 1);
539 flags
<<= (BITS_PER_LONG
- bitidx
- 1);
541 word
= READ_ONCE(bitmap
[word_bitidx
]);
543 old_word
= cmpxchg(&bitmap
[word_bitidx
], word
, (word
& ~mask
) | flags
);
544 if (word
== old_word
)
550 void set_pageblock_migratetype(struct page
*page
, int migratetype
)
552 if (unlikely(page_group_by_mobility_disabled
&&
553 migratetype
< MIGRATE_PCPTYPES
))
554 migratetype
= MIGRATE_UNMOVABLE
;
556 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
557 PB_migrate
, PB_migrate_end
);
560 #ifdef CONFIG_DEBUG_VM
561 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
565 unsigned long pfn
= page_to_pfn(page
);
566 unsigned long sp
, start_pfn
;
569 seq
= zone_span_seqbegin(zone
);
570 start_pfn
= zone
->zone_start_pfn
;
571 sp
= zone
->spanned_pages
;
572 if (!zone_spans_pfn(zone
, pfn
))
574 } while (zone_span_seqretry(zone
, seq
));
577 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
578 pfn
, zone_to_nid(zone
), zone
->name
,
579 start_pfn
, start_pfn
+ sp
);
584 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
586 if (!pfn_valid_within(page_to_pfn(page
)))
588 if (zone
!= page_zone(page
))
594 * Temporary debugging check for pages not lying within a given zone.
596 static int __maybe_unused
bad_range(struct zone
*zone
, struct page
*page
)
598 if (page_outside_zone_boundaries(zone
, page
))
600 if (!page_is_consistent(zone
, page
))
606 static inline int __maybe_unused
bad_range(struct zone
*zone
, struct page
*page
)
612 static void bad_page(struct page
*page
, const char *reason
,
613 unsigned long bad_flags
)
615 static unsigned long resume
;
616 static unsigned long nr_shown
;
617 static unsigned long nr_unshown
;
620 * Allow a burst of 60 reports, then keep quiet for that minute;
621 * or allow a steady drip of one report per second.
623 if (nr_shown
== 60) {
624 if (time_before(jiffies
, resume
)) {
630 "BUG: Bad page state: %lu messages suppressed\n",
637 resume
= jiffies
+ 60 * HZ
;
639 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
640 current
->comm
, page_to_pfn(page
));
641 __dump_page(page
, reason
);
642 bad_flags
&= page
->flags
;
644 pr_alert("bad because of flags: %#lx(%pGp)\n",
645 bad_flags
, &bad_flags
);
646 dump_page_owner(page
);
651 /* Leave bad fields for debug, except PageBuddy could make trouble */
652 page_mapcount_reset(page
); /* remove PageBuddy */
653 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
657 * Higher-order pages are called "compound pages". They are structured thusly:
659 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
661 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
662 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
664 * The first tail page's ->compound_dtor holds the offset in array of compound
665 * page destructors. See compound_page_dtors.
667 * The first tail page's ->compound_order holds the order of allocation.
668 * This usage means that zero-order pages may not be compound.
671 void free_compound_page(struct page
*page
)
673 mem_cgroup_uncharge(page
);
674 __free_pages_ok(page
, compound_order(page
));
677 void prep_compound_page(struct page
*page
, unsigned int order
)
680 int nr_pages
= 1 << order
;
682 set_compound_page_dtor(page
, COMPOUND_PAGE_DTOR
);
683 set_compound_order(page
, order
);
685 for (i
= 1; i
< nr_pages
; i
++) {
686 struct page
*p
= page
+ i
;
687 set_page_count(p
, 0);
688 p
->mapping
= TAIL_MAPPING
;
689 set_compound_head(p
, page
);
691 atomic_set(compound_mapcount_ptr(page
), -1);
694 #ifdef CONFIG_DEBUG_PAGEALLOC
695 unsigned int _debug_guardpage_minorder
;
697 bool _debug_pagealloc_enabled_early __read_mostly
698 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT
);
699 EXPORT_SYMBOL(_debug_pagealloc_enabled_early
);
700 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled
);
701 EXPORT_SYMBOL(_debug_pagealloc_enabled
);
703 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled
);
705 static int __init
early_debug_pagealloc(char *buf
)
707 return kstrtobool(buf
, &_debug_pagealloc_enabled_early
);
709 early_param("debug_pagealloc", early_debug_pagealloc
);
711 void init_debug_pagealloc(void)
713 if (!debug_pagealloc_enabled())
716 static_branch_enable(&_debug_pagealloc_enabled
);
718 if (!debug_guardpage_minorder())
721 static_branch_enable(&_debug_guardpage_enabled
);
724 static int __init
debug_guardpage_minorder_setup(char *buf
)
728 if (kstrtoul(buf
, 10, &res
) < 0 || res
> MAX_ORDER
/ 2) {
729 pr_err("Bad debug_guardpage_minorder value\n");
732 _debug_guardpage_minorder
= res
;
733 pr_info("Setting debug_guardpage_minorder to %lu\n", res
);
736 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup
);
738 static inline bool set_page_guard(struct zone
*zone
, struct page
*page
,
739 unsigned int order
, int migratetype
)
741 if (!debug_guardpage_enabled())
744 if (order
>= debug_guardpage_minorder())
747 __SetPageGuard(page
);
748 INIT_LIST_HEAD(&page
->lru
);
749 set_page_private(page
, order
);
750 /* Guard pages are not available for any usage */
751 __mod_zone_freepage_state(zone
, -(1 << order
), migratetype
);
756 static inline void clear_page_guard(struct zone
*zone
, struct page
*page
,
757 unsigned int order
, int migratetype
)
759 if (!debug_guardpage_enabled())
762 __ClearPageGuard(page
);
764 set_page_private(page
, 0);
765 if (!is_migrate_isolate(migratetype
))
766 __mod_zone_freepage_state(zone
, (1 << order
), migratetype
);
769 static inline bool set_page_guard(struct zone
*zone
, struct page
*page
,
770 unsigned int order
, int migratetype
) { return false; }
771 static inline void clear_page_guard(struct zone
*zone
, struct page
*page
,
772 unsigned int order
, int migratetype
) {}
775 static inline void set_page_order(struct page
*page
, unsigned int order
)
777 set_page_private(page
, order
);
778 __SetPageBuddy(page
);
782 * This function checks whether a page is free && is the buddy
783 * we can coalesce a page and its buddy if
784 * (a) the buddy is not in a hole (check before calling!) &&
785 * (b) the buddy is in the buddy system &&
786 * (c) a page and its buddy have the same order &&
787 * (d) a page and its buddy are in the same zone.
789 * For recording whether a page is in the buddy system, we set PageBuddy.
790 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
792 * For recording page's order, we use page_private(page).
794 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
797 if (page_is_guard(buddy
) && page_order(buddy
) == order
) {
798 if (page_zone_id(page
) != page_zone_id(buddy
))
801 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
806 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
808 * zone check is done late to avoid uselessly
809 * calculating zone/node ids for pages that could
812 if (page_zone_id(page
) != page_zone_id(buddy
))
815 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
822 #ifdef CONFIG_COMPACTION
823 static inline struct capture_control
*task_capc(struct zone
*zone
)
825 struct capture_control
*capc
= current
->capture_control
;
828 !(current
->flags
& PF_KTHREAD
) &&
830 capc
->cc
->zone
== zone
&&
831 capc
->cc
->direct_compaction
? capc
: NULL
;
835 compaction_capture(struct capture_control
*capc
, struct page
*page
,
836 int order
, int migratetype
)
838 if (!capc
|| order
!= capc
->cc
->order
)
841 /* Do not accidentally pollute CMA or isolated regions*/
842 if (is_migrate_cma(migratetype
) ||
843 is_migrate_isolate(migratetype
))
847 * Do not let lower order allocations polluate a movable pageblock.
848 * This might let an unmovable request use a reclaimable pageblock
849 * and vice-versa but no more than normal fallback logic which can
850 * have trouble finding a high-order free page.
852 if (order
< pageblock_order
&& migratetype
== MIGRATE_MOVABLE
)
860 static inline struct capture_control
*task_capc(struct zone
*zone
)
866 compaction_capture(struct capture_control
*capc
, struct page
*page
,
867 int order
, int migratetype
)
871 #endif /* CONFIG_COMPACTION */
874 * Freeing function for a buddy system allocator.
876 * The concept of a buddy system is to maintain direct-mapped table
877 * (containing bit values) for memory blocks of various "orders".
878 * The bottom level table contains the map for the smallest allocatable
879 * units of memory (here, pages), and each level above it describes
880 * pairs of units from the levels below, hence, "buddies".
881 * At a high level, all that happens here is marking the table entry
882 * at the bottom level available, and propagating the changes upward
883 * as necessary, plus some accounting needed to play nicely with other
884 * parts of the VM system.
885 * At each level, we keep a list of pages, which are heads of continuous
886 * free pages of length of (1 << order) and marked with PageBuddy.
887 * Page's order is recorded in page_private(page) field.
888 * So when we are allocating or freeing one, we can derive the state of the
889 * other. That is, if we allocate a small block, and both were
890 * free, the remainder of the region must be split into blocks.
891 * If a block is freed, and its buddy is also free, then this
892 * triggers coalescing into a block of larger size.
897 static inline void __free_one_page(struct page
*page
,
899 struct zone
*zone
, unsigned int order
,
902 unsigned long combined_pfn
;
903 unsigned long uninitialized_var(buddy_pfn
);
905 unsigned int max_order
;
906 struct capture_control
*capc
= task_capc(zone
);
908 max_order
= min_t(unsigned int, MAX_ORDER
, pageblock_order
+ 1);
910 VM_BUG_ON(!zone_is_initialized(zone
));
911 VM_BUG_ON_PAGE(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
, page
);
913 VM_BUG_ON(migratetype
== -1);
914 if (likely(!is_migrate_isolate(migratetype
)))
915 __mod_zone_freepage_state(zone
, 1 << order
, migratetype
);
917 VM_BUG_ON_PAGE(pfn
& ((1 << order
) - 1), page
);
918 VM_BUG_ON_PAGE(bad_range(zone
, page
), page
);
921 while (order
< max_order
- 1) {
922 if (compaction_capture(capc
, page
, order
, migratetype
)) {
923 __mod_zone_freepage_state(zone
, -(1 << order
),
927 buddy_pfn
= __find_buddy_pfn(pfn
, order
);
928 buddy
= page
+ (buddy_pfn
- pfn
);
930 if (!pfn_valid_within(buddy_pfn
))
932 if (!page_is_buddy(page
, buddy
, order
))
935 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
936 * merge with it and move up one order.
938 if (page_is_guard(buddy
))
939 clear_page_guard(zone
, buddy
, order
, migratetype
);
941 del_page_from_free_area(buddy
, &zone
->free_area
[order
]);
942 combined_pfn
= buddy_pfn
& pfn
;
943 page
= page
+ (combined_pfn
- pfn
);
947 if (max_order
< MAX_ORDER
) {
948 /* If we are here, it means order is >= pageblock_order.
949 * We want to prevent merge between freepages on isolate
950 * pageblock and normal pageblock. Without this, pageblock
951 * isolation could cause incorrect freepage or CMA accounting.
953 * We don't want to hit this code for the more frequent
956 if (unlikely(has_isolate_pageblock(zone
))) {
959 buddy_pfn
= __find_buddy_pfn(pfn
, order
);
960 buddy
= page
+ (buddy_pfn
- pfn
);
961 buddy_mt
= get_pageblock_migratetype(buddy
);
963 if (migratetype
!= buddy_mt
964 && (is_migrate_isolate(migratetype
) ||
965 is_migrate_isolate(buddy_mt
)))
969 goto continue_merging
;
973 set_page_order(page
, order
);
976 * If this is not the largest possible page, check if the buddy
977 * of the next-highest order is free. If it is, it's possible
978 * that pages are being freed that will coalesce soon. In case,
979 * that is happening, add the free page to the tail of the list
980 * so it's less likely to be used soon and more likely to be merged
981 * as a higher order page
983 if ((order
< MAX_ORDER
-2) && pfn_valid_within(buddy_pfn
)
984 && !is_shuffle_order(order
)) {
985 struct page
*higher_page
, *higher_buddy
;
986 combined_pfn
= buddy_pfn
& pfn
;
987 higher_page
= page
+ (combined_pfn
- pfn
);
988 buddy_pfn
= __find_buddy_pfn(combined_pfn
, order
+ 1);
989 higher_buddy
= higher_page
+ (buddy_pfn
- combined_pfn
);
990 if (pfn_valid_within(buddy_pfn
) &&
991 page_is_buddy(higher_page
, higher_buddy
, order
+ 1)) {
992 add_to_free_area_tail(page
, &zone
->free_area
[order
],
998 if (is_shuffle_order(order
))
999 add_to_free_area_random(page
, &zone
->free_area
[order
],
1002 add_to_free_area(page
, &zone
->free_area
[order
], migratetype
);
1007 * A bad page could be due to a number of fields. Instead of multiple branches,
1008 * try and check multiple fields with one check. The caller must do a detailed
1009 * check if necessary.
1011 static inline bool page_expected_state(struct page
*page
,
1012 unsigned long check_flags
)
1014 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
1017 if (unlikely((unsigned long)page
->mapping
|
1018 page_ref_count(page
) |
1020 (unsigned long)page
->mem_cgroup
|
1022 (page
->flags
& check_flags
)))
1028 static void free_pages_check_bad(struct page
*page
)
1030 const char *bad_reason
;
1031 unsigned long bad_flags
;
1036 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
1037 bad_reason
= "nonzero mapcount";
1038 if (unlikely(page
->mapping
!= NULL
))
1039 bad_reason
= "non-NULL mapping";
1040 if (unlikely(page_ref_count(page
) != 0))
1041 bad_reason
= "nonzero _refcount";
1042 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
)) {
1043 bad_reason
= "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1044 bad_flags
= PAGE_FLAGS_CHECK_AT_FREE
;
1047 if (unlikely(page
->mem_cgroup
))
1048 bad_reason
= "page still charged to cgroup";
1050 bad_page(page
, bad_reason
, bad_flags
);
1053 static inline int free_pages_check(struct page
*page
)
1055 if (likely(page_expected_state(page
, PAGE_FLAGS_CHECK_AT_FREE
)))
1058 /* Something has gone sideways, find it */
1059 free_pages_check_bad(page
);
1063 static int free_tail_pages_check(struct page
*head_page
, struct page
*page
)
1068 * We rely page->lru.next never has bit 0 set, unless the page
1069 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1071 BUILD_BUG_ON((unsigned long)LIST_POISON1
& 1);
1073 if (!IS_ENABLED(CONFIG_DEBUG_VM
)) {
1077 switch (page
- head_page
) {
1079 /* the first tail page: ->mapping may be compound_mapcount() */
1080 if (unlikely(compound_mapcount(page
))) {
1081 bad_page(page
, "nonzero compound_mapcount", 0);
1087 * the second tail page: ->mapping is
1088 * deferred_list.next -- ignore value.
1092 if (page
->mapping
!= TAIL_MAPPING
) {
1093 bad_page(page
, "corrupted mapping in tail page", 0);
1098 if (unlikely(!PageTail(page
))) {
1099 bad_page(page
, "PageTail not set", 0);
1102 if (unlikely(compound_head(page
) != head_page
)) {
1103 bad_page(page
, "compound_head not consistent", 0);
1108 page
->mapping
= NULL
;
1109 clear_compound_head(page
);
1113 static void kernel_init_free_pages(struct page
*page
, int numpages
)
1117 for (i
= 0; i
< numpages
; i
++)
1118 clear_highpage(page
+ i
);
1121 static __always_inline
bool free_pages_prepare(struct page
*page
,
1122 unsigned int order
, bool check_free
)
1126 VM_BUG_ON_PAGE(PageTail(page
), page
);
1128 trace_mm_page_free(page
, order
);
1131 * Check tail pages before head page information is cleared to
1132 * avoid checking PageCompound for order-0 pages.
1134 if (unlikely(order
)) {
1135 bool compound
= PageCompound(page
);
1138 VM_BUG_ON_PAGE(compound
&& compound_order(page
) != order
, page
);
1141 ClearPageDoubleMap(page
);
1142 for (i
= 1; i
< (1 << order
); i
++) {
1144 bad
+= free_tail_pages_check(page
, page
+ i
);
1145 if (unlikely(free_pages_check(page
+ i
))) {
1149 (page
+ i
)->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
1152 if (PageMappingFlags(page
))
1153 page
->mapping
= NULL
;
1154 if (memcg_kmem_enabled() && PageKmemcg(page
))
1155 __memcg_kmem_uncharge(page
, order
);
1157 bad
+= free_pages_check(page
);
1161 page_cpupid_reset_last(page
);
1162 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
1163 reset_page_owner(page
, order
);
1165 if (!PageHighMem(page
)) {
1166 debug_check_no_locks_freed(page_address(page
),
1167 PAGE_SIZE
<< order
);
1168 debug_check_no_obj_freed(page_address(page
),
1169 PAGE_SIZE
<< order
);
1171 if (want_init_on_free())
1172 kernel_init_free_pages(page
, 1 << order
);
1174 kernel_poison_pages(page
, 1 << order
, 0);
1176 * arch_free_page() can make the page's contents inaccessible. s390
1177 * does this. So nothing which can access the page's contents should
1178 * happen after this.
1180 arch_free_page(page
, order
);
1182 if (debug_pagealloc_enabled_static())
1183 kernel_map_pages(page
, 1 << order
, 0);
1185 kasan_free_nondeferred_pages(page
, order
);
1190 #ifdef CONFIG_DEBUG_VM
1192 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1193 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1194 * moved from pcp lists to free lists.
1196 static bool free_pcp_prepare(struct page
*page
)
1198 return free_pages_prepare(page
, 0, true);
1201 static bool bulkfree_pcp_prepare(struct page
*page
)
1203 if (debug_pagealloc_enabled_static())
1204 return free_pages_check(page
);
1210 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1211 * moving from pcp lists to free list in order to reduce overhead. With
1212 * debug_pagealloc enabled, they are checked also immediately when being freed
1215 static bool free_pcp_prepare(struct page
*page
)
1217 if (debug_pagealloc_enabled_static())
1218 return free_pages_prepare(page
, 0, true);
1220 return free_pages_prepare(page
, 0, false);
1223 static bool bulkfree_pcp_prepare(struct page
*page
)
1225 return free_pages_check(page
);
1227 #endif /* CONFIG_DEBUG_VM */
1229 static inline void prefetch_buddy(struct page
*page
)
1231 unsigned long pfn
= page_to_pfn(page
);
1232 unsigned long buddy_pfn
= __find_buddy_pfn(pfn
, 0);
1233 struct page
*buddy
= page
+ (buddy_pfn
- pfn
);
1239 * Frees a number of pages from the PCP lists
1240 * Assumes all pages on list are in same zone, and of same order.
1241 * count is the number of pages to free.
1243 * If the zone was previously in an "all pages pinned" state then look to
1244 * see if this freeing clears that state.
1246 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1247 * pinned" detection logic.
1249 static void free_pcppages_bulk(struct zone
*zone
, int count
,
1250 struct per_cpu_pages
*pcp
)
1252 int migratetype
= 0;
1254 int prefetch_nr
= 0;
1255 bool isolated_pageblocks
;
1256 struct page
*page
, *tmp
;
1260 * Ensure proper count is passed which otherwise would stuck in the
1261 * below while (list_empty(list)) loop.
1263 count
= min(pcp
->count
, count
);
1265 struct list_head
*list
;
1268 * Remove pages from lists in a round-robin fashion. A
1269 * batch_free count is maintained that is incremented when an
1270 * empty list is encountered. This is so more pages are freed
1271 * off fuller lists instead of spinning excessively around empty
1276 if (++migratetype
== MIGRATE_PCPTYPES
)
1278 list
= &pcp
->lists
[migratetype
];
1279 } while (list_empty(list
));
1281 /* This is the only non-empty list. Free them all. */
1282 if (batch_free
== MIGRATE_PCPTYPES
)
1286 page
= list_last_entry(list
, struct page
, lru
);
1287 /* must delete to avoid corrupting pcp list */
1288 list_del(&page
->lru
);
1291 if (bulkfree_pcp_prepare(page
))
1294 list_add_tail(&page
->lru
, &head
);
1297 * We are going to put the page back to the global
1298 * pool, prefetch its buddy to speed up later access
1299 * under zone->lock. It is believed the overhead of
1300 * an additional test and calculating buddy_pfn here
1301 * can be offset by reduced memory latency later. To
1302 * avoid excessive prefetching due to large count, only
1303 * prefetch buddy for the first pcp->batch nr of pages.
1305 if (prefetch_nr
++ < pcp
->batch
)
1306 prefetch_buddy(page
);
1307 } while (--count
&& --batch_free
&& !list_empty(list
));
1310 spin_lock(&zone
->lock
);
1311 isolated_pageblocks
= has_isolate_pageblock(zone
);
1314 * Use safe version since after __free_one_page(),
1315 * page->lru.next will not point to original list.
1317 list_for_each_entry_safe(page
, tmp
, &head
, lru
) {
1318 int mt
= get_pcppage_migratetype(page
);
1319 /* MIGRATE_ISOLATE page should not go to pcplists */
1320 VM_BUG_ON_PAGE(is_migrate_isolate(mt
), page
);
1321 /* Pageblock could have been isolated meanwhile */
1322 if (unlikely(isolated_pageblocks
))
1323 mt
= get_pageblock_migratetype(page
);
1325 __free_one_page(page
, page_to_pfn(page
), zone
, 0, mt
);
1326 trace_mm_page_pcpu_drain(page
, 0, mt
);
1328 spin_unlock(&zone
->lock
);
1331 static void free_one_page(struct zone
*zone
,
1332 struct page
*page
, unsigned long pfn
,
1336 spin_lock(&zone
->lock
);
1337 if (unlikely(has_isolate_pageblock(zone
) ||
1338 is_migrate_isolate(migratetype
))) {
1339 migratetype
= get_pfnblock_migratetype(page
, pfn
);
1341 __free_one_page(page
, pfn
, zone
, order
, migratetype
);
1342 spin_unlock(&zone
->lock
);
1345 static void __meminit
__init_single_page(struct page
*page
, unsigned long pfn
,
1346 unsigned long zone
, int nid
)
1348 mm_zero_struct_page(page
);
1349 set_page_links(page
, zone
, nid
, pfn
);
1350 init_page_count(page
);
1351 page_mapcount_reset(page
);
1352 page_cpupid_reset_last(page
);
1353 page_kasan_tag_reset(page
);
1355 INIT_LIST_HEAD(&page
->lru
);
1356 #ifdef WANT_PAGE_VIRTUAL
1357 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1358 if (!is_highmem_idx(zone
))
1359 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
1363 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1364 static void __meminit
init_reserved_page(unsigned long pfn
)
1369 if (!early_page_uninitialised(pfn
))
1372 nid
= early_pfn_to_nid(pfn
);
1373 pgdat
= NODE_DATA(nid
);
1375 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1376 struct zone
*zone
= &pgdat
->node_zones
[zid
];
1378 if (pfn
>= zone
->zone_start_pfn
&& pfn
< zone_end_pfn(zone
))
1381 __init_single_page(pfn_to_page(pfn
), pfn
, zid
, nid
);
1384 static inline void init_reserved_page(unsigned long pfn
)
1387 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1390 * Initialised pages do not have PageReserved set. This function is
1391 * called for each range allocated by the bootmem allocator and
1392 * marks the pages PageReserved. The remaining valid pages are later
1393 * sent to the buddy page allocator.
1395 void __meminit
reserve_bootmem_region(phys_addr_t start
, phys_addr_t end
)
1397 unsigned long start_pfn
= PFN_DOWN(start
);
1398 unsigned long end_pfn
= PFN_UP(end
);
1400 for (; start_pfn
< end_pfn
; start_pfn
++) {
1401 if (pfn_valid(start_pfn
)) {
1402 struct page
*page
= pfn_to_page(start_pfn
);
1404 init_reserved_page(start_pfn
);
1406 /* Avoid false-positive PageTail() */
1407 INIT_LIST_HEAD(&page
->lru
);
1410 * no need for atomic set_bit because the struct
1411 * page is not visible yet so nobody should
1414 __SetPageReserved(page
);
1419 static void __free_pages_ok(struct page
*page
, unsigned int order
)
1421 unsigned long flags
;
1423 unsigned long pfn
= page_to_pfn(page
);
1425 if (!free_pages_prepare(page
, order
, true))
1428 migratetype
= get_pfnblock_migratetype(page
, pfn
);
1429 local_irq_save(flags
);
1430 __count_vm_events(PGFREE
, 1 << order
);
1431 free_one_page(page_zone(page
), page
, pfn
, order
, migratetype
);
1432 local_irq_restore(flags
);
1435 void __free_pages_core(struct page
*page
, unsigned int order
)
1437 unsigned int nr_pages
= 1 << order
;
1438 struct page
*p
= page
;
1442 for (loop
= 0; loop
< (nr_pages
- 1); loop
++, p
++) {
1444 __ClearPageReserved(p
);
1445 set_page_count(p
, 0);
1447 __ClearPageReserved(p
);
1448 set_page_count(p
, 0);
1450 atomic_long_add(nr_pages
, &page_zone(page
)->managed_pages
);
1451 set_page_refcounted(page
);
1452 __free_pages(page
, order
);
1455 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1456 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1458 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata
;
1460 int __meminit
early_pfn_to_nid(unsigned long pfn
)
1462 static DEFINE_SPINLOCK(early_pfn_lock
);
1465 spin_lock(&early_pfn_lock
);
1466 nid
= __early_pfn_to_nid(pfn
, &early_pfnnid_cache
);
1468 nid
= first_online_node
;
1469 spin_unlock(&early_pfn_lock
);
1475 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1476 /* Only safe to use early in boot when initialisation is single-threaded */
1477 static inline bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
1481 nid
= __early_pfn_to_nid(pfn
, &early_pfnnid_cache
);
1482 if (nid
>= 0 && nid
!= node
)
1488 static inline bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
1495 void __init
memblock_free_pages(struct page
*page
, unsigned long pfn
,
1498 if (early_page_uninitialised(pfn
))
1500 __free_pages_core(page
, order
);
1504 * Check that the whole (or subset of) a pageblock given by the interval of
1505 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1506 * with the migration of free compaction scanner. The scanners then need to
1507 * use only pfn_valid_within() check for arches that allow holes within
1510 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1512 * It's possible on some configurations to have a setup like node0 node1 node0
1513 * i.e. it's possible that all pages within a zones range of pages do not
1514 * belong to a single zone. We assume that a border between node0 and node1
1515 * can occur within a single pageblock, but not a node0 node1 node0
1516 * interleaving within a single pageblock. It is therefore sufficient to check
1517 * the first and last page of a pageblock and avoid checking each individual
1518 * page in a pageblock.
1520 struct page
*__pageblock_pfn_to_page(unsigned long start_pfn
,
1521 unsigned long end_pfn
, struct zone
*zone
)
1523 struct page
*start_page
;
1524 struct page
*end_page
;
1526 /* end_pfn is one past the range we are checking */
1529 if (!pfn_valid(start_pfn
) || !pfn_valid(end_pfn
))
1532 start_page
= pfn_to_online_page(start_pfn
);
1536 if (page_zone(start_page
) != zone
)
1539 end_page
= pfn_to_page(end_pfn
);
1541 /* This gives a shorter code than deriving page_zone(end_page) */
1542 if (page_zone_id(start_page
) != page_zone_id(end_page
))
1548 void set_zone_contiguous(struct zone
*zone
)
1550 unsigned long block_start_pfn
= zone
->zone_start_pfn
;
1551 unsigned long block_end_pfn
;
1553 block_end_pfn
= ALIGN(block_start_pfn
+ 1, pageblock_nr_pages
);
1554 for (; block_start_pfn
< zone_end_pfn(zone
);
1555 block_start_pfn
= block_end_pfn
,
1556 block_end_pfn
+= pageblock_nr_pages
) {
1558 block_end_pfn
= min(block_end_pfn
, zone_end_pfn(zone
));
1560 if (!__pageblock_pfn_to_page(block_start_pfn
,
1561 block_end_pfn
, zone
))
1566 /* We confirm that there is no hole */
1567 zone
->contiguous
= true;
1570 void clear_zone_contiguous(struct zone
*zone
)
1572 zone
->contiguous
= false;
1575 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1576 static void __init
deferred_free_range(unsigned long pfn
,
1577 unsigned long nr_pages
)
1585 page
= pfn_to_page(pfn
);
1587 /* Free a large naturally-aligned chunk if possible */
1588 if (nr_pages
== pageblock_nr_pages
&&
1589 (pfn
& (pageblock_nr_pages
- 1)) == 0) {
1590 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1591 __free_pages_core(page
, pageblock_order
);
1595 for (i
= 0; i
< nr_pages
; i
++, page
++, pfn
++) {
1596 if ((pfn
& (pageblock_nr_pages
- 1)) == 0)
1597 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1598 __free_pages_core(page
, 0);
1602 /* Completion tracking for deferred_init_memmap() threads */
1603 static atomic_t pgdat_init_n_undone __initdata
;
1604 static __initdata
DECLARE_COMPLETION(pgdat_init_all_done_comp
);
1606 static inline void __init
pgdat_init_report_one_done(void)
1608 if (atomic_dec_and_test(&pgdat_init_n_undone
))
1609 complete(&pgdat_init_all_done_comp
);
1613 * Returns true if page needs to be initialized or freed to buddy allocator.
1615 * First we check if pfn is valid on architectures where it is possible to have
1616 * holes within pageblock_nr_pages. On systems where it is not possible, this
1617 * function is optimized out.
1619 * Then, we check if a current large page is valid by only checking the validity
1622 static inline bool __init
deferred_pfn_valid(unsigned long pfn
)
1624 if (!pfn_valid_within(pfn
))
1626 if (!(pfn
& (pageblock_nr_pages
- 1)) && !pfn_valid(pfn
))
1632 * Free pages to buddy allocator. Try to free aligned pages in
1633 * pageblock_nr_pages sizes.
1635 static void __init
deferred_free_pages(unsigned long pfn
,
1636 unsigned long end_pfn
)
1638 unsigned long nr_pgmask
= pageblock_nr_pages
- 1;
1639 unsigned long nr_free
= 0;
1641 for (; pfn
< end_pfn
; pfn
++) {
1642 if (!deferred_pfn_valid(pfn
)) {
1643 deferred_free_range(pfn
- nr_free
, nr_free
);
1645 } else if (!(pfn
& nr_pgmask
)) {
1646 deferred_free_range(pfn
- nr_free
, nr_free
);
1652 /* Free the last block of pages to allocator */
1653 deferred_free_range(pfn
- nr_free
, nr_free
);
1657 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1658 * by performing it only once every pageblock_nr_pages.
1659 * Return number of pages initialized.
1661 static unsigned long __init
deferred_init_pages(struct zone
*zone
,
1663 unsigned long end_pfn
)
1665 unsigned long nr_pgmask
= pageblock_nr_pages
- 1;
1666 int nid
= zone_to_nid(zone
);
1667 unsigned long nr_pages
= 0;
1668 int zid
= zone_idx(zone
);
1669 struct page
*page
= NULL
;
1671 for (; pfn
< end_pfn
; pfn
++) {
1672 if (!deferred_pfn_valid(pfn
)) {
1675 } else if (!page
|| !(pfn
& nr_pgmask
)) {
1676 page
= pfn_to_page(pfn
);
1680 __init_single_page(page
, pfn
, zid
, nid
);
1687 * This function is meant to pre-load the iterator for the zone init.
1688 * Specifically it walks through the ranges until we are caught up to the
1689 * first_init_pfn value and exits there. If we never encounter the value we
1690 * return false indicating there are no valid ranges left.
1693 deferred_init_mem_pfn_range_in_zone(u64
*i
, struct zone
*zone
,
1694 unsigned long *spfn
, unsigned long *epfn
,
1695 unsigned long first_init_pfn
)
1700 * Start out by walking through the ranges in this zone that have
1701 * already been initialized. We don't need to do anything with them
1702 * so we just need to flush them out of the system.
1704 for_each_free_mem_pfn_range_in_zone(j
, zone
, spfn
, epfn
) {
1705 if (*epfn
<= first_init_pfn
)
1707 if (*spfn
< first_init_pfn
)
1708 *spfn
= first_init_pfn
;
1717 * Initialize and free pages. We do it in two loops: first we initialize
1718 * struct page, then free to buddy allocator, because while we are
1719 * freeing pages we can access pages that are ahead (computing buddy
1720 * page in __free_one_page()).
1722 * In order to try and keep some memory in the cache we have the loop
1723 * broken along max page order boundaries. This way we will not cause
1724 * any issues with the buddy page computation.
1726 static unsigned long __init
1727 deferred_init_maxorder(u64
*i
, struct zone
*zone
, unsigned long *start_pfn
,
1728 unsigned long *end_pfn
)
1730 unsigned long mo_pfn
= ALIGN(*start_pfn
+ 1, MAX_ORDER_NR_PAGES
);
1731 unsigned long spfn
= *start_pfn
, epfn
= *end_pfn
;
1732 unsigned long nr_pages
= 0;
1735 /* First we loop through and initialize the page values */
1736 for_each_free_mem_pfn_range_in_zone_from(j
, zone
, start_pfn
, end_pfn
) {
1739 if (mo_pfn
<= *start_pfn
)
1742 t
= min(mo_pfn
, *end_pfn
);
1743 nr_pages
+= deferred_init_pages(zone
, *start_pfn
, t
);
1745 if (mo_pfn
< *end_pfn
) {
1746 *start_pfn
= mo_pfn
;
1751 /* Reset values and now loop through freeing pages as needed */
1754 for_each_free_mem_pfn_range_in_zone_from(j
, zone
, &spfn
, &epfn
) {
1760 t
= min(mo_pfn
, epfn
);
1761 deferred_free_pages(spfn
, t
);
1770 /* Initialise remaining memory on a node */
1771 static int __init
deferred_init_memmap(void *data
)
1773 pg_data_t
*pgdat
= data
;
1774 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
1775 unsigned long spfn
= 0, epfn
= 0, nr_pages
= 0;
1776 unsigned long first_init_pfn
, flags
;
1777 unsigned long start
= jiffies
;
1782 /* Bind memory initialisation thread to a local node if possible */
1783 if (!cpumask_empty(cpumask
))
1784 set_cpus_allowed_ptr(current
, cpumask
);
1786 pgdat_resize_lock(pgdat
, &flags
);
1787 first_init_pfn
= pgdat
->first_deferred_pfn
;
1788 if (first_init_pfn
== ULONG_MAX
) {
1789 pgdat_resize_unlock(pgdat
, &flags
);
1790 pgdat_init_report_one_done();
1794 /* Sanity check boundaries */
1795 BUG_ON(pgdat
->first_deferred_pfn
< pgdat
->node_start_pfn
);
1796 BUG_ON(pgdat
->first_deferred_pfn
> pgdat_end_pfn(pgdat
));
1797 pgdat
->first_deferred_pfn
= ULONG_MAX
;
1800 * Once we unlock here, the zone cannot be grown anymore, thus if an
1801 * interrupt thread must allocate this early in boot, zone must be
1802 * pre-grown prior to start of deferred page initialization.
1804 pgdat_resize_unlock(pgdat
, &flags
);
1806 /* Only the highest zone is deferred so find it */
1807 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1808 zone
= pgdat
->node_zones
+ zid
;
1809 if (first_init_pfn
< zone_end_pfn(zone
))
1813 /* If the zone is empty somebody else may have cleared out the zone */
1814 if (!deferred_init_mem_pfn_range_in_zone(&i
, zone
, &spfn
, &epfn
,
1819 * Initialize and free pages in MAX_ORDER sized increments so
1820 * that we can avoid introducing any issues with the buddy
1823 while (spfn
< epfn
) {
1824 nr_pages
+= deferred_init_maxorder(&i
, zone
, &spfn
, &epfn
);
1828 /* Sanity check that the next zone really is unpopulated */
1829 WARN_ON(++zid
< MAX_NR_ZONES
&& populated_zone(++zone
));
1831 pr_info("node %d initialised, %lu pages in %ums\n",
1832 pgdat
->node_id
, nr_pages
, jiffies_to_msecs(jiffies
- start
));
1834 pgdat_init_report_one_done();
1839 * If this zone has deferred pages, try to grow it by initializing enough
1840 * deferred pages to satisfy the allocation specified by order, rounded up to
1841 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1842 * of SECTION_SIZE bytes by initializing struct pages in increments of
1843 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1845 * Return true when zone was grown, otherwise return false. We return true even
1846 * when we grow less than requested, to let the caller decide if there are
1847 * enough pages to satisfy the allocation.
1849 * Note: We use noinline because this function is needed only during boot, and
1850 * it is called from a __ref function _deferred_grow_zone. This way we are
1851 * making sure that it is not inlined into permanent text section.
1853 static noinline
bool __init
1854 deferred_grow_zone(struct zone
*zone
, unsigned int order
)
1856 unsigned long nr_pages_needed
= ALIGN(1 << order
, PAGES_PER_SECTION
);
1857 pg_data_t
*pgdat
= zone
->zone_pgdat
;
1858 unsigned long first_deferred_pfn
= pgdat
->first_deferred_pfn
;
1859 unsigned long spfn
, epfn
, flags
;
1860 unsigned long nr_pages
= 0;
1863 /* Only the last zone may have deferred pages */
1864 if (zone_end_pfn(zone
) != pgdat_end_pfn(pgdat
))
1867 pgdat_resize_lock(pgdat
, &flags
);
1870 * If someone grew this zone while we were waiting for spinlock, return
1871 * true, as there might be enough pages already.
1873 if (first_deferred_pfn
!= pgdat
->first_deferred_pfn
) {
1874 pgdat_resize_unlock(pgdat
, &flags
);
1878 /* If the zone is empty somebody else may have cleared out the zone */
1879 if (!deferred_init_mem_pfn_range_in_zone(&i
, zone
, &spfn
, &epfn
,
1880 first_deferred_pfn
)) {
1881 pgdat
->first_deferred_pfn
= ULONG_MAX
;
1882 pgdat_resize_unlock(pgdat
, &flags
);
1883 /* Retry only once. */
1884 return first_deferred_pfn
!= ULONG_MAX
;
1888 * Initialize and free pages in MAX_ORDER sized increments so
1889 * that we can avoid introducing any issues with the buddy
1892 while (spfn
< epfn
) {
1893 /* update our first deferred PFN for this section */
1894 first_deferred_pfn
= spfn
;
1896 nr_pages
+= deferred_init_maxorder(&i
, zone
, &spfn
, &epfn
);
1897 touch_nmi_watchdog();
1899 /* We should only stop along section boundaries */
1900 if ((first_deferred_pfn
^ spfn
) < PAGES_PER_SECTION
)
1903 /* If our quota has been met we can stop here */
1904 if (nr_pages
>= nr_pages_needed
)
1908 pgdat
->first_deferred_pfn
= spfn
;
1909 pgdat_resize_unlock(pgdat
, &flags
);
1911 return nr_pages
> 0;
1915 * deferred_grow_zone() is __init, but it is called from
1916 * get_page_from_freelist() during early boot until deferred_pages permanently
1917 * disables this call. This is why we have refdata wrapper to avoid warning,
1918 * and to ensure that the function body gets unloaded.
1921 _deferred_grow_zone(struct zone
*zone
, unsigned int order
)
1923 return deferred_grow_zone(zone
, order
);
1926 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1928 void __init
page_alloc_init_late(void)
1933 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1935 /* There will be num_node_state(N_MEMORY) threads */
1936 atomic_set(&pgdat_init_n_undone
, num_node_state(N_MEMORY
));
1937 for_each_node_state(nid
, N_MEMORY
) {
1938 kthread_run(deferred_init_memmap
, NODE_DATA(nid
), "pgdatinit%d", nid
);
1941 /* Block until all are initialised */
1942 wait_for_completion(&pgdat_init_all_done_comp
);
1945 * The number of managed pages has changed due to the initialisation
1946 * so the pcpu batch and high limits needs to be updated or the limits
1947 * will be artificially small.
1949 for_each_populated_zone(zone
)
1950 zone_pcp_update(zone
);
1953 * We initialized the rest of the deferred pages. Permanently disable
1954 * on-demand struct page initialization.
1956 static_branch_disable(&deferred_pages
);
1958 /* Reinit limits that are based on free pages after the kernel is up */
1959 files_maxfiles_init();
1962 /* Discard memblock private memory */
1965 for_each_node_state(nid
, N_MEMORY
)
1966 shuffle_free_memory(NODE_DATA(nid
));
1968 for_each_populated_zone(zone
)
1969 set_zone_contiguous(zone
);
1973 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1974 void __init
init_cma_reserved_pageblock(struct page
*page
)
1976 unsigned i
= pageblock_nr_pages
;
1977 struct page
*p
= page
;
1980 __ClearPageReserved(p
);
1981 set_page_count(p
, 0);
1984 set_pageblock_migratetype(page
, MIGRATE_CMA
);
1986 if (pageblock_order
>= MAX_ORDER
) {
1987 i
= pageblock_nr_pages
;
1990 set_page_refcounted(p
);
1991 __free_pages(p
, MAX_ORDER
- 1);
1992 p
+= MAX_ORDER_NR_PAGES
;
1993 } while (i
-= MAX_ORDER_NR_PAGES
);
1995 set_page_refcounted(page
);
1996 __free_pages(page
, pageblock_order
);
1999 adjust_managed_page_count(page
, pageblock_nr_pages
);
2004 * The order of subdivision here is critical for the IO subsystem.
2005 * Please do not alter this order without good reasons and regression
2006 * testing. Specifically, as large blocks of memory are subdivided,
2007 * the order in which smaller blocks are delivered depends on the order
2008 * they're subdivided in this function. This is the primary factor
2009 * influencing the order in which pages are delivered to the IO
2010 * subsystem according to empirical testing, and this is also justified
2011 * by considering the behavior of a buddy system containing a single
2012 * large block of memory acted on by a series of small allocations.
2013 * This behavior is a critical factor in sglist merging's success.
2017 static inline void expand(struct zone
*zone
, struct page
*page
,
2018 int low
, int high
, struct free_area
*area
,
2021 unsigned long size
= 1 << high
;
2023 while (high
> low
) {
2027 VM_BUG_ON_PAGE(bad_range(zone
, &page
[size
]), &page
[size
]);
2030 * Mark as guard pages (or page), that will allow to
2031 * merge back to allocator when buddy will be freed.
2032 * Corresponding page table entries will not be touched,
2033 * pages will stay not present in virtual address space
2035 if (set_page_guard(zone
, &page
[size
], high
, migratetype
))
2038 add_to_free_area(&page
[size
], area
, migratetype
);
2039 set_page_order(&page
[size
], high
);
2043 static void check_new_page_bad(struct page
*page
)
2045 const char *bad_reason
= NULL
;
2046 unsigned long bad_flags
= 0;
2048 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
2049 bad_reason
= "nonzero mapcount";
2050 if (unlikely(page
->mapping
!= NULL
))
2051 bad_reason
= "non-NULL mapping";
2052 if (unlikely(page_ref_count(page
) != 0))
2053 bad_reason
= "nonzero _refcount";
2054 if (unlikely(page
->flags
& __PG_HWPOISON
)) {
2055 bad_reason
= "HWPoisoned (hardware-corrupted)";
2056 bad_flags
= __PG_HWPOISON
;
2057 /* Don't complain about hwpoisoned pages */
2058 page_mapcount_reset(page
); /* remove PageBuddy */
2061 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)) {
2062 bad_reason
= "PAGE_FLAGS_CHECK_AT_PREP flag set";
2063 bad_flags
= PAGE_FLAGS_CHECK_AT_PREP
;
2066 if (unlikely(page
->mem_cgroup
))
2067 bad_reason
= "page still charged to cgroup";
2069 bad_page(page
, bad_reason
, bad_flags
);
2073 * This page is about to be returned from the page allocator
2075 static inline int check_new_page(struct page
*page
)
2077 if (likely(page_expected_state(page
,
2078 PAGE_FLAGS_CHECK_AT_PREP
|__PG_HWPOISON
)))
2081 check_new_page_bad(page
);
2085 static inline bool free_pages_prezeroed(void)
2087 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO
) &&
2088 page_poisoning_enabled()) || want_init_on_free();
2091 #ifdef CONFIG_DEBUG_VM
2093 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2094 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2095 * also checked when pcp lists are refilled from the free lists.
2097 static inline bool check_pcp_refill(struct page
*page
)
2099 if (debug_pagealloc_enabled_static())
2100 return check_new_page(page
);
2105 static inline bool check_new_pcp(struct page
*page
)
2107 return check_new_page(page
);
2111 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2112 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2113 * enabled, they are also checked when being allocated from the pcp lists.
2115 static inline bool check_pcp_refill(struct page
*page
)
2117 return check_new_page(page
);
2119 static inline bool check_new_pcp(struct page
*page
)
2121 if (debug_pagealloc_enabled_static())
2122 return check_new_page(page
);
2126 #endif /* CONFIG_DEBUG_VM */
2128 static bool check_new_pages(struct page
*page
, unsigned int order
)
2131 for (i
= 0; i
< (1 << order
); i
++) {
2132 struct page
*p
= page
+ i
;
2134 if (unlikely(check_new_page(p
)))
2141 inline void post_alloc_hook(struct page
*page
, unsigned int order
,
2144 set_page_private(page
, 0);
2145 set_page_refcounted(page
);
2147 arch_alloc_page(page
, order
);
2148 if (debug_pagealloc_enabled_static())
2149 kernel_map_pages(page
, 1 << order
, 1);
2150 kasan_alloc_pages(page
, order
);
2151 kernel_poison_pages(page
, 1 << order
, 1);
2152 set_page_owner(page
, order
, gfp_flags
);
2155 static void prep_new_page(struct page
*page
, unsigned int order
, gfp_t gfp_flags
,
2156 unsigned int alloc_flags
)
2158 post_alloc_hook(page
, order
, gfp_flags
);
2160 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags
))
2161 kernel_init_free_pages(page
, 1 << order
);
2163 if (order
&& (gfp_flags
& __GFP_COMP
))
2164 prep_compound_page(page
, order
);
2167 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2168 * allocate the page. The expectation is that the caller is taking
2169 * steps that will free more memory. The caller should avoid the page
2170 * being used for !PFMEMALLOC purposes.
2172 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
2173 set_page_pfmemalloc(page
);
2175 clear_page_pfmemalloc(page
);
2179 * Go through the free lists for the given migratetype and remove
2180 * the smallest available page from the freelists
2182 static __always_inline
2183 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
2186 unsigned int current_order
;
2187 struct free_area
*area
;
2190 /* Find a page of the appropriate size in the preferred list */
2191 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
2192 area
= &(zone
->free_area
[current_order
]);
2193 page
= get_page_from_free_area(area
, migratetype
);
2196 del_page_from_free_area(page
, area
);
2197 expand(zone
, page
, order
, current_order
, area
, migratetype
);
2198 set_pcppage_migratetype(page
, migratetype
);
2207 * This array describes the order lists are fallen back to when
2208 * the free lists for the desirable migrate type are depleted
2210 static int fallbacks
[MIGRATE_TYPES
][4] = {
2211 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_TYPES
},
2212 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_TYPES
},
2213 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_TYPES
},
2215 [MIGRATE_CMA
] = { MIGRATE_TYPES
}, /* Never used */
2217 #ifdef CONFIG_MEMORY_ISOLATION
2218 [MIGRATE_ISOLATE
] = { MIGRATE_TYPES
}, /* Never used */
2223 static __always_inline
struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
2226 return __rmqueue_smallest(zone
, order
, MIGRATE_CMA
);
2229 static inline struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
2230 unsigned int order
) { return NULL
; }
2234 * Move the free pages in a range to the free lists of the requested type.
2235 * Note that start_page and end_pages are not aligned on a pageblock
2236 * boundary. If alignment is required, use move_freepages_block()
2238 static int move_freepages(struct zone
*zone
,
2239 struct page
*start_page
, struct page
*end_page
,
2240 int migratetype
, int *num_movable
)
2244 int pages_moved
= 0;
2246 for (page
= start_page
; page
<= end_page
;) {
2247 if (!pfn_valid_within(page_to_pfn(page
))) {
2252 if (!PageBuddy(page
)) {
2254 * We assume that pages that could be isolated for
2255 * migration are movable. But we don't actually try
2256 * isolating, as that would be expensive.
2259 (PageLRU(page
) || __PageMovable(page
)))
2266 /* Make sure we are not inadvertently changing nodes */
2267 VM_BUG_ON_PAGE(page_to_nid(page
) != zone_to_nid(zone
), page
);
2268 VM_BUG_ON_PAGE(page_zone(page
) != zone
, page
);
2270 order
= page_order(page
);
2271 move_to_free_area(page
, &zone
->free_area
[order
], migratetype
);
2273 pages_moved
+= 1 << order
;
2279 int move_freepages_block(struct zone
*zone
, struct page
*page
,
2280 int migratetype
, int *num_movable
)
2282 unsigned long start_pfn
, end_pfn
;
2283 struct page
*start_page
, *end_page
;
2288 start_pfn
= page_to_pfn(page
);
2289 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
2290 start_page
= pfn_to_page(start_pfn
);
2291 end_page
= start_page
+ pageblock_nr_pages
- 1;
2292 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
2294 /* Do not cross zone boundaries */
2295 if (!zone_spans_pfn(zone
, start_pfn
))
2297 if (!zone_spans_pfn(zone
, end_pfn
))
2300 return move_freepages(zone
, start_page
, end_page
, migratetype
,
2304 static void change_pageblock_range(struct page
*pageblock_page
,
2305 int start_order
, int migratetype
)
2307 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
2309 while (nr_pageblocks
--) {
2310 set_pageblock_migratetype(pageblock_page
, migratetype
);
2311 pageblock_page
+= pageblock_nr_pages
;
2316 * When we are falling back to another migratetype during allocation, try to
2317 * steal extra free pages from the same pageblocks to satisfy further
2318 * allocations, instead of polluting multiple pageblocks.
2320 * If we are stealing a relatively large buddy page, it is likely there will
2321 * be more free pages in the pageblock, so try to steal them all. For
2322 * reclaimable and unmovable allocations, we steal regardless of page size,
2323 * as fragmentation caused by those allocations polluting movable pageblocks
2324 * is worse than movable allocations stealing from unmovable and reclaimable
2327 static bool can_steal_fallback(unsigned int order
, int start_mt
)
2330 * Leaving this order check is intended, although there is
2331 * relaxed order check in next check. The reason is that
2332 * we can actually steal whole pageblock if this condition met,
2333 * but, below check doesn't guarantee it and that is just heuristic
2334 * so could be changed anytime.
2336 if (order
>= pageblock_order
)
2339 if (order
>= pageblock_order
/ 2 ||
2340 start_mt
== MIGRATE_RECLAIMABLE
||
2341 start_mt
== MIGRATE_UNMOVABLE
||
2342 page_group_by_mobility_disabled
)
2348 static inline void boost_watermark(struct zone
*zone
)
2350 unsigned long max_boost
;
2352 if (!watermark_boost_factor
)
2355 * Don't bother in zones that are unlikely to produce results.
2356 * On small machines, including kdump capture kernels running
2357 * in a small area, boosting the watermark can cause an out of
2358 * memory situation immediately.
2360 if ((pageblock_nr_pages
* 4) > zone_managed_pages(zone
))
2363 max_boost
= mult_frac(zone
->_watermark
[WMARK_HIGH
],
2364 watermark_boost_factor
, 10000);
2367 * high watermark may be uninitialised if fragmentation occurs
2368 * very early in boot so do not boost. We do not fall
2369 * through and boost by pageblock_nr_pages as failing
2370 * allocations that early means that reclaim is not going
2371 * to help and it may even be impossible to reclaim the
2372 * boosted watermark resulting in a hang.
2377 max_boost
= max(pageblock_nr_pages
, max_boost
);
2379 zone
->watermark_boost
= min(zone
->watermark_boost
+ pageblock_nr_pages
,
2384 * This function implements actual steal behaviour. If order is large enough,
2385 * we can steal whole pageblock. If not, we first move freepages in this
2386 * pageblock to our migratetype and determine how many already-allocated pages
2387 * are there in the pageblock with a compatible migratetype. If at least half
2388 * of pages are free or compatible, we can change migratetype of the pageblock
2389 * itself, so pages freed in the future will be put on the correct free list.
2391 static void steal_suitable_fallback(struct zone
*zone
, struct page
*page
,
2392 unsigned int alloc_flags
, int start_type
, bool whole_block
)
2394 unsigned int current_order
= page_order(page
);
2395 struct free_area
*area
;
2396 int free_pages
, movable_pages
, alike_pages
;
2399 old_block_type
= get_pageblock_migratetype(page
);
2402 * This can happen due to races and we want to prevent broken
2403 * highatomic accounting.
2405 if (is_migrate_highatomic(old_block_type
))
2408 /* Take ownership for orders >= pageblock_order */
2409 if (current_order
>= pageblock_order
) {
2410 change_pageblock_range(page
, current_order
, start_type
);
2415 * Boost watermarks to increase reclaim pressure to reduce the
2416 * likelihood of future fallbacks. Wake kswapd now as the node
2417 * may be balanced overall and kswapd will not wake naturally.
2419 boost_watermark(zone
);
2420 if (alloc_flags
& ALLOC_KSWAPD
)
2421 set_bit(ZONE_BOOSTED_WATERMARK
, &zone
->flags
);
2423 /* We are not allowed to try stealing from the whole block */
2427 free_pages
= move_freepages_block(zone
, page
, start_type
,
2430 * Determine how many pages are compatible with our allocation.
2431 * For movable allocation, it's the number of movable pages which
2432 * we just obtained. For other types it's a bit more tricky.
2434 if (start_type
== MIGRATE_MOVABLE
) {
2435 alike_pages
= movable_pages
;
2438 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2439 * to MOVABLE pageblock, consider all non-movable pages as
2440 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2441 * vice versa, be conservative since we can't distinguish the
2442 * exact migratetype of non-movable pages.
2444 if (old_block_type
== MIGRATE_MOVABLE
)
2445 alike_pages
= pageblock_nr_pages
2446 - (free_pages
+ movable_pages
);
2451 /* moving whole block can fail due to zone boundary conditions */
2456 * If a sufficient number of pages in the block are either free or of
2457 * comparable migratability as our allocation, claim the whole block.
2459 if (free_pages
+ alike_pages
>= (1 << (pageblock_order
-1)) ||
2460 page_group_by_mobility_disabled
)
2461 set_pageblock_migratetype(page
, start_type
);
2466 area
= &zone
->free_area
[current_order
];
2467 move_to_free_area(page
, area
, start_type
);
2471 * Check whether there is a suitable fallback freepage with requested order.
2472 * If only_stealable is true, this function returns fallback_mt only if
2473 * we can steal other freepages all together. This would help to reduce
2474 * fragmentation due to mixed migratetype pages in one pageblock.
2476 int find_suitable_fallback(struct free_area
*area
, unsigned int order
,
2477 int migratetype
, bool only_stealable
, bool *can_steal
)
2482 if (area
->nr_free
== 0)
2487 fallback_mt
= fallbacks
[migratetype
][i
];
2488 if (fallback_mt
== MIGRATE_TYPES
)
2491 if (free_area_empty(area
, fallback_mt
))
2494 if (can_steal_fallback(order
, migratetype
))
2497 if (!only_stealable
)
2508 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2509 * there are no empty page blocks that contain a page with a suitable order
2511 static void reserve_highatomic_pageblock(struct page
*page
, struct zone
*zone
,
2512 unsigned int alloc_order
)
2515 unsigned long max_managed
, flags
;
2518 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2519 * Check is race-prone but harmless.
2521 max_managed
= (zone_managed_pages(zone
) / 100) + pageblock_nr_pages
;
2522 if (zone
->nr_reserved_highatomic
>= max_managed
)
2525 spin_lock_irqsave(&zone
->lock
, flags
);
2527 /* Recheck the nr_reserved_highatomic limit under the lock */
2528 if (zone
->nr_reserved_highatomic
>= max_managed
)
2532 mt
= get_pageblock_migratetype(page
);
2533 if (!is_migrate_highatomic(mt
) && !is_migrate_isolate(mt
)
2534 && !is_migrate_cma(mt
)) {
2535 zone
->nr_reserved_highatomic
+= pageblock_nr_pages
;
2536 set_pageblock_migratetype(page
, MIGRATE_HIGHATOMIC
);
2537 move_freepages_block(zone
, page
, MIGRATE_HIGHATOMIC
, NULL
);
2541 spin_unlock_irqrestore(&zone
->lock
, flags
);
2545 * Used when an allocation is about to fail under memory pressure. This
2546 * potentially hurts the reliability of high-order allocations when under
2547 * intense memory pressure but failed atomic allocations should be easier
2548 * to recover from than an OOM.
2550 * If @force is true, try to unreserve a pageblock even though highatomic
2551 * pageblock is exhausted.
2553 static bool unreserve_highatomic_pageblock(const struct alloc_context
*ac
,
2556 struct zonelist
*zonelist
= ac
->zonelist
;
2557 unsigned long flags
;
2564 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, ac
->high_zoneidx
,
2567 * Preserve at least one pageblock unless memory pressure
2570 if (!force
&& zone
->nr_reserved_highatomic
<=
2574 spin_lock_irqsave(&zone
->lock
, flags
);
2575 for (order
= 0; order
< MAX_ORDER
; order
++) {
2576 struct free_area
*area
= &(zone
->free_area
[order
]);
2578 page
= get_page_from_free_area(area
, MIGRATE_HIGHATOMIC
);
2583 * In page freeing path, migratetype change is racy so
2584 * we can counter several free pages in a pageblock
2585 * in this loop althoug we changed the pageblock type
2586 * from highatomic to ac->migratetype. So we should
2587 * adjust the count once.
2589 if (is_migrate_highatomic_page(page
)) {
2591 * It should never happen but changes to
2592 * locking could inadvertently allow a per-cpu
2593 * drain to add pages to MIGRATE_HIGHATOMIC
2594 * while unreserving so be safe and watch for
2597 zone
->nr_reserved_highatomic
-= min(
2599 zone
->nr_reserved_highatomic
);
2603 * Convert to ac->migratetype and avoid the normal
2604 * pageblock stealing heuristics. Minimally, the caller
2605 * is doing the work and needs the pages. More
2606 * importantly, if the block was always converted to
2607 * MIGRATE_UNMOVABLE or another type then the number
2608 * of pageblocks that cannot be completely freed
2611 set_pageblock_migratetype(page
, ac
->migratetype
);
2612 ret
= move_freepages_block(zone
, page
, ac
->migratetype
,
2615 spin_unlock_irqrestore(&zone
->lock
, flags
);
2619 spin_unlock_irqrestore(&zone
->lock
, flags
);
2626 * Try finding a free buddy page on the fallback list and put it on the free
2627 * list of requested migratetype, possibly along with other pages from the same
2628 * block, depending on fragmentation avoidance heuristics. Returns true if
2629 * fallback was found so that __rmqueue_smallest() can grab it.
2631 * The use of signed ints for order and current_order is a deliberate
2632 * deviation from the rest of this file, to make the for loop
2633 * condition simpler.
2635 static __always_inline
bool
2636 __rmqueue_fallback(struct zone
*zone
, int order
, int start_migratetype
,
2637 unsigned int alloc_flags
)
2639 struct free_area
*area
;
2641 int min_order
= order
;
2647 * Do not steal pages from freelists belonging to other pageblocks
2648 * i.e. orders < pageblock_order. If there are no local zones free,
2649 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2651 if (alloc_flags
& ALLOC_NOFRAGMENT
)
2652 min_order
= pageblock_order
;
2655 * Find the largest available free page in the other list. This roughly
2656 * approximates finding the pageblock with the most free pages, which
2657 * would be too costly to do exactly.
2659 for (current_order
= MAX_ORDER
- 1; current_order
>= min_order
;
2661 area
= &(zone
->free_area
[current_order
]);
2662 fallback_mt
= find_suitable_fallback(area
, current_order
,
2663 start_migratetype
, false, &can_steal
);
2664 if (fallback_mt
== -1)
2668 * We cannot steal all free pages from the pageblock and the
2669 * requested migratetype is movable. In that case it's better to
2670 * steal and split the smallest available page instead of the
2671 * largest available page, because even if the next movable
2672 * allocation falls back into a different pageblock than this
2673 * one, it won't cause permanent fragmentation.
2675 if (!can_steal
&& start_migratetype
== MIGRATE_MOVABLE
2676 && current_order
> order
)
2685 for (current_order
= order
; current_order
< MAX_ORDER
;
2687 area
= &(zone
->free_area
[current_order
]);
2688 fallback_mt
= find_suitable_fallback(area
, current_order
,
2689 start_migratetype
, false, &can_steal
);
2690 if (fallback_mt
!= -1)
2695 * This should not happen - we already found a suitable fallback
2696 * when looking for the largest page.
2698 VM_BUG_ON(current_order
== MAX_ORDER
);
2701 page
= get_page_from_free_area(area
, fallback_mt
);
2703 steal_suitable_fallback(zone
, page
, alloc_flags
, start_migratetype
,
2706 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
2707 start_migratetype
, fallback_mt
);
2714 * Do the hard work of removing an element from the buddy allocator.
2715 * Call me with the zone->lock already held.
2717 static __always_inline
struct page
*
2718 __rmqueue(struct zone
*zone
, unsigned int order
, int migratetype
,
2719 unsigned int alloc_flags
)
2724 page
= __rmqueue_smallest(zone
, order
, migratetype
);
2725 if (unlikely(!page
)) {
2726 if (migratetype
== MIGRATE_MOVABLE
)
2727 page
= __rmqueue_cma_fallback(zone
, order
);
2729 if (!page
&& __rmqueue_fallback(zone
, order
, migratetype
,
2734 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
2739 * Obtain a specified number of elements from the buddy allocator, all under
2740 * a single hold of the lock, for efficiency. Add them to the supplied list.
2741 * Returns the number of new pages which were placed at *list.
2743 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
2744 unsigned long count
, struct list_head
*list
,
2745 int migratetype
, unsigned int alloc_flags
)
2749 spin_lock(&zone
->lock
);
2750 for (i
= 0; i
< count
; ++i
) {
2751 struct page
*page
= __rmqueue(zone
, order
, migratetype
,
2753 if (unlikely(page
== NULL
))
2756 if (unlikely(check_pcp_refill(page
)))
2760 * Split buddy pages returned by expand() are received here in
2761 * physical page order. The page is added to the tail of
2762 * caller's list. From the callers perspective, the linked list
2763 * is ordered by page number under some conditions. This is
2764 * useful for IO devices that can forward direction from the
2765 * head, thus also in the physical page order. This is useful
2766 * for IO devices that can merge IO requests if the physical
2767 * pages are ordered properly.
2769 list_add_tail(&page
->lru
, list
);
2771 if (is_migrate_cma(get_pcppage_migratetype(page
)))
2772 __mod_zone_page_state(zone
, NR_FREE_CMA_PAGES
,
2777 * i pages were removed from the buddy list even if some leak due
2778 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2779 * on i. Do not confuse with 'alloced' which is the number of
2780 * pages added to the pcp list.
2782 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
2783 spin_unlock(&zone
->lock
);
2789 * Called from the vmstat counter updater to drain pagesets of this
2790 * currently executing processor on remote nodes after they have
2793 * Note that this function must be called with the thread pinned to
2794 * a single processor.
2796 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
2798 unsigned long flags
;
2799 int to_drain
, batch
;
2801 local_irq_save(flags
);
2802 batch
= READ_ONCE(pcp
->batch
);
2803 to_drain
= min(pcp
->count
, batch
);
2805 free_pcppages_bulk(zone
, to_drain
, pcp
);
2806 local_irq_restore(flags
);
2811 * Drain pcplists of the indicated processor and zone.
2813 * The processor must either be the current processor and the
2814 * thread pinned to the current processor or a processor that
2817 static void drain_pages_zone(unsigned int cpu
, struct zone
*zone
)
2819 unsigned long flags
;
2820 struct per_cpu_pageset
*pset
;
2821 struct per_cpu_pages
*pcp
;
2823 local_irq_save(flags
);
2824 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
2828 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
2829 local_irq_restore(flags
);
2833 * Drain pcplists of all zones on the indicated processor.
2835 * The processor must either be the current processor and the
2836 * thread pinned to the current processor or a processor that
2839 static void drain_pages(unsigned int cpu
)
2843 for_each_populated_zone(zone
) {
2844 drain_pages_zone(cpu
, zone
);
2849 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2851 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2852 * the single zone's pages.
2854 void drain_local_pages(struct zone
*zone
)
2856 int cpu
= smp_processor_id();
2859 drain_pages_zone(cpu
, zone
);
2864 static void drain_local_pages_wq(struct work_struct
*work
)
2866 struct pcpu_drain
*drain
;
2868 drain
= container_of(work
, struct pcpu_drain
, work
);
2871 * drain_all_pages doesn't use proper cpu hotplug protection so
2872 * we can race with cpu offline when the WQ can move this from
2873 * a cpu pinned worker to an unbound one. We can operate on a different
2874 * cpu which is allright but we also have to make sure to not move to
2878 drain_local_pages(drain
->zone
);
2883 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2885 * When zone parameter is non-NULL, spill just the single zone's pages.
2887 * Note that this can be extremely slow as the draining happens in a workqueue.
2889 void drain_all_pages(struct zone
*zone
)
2894 * Allocate in the BSS so we wont require allocation in
2895 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2897 static cpumask_t cpus_with_pcps
;
2900 * Make sure nobody triggers this path before mm_percpu_wq is fully
2903 if (WARN_ON_ONCE(!mm_percpu_wq
))
2907 * Do not drain if one is already in progress unless it's specific to
2908 * a zone. Such callers are primarily CMA and memory hotplug and need
2909 * the drain to be complete when the call returns.
2911 if (unlikely(!mutex_trylock(&pcpu_drain_mutex
))) {
2914 mutex_lock(&pcpu_drain_mutex
);
2918 * We don't care about racing with CPU hotplug event
2919 * as offline notification will cause the notified
2920 * cpu to drain that CPU pcps and on_each_cpu_mask
2921 * disables preemption as part of its processing
2923 for_each_online_cpu(cpu
) {
2924 struct per_cpu_pageset
*pcp
;
2926 bool has_pcps
= false;
2929 pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
2933 for_each_populated_zone(z
) {
2934 pcp
= per_cpu_ptr(z
->pageset
, cpu
);
2935 if (pcp
->pcp
.count
) {
2943 cpumask_set_cpu(cpu
, &cpus_with_pcps
);
2945 cpumask_clear_cpu(cpu
, &cpus_with_pcps
);
2948 for_each_cpu(cpu
, &cpus_with_pcps
) {
2949 struct pcpu_drain
*drain
= per_cpu_ptr(&pcpu_drain
, cpu
);
2952 INIT_WORK(&drain
->work
, drain_local_pages_wq
);
2953 queue_work_on(cpu
, mm_percpu_wq
, &drain
->work
);
2955 for_each_cpu(cpu
, &cpus_with_pcps
)
2956 flush_work(&per_cpu_ptr(&pcpu_drain
, cpu
)->work
);
2958 mutex_unlock(&pcpu_drain_mutex
);
2961 #ifdef CONFIG_HIBERNATION
2964 * Touch the watchdog for every WD_PAGE_COUNT pages.
2966 #define WD_PAGE_COUNT (128*1024)
2968 void mark_free_pages(struct zone
*zone
)
2970 unsigned long pfn
, max_zone_pfn
, page_count
= WD_PAGE_COUNT
;
2971 unsigned long flags
;
2972 unsigned int order
, t
;
2975 if (zone_is_empty(zone
))
2978 spin_lock_irqsave(&zone
->lock
, flags
);
2980 max_zone_pfn
= zone_end_pfn(zone
);
2981 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
2982 if (pfn_valid(pfn
)) {
2983 page
= pfn_to_page(pfn
);
2985 if (!--page_count
) {
2986 touch_nmi_watchdog();
2987 page_count
= WD_PAGE_COUNT
;
2990 if (page_zone(page
) != zone
)
2993 if (!swsusp_page_is_forbidden(page
))
2994 swsusp_unset_page_free(page
);
2997 for_each_migratetype_order(order
, t
) {
2998 list_for_each_entry(page
,
2999 &zone
->free_area
[order
].free_list
[t
], lru
) {
3002 pfn
= page_to_pfn(page
);
3003 for (i
= 0; i
< (1UL << order
); i
++) {
3004 if (!--page_count
) {
3005 touch_nmi_watchdog();
3006 page_count
= WD_PAGE_COUNT
;
3008 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
3012 spin_unlock_irqrestore(&zone
->lock
, flags
);
3014 #endif /* CONFIG_PM */
3016 static bool free_unref_page_prepare(struct page
*page
, unsigned long pfn
)
3020 if (!free_pcp_prepare(page
))
3023 migratetype
= get_pfnblock_migratetype(page
, pfn
);
3024 set_pcppage_migratetype(page
, migratetype
);
3028 static void free_unref_page_commit(struct page
*page
, unsigned long pfn
)
3030 struct zone
*zone
= page_zone(page
);
3031 struct per_cpu_pages
*pcp
;
3034 migratetype
= get_pcppage_migratetype(page
);
3035 __count_vm_event(PGFREE
);
3038 * We only track unmovable, reclaimable and movable on pcp lists.
3039 * Free ISOLATE pages back to the allocator because they are being
3040 * offlined but treat HIGHATOMIC as movable pages so we can get those
3041 * areas back if necessary. Otherwise, we may have to free
3042 * excessively into the page allocator
3044 if (migratetype
>= MIGRATE_PCPTYPES
) {
3045 if (unlikely(is_migrate_isolate(migratetype
))) {
3046 free_one_page(zone
, page
, pfn
, 0, migratetype
);
3049 migratetype
= MIGRATE_MOVABLE
;
3052 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
3053 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
3055 if (pcp
->count
>= pcp
->high
) {
3056 unsigned long batch
= READ_ONCE(pcp
->batch
);
3057 free_pcppages_bulk(zone
, batch
, pcp
);
3062 * Free a 0-order page
3064 void free_unref_page(struct page
*page
)
3066 unsigned long flags
;
3067 unsigned long pfn
= page_to_pfn(page
);
3069 if (!free_unref_page_prepare(page
, pfn
))
3072 local_irq_save(flags
);
3073 free_unref_page_commit(page
, pfn
);
3074 local_irq_restore(flags
);
3078 * Free a list of 0-order pages
3080 void free_unref_page_list(struct list_head
*list
)
3082 struct page
*page
, *next
;
3083 unsigned long flags
, pfn
;
3084 int batch_count
= 0;
3086 /* Prepare pages for freeing */
3087 list_for_each_entry_safe(page
, next
, list
, lru
) {
3088 pfn
= page_to_pfn(page
);
3089 if (!free_unref_page_prepare(page
, pfn
))
3090 list_del(&page
->lru
);
3091 set_page_private(page
, pfn
);
3094 local_irq_save(flags
);
3095 list_for_each_entry_safe(page
, next
, list
, lru
) {
3096 unsigned long pfn
= page_private(page
);
3098 set_page_private(page
, 0);
3099 trace_mm_page_free_batched(page
);
3100 free_unref_page_commit(page
, pfn
);
3103 * Guard against excessive IRQ disabled times when we get
3104 * a large list of pages to free.
3106 if (++batch_count
== SWAP_CLUSTER_MAX
) {
3107 local_irq_restore(flags
);
3109 local_irq_save(flags
);
3112 local_irq_restore(flags
);
3116 * split_page takes a non-compound higher-order page, and splits it into
3117 * n (1<<order) sub-pages: page[0..n]
3118 * Each sub-page must be freed individually.
3120 * Note: this is probably too low level an operation for use in drivers.
3121 * Please consult with lkml before using this in your driver.
3123 void split_page(struct page
*page
, unsigned int order
)
3127 VM_BUG_ON_PAGE(PageCompound(page
), page
);
3128 VM_BUG_ON_PAGE(!page_count(page
), page
);
3130 for (i
= 1; i
< (1 << order
); i
++)
3131 set_page_refcounted(page
+ i
);
3132 split_page_owner(page
, order
);
3134 EXPORT_SYMBOL_GPL(split_page
);
3136 int __isolate_free_page(struct page
*page
, unsigned int order
)
3138 struct free_area
*area
= &page_zone(page
)->free_area
[order
];
3139 unsigned long watermark
;
3143 BUG_ON(!PageBuddy(page
));
3145 zone
= page_zone(page
);
3146 mt
= get_pageblock_migratetype(page
);
3148 if (!is_migrate_isolate(mt
)) {
3150 * Obey watermarks as if the page was being allocated. We can
3151 * emulate a high-order watermark check with a raised order-0
3152 * watermark, because we already know our high-order page
3155 watermark
= zone
->_watermark
[WMARK_MIN
] + (1UL << order
);
3156 if (!zone_watermark_ok(zone
, 0, watermark
, 0, ALLOC_CMA
))
3159 __mod_zone_freepage_state(zone
, -(1UL << order
), mt
);
3162 /* Remove page from free list */
3164 del_page_from_free_area(page
, area
);
3167 * Set the pageblock if the isolated page is at least half of a
3170 if (order
>= pageblock_order
- 1) {
3171 struct page
*endpage
= page
+ (1 << order
) - 1;
3172 for (; page
< endpage
; page
+= pageblock_nr_pages
) {
3173 int mt
= get_pageblock_migratetype(page
);
3174 if (!is_migrate_isolate(mt
) && !is_migrate_cma(mt
)
3175 && !is_migrate_highatomic(mt
))
3176 set_pageblock_migratetype(page
,
3182 return 1UL << order
;
3186 * Update NUMA hit/miss statistics
3188 * Must be called with interrupts disabled.
3190 static inline void zone_statistics(struct zone
*preferred_zone
, struct zone
*z
)
3193 enum numa_stat_item local_stat
= NUMA_LOCAL
;
3195 /* skip numa counters update if numa stats is disabled */
3196 if (!static_branch_likely(&vm_numa_stat_key
))
3199 if (zone_to_nid(z
) != numa_node_id())
3200 local_stat
= NUMA_OTHER
;
3202 if (zone_to_nid(z
) == zone_to_nid(preferred_zone
))
3203 __inc_numa_state(z
, NUMA_HIT
);
3205 __inc_numa_state(z
, NUMA_MISS
);
3206 __inc_numa_state(preferred_zone
, NUMA_FOREIGN
);
3208 __inc_numa_state(z
, local_stat
);
3212 /* Remove page from the per-cpu list, caller must protect the list */
3213 static struct page
*__rmqueue_pcplist(struct zone
*zone
, int migratetype
,
3214 unsigned int alloc_flags
,
3215 struct per_cpu_pages
*pcp
,
3216 struct list_head
*list
)
3221 if (list_empty(list
)) {
3222 pcp
->count
+= rmqueue_bulk(zone
, 0,
3224 migratetype
, alloc_flags
);
3225 if (unlikely(list_empty(list
)))
3229 page
= list_first_entry(list
, struct page
, lru
);
3230 list_del(&page
->lru
);
3232 } while (check_new_pcp(page
));
3237 /* Lock and remove page from the per-cpu list */
3238 static struct page
*rmqueue_pcplist(struct zone
*preferred_zone
,
3239 struct zone
*zone
, gfp_t gfp_flags
,
3240 int migratetype
, unsigned int alloc_flags
)
3242 struct per_cpu_pages
*pcp
;
3243 struct list_head
*list
;
3245 unsigned long flags
;
3247 local_irq_save(flags
);
3248 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
3249 list
= &pcp
->lists
[migratetype
];
3250 page
= __rmqueue_pcplist(zone
, migratetype
, alloc_flags
, pcp
, list
);
3252 __count_zid_vm_events(PGALLOC
, page_zonenum(page
), 1);
3253 zone_statistics(preferred_zone
, zone
);
3255 local_irq_restore(flags
);
3260 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3263 struct page
*rmqueue(struct zone
*preferred_zone
,
3264 struct zone
*zone
, unsigned int order
,
3265 gfp_t gfp_flags
, unsigned int alloc_flags
,
3268 unsigned long flags
;
3271 if (likely(order
== 0)) {
3272 page
= rmqueue_pcplist(preferred_zone
, zone
, gfp_flags
,
3273 migratetype
, alloc_flags
);
3278 * We most definitely don't want callers attempting to
3279 * allocate greater than order-1 page units with __GFP_NOFAIL.
3281 WARN_ON_ONCE((gfp_flags
& __GFP_NOFAIL
) && (order
> 1));
3282 spin_lock_irqsave(&zone
->lock
, flags
);
3286 if (alloc_flags
& ALLOC_HARDER
) {
3287 page
= __rmqueue_smallest(zone
, order
, MIGRATE_HIGHATOMIC
);
3289 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
3292 page
= __rmqueue(zone
, order
, migratetype
, alloc_flags
);
3293 } while (page
&& check_new_pages(page
, order
));
3294 spin_unlock(&zone
->lock
);
3297 __mod_zone_freepage_state(zone
, -(1 << order
),
3298 get_pcppage_migratetype(page
));
3300 __count_zid_vm_events(PGALLOC
, page_zonenum(page
), 1 << order
);
3301 zone_statistics(preferred_zone
, zone
);
3302 local_irq_restore(flags
);
3305 /* Separate test+clear to avoid unnecessary atomics */
3306 if (test_bit(ZONE_BOOSTED_WATERMARK
, &zone
->flags
)) {
3307 clear_bit(ZONE_BOOSTED_WATERMARK
, &zone
->flags
);
3308 wakeup_kswapd(zone
, 0, 0, zone_idx(zone
));
3311 VM_BUG_ON_PAGE(page
&& bad_range(zone
, page
), page
);
3315 local_irq_restore(flags
);
3319 #ifdef CONFIG_FAIL_PAGE_ALLOC
3322 struct fault_attr attr
;
3324 bool ignore_gfp_highmem
;
3325 bool ignore_gfp_reclaim
;
3327 } fail_page_alloc
= {
3328 .attr
= FAULT_ATTR_INITIALIZER
,
3329 .ignore_gfp_reclaim
= true,
3330 .ignore_gfp_highmem
= true,
3334 static int __init
setup_fail_page_alloc(char *str
)
3336 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
3338 __setup("fail_page_alloc=", setup_fail_page_alloc
);
3340 static bool __should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
3342 if (order
< fail_page_alloc
.min_order
)
3344 if (gfp_mask
& __GFP_NOFAIL
)
3346 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
3348 if (fail_page_alloc
.ignore_gfp_reclaim
&&
3349 (gfp_mask
& __GFP_DIRECT_RECLAIM
))
3352 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
3355 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3357 static int __init
fail_page_alloc_debugfs(void)
3359 umode_t mode
= S_IFREG
| 0600;
3362 dir
= fault_create_debugfs_attr("fail_page_alloc", NULL
,
3363 &fail_page_alloc
.attr
);
3365 debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
3366 &fail_page_alloc
.ignore_gfp_reclaim
);
3367 debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
3368 &fail_page_alloc
.ignore_gfp_highmem
);
3369 debugfs_create_u32("min-order", mode
, dir
, &fail_page_alloc
.min_order
);
3374 late_initcall(fail_page_alloc_debugfs
);
3376 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3378 #else /* CONFIG_FAIL_PAGE_ALLOC */
3380 static inline bool __should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
3385 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3387 static noinline
bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
3389 return __should_fail_alloc_page(gfp_mask
, order
);
3391 ALLOW_ERROR_INJECTION(should_fail_alloc_page
, TRUE
);
3394 * Return true if free base pages are above 'mark'. For high-order checks it
3395 * will return true of the order-0 watermark is reached and there is at least
3396 * one free page of a suitable size. Checking now avoids taking the zone lock
3397 * to check in the allocation paths if no pages are free.
3399 bool __zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
3400 int classzone_idx
, unsigned int alloc_flags
,
3405 const bool alloc_harder
= (alloc_flags
& (ALLOC_HARDER
|ALLOC_OOM
));
3407 /* free_pages may go negative - that's OK */
3408 free_pages
-= (1 << order
) - 1;
3410 if (alloc_flags
& ALLOC_HIGH
)
3414 * If the caller does not have rights to ALLOC_HARDER then subtract
3415 * the high-atomic reserves. This will over-estimate the size of the
3416 * atomic reserve but it avoids a search.
3418 if (likely(!alloc_harder
)) {
3419 free_pages
-= z
->nr_reserved_highatomic
;
3422 * OOM victims can try even harder than normal ALLOC_HARDER
3423 * users on the grounds that it's definitely going to be in
3424 * the exit path shortly and free memory. Any allocation it
3425 * makes during the free path will be small and short-lived.
3427 if (alloc_flags
& ALLOC_OOM
)
3435 /* If allocation can't use CMA areas don't use free CMA pages */
3436 if (!(alloc_flags
& ALLOC_CMA
))
3437 free_pages
-= zone_page_state(z
, NR_FREE_CMA_PAGES
);
3441 * Check watermarks for an order-0 allocation request. If these
3442 * are not met, then a high-order request also cannot go ahead
3443 * even if a suitable page happened to be free.
3445 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
3448 /* If this is an order-0 request then the watermark is fine */
3452 /* For a high-order request, check at least one suitable page is free */
3453 for (o
= order
; o
< MAX_ORDER
; o
++) {
3454 struct free_area
*area
= &z
->free_area
[o
];
3460 for (mt
= 0; mt
< MIGRATE_PCPTYPES
; mt
++) {
3461 if (!free_area_empty(area
, mt
))
3466 if ((alloc_flags
& ALLOC_CMA
) &&
3467 !free_area_empty(area
, MIGRATE_CMA
)) {
3472 !list_empty(&area
->free_list
[MIGRATE_HIGHATOMIC
]))
3478 bool zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
3479 int classzone_idx
, unsigned int alloc_flags
)
3481 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
3482 zone_page_state(z
, NR_FREE_PAGES
));
3485 static inline bool zone_watermark_fast(struct zone
*z
, unsigned int order
,
3486 unsigned long mark
, int classzone_idx
, unsigned int alloc_flags
)
3488 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
3492 /* If allocation can't use CMA areas don't use free CMA pages */
3493 if (!(alloc_flags
& ALLOC_CMA
))
3494 cma_pages
= zone_page_state(z
, NR_FREE_CMA_PAGES
);
3498 * Fast check for order-0 only. If this fails then the reserves
3499 * need to be calculated. There is a corner case where the check
3500 * passes but only the high-order atomic reserve are free. If
3501 * the caller is !atomic then it'll uselessly search the free
3502 * list. That corner case is then slower but it is harmless.
3504 if (!order
&& (free_pages
- cma_pages
) > mark
+ z
->lowmem_reserve
[classzone_idx
])
3507 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
3511 bool zone_watermark_ok_safe(struct zone
*z
, unsigned int order
,
3512 unsigned long mark
, int classzone_idx
)
3514 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
3516 if (z
->percpu_drift_mark
&& free_pages
< z
->percpu_drift_mark
)
3517 free_pages
= zone_page_state_snapshot(z
, NR_FREE_PAGES
);
3519 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, 0,
3524 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
3526 return node_distance(zone_to_nid(local_zone
), zone_to_nid(zone
)) <=
3527 node_reclaim_distance
;
3529 #else /* CONFIG_NUMA */
3530 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
3534 #endif /* CONFIG_NUMA */
3537 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3538 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3539 * premature use of a lower zone may cause lowmem pressure problems that
3540 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3541 * probably too small. It only makes sense to spread allocations to avoid
3542 * fragmentation between the Normal and DMA32 zones.
3544 static inline unsigned int
3545 alloc_flags_nofragment(struct zone
*zone
, gfp_t gfp_mask
)
3547 unsigned int alloc_flags
= 0;
3549 if (gfp_mask
& __GFP_KSWAPD_RECLAIM
)
3550 alloc_flags
|= ALLOC_KSWAPD
;
3552 #ifdef CONFIG_ZONE_DMA32
3556 if (zone_idx(zone
) != ZONE_NORMAL
)
3560 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3561 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3562 * on UMA that if Normal is populated then so is DMA32.
3564 BUILD_BUG_ON(ZONE_NORMAL
- ZONE_DMA32
!= 1);
3565 if (nr_online_nodes
> 1 && !populated_zone(--zone
))
3568 alloc_flags
|= ALLOC_NOFRAGMENT
;
3569 #endif /* CONFIG_ZONE_DMA32 */
3574 * get_page_from_freelist goes through the zonelist trying to allocate
3577 static struct page
*
3578 get_page_from_freelist(gfp_t gfp_mask
, unsigned int order
, int alloc_flags
,
3579 const struct alloc_context
*ac
)
3583 struct pglist_data
*last_pgdat_dirty_limit
= NULL
;
3588 * Scan zonelist, looking for a zone with enough free.
3589 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3591 no_fallback
= alloc_flags
& ALLOC_NOFRAGMENT
;
3592 z
= ac
->preferred_zoneref
;
3593 for_next_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
3598 if (cpusets_enabled() &&
3599 (alloc_flags
& ALLOC_CPUSET
) &&
3600 !__cpuset_zone_allowed(zone
, gfp_mask
))
3603 * When allocating a page cache page for writing, we
3604 * want to get it from a node that is within its dirty
3605 * limit, such that no single node holds more than its
3606 * proportional share of globally allowed dirty pages.
3607 * The dirty limits take into account the node's
3608 * lowmem reserves and high watermark so that kswapd
3609 * should be able to balance it without having to
3610 * write pages from its LRU list.
3612 * XXX: For now, allow allocations to potentially
3613 * exceed the per-node dirty limit in the slowpath
3614 * (spread_dirty_pages unset) before going into reclaim,
3615 * which is important when on a NUMA setup the allowed
3616 * nodes are together not big enough to reach the
3617 * global limit. The proper fix for these situations
3618 * will require awareness of nodes in the
3619 * dirty-throttling and the flusher threads.
3621 if (ac
->spread_dirty_pages
) {
3622 if (last_pgdat_dirty_limit
== zone
->zone_pgdat
)
3625 if (!node_dirty_ok(zone
->zone_pgdat
)) {
3626 last_pgdat_dirty_limit
= zone
->zone_pgdat
;
3631 if (no_fallback
&& nr_online_nodes
> 1 &&
3632 zone
!= ac
->preferred_zoneref
->zone
) {
3636 * If moving to a remote node, retry but allow
3637 * fragmenting fallbacks. Locality is more important
3638 * than fragmentation avoidance.
3640 local_nid
= zone_to_nid(ac
->preferred_zoneref
->zone
);
3641 if (zone_to_nid(zone
) != local_nid
) {
3642 alloc_flags
&= ~ALLOC_NOFRAGMENT
;
3647 mark
= wmark_pages(zone
, alloc_flags
& ALLOC_WMARK_MASK
);
3648 if (!zone_watermark_fast(zone
, order
, mark
,
3649 ac_classzone_idx(ac
), alloc_flags
)) {
3652 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3654 * Watermark failed for this zone, but see if we can
3655 * grow this zone if it contains deferred pages.
3657 if (static_branch_unlikely(&deferred_pages
)) {
3658 if (_deferred_grow_zone(zone
, order
))
3662 /* Checked here to keep the fast path fast */
3663 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
3664 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
3667 if (node_reclaim_mode
== 0 ||
3668 !zone_allows_reclaim(ac
->preferred_zoneref
->zone
, zone
))
3671 ret
= node_reclaim(zone
->zone_pgdat
, gfp_mask
, order
);
3673 case NODE_RECLAIM_NOSCAN
:
3676 case NODE_RECLAIM_FULL
:
3677 /* scanned but unreclaimable */
3680 /* did we reclaim enough */
3681 if (zone_watermark_ok(zone
, order
, mark
,
3682 ac_classzone_idx(ac
), alloc_flags
))
3690 page
= rmqueue(ac
->preferred_zoneref
->zone
, zone
, order
,
3691 gfp_mask
, alloc_flags
, ac
->migratetype
);
3693 prep_new_page(page
, order
, gfp_mask
, alloc_flags
);
3696 * If this is a high-order atomic allocation then check
3697 * if the pageblock should be reserved for the future
3699 if (unlikely(order
&& (alloc_flags
& ALLOC_HARDER
)))
3700 reserve_highatomic_pageblock(page
, zone
, order
);
3704 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3705 /* Try again if zone has deferred pages */
3706 if (static_branch_unlikely(&deferred_pages
)) {
3707 if (_deferred_grow_zone(zone
, order
))
3715 * It's possible on a UMA machine to get through all zones that are
3716 * fragmented. If avoiding fragmentation, reset and try again.
3719 alloc_flags
&= ~ALLOC_NOFRAGMENT
;
3726 static void warn_alloc_show_mem(gfp_t gfp_mask
, nodemask_t
*nodemask
)
3728 unsigned int filter
= SHOW_MEM_FILTER_NODES
;
3731 * This documents exceptions given to allocations in certain
3732 * contexts that are allowed to allocate outside current's set
3735 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
3736 if (tsk_is_oom_victim(current
) ||
3737 (current
->flags
& (PF_MEMALLOC
| PF_EXITING
)))
3738 filter
&= ~SHOW_MEM_FILTER_NODES
;
3739 if (in_interrupt() || !(gfp_mask
& __GFP_DIRECT_RECLAIM
))
3740 filter
&= ~SHOW_MEM_FILTER_NODES
;
3742 show_mem(filter
, nodemask
);
3745 void warn_alloc(gfp_t gfp_mask
, nodemask_t
*nodemask
, const char *fmt
, ...)
3747 struct va_format vaf
;
3749 static DEFINE_RATELIMIT_STATE(nopage_rs
, 10*HZ
, 1);
3751 if ((gfp_mask
& __GFP_NOWARN
) || !__ratelimit(&nopage_rs
))
3754 va_start(args
, fmt
);
3757 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3758 current
->comm
, &vaf
, gfp_mask
, &gfp_mask
,
3759 nodemask_pr_args(nodemask
));
3762 cpuset_print_current_mems_allowed();
3765 warn_alloc_show_mem(gfp_mask
, nodemask
);
3768 static inline struct page
*
3769 __alloc_pages_cpuset_fallback(gfp_t gfp_mask
, unsigned int order
,
3770 unsigned int alloc_flags
,
3771 const struct alloc_context
*ac
)
3775 page
= get_page_from_freelist(gfp_mask
, order
,
3776 alloc_flags
|ALLOC_CPUSET
, ac
);
3778 * fallback to ignore cpuset restriction if our nodes
3782 page
= get_page_from_freelist(gfp_mask
, order
,
3788 static inline struct page
*
3789 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
3790 const struct alloc_context
*ac
, unsigned long *did_some_progress
)
3792 struct oom_control oc
= {
3793 .zonelist
= ac
->zonelist
,
3794 .nodemask
= ac
->nodemask
,
3796 .gfp_mask
= gfp_mask
,
3801 *did_some_progress
= 0;
3804 * Acquire the oom lock. If that fails, somebody else is
3805 * making progress for us.
3807 if (!mutex_trylock(&oom_lock
)) {
3808 *did_some_progress
= 1;
3809 schedule_timeout_uninterruptible(1);
3814 * Go through the zonelist yet one more time, keep very high watermark
3815 * here, this is only to catch a parallel oom killing, we must fail if
3816 * we're still under heavy pressure. But make sure that this reclaim
3817 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3818 * allocation which will never fail due to oom_lock already held.
3820 page
= get_page_from_freelist((gfp_mask
| __GFP_HARDWALL
) &
3821 ~__GFP_DIRECT_RECLAIM
, order
,
3822 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
, ac
);
3826 /* Coredumps can quickly deplete all memory reserves */
3827 if (current
->flags
& PF_DUMPCORE
)
3829 /* The OOM killer will not help higher order allocs */
3830 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
3833 * We have already exhausted all our reclaim opportunities without any
3834 * success so it is time to admit defeat. We will skip the OOM killer
3835 * because it is very likely that the caller has a more reasonable
3836 * fallback than shooting a random task.
3838 if (gfp_mask
& __GFP_RETRY_MAYFAIL
)
3840 /* The OOM killer does not needlessly kill tasks for lowmem */
3841 if (ac
->high_zoneidx
< ZONE_NORMAL
)
3843 if (pm_suspended_storage())
3846 * XXX: GFP_NOFS allocations should rather fail than rely on
3847 * other request to make a forward progress.
3848 * We are in an unfortunate situation where out_of_memory cannot
3849 * do much for this context but let's try it to at least get
3850 * access to memory reserved if the current task is killed (see
3851 * out_of_memory). Once filesystems are ready to handle allocation
3852 * failures more gracefully we should just bail out here.
3855 /* The OOM killer may not free memory on a specific node */
3856 if (gfp_mask
& __GFP_THISNODE
)
3859 /* Exhausted what can be done so it's blame time */
3860 if (out_of_memory(&oc
) || WARN_ON_ONCE(gfp_mask
& __GFP_NOFAIL
)) {
3861 *did_some_progress
= 1;
3864 * Help non-failing allocations by giving them access to memory
3867 if (gfp_mask
& __GFP_NOFAIL
)
3868 page
= __alloc_pages_cpuset_fallback(gfp_mask
, order
,
3869 ALLOC_NO_WATERMARKS
, ac
);
3872 mutex_unlock(&oom_lock
);
3877 * Maximum number of compaction retries wit a progress before OOM
3878 * killer is consider as the only way to move forward.
3880 #define MAX_COMPACT_RETRIES 16
3882 #ifdef CONFIG_COMPACTION
3883 /* Try memory compaction for high-order allocations before reclaim */
3884 static struct page
*
3885 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
3886 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3887 enum compact_priority prio
, enum compact_result
*compact_result
)
3889 struct page
*page
= NULL
;
3890 unsigned long pflags
;
3891 unsigned int noreclaim_flag
;
3896 psi_memstall_enter(&pflags
);
3897 noreclaim_flag
= memalloc_noreclaim_save();
3899 *compact_result
= try_to_compact_pages(gfp_mask
, order
, alloc_flags
, ac
,
3902 memalloc_noreclaim_restore(noreclaim_flag
);
3903 psi_memstall_leave(&pflags
);
3906 * At least in one zone compaction wasn't deferred or skipped, so let's
3907 * count a compaction stall
3909 count_vm_event(COMPACTSTALL
);
3911 /* Prep a captured page if available */
3913 prep_new_page(page
, order
, gfp_mask
, alloc_flags
);
3915 /* Try get a page from the freelist if available */
3917 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
3920 struct zone
*zone
= page_zone(page
);
3922 zone
->compact_blockskip_flush
= false;
3923 compaction_defer_reset(zone
, order
, true);
3924 count_vm_event(COMPACTSUCCESS
);
3929 * It's bad if compaction run occurs and fails. The most likely reason
3930 * is that pages exist, but not enough to satisfy watermarks.
3932 count_vm_event(COMPACTFAIL
);
3940 should_compact_retry(struct alloc_context
*ac
, int order
, int alloc_flags
,
3941 enum compact_result compact_result
,
3942 enum compact_priority
*compact_priority
,
3943 int *compaction_retries
)
3945 int max_retries
= MAX_COMPACT_RETRIES
;
3948 int retries
= *compaction_retries
;
3949 enum compact_priority priority
= *compact_priority
;
3954 if (compaction_made_progress(compact_result
))
3955 (*compaction_retries
)++;
3958 * compaction considers all the zone as desperately out of memory
3959 * so it doesn't really make much sense to retry except when the
3960 * failure could be caused by insufficient priority
3962 if (compaction_failed(compact_result
))
3963 goto check_priority
;
3966 * compaction was skipped because there are not enough order-0 pages
3967 * to work with, so we retry only if it looks like reclaim can help.
3969 if (compaction_needs_reclaim(compact_result
)) {
3970 ret
= compaction_zonelist_suitable(ac
, order
, alloc_flags
);
3975 * make sure the compaction wasn't deferred or didn't bail out early
3976 * due to locks contention before we declare that we should give up.
3977 * But the next retry should use a higher priority if allowed, so
3978 * we don't just keep bailing out endlessly.
3980 if (compaction_withdrawn(compact_result
)) {
3981 goto check_priority
;
3985 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3986 * costly ones because they are de facto nofail and invoke OOM
3987 * killer to move on while costly can fail and users are ready
3988 * to cope with that. 1/4 retries is rather arbitrary but we
3989 * would need much more detailed feedback from compaction to
3990 * make a better decision.
3992 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
3994 if (*compaction_retries
<= max_retries
) {
4000 * Make sure there are attempts at the highest priority if we exhausted
4001 * all retries or failed at the lower priorities.
4004 min_priority
= (order
> PAGE_ALLOC_COSTLY_ORDER
) ?
4005 MIN_COMPACT_COSTLY_PRIORITY
: MIN_COMPACT_PRIORITY
;
4007 if (*compact_priority
> min_priority
) {
4008 (*compact_priority
)--;
4009 *compaction_retries
= 0;
4013 trace_compact_retry(order
, priority
, compact_result
, retries
, max_retries
, ret
);
4017 static inline struct page
*
4018 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
4019 unsigned int alloc_flags
, const struct alloc_context
*ac
,
4020 enum compact_priority prio
, enum compact_result
*compact_result
)
4022 *compact_result
= COMPACT_SKIPPED
;
4027 should_compact_retry(struct alloc_context
*ac
, unsigned int order
, int alloc_flags
,
4028 enum compact_result compact_result
,
4029 enum compact_priority
*compact_priority
,
4030 int *compaction_retries
)
4035 if (!order
|| order
> PAGE_ALLOC_COSTLY_ORDER
)
4039 * There are setups with compaction disabled which would prefer to loop
4040 * inside the allocator rather than hit the oom killer prematurely.
4041 * Let's give them a good hope and keep retrying while the order-0
4042 * watermarks are OK.
4044 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
4046 if (zone_watermark_ok(zone
, 0, min_wmark_pages(zone
),
4047 ac_classzone_idx(ac
), alloc_flags
))
4052 #endif /* CONFIG_COMPACTION */
4054 #ifdef CONFIG_LOCKDEP
4055 static struct lockdep_map __fs_reclaim_map
=
4056 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map
);
4058 static bool __need_fs_reclaim(gfp_t gfp_mask
)
4060 gfp_mask
= current_gfp_context(gfp_mask
);
4062 /* no reclaim without waiting on it */
4063 if (!(gfp_mask
& __GFP_DIRECT_RECLAIM
))
4066 /* this guy won't enter reclaim */
4067 if (current
->flags
& PF_MEMALLOC
)
4070 /* We're only interested __GFP_FS allocations for now */
4071 if (!(gfp_mask
& __GFP_FS
))
4074 if (gfp_mask
& __GFP_NOLOCKDEP
)
4080 void __fs_reclaim_acquire(void)
4082 lock_map_acquire(&__fs_reclaim_map
);
4085 void __fs_reclaim_release(void)
4087 lock_map_release(&__fs_reclaim_map
);
4090 void fs_reclaim_acquire(gfp_t gfp_mask
)
4092 if (__need_fs_reclaim(gfp_mask
))
4093 __fs_reclaim_acquire();
4095 EXPORT_SYMBOL_GPL(fs_reclaim_acquire
);
4097 void fs_reclaim_release(gfp_t gfp_mask
)
4099 if (__need_fs_reclaim(gfp_mask
))
4100 __fs_reclaim_release();
4102 EXPORT_SYMBOL_GPL(fs_reclaim_release
);
4105 /* Perform direct synchronous page reclaim */
4107 __perform_reclaim(gfp_t gfp_mask
, unsigned int order
,
4108 const struct alloc_context
*ac
)
4111 unsigned int noreclaim_flag
;
4112 unsigned long pflags
;
4116 /* We now go into synchronous reclaim */
4117 cpuset_memory_pressure_bump();
4118 psi_memstall_enter(&pflags
);
4119 fs_reclaim_acquire(gfp_mask
);
4120 noreclaim_flag
= memalloc_noreclaim_save();
4122 progress
= try_to_free_pages(ac
->zonelist
, order
, gfp_mask
,
4125 memalloc_noreclaim_restore(noreclaim_flag
);
4126 fs_reclaim_release(gfp_mask
);
4127 psi_memstall_leave(&pflags
);
4134 /* The really slow allocator path where we enter direct reclaim */
4135 static inline struct page
*
4136 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
4137 unsigned int alloc_flags
, const struct alloc_context
*ac
,
4138 unsigned long *did_some_progress
)
4140 struct page
*page
= NULL
;
4141 bool drained
= false;
4143 *did_some_progress
= __perform_reclaim(gfp_mask
, order
, ac
);
4144 if (unlikely(!(*did_some_progress
)))
4148 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
4151 * If an allocation failed after direct reclaim, it could be because
4152 * pages are pinned on the per-cpu lists or in high alloc reserves.
4153 * Shrink them them and try again
4155 if (!page
&& !drained
) {
4156 unreserve_highatomic_pageblock(ac
, false);
4157 drain_all_pages(NULL
);
4165 static void wake_all_kswapds(unsigned int order
, gfp_t gfp_mask
,
4166 const struct alloc_context
*ac
)
4170 pg_data_t
*last_pgdat
= NULL
;
4171 enum zone_type high_zoneidx
= ac
->high_zoneidx
;
4173 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, high_zoneidx
,
4175 if (last_pgdat
!= zone
->zone_pgdat
)
4176 wakeup_kswapd(zone
, gfp_mask
, order
, high_zoneidx
);
4177 last_pgdat
= zone
->zone_pgdat
;
4181 static inline unsigned int
4182 gfp_to_alloc_flags(gfp_t gfp_mask
)
4184 unsigned int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
4186 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
4187 BUILD_BUG_ON(__GFP_HIGH
!= (__force gfp_t
) ALLOC_HIGH
);
4190 * The caller may dip into page reserves a bit more if the caller
4191 * cannot run direct reclaim, or if the caller has realtime scheduling
4192 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4193 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4195 alloc_flags
|= (__force
int) (gfp_mask
& __GFP_HIGH
);
4197 if (gfp_mask
& __GFP_ATOMIC
) {
4199 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4200 * if it can't schedule.
4202 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
4203 alloc_flags
|= ALLOC_HARDER
;
4205 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4206 * comment for __cpuset_node_allowed().
4208 alloc_flags
&= ~ALLOC_CPUSET
;
4209 } else if (unlikely(rt_task(current
)) && !in_interrupt())
4210 alloc_flags
|= ALLOC_HARDER
;
4212 if (gfp_mask
& __GFP_KSWAPD_RECLAIM
)
4213 alloc_flags
|= ALLOC_KSWAPD
;
4216 if (gfpflags_to_migratetype(gfp_mask
) == MIGRATE_MOVABLE
)
4217 alloc_flags
|= ALLOC_CMA
;
4222 static bool oom_reserves_allowed(struct task_struct
*tsk
)
4224 if (!tsk_is_oom_victim(tsk
))
4228 * !MMU doesn't have oom reaper so give access to memory reserves
4229 * only to the thread with TIF_MEMDIE set
4231 if (!IS_ENABLED(CONFIG_MMU
) && !test_thread_flag(TIF_MEMDIE
))
4238 * Distinguish requests which really need access to full memory
4239 * reserves from oom victims which can live with a portion of it
4241 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask
)
4243 if (unlikely(gfp_mask
& __GFP_NOMEMALLOC
))
4245 if (gfp_mask
& __GFP_MEMALLOC
)
4246 return ALLOC_NO_WATERMARKS
;
4247 if (in_serving_softirq() && (current
->flags
& PF_MEMALLOC
))
4248 return ALLOC_NO_WATERMARKS
;
4249 if (!in_interrupt()) {
4250 if (current
->flags
& PF_MEMALLOC
)
4251 return ALLOC_NO_WATERMARKS
;
4252 else if (oom_reserves_allowed(current
))
4259 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask
)
4261 return !!__gfp_pfmemalloc_flags(gfp_mask
);
4265 * Checks whether it makes sense to retry the reclaim to make a forward progress
4266 * for the given allocation request.
4268 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4269 * without success, or when we couldn't even meet the watermark if we
4270 * reclaimed all remaining pages on the LRU lists.
4272 * Returns true if a retry is viable or false to enter the oom path.
4275 should_reclaim_retry(gfp_t gfp_mask
, unsigned order
,
4276 struct alloc_context
*ac
, int alloc_flags
,
4277 bool did_some_progress
, int *no_progress_loops
)
4284 * Costly allocations might have made a progress but this doesn't mean
4285 * their order will become available due to high fragmentation so
4286 * always increment the no progress counter for them
4288 if (did_some_progress
&& order
<= PAGE_ALLOC_COSTLY_ORDER
)
4289 *no_progress_loops
= 0;
4291 (*no_progress_loops
)++;
4294 * Make sure we converge to OOM if we cannot make any progress
4295 * several times in the row.
4297 if (*no_progress_loops
> MAX_RECLAIM_RETRIES
) {
4298 /* Before OOM, exhaust highatomic_reserve */
4299 return unreserve_highatomic_pageblock(ac
, true);
4303 * Keep reclaiming pages while there is a chance this will lead
4304 * somewhere. If none of the target zones can satisfy our allocation
4305 * request even if all reclaimable pages are considered then we are
4306 * screwed and have to go OOM.
4308 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
4310 unsigned long available
;
4311 unsigned long reclaimable
;
4312 unsigned long min_wmark
= min_wmark_pages(zone
);
4315 available
= reclaimable
= zone_reclaimable_pages(zone
);
4316 available
+= zone_page_state_snapshot(zone
, NR_FREE_PAGES
);
4319 * Would the allocation succeed if we reclaimed all
4320 * reclaimable pages?
4322 wmark
= __zone_watermark_ok(zone
, order
, min_wmark
,
4323 ac_classzone_idx(ac
), alloc_flags
, available
);
4324 trace_reclaim_retry_zone(z
, order
, reclaimable
,
4325 available
, min_wmark
, *no_progress_loops
, wmark
);
4328 * If we didn't make any progress and have a lot of
4329 * dirty + writeback pages then we should wait for
4330 * an IO to complete to slow down the reclaim and
4331 * prevent from pre mature OOM
4333 if (!did_some_progress
) {
4334 unsigned long write_pending
;
4336 write_pending
= zone_page_state_snapshot(zone
,
4337 NR_ZONE_WRITE_PENDING
);
4339 if (2 * write_pending
> reclaimable
) {
4340 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
4352 * Memory allocation/reclaim might be called from a WQ context and the
4353 * current implementation of the WQ concurrency control doesn't
4354 * recognize that a particular WQ is congested if the worker thread is
4355 * looping without ever sleeping. Therefore we have to do a short sleep
4356 * here rather than calling cond_resched().
4358 if (current
->flags
& PF_WQ_WORKER
)
4359 schedule_timeout_uninterruptible(1);
4366 check_retry_cpuset(int cpuset_mems_cookie
, struct alloc_context
*ac
)
4369 * It's possible that cpuset's mems_allowed and the nodemask from
4370 * mempolicy don't intersect. This should be normally dealt with by
4371 * policy_nodemask(), but it's possible to race with cpuset update in
4372 * such a way the check therein was true, and then it became false
4373 * before we got our cpuset_mems_cookie here.
4374 * This assumes that for all allocations, ac->nodemask can come only
4375 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4376 * when it does not intersect with the cpuset restrictions) or the
4377 * caller can deal with a violated nodemask.
4379 if (cpusets_enabled() && ac
->nodemask
&&
4380 !cpuset_nodemask_valid_mems_allowed(ac
->nodemask
)) {
4381 ac
->nodemask
= NULL
;
4386 * When updating a task's mems_allowed or mempolicy nodemask, it is
4387 * possible to race with parallel threads in such a way that our
4388 * allocation can fail while the mask is being updated. If we are about
4389 * to fail, check if the cpuset changed during allocation and if so,
4392 if (read_mems_allowed_retry(cpuset_mems_cookie
))
4398 static inline struct page
*
4399 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
4400 struct alloc_context
*ac
)
4402 bool can_direct_reclaim
= gfp_mask
& __GFP_DIRECT_RECLAIM
;
4403 const bool costly_order
= order
> PAGE_ALLOC_COSTLY_ORDER
;
4404 struct page
*page
= NULL
;
4405 unsigned int alloc_flags
;
4406 unsigned long did_some_progress
;
4407 enum compact_priority compact_priority
;
4408 enum compact_result compact_result
;
4409 int compaction_retries
;
4410 int no_progress_loops
;
4411 unsigned int cpuset_mems_cookie
;
4415 * We also sanity check to catch abuse of atomic reserves being used by
4416 * callers that are not in atomic context.
4418 if (WARN_ON_ONCE((gfp_mask
& (__GFP_ATOMIC
|__GFP_DIRECT_RECLAIM
)) ==
4419 (__GFP_ATOMIC
|__GFP_DIRECT_RECLAIM
)))
4420 gfp_mask
&= ~__GFP_ATOMIC
;
4423 compaction_retries
= 0;
4424 no_progress_loops
= 0;
4425 compact_priority
= DEF_COMPACT_PRIORITY
;
4426 cpuset_mems_cookie
= read_mems_allowed_begin();
4429 * The fast path uses conservative alloc_flags to succeed only until
4430 * kswapd needs to be woken up, and to avoid the cost of setting up
4431 * alloc_flags precisely. So we do that now.
4433 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
4436 * We need to recalculate the starting point for the zonelist iterator
4437 * because we might have used different nodemask in the fast path, or
4438 * there was a cpuset modification and we are retrying - otherwise we
4439 * could end up iterating over non-eligible zones endlessly.
4441 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
4442 ac
->high_zoneidx
, ac
->nodemask
);
4443 if (!ac
->preferred_zoneref
->zone
)
4446 if (alloc_flags
& ALLOC_KSWAPD
)
4447 wake_all_kswapds(order
, gfp_mask
, ac
);
4450 * The adjusted alloc_flags might result in immediate success, so try
4453 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
4458 * For costly allocations, try direct compaction first, as it's likely
4459 * that we have enough base pages and don't need to reclaim. For non-
4460 * movable high-order allocations, do that as well, as compaction will
4461 * try prevent permanent fragmentation by migrating from blocks of the
4463 * Don't try this for allocations that are allowed to ignore
4464 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4466 if (can_direct_reclaim
&&
4468 (order
> 0 && ac
->migratetype
!= MIGRATE_MOVABLE
))
4469 && !gfp_pfmemalloc_allowed(gfp_mask
)) {
4470 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
4472 INIT_COMPACT_PRIORITY
,
4477 if (order
>= pageblock_order
&& (gfp_mask
& __GFP_IO
) &&
4478 !(gfp_mask
& __GFP_RETRY_MAYFAIL
)) {
4480 * If allocating entire pageblock(s) and compaction
4481 * failed because all zones are below low watermarks
4482 * or is prohibited because it recently failed at this
4483 * order, fail immediately unless the allocator has
4484 * requested compaction and reclaim retry.
4487 * - potentially very expensive because zones are far
4488 * below their low watermarks or this is part of very
4489 * bursty high order allocations,
4490 * - not guaranteed to help because isolate_freepages()
4491 * may not iterate over freed pages as part of its
4493 * - unlikely to make entire pageblocks free on its
4496 if (compact_result
== COMPACT_SKIPPED
||
4497 compact_result
== COMPACT_DEFERRED
)
4502 * Checks for costly allocations with __GFP_NORETRY, which
4503 * includes THP page fault allocations
4505 if (costly_order
&& (gfp_mask
& __GFP_NORETRY
)) {
4507 * If compaction is deferred for high-order allocations,
4508 * it is because sync compaction recently failed. If
4509 * this is the case and the caller requested a THP
4510 * allocation, we do not want to heavily disrupt the
4511 * system, so we fail the allocation instead of entering
4514 if (compact_result
== COMPACT_DEFERRED
)
4518 * Looks like reclaim/compaction is worth trying, but
4519 * sync compaction could be very expensive, so keep
4520 * using async compaction.
4522 compact_priority
= INIT_COMPACT_PRIORITY
;
4527 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4528 if (alloc_flags
& ALLOC_KSWAPD
)
4529 wake_all_kswapds(order
, gfp_mask
, ac
);
4531 reserve_flags
= __gfp_pfmemalloc_flags(gfp_mask
);
4533 alloc_flags
= reserve_flags
;
4536 * Reset the nodemask and zonelist iterators if memory policies can be
4537 * ignored. These allocations are high priority and system rather than
4540 if (!(alloc_flags
& ALLOC_CPUSET
) || reserve_flags
) {
4541 ac
->nodemask
= NULL
;
4542 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
4543 ac
->high_zoneidx
, ac
->nodemask
);
4546 /* Attempt with potentially adjusted zonelist and alloc_flags */
4547 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
4551 /* Caller is not willing to reclaim, we can't balance anything */
4552 if (!can_direct_reclaim
)
4555 /* Avoid recursion of direct reclaim */
4556 if (current
->flags
& PF_MEMALLOC
)
4559 /* Try direct reclaim and then allocating */
4560 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
, alloc_flags
, ac
,
4561 &did_some_progress
);
4565 /* Try direct compaction and then allocating */
4566 page
= __alloc_pages_direct_compact(gfp_mask
, order
, alloc_flags
, ac
,
4567 compact_priority
, &compact_result
);
4571 /* Do not loop if specifically requested */
4572 if (gfp_mask
& __GFP_NORETRY
)
4576 * Do not retry costly high order allocations unless they are
4577 * __GFP_RETRY_MAYFAIL
4579 if (costly_order
&& !(gfp_mask
& __GFP_RETRY_MAYFAIL
))
4582 if (should_reclaim_retry(gfp_mask
, order
, ac
, alloc_flags
,
4583 did_some_progress
> 0, &no_progress_loops
))
4587 * It doesn't make any sense to retry for the compaction if the order-0
4588 * reclaim is not able to make any progress because the current
4589 * implementation of the compaction depends on the sufficient amount
4590 * of free memory (see __compaction_suitable)
4592 if (did_some_progress
> 0 &&
4593 should_compact_retry(ac
, order
, alloc_flags
,
4594 compact_result
, &compact_priority
,
4595 &compaction_retries
))
4599 /* Deal with possible cpuset update races before we start OOM killing */
4600 if (check_retry_cpuset(cpuset_mems_cookie
, ac
))
4603 /* Reclaim has failed us, start killing things */
4604 page
= __alloc_pages_may_oom(gfp_mask
, order
, ac
, &did_some_progress
);
4608 /* Avoid allocations with no watermarks from looping endlessly */
4609 if (tsk_is_oom_victim(current
) &&
4610 (alloc_flags
== ALLOC_OOM
||
4611 (gfp_mask
& __GFP_NOMEMALLOC
)))
4614 /* Retry as long as the OOM killer is making progress */
4615 if (did_some_progress
) {
4616 no_progress_loops
= 0;
4621 /* Deal with possible cpuset update races before we fail */
4622 if (check_retry_cpuset(cpuset_mems_cookie
, ac
))
4626 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4629 if (gfp_mask
& __GFP_NOFAIL
) {
4631 * All existing users of the __GFP_NOFAIL are blockable, so warn
4632 * of any new users that actually require GFP_NOWAIT
4634 if (WARN_ON_ONCE(!can_direct_reclaim
))
4638 * PF_MEMALLOC request from this context is rather bizarre
4639 * because we cannot reclaim anything and only can loop waiting
4640 * for somebody to do a work for us
4642 WARN_ON_ONCE(current
->flags
& PF_MEMALLOC
);
4645 * non failing costly orders are a hard requirement which we
4646 * are not prepared for much so let's warn about these users
4647 * so that we can identify them and convert them to something
4650 WARN_ON_ONCE(order
> PAGE_ALLOC_COSTLY_ORDER
);
4653 * Help non-failing allocations by giving them access to memory
4654 * reserves but do not use ALLOC_NO_WATERMARKS because this
4655 * could deplete whole memory reserves which would just make
4656 * the situation worse
4658 page
= __alloc_pages_cpuset_fallback(gfp_mask
, order
, ALLOC_HARDER
, ac
);
4666 warn_alloc(gfp_mask
, ac
->nodemask
,
4667 "page allocation failure: order:%u", order
);
4672 static inline bool prepare_alloc_pages(gfp_t gfp_mask
, unsigned int order
,
4673 int preferred_nid
, nodemask_t
*nodemask
,
4674 struct alloc_context
*ac
, gfp_t
*alloc_mask
,
4675 unsigned int *alloc_flags
)
4677 ac
->high_zoneidx
= gfp_zone(gfp_mask
);
4678 ac
->zonelist
= node_zonelist(preferred_nid
, gfp_mask
);
4679 ac
->nodemask
= nodemask
;
4680 ac
->migratetype
= gfpflags_to_migratetype(gfp_mask
);
4682 if (cpusets_enabled()) {
4683 *alloc_mask
|= __GFP_HARDWALL
;
4685 ac
->nodemask
= &cpuset_current_mems_allowed
;
4687 *alloc_flags
|= ALLOC_CPUSET
;
4690 fs_reclaim_acquire(gfp_mask
);
4691 fs_reclaim_release(gfp_mask
);
4693 might_sleep_if(gfp_mask
& __GFP_DIRECT_RECLAIM
);
4695 if (should_fail_alloc_page(gfp_mask
, order
))
4698 if (IS_ENABLED(CONFIG_CMA
) && ac
->migratetype
== MIGRATE_MOVABLE
)
4699 *alloc_flags
|= ALLOC_CMA
;
4704 /* Determine whether to spread dirty pages and what the first usable zone */
4705 static inline void finalise_ac(gfp_t gfp_mask
, struct alloc_context
*ac
)
4707 /* Dirty zone balancing only done in the fast path */
4708 ac
->spread_dirty_pages
= (gfp_mask
& __GFP_WRITE
);
4711 * The preferred zone is used for statistics but crucially it is
4712 * also used as the starting point for the zonelist iterator. It
4713 * may get reset for allocations that ignore memory policies.
4715 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
4716 ac
->high_zoneidx
, ac
->nodemask
);
4720 * This is the 'heart' of the zoned buddy allocator.
4723 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
, int preferred_nid
,
4724 nodemask_t
*nodemask
)
4727 unsigned int alloc_flags
= ALLOC_WMARK_LOW
;
4728 gfp_t alloc_mask
; /* The gfp_t that was actually used for allocation */
4729 struct alloc_context ac
= { };
4732 * There are several places where we assume that the order value is sane
4733 * so bail out early if the request is out of bound.
4735 if (unlikely(order
>= MAX_ORDER
)) {
4736 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
4740 gfp_mask
&= gfp_allowed_mask
;
4741 alloc_mask
= gfp_mask
;
4742 if (!prepare_alloc_pages(gfp_mask
, order
, preferred_nid
, nodemask
, &ac
, &alloc_mask
, &alloc_flags
))
4745 finalise_ac(gfp_mask
, &ac
);
4748 * Forbid the first pass from falling back to types that fragment
4749 * memory until all local zones are considered.
4751 alloc_flags
|= alloc_flags_nofragment(ac
.preferred_zoneref
->zone
, gfp_mask
);
4753 /* First allocation attempt */
4754 page
= get_page_from_freelist(alloc_mask
, order
, alloc_flags
, &ac
);
4759 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4760 * resp. GFP_NOIO which has to be inherited for all allocation requests
4761 * from a particular context which has been marked by
4762 * memalloc_no{fs,io}_{save,restore}.
4764 alloc_mask
= current_gfp_context(gfp_mask
);
4765 ac
.spread_dirty_pages
= false;
4768 * Restore the original nodemask if it was potentially replaced with
4769 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4771 if (unlikely(ac
.nodemask
!= nodemask
))
4772 ac
.nodemask
= nodemask
;
4774 page
= __alloc_pages_slowpath(alloc_mask
, order
, &ac
);
4777 if (memcg_kmem_enabled() && (gfp_mask
& __GFP_ACCOUNT
) && page
&&
4778 unlikely(__memcg_kmem_charge(page
, gfp_mask
, order
) != 0)) {
4779 __free_pages(page
, order
);
4783 trace_mm_page_alloc(page
, order
, alloc_mask
, ac
.migratetype
);
4787 EXPORT_SYMBOL(__alloc_pages_nodemask
);
4790 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4791 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4792 * you need to access high mem.
4794 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
4798 page
= alloc_pages(gfp_mask
& ~__GFP_HIGHMEM
, order
);
4801 return (unsigned long) page_address(page
);
4803 EXPORT_SYMBOL(__get_free_pages
);
4805 unsigned long get_zeroed_page(gfp_t gfp_mask
)
4807 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
4809 EXPORT_SYMBOL(get_zeroed_page
);
4811 static inline void free_the_page(struct page
*page
, unsigned int order
)
4813 if (order
== 0) /* Via pcp? */
4814 free_unref_page(page
);
4816 __free_pages_ok(page
, order
);
4819 void __free_pages(struct page
*page
, unsigned int order
)
4821 if (put_page_testzero(page
))
4822 free_the_page(page
, order
);
4824 EXPORT_SYMBOL(__free_pages
);
4826 void free_pages(unsigned long addr
, unsigned int order
)
4829 VM_BUG_ON(!virt_addr_valid((void *)addr
));
4830 __free_pages(virt_to_page((void *)addr
), order
);
4834 EXPORT_SYMBOL(free_pages
);
4838 * An arbitrary-length arbitrary-offset area of memory which resides
4839 * within a 0 or higher order page. Multiple fragments within that page
4840 * are individually refcounted, in the page's reference counter.
4842 * The page_frag functions below provide a simple allocation framework for
4843 * page fragments. This is used by the network stack and network device
4844 * drivers to provide a backing region of memory for use as either an
4845 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4847 static struct page
*__page_frag_cache_refill(struct page_frag_cache
*nc
,
4850 struct page
*page
= NULL
;
4851 gfp_t gfp
= gfp_mask
;
4853 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4854 gfp_mask
|= __GFP_COMP
| __GFP_NOWARN
| __GFP_NORETRY
|
4856 page
= alloc_pages_node(NUMA_NO_NODE
, gfp_mask
,
4857 PAGE_FRAG_CACHE_MAX_ORDER
);
4858 nc
->size
= page
? PAGE_FRAG_CACHE_MAX_SIZE
: PAGE_SIZE
;
4860 if (unlikely(!page
))
4861 page
= alloc_pages_node(NUMA_NO_NODE
, gfp
, 0);
4863 nc
->va
= page
? page_address(page
) : NULL
;
4868 void __page_frag_cache_drain(struct page
*page
, unsigned int count
)
4870 VM_BUG_ON_PAGE(page_ref_count(page
) == 0, page
);
4872 if (page_ref_sub_and_test(page
, count
))
4873 free_the_page(page
, compound_order(page
));
4875 EXPORT_SYMBOL(__page_frag_cache_drain
);
4877 void *page_frag_alloc(struct page_frag_cache
*nc
,
4878 unsigned int fragsz
, gfp_t gfp_mask
)
4880 unsigned int size
= PAGE_SIZE
;
4884 if (unlikely(!nc
->va
)) {
4886 page
= __page_frag_cache_refill(nc
, gfp_mask
);
4890 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4891 /* if size can vary use size else just use PAGE_SIZE */
4894 /* Even if we own the page, we do not use atomic_set().
4895 * This would break get_page_unless_zero() users.
4897 page_ref_add(page
, PAGE_FRAG_CACHE_MAX_SIZE
);
4899 /* reset page count bias and offset to start of new frag */
4900 nc
->pfmemalloc
= page_is_pfmemalloc(page
);
4901 nc
->pagecnt_bias
= PAGE_FRAG_CACHE_MAX_SIZE
+ 1;
4905 offset
= nc
->offset
- fragsz
;
4906 if (unlikely(offset
< 0)) {
4907 page
= virt_to_page(nc
->va
);
4909 if (!page_ref_sub_and_test(page
, nc
->pagecnt_bias
))
4912 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4913 /* if size can vary use size else just use PAGE_SIZE */
4916 /* OK, page count is 0, we can safely set it */
4917 set_page_count(page
, PAGE_FRAG_CACHE_MAX_SIZE
+ 1);
4919 /* reset page count bias and offset to start of new frag */
4920 nc
->pagecnt_bias
= PAGE_FRAG_CACHE_MAX_SIZE
+ 1;
4921 offset
= size
- fragsz
;
4925 nc
->offset
= offset
;
4927 return nc
->va
+ offset
;
4929 EXPORT_SYMBOL(page_frag_alloc
);
4932 * Frees a page fragment allocated out of either a compound or order 0 page.
4934 void page_frag_free(void *addr
)
4936 struct page
*page
= virt_to_head_page(addr
);
4938 if (unlikely(put_page_testzero(page
)))
4939 free_the_page(page
, compound_order(page
));
4941 EXPORT_SYMBOL(page_frag_free
);
4943 static void *make_alloc_exact(unsigned long addr
, unsigned int order
,
4947 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
4948 unsigned long used
= addr
+ PAGE_ALIGN(size
);
4950 split_page(virt_to_page((void *)addr
), order
);
4951 while (used
< alloc_end
) {
4956 return (void *)addr
;
4960 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4961 * @size: the number of bytes to allocate
4962 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4964 * This function is similar to alloc_pages(), except that it allocates the
4965 * minimum number of pages to satisfy the request. alloc_pages() can only
4966 * allocate memory in power-of-two pages.
4968 * This function is also limited by MAX_ORDER.
4970 * Memory allocated by this function must be released by free_pages_exact().
4972 * Return: pointer to the allocated area or %NULL in case of error.
4974 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
4976 unsigned int order
= get_order(size
);
4979 if (WARN_ON_ONCE(gfp_mask
& __GFP_COMP
))
4980 gfp_mask
&= ~__GFP_COMP
;
4982 addr
= __get_free_pages(gfp_mask
, order
);
4983 return make_alloc_exact(addr
, order
, size
);
4985 EXPORT_SYMBOL(alloc_pages_exact
);
4988 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4990 * @nid: the preferred node ID where memory should be allocated
4991 * @size: the number of bytes to allocate
4992 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4994 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4997 * Return: pointer to the allocated area or %NULL in case of error.
4999 void * __meminit
alloc_pages_exact_nid(int nid
, size_t size
, gfp_t gfp_mask
)
5001 unsigned int order
= get_order(size
);
5004 if (WARN_ON_ONCE(gfp_mask
& __GFP_COMP
))
5005 gfp_mask
&= ~__GFP_COMP
;
5007 p
= alloc_pages_node(nid
, gfp_mask
, order
);
5010 return make_alloc_exact((unsigned long)page_address(p
), order
, size
);
5014 * free_pages_exact - release memory allocated via alloc_pages_exact()
5015 * @virt: the value returned by alloc_pages_exact.
5016 * @size: size of allocation, same value as passed to alloc_pages_exact().
5018 * Release the memory allocated by a previous call to alloc_pages_exact.
5020 void free_pages_exact(void *virt
, size_t size
)
5022 unsigned long addr
= (unsigned long)virt
;
5023 unsigned long end
= addr
+ PAGE_ALIGN(size
);
5025 while (addr
< end
) {
5030 EXPORT_SYMBOL(free_pages_exact
);
5033 * nr_free_zone_pages - count number of pages beyond high watermark
5034 * @offset: The zone index of the highest zone
5036 * nr_free_zone_pages() counts the number of pages which are beyond the
5037 * high watermark within all zones at or below a given zone index. For each
5038 * zone, the number of pages is calculated as:
5040 * nr_free_zone_pages = managed_pages - high_pages
5042 * Return: number of pages beyond high watermark.
5044 static unsigned long nr_free_zone_pages(int offset
)
5049 /* Just pick one node, since fallback list is circular */
5050 unsigned long sum
= 0;
5052 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
5054 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
5055 unsigned long size
= zone_managed_pages(zone
);
5056 unsigned long high
= high_wmark_pages(zone
);
5065 * nr_free_buffer_pages - count number of pages beyond high watermark
5067 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5068 * watermark within ZONE_DMA and ZONE_NORMAL.
5070 * Return: number of pages beyond high watermark within ZONE_DMA and
5073 unsigned long nr_free_buffer_pages(void)
5075 return nr_free_zone_pages(gfp_zone(GFP_USER
));
5077 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
5080 * nr_free_pagecache_pages - count number of pages beyond high watermark
5082 * nr_free_pagecache_pages() counts the number of pages which are beyond the
5083 * high watermark within all zones.
5085 * Return: number of pages beyond high watermark within all zones.
5087 unsigned long nr_free_pagecache_pages(void)
5089 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
5092 static inline void show_node(struct zone
*zone
)
5094 if (IS_ENABLED(CONFIG_NUMA
))
5095 printk("Node %d ", zone_to_nid(zone
));
5098 long si_mem_available(void)
5101 unsigned long pagecache
;
5102 unsigned long wmark_low
= 0;
5103 unsigned long pages
[NR_LRU_LISTS
];
5104 unsigned long reclaimable
;
5108 for (lru
= LRU_BASE
; lru
< NR_LRU_LISTS
; lru
++)
5109 pages
[lru
] = global_node_page_state(NR_LRU_BASE
+ lru
);
5112 wmark_low
+= low_wmark_pages(zone
);
5115 * Estimate the amount of memory available for userspace allocations,
5116 * without causing swapping.
5118 available
= global_zone_page_state(NR_FREE_PAGES
) - totalreserve_pages
;
5121 * Not all the page cache can be freed, otherwise the system will
5122 * start swapping. Assume at least half of the page cache, or the
5123 * low watermark worth of cache, needs to stay.
5125 pagecache
= pages
[LRU_ACTIVE_FILE
] + pages
[LRU_INACTIVE_FILE
];
5126 pagecache
-= min(pagecache
/ 2, wmark_low
);
5127 available
+= pagecache
;
5130 * Part of the reclaimable slab and other kernel memory consists of
5131 * items that are in use, and cannot be freed. Cap this estimate at the
5134 reclaimable
= global_node_page_state(NR_SLAB_RECLAIMABLE
) +
5135 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE
);
5136 available
+= reclaimable
- min(reclaimable
/ 2, wmark_low
);
5142 EXPORT_SYMBOL_GPL(si_mem_available
);
5144 void si_meminfo(struct sysinfo
*val
)
5146 val
->totalram
= totalram_pages();
5147 val
->sharedram
= global_node_page_state(NR_SHMEM
);
5148 val
->freeram
= global_zone_page_state(NR_FREE_PAGES
);
5149 val
->bufferram
= nr_blockdev_pages();
5150 val
->totalhigh
= totalhigh_pages();
5151 val
->freehigh
= nr_free_highpages();
5152 val
->mem_unit
= PAGE_SIZE
;
5155 EXPORT_SYMBOL(si_meminfo
);
5158 void si_meminfo_node(struct sysinfo
*val
, int nid
)
5160 int zone_type
; /* needs to be signed */
5161 unsigned long managed_pages
= 0;
5162 unsigned long managed_highpages
= 0;
5163 unsigned long free_highpages
= 0;
5164 pg_data_t
*pgdat
= NODE_DATA(nid
);
5166 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++)
5167 managed_pages
+= zone_managed_pages(&pgdat
->node_zones
[zone_type
]);
5168 val
->totalram
= managed_pages
;
5169 val
->sharedram
= node_page_state(pgdat
, NR_SHMEM
);
5170 val
->freeram
= sum_zone_node_page_state(nid
, NR_FREE_PAGES
);
5171 #ifdef CONFIG_HIGHMEM
5172 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
5173 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
5175 if (is_highmem(zone
)) {
5176 managed_highpages
+= zone_managed_pages(zone
);
5177 free_highpages
+= zone_page_state(zone
, NR_FREE_PAGES
);
5180 val
->totalhigh
= managed_highpages
;
5181 val
->freehigh
= free_highpages
;
5183 val
->totalhigh
= managed_highpages
;
5184 val
->freehigh
= free_highpages
;
5186 val
->mem_unit
= PAGE_SIZE
;
5191 * Determine whether the node should be displayed or not, depending on whether
5192 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5194 static bool show_mem_node_skip(unsigned int flags
, int nid
, nodemask_t
*nodemask
)
5196 if (!(flags
& SHOW_MEM_FILTER_NODES
))
5200 * no node mask - aka implicit memory numa policy. Do not bother with
5201 * the synchronization - read_mems_allowed_begin - because we do not
5202 * have to be precise here.
5205 nodemask
= &cpuset_current_mems_allowed
;
5207 return !node_isset(nid
, *nodemask
);
5210 #define K(x) ((x) << (PAGE_SHIFT-10))
5212 static void show_migration_types(unsigned char type
)
5214 static const char types
[MIGRATE_TYPES
] = {
5215 [MIGRATE_UNMOVABLE
] = 'U',
5216 [MIGRATE_MOVABLE
] = 'M',
5217 [MIGRATE_RECLAIMABLE
] = 'E',
5218 [MIGRATE_HIGHATOMIC
] = 'H',
5220 [MIGRATE_CMA
] = 'C',
5222 #ifdef CONFIG_MEMORY_ISOLATION
5223 [MIGRATE_ISOLATE
] = 'I',
5226 char tmp
[MIGRATE_TYPES
+ 1];
5230 for (i
= 0; i
< MIGRATE_TYPES
; i
++) {
5231 if (type
& (1 << i
))
5236 printk(KERN_CONT
"(%s) ", tmp
);
5240 * Show free area list (used inside shift_scroll-lock stuff)
5241 * We also calculate the percentage fragmentation. We do this by counting the
5242 * memory on each free list with the exception of the first item on the list.
5245 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5248 void show_free_areas(unsigned int filter
, nodemask_t
*nodemask
)
5250 unsigned long free_pcp
= 0;
5255 for_each_populated_zone(zone
) {
5256 if (show_mem_node_skip(filter
, zone_to_nid(zone
), nodemask
))
5259 for_each_online_cpu(cpu
)
5260 free_pcp
+= per_cpu_ptr(zone
->pageset
, cpu
)->pcp
.count
;
5263 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5264 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5265 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
5266 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5267 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5268 " free:%lu free_pcp:%lu free_cma:%lu\n",
5269 global_node_page_state(NR_ACTIVE_ANON
),
5270 global_node_page_state(NR_INACTIVE_ANON
),
5271 global_node_page_state(NR_ISOLATED_ANON
),
5272 global_node_page_state(NR_ACTIVE_FILE
),
5273 global_node_page_state(NR_INACTIVE_FILE
),
5274 global_node_page_state(NR_ISOLATED_FILE
),
5275 global_node_page_state(NR_UNEVICTABLE
),
5276 global_node_page_state(NR_FILE_DIRTY
),
5277 global_node_page_state(NR_WRITEBACK
),
5278 global_node_page_state(NR_UNSTABLE_NFS
),
5279 global_node_page_state(NR_SLAB_RECLAIMABLE
),
5280 global_node_page_state(NR_SLAB_UNRECLAIMABLE
),
5281 global_node_page_state(NR_FILE_MAPPED
),
5282 global_node_page_state(NR_SHMEM
),
5283 global_zone_page_state(NR_PAGETABLE
),
5284 global_zone_page_state(NR_BOUNCE
),
5285 global_zone_page_state(NR_FREE_PAGES
),
5287 global_zone_page_state(NR_FREE_CMA_PAGES
));
5289 for_each_online_pgdat(pgdat
) {
5290 if (show_mem_node_skip(filter
, pgdat
->node_id
, nodemask
))
5294 " active_anon:%lukB"
5295 " inactive_anon:%lukB"
5296 " active_file:%lukB"
5297 " inactive_file:%lukB"
5298 " unevictable:%lukB"
5299 " isolated(anon):%lukB"
5300 " isolated(file):%lukB"
5305 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5307 " shmem_pmdmapped: %lukB"
5310 " writeback_tmp:%lukB"
5312 " all_unreclaimable? %s"
5315 K(node_page_state(pgdat
, NR_ACTIVE_ANON
)),
5316 K(node_page_state(pgdat
, NR_INACTIVE_ANON
)),
5317 K(node_page_state(pgdat
, NR_ACTIVE_FILE
)),
5318 K(node_page_state(pgdat
, NR_INACTIVE_FILE
)),
5319 K(node_page_state(pgdat
, NR_UNEVICTABLE
)),
5320 K(node_page_state(pgdat
, NR_ISOLATED_ANON
)),
5321 K(node_page_state(pgdat
, NR_ISOLATED_FILE
)),
5322 K(node_page_state(pgdat
, NR_FILE_MAPPED
)),
5323 K(node_page_state(pgdat
, NR_FILE_DIRTY
)),
5324 K(node_page_state(pgdat
, NR_WRITEBACK
)),
5325 K(node_page_state(pgdat
, NR_SHMEM
)),
5326 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5327 K(node_page_state(pgdat
, NR_SHMEM_THPS
) * HPAGE_PMD_NR
),
5328 K(node_page_state(pgdat
, NR_SHMEM_PMDMAPPED
)
5330 K(node_page_state(pgdat
, NR_ANON_THPS
) * HPAGE_PMD_NR
),
5332 K(node_page_state(pgdat
, NR_WRITEBACK_TEMP
)),
5333 K(node_page_state(pgdat
, NR_UNSTABLE_NFS
)),
5334 pgdat
->kswapd_failures
>= MAX_RECLAIM_RETRIES
?
5338 for_each_populated_zone(zone
) {
5341 if (show_mem_node_skip(filter
, zone_to_nid(zone
), nodemask
))
5345 for_each_online_cpu(cpu
)
5346 free_pcp
+= per_cpu_ptr(zone
->pageset
, cpu
)->pcp
.count
;
5355 " active_anon:%lukB"
5356 " inactive_anon:%lukB"
5357 " active_file:%lukB"
5358 " inactive_file:%lukB"
5359 " unevictable:%lukB"
5360 " writepending:%lukB"
5364 " kernel_stack:%lukB"
5372 K(zone_page_state(zone
, NR_FREE_PAGES
)),
5373 K(min_wmark_pages(zone
)),
5374 K(low_wmark_pages(zone
)),
5375 K(high_wmark_pages(zone
)),
5376 K(zone_page_state(zone
, NR_ZONE_ACTIVE_ANON
)),
5377 K(zone_page_state(zone
, NR_ZONE_INACTIVE_ANON
)),
5378 K(zone_page_state(zone
, NR_ZONE_ACTIVE_FILE
)),
5379 K(zone_page_state(zone
, NR_ZONE_INACTIVE_FILE
)),
5380 K(zone_page_state(zone
, NR_ZONE_UNEVICTABLE
)),
5381 K(zone_page_state(zone
, NR_ZONE_WRITE_PENDING
)),
5382 K(zone
->present_pages
),
5383 K(zone_managed_pages(zone
)),
5384 K(zone_page_state(zone
, NR_MLOCK
)),
5385 zone_page_state(zone
, NR_KERNEL_STACK_KB
),
5386 K(zone_page_state(zone
, NR_PAGETABLE
)),
5387 K(zone_page_state(zone
, NR_BOUNCE
)),
5389 K(this_cpu_read(zone
->pageset
->pcp
.count
)),
5390 K(zone_page_state(zone
, NR_FREE_CMA_PAGES
)));
5391 printk("lowmem_reserve[]:");
5392 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
5393 printk(KERN_CONT
" %ld", zone
->lowmem_reserve
[i
]);
5394 printk(KERN_CONT
"\n");
5397 for_each_populated_zone(zone
) {
5399 unsigned long nr
[MAX_ORDER
], flags
, total
= 0;
5400 unsigned char types
[MAX_ORDER
];
5402 if (show_mem_node_skip(filter
, zone_to_nid(zone
), nodemask
))
5405 printk(KERN_CONT
"%s: ", zone
->name
);
5407 spin_lock_irqsave(&zone
->lock
, flags
);
5408 for (order
= 0; order
< MAX_ORDER
; order
++) {
5409 struct free_area
*area
= &zone
->free_area
[order
];
5412 nr
[order
] = area
->nr_free
;
5413 total
+= nr
[order
] << order
;
5416 for (type
= 0; type
< MIGRATE_TYPES
; type
++) {
5417 if (!free_area_empty(area
, type
))
5418 types
[order
] |= 1 << type
;
5421 spin_unlock_irqrestore(&zone
->lock
, flags
);
5422 for (order
= 0; order
< MAX_ORDER
; order
++) {
5423 printk(KERN_CONT
"%lu*%lukB ",
5424 nr
[order
], K(1UL) << order
);
5426 show_migration_types(types
[order
]);
5428 printk(KERN_CONT
"= %lukB\n", K(total
));
5431 hugetlb_show_meminfo();
5433 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES
));
5435 show_swap_cache_info();
5438 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
5440 zoneref
->zone
= zone
;
5441 zoneref
->zone_idx
= zone_idx(zone
);
5445 * Builds allocation fallback zone lists.
5447 * Add all populated zones of a node to the zonelist.
5449 static int build_zonerefs_node(pg_data_t
*pgdat
, struct zoneref
*zonerefs
)
5452 enum zone_type zone_type
= MAX_NR_ZONES
;
5457 zone
= pgdat
->node_zones
+ zone_type
;
5458 if (managed_zone(zone
)) {
5459 zoneref_set_zone(zone
, &zonerefs
[nr_zones
++]);
5460 check_highest_zone(zone_type
);
5462 } while (zone_type
);
5469 static int __parse_numa_zonelist_order(char *s
)
5472 * We used to support different zonlists modes but they turned
5473 * out to be just not useful. Let's keep the warning in place
5474 * if somebody still use the cmd line parameter so that we do
5475 * not fail it silently
5477 if (!(*s
== 'd' || *s
== 'D' || *s
== 'n' || *s
== 'N')) {
5478 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s
);
5484 static __init
int setup_numa_zonelist_order(char *s
)
5489 return __parse_numa_zonelist_order(s
);
5491 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
5493 char numa_zonelist_order
[] = "Node";
5496 * sysctl handler for numa_zonelist_order
5498 int numa_zonelist_order_handler(struct ctl_table
*table
, int write
,
5499 void __user
*buffer
, size_t *length
,
5506 return proc_dostring(table
, write
, buffer
, length
, ppos
);
5507 str
= memdup_user_nul(buffer
, 16);
5509 return PTR_ERR(str
);
5511 ret
= __parse_numa_zonelist_order(str
);
5517 #define MAX_NODE_LOAD (nr_online_nodes)
5518 static int node_load
[MAX_NUMNODES
];
5521 * find_next_best_node - find the next node that should appear in a given node's fallback list
5522 * @node: node whose fallback list we're appending
5523 * @used_node_mask: nodemask_t of already used nodes
5525 * We use a number of factors to determine which is the next node that should
5526 * appear on a given node's fallback list. The node should not have appeared
5527 * already in @node's fallback list, and it should be the next closest node
5528 * according to the distance array (which contains arbitrary distance values
5529 * from each node to each node in the system), and should also prefer nodes
5530 * with no CPUs, since presumably they'll have very little allocation pressure
5531 * on them otherwise.
5533 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5535 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
5538 int min_val
= INT_MAX
;
5539 int best_node
= NUMA_NO_NODE
;
5540 const struct cpumask
*tmp
= cpumask_of_node(0);
5542 /* Use the local node if we haven't already */
5543 if (!node_isset(node
, *used_node_mask
)) {
5544 node_set(node
, *used_node_mask
);
5548 for_each_node_state(n
, N_MEMORY
) {
5550 /* Don't want a node to appear more than once */
5551 if (node_isset(n
, *used_node_mask
))
5554 /* Use the distance array to find the distance */
5555 val
= node_distance(node
, n
);
5557 /* Penalize nodes under us ("prefer the next node") */
5560 /* Give preference to headless and unused nodes */
5561 tmp
= cpumask_of_node(n
);
5562 if (!cpumask_empty(tmp
))
5563 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
5565 /* Slight preference for less loaded node */
5566 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
5567 val
+= node_load
[n
];
5569 if (val
< min_val
) {
5576 node_set(best_node
, *used_node_mask
);
5583 * Build zonelists ordered by node and zones within node.
5584 * This results in maximum locality--normal zone overflows into local
5585 * DMA zone, if any--but risks exhausting DMA zone.
5587 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int *node_order
,
5590 struct zoneref
*zonerefs
;
5593 zonerefs
= pgdat
->node_zonelists
[ZONELIST_FALLBACK
]._zonerefs
;
5595 for (i
= 0; i
< nr_nodes
; i
++) {
5598 pg_data_t
*node
= NODE_DATA(node_order
[i
]);
5600 nr_zones
= build_zonerefs_node(node
, zonerefs
);
5601 zonerefs
+= nr_zones
;
5603 zonerefs
->zone
= NULL
;
5604 zonerefs
->zone_idx
= 0;
5608 * Build gfp_thisnode zonelists
5610 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
5612 struct zoneref
*zonerefs
;
5615 zonerefs
= pgdat
->node_zonelists
[ZONELIST_NOFALLBACK
]._zonerefs
;
5616 nr_zones
= build_zonerefs_node(pgdat
, zonerefs
);
5617 zonerefs
+= nr_zones
;
5618 zonerefs
->zone
= NULL
;
5619 zonerefs
->zone_idx
= 0;
5623 * Build zonelists ordered by zone and nodes within zones.
5624 * This results in conserving DMA zone[s] until all Normal memory is
5625 * exhausted, but results in overflowing to remote node while memory
5626 * may still exist in local DMA zone.
5629 static void build_zonelists(pg_data_t
*pgdat
)
5631 static int node_order
[MAX_NUMNODES
];
5632 int node
, load
, nr_nodes
= 0;
5633 nodemask_t used_mask
;
5634 int local_node
, prev_node
;
5636 /* NUMA-aware ordering of nodes */
5637 local_node
= pgdat
->node_id
;
5638 load
= nr_online_nodes
;
5639 prev_node
= local_node
;
5640 nodes_clear(used_mask
);
5642 memset(node_order
, 0, sizeof(node_order
));
5643 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
5645 * We don't want to pressure a particular node.
5646 * So adding penalty to the first node in same
5647 * distance group to make it round-robin.
5649 if (node_distance(local_node
, node
) !=
5650 node_distance(local_node
, prev_node
))
5651 node_load
[node
] = load
;
5653 node_order
[nr_nodes
++] = node
;
5658 build_zonelists_in_node_order(pgdat
, node_order
, nr_nodes
);
5659 build_thisnode_zonelists(pgdat
);
5662 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5664 * Return node id of node used for "local" allocations.
5665 * I.e., first node id of first zone in arg node's generic zonelist.
5666 * Used for initializing percpu 'numa_mem', which is used primarily
5667 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5669 int local_memory_node(int node
)
5673 z
= first_zones_zonelist(node_zonelist(node
, GFP_KERNEL
),
5674 gfp_zone(GFP_KERNEL
),
5676 return zone_to_nid(z
->zone
);
5680 static void setup_min_unmapped_ratio(void);
5681 static void setup_min_slab_ratio(void);
5682 #else /* CONFIG_NUMA */
5684 static void build_zonelists(pg_data_t
*pgdat
)
5686 int node
, local_node
;
5687 struct zoneref
*zonerefs
;
5690 local_node
= pgdat
->node_id
;
5692 zonerefs
= pgdat
->node_zonelists
[ZONELIST_FALLBACK
]._zonerefs
;
5693 nr_zones
= build_zonerefs_node(pgdat
, zonerefs
);
5694 zonerefs
+= nr_zones
;
5697 * Now we build the zonelist so that it contains the zones
5698 * of all the other nodes.
5699 * We don't want to pressure a particular node, so when
5700 * building the zones for node N, we make sure that the
5701 * zones coming right after the local ones are those from
5702 * node N+1 (modulo N)
5704 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
5705 if (!node_online(node
))
5707 nr_zones
= build_zonerefs_node(NODE_DATA(node
), zonerefs
);
5708 zonerefs
+= nr_zones
;
5710 for (node
= 0; node
< local_node
; node
++) {
5711 if (!node_online(node
))
5713 nr_zones
= build_zonerefs_node(NODE_DATA(node
), zonerefs
);
5714 zonerefs
+= nr_zones
;
5717 zonerefs
->zone
= NULL
;
5718 zonerefs
->zone_idx
= 0;
5721 #endif /* CONFIG_NUMA */
5724 * Boot pageset table. One per cpu which is going to be used for all
5725 * zones and all nodes. The parameters will be set in such a way
5726 * that an item put on a list will immediately be handed over to
5727 * the buddy list. This is safe since pageset manipulation is done
5728 * with interrupts disabled.
5730 * The boot_pagesets must be kept even after bootup is complete for
5731 * unused processors and/or zones. They do play a role for bootstrapping
5732 * hotplugged processors.
5734 * zoneinfo_show() and maybe other functions do
5735 * not check if the processor is online before following the pageset pointer.
5736 * Other parts of the kernel may not check if the zone is available.
5738 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
);
5739 static DEFINE_PER_CPU(struct per_cpu_pageset
, boot_pageset
);
5740 static DEFINE_PER_CPU(struct per_cpu_nodestat
, boot_nodestats
);
5742 static void __build_all_zonelists(void *data
)
5745 int __maybe_unused cpu
;
5746 pg_data_t
*self
= data
;
5747 static DEFINE_SPINLOCK(lock
);
5752 memset(node_load
, 0, sizeof(node_load
));
5756 * This node is hotadded and no memory is yet present. So just
5757 * building zonelists is fine - no need to touch other nodes.
5759 if (self
&& !node_online(self
->node_id
)) {
5760 build_zonelists(self
);
5762 for_each_online_node(nid
) {
5763 pg_data_t
*pgdat
= NODE_DATA(nid
);
5765 build_zonelists(pgdat
);
5768 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5770 * We now know the "local memory node" for each node--
5771 * i.e., the node of the first zone in the generic zonelist.
5772 * Set up numa_mem percpu variable for on-line cpus. During
5773 * boot, only the boot cpu should be on-line; we'll init the
5774 * secondary cpus' numa_mem as they come on-line. During
5775 * node/memory hotplug, we'll fixup all on-line cpus.
5777 for_each_online_cpu(cpu
)
5778 set_cpu_numa_mem(cpu
, local_memory_node(cpu_to_node(cpu
)));
5785 static noinline
void __init
5786 build_all_zonelists_init(void)
5790 __build_all_zonelists(NULL
);
5793 * Initialize the boot_pagesets that are going to be used
5794 * for bootstrapping processors. The real pagesets for
5795 * each zone will be allocated later when the per cpu
5796 * allocator is available.
5798 * boot_pagesets are used also for bootstrapping offline
5799 * cpus if the system is already booted because the pagesets
5800 * are needed to initialize allocators on a specific cpu too.
5801 * F.e. the percpu allocator needs the page allocator which
5802 * needs the percpu allocator in order to allocate its pagesets
5803 * (a chicken-egg dilemma).
5805 for_each_possible_cpu(cpu
)
5806 setup_pageset(&per_cpu(boot_pageset
, cpu
), 0);
5808 mminit_verify_zonelist();
5809 cpuset_init_current_mems_allowed();
5813 * unless system_state == SYSTEM_BOOTING.
5815 * __ref due to call of __init annotated helper build_all_zonelists_init
5816 * [protected by SYSTEM_BOOTING].
5818 void __ref
build_all_zonelists(pg_data_t
*pgdat
)
5820 if (system_state
== SYSTEM_BOOTING
) {
5821 build_all_zonelists_init();
5823 __build_all_zonelists(pgdat
);
5824 /* cpuset refresh routine should be here */
5826 vm_total_pages
= nr_free_pagecache_pages();
5828 * Disable grouping by mobility if the number of pages in the
5829 * system is too low to allow the mechanism to work. It would be
5830 * more accurate, but expensive to check per-zone. This check is
5831 * made on memory-hotadd so a system can start with mobility
5832 * disabled and enable it later
5834 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
5835 page_group_by_mobility_disabled
= 1;
5837 page_group_by_mobility_disabled
= 0;
5839 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
5841 page_group_by_mobility_disabled
? "off" : "on",
5844 pr_info("Policy zone: %s\n", zone_names
[policy_zone
]);
5848 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5849 static bool __meminit
5850 overlap_memmap_init(unsigned long zone
, unsigned long *pfn
)
5852 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5853 static struct memblock_region
*r
;
5855 if (mirrored_kernelcore
&& zone
== ZONE_MOVABLE
) {
5856 if (!r
|| *pfn
>= memblock_region_memory_end_pfn(r
)) {
5857 for_each_memblock(memory
, r
) {
5858 if (*pfn
< memblock_region_memory_end_pfn(r
))
5862 if (*pfn
>= memblock_region_memory_base_pfn(r
) &&
5863 memblock_is_mirror(r
)) {
5864 *pfn
= memblock_region_memory_end_pfn(r
);
5873 * Initially all pages are reserved - free ones are freed
5874 * up by memblock_free_all() once the early boot process is
5875 * done. Non-atomic initialization, single-pass.
5877 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
5878 unsigned long start_pfn
, enum memmap_context context
,
5879 struct vmem_altmap
*altmap
)
5881 unsigned long pfn
, end_pfn
= start_pfn
+ size
;
5884 if (highest_memmap_pfn
< end_pfn
- 1)
5885 highest_memmap_pfn
= end_pfn
- 1;
5887 #ifdef CONFIG_ZONE_DEVICE
5889 * Honor reservation requested by the driver for this ZONE_DEVICE
5890 * memory. We limit the total number of pages to initialize to just
5891 * those that might contain the memory mapping. We will defer the
5892 * ZONE_DEVICE page initialization until after we have released
5895 if (zone
== ZONE_DEVICE
) {
5899 if (start_pfn
== altmap
->base_pfn
)
5900 start_pfn
+= altmap
->reserve
;
5901 end_pfn
= altmap
->base_pfn
+ vmem_altmap_offset(altmap
);
5905 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
5907 * There can be holes in boot-time mem_map[]s handed to this
5908 * function. They do not exist on hotplugged memory.
5910 if (context
== MEMMAP_EARLY
) {
5911 if (!early_pfn_valid(pfn
))
5913 if (!early_pfn_in_nid(pfn
, nid
))
5915 if (overlap_memmap_init(zone
, &pfn
))
5917 if (defer_init(nid
, pfn
, end_pfn
))
5921 page
= pfn_to_page(pfn
);
5922 __init_single_page(page
, pfn
, zone
, nid
);
5923 if (context
== MEMMAP_HOTPLUG
)
5924 __SetPageReserved(page
);
5927 * Mark the block movable so that blocks are reserved for
5928 * movable at startup. This will force kernel allocations
5929 * to reserve their blocks rather than leaking throughout
5930 * the address space during boot when many long-lived
5931 * kernel allocations are made.
5933 * bitmap is created for zone's valid pfn range. but memmap
5934 * can be created for invalid pages (for alignment)
5935 * check here not to call set_pageblock_migratetype() against
5938 if (!(pfn
& (pageblock_nr_pages
- 1))) {
5939 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
5945 #ifdef CONFIG_ZONE_DEVICE
5946 void __ref
memmap_init_zone_device(struct zone
*zone
,
5947 unsigned long start_pfn
,
5949 struct dev_pagemap
*pgmap
)
5951 unsigned long pfn
, end_pfn
= start_pfn
+ size
;
5952 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
5953 struct vmem_altmap
*altmap
= pgmap_altmap(pgmap
);
5954 unsigned long zone_idx
= zone_idx(zone
);
5955 unsigned long start
= jiffies
;
5956 int nid
= pgdat
->node_id
;
5958 if (WARN_ON_ONCE(!pgmap
|| zone_idx(zone
) != ZONE_DEVICE
))
5962 * The call to memmap_init_zone should have already taken care
5963 * of the pages reserved for the memmap, so we can just jump to
5964 * the end of that region and start processing the device pages.
5967 start_pfn
= altmap
->base_pfn
+ vmem_altmap_offset(altmap
);
5968 size
= end_pfn
- start_pfn
;
5971 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
5972 struct page
*page
= pfn_to_page(pfn
);
5974 __init_single_page(page
, pfn
, zone_idx
, nid
);
5977 * Mark page reserved as it will need to wait for onlining
5978 * phase for it to be fully associated with a zone.
5980 * We can use the non-atomic __set_bit operation for setting
5981 * the flag as we are still initializing the pages.
5983 __SetPageReserved(page
);
5986 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
5987 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
5988 * ever freed or placed on a driver-private list.
5990 page
->pgmap
= pgmap
;
5991 page
->zone_device_data
= NULL
;
5994 * Mark the block movable so that blocks are reserved for
5995 * movable at startup. This will force kernel allocations
5996 * to reserve their blocks rather than leaking throughout
5997 * the address space during boot when many long-lived
5998 * kernel allocations are made.
6000 * bitmap is created for zone's valid pfn range. but memmap
6001 * can be created for invalid pages (for alignment)
6002 * check here not to call set_pageblock_migratetype() against
6005 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
6006 * because this is done early in section_activate()
6008 if (!(pfn
& (pageblock_nr_pages
- 1))) {
6009 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
6014 pr_info("%s initialised %lu pages in %ums\n", __func__
,
6015 size
, jiffies_to_msecs(jiffies
- start
));
6019 static void __meminit
zone_init_free_lists(struct zone
*zone
)
6021 unsigned int order
, t
;
6022 for_each_migratetype_order(order
, t
) {
6023 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
6024 zone
->free_area
[order
].nr_free
= 0;
6028 void __meminit __weak
memmap_init(unsigned long size
, int nid
,
6029 unsigned long zone
, unsigned long start_pfn
)
6031 memmap_init_zone(size
, nid
, zone
, start_pfn
, MEMMAP_EARLY
, NULL
);
6034 static int zone_batchsize(struct zone
*zone
)
6040 * The per-cpu-pages pools are set to around 1000th of the
6043 batch
= zone_managed_pages(zone
) / 1024;
6044 /* But no more than a meg. */
6045 if (batch
* PAGE_SIZE
> 1024 * 1024)
6046 batch
= (1024 * 1024) / PAGE_SIZE
;
6047 batch
/= 4; /* We effectively *= 4 below */
6052 * Clamp the batch to a 2^n - 1 value. Having a power
6053 * of 2 value was found to be more likely to have
6054 * suboptimal cache aliasing properties in some cases.
6056 * For example if 2 tasks are alternately allocating
6057 * batches of pages, one task can end up with a lot
6058 * of pages of one half of the possible page colors
6059 * and the other with pages of the other colors.
6061 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
6066 /* The deferral and batching of frees should be suppressed under NOMMU
6069 * The problem is that NOMMU needs to be able to allocate large chunks
6070 * of contiguous memory as there's no hardware page translation to
6071 * assemble apparent contiguous memory from discontiguous pages.
6073 * Queueing large contiguous runs of pages for batching, however,
6074 * causes the pages to actually be freed in smaller chunks. As there
6075 * can be a significant delay between the individual batches being
6076 * recycled, this leads to the once large chunks of space being
6077 * fragmented and becoming unavailable for high-order allocations.
6084 * pcp->high and pcp->batch values are related and dependent on one another:
6085 * ->batch must never be higher then ->high.
6086 * The following function updates them in a safe manner without read side
6089 * Any new users of pcp->batch and pcp->high should ensure they can cope with
6090 * those fields changing asynchronously (acording the the above rule).
6092 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6093 * outside of boot time (or some other assurance that no concurrent updaters
6096 static void pageset_update(struct per_cpu_pages
*pcp
, unsigned long high
,
6097 unsigned long batch
)
6099 /* start with a fail safe value for batch */
6103 /* Update high, then batch, in order */
6110 /* a companion to pageset_set_high() */
6111 static void pageset_set_batch(struct per_cpu_pageset
*p
, unsigned long batch
)
6113 pageset_update(&p
->pcp
, 6 * batch
, max(1UL, 1 * batch
));
6116 static void pageset_init(struct per_cpu_pageset
*p
)
6118 struct per_cpu_pages
*pcp
;
6121 memset(p
, 0, sizeof(*p
));
6124 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
6125 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
6128 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
6131 pageset_set_batch(p
, batch
);
6135 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6136 * to the value high for the pageset p.
6138 static void pageset_set_high(struct per_cpu_pageset
*p
,
6141 unsigned long batch
= max(1UL, high
/ 4);
6142 if ((high
/ 4) > (PAGE_SHIFT
* 8))
6143 batch
= PAGE_SHIFT
* 8;
6145 pageset_update(&p
->pcp
, high
, batch
);
6148 static void pageset_set_high_and_batch(struct zone
*zone
,
6149 struct per_cpu_pageset
*pcp
)
6151 if (percpu_pagelist_fraction
)
6152 pageset_set_high(pcp
,
6153 (zone_managed_pages(zone
) /
6154 percpu_pagelist_fraction
));
6156 pageset_set_batch(pcp
, zone_batchsize(zone
));
6159 static void __meminit
zone_pageset_init(struct zone
*zone
, int cpu
)
6161 struct per_cpu_pageset
*pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
6164 pageset_set_high_and_batch(zone
, pcp
);
6167 void __meminit
setup_zone_pageset(struct zone
*zone
)
6170 zone
->pageset
= alloc_percpu(struct per_cpu_pageset
);
6171 for_each_possible_cpu(cpu
)
6172 zone_pageset_init(zone
, cpu
);
6176 * Allocate per cpu pagesets and initialize them.
6177 * Before this call only boot pagesets were available.
6179 void __init
setup_per_cpu_pageset(void)
6181 struct pglist_data
*pgdat
;
6184 for_each_populated_zone(zone
)
6185 setup_zone_pageset(zone
);
6187 for_each_online_pgdat(pgdat
)
6188 pgdat
->per_cpu_nodestats
=
6189 alloc_percpu(struct per_cpu_nodestat
);
6192 static __meminit
void zone_pcp_init(struct zone
*zone
)
6195 * per cpu subsystem is not up at this point. The following code
6196 * relies on the ability of the linker to provide the
6197 * offset of a (static) per cpu variable into the per cpu area.
6199 zone
->pageset
= &boot_pageset
;
6201 if (populated_zone(zone
))
6202 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%u\n",
6203 zone
->name
, zone
->present_pages
,
6204 zone_batchsize(zone
));
6207 void __meminit
init_currently_empty_zone(struct zone
*zone
,
6208 unsigned long zone_start_pfn
,
6211 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
6212 int zone_idx
= zone_idx(zone
) + 1;
6214 if (zone_idx
> pgdat
->nr_zones
)
6215 pgdat
->nr_zones
= zone_idx
;
6217 zone
->zone_start_pfn
= zone_start_pfn
;
6219 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
6220 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6222 (unsigned long)zone_idx(zone
),
6223 zone_start_pfn
, (zone_start_pfn
+ size
));
6225 zone_init_free_lists(zone
);
6226 zone
->initialized
= 1;
6229 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6230 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
6233 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
6235 int __meminit
__early_pfn_to_nid(unsigned long pfn
,
6236 struct mminit_pfnnid_cache
*state
)
6238 unsigned long start_pfn
, end_pfn
;
6241 if (state
->last_start
<= pfn
&& pfn
< state
->last_end
)
6242 return state
->last_nid
;
6244 nid
= memblock_search_pfn_nid(pfn
, &start_pfn
, &end_pfn
);
6245 if (nid
!= NUMA_NO_NODE
) {
6246 state
->last_start
= start_pfn
;
6247 state
->last_end
= end_pfn
;
6248 state
->last_nid
= nid
;
6253 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
6256 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
6257 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6258 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
6260 * If an architecture guarantees that all ranges registered contain no holes
6261 * and may be freed, this this function may be used instead of calling
6262 * memblock_free_early_nid() manually.
6264 void __init
free_bootmem_with_active_regions(int nid
, unsigned long max_low_pfn
)
6266 unsigned long start_pfn
, end_pfn
;
6269 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
) {
6270 start_pfn
= min(start_pfn
, max_low_pfn
);
6271 end_pfn
= min(end_pfn
, max_low_pfn
);
6273 if (start_pfn
< end_pfn
)
6274 memblock_free_early_nid(PFN_PHYS(start_pfn
),
6275 (end_pfn
- start_pfn
) << PAGE_SHIFT
,
6281 * sparse_memory_present_with_active_regions - Call memory_present for each active range
6282 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
6284 * If an architecture guarantees that all ranges registered contain no holes and may
6285 * be freed, this function may be used instead of calling memory_present() manually.
6287 void __init
sparse_memory_present_with_active_regions(int nid
)
6289 unsigned long start_pfn
, end_pfn
;
6292 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
)
6293 memory_present(this_nid
, start_pfn
, end_pfn
);
6297 * get_pfn_range_for_nid - Return the start and end page frames for a node
6298 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6299 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6300 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6302 * It returns the start and end page frame of a node based on information
6303 * provided by memblock_set_node(). If called for a node
6304 * with no available memory, a warning is printed and the start and end
6307 void __init
get_pfn_range_for_nid(unsigned int nid
,
6308 unsigned long *start_pfn
, unsigned long *end_pfn
)
6310 unsigned long this_start_pfn
, this_end_pfn
;
6316 for_each_mem_pfn_range(i
, nid
, &this_start_pfn
, &this_end_pfn
, NULL
) {
6317 *start_pfn
= min(*start_pfn
, this_start_pfn
);
6318 *end_pfn
= max(*end_pfn
, this_end_pfn
);
6321 if (*start_pfn
== -1UL)
6326 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6327 * assumption is made that zones within a node are ordered in monotonic
6328 * increasing memory addresses so that the "highest" populated zone is used
6330 static void __init
find_usable_zone_for_movable(void)
6333 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
6334 if (zone_index
== ZONE_MOVABLE
)
6337 if (arch_zone_highest_possible_pfn
[zone_index
] >
6338 arch_zone_lowest_possible_pfn
[zone_index
])
6342 VM_BUG_ON(zone_index
== -1);
6343 movable_zone
= zone_index
;
6347 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6348 * because it is sized independent of architecture. Unlike the other zones,
6349 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6350 * in each node depending on the size of each node and how evenly kernelcore
6351 * is distributed. This helper function adjusts the zone ranges
6352 * provided by the architecture for a given node by using the end of the
6353 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6354 * zones within a node are in order of monotonic increases memory addresses
6356 static void __init
adjust_zone_range_for_zone_movable(int nid
,
6357 unsigned long zone_type
,
6358 unsigned long node_start_pfn
,
6359 unsigned long node_end_pfn
,
6360 unsigned long *zone_start_pfn
,
6361 unsigned long *zone_end_pfn
)
6363 /* Only adjust if ZONE_MOVABLE is on this node */
6364 if (zone_movable_pfn
[nid
]) {
6365 /* Size ZONE_MOVABLE */
6366 if (zone_type
== ZONE_MOVABLE
) {
6367 *zone_start_pfn
= zone_movable_pfn
[nid
];
6368 *zone_end_pfn
= min(node_end_pfn
,
6369 arch_zone_highest_possible_pfn
[movable_zone
]);
6371 /* Adjust for ZONE_MOVABLE starting within this range */
6372 } else if (!mirrored_kernelcore
&&
6373 *zone_start_pfn
< zone_movable_pfn
[nid
] &&
6374 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
6375 *zone_end_pfn
= zone_movable_pfn
[nid
];
6377 /* Check if this whole range is within ZONE_MOVABLE */
6378 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
6379 *zone_start_pfn
= *zone_end_pfn
;
6384 * Return the number of pages a zone spans in a node, including holes
6385 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6387 static unsigned long __init
zone_spanned_pages_in_node(int nid
,
6388 unsigned long zone_type
,
6389 unsigned long node_start_pfn
,
6390 unsigned long node_end_pfn
,
6391 unsigned long *zone_start_pfn
,
6392 unsigned long *zone_end_pfn
,
6393 unsigned long *ignored
)
6395 unsigned long zone_low
= arch_zone_lowest_possible_pfn
[zone_type
];
6396 unsigned long zone_high
= arch_zone_highest_possible_pfn
[zone_type
];
6397 /* When hotadd a new node from cpu_up(), the node should be empty */
6398 if (!node_start_pfn
&& !node_end_pfn
)
6401 /* Get the start and end of the zone */
6402 *zone_start_pfn
= clamp(node_start_pfn
, zone_low
, zone_high
);
6403 *zone_end_pfn
= clamp(node_end_pfn
, zone_low
, zone_high
);
6404 adjust_zone_range_for_zone_movable(nid
, zone_type
,
6405 node_start_pfn
, node_end_pfn
,
6406 zone_start_pfn
, zone_end_pfn
);
6408 /* Check that this node has pages within the zone's required range */
6409 if (*zone_end_pfn
< node_start_pfn
|| *zone_start_pfn
> node_end_pfn
)
6412 /* Move the zone boundaries inside the node if necessary */
6413 *zone_end_pfn
= min(*zone_end_pfn
, node_end_pfn
);
6414 *zone_start_pfn
= max(*zone_start_pfn
, node_start_pfn
);
6416 /* Return the spanned pages */
6417 return *zone_end_pfn
- *zone_start_pfn
;
6421 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6422 * then all holes in the requested range will be accounted for.
6424 unsigned long __init
__absent_pages_in_range(int nid
,
6425 unsigned long range_start_pfn
,
6426 unsigned long range_end_pfn
)
6428 unsigned long nr_absent
= range_end_pfn
- range_start_pfn
;
6429 unsigned long start_pfn
, end_pfn
;
6432 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
6433 start_pfn
= clamp(start_pfn
, range_start_pfn
, range_end_pfn
);
6434 end_pfn
= clamp(end_pfn
, range_start_pfn
, range_end_pfn
);
6435 nr_absent
-= end_pfn
- start_pfn
;
6441 * absent_pages_in_range - Return number of page frames in holes within a range
6442 * @start_pfn: The start PFN to start searching for holes
6443 * @end_pfn: The end PFN to stop searching for holes
6445 * Return: the number of pages frames in memory holes within a range.
6447 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
6448 unsigned long end_pfn
)
6450 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
6453 /* Return the number of page frames in holes in a zone on a node */
6454 static unsigned long __init
zone_absent_pages_in_node(int nid
,
6455 unsigned long zone_type
,
6456 unsigned long node_start_pfn
,
6457 unsigned long node_end_pfn
,
6458 unsigned long *ignored
)
6460 unsigned long zone_low
= arch_zone_lowest_possible_pfn
[zone_type
];
6461 unsigned long zone_high
= arch_zone_highest_possible_pfn
[zone_type
];
6462 unsigned long zone_start_pfn
, zone_end_pfn
;
6463 unsigned long nr_absent
;
6465 /* When hotadd a new node from cpu_up(), the node should be empty */
6466 if (!node_start_pfn
&& !node_end_pfn
)
6469 zone_start_pfn
= clamp(node_start_pfn
, zone_low
, zone_high
);
6470 zone_end_pfn
= clamp(node_end_pfn
, zone_low
, zone_high
);
6472 adjust_zone_range_for_zone_movable(nid
, zone_type
,
6473 node_start_pfn
, node_end_pfn
,
6474 &zone_start_pfn
, &zone_end_pfn
);
6475 nr_absent
= __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
6478 * ZONE_MOVABLE handling.
6479 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6482 if (mirrored_kernelcore
&& zone_movable_pfn
[nid
]) {
6483 unsigned long start_pfn
, end_pfn
;
6484 struct memblock_region
*r
;
6486 for_each_memblock(memory
, r
) {
6487 start_pfn
= clamp(memblock_region_memory_base_pfn(r
),
6488 zone_start_pfn
, zone_end_pfn
);
6489 end_pfn
= clamp(memblock_region_memory_end_pfn(r
),
6490 zone_start_pfn
, zone_end_pfn
);
6492 if (zone_type
== ZONE_MOVABLE
&&
6493 memblock_is_mirror(r
))
6494 nr_absent
+= end_pfn
- start_pfn
;
6496 if (zone_type
== ZONE_NORMAL
&&
6497 !memblock_is_mirror(r
))
6498 nr_absent
+= end_pfn
- start_pfn
;
6505 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6506 static inline unsigned long __init
zone_spanned_pages_in_node(int nid
,
6507 unsigned long zone_type
,
6508 unsigned long node_start_pfn
,
6509 unsigned long node_end_pfn
,
6510 unsigned long *zone_start_pfn
,
6511 unsigned long *zone_end_pfn
,
6512 unsigned long *zones_size
)
6516 *zone_start_pfn
= node_start_pfn
;
6517 for (zone
= 0; zone
< zone_type
; zone
++)
6518 *zone_start_pfn
+= zones_size
[zone
];
6520 *zone_end_pfn
= *zone_start_pfn
+ zones_size
[zone_type
];
6522 return zones_size
[zone_type
];
6525 static inline unsigned long __init
zone_absent_pages_in_node(int nid
,
6526 unsigned long zone_type
,
6527 unsigned long node_start_pfn
,
6528 unsigned long node_end_pfn
,
6529 unsigned long *zholes_size
)
6534 return zholes_size
[zone_type
];
6537 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6539 static void __init
calculate_node_totalpages(struct pglist_data
*pgdat
,
6540 unsigned long node_start_pfn
,
6541 unsigned long node_end_pfn
,
6542 unsigned long *zones_size
,
6543 unsigned long *zholes_size
)
6545 unsigned long realtotalpages
= 0, totalpages
= 0;
6548 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
6549 struct zone
*zone
= pgdat
->node_zones
+ i
;
6550 unsigned long zone_start_pfn
, zone_end_pfn
;
6551 unsigned long size
, real_size
;
6553 size
= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
6559 real_size
= size
- zone_absent_pages_in_node(pgdat
->node_id
, i
,
6560 node_start_pfn
, node_end_pfn
,
6563 zone
->zone_start_pfn
= zone_start_pfn
;
6565 zone
->zone_start_pfn
= 0;
6566 zone
->spanned_pages
= size
;
6567 zone
->present_pages
= real_size
;
6570 realtotalpages
+= real_size
;
6573 pgdat
->node_spanned_pages
= totalpages
;
6574 pgdat
->node_present_pages
= realtotalpages
;
6575 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
6579 #ifndef CONFIG_SPARSEMEM
6581 * Calculate the size of the zone->blockflags rounded to an unsigned long
6582 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6583 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6584 * round what is now in bits to nearest long in bits, then return it in
6587 static unsigned long __init
usemap_size(unsigned long zone_start_pfn
, unsigned long zonesize
)
6589 unsigned long usemapsize
;
6591 zonesize
+= zone_start_pfn
& (pageblock_nr_pages
-1);
6592 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
6593 usemapsize
= usemapsize
>> pageblock_order
;
6594 usemapsize
*= NR_PAGEBLOCK_BITS
;
6595 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
6597 return usemapsize
/ 8;
6600 static void __ref
setup_usemap(struct pglist_data
*pgdat
,
6602 unsigned long zone_start_pfn
,
6603 unsigned long zonesize
)
6605 unsigned long usemapsize
= usemap_size(zone_start_pfn
, zonesize
);
6606 zone
->pageblock_flags
= NULL
;
6608 zone
->pageblock_flags
=
6609 memblock_alloc_node(usemapsize
, SMP_CACHE_BYTES
,
6611 if (!zone
->pageblock_flags
)
6612 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6613 usemapsize
, zone
->name
, pgdat
->node_id
);
6617 static inline void setup_usemap(struct pglist_data
*pgdat
, struct zone
*zone
,
6618 unsigned long zone_start_pfn
, unsigned long zonesize
) {}
6619 #endif /* CONFIG_SPARSEMEM */
6621 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6623 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6624 void __init
set_pageblock_order(void)
6628 /* Check that pageblock_nr_pages has not already been setup */
6629 if (pageblock_order
)
6632 if (HPAGE_SHIFT
> PAGE_SHIFT
)
6633 order
= HUGETLB_PAGE_ORDER
;
6635 order
= MAX_ORDER
- 1;
6638 * Assume the largest contiguous order of interest is a huge page.
6639 * This value may be variable depending on boot parameters on IA64 and
6642 pageblock_order
= order
;
6644 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6647 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6648 * is unused as pageblock_order is set at compile-time. See
6649 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6652 void __init
set_pageblock_order(void)
6656 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6658 static unsigned long __init
calc_memmap_size(unsigned long spanned_pages
,
6659 unsigned long present_pages
)
6661 unsigned long pages
= spanned_pages
;
6664 * Provide a more accurate estimation if there are holes within
6665 * the zone and SPARSEMEM is in use. If there are holes within the
6666 * zone, each populated memory region may cost us one or two extra
6667 * memmap pages due to alignment because memmap pages for each
6668 * populated regions may not be naturally aligned on page boundary.
6669 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6671 if (spanned_pages
> present_pages
+ (present_pages
>> 4) &&
6672 IS_ENABLED(CONFIG_SPARSEMEM
))
6673 pages
= present_pages
;
6675 return PAGE_ALIGN(pages
* sizeof(struct page
)) >> PAGE_SHIFT
;
6678 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6679 static void pgdat_init_split_queue(struct pglist_data
*pgdat
)
6681 struct deferred_split
*ds_queue
= &pgdat
->deferred_split_queue
;
6683 spin_lock_init(&ds_queue
->split_queue_lock
);
6684 INIT_LIST_HEAD(&ds_queue
->split_queue
);
6685 ds_queue
->split_queue_len
= 0;
6688 static void pgdat_init_split_queue(struct pglist_data
*pgdat
) {}
6691 #ifdef CONFIG_COMPACTION
6692 static void pgdat_init_kcompactd(struct pglist_data
*pgdat
)
6694 init_waitqueue_head(&pgdat
->kcompactd_wait
);
6697 static void pgdat_init_kcompactd(struct pglist_data
*pgdat
) {}
6700 static void __meminit
pgdat_init_internals(struct pglist_data
*pgdat
)
6702 pgdat_resize_init(pgdat
);
6704 pgdat_init_split_queue(pgdat
);
6705 pgdat_init_kcompactd(pgdat
);
6707 init_waitqueue_head(&pgdat
->kswapd_wait
);
6708 init_waitqueue_head(&pgdat
->pfmemalloc_wait
);
6710 pgdat_page_ext_init(pgdat
);
6711 spin_lock_init(&pgdat
->lru_lock
);
6712 lruvec_init(node_lruvec(pgdat
));
6715 static void __meminit
zone_init_internals(struct zone
*zone
, enum zone_type idx
, int nid
,
6716 unsigned long remaining_pages
)
6718 atomic_long_set(&zone
->managed_pages
, remaining_pages
);
6719 zone_set_nid(zone
, nid
);
6720 zone
->name
= zone_names
[idx
];
6721 zone
->zone_pgdat
= NODE_DATA(nid
);
6722 spin_lock_init(&zone
->lock
);
6723 zone_seqlock_init(zone
);
6724 zone_pcp_init(zone
);
6728 * Set up the zone data structures
6729 * - init pgdat internals
6730 * - init all zones belonging to this node
6732 * NOTE: this function is only called during memory hotplug
6734 #ifdef CONFIG_MEMORY_HOTPLUG
6735 void __ref
free_area_init_core_hotplug(int nid
)
6738 pg_data_t
*pgdat
= NODE_DATA(nid
);
6740 pgdat_init_internals(pgdat
);
6741 for (z
= 0; z
< MAX_NR_ZONES
; z
++)
6742 zone_init_internals(&pgdat
->node_zones
[z
], z
, nid
, 0);
6747 * Set up the zone data structures:
6748 * - mark all pages reserved
6749 * - mark all memory queues empty
6750 * - clear the memory bitmaps
6752 * NOTE: pgdat should get zeroed by caller.
6753 * NOTE: this function is only called during early init.
6755 static void __init
free_area_init_core(struct pglist_data
*pgdat
)
6758 int nid
= pgdat
->node_id
;
6760 pgdat_init_internals(pgdat
);
6761 pgdat
->per_cpu_nodestats
= &boot_nodestats
;
6763 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
6764 struct zone
*zone
= pgdat
->node_zones
+ j
;
6765 unsigned long size
, freesize
, memmap_pages
;
6766 unsigned long zone_start_pfn
= zone
->zone_start_pfn
;
6768 size
= zone
->spanned_pages
;
6769 freesize
= zone
->present_pages
;
6772 * Adjust freesize so that it accounts for how much memory
6773 * is used by this zone for memmap. This affects the watermark
6774 * and per-cpu initialisations
6776 memmap_pages
= calc_memmap_size(size
, freesize
);
6777 if (!is_highmem_idx(j
)) {
6778 if (freesize
>= memmap_pages
) {
6779 freesize
-= memmap_pages
;
6782 " %s zone: %lu pages used for memmap\n",
6783 zone_names
[j
], memmap_pages
);
6785 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6786 zone_names
[j
], memmap_pages
, freesize
);
6789 /* Account for reserved pages */
6790 if (j
== 0 && freesize
> dma_reserve
) {
6791 freesize
-= dma_reserve
;
6792 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
6793 zone_names
[0], dma_reserve
);
6796 if (!is_highmem_idx(j
))
6797 nr_kernel_pages
+= freesize
;
6798 /* Charge for highmem memmap if there are enough kernel pages */
6799 else if (nr_kernel_pages
> memmap_pages
* 2)
6800 nr_kernel_pages
-= memmap_pages
;
6801 nr_all_pages
+= freesize
;
6804 * Set an approximate value for lowmem here, it will be adjusted
6805 * when the bootmem allocator frees pages into the buddy system.
6806 * And all highmem pages will be managed by the buddy system.
6808 zone_init_internals(zone
, j
, nid
, freesize
);
6813 set_pageblock_order();
6814 setup_usemap(pgdat
, zone
, zone_start_pfn
, size
);
6815 init_currently_empty_zone(zone
, zone_start_pfn
, size
);
6816 memmap_init(size
, nid
, j
, zone_start_pfn
);
6820 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6821 static void __ref
alloc_node_mem_map(struct pglist_data
*pgdat
)
6823 unsigned long __maybe_unused start
= 0;
6824 unsigned long __maybe_unused offset
= 0;
6826 /* Skip empty nodes */
6827 if (!pgdat
->node_spanned_pages
)
6830 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
6831 offset
= pgdat
->node_start_pfn
- start
;
6832 /* ia64 gets its own node_mem_map, before this, without bootmem */
6833 if (!pgdat
->node_mem_map
) {
6834 unsigned long size
, end
;
6838 * The zone's endpoints aren't required to be MAX_ORDER
6839 * aligned but the node_mem_map endpoints must be in order
6840 * for the buddy allocator to function correctly.
6842 end
= pgdat_end_pfn(pgdat
);
6843 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
6844 size
= (end
- start
) * sizeof(struct page
);
6845 map
= memblock_alloc_node(size
, SMP_CACHE_BYTES
,
6848 panic("Failed to allocate %ld bytes for node %d memory map\n",
6849 size
, pgdat
->node_id
);
6850 pgdat
->node_mem_map
= map
+ offset
;
6852 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6853 __func__
, pgdat
->node_id
, (unsigned long)pgdat
,
6854 (unsigned long)pgdat
->node_mem_map
);
6855 #ifndef CONFIG_NEED_MULTIPLE_NODES
6857 * With no DISCONTIG, the global mem_map is just set as node 0's
6859 if (pgdat
== NODE_DATA(0)) {
6860 mem_map
= NODE_DATA(0)->node_mem_map
;
6861 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6862 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
6864 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6869 static void __ref
alloc_node_mem_map(struct pglist_data
*pgdat
) { }
6870 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6872 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6873 static inline void pgdat_set_deferred_range(pg_data_t
*pgdat
)
6875 pgdat
->first_deferred_pfn
= ULONG_MAX
;
6878 static inline void pgdat_set_deferred_range(pg_data_t
*pgdat
) {}
6881 void __init
free_area_init_node(int nid
, unsigned long *zones_size
,
6882 unsigned long node_start_pfn
,
6883 unsigned long *zholes_size
)
6885 pg_data_t
*pgdat
= NODE_DATA(nid
);
6886 unsigned long start_pfn
= 0;
6887 unsigned long end_pfn
= 0;
6889 /* pg_data_t should be reset to zero when it's allocated */
6890 WARN_ON(pgdat
->nr_zones
|| pgdat
->kswapd_classzone_idx
);
6892 pgdat
->node_id
= nid
;
6893 pgdat
->node_start_pfn
= node_start_pfn
;
6894 pgdat
->per_cpu_nodestats
= NULL
;
6895 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6896 get_pfn_range_for_nid(nid
, &start_pfn
, &end_pfn
);
6897 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid
,
6898 (u64
)start_pfn
<< PAGE_SHIFT
,
6899 end_pfn
? ((u64
)end_pfn
<< PAGE_SHIFT
) - 1 : 0);
6901 start_pfn
= node_start_pfn
;
6903 calculate_node_totalpages(pgdat
, start_pfn
, end_pfn
,
6904 zones_size
, zholes_size
);
6906 alloc_node_mem_map(pgdat
);
6907 pgdat_set_deferred_range(pgdat
);
6909 free_area_init_core(pgdat
);
6912 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6914 * Zero all valid struct pages in range [spfn, epfn), return number of struct
6917 static u64
zero_pfn_range(unsigned long spfn
, unsigned long epfn
)
6922 for (pfn
= spfn
; pfn
< epfn
; pfn
++) {
6923 if (!pfn_valid(ALIGN_DOWN(pfn
, pageblock_nr_pages
))) {
6924 pfn
= ALIGN_DOWN(pfn
, pageblock_nr_pages
)
6925 + pageblock_nr_pages
- 1;
6928 mm_zero_struct_page(pfn_to_page(pfn
));
6936 * Only struct pages that are backed by physical memory are zeroed and
6937 * initialized by going through __init_single_page(). But, there are some
6938 * struct pages which are reserved in memblock allocator and their fields
6939 * may be accessed (for example page_to_pfn() on some configuration accesses
6940 * flags). We must explicitly zero those struct pages.
6942 * This function also addresses a similar issue where struct pages are left
6943 * uninitialized because the physical address range is not covered by
6944 * memblock.memory or memblock.reserved. That could happen when memblock
6945 * layout is manually configured via memmap=, or when the highest physical
6946 * address (max_pfn) does not end on a section boundary.
6948 void __init
zero_resv_unavail(void)
6950 phys_addr_t start
, end
;
6952 phys_addr_t next
= 0;
6955 * Loop through unavailable ranges not covered by memblock.memory.
6958 for_each_mem_range(i
, &memblock
.memory
, NULL
,
6959 NUMA_NO_NODE
, MEMBLOCK_NONE
, &start
, &end
, NULL
) {
6961 pgcnt
+= zero_pfn_range(PFN_DOWN(next
), PFN_UP(start
));
6966 * Early sections always have a fully populated memmap for the whole
6967 * section - see pfn_valid(). If the last section has holes at the
6968 * end and that section is marked "online", the memmap will be
6969 * considered initialized. Make sure that memmap has a well defined
6972 pgcnt
+= zero_pfn_range(PFN_DOWN(next
),
6973 round_up(max_pfn
, PAGES_PER_SECTION
));
6976 * Struct pages that do not have backing memory. This could be because
6977 * firmware is using some of this memory, or for some other reasons.
6980 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt
);
6982 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */
6984 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6986 #if MAX_NUMNODES > 1
6988 * Figure out the number of possible node ids.
6990 void __init
setup_nr_node_ids(void)
6992 unsigned int highest
;
6994 highest
= find_last_bit(node_possible_map
.bits
, MAX_NUMNODES
);
6995 nr_node_ids
= highest
+ 1;
7000 * node_map_pfn_alignment - determine the maximum internode alignment
7002 * This function should be called after node map is populated and sorted.
7003 * It calculates the maximum power of two alignment which can distinguish
7006 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7007 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7008 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7009 * shifted, 1GiB is enough and this function will indicate so.
7011 * This is used to test whether pfn -> nid mapping of the chosen memory
7012 * model has fine enough granularity to avoid incorrect mapping for the
7013 * populated node map.
7015 * Return: the determined alignment in pfn's. 0 if there is no alignment
7016 * requirement (single node).
7018 unsigned long __init
node_map_pfn_alignment(void)
7020 unsigned long accl_mask
= 0, last_end
= 0;
7021 unsigned long start
, end
, mask
;
7022 int last_nid
= NUMA_NO_NODE
;
7025 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start
, &end
, &nid
) {
7026 if (!start
|| last_nid
< 0 || last_nid
== nid
) {
7033 * Start with a mask granular enough to pin-point to the
7034 * start pfn and tick off bits one-by-one until it becomes
7035 * too coarse to separate the current node from the last.
7037 mask
= ~((1 << __ffs(start
)) - 1);
7038 while (mask
&& last_end
<= (start
& (mask
<< 1)))
7041 /* accumulate all internode masks */
7045 /* convert mask to number of pages */
7046 return ~accl_mask
+ 1;
7049 /* Find the lowest pfn for a node */
7050 static unsigned long __init
find_min_pfn_for_node(int nid
)
7052 unsigned long min_pfn
= ULONG_MAX
;
7053 unsigned long start_pfn
;
7056 for_each_mem_pfn_range(i
, nid
, &start_pfn
, NULL
, NULL
)
7057 min_pfn
= min(min_pfn
, start_pfn
);
7059 if (min_pfn
== ULONG_MAX
) {
7060 pr_warn("Could not find start_pfn for node %d\n", nid
);
7068 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7070 * Return: the minimum PFN based on information provided via
7071 * memblock_set_node().
7073 unsigned long __init
find_min_pfn_with_active_regions(void)
7075 return find_min_pfn_for_node(MAX_NUMNODES
);
7079 * early_calculate_totalpages()
7080 * Sum pages in active regions for movable zone.
7081 * Populate N_MEMORY for calculating usable_nodes.
7083 static unsigned long __init
early_calculate_totalpages(void)
7085 unsigned long totalpages
= 0;
7086 unsigned long start_pfn
, end_pfn
;
7089 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
) {
7090 unsigned long pages
= end_pfn
- start_pfn
;
7092 totalpages
+= pages
;
7094 node_set_state(nid
, N_MEMORY
);
7100 * Find the PFN the Movable zone begins in each node. Kernel memory
7101 * is spread evenly between nodes as long as the nodes have enough
7102 * memory. When they don't, some nodes will have more kernelcore than
7105 static void __init
find_zone_movable_pfns_for_nodes(void)
7108 unsigned long usable_startpfn
;
7109 unsigned long kernelcore_node
, kernelcore_remaining
;
7110 /* save the state before borrow the nodemask */
7111 nodemask_t saved_node_state
= node_states
[N_MEMORY
];
7112 unsigned long totalpages
= early_calculate_totalpages();
7113 int usable_nodes
= nodes_weight(node_states
[N_MEMORY
]);
7114 struct memblock_region
*r
;
7116 /* Need to find movable_zone earlier when movable_node is specified. */
7117 find_usable_zone_for_movable();
7120 * If movable_node is specified, ignore kernelcore and movablecore
7123 if (movable_node_is_enabled()) {
7124 for_each_memblock(memory
, r
) {
7125 if (!memblock_is_hotpluggable(r
))
7130 usable_startpfn
= PFN_DOWN(r
->base
);
7131 zone_movable_pfn
[nid
] = zone_movable_pfn
[nid
] ?
7132 min(usable_startpfn
, zone_movable_pfn
[nid
]) :
7140 * If kernelcore=mirror is specified, ignore movablecore option
7142 if (mirrored_kernelcore
) {
7143 bool mem_below_4gb_not_mirrored
= false;
7145 for_each_memblock(memory
, r
) {
7146 if (memblock_is_mirror(r
))
7151 usable_startpfn
= memblock_region_memory_base_pfn(r
);
7153 if (usable_startpfn
< 0x100000) {
7154 mem_below_4gb_not_mirrored
= true;
7158 zone_movable_pfn
[nid
] = zone_movable_pfn
[nid
] ?
7159 min(usable_startpfn
, zone_movable_pfn
[nid
]) :
7163 if (mem_below_4gb_not_mirrored
)
7164 pr_warn("This configuration results in unmirrored kernel memory.");
7170 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7171 * amount of necessary memory.
7173 if (required_kernelcore_percent
)
7174 required_kernelcore
= (totalpages
* 100 * required_kernelcore_percent
) /
7176 if (required_movablecore_percent
)
7177 required_movablecore
= (totalpages
* 100 * required_movablecore_percent
) /
7181 * If movablecore= was specified, calculate what size of
7182 * kernelcore that corresponds so that memory usable for
7183 * any allocation type is evenly spread. If both kernelcore
7184 * and movablecore are specified, then the value of kernelcore
7185 * will be used for required_kernelcore if it's greater than
7186 * what movablecore would have allowed.
7188 if (required_movablecore
) {
7189 unsigned long corepages
;
7192 * Round-up so that ZONE_MOVABLE is at least as large as what
7193 * was requested by the user
7195 required_movablecore
=
7196 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
7197 required_movablecore
= min(totalpages
, required_movablecore
);
7198 corepages
= totalpages
- required_movablecore
;
7200 required_kernelcore
= max(required_kernelcore
, corepages
);
7204 * If kernelcore was not specified or kernelcore size is larger
7205 * than totalpages, there is no ZONE_MOVABLE.
7207 if (!required_kernelcore
|| required_kernelcore
>= totalpages
)
7210 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7211 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
7214 /* Spread kernelcore memory as evenly as possible throughout nodes */
7215 kernelcore_node
= required_kernelcore
/ usable_nodes
;
7216 for_each_node_state(nid
, N_MEMORY
) {
7217 unsigned long start_pfn
, end_pfn
;
7220 * Recalculate kernelcore_node if the division per node
7221 * now exceeds what is necessary to satisfy the requested
7222 * amount of memory for the kernel
7224 if (required_kernelcore
< kernelcore_node
)
7225 kernelcore_node
= required_kernelcore
/ usable_nodes
;
7228 * As the map is walked, we track how much memory is usable
7229 * by the kernel using kernelcore_remaining. When it is
7230 * 0, the rest of the node is usable by ZONE_MOVABLE
7232 kernelcore_remaining
= kernelcore_node
;
7234 /* Go through each range of PFNs within this node */
7235 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
7236 unsigned long size_pages
;
7238 start_pfn
= max(start_pfn
, zone_movable_pfn
[nid
]);
7239 if (start_pfn
>= end_pfn
)
7242 /* Account for what is only usable for kernelcore */
7243 if (start_pfn
< usable_startpfn
) {
7244 unsigned long kernel_pages
;
7245 kernel_pages
= min(end_pfn
, usable_startpfn
)
7248 kernelcore_remaining
-= min(kernel_pages
,
7249 kernelcore_remaining
);
7250 required_kernelcore
-= min(kernel_pages
,
7251 required_kernelcore
);
7253 /* Continue if range is now fully accounted */
7254 if (end_pfn
<= usable_startpfn
) {
7257 * Push zone_movable_pfn to the end so
7258 * that if we have to rebalance
7259 * kernelcore across nodes, we will
7260 * not double account here
7262 zone_movable_pfn
[nid
] = end_pfn
;
7265 start_pfn
= usable_startpfn
;
7269 * The usable PFN range for ZONE_MOVABLE is from
7270 * start_pfn->end_pfn. Calculate size_pages as the
7271 * number of pages used as kernelcore
7273 size_pages
= end_pfn
- start_pfn
;
7274 if (size_pages
> kernelcore_remaining
)
7275 size_pages
= kernelcore_remaining
;
7276 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
7279 * Some kernelcore has been met, update counts and
7280 * break if the kernelcore for this node has been
7283 required_kernelcore
-= min(required_kernelcore
,
7285 kernelcore_remaining
-= size_pages
;
7286 if (!kernelcore_remaining
)
7292 * If there is still required_kernelcore, we do another pass with one
7293 * less node in the count. This will push zone_movable_pfn[nid] further
7294 * along on the nodes that still have memory until kernelcore is
7298 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
7302 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7303 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
7304 zone_movable_pfn
[nid
] =
7305 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
7308 /* restore the node_state */
7309 node_states
[N_MEMORY
] = saved_node_state
;
7312 /* Any regular or high memory on that node ? */
7313 static void check_for_memory(pg_data_t
*pgdat
, int nid
)
7315 enum zone_type zone_type
;
7317 for (zone_type
= 0; zone_type
<= ZONE_MOVABLE
- 1; zone_type
++) {
7318 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
7319 if (populated_zone(zone
)) {
7320 if (IS_ENABLED(CONFIG_HIGHMEM
))
7321 node_set_state(nid
, N_HIGH_MEMORY
);
7322 if (zone_type
<= ZONE_NORMAL
)
7323 node_set_state(nid
, N_NORMAL_MEMORY
);
7330 * free_area_init_nodes - Initialise all pg_data_t and zone data
7331 * @max_zone_pfn: an array of max PFNs for each zone
7333 * This will call free_area_init_node() for each active node in the system.
7334 * Using the page ranges provided by memblock_set_node(), the size of each
7335 * zone in each node and their holes is calculated. If the maximum PFN
7336 * between two adjacent zones match, it is assumed that the zone is empty.
7337 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7338 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7339 * starts where the previous one ended. For example, ZONE_DMA32 starts
7340 * at arch_max_dma_pfn.
7342 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
7344 unsigned long start_pfn
, end_pfn
;
7347 /* Record where the zone boundaries are */
7348 memset(arch_zone_lowest_possible_pfn
, 0,
7349 sizeof(arch_zone_lowest_possible_pfn
));
7350 memset(arch_zone_highest_possible_pfn
, 0,
7351 sizeof(arch_zone_highest_possible_pfn
));
7353 start_pfn
= find_min_pfn_with_active_regions();
7355 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
7356 if (i
== ZONE_MOVABLE
)
7359 end_pfn
= max(max_zone_pfn
[i
], start_pfn
);
7360 arch_zone_lowest_possible_pfn
[i
] = start_pfn
;
7361 arch_zone_highest_possible_pfn
[i
] = end_pfn
;
7363 start_pfn
= end_pfn
;
7366 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7367 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
7368 find_zone_movable_pfns_for_nodes();
7370 /* Print out the zone ranges */
7371 pr_info("Zone ranges:\n");
7372 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
7373 if (i
== ZONE_MOVABLE
)
7375 pr_info(" %-8s ", zone_names
[i
]);
7376 if (arch_zone_lowest_possible_pfn
[i
] ==
7377 arch_zone_highest_possible_pfn
[i
])
7380 pr_cont("[mem %#018Lx-%#018Lx]\n",
7381 (u64
)arch_zone_lowest_possible_pfn
[i
]
7383 ((u64
)arch_zone_highest_possible_pfn
[i
]
7384 << PAGE_SHIFT
) - 1);
7387 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
7388 pr_info("Movable zone start for each node\n");
7389 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
7390 if (zone_movable_pfn
[i
])
7391 pr_info(" Node %d: %#018Lx\n", i
,
7392 (u64
)zone_movable_pfn
[i
] << PAGE_SHIFT
);
7396 * Print out the early node map, and initialize the
7397 * subsection-map relative to active online memory ranges to
7398 * enable future "sub-section" extensions of the memory map.
7400 pr_info("Early memory node ranges\n");
7401 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
) {
7402 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid
,
7403 (u64
)start_pfn
<< PAGE_SHIFT
,
7404 ((u64
)end_pfn
<< PAGE_SHIFT
) - 1);
7405 subsection_map_init(start_pfn
, end_pfn
- start_pfn
);
7408 /* Initialise every node */
7409 mminit_verify_pageflags_layout();
7410 setup_nr_node_ids();
7411 zero_resv_unavail();
7412 for_each_online_node(nid
) {
7413 pg_data_t
*pgdat
= NODE_DATA(nid
);
7414 free_area_init_node(nid
, NULL
,
7415 find_min_pfn_for_node(nid
), NULL
);
7417 /* Any memory on that node */
7418 if (pgdat
->node_present_pages
)
7419 node_set_state(nid
, N_MEMORY
);
7420 check_for_memory(pgdat
, nid
);
7424 static int __init
cmdline_parse_core(char *p
, unsigned long *core
,
7425 unsigned long *percent
)
7427 unsigned long long coremem
;
7433 /* Value may be a percentage of total memory, otherwise bytes */
7434 coremem
= simple_strtoull(p
, &endptr
, 0);
7435 if (*endptr
== '%') {
7436 /* Paranoid check for percent values greater than 100 */
7437 WARN_ON(coremem
> 100);
7441 coremem
= memparse(p
, &p
);
7442 /* Paranoid check that UL is enough for the coremem value */
7443 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
7445 *core
= coremem
>> PAGE_SHIFT
;
7452 * kernelcore=size sets the amount of memory for use for allocations that
7453 * cannot be reclaimed or migrated.
7455 static int __init
cmdline_parse_kernelcore(char *p
)
7457 /* parse kernelcore=mirror */
7458 if (parse_option_str(p
, "mirror")) {
7459 mirrored_kernelcore
= true;
7463 return cmdline_parse_core(p
, &required_kernelcore
,
7464 &required_kernelcore_percent
);
7468 * movablecore=size sets the amount of memory for use for allocations that
7469 * can be reclaimed or migrated.
7471 static int __init
cmdline_parse_movablecore(char *p
)
7473 return cmdline_parse_core(p
, &required_movablecore
,
7474 &required_movablecore_percent
);
7477 early_param("kernelcore", cmdline_parse_kernelcore
);
7478 early_param("movablecore", cmdline_parse_movablecore
);
7480 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7482 void adjust_managed_page_count(struct page
*page
, long count
)
7484 atomic_long_add(count
, &page_zone(page
)->managed_pages
);
7485 totalram_pages_add(count
);
7486 #ifdef CONFIG_HIGHMEM
7487 if (PageHighMem(page
))
7488 totalhigh_pages_add(count
);
7491 EXPORT_SYMBOL(adjust_managed_page_count
);
7493 unsigned long free_reserved_area(void *start
, void *end
, int poison
, const char *s
)
7496 unsigned long pages
= 0;
7498 start
= (void *)PAGE_ALIGN((unsigned long)start
);
7499 end
= (void *)((unsigned long)end
& PAGE_MASK
);
7500 for (pos
= start
; pos
< end
; pos
+= PAGE_SIZE
, pages
++) {
7501 struct page
*page
= virt_to_page(pos
);
7502 void *direct_map_addr
;
7505 * 'direct_map_addr' might be different from 'pos'
7506 * because some architectures' virt_to_page()
7507 * work with aliases. Getting the direct map
7508 * address ensures that we get a _writeable_
7509 * alias for the memset().
7511 direct_map_addr
= page_address(page
);
7512 if ((unsigned int)poison
<= 0xFF)
7513 memset(direct_map_addr
, poison
, PAGE_SIZE
);
7515 free_reserved_page(page
);
7519 pr_info("Freeing %s memory: %ldK\n",
7520 s
, pages
<< (PAGE_SHIFT
- 10));
7525 #ifdef CONFIG_HIGHMEM
7526 void free_highmem_page(struct page
*page
)
7528 __free_reserved_page(page
);
7529 totalram_pages_inc();
7530 atomic_long_inc(&page_zone(page
)->managed_pages
);
7531 totalhigh_pages_inc();
7536 void __init
mem_init_print_info(const char *str
)
7538 unsigned long physpages
, codesize
, datasize
, rosize
, bss_size
;
7539 unsigned long init_code_size
, init_data_size
;
7541 physpages
= get_num_physpages();
7542 codesize
= _etext
- _stext
;
7543 datasize
= _edata
- _sdata
;
7544 rosize
= __end_rodata
- __start_rodata
;
7545 bss_size
= __bss_stop
- __bss_start
;
7546 init_data_size
= __init_end
- __init_begin
;
7547 init_code_size
= _einittext
- _sinittext
;
7550 * Detect special cases and adjust section sizes accordingly:
7551 * 1) .init.* may be embedded into .data sections
7552 * 2) .init.text.* may be out of [__init_begin, __init_end],
7553 * please refer to arch/tile/kernel/vmlinux.lds.S.
7554 * 3) .rodata.* may be embedded into .text or .data sections.
7556 #define adj_init_size(start, end, size, pos, adj) \
7558 if (start <= pos && pos < end && size > adj) \
7562 adj_init_size(__init_begin
, __init_end
, init_data_size
,
7563 _sinittext
, init_code_size
);
7564 adj_init_size(_stext
, _etext
, codesize
, _sinittext
, init_code_size
);
7565 adj_init_size(_sdata
, _edata
, datasize
, __init_begin
, init_data_size
);
7566 adj_init_size(_stext
, _etext
, codesize
, __start_rodata
, rosize
);
7567 adj_init_size(_sdata
, _edata
, datasize
, __start_rodata
, rosize
);
7569 #undef adj_init_size
7571 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7572 #ifdef CONFIG_HIGHMEM
7576 nr_free_pages() << (PAGE_SHIFT
- 10),
7577 physpages
<< (PAGE_SHIFT
- 10),
7578 codesize
>> 10, datasize
>> 10, rosize
>> 10,
7579 (init_data_size
+ init_code_size
) >> 10, bss_size
>> 10,
7580 (physpages
- totalram_pages() - totalcma_pages
) << (PAGE_SHIFT
- 10),
7581 totalcma_pages
<< (PAGE_SHIFT
- 10),
7582 #ifdef CONFIG_HIGHMEM
7583 totalhigh_pages() << (PAGE_SHIFT
- 10),
7585 str
? ", " : "", str
? str
: "");
7589 * set_dma_reserve - set the specified number of pages reserved in the first zone
7590 * @new_dma_reserve: The number of pages to mark reserved
7592 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7593 * In the DMA zone, a significant percentage may be consumed by kernel image
7594 * and other unfreeable allocations which can skew the watermarks badly. This
7595 * function may optionally be used to account for unfreeable pages in the
7596 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7597 * smaller per-cpu batchsize.
7599 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
7601 dma_reserve
= new_dma_reserve
;
7604 void __init
free_area_init(unsigned long *zones_size
)
7606 zero_resv_unavail();
7607 free_area_init_node(0, zones_size
,
7608 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
7611 static int page_alloc_cpu_dead(unsigned int cpu
)
7614 lru_add_drain_cpu(cpu
);
7618 * Spill the event counters of the dead processor
7619 * into the current processors event counters.
7620 * This artificially elevates the count of the current
7623 vm_events_fold_cpu(cpu
);
7626 * Zero the differential counters of the dead processor
7627 * so that the vm statistics are consistent.
7629 * This is only okay since the processor is dead and cannot
7630 * race with what we are doing.
7632 cpu_vm_stats_fold(cpu
);
7637 int hashdist
= HASHDIST_DEFAULT
;
7639 static int __init
set_hashdist(char *str
)
7643 hashdist
= simple_strtoul(str
, &str
, 0);
7646 __setup("hashdist=", set_hashdist
);
7649 void __init
page_alloc_init(void)
7654 if (num_node_state(N_MEMORY
) == 1)
7658 ret
= cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD
,
7659 "mm/page_alloc:dead", NULL
,
7660 page_alloc_cpu_dead
);
7665 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7666 * or min_free_kbytes changes.
7668 static void calculate_totalreserve_pages(void)
7670 struct pglist_data
*pgdat
;
7671 unsigned long reserve_pages
= 0;
7672 enum zone_type i
, j
;
7674 for_each_online_pgdat(pgdat
) {
7676 pgdat
->totalreserve_pages
= 0;
7678 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
7679 struct zone
*zone
= pgdat
->node_zones
+ i
;
7681 unsigned long managed_pages
= zone_managed_pages(zone
);
7683 /* Find valid and maximum lowmem_reserve in the zone */
7684 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
7685 if (zone
->lowmem_reserve
[j
] > max
)
7686 max
= zone
->lowmem_reserve
[j
];
7689 /* we treat the high watermark as reserved pages. */
7690 max
+= high_wmark_pages(zone
);
7692 if (max
> managed_pages
)
7693 max
= managed_pages
;
7695 pgdat
->totalreserve_pages
+= max
;
7697 reserve_pages
+= max
;
7700 totalreserve_pages
= reserve_pages
;
7704 * setup_per_zone_lowmem_reserve - called whenever
7705 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
7706 * has a correct pages reserved value, so an adequate number of
7707 * pages are left in the zone after a successful __alloc_pages().
7709 static void setup_per_zone_lowmem_reserve(void)
7711 struct pglist_data
*pgdat
;
7712 enum zone_type j
, idx
;
7714 for_each_online_pgdat(pgdat
) {
7715 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
7716 struct zone
*zone
= pgdat
->node_zones
+ j
;
7717 unsigned long managed_pages
= zone_managed_pages(zone
);
7719 zone
->lowmem_reserve
[j
] = 0;
7723 struct zone
*lower_zone
;
7726 lower_zone
= pgdat
->node_zones
+ idx
;
7728 if (sysctl_lowmem_reserve_ratio
[idx
] < 1) {
7729 sysctl_lowmem_reserve_ratio
[idx
] = 0;
7730 lower_zone
->lowmem_reserve
[j
] = 0;
7732 lower_zone
->lowmem_reserve
[j
] =
7733 managed_pages
/ sysctl_lowmem_reserve_ratio
[idx
];
7735 managed_pages
+= zone_managed_pages(lower_zone
);
7740 /* update totalreserve_pages */
7741 calculate_totalreserve_pages();
7744 static void __setup_per_zone_wmarks(void)
7746 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
7747 unsigned long lowmem_pages
= 0;
7749 unsigned long flags
;
7751 /* Calculate total number of !ZONE_HIGHMEM pages */
7752 for_each_zone(zone
) {
7753 if (!is_highmem(zone
))
7754 lowmem_pages
+= zone_managed_pages(zone
);
7757 for_each_zone(zone
) {
7760 spin_lock_irqsave(&zone
->lock
, flags
);
7761 tmp
= (u64
)pages_min
* zone_managed_pages(zone
);
7762 do_div(tmp
, lowmem_pages
);
7763 if (is_highmem(zone
)) {
7765 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7766 * need highmem pages, so cap pages_min to a small
7769 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7770 * deltas control async page reclaim, and so should
7771 * not be capped for highmem.
7773 unsigned long min_pages
;
7775 min_pages
= zone_managed_pages(zone
) / 1024;
7776 min_pages
= clamp(min_pages
, SWAP_CLUSTER_MAX
, 128UL);
7777 zone
->_watermark
[WMARK_MIN
] = min_pages
;
7780 * If it's a lowmem zone, reserve a number of pages
7781 * proportionate to the zone's size.
7783 zone
->_watermark
[WMARK_MIN
] = tmp
;
7787 * Set the kswapd watermarks distance according to the
7788 * scale factor in proportion to available memory, but
7789 * ensure a minimum size on small systems.
7791 tmp
= max_t(u64
, tmp
>> 2,
7792 mult_frac(zone_managed_pages(zone
),
7793 watermark_scale_factor
, 10000));
7795 zone
->_watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + tmp
;
7796 zone
->_watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + tmp
* 2;
7797 zone
->watermark_boost
= 0;
7799 spin_unlock_irqrestore(&zone
->lock
, flags
);
7802 /* update totalreserve_pages */
7803 calculate_totalreserve_pages();
7807 * setup_per_zone_wmarks - called when min_free_kbytes changes
7808 * or when memory is hot-{added|removed}
7810 * Ensures that the watermark[min,low,high] values for each zone are set
7811 * correctly with respect to min_free_kbytes.
7813 void setup_per_zone_wmarks(void)
7815 static DEFINE_SPINLOCK(lock
);
7818 __setup_per_zone_wmarks();
7823 * Initialise min_free_kbytes.
7825 * For small machines we want it small (128k min). For large machines
7826 * we want it large (64MB max). But it is not linear, because network
7827 * bandwidth does not increase linearly with machine size. We use
7829 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7830 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7846 int __meminit
init_per_zone_wmark_min(void)
7848 unsigned long lowmem_kbytes
;
7849 int new_min_free_kbytes
;
7851 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
7852 new_min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
7854 if (new_min_free_kbytes
> user_min_free_kbytes
) {
7855 min_free_kbytes
= new_min_free_kbytes
;
7856 if (min_free_kbytes
< 128)
7857 min_free_kbytes
= 128;
7858 if (min_free_kbytes
> 65536)
7859 min_free_kbytes
= 65536;
7861 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7862 new_min_free_kbytes
, user_min_free_kbytes
);
7864 setup_per_zone_wmarks();
7865 refresh_zone_stat_thresholds();
7866 setup_per_zone_lowmem_reserve();
7869 setup_min_unmapped_ratio();
7870 setup_min_slab_ratio();
7875 postcore_initcall(init_per_zone_wmark_min
)
7878 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7879 * that we can call two helper functions whenever min_free_kbytes
7882 int min_free_kbytes_sysctl_handler(struct ctl_table
*table
, int write
,
7883 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7887 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7892 user_min_free_kbytes
= min_free_kbytes
;
7893 setup_per_zone_wmarks();
7898 int watermark_boost_factor_sysctl_handler(struct ctl_table
*table
, int write
,
7899 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7903 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7910 int watermark_scale_factor_sysctl_handler(struct ctl_table
*table
, int write
,
7911 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7915 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7920 setup_per_zone_wmarks();
7926 static void setup_min_unmapped_ratio(void)
7931 for_each_online_pgdat(pgdat
)
7932 pgdat
->min_unmapped_pages
= 0;
7935 zone
->zone_pgdat
->min_unmapped_pages
+= (zone_managed_pages(zone
) *
7936 sysctl_min_unmapped_ratio
) / 100;
7940 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
7941 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7945 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7949 setup_min_unmapped_ratio();
7954 static void setup_min_slab_ratio(void)
7959 for_each_online_pgdat(pgdat
)
7960 pgdat
->min_slab_pages
= 0;
7963 zone
->zone_pgdat
->min_slab_pages
+= (zone_managed_pages(zone
) *
7964 sysctl_min_slab_ratio
) / 100;
7967 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
7968 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7972 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7976 setup_min_slab_ratio();
7983 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7984 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7985 * whenever sysctl_lowmem_reserve_ratio changes.
7987 * The reserve ratio obviously has absolutely no relation with the
7988 * minimum watermarks. The lowmem reserve ratio can only make sense
7989 * if in function of the boot time zone sizes.
7991 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
7992 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7994 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7995 setup_per_zone_lowmem_reserve();
8000 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8001 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8002 * pagelist can have before it gets flushed back to buddy allocator.
8004 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table
*table
, int write
,
8005 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
8008 int old_percpu_pagelist_fraction
;
8011 mutex_lock(&pcp_batch_high_lock
);
8012 old_percpu_pagelist_fraction
= percpu_pagelist_fraction
;
8014 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
8015 if (!write
|| ret
< 0)
8018 /* Sanity checking to avoid pcp imbalance */
8019 if (percpu_pagelist_fraction
&&
8020 percpu_pagelist_fraction
< MIN_PERCPU_PAGELIST_FRACTION
) {
8021 percpu_pagelist_fraction
= old_percpu_pagelist_fraction
;
8027 if (percpu_pagelist_fraction
== old_percpu_pagelist_fraction
)
8030 for_each_populated_zone(zone
) {
8033 for_each_possible_cpu(cpu
)
8034 pageset_set_high_and_batch(zone
,
8035 per_cpu_ptr(zone
->pageset
, cpu
));
8038 mutex_unlock(&pcp_batch_high_lock
);
8042 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8044 * Returns the number of pages that arch has reserved but
8045 * is not known to alloc_large_system_hash().
8047 static unsigned long __init
arch_reserved_kernel_pages(void)
8054 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8055 * machines. As memory size is increased the scale is also increased but at
8056 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8057 * quadruples the scale is increased by one, which means the size of hash table
8058 * only doubles, instead of quadrupling as well.
8059 * Because 32-bit systems cannot have large physical memory, where this scaling
8060 * makes sense, it is disabled on such platforms.
8062 #if __BITS_PER_LONG > 32
8063 #define ADAPT_SCALE_BASE (64ul << 30)
8064 #define ADAPT_SCALE_SHIFT 2
8065 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8069 * allocate a large system hash table from bootmem
8070 * - it is assumed that the hash table must contain an exact power-of-2
8071 * quantity of entries
8072 * - limit is the number of hash buckets, not the total allocation size
8074 void *__init
alloc_large_system_hash(const char *tablename
,
8075 unsigned long bucketsize
,
8076 unsigned long numentries
,
8079 unsigned int *_hash_shift
,
8080 unsigned int *_hash_mask
,
8081 unsigned long low_limit
,
8082 unsigned long high_limit
)
8084 unsigned long long max
= high_limit
;
8085 unsigned long log2qty
, size
;
8090 /* allow the kernel cmdline to have a say */
8092 /* round applicable memory size up to nearest megabyte */
8093 numentries
= nr_kernel_pages
;
8094 numentries
-= arch_reserved_kernel_pages();
8096 /* It isn't necessary when PAGE_SIZE >= 1MB */
8097 if (PAGE_SHIFT
< 20)
8098 numentries
= round_up(numentries
, (1<<20)/PAGE_SIZE
);
8100 #if __BITS_PER_LONG > 32
8102 unsigned long adapt
;
8104 for (adapt
= ADAPT_SCALE_NPAGES
; adapt
< numentries
;
8105 adapt
<<= ADAPT_SCALE_SHIFT
)
8110 /* limit to 1 bucket per 2^scale bytes of low memory */
8111 if (scale
> PAGE_SHIFT
)
8112 numentries
>>= (scale
- PAGE_SHIFT
);
8114 numentries
<<= (PAGE_SHIFT
- scale
);
8116 /* Make sure we've got at least a 0-order allocation.. */
8117 if (unlikely(flags
& HASH_SMALL
)) {
8118 /* Makes no sense without HASH_EARLY */
8119 WARN_ON(!(flags
& HASH_EARLY
));
8120 if (!(numentries
>> *_hash_shift
)) {
8121 numentries
= 1UL << *_hash_shift
;
8122 BUG_ON(!numentries
);
8124 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
8125 numentries
= PAGE_SIZE
/ bucketsize
;
8127 numentries
= roundup_pow_of_two(numentries
);
8129 /* limit allocation size to 1/16 total memory by default */
8131 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
8132 do_div(max
, bucketsize
);
8134 max
= min(max
, 0x80000000ULL
);
8136 if (numentries
< low_limit
)
8137 numentries
= low_limit
;
8138 if (numentries
> max
)
8141 log2qty
= ilog2(numentries
);
8143 gfp_flags
= (flags
& HASH_ZERO
) ? GFP_ATOMIC
| __GFP_ZERO
: GFP_ATOMIC
;
8146 size
= bucketsize
<< log2qty
;
8147 if (flags
& HASH_EARLY
) {
8148 if (flags
& HASH_ZERO
)
8149 table
= memblock_alloc(size
, SMP_CACHE_BYTES
);
8151 table
= memblock_alloc_raw(size
,
8153 } else if (get_order(size
) >= MAX_ORDER
|| hashdist
) {
8154 table
= __vmalloc(size
, gfp_flags
, PAGE_KERNEL
);
8158 * If bucketsize is not a power-of-two, we may free
8159 * some pages at the end of hash table which
8160 * alloc_pages_exact() automatically does
8162 table
= alloc_pages_exact(size
, gfp_flags
);
8163 kmemleak_alloc(table
, size
, 1, gfp_flags
);
8165 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
8168 panic("Failed to allocate %s hash table\n", tablename
);
8170 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8171 tablename
, 1UL << log2qty
, ilog2(size
) - PAGE_SHIFT
, size
,
8172 virt
? "vmalloc" : "linear");
8175 *_hash_shift
= log2qty
;
8177 *_hash_mask
= (1 << log2qty
) - 1;
8183 * This function checks whether pageblock includes unmovable pages or not.
8184 * If @count is not zero, it is okay to include less @count unmovable pages
8186 * PageLRU check without isolation or lru_lock could race so that
8187 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8188 * check without lock_page also may miss some movable non-lru pages at
8189 * race condition. So you can't expect this function should be exact.
8191 bool has_unmovable_pages(struct zone
*zone
, struct page
*page
, int count
,
8192 int migratetype
, int flags
)
8194 unsigned long found
;
8195 unsigned long iter
= 0;
8196 unsigned long pfn
= page_to_pfn(page
);
8197 const char *reason
= "unmovable page";
8200 * TODO we could make this much more efficient by not checking every
8201 * page in the range if we know all of them are in MOVABLE_ZONE and
8202 * that the movable zone guarantees that pages are migratable but
8203 * the later is not the case right now unfortunatelly. E.g. movablecore
8204 * can still lead to having bootmem allocations in zone_movable.
8207 if (is_migrate_cma_page(page
)) {
8209 * CMA allocations (alloc_contig_range) really need to mark
8210 * isolate CMA pageblocks even when they are not movable in fact
8211 * so consider them movable here.
8213 if (is_migrate_cma(migratetype
))
8216 reason
= "CMA page";
8220 for (found
= 0; iter
< pageblock_nr_pages
; iter
++) {
8221 unsigned long check
= pfn
+ iter
;
8223 if (!pfn_valid_within(check
))
8226 page
= pfn_to_page(check
);
8228 if (PageReserved(page
))
8232 * If the zone is movable and we have ruled out all reserved
8233 * pages then it should be reasonably safe to assume the rest
8236 if (zone_idx(zone
) == ZONE_MOVABLE
)
8240 * Hugepages are not in LRU lists, but they're movable.
8241 * We need not scan over tail pages because we don't
8242 * handle each tail page individually in migration.
8244 if (PageHuge(page
)) {
8245 struct page
*head
= compound_head(page
);
8246 unsigned int skip_pages
;
8248 if (!hugepage_migration_supported(page_hstate(head
)))
8251 skip_pages
= compound_nr(head
) - (page
- head
);
8252 iter
+= skip_pages
- 1;
8257 * We can't use page_count without pin a page
8258 * because another CPU can free compound page.
8259 * This check already skips compound tails of THP
8260 * because their page->_refcount is zero at all time.
8262 if (!page_ref_count(page
)) {
8263 if (PageBuddy(page
))
8264 iter
+= (1 << page_order(page
)) - 1;
8269 * The HWPoisoned page may be not in buddy system, and
8270 * page_count() is not 0.
8272 if ((flags
& SKIP_HWPOISON
) && PageHWPoison(page
))
8275 if (__PageMovable(page
))
8281 * If there are RECLAIMABLE pages, we need to check
8282 * it. But now, memory offline itself doesn't call
8283 * shrink_node_slabs() and it still to be fixed.
8286 * If the page is not RAM, page_count()should be 0.
8287 * we don't need more check. This is an _used_ not-movable page.
8289 * The problematic thing here is PG_reserved pages. PG_reserved
8290 * is set to both of a memory hole page and a _used_ kernel
8298 WARN_ON_ONCE(zone_idx(zone
) == ZONE_MOVABLE
);
8299 if (flags
& REPORT_FAILURE
)
8300 dump_page(pfn_to_page(pfn
+ iter
), reason
);
8304 #ifdef CONFIG_CONTIG_ALLOC
8305 static unsigned long pfn_max_align_down(unsigned long pfn
)
8307 return pfn
& ~(max_t(unsigned long, MAX_ORDER_NR_PAGES
,
8308 pageblock_nr_pages
) - 1);
8311 static unsigned long pfn_max_align_up(unsigned long pfn
)
8313 return ALIGN(pfn
, max_t(unsigned long, MAX_ORDER_NR_PAGES
,
8314 pageblock_nr_pages
));
8317 /* [start, end) must belong to a single zone. */
8318 static int __alloc_contig_migrate_range(struct compact_control
*cc
,
8319 unsigned long start
, unsigned long end
)
8321 /* This function is based on compact_zone() from compaction.c. */
8322 unsigned long nr_reclaimed
;
8323 unsigned long pfn
= start
;
8324 unsigned int tries
= 0;
8329 while (pfn
< end
|| !list_empty(&cc
->migratepages
)) {
8330 if (fatal_signal_pending(current
)) {
8335 if (list_empty(&cc
->migratepages
)) {
8336 cc
->nr_migratepages
= 0;
8337 pfn
= isolate_migratepages_range(cc
, pfn
, end
);
8343 } else if (++tries
== 5) {
8344 ret
= ret
< 0 ? ret
: -EBUSY
;
8348 nr_reclaimed
= reclaim_clean_pages_from_list(cc
->zone
,
8350 cc
->nr_migratepages
-= nr_reclaimed
;
8352 ret
= migrate_pages(&cc
->migratepages
, alloc_migrate_target
,
8353 NULL
, 0, cc
->mode
, MR_CONTIG_RANGE
);
8356 putback_movable_pages(&cc
->migratepages
);
8363 * alloc_contig_range() -- tries to allocate given range of pages
8364 * @start: start PFN to allocate
8365 * @end: one-past-the-last PFN to allocate
8366 * @migratetype: migratetype of the underlaying pageblocks (either
8367 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8368 * in range must have the same migratetype and it must
8369 * be either of the two.
8370 * @gfp_mask: GFP mask to use during compaction
8372 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8373 * aligned. The PFN range must belong to a single zone.
8375 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8376 * pageblocks in the range. Once isolated, the pageblocks should not
8377 * be modified by others.
8379 * Return: zero on success or negative error code. On success all
8380 * pages which PFN is in [start, end) are allocated for the caller and
8381 * need to be freed with free_contig_range().
8383 int alloc_contig_range(unsigned long start
, unsigned long end
,
8384 unsigned migratetype
, gfp_t gfp_mask
)
8386 unsigned long outer_start
, outer_end
;
8390 struct compact_control cc
= {
8391 .nr_migratepages
= 0,
8393 .zone
= page_zone(pfn_to_page(start
)),
8394 .mode
= MIGRATE_SYNC
,
8395 .ignore_skip_hint
= true,
8396 .no_set_skip_hint
= true,
8397 .gfp_mask
= current_gfp_context(gfp_mask
),
8399 INIT_LIST_HEAD(&cc
.migratepages
);
8402 * What we do here is we mark all pageblocks in range as
8403 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8404 * have different sizes, and due to the way page allocator
8405 * work, we align the range to biggest of the two pages so
8406 * that page allocator won't try to merge buddies from
8407 * different pageblocks and change MIGRATE_ISOLATE to some
8408 * other migration type.
8410 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8411 * migrate the pages from an unaligned range (ie. pages that
8412 * we are interested in). This will put all the pages in
8413 * range back to page allocator as MIGRATE_ISOLATE.
8415 * When this is done, we take the pages in range from page
8416 * allocator removing them from the buddy system. This way
8417 * page allocator will never consider using them.
8419 * This lets us mark the pageblocks back as
8420 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8421 * aligned range but not in the unaligned, original range are
8422 * put back to page allocator so that buddy can use them.
8425 ret
= start_isolate_page_range(pfn_max_align_down(start
),
8426 pfn_max_align_up(end
), migratetype
, 0);
8431 * In case of -EBUSY, we'd like to know which page causes problem.
8432 * So, just fall through. test_pages_isolated() has a tracepoint
8433 * which will report the busy page.
8435 * It is possible that busy pages could become available before
8436 * the call to test_pages_isolated, and the range will actually be
8437 * allocated. So, if we fall through be sure to clear ret so that
8438 * -EBUSY is not accidentally used or returned to caller.
8440 ret
= __alloc_contig_migrate_range(&cc
, start
, end
);
8441 if (ret
&& ret
!= -EBUSY
)
8446 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8447 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8448 * more, all pages in [start, end) are free in page allocator.
8449 * What we are going to do is to allocate all pages from
8450 * [start, end) (that is remove them from page allocator).
8452 * The only problem is that pages at the beginning and at the
8453 * end of interesting range may be not aligned with pages that
8454 * page allocator holds, ie. they can be part of higher order
8455 * pages. Because of this, we reserve the bigger range and
8456 * once this is done free the pages we are not interested in.
8458 * We don't have to hold zone->lock here because the pages are
8459 * isolated thus they won't get removed from buddy.
8462 lru_add_drain_all();
8465 outer_start
= start
;
8466 while (!PageBuddy(pfn_to_page(outer_start
))) {
8467 if (++order
>= MAX_ORDER
) {
8468 outer_start
= start
;
8471 outer_start
&= ~0UL << order
;
8474 if (outer_start
!= start
) {
8475 order
= page_order(pfn_to_page(outer_start
));
8478 * outer_start page could be small order buddy page and
8479 * it doesn't include start page. Adjust outer_start
8480 * in this case to report failed page properly
8481 * on tracepoint in test_pages_isolated()
8483 if (outer_start
+ (1UL << order
) <= start
)
8484 outer_start
= start
;
8487 /* Make sure the range is really isolated. */
8488 if (test_pages_isolated(outer_start
, end
, false)) {
8489 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8490 __func__
, outer_start
, end
);
8495 /* Grab isolated pages from freelists. */
8496 outer_end
= isolate_freepages_range(&cc
, outer_start
, end
);
8502 /* Free head and tail (if any) */
8503 if (start
!= outer_start
)
8504 free_contig_range(outer_start
, start
- outer_start
);
8505 if (end
!= outer_end
)
8506 free_contig_range(end
, outer_end
- end
);
8509 undo_isolate_page_range(pfn_max_align_down(start
),
8510 pfn_max_align_up(end
), migratetype
);
8513 #endif /* CONFIG_CONTIG_ALLOC */
8515 void free_contig_range(unsigned long pfn
, unsigned int nr_pages
)
8517 unsigned int count
= 0;
8519 for (; nr_pages
--; pfn
++) {
8520 struct page
*page
= pfn_to_page(pfn
);
8522 count
+= page_count(page
) != 1;
8525 WARN(count
!= 0, "%d pages are still in use!\n", count
);
8529 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8530 * page high values need to be recalulated.
8532 void __meminit
zone_pcp_update(struct zone
*zone
)
8535 mutex_lock(&pcp_batch_high_lock
);
8536 for_each_possible_cpu(cpu
)
8537 pageset_set_high_and_batch(zone
,
8538 per_cpu_ptr(zone
->pageset
, cpu
));
8539 mutex_unlock(&pcp_batch_high_lock
);
8542 void zone_pcp_reset(struct zone
*zone
)
8544 unsigned long flags
;
8546 struct per_cpu_pageset
*pset
;
8548 /* avoid races with drain_pages() */
8549 local_irq_save(flags
);
8550 if (zone
->pageset
!= &boot_pageset
) {
8551 for_each_online_cpu(cpu
) {
8552 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
8553 drain_zonestat(zone
, pset
);
8555 free_percpu(zone
->pageset
);
8556 zone
->pageset
= &boot_pageset
;
8558 local_irq_restore(flags
);
8561 #ifdef CONFIG_MEMORY_HOTREMOVE
8563 * All pages in the range must be in a single zone and isolated
8564 * before calling this.
8567 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
8571 unsigned int order
, i
;
8573 unsigned long flags
;
8574 unsigned long offlined_pages
= 0;
8576 /* find the first valid pfn */
8577 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
8581 return offlined_pages
;
8583 offline_mem_sections(pfn
, end_pfn
);
8584 zone
= page_zone(pfn_to_page(pfn
));
8585 spin_lock_irqsave(&zone
->lock
, flags
);
8587 while (pfn
< end_pfn
) {
8588 if (!pfn_valid(pfn
)) {
8592 page
= pfn_to_page(pfn
);
8594 * The HWPoisoned page may be not in buddy system, and
8595 * page_count() is not 0.
8597 if (unlikely(!PageBuddy(page
) && PageHWPoison(page
))) {
8599 SetPageReserved(page
);
8604 BUG_ON(page_count(page
));
8605 BUG_ON(!PageBuddy(page
));
8606 order
= page_order(page
);
8607 offlined_pages
+= 1 << order
;
8608 #ifdef CONFIG_DEBUG_VM
8609 pr_info("remove from free list %lx %d %lx\n",
8610 pfn
, 1 << order
, end_pfn
);
8612 del_page_from_free_area(page
, &zone
->free_area
[order
]);
8613 for (i
= 0; i
< (1 << order
); i
++)
8614 SetPageReserved((page
+i
));
8615 pfn
+= (1 << order
);
8617 spin_unlock_irqrestore(&zone
->lock
, flags
);
8619 return offlined_pages
;
8623 bool is_free_buddy_page(struct page
*page
)
8625 struct zone
*zone
= page_zone(page
);
8626 unsigned long pfn
= page_to_pfn(page
);
8627 unsigned long flags
;
8630 spin_lock_irqsave(&zone
->lock
, flags
);
8631 for (order
= 0; order
< MAX_ORDER
; order
++) {
8632 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
8634 if (PageBuddy(page_head
) && page_order(page_head
) >= order
)
8637 spin_unlock_irqrestore(&zone
->lock
, flags
);
8639 return order
< MAX_ORDER
;
8642 #ifdef CONFIG_MEMORY_FAILURE
8644 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8645 * test is performed under the zone lock to prevent a race against page
8648 bool set_hwpoison_free_buddy_page(struct page
*page
)
8650 struct zone
*zone
= page_zone(page
);
8651 unsigned long pfn
= page_to_pfn(page
);
8652 unsigned long flags
;
8654 bool hwpoisoned
= false;
8656 spin_lock_irqsave(&zone
->lock
, flags
);
8657 for (order
= 0; order
< MAX_ORDER
; order
++) {
8658 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
8660 if (PageBuddy(page_head
) && page_order(page_head
) >= order
) {
8661 if (!TestSetPageHWPoison(page
))
8666 spin_unlock_irqrestore(&zone
->lock
, flags
);