net: lantiq: Use napi_complete_done()
[linux/fpc-iii.git] / mm / page_alloc.c
blob67a9943aa595f62bb4fa45973a4301b8df05ae01
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/page_alloc.c
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/lockdep.h>
69 #include <linux/nmi.h>
70 #include <linux/psi.h>
72 #include <asm/sections.h>
73 #include <asm/tlbflush.h>
74 #include <asm/div64.h>
75 #include "internal.h"
76 #include "shuffle.h"
78 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
79 static DEFINE_MUTEX(pcp_batch_high_lock);
80 #define MIN_PERCPU_PAGELIST_FRACTION (8)
82 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
83 DEFINE_PER_CPU(int, numa_node);
84 EXPORT_PER_CPU_SYMBOL(numa_node);
85 #endif
87 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
89 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
91 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
92 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
93 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
94 * defined in <linux/topology.h>.
96 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
97 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
98 int _node_numa_mem_[MAX_NUMNODES];
99 #endif
101 /* work_structs for global per-cpu drains */
102 struct pcpu_drain {
103 struct zone *zone;
104 struct work_struct work;
106 DEFINE_MUTEX(pcpu_drain_mutex);
107 DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
109 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
110 volatile unsigned long latent_entropy __latent_entropy;
111 EXPORT_SYMBOL(latent_entropy);
112 #endif
115 * Array of node states.
117 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
118 [N_POSSIBLE] = NODE_MASK_ALL,
119 [N_ONLINE] = { { [0] = 1UL } },
120 #ifndef CONFIG_NUMA
121 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
122 #ifdef CONFIG_HIGHMEM
123 [N_HIGH_MEMORY] = { { [0] = 1UL } },
124 #endif
125 [N_MEMORY] = { { [0] = 1UL } },
126 [N_CPU] = { { [0] = 1UL } },
127 #endif /* NUMA */
129 EXPORT_SYMBOL(node_states);
131 atomic_long_t _totalram_pages __read_mostly;
132 EXPORT_SYMBOL(_totalram_pages);
133 unsigned long totalreserve_pages __read_mostly;
134 unsigned long totalcma_pages __read_mostly;
136 int percpu_pagelist_fraction;
137 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
138 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
139 DEFINE_STATIC_KEY_TRUE(init_on_alloc);
140 #else
141 DEFINE_STATIC_KEY_FALSE(init_on_alloc);
142 #endif
143 EXPORT_SYMBOL(init_on_alloc);
145 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
146 DEFINE_STATIC_KEY_TRUE(init_on_free);
147 #else
148 DEFINE_STATIC_KEY_FALSE(init_on_free);
149 #endif
150 EXPORT_SYMBOL(init_on_free);
152 static int __init early_init_on_alloc(char *buf)
154 int ret;
155 bool bool_result;
157 if (!buf)
158 return -EINVAL;
159 ret = kstrtobool(buf, &bool_result);
160 if (bool_result && page_poisoning_enabled())
161 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
162 if (bool_result)
163 static_branch_enable(&init_on_alloc);
164 else
165 static_branch_disable(&init_on_alloc);
166 return ret;
168 early_param("init_on_alloc", early_init_on_alloc);
170 static int __init early_init_on_free(char *buf)
172 int ret;
173 bool bool_result;
175 if (!buf)
176 return -EINVAL;
177 ret = kstrtobool(buf, &bool_result);
178 if (bool_result && page_poisoning_enabled())
179 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
180 if (bool_result)
181 static_branch_enable(&init_on_free);
182 else
183 static_branch_disable(&init_on_free);
184 return ret;
186 early_param("init_on_free", early_init_on_free);
189 * A cached value of the page's pageblock's migratetype, used when the page is
190 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
191 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
192 * Also the migratetype set in the page does not necessarily match the pcplist
193 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
194 * other index - this ensures that it will be put on the correct CMA freelist.
196 static inline int get_pcppage_migratetype(struct page *page)
198 return page->index;
201 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
203 page->index = migratetype;
206 #ifdef CONFIG_PM_SLEEP
208 * The following functions are used by the suspend/hibernate code to temporarily
209 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
210 * while devices are suspended. To avoid races with the suspend/hibernate code,
211 * they should always be called with system_transition_mutex held
212 * (gfp_allowed_mask also should only be modified with system_transition_mutex
213 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
214 * with that modification).
217 static gfp_t saved_gfp_mask;
219 void pm_restore_gfp_mask(void)
221 WARN_ON(!mutex_is_locked(&system_transition_mutex));
222 if (saved_gfp_mask) {
223 gfp_allowed_mask = saved_gfp_mask;
224 saved_gfp_mask = 0;
228 void pm_restrict_gfp_mask(void)
230 WARN_ON(!mutex_is_locked(&system_transition_mutex));
231 WARN_ON(saved_gfp_mask);
232 saved_gfp_mask = gfp_allowed_mask;
233 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
236 bool pm_suspended_storage(void)
238 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
239 return false;
240 return true;
242 #endif /* CONFIG_PM_SLEEP */
244 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
245 unsigned int pageblock_order __read_mostly;
246 #endif
248 static void __free_pages_ok(struct page *page, unsigned int order);
251 * results with 256, 32 in the lowmem_reserve sysctl:
252 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
253 * 1G machine -> (16M dma, 784M normal, 224M high)
254 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
255 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
256 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
258 * TBD: should special case ZONE_DMA32 machines here - in those we normally
259 * don't need any ZONE_NORMAL reservation
261 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
262 #ifdef CONFIG_ZONE_DMA
263 [ZONE_DMA] = 256,
264 #endif
265 #ifdef CONFIG_ZONE_DMA32
266 [ZONE_DMA32] = 256,
267 #endif
268 [ZONE_NORMAL] = 32,
269 #ifdef CONFIG_HIGHMEM
270 [ZONE_HIGHMEM] = 0,
271 #endif
272 [ZONE_MOVABLE] = 0,
275 static char * const zone_names[MAX_NR_ZONES] = {
276 #ifdef CONFIG_ZONE_DMA
277 "DMA",
278 #endif
279 #ifdef CONFIG_ZONE_DMA32
280 "DMA32",
281 #endif
282 "Normal",
283 #ifdef CONFIG_HIGHMEM
284 "HighMem",
285 #endif
286 "Movable",
287 #ifdef CONFIG_ZONE_DEVICE
288 "Device",
289 #endif
292 const char * const migratetype_names[MIGRATE_TYPES] = {
293 "Unmovable",
294 "Movable",
295 "Reclaimable",
296 "HighAtomic",
297 #ifdef CONFIG_CMA
298 "CMA",
299 #endif
300 #ifdef CONFIG_MEMORY_ISOLATION
301 "Isolate",
302 #endif
305 compound_page_dtor * const compound_page_dtors[] = {
306 NULL,
307 free_compound_page,
308 #ifdef CONFIG_HUGETLB_PAGE
309 free_huge_page,
310 #endif
311 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
312 free_transhuge_page,
313 #endif
316 int min_free_kbytes = 1024;
317 int user_min_free_kbytes = -1;
318 #ifdef CONFIG_DISCONTIGMEM
320 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
321 * are not on separate NUMA nodes. Functionally this works but with
322 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
323 * quite small. By default, do not boost watermarks on discontigmem as in
324 * many cases very high-order allocations like THP are likely to be
325 * unsupported and the premature reclaim offsets the advantage of long-term
326 * fragmentation avoidance.
328 int watermark_boost_factor __read_mostly;
329 #else
330 int watermark_boost_factor __read_mostly = 15000;
331 #endif
332 int watermark_scale_factor = 10;
334 static unsigned long nr_kernel_pages __initdata;
335 static unsigned long nr_all_pages __initdata;
336 static unsigned long dma_reserve __initdata;
338 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
339 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
340 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
341 static unsigned long required_kernelcore __initdata;
342 static unsigned long required_kernelcore_percent __initdata;
343 static unsigned long required_movablecore __initdata;
344 static unsigned long required_movablecore_percent __initdata;
345 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
346 static bool mirrored_kernelcore __meminitdata;
348 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
349 int movable_zone;
350 EXPORT_SYMBOL(movable_zone);
351 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
353 #if MAX_NUMNODES > 1
354 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
355 unsigned int nr_online_nodes __read_mostly = 1;
356 EXPORT_SYMBOL(nr_node_ids);
357 EXPORT_SYMBOL(nr_online_nodes);
358 #endif
360 int page_group_by_mobility_disabled __read_mostly;
362 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
364 * During boot we initialize deferred pages on-demand, as needed, but once
365 * page_alloc_init_late() has finished, the deferred pages are all initialized,
366 * and we can permanently disable that path.
368 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
371 * Calling kasan_free_pages() only after deferred memory initialization
372 * has completed. Poisoning pages during deferred memory init will greatly
373 * lengthen the process and cause problem in large memory systems as the
374 * deferred pages initialization is done with interrupt disabled.
376 * Assuming that there will be no reference to those newly initialized
377 * pages before they are ever allocated, this should have no effect on
378 * KASAN memory tracking as the poison will be properly inserted at page
379 * allocation time. The only corner case is when pages are allocated by
380 * on-demand allocation and then freed again before the deferred pages
381 * initialization is done, but this is not likely to happen.
383 static inline void kasan_free_nondeferred_pages(struct page *page, int order)
385 if (!static_branch_unlikely(&deferred_pages))
386 kasan_free_pages(page, order);
389 /* Returns true if the struct page for the pfn is uninitialised */
390 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
392 int nid = early_pfn_to_nid(pfn);
394 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
395 return true;
397 return false;
401 * Returns true when the remaining initialisation should be deferred until
402 * later in the boot cycle when it can be parallelised.
404 static bool __meminit
405 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
407 static unsigned long prev_end_pfn, nr_initialised;
410 * prev_end_pfn static that contains the end of previous zone
411 * No need to protect because called very early in boot before smp_init.
413 if (prev_end_pfn != end_pfn) {
414 prev_end_pfn = end_pfn;
415 nr_initialised = 0;
418 /* Always populate low zones for address-constrained allocations */
419 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
420 return false;
423 * We start only with one section of pages, more pages are added as
424 * needed until the rest of deferred pages are initialized.
426 nr_initialised++;
427 if ((nr_initialised > PAGES_PER_SECTION) &&
428 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
429 NODE_DATA(nid)->first_deferred_pfn = pfn;
430 return true;
432 return false;
434 #else
435 #define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
437 static inline bool early_page_uninitialised(unsigned long pfn)
439 return false;
442 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
444 return false;
446 #endif
448 /* Return a pointer to the bitmap storing bits affecting a block of pages */
449 static inline unsigned long *get_pageblock_bitmap(struct page *page,
450 unsigned long pfn)
452 #ifdef CONFIG_SPARSEMEM
453 return section_to_usemap(__pfn_to_section(pfn));
454 #else
455 return page_zone(page)->pageblock_flags;
456 #endif /* CONFIG_SPARSEMEM */
459 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
461 #ifdef CONFIG_SPARSEMEM
462 pfn &= (PAGES_PER_SECTION-1);
463 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
464 #else
465 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
466 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
467 #endif /* CONFIG_SPARSEMEM */
471 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
472 * @page: The page within the block of interest
473 * @pfn: The target page frame number
474 * @end_bitidx: The last bit of interest to retrieve
475 * @mask: mask of bits that the caller is interested in
477 * Return: pageblock_bits flags
479 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
480 unsigned long pfn,
481 unsigned long end_bitidx,
482 unsigned long mask)
484 unsigned long *bitmap;
485 unsigned long bitidx, word_bitidx;
486 unsigned long word;
488 bitmap = get_pageblock_bitmap(page, pfn);
489 bitidx = pfn_to_bitidx(page, pfn);
490 word_bitidx = bitidx / BITS_PER_LONG;
491 bitidx &= (BITS_PER_LONG-1);
493 word = bitmap[word_bitidx];
494 bitidx += end_bitidx;
495 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
498 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
499 unsigned long end_bitidx,
500 unsigned long mask)
502 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
505 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
507 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
511 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
512 * @page: The page within the block of interest
513 * @flags: The flags to set
514 * @pfn: The target page frame number
515 * @end_bitidx: The last bit of interest
516 * @mask: mask of bits that the caller is interested in
518 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
519 unsigned long pfn,
520 unsigned long end_bitidx,
521 unsigned long mask)
523 unsigned long *bitmap;
524 unsigned long bitidx, word_bitidx;
525 unsigned long old_word, word;
527 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
528 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
530 bitmap = get_pageblock_bitmap(page, pfn);
531 bitidx = pfn_to_bitidx(page, pfn);
532 word_bitidx = bitidx / BITS_PER_LONG;
533 bitidx &= (BITS_PER_LONG-1);
535 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
537 bitidx += end_bitidx;
538 mask <<= (BITS_PER_LONG - bitidx - 1);
539 flags <<= (BITS_PER_LONG - bitidx - 1);
541 word = READ_ONCE(bitmap[word_bitidx]);
542 for (;;) {
543 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
544 if (word == old_word)
545 break;
546 word = old_word;
550 void set_pageblock_migratetype(struct page *page, int migratetype)
552 if (unlikely(page_group_by_mobility_disabled &&
553 migratetype < MIGRATE_PCPTYPES))
554 migratetype = MIGRATE_UNMOVABLE;
556 set_pageblock_flags_group(page, (unsigned long)migratetype,
557 PB_migrate, PB_migrate_end);
560 #ifdef CONFIG_DEBUG_VM
561 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
563 int ret = 0;
564 unsigned seq;
565 unsigned long pfn = page_to_pfn(page);
566 unsigned long sp, start_pfn;
568 do {
569 seq = zone_span_seqbegin(zone);
570 start_pfn = zone->zone_start_pfn;
571 sp = zone->spanned_pages;
572 if (!zone_spans_pfn(zone, pfn))
573 ret = 1;
574 } while (zone_span_seqretry(zone, seq));
576 if (ret)
577 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
578 pfn, zone_to_nid(zone), zone->name,
579 start_pfn, start_pfn + sp);
581 return ret;
584 static int page_is_consistent(struct zone *zone, struct page *page)
586 if (!pfn_valid_within(page_to_pfn(page)))
587 return 0;
588 if (zone != page_zone(page))
589 return 0;
591 return 1;
594 * Temporary debugging check for pages not lying within a given zone.
596 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
598 if (page_outside_zone_boundaries(zone, page))
599 return 1;
600 if (!page_is_consistent(zone, page))
601 return 1;
603 return 0;
605 #else
606 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
608 return 0;
610 #endif
612 static void bad_page(struct page *page, const char *reason,
613 unsigned long bad_flags)
615 static unsigned long resume;
616 static unsigned long nr_shown;
617 static unsigned long nr_unshown;
620 * Allow a burst of 60 reports, then keep quiet for that minute;
621 * or allow a steady drip of one report per second.
623 if (nr_shown == 60) {
624 if (time_before(jiffies, resume)) {
625 nr_unshown++;
626 goto out;
628 if (nr_unshown) {
629 pr_alert(
630 "BUG: Bad page state: %lu messages suppressed\n",
631 nr_unshown);
632 nr_unshown = 0;
634 nr_shown = 0;
636 if (nr_shown++ == 0)
637 resume = jiffies + 60 * HZ;
639 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
640 current->comm, page_to_pfn(page));
641 __dump_page(page, reason);
642 bad_flags &= page->flags;
643 if (bad_flags)
644 pr_alert("bad because of flags: %#lx(%pGp)\n",
645 bad_flags, &bad_flags);
646 dump_page_owner(page);
648 print_modules();
649 dump_stack();
650 out:
651 /* Leave bad fields for debug, except PageBuddy could make trouble */
652 page_mapcount_reset(page); /* remove PageBuddy */
653 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
657 * Higher-order pages are called "compound pages". They are structured thusly:
659 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
661 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
662 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
664 * The first tail page's ->compound_dtor holds the offset in array of compound
665 * page destructors. See compound_page_dtors.
667 * The first tail page's ->compound_order holds the order of allocation.
668 * This usage means that zero-order pages may not be compound.
671 void free_compound_page(struct page *page)
673 mem_cgroup_uncharge(page);
674 __free_pages_ok(page, compound_order(page));
677 void prep_compound_page(struct page *page, unsigned int order)
679 int i;
680 int nr_pages = 1 << order;
682 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
683 set_compound_order(page, order);
684 __SetPageHead(page);
685 for (i = 1; i < nr_pages; i++) {
686 struct page *p = page + i;
687 set_page_count(p, 0);
688 p->mapping = TAIL_MAPPING;
689 set_compound_head(p, page);
691 atomic_set(compound_mapcount_ptr(page), -1);
694 #ifdef CONFIG_DEBUG_PAGEALLOC
695 unsigned int _debug_guardpage_minorder;
697 bool _debug_pagealloc_enabled_early __read_mostly
698 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
699 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
700 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
701 EXPORT_SYMBOL(_debug_pagealloc_enabled);
703 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
705 static int __init early_debug_pagealloc(char *buf)
707 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
709 early_param("debug_pagealloc", early_debug_pagealloc);
711 void init_debug_pagealloc(void)
713 if (!debug_pagealloc_enabled())
714 return;
716 static_branch_enable(&_debug_pagealloc_enabled);
718 if (!debug_guardpage_minorder())
719 return;
721 static_branch_enable(&_debug_guardpage_enabled);
724 static int __init debug_guardpage_minorder_setup(char *buf)
726 unsigned long res;
728 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
729 pr_err("Bad debug_guardpage_minorder value\n");
730 return 0;
732 _debug_guardpage_minorder = res;
733 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
734 return 0;
736 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
738 static inline bool set_page_guard(struct zone *zone, struct page *page,
739 unsigned int order, int migratetype)
741 if (!debug_guardpage_enabled())
742 return false;
744 if (order >= debug_guardpage_minorder())
745 return false;
747 __SetPageGuard(page);
748 INIT_LIST_HEAD(&page->lru);
749 set_page_private(page, order);
750 /* Guard pages are not available for any usage */
751 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
753 return true;
756 static inline void clear_page_guard(struct zone *zone, struct page *page,
757 unsigned int order, int migratetype)
759 if (!debug_guardpage_enabled())
760 return;
762 __ClearPageGuard(page);
764 set_page_private(page, 0);
765 if (!is_migrate_isolate(migratetype))
766 __mod_zone_freepage_state(zone, (1 << order), migratetype);
768 #else
769 static inline bool set_page_guard(struct zone *zone, struct page *page,
770 unsigned int order, int migratetype) { return false; }
771 static inline void clear_page_guard(struct zone *zone, struct page *page,
772 unsigned int order, int migratetype) {}
773 #endif
775 static inline void set_page_order(struct page *page, unsigned int order)
777 set_page_private(page, order);
778 __SetPageBuddy(page);
782 * This function checks whether a page is free && is the buddy
783 * we can coalesce a page and its buddy if
784 * (a) the buddy is not in a hole (check before calling!) &&
785 * (b) the buddy is in the buddy system &&
786 * (c) a page and its buddy have the same order &&
787 * (d) a page and its buddy are in the same zone.
789 * For recording whether a page is in the buddy system, we set PageBuddy.
790 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
792 * For recording page's order, we use page_private(page).
794 static inline int page_is_buddy(struct page *page, struct page *buddy,
795 unsigned int order)
797 if (page_is_guard(buddy) && page_order(buddy) == order) {
798 if (page_zone_id(page) != page_zone_id(buddy))
799 return 0;
801 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
803 return 1;
806 if (PageBuddy(buddy) && page_order(buddy) == order) {
808 * zone check is done late to avoid uselessly
809 * calculating zone/node ids for pages that could
810 * never merge.
812 if (page_zone_id(page) != page_zone_id(buddy))
813 return 0;
815 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
817 return 1;
819 return 0;
822 #ifdef CONFIG_COMPACTION
823 static inline struct capture_control *task_capc(struct zone *zone)
825 struct capture_control *capc = current->capture_control;
827 return capc &&
828 !(current->flags & PF_KTHREAD) &&
829 !capc->page &&
830 capc->cc->zone == zone &&
831 capc->cc->direct_compaction ? capc : NULL;
834 static inline bool
835 compaction_capture(struct capture_control *capc, struct page *page,
836 int order, int migratetype)
838 if (!capc || order != capc->cc->order)
839 return false;
841 /* Do not accidentally pollute CMA or isolated regions*/
842 if (is_migrate_cma(migratetype) ||
843 is_migrate_isolate(migratetype))
844 return false;
847 * Do not let lower order allocations polluate a movable pageblock.
848 * This might let an unmovable request use a reclaimable pageblock
849 * and vice-versa but no more than normal fallback logic which can
850 * have trouble finding a high-order free page.
852 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
853 return false;
855 capc->page = page;
856 return true;
859 #else
860 static inline struct capture_control *task_capc(struct zone *zone)
862 return NULL;
865 static inline bool
866 compaction_capture(struct capture_control *capc, struct page *page,
867 int order, int migratetype)
869 return false;
871 #endif /* CONFIG_COMPACTION */
874 * Freeing function for a buddy system allocator.
876 * The concept of a buddy system is to maintain direct-mapped table
877 * (containing bit values) for memory blocks of various "orders".
878 * The bottom level table contains the map for the smallest allocatable
879 * units of memory (here, pages), and each level above it describes
880 * pairs of units from the levels below, hence, "buddies".
881 * At a high level, all that happens here is marking the table entry
882 * at the bottom level available, and propagating the changes upward
883 * as necessary, plus some accounting needed to play nicely with other
884 * parts of the VM system.
885 * At each level, we keep a list of pages, which are heads of continuous
886 * free pages of length of (1 << order) and marked with PageBuddy.
887 * Page's order is recorded in page_private(page) field.
888 * So when we are allocating or freeing one, we can derive the state of the
889 * other. That is, if we allocate a small block, and both were
890 * free, the remainder of the region must be split into blocks.
891 * If a block is freed, and its buddy is also free, then this
892 * triggers coalescing into a block of larger size.
894 * -- nyc
897 static inline void __free_one_page(struct page *page,
898 unsigned long pfn,
899 struct zone *zone, unsigned int order,
900 int migratetype)
902 unsigned long combined_pfn;
903 unsigned long uninitialized_var(buddy_pfn);
904 struct page *buddy;
905 unsigned int max_order;
906 struct capture_control *capc = task_capc(zone);
908 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
910 VM_BUG_ON(!zone_is_initialized(zone));
911 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
913 VM_BUG_ON(migratetype == -1);
914 if (likely(!is_migrate_isolate(migratetype)))
915 __mod_zone_freepage_state(zone, 1 << order, migratetype);
917 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
918 VM_BUG_ON_PAGE(bad_range(zone, page), page);
920 continue_merging:
921 while (order < max_order - 1) {
922 if (compaction_capture(capc, page, order, migratetype)) {
923 __mod_zone_freepage_state(zone, -(1 << order),
924 migratetype);
925 return;
927 buddy_pfn = __find_buddy_pfn(pfn, order);
928 buddy = page + (buddy_pfn - pfn);
930 if (!pfn_valid_within(buddy_pfn))
931 goto done_merging;
932 if (!page_is_buddy(page, buddy, order))
933 goto done_merging;
935 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
936 * merge with it and move up one order.
938 if (page_is_guard(buddy))
939 clear_page_guard(zone, buddy, order, migratetype);
940 else
941 del_page_from_free_area(buddy, &zone->free_area[order]);
942 combined_pfn = buddy_pfn & pfn;
943 page = page + (combined_pfn - pfn);
944 pfn = combined_pfn;
945 order++;
947 if (max_order < MAX_ORDER) {
948 /* If we are here, it means order is >= pageblock_order.
949 * We want to prevent merge between freepages on isolate
950 * pageblock and normal pageblock. Without this, pageblock
951 * isolation could cause incorrect freepage or CMA accounting.
953 * We don't want to hit this code for the more frequent
954 * low-order merging.
956 if (unlikely(has_isolate_pageblock(zone))) {
957 int buddy_mt;
959 buddy_pfn = __find_buddy_pfn(pfn, order);
960 buddy = page + (buddy_pfn - pfn);
961 buddy_mt = get_pageblock_migratetype(buddy);
963 if (migratetype != buddy_mt
964 && (is_migrate_isolate(migratetype) ||
965 is_migrate_isolate(buddy_mt)))
966 goto done_merging;
968 max_order++;
969 goto continue_merging;
972 done_merging:
973 set_page_order(page, order);
976 * If this is not the largest possible page, check if the buddy
977 * of the next-highest order is free. If it is, it's possible
978 * that pages are being freed that will coalesce soon. In case,
979 * that is happening, add the free page to the tail of the list
980 * so it's less likely to be used soon and more likely to be merged
981 * as a higher order page
983 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)
984 && !is_shuffle_order(order)) {
985 struct page *higher_page, *higher_buddy;
986 combined_pfn = buddy_pfn & pfn;
987 higher_page = page + (combined_pfn - pfn);
988 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
989 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
990 if (pfn_valid_within(buddy_pfn) &&
991 page_is_buddy(higher_page, higher_buddy, order + 1)) {
992 add_to_free_area_tail(page, &zone->free_area[order],
993 migratetype);
994 return;
998 if (is_shuffle_order(order))
999 add_to_free_area_random(page, &zone->free_area[order],
1000 migratetype);
1001 else
1002 add_to_free_area(page, &zone->free_area[order], migratetype);
1007 * A bad page could be due to a number of fields. Instead of multiple branches,
1008 * try and check multiple fields with one check. The caller must do a detailed
1009 * check if necessary.
1011 static inline bool page_expected_state(struct page *page,
1012 unsigned long check_flags)
1014 if (unlikely(atomic_read(&page->_mapcount) != -1))
1015 return false;
1017 if (unlikely((unsigned long)page->mapping |
1018 page_ref_count(page) |
1019 #ifdef CONFIG_MEMCG
1020 (unsigned long)page->mem_cgroup |
1021 #endif
1022 (page->flags & check_flags)))
1023 return false;
1025 return true;
1028 static void free_pages_check_bad(struct page *page)
1030 const char *bad_reason;
1031 unsigned long bad_flags;
1033 bad_reason = NULL;
1034 bad_flags = 0;
1036 if (unlikely(atomic_read(&page->_mapcount) != -1))
1037 bad_reason = "nonzero mapcount";
1038 if (unlikely(page->mapping != NULL))
1039 bad_reason = "non-NULL mapping";
1040 if (unlikely(page_ref_count(page) != 0))
1041 bad_reason = "nonzero _refcount";
1042 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
1043 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1044 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
1046 #ifdef CONFIG_MEMCG
1047 if (unlikely(page->mem_cgroup))
1048 bad_reason = "page still charged to cgroup";
1049 #endif
1050 bad_page(page, bad_reason, bad_flags);
1053 static inline int free_pages_check(struct page *page)
1055 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1056 return 0;
1058 /* Something has gone sideways, find it */
1059 free_pages_check_bad(page);
1060 return 1;
1063 static int free_tail_pages_check(struct page *head_page, struct page *page)
1065 int ret = 1;
1068 * We rely page->lru.next never has bit 0 set, unless the page
1069 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1071 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1073 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1074 ret = 0;
1075 goto out;
1077 switch (page - head_page) {
1078 case 1:
1079 /* the first tail page: ->mapping may be compound_mapcount() */
1080 if (unlikely(compound_mapcount(page))) {
1081 bad_page(page, "nonzero compound_mapcount", 0);
1082 goto out;
1084 break;
1085 case 2:
1087 * the second tail page: ->mapping is
1088 * deferred_list.next -- ignore value.
1090 break;
1091 default:
1092 if (page->mapping != TAIL_MAPPING) {
1093 bad_page(page, "corrupted mapping in tail page", 0);
1094 goto out;
1096 break;
1098 if (unlikely(!PageTail(page))) {
1099 bad_page(page, "PageTail not set", 0);
1100 goto out;
1102 if (unlikely(compound_head(page) != head_page)) {
1103 bad_page(page, "compound_head not consistent", 0);
1104 goto out;
1106 ret = 0;
1107 out:
1108 page->mapping = NULL;
1109 clear_compound_head(page);
1110 return ret;
1113 static void kernel_init_free_pages(struct page *page, int numpages)
1115 int i;
1117 for (i = 0; i < numpages; i++)
1118 clear_highpage(page + i);
1121 static __always_inline bool free_pages_prepare(struct page *page,
1122 unsigned int order, bool check_free)
1124 int bad = 0;
1126 VM_BUG_ON_PAGE(PageTail(page), page);
1128 trace_mm_page_free(page, order);
1131 * Check tail pages before head page information is cleared to
1132 * avoid checking PageCompound for order-0 pages.
1134 if (unlikely(order)) {
1135 bool compound = PageCompound(page);
1136 int i;
1138 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1140 if (compound)
1141 ClearPageDoubleMap(page);
1142 for (i = 1; i < (1 << order); i++) {
1143 if (compound)
1144 bad += free_tail_pages_check(page, page + i);
1145 if (unlikely(free_pages_check(page + i))) {
1146 bad++;
1147 continue;
1149 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1152 if (PageMappingFlags(page))
1153 page->mapping = NULL;
1154 if (memcg_kmem_enabled() && PageKmemcg(page))
1155 __memcg_kmem_uncharge(page, order);
1156 if (check_free)
1157 bad += free_pages_check(page);
1158 if (bad)
1159 return false;
1161 page_cpupid_reset_last(page);
1162 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1163 reset_page_owner(page, order);
1165 if (!PageHighMem(page)) {
1166 debug_check_no_locks_freed(page_address(page),
1167 PAGE_SIZE << order);
1168 debug_check_no_obj_freed(page_address(page),
1169 PAGE_SIZE << order);
1171 if (want_init_on_free())
1172 kernel_init_free_pages(page, 1 << order);
1174 kernel_poison_pages(page, 1 << order, 0);
1176 * arch_free_page() can make the page's contents inaccessible. s390
1177 * does this. So nothing which can access the page's contents should
1178 * happen after this.
1180 arch_free_page(page, order);
1182 if (debug_pagealloc_enabled_static())
1183 kernel_map_pages(page, 1 << order, 0);
1185 kasan_free_nondeferred_pages(page, order);
1187 return true;
1190 #ifdef CONFIG_DEBUG_VM
1192 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1193 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1194 * moved from pcp lists to free lists.
1196 static bool free_pcp_prepare(struct page *page)
1198 return free_pages_prepare(page, 0, true);
1201 static bool bulkfree_pcp_prepare(struct page *page)
1203 if (debug_pagealloc_enabled_static())
1204 return free_pages_check(page);
1205 else
1206 return false;
1208 #else
1210 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1211 * moving from pcp lists to free list in order to reduce overhead. With
1212 * debug_pagealloc enabled, they are checked also immediately when being freed
1213 * to the pcp lists.
1215 static bool free_pcp_prepare(struct page *page)
1217 if (debug_pagealloc_enabled_static())
1218 return free_pages_prepare(page, 0, true);
1219 else
1220 return free_pages_prepare(page, 0, false);
1223 static bool bulkfree_pcp_prepare(struct page *page)
1225 return free_pages_check(page);
1227 #endif /* CONFIG_DEBUG_VM */
1229 static inline void prefetch_buddy(struct page *page)
1231 unsigned long pfn = page_to_pfn(page);
1232 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1233 struct page *buddy = page + (buddy_pfn - pfn);
1235 prefetch(buddy);
1239 * Frees a number of pages from the PCP lists
1240 * Assumes all pages on list are in same zone, and of same order.
1241 * count is the number of pages to free.
1243 * If the zone was previously in an "all pages pinned" state then look to
1244 * see if this freeing clears that state.
1246 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1247 * pinned" detection logic.
1249 static void free_pcppages_bulk(struct zone *zone, int count,
1250 struct per_cpu_pages *pcp)
1252 int migratetype = 0;
1253 int batch_free = 0;
1254 int prefetch_nr = 0;
1255 bool isolated_pageblocks;
1256 struct page *page, *tmp;
1257 LIST_HEAD(head);
1260 * Ensure proper count is passed which otherwise would stuck in the
1261 * below while (list_empty(list)) loop.
1263 count = min(pcp->count, count);
1264 while (count) {
1265 struct list_head *list;
1268 * Remove pages from lists in a round-robin fashion. A
1269 * batch_free count is maintained that is incremented when an
1270 * empty list is encountered. This is so more pages are freed
1271 * off fuller lists instead of spinning excessively around empty
1272 * lists
1274 do {
1275 batch_free++;
1276 if (++migratetype == MIGRATE_PCPTYPES)
1277 migratetype = 0;
1278 list = &pcp->lists[migratetype];
1279 } while (list_empty(list));
1281 /* This is the only non-empty list. Free them all. */
1282 if (batch_free == MIGRATE_PCPTYPES)
1283 batch_free = count;
1285 do {
1286 page = list_last_entry(list, struct page, lru);
1287 /* must delete to avoid corrupting pcp list */
1288 list_del(&page->lru);
1289 pcp->count--;
1291 if (bulkfree_pcp_prepare(page))
1292 continue;
1294 list_add_tail(&page->lru, &head);
1297 * We are going to put the page back to the global
1298 * pool, prefetch its buddy to speed up later access
1299 * under zone->lock. It is believed the overhead of
1300 * an additional test and calculating buddy_pfn here
1301 * can be offset by reduced memory latency later. To
1302 * avoid excessive prefetching due to large count, only
1303 * prefetch buddy for the first pcp->batch nr of pages.
1305 if (prefetch_nr++ < pcp->batch)
1306 prefetch_buddy(page);
1307 } while (--count && --batch_free && !list_empty(list));
1310 spin_lock(&zone->lock);
1311 isolated_pageblocks = has_isolate_pageblock(zone);
1314 * Use safe version since after __free_one_page(),
1315 * page->lru.next will not point to original list.
1317 list_for_each_entry_safe(page, tmp, &head, lru) {
1318 int mt = get_pcppage_migratetype(page);
1319 /* MIGRATE_ISOLATE page should not go to pcplists */
1320 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1321 /* Pageblock could have been isolated meanwhile */
1322 if (unlikely(isolated_pageblocks))
1323 mt = get_pageblock_migratetype(page);
1325 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1326 trace_mm_page_pcpu_drain(page, 0, mt);
1328 spin_unlock(&zone->lock);
1331 static void free_one_page(struct zone *zone,
1332 struct page *page, unsigned long pfn,
1333 unsigned int order,
1334 int migratetype)
1336 spin_lock(&zone->lock);
1337 if (unlikely(has_isolate_pageblock(zone) ||
1338 is_migrate_isolate(migratetype))) {
1339 migratetype = get_pfnblock_migratetype(page, pfn);
1341 __free_one_page(page, pfn, zone, order, migratetype);
1342 spin_unlock(&zone->lock);
1345 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1346 unsigned long zone, int nid)
1348 mm_zero_struct_page(page);
1349 set_page_links(page, zone, nid, pfn);
1350 init_page_count(page);
1351 page_mapcount_reset(page);
1352 page_cpupid_reset_last(page);
1353 page_kasan_tag_reset(page);
1355 INIT_LIST_HEAD(&page->lru);
1356 #ifdef WANT_PAGE_VIRTUAL
1357 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1358 if (!is_highmem_idx(zone))
1359 set_page_address(page, __va(pfn << PAGE_SHIFT));
1360 #endif
1363 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1364 static void __meminit init_reserved_page(unsigned long pfn)
1366 pg_data_t *pgdat;
1367 int nid, zid;
1369 if (!early_page_uninitialised(pfn))
1370 return;
1372 nid = early_pfn_to_nid(pfn);
1373 pgdat = NODE_DATA(nid);
1375 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1376 struct zone *zone = &pgdat->node_zones[zid];
1378 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1379 break;
1381 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1383 #else
1384 static inline void init_reserved_page(unsigned long pfn)
1387 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1390 * Initialised pages do not have PageReserved set. This function is
1391 * called for each range allocated by the bootmem allocator and
1392 * marks the pages PageReserved. The remaining valid pages are later
1393 * sent to the buddy page allocator.
1395 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1397 unsigned long start_pfn = PFN_DOWN(start);
1398 unsigned long end_pfn = PFN_UP(end);
1400 for (; start_pfn < end_pfn; start_pfn++) {
1401 if (pfn_valid(start_pfn)) {
1402 struct page *page = pfn_to_page(start_pfn);
1404 init_reserved_page(start_pfn);
1406 /* Avoid false-positive PageTail() */
1407 INIT_LIST_HEAD(&page->lru);
1410 * no need for atomic set_bit because the struct
1411 * page is not visible yet so nobody should
1412 * access it yet.
1414 __SetPageReserved(page);
1419 static void __free_pages_ok(struct page *page, unsigned int order)
1421 unsigned long flags;
1422 int migratetype;
1423 unsigned long pfn = page_to_pfn(page);
1425 if (!free_pages_prepare(page, order, true))
1426 return;
1428 migratetype = get_pfnblock_migratetype(page, pfn);
1429 local_irq_save(flags);
1430 __count_vm_events(PGFREE, 1 << order);
1431 free_one_page(page_zone(page), page, pfn, order, migratetype);
1432 local_irq_restore(flags);
1435 void __free_pages_core(struct page *page, unsigned int order)
1437 unsigned int nr_pages = 1 << order;
1438 struct page *p = page;
1439 unsigned int loop;
1441 prefetchw(p);
1442 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1443 prefetchw(p + 1);
1444 __ClearPageReserved(p);
1445 set_page_count(p, 0);
1447 __ClearPageReserved(p);
1448 set_page_count(p, 0);
1450 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1451 set_page_refcounted(page);
1452 __free_pages(page, order);
1455 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1456 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1458 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1460 int __meminit early_pfn_to_nid(unsigned long pfn)
1462 static DEFINE_SPINLOCK(early_pfn_lock);
1463 int nid;
1465 spin_lock(&early_pfn_lock);
1466 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1467 if (nid < 0)
1468 nid = first_online_node;
1469 spin_unlock(&early_pfn_lock);
1471 return nid;
1473 #endif
1475 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1476 /* Only safe to use early in boot when initialisation is single-threaded */
1477 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1479 int nid;
1481 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1482 if (nid >= 0 && nid != node)
1483 return false;
1484 return true;
1487 #else
1488 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1490 return true;
1492 #endif
1495 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1496 unsigned int order)
1498 if (early_page_uninitialised(pfn))
1499 return;
1500 __free_pages_core(page, order);
1504 * Check that the whole (or subset of) a pageblock given by the interval of
1505 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1506 * with the migration of free compaction scanner. The scanners then need to
1507 * use only pfn_valid_within() check for arches that allow holes within
1508 * pageblocks.
1510 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1512 * It's possible on some configurations to have a setup like node0 node1 node0
1513 * i.e. it's possible that all pages within a zones range of pages do not
1514 * belong to a single zone. We assume that a border between node0 and node1
1515 * can occur within a single pageblock, but not a node0 node1 node0
1516 * interleaving within a single pageblock. It is therefore sufficient to check
1517 * the first and last page of a pageblock and avoid checking each individual
1518 * page in a pageblock.
1520 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1521 unsigned long end_pfn, struct zone *zone)
1523 struct page *start_page;
1524 struct page *end_page;
1526 /* end_pfn is one past the range we are checking */
1527 end_pfn--;
1529 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1530 return NULL;
1532 start_page = pfn_to_online_page(start_pfn);
1533 if (!start_page)
1534 return NULL;
1536 if (page_zone(start_page) != zone)
1537 return NULL;
1539 end_page = pfn_to_page(end_pfn);
1541 /* This gives a shorter code than deriving page_zone(end_page) */
1542 if (page_zone_id(start_page) != page_zone_id(end_page))
1543 return NULL;
1545 return start_page;
1548 void set_zone_contiguous(struct zone *zone)
1550 unsigned long block_start_pfn = zone->zone_start_pfn;
1551 unsigned long block_end_pfn;
1553 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1554 for (; block_start_pfn < zone_end_pfn(zone);
1555 block_start_pfn = block_end_pfn,
1556 block_end_pfn += pageblock_nr_pages) {
1558 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1560 if (!__pageblock_pfn_to_page(block_start_pfn,
1561 block_end_pfn, zone))
1562 return;
1563 cond_resched();
1566 /* We confirm that there is no hole */
1567 zone->contiguous = true;
1570 void clear_zone_contiguous(struct zone *zone)
1572 zone->contiguous = false;
1575 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1576 static void __init deferred_free_range(unsigned long pfn,
1577 unsigned long nr_pages)
1579 struct page *page;
1580 unsigned long i;
1582 if (!nr_pages)
1583 return;
1585 page = pfn_to_page(pfn);
1587 /* Free a large naturally-aligned chunk if possible */
1588 if (nr_pages == pageblock_nr_pages &&
1589 (pfn & (pageblock_nr_pages - 1)) == 0) {
1590 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1591 __free_pages_core(page, pageblock_order);
1592 return;
1595 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1596 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1597 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1598 __free_pages_core(page, 0);
1602 /* Completion tracking for deferred_init_memmap() threads */
1603 static atomic_t pgdat_init_n_undone __initdata;
1604 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1606 static inline void __init pgdat_init_report_one_done(void)
1608 if (atomic_dec_and_test(&pgdat_init_n_undone))
1609 complete(&pgdat_init_all_done_comp);
1613 * Returns true if page needs to be initialized or freed to buddy allocator.
1615 * First we check if pfn is valid on architectures where it is possible to have
1616 * holes within pageblock_nr_pages. On systems where it is not possible, this
1617 * function is optimized out.
1619 * Then, we check if a current large page is valid by only checking the validity
1620 * of the head pfn.
1622 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1624 if (!pfn_valid_within(pfn))
1625 return false;
1626 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1627 return false;
1628 return true;
1632 * Free pages to buddy allocator. Try to free aligned pages in
1633 * pageblock_nr_pages sizes.
1635 static void __init deferred_free_pages(unsigned long pfn,
1636 unsigned long end_pfn)
1638 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1639 unsigned long nr_free = 0;
1641 for (; pfn < end_pfn; pfn++) {
1642 if (!deferred_pfn_valid(pfn)) {
1643 deferred_free_range(pfn - nr_free, nr_free);
1644 nr_free = 0;
1645 } else if (!(pfn & nr_pgmask)) {
1646 deferred_free_range(pfn - nr_free, nr_free);
1647 nr_free = 1;
1648 } else {
1649 nr_free++;
1652 /* Free the last block of pages to allocator */
1653 deferred_free_range(pfn - nr_free, nr_free);
1657 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1658 * by performing it only once every pageblock_nr_pages.
1659 * Return number of pages initialized.
1661 static unsigned long __init deferred_init_pages(struct zone *zone,
1662 unsigned long pfn,
1663 unsigned long end_pfn)
1665 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1666 int nid = zone_to_nid(zone);
1667 unsigned long nr_pages = 0;
1668 int zid = zone_idx(zone);
1669 struct page *page = NULL;
1671 for (; pfn < end_pfn; pfn++) {
1672 if (!deferred_pfn_valid(pfn)) {
1673 page = NULL;
1674 continue;
1675 } else if (!page || !(pfn & nr_pgmask)) {
1676 page = pfn_to_page(pfn);
1677 } else {
1678 page++;
1680 __init_single_page(page, pfn, zid, nid);
1681 nr_pages++;
1683 return (nr_pages);
1687 * This function is meant to pre-load the iterator for the zone init.
1688 * Specifically it walks through the ranges until we are caught up to the
1689 * first_init_pfn value and exits there. If we never encounter the value we
1690 * return false indicating there are no valid ranges left.
1692 static bool __init
1693 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1694 unsigned long *spfn, unsigned long *epfn,
1695 unsigned long first_init_pfn)
1697 u64 j;
1700 * Start out by walking through the ranges in this zone that have
1701 * already been initialized. We don't need to do anything with them
1702 * so we just need to flush them out of the system.
1704 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1705 if (*epfn <= first_init_pfn)
1706 continue;
1707 if (*spfn < first_init_pfn)
1708 *spfn = first_init_pfn;
1709 *i = j;
1710 return true;
1713 return false;
1717 * Initialize and free pages. We do it in two loops: first we initialize
1718 * struct page, then free to buddy allocator, because while we are
1719 * freeing pages we can access pages that are ahead (computing buddy
1720 * page in __free_one_page()).
1722 * In order to try and keep some memory in the cache we have the loop
1723 * broken along max page order boundaries. This way we will not cause
1724 * any issues with the buddy page computation.
1726 static unsigned long __init
1727 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1728 unsigned long *end_pfn)
1730 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1731 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1732 unsigned long nr_pages = 0;
1733 u64 j = *i;
1735 /* First we loop through and initialize the page values */
1736 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1737 unsigned long t;
1739 if (mo_pfn <= *start_pfn)
1740 break;
1742 t = min(mo_pfn, *end_pfn);
1743 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1745 if (mo_pfn < *end_pfn) {
1746 *start_pfn = mo_pfn;
1747 break;
1751 /* Reset values and now loop through freeing pages as needed */
1752 swap(j, *i);
1754 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1755 unsigned long t;
1757 if (mo_pfn <= spfn)
1758 break;
1760 t = min(mo_pfn, epfn);
1761 deferred_free_pages(spfn, t);
1763 if (mo_pfn <= epfn)
1764 break;
1767 return nr_pages;
1770 /* Initialise remaining memory on a node */
1771 static int __init deferred_init_memmap(void *data)
1773 pg_data_t *pgdat = data;
1774 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1775 unsigned long spfn = 0, epfn = 0, nr_pages = 0;
1776 unsigned long first_init_pfn, flags;
1777 unsigned long start = jiffies;
1778 struct zone *zone;
1779 int zid;
1780 u64 i;
1782 /* Bind memory initialisation thread to a local node if possible */
1783 if (!cpumask_empty(cpumask))
1784 set_cpus_allowed_ptr(current, cpumask);
1786 pgdat_resize_lock(pgdat, &flags);
1787 first_init_pfn = pgdat->first_deferred_pfn;
1788 if (first_init_pfn == ULONG_MAX) {
1789 pgdat_resize_unlock(pgdat, &flags);
1790 pgdat_init_report_one_done();
1791 return 0;
1794 /* Sanity check boundaries */
1795 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1796 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1797 pgdat->first_deferred_pfn = ULONG_MAX;
1800 * Once we unlock here, the zone cannot be grown anymore, thus if an
1801 * interrupt thread must allocate this early in boot, zone must be
1802 * pre-grown prior to start of deferred page initialization.
1804 pgdat_resize_unlock(pgdat, &flags);
1806 /* Only the highest zone is deferred so find it */
1807 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1808 zone = pgdat->node_zones + zid;
1809 if (first_init_pfn < zone_end_pfn(zone))
1810 break;
1813 /* If the zone is empty somebody else may have cleared out the zone */
1814 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1815 first_init_pfn))
1816 goto zone_empty;
1819 * Initialize and free pages in MAX_ORDER sized increments so
1820 * that we can avoid introducing any issues with the buddy
1821 * allocator.
1823 while (spfn < epfn) {
1824 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1825 cond_resched();
1827 zone_empty:
1828 /* Sanity check that the next zone really is unpopulated */
1829 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1831 pr_info("node %d initialised, %lu pages in %ums\n",
1832 pgdat->node_id, nr_pages, jiffies_to_msecs(jiffies - start));
1834 pgdat_init_report_one_done();
1835 return 0;
1839 * If this zone has deferred pages, try to grow it by initializing enough
1840 * deferred pages to satisfy the allocation specified by order, rounded up to
1841 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1842 * of SECTION_SIZE bytes by initializing struct pages in increments of
1843 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1845 * Return true when zone was grown, otherwise return false. We return true even
1846 * when we grow less than requested, to let the caller decide if there are
1847 * enough pages to satisfy the allocation.
1849 * Note: We use noinline because this function is needed only during boot, and
1850 * it is called from a __ref function _deferred_grow_zone. This way we are
1851 * making sure that it is not inlined into permanent text section.
1853 static noinline bool __init
1854 deferred_grow_zone(struct zone *zone, unsigned int order)
1856 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1857 pg_data_t *pgdat = zone->zone_pgdat;
1858 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1859 unsigned long spfn, epfn, flags;
1860 unsigned long nr_pages = 0;
1861 u64 i;
1863 /* Only the last zone may have deferred pages */
1864 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1865 return false;
1867 pgdat_resize_lock(pgdat, &flags);
1870 * If someone grew this zone while we were waiting for spinlock, return
1871 * true, as there might be enough pages already.
1873 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1874 pgdat_resize_unlock(pgdat, &flags);
1875 return true;
1878 /* If the zone is empty somebody else may have cleared out the zone */
1879 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1880 first_deferred_pfn)) {
1881 pgdat->first_deferred_pfn = ULONG_MAX;
1882 pgdat_resize_unlock(pgdat, &flags);
1883 /* Retry only once. */
1884 return first_deferred_pfn != ULONG_MAX;
1888 * Initialize and free pages in MAX_ORDER sized increments so
1889 * that we can avoid introducing any issues with the buddy
1890 * allocator.
1892 while (spfn < epfn) {
1893 /* update our first deferred PFN for this section */
1894 first_deferred_pfn = spfn;
1896 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1897 touch_nmi_watchdog();
1899 /* We should only stop along section boundaries */
1900 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
1901 continue;
1903 /* If our quota has been met we can stop here */
1904 if (nr_pages >= nr_pages_needed)
1905 break;
1908 pgdat->first_deferred_pfn = spfn;
1909 pgdat_resize_unlock(pgdat, &flags);
1911 return nr_pages > 0;
1915 * deferred_grow_zone() is __init, but it is called from
1916 * get_page_from_freelist() during early boot until deferred_pages permanently
1917 * disables this call. This is why we have refdata wrapper to avoid warning,
1918 * and to ensure that the function body gets unloaded.
1920 static bool __ref
1921 _deferred_grow_zone(struct zone *zone, unsigned int order)
1923 return deferred_grow_zone(zone, order);
1926 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1928 void __init page_alloc_init_late(void)
1930 struct zone *zone;
1931 int nid;
1933 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1935 /* There will be num_node_state(N_MEMORY) threads */
1936 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1937 for_each_node_state(nid, N_MEMORY) {
1938 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1941 /* Block until all are initialised */
1942 wait_for_completion(&pgdat_init_all_done_comp);
1945 * The number of managed pages has changed due to the initialisation
1946 * so the pcpu batch and high limits needs to be updated or the limits
1947 * will be artificially small.
1949 for_each_populated_zone(zone)
1950 zone_pcp_update(zone);
1953 * We initialized the rest of the deferred pages. Permanently disable
1954 * on-demand struct page initialization.
1956 static_branch_disable(&deferred_pages);
1958 /* Reinit limits that are based on free pages after the kernel is up */
1959 files_maxfiles_init();
1960 #endif
1962 /* Discard memblock private memory */
1963 memblock_discard();
1965 for_each_node_state(nid, N_MEMORY)
1966 shuffle_free_memory(NODE_DATA(nid));
1968 for_each_populated_zone(zone)
1969 set_zone_contiguous(zone);
1972 #ifdef CONFIG_CMA
1973 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1974 void __init init_cma_reserved_pageblock(struct page *page)
1976 unsigned i = pageblock_nr_pages;
1977 struct page *p = page;
1979 do {
1980 __ClearPageReserved(p);
1981 set_page_count(p, 0);
1982 } while (++p, --i);
1984 set_pageblock_migratetype(page, MIGRATE_CMA);
1986 if (pageblock_order >= MAX_ORDER) {
1987 i = pageblock_nr_pages;
1988 p = page;
1989 do {
1990 set_page_refcounted(p);
1991 __free_pages(p, MAX_ORDER - 1);
1992 p += MAX_ORDER_NR_PAGES;
1993 } while (i -= MAX_ORDER_NR_PAGES);
1994 } else {
1995 set_page_refcounted(page);
1996 __free_pages(page, pageblock_order);
1999 adjust_managed_page_count(page, pageblock_nr_pages);
2001 #endif
2004 * The order of subdivision here is critical for the IO subsystem.
2005 * Please do not alter this order without good reasons and regression
2006 * testing. Specifically, as large blocks of memory are subdivided,
2007 * the order in which smaller blocks are delivered depends on the order
2008 * they're subdivided in this function. This is the primary factor
2009 * influencing the order in which pages are delivered to the IO
2010 * subsystem according to empirical testing, and this is also justified
2011 * by considering the behavior of a buddy system containing a single
2012 * large block of memory acted on by a series of small allocations.
2013 * This behavior is a critical factor in sglist merging's success.
2015 * -- nyc
2017 static inline void expand(struct zone *zone, struct page *page,
2018 int low, int high, struct free_area *area,
2019 int migratetype)
2021 unsigned long size = 1 << high;
2023 while (high > low) {
2024 area--;
2025 high--;
2026 size >>= 1;
2027 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2030 * Mark as guard pages (or page), that will allow to
2031 * merge back to allocator when buddy will be freed.
2032 * Corresponding page table entries will not be touched,
2033 * pages will stay not present in virtual address space
2035 if (set_page_guard(zone, &page[size], high, migratetype))
2036 continue;
2038 add_to_free_area(&page[size], area, migratetype);
2039 set_page_order(&page[size], high);
2043 static void check_new_page_bad(struct page *page)
2045 const char *bad_reason = NULL;
2046 unsigned long bad_flags = 0;
2048 if (unlikely(atomic_read(&page->_mapcount) != -1))
2049 bad_reason = "nonzero mapcount";
2050 if (unlikely(page->mapping != NULL))
2051 bad_reason = "non-NULL mapping";
2052 if (unlikely(page_ref_count(page) != 0))
2053 bad_reason = "nonzero _refcount";
2054 if (unlikely(page->flags & __PG_HWPOISON)) {
2055 bad_reason = "HWPoisoned (hardware-corrupted)";
2056 bad_flags = __PG_HWPOISON;
2057 /* Don't complain about hwpoisoned pages */
2058 page_mapcount_reset(page); /* remove PageBuddy */
2059 return;
2061 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
2062 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
2063 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
2065 #ifdef CONFIG_MEMCG
2066 if (unlikely(page->mem_cgroup))
2067 bad_reason = "page still charged to cgroup";
2068 #endif
2069 bad_page(page, bad_reason, bad_flags);
2073 * This page is about to be returned from the page allocator
2075 static inline int check_new_page(struct page *page)
2077 if (likely(page_expected_state(page,
2078 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2079 return 0;
2081 check_new_page_bad(page);
2082 return 1;
2085 static inline bool free_pages_prezeroed(void)
2087 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2088 page_poisoning_enabled()) || want_init_on_free();
2091 #ifdef CONFIG_DEBUG_VM
2093 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2094 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2095 * also checked when pcp lists are refilled from the free lists.
2097 static inline bool check_pcp_refill(struct page *page)
2099 if (debug_pagealloc_enabled_static())
2100 return check_new_page(page);
2101 else
2102 return false;
2105 static inline bool check_new_pcp(struct page *page)
2107 return check_new_page(page);
2109 #else
2111 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2112 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2113 * enabled, they are also checked when being allocated from the pcp lists.
2115 static inline bool check_pcp_refill(struct page *page)
2117 return check_new_page(page);
2119 static inline bool check_new_pcp(struct page *page)
2121 if (debug_pagealloc_enabled_static())
2122 return check_new_page(page);
2123 else
2124 return false;
2126 #endif /* CONFIG_DEBUG_VM */
2128 static bool check_new_pages(struct page *page, unsigned int order)
2130 int i;
2131 for (i = 0; i < (1 << order); i++) {
2132 struct page *p = page + i;
2134 if (unlikely(check_new_page(p)))
2135 return true;
2138 return false;
2141 inline void post_alloc_hook(struct page *page, unsigned int order,
2142 gfp_t gfp_flags)
2144 set_page_private(page, 0);
2145 set_page_refcounted(page);
2147 arch_alloc_page(page, order);
2148 if (debug_pagealloc_enabled_static())
2149 kernel_map_pages(page, 1 << order, 1);
2150 kasan_alloc_pages(page, order);
2151 kernel_poison_pages(page, 1 << order, 1);
2152 set_page_owner(page, order, gfp_flags);
2155 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2156 unsigned int alloc_flags)
2158 post_alloc_hook(page, order, gfp_flags);
2160 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2161 kernel_init_free_pages(page, 1 << order);
2163 if (order && (gfp_flags & __GFP_COMP))
2164 prep_compound_page(page, order);
2167 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2168 * allocate the page. The expectation is that the caller is taking
2169 * steps that will free more memory. The caller should avoid the page
2170 * being used for !PFMEMALLOC purposes.
2172 if (alloc_flags & ALLOC_NO_WATERMARKS)
2173 set_page_pfmemalloc(page);
2174 else
2175 clear_page_pfmemalloc(page);
2179 * Go through the free lists for the given migratetype and remove
2180 * the smallest available page from the freelists
2182 static __always_inline
2183 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2184 int migratetype)
2186 unsigned int current_order;
2187 struct free_area *area;
2188 struct page *page;
2190 /* Find a page of the appropriate size in the preferred list */
2191 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2192 area = &(zone->free_area[current_order]);
2193 page = get_page_from_free_area(area, migratetype);
2194 if (!page)
2195 continue;
2196 del_page_from_free_area(page, area);
2197 expand(zone, page, order, current_order, area, migratetype);
2198 set_pcppage_migratetype(page, migratetype);
2199 return page;
2202 return NULL;
2207 * This array describes the order lists are fallen back to when
2208 * the free lists for the desirable migrate type are depleted
2210 static int fallbacks[MIGRATE_TYPES][4] = {
2211 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2212 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2213 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2214 #ifdef CONFIG_CMA
2215 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
2216 #endif
2217 #ifdef CONFIG_MEMORY_ISOLATION
2218 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
2219 #endif
2222 #ifdef CONFIG_CMA
2223 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2224 unsigned int order)
2226 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2228 #else
2229 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2230 unsigned int order) { return NULL; }
2231 #endif
2234 * Move the free pages in a range to the free lists of the requested type.
2235 * Note that start_page and end_pages are not aligned on a pageblock
2236 * boundary. If alignment is required, use move_freepages_block()
2238 static int move_freepages(struct zone *zone,
2239 struct page *start_page, struct page *end_page,
2240 int migratetype, int *num_movable)
2242 struct page *page;
2243 unsigned int order;
2244 int pages_moved = 0;
2246 for (page = start_page; page <= end_page;) {
2247 if (!pfn_valid_within(page_to_pfn(page))) {
2248 page++;
2249 continue;
2252 if (!PageBuddy(page)) {
2254 * We assume that pages that could be isolated for
2255 * migration are movable. But we don't actually try
2256 * isolating, as that would be expensive.
2258 if (num_movable &&
2259 (PageLRU(page) || __PageMovable(page)))
2260 (*num_movable)++;
2262 page++;
2263 continue;
2266 /* Make sure we are not inadvertently changing nodes */
2267 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2268 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2270 order = page_order(page);
2271 move_to_free_area(page, &zone->free_area[order], migratetype);
2272 page += 1 << order;
2273 pages_moved += 1 << order;
2276 return pages_moved;
2279 int move_freepages_block(struct zone *zone, struct page *page,
2280 int migratetype, int *num_movable)
2282 unsigned long start_pfn, end_pfn;
2283 struct page *start_page, *end_page;
2285 if (num_movable)
2286 *num_movable = 0;
2288 start_pfn = page_to_pfn(page);
2289 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2290 start_page = pfn_to_page(start_pfn);
2291 end_page = start_page + pageblock_nr_pages - 1;
2292 end_pfn = start_pfn + pageblock_nr_pages - 1;
2294 /* Do not cross zone boundaries */
2295 if (!zone_spans_pfn(zone, start_pfn))
2296 start_page = page;
2297 if (!zone_spans_pfn(zone, end_pfn))
2298 return 0;
2300 return move_freepages(zone, start_page, end_page, migratetype,
2301 num_movable);
2304 static void change_pageblock_range(struct page *pageblock_page,
2305 int start_order, int migratetype)
2307 int nr_pageblocks = 1 << (start_order - pageblock_order);
2309 while (nr_pageblocks--) {
2310 set_pageblock_migratetype(pageblock_page, migratetype);
2311 pageblock_page += pageblock_nr_pages;
2316 * When we are falling back to another migratetype during allocation, try to
2317 * steal extra free pages from the same pageblocks to satisfy further
2318 * allocations, instead of polluting multiple pageblocks.
2320 * If we are stealing a relatively large buddy page, it is likely there will
2321 * be more free pages in the pageblock, so try to steal them all. For
2322 * reclaimable and unmovable allocations, we steal regardless of page size,
2323 * as fragmentation caused by those allocations polluting movable pageblocks
2324 * is worse than movable allocations stealing from unmovable and reclaimable
2325 * pageblocks.
2327 static bool can_steal_fallback(unsigned int order, int start_mt)
2330 * Leaving this order check is intended, although there is
2331 * relaxed order check in next check. The reason is that
2332 * we can actually steal whole pageblock if this condition met,
2333 * but, below check doesn't guarantee it and that is just heuristic
2334 * so could be changed anytime.
2336 if (order >= pageblock_order)
2337 return true;
2339 if (order >= pageblock_order / 2 ||
2340 start_mt == MIGRATE_RECLAIMABLE ||
2341 start_mt == MIGRATE_UNMOVABLE ||
2342 page_group_by_mobility_disabled)
2343 return true;
2345 return false;
2348 static inline void boost_watermark(struct zone *zone)
2350 unsigned long max_boost;
2352 if (!watermark_boost_factor)
2353 return;
2355 * Don't bother in zones that are unlikely to produce results.
2356 * On small machines, including kdump capture kernels running
2357 * in a small area, boosting the watermark can cause an out of
2358 * memory situation immediately.
2360 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2361 return;
2363 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2364 watermark_boost_factor, 10000);
2367 * high watermark may be uninitialised if fragmentation occurs
2368 * very early in boot so do not boost. We do not fall
2369 * through and boost by pageblock_nr_pages as failing
2370 * allocations that early means that reclaim is not going
2371 * to help and it may even be impossible to reclaim the
2372 * boosted watermark resulting in a hang.
2374 if (!max_boost)
2375 return;
2377 max_boost = max(pageblock_nr_pages, max_boost);
2379 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2380 max_boost);
2384 * This function implements actual steal behaviour. If order is large enough,
2385 * we can steal whole pageblock. If not, we first move freepages in this
2386 * pageblock to our migratetype and determine how many already-allocated pages
2387 * are there in the pageblock with a compatible migratetype. If at least half
2388 * of pages are free or compatible, we can change migratetype of the pageblock
2389 * itself, so pages freed in the future will be put on the correct free list.
2391 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2392 unsigned int alloc_flags, int start_type, bool whole_block)
2394 unsigned int current_order = page_order(page);
2395 struct free_area *area;
2396 int free_pages, movable_pages, alike_pages;
2397 int old_block_type;
2399 old_block_type = get_pageblock_migratetype(page);
2402 * This can happen due to races and we want to prevent broken
2403 * highatomic accounting.
2405 if (is_migrate_highatomic(old_block_type))
2406 goto single_page;
2408 /* Take ownership for orders >= pageblock_order */
2409 if (current_order >= pageblock_order) {
2410 change_pageblock_range(page, current_order, start_type);
2411 goto single_page;
2415 * Boost watermarks to increase reclaim pressure to reduce the
2416 * likelihood of future fallbacks. Wake kswapd now as the node
2417 * may be balanced overall and kswapd will not wake naturally.
2419 boost_watermark(zone);
2420 if (alloc_flags & ALLOC_KSWAPD)
2421 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2423 /* We are not allowed to try stealing from the whole block */
2424 if (!whole_block)
2425 goto single_page;
2427 free_pages = move_freepages_block(zone, page, start_type,
2428 &movable_pages);
2430 * Determine how many pages are compatible with our allocation.
2431 * For movable allocation, it's the number of movable pages which
2432 * we just obtained. For other types it's a bit more tricky.
2434 if (start_type == MIGRATE_MOVABLE) {
2435 alike_pages = movable_pages;
2436 } else {
2438 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2439 * to MOVABLE pageblock, consider all non-movable pages as
2440 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2441 * vice versa, be conservative since we can't distinguish the
2442 * exact migratetype of non-movable pages.
2444 if (old_block_type == MIGRATE_MOVABLE)
2445 alike_pages = pageblock_nr_pages
2446 - (free_pages + movable_pages);
2447 else
2448 alike_pages = 0;
2451 /* moving whole block can fail due to zone boundary conditions */
2452 if (!free_pages)
2453 goto single_page;
2456 * If a sufficient number of pages in the block are either free or of
2457 * comparable migratability as our allocation, claim the whole block.
2459 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2460 page_group_by_mobility_disabled)
2461 set_pageblock_migratetype(page, start_type);
2463 return;
2465 single_page:
2466 area = &zone->free_area[current_order];
2467 move_to_free_area(page, area, start_type);
2471 * Check whether there is a suitable fallback freepage with requested order.
2472 * If only_stealable is true, this function returns fallback_mt only if
2473 * we can steal other freepages all together. This would help to reduce
2474 * fragmentation due to mixed migratetype pages in one pageblock.
2476 int find_suitable_fallback(struct free_area *area, unsigned int order,
2477 int migratetype, bool only_stealable, bool *can_steal)
2479 int i;
2480 int fallback_mt;
2482 if (area->nr_free == 0)
2483 return -1;
2485 *can_steal = false;
2486 for (i = 0;; i++) {
2487 fallback_mt = fallbacks[migratetype][i];
2488 if (fallback_mt == MIGRATE_TYPES)
2489 break;
2491 if (free_area_empty(area, fallback_mt))
2492 continue;
2494 if (can_steal_fallback(order, migratetype))
2495 *can_steal = true;
2497 if (!only_stealable)
2498 return fallback_mt;
2500 if (*can_steal)
2501 return fallback_mt;
2504 return -1;
2508 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2509 * there are no empty page blocks that contain a page with a suitable order
2511 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2512 unsigned int alloc_order)
2514 int mt;
2515 unsigned long max_managed, flags;
2518 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2519 * Check is race-prone but harmless.
2521 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2522 if (zone->nr_reserved_highatomic >= max_managed)
2523 return;
2525 spin_lock_irqsave(&zone->lock, flags);
2527 /* Recheck the nr_reserved_highatomic limit under the lock */
2528 if (zone->nr_reserved_highatomic >= max_managed)
2529 goto out_unlock;
2531 /* Yoink! */
2532 mt = get_pageblock_migratetype(page);
2533 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2534 && !is_migrate_cma(mt)) {
2535 zone->nr_reserved_highatomic += pageblock_nr_pages;
2536 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2537 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2540 out_unlock:
2541 spin_unlock_irqrestore(&zone->lock, flags);
2545 * Used when an allocation is about to fail under memory pressure. This
2546 * potentially hurts the reliability of high-order allocations when under
2547 * intense memory pressure but failed atomic allocations should be easier
2548 * to recover from than an OOM.
2550 * If @force is true, try to unreserve a pageblock even though highatomic
2551 * pageblock is exhausted.
2553 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2554 bool force)
2556 struct zonelist *zonelist = ac->zonelist;
2557 unsigned long flags;
2558 struct zoneref *z;
2559 struct zone *zone;
2560 struct page *page;
2561 int order;
2562 bool ret;
2564 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2565 ac->nodemask) {
2567 * Preserve at least one pageblock unless memory pressure
2568 * is really high.
2570 if (!force && zone->nr_reserved_highatomic <=
2571 pageblock_nr_pages)
2572 continue;
2574 spin_lock_irqsave(&zone->lock, flags);
2575 for (order = 0; order < MAX_ORDER; order++) {
2576 struct free_area *area = &(zone->free_area[order]);
2578 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2579 if (!page)
2580 continue;
2583 * In page freeing path, migratetype change is racy so
2584 * we can counter several free pages in a pageblock
2585 * in this loop althoug we changed the pageblock type
2586 * from highatomic to ac->migratetype. So we should
2587 * adjust the count once.
2589 if (is_migrate_highatomic_page(page)) {
2591 * It should never happen but changes to
2592 * locking could inadvertently allow a per-cpu
2593 * drain to add pages to MIGRATE_HIGHATOMIC
2594 * while unreserving so be safe and watch for
2595 * underflows.
2597 zone->nr_reserved_highatomic -= min(
2598 pageblock_nr_pages,
2599 zone->nr_reserved_highatomic);
2603 * Convert to ac->migratetype and avoid the normal
2604 * pageblock stealing heuristics. Minimally, the caller
2605 * is doing the work and needs the pages. More
2606 * importantly, if the block was always converted to
2607 * MIGRATE_UNMOVABLE or another type then the number
2608 * of pageblocks that cannot be completely freed
2609 * may increase.
2611 set_pageblock_migratetype(page, ac->migratetype);
2612 ret = move_freepages_block(zone, page, ac->migratetype,
2613 NULL);
2614 if (ret) {
2615 spin_unlock_irqrestore(&zone->lock, flags);
2616 return ret;
2619 spin_unlock_irqrestore(&zone->lock, flags);
2622 return false;
2626 * Try finding a free buddy page on the fallback list and put it on the free
2627 * list of requested migratetype, possibly along with other pages from the same
2628 * block, depending on fragmentation avoidance heuristics. Returns true if
2629 * fallback was found so that __rmqueue_smallest() can grab it.
2631 * The use of signed ints for order and current_order is a deliberate
2632 * deviation from the rest of this file, to make the for loop
2633 * condition simpler.
2635 static __always_inline bool
2636 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2637 unsigned int alloc_flags)
2639 struct free_area *area;
2640 int current_order;
2641 int min_order = order;
2642 struct page *page;
2643 int fallback_mt;
2644 bool can_steal;
2647 * Do not steal pages from freelists belonging to other pageblocks
2648 * i.e. orders < pageblock_order. If there are no local zones free,
2649 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2651 if (alloc_flags & ALLOC_NOFRAGMENT)
2652 min_order = pageblock_order;
2655 * Find the largest available free page in the other list. This roughly
2656 * approximates finding the pageblock with the most free pages, which
2657 * would be too costly to do exactly.
2659 for (current_order = MAX_ORDER - 1; current_order >= min_order;
2660 --current_order) {
2661 area = &(zone->free_area[current_order]);
2662 fallback_mt = find_suitable_fallback(area, current_order,
2663 start_migratetype, false, &can_steal);
2664 if (fallback_mt == -1)
2665 continue;
2668 * We cannot steal all free pages from the pageblock and the
2669 * requested migratetype is movable. In that case it's better to
2670 * steal and split the smallest available page instead of the
2671 * largest available page, because even if the next movable
2672 * allocation falls back into a different pageblock than this
2673 * one, it won't cause permanent fragmentation.
2675 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2676 && current_order > order)
2677 goto find_smallest;
2679 goto do_steal;
2682 return false;
2684 find_smallest:
2685 for (current_order = order; current_order < MAX_ORDER;
2686 current_order++) {
2687 area = &(zone->free_area[current_order]);
2688 fallback_mt = find_suitable_fallback(area, current_order,
2689 start_migratetype, false, &can_steal);
2690 if (fallback_mt != -1)
2691 break;
2695 * This should not happen - we already found a suitable fallback
2696 * when looking for the largest page.
2698 VM_BUG_ON(current_order == MAX_ORDER);
2700 do_steal:
2701 page = get_page_from_free_area(area, fallback_mt);
2703 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2704 can_steal);
2706 trace_mm_page_alloc_extfrag(page, order, current_order,
2707 start_migratetype, fallback_mt);
2709 return true;
2714 * Do the hard work of removing an element from the buddy allocator.
2715 * Call me with the zone->lock already held.
2717 static __always_inline struct page *
2718 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2719 unsigned int alloc_flags)
2721 struct page *page;
2723 retry:
2724 page = __rmqueue_smallest(zone, order, migratetype);
2725 if (unlikely(!page)) {
2726 if (migratetype == MIGRATE_MOVABLE)
2727 page = __rmqueue_cma_fallback(zone, order);
2729 if (!page && __rmqueue_fallback(zone, order, migratetype,
2730 alloc_flags))
2731 goto retry;
2734 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2735 return page;
2739 * Obtain a specified number of elements from the buddy allocator, all under
2740 * a single hold of the lock, for efficiency. Add them to the supplied list.
2741 * Returns the number of new pages which were placed at *list.
2743 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2744 unsigned long count, struct list_head *list,
2745 int migratetype, unsigned int alloc_flags)
2747 int i, alloced = 0;
2749 spin_lock(&zone->lock);
2750 for (i = 0; i < count; ++i) {
2751 struct page *page = __rmqueue(zone, order, migratetype,
2752 alloc_flags);
2753 if (unlikely(page == NULL))
2754 break;
2756 if (unlikely(check_pcp_refill(page)))
2757 continue;
2760 * Split buddy pages returned by expand() are received here in
2761 * physical page order. The page is added to the tail of
2762 * caller's list. From the callers perspective, the linked list
2763 * is ordered by page number under some conditions. This is
2764 * useful for IO devices that can forward direction from the
2765 * head, thus also in the physical page order. This is useful
2766 * for IO devices that can merge IO requests if the physical
2767 * pages are ordered properly.
2769 list_add_tail(&page->lru, list);
2770 alloced++;
2771 if (is_migrate_cma(get_pcppage_migratetype(page)))
2772 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2773 -(1 << order));
2777 * i pages were removed from the buddy list even if some leak due
2778 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2779 * on i. Do not confuse with 'alloced' which is the number of
2780 * pages added to the pcp list.
2782 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2783 spin_unlock(&zone->lock);
2784 return alloced;
2787 #ifdef CONFIG_NUMA
2789 * Called from the vmstat counter updater to drain pagesets of this
2790 * currently executing processor on remote nodes after they have
2791 * expired.
2793 * Note that this function must be called with the thread pinned to
2794 * a single processor.
2796 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2798 unsigned long flags;
2799 int to_drain, batch;
2801 local_irq_save(flags);
2802 batch = READ_ONCE(pcp->batch);
2803 to_drain = min(pcp->count, batch);
2804 if (to_drain > 0)
2805 free_pcppages_bulk(zone, to_drain, pcp);
2806 local_irq_restore(flags);
2808 #endif
2811 * Drain pcplists of the indicated processor and zone.
2813 * The processor must either be the current processor and the
2814 * thread pinned to the current processor or a processor that
2815 * is not online.
2817 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2819 unsigned long flags;
2820 struct per_cpu_pageset *pset;
2821 struct per_cpu_pages *pcp;
2823 local_irq_save(flags);
2824 pset = per_cpu_ptr(zone->pageset, cpu);
2826 pcp = &pset->pcp;
2827 if (pcp->count)
2828 free_pcppages_bulk(zone, pcp->count, pcp);
2829 local_irq_restore(flags);
2833 * Drain pcplists of all zones on the indicated processor.
2835 * The processor must either be the current processor and the
2836 * thread pinned to the current processor or a processor that
2837 * is not online.
2839 static void drain_pages(unsigned int cpu)
2841 struct zone *zone;
2843 for_each_populated_zone(zone) {
2844 drain_pages_zone(cpu, zone);
2849 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2851 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2852 * the single zone's pages.
2854 void drain_local_pages(struct zone *zone)
2856 int cpu = smp_processor_id();
2858 if (zone)
2859 drain_pages_zone(cpu, zone);
2860 else
2861 drain_pages(cpu);
2864 static void drain_local_pages_wq(struct work_struct *work)
2866 struct pcpu_drain *drain;
2868 drain = container_of(work, struct pcpu_drain, work);
2871 * drain_all_pages doesn't use proper cpu hotplug protection so
2872 * we can race with cpu offline when the WQ can move this from
2873 * a cpu pinned worker to an unbound one. We can operate on a different
2874 * cpu which is allright but we also have to make sure to not move to
2875 * a different one.
2877 preempt_disable();
2878 drain_local_pages(drain->zone);
2879 preempt_enable();
2883 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2885 * When zone parameter is non-NULL, spill just the single zone's pages.
2887 * Note that this can be extremely slow as the draining happens in a workqueue.
2889 void drain_all_pages(struct zone *zone)
2891 int cpu;
2894 * Allocate in the BSS so we wont require allocation in
2895 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2897 static cpumask_t cpus_with_pcps;
2900 * Make sure nobody triggers this path before mm_percpu_wq is fully
2901 * initialized.
2903 if (WARN_ON_ONCE(!mm_percpu_wq))
2904 return;
2907 * Do not drain if one is already in progress unless it's specific to
2908 * a zone. Such callers are primarily CMA and memory hotplug and need
2909 * the drain to be complete when the call returns.
2911 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2912 if (!zone)
2913 return;
2914 mutex_lock(&pcpu_drain_mutex);
2918 * We don't care about racing with CPU hotplug event
2919 * as offline notification will cause the notified
2920 * cpu to drain that CPU pcps and on_each_cpu_mask
2921 * disables preemption as part of its processing
2923 for_each_online_cpu(cpu) {
2924 struct per_cpu_pageset *pcp;
2925 struct zone *z;
2926 bool has_pcps = false;
2928 if (zone) {
2929 pcp = per_cpu_ptr(zone->pageset, cpu);
2930 if (pcp->pcp.count)
2931 has_pcps = true;
2932 } else {
2933 for_each_populated_zone(z) {
2934 pcp = per_cpu_ptr(z->pageset, cpu);
2935 if (pcp->pcp.count) {
2936 has_pcps = true;
2937 break;
2942 if (has_pcps)
2943 cpumask_set_cpu(cpu, &cpus_with_pcps);
2944 else
2945 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2948 for_each_cpu(cpu, &cpus_with_pcps) {
2949 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
2951 drain->zone = zone;
2952 INIT_WORK(&drain->work, drain_local_pages_wq);
2953 queue_work_on(cpu, mm_percpu_wq, &drain->work);
2955 for_each_cpu(cpu, &cpus_with_pcps)
2956 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
2958 mutex_unlock(&pcpu_drain_mutex);
2961 #ifdef CONFIG_HIBERNATION
2964 * Touch the watchdog for every WD_PAGE_COUNT pages.
2966 #define WD_PAGE_COUNT (128*1024)
2968 void mark_free_pages(struct zone *zone)
2970 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2971 unsigned long flags;
2972 unsigned int order, t;
2973 struct page *page;
2975 if (zone_is_empty(zone))
2976 return;
2978 spin_lock_irqsave(&zone->lock, flags);
2980 max_zone_pfn = zone_end_pfn(zone);
2981 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2982 if (pfn_valid(pfn)) {
2983 page = pfn_to_page(pfn);
2985 if (!--page_count) {
2986 touch_nmi_watchdog();
2987 page_count = WD_PAGE_COUNT;
2990 if (page_zone(page) != zone)
2991 continue;
2993 if (!swsusp_page_is_forbidden(page))
2994 swsusp_unset_page_free(page);
2997 for_each_migratetype_order(order, t) {
2998 list_for_each_entry(page,
2999 &zone->free_area[order].free_list[t], lru) {
3000 unsigned long i;
3002 pfn = page_to_pfn(page);
3003 for (i = 0; i < (1UL << order); i++) {
3004 if (!--page_count) {
3005 touch_nmi_watchdog();
3006 page_count = WD_PAGE_COUNT;
3008 swsusp_set_page_free(pfn_to_page(pfn + i));
3012 spin_unlock_irqrestore(&zone->lock, flags);
3014 #endif /* CONFIG_PM */
3016 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
3018 int migratetype;
3020 if (!free_pcp_prepare(page))
3021 return false;
3023 migratetype = get_pfnblock_migratetype(page, pfn);
3024 set_pcppage_migratetype(page, migratetype);
3025 return true;
3028 static void free_unref_page_commit(struct page *page, unsigned long pfn)
3030 struct zone *zone = page_zone(page);
3031 struct per_cpu_pages *pcp;
3032 int migratetype;
3034 migratetype = get_pcppage_migratetype(page);
3035 __count_vm_event(PGFREE);
3038 * We only track unmovable, reclaimable and movable on pcp lists.
3039 * Free ISOLATE pages back to the allocator because they are being
3040 * offlined but treat HIGHATOMIC as movable pages so we can get those
3041 * areas back if necessary. Otherwise, we may have to free
3042 * excessively into the page allocator
3044 if (migratetype >= MIGRATE_PCPTYPES) {
3045 if (unlikely(is_migrate_isolate(migratetype))) {
3046 free_one_page(zone, page, pfn, 0, migratetype);
3047 return;
3049 migratetype = MIGRATE_MOVABLE;
3052 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3053 list_add(&page->lru, &pcp->lists[migratetype]);
3054 pcp->count++;
3055 if (pcp->count >= pcp->high) {
3056 unsigned long batch = READ_ONCE(pcp->batch);
3057 free_pcppages_bulk(zone, batch, pcp);
3062 * Free a 0-order page
3064 void free_unref_page(struct page *page)
3066 unsigned long flags;
3067 unsigned long pfn = page_to_pfn(page);
3069 if (!free_unref_page_prepare(page, pfn))
3070 return;
3072 local_irq_save(flags);
3073 free_unref_page_commit(page, pfn);
3074 local_irq_restore(flags);
3078 * Free a list of 0-order pages
3080 void free_unref_page_list(struct list_head *list)
3082 struct page *page, *next;
3083 unsigned long flags, pfn;
3084 int batch_count = 0;
3086 /* Prepare pages for freeing */
3087 list_for_each_entry_safe(page, next, list, lru) {
3088 pfn = page_to_pfn(page);
3089 if (!free_unref_page_prepare(page, pfn))
3090 list_del(&page->lru);
3091 set_page_private(page, pfn);
3094 local_irq_save(flags);
3095 list_for_each_entry_safe(page, next, list, lru) {
3096 unsigned long pfn = page_private(page);
3098 set_page_private(page, 0);
3099 trace_mm_page_free_batched(page);
3100 free_unref_page_commit(page, pfn);
3103 * Guard against excessive IRQ disabled times when we get
3104 * a large list of pages to free.
3106 if (++batch_count == SWAP_CLUSTER_MAX) {
3107 local_irq_restore(flags);
3108 batch_count = 0;
3109 local_irq_save(flags);
3112 local_irq_restore(flags);
3116 * split_page takes a non-compound higher-order page, and splits it into
3117 * n (1<<order) sub-pages: page[0..n]
3118 * Each sub-page must be freed individually.
3120 * Note: this is probably too low level an operation for use in drivers.
3121 * Please consult with lkml before using this in your driver.
3123 void split_page(struct page *page, unsigned int order)
3125 int i;
3127 VM_BUG_ON_PAGE(PageCompound(page), page);
3128 VM_BUG_ON_PAGE(!page_count(page), page);
3130 for (i = 1; i < (1 << order); i++)
3131 set_page_refcounted(page + i);
3132 split_page_owner(page, order);
3134 EXPORT_SYMBOL_GPL(split_page);
3136 int __isolate_free_page(struct page *page, unsigned int order)
3138 struct free_area *area = &page_zone(page)->free_area[order];
3139 unsigned long watermark;
3140 struct zone *zone;
3141 int mt;
3143 BUG_ON(!PageBuddy(page));
3145 zone = page_zone(page);
3146 mt = get_pageblock_migratetype(page);
3148 if (!is_migrate_isolate(mt)) {
3150 * Obey watermarks as if the page was being allocated. We can
3151 * emulate a high-order watermark check with a raised order-0
3152 * watermark, because we already know our high-order page
3153 * exists.
3155 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3156 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3157 return 0;
3159 __mod_zone_freepage_state(zone, -(1UL << order), mt);
3162 /* Remove page from free list */
3164 del_page_from_free_area(page, area);
3167 * Set the pageblock if the isolated page is at least half of a
3168 * pageblock
3170 if (order >= pageblock_order - 1) {
3171 struct page *endpage = page + (1 << order) - 1;
3172 for (; page < endpage; page += pageblock_nr_pages) {
3173 int mt = get_pageblock_migratetype(page);
3174 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3175 && !is_migrate_highatomic(mt))
3176 set_pageblock_migratetype(page,
3177 MIGRATE_MOVABLE);
3182 return 1UL << order;
3186 * Update NUMA hit/miss statistics
3188 * Must be called with interrupts disabled.
3190 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3192 #ifdef CONFIG_NUMA
3193 enum numa_stat_item local_stat = NUMA_LOCAL;
3195 /* skip numa counters update if numa stats is disabled */
3196 if (!static_branch_likely(&vm_numa_stat_key))
3197 return;
3199 if (zone_to_nid(z) != numa_node_id())
3200 local_stat = NUMA_OTHER;
3202 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3203 __inc_numa_state(z, NUMA_HIT);
3204 else {
3205 __inc_numa_state(z, NUMA_MISS);
3206 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
3208 __inc_numa_state(z, local_stat);
3209 #endif
3212 /* Remove page from the per-cpu list, caller must protect the list */
3213 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3214 unsigned int alloc_flags,
3215 struct per_cpu_pages *pcp,
3216 struct list_head *list)
3218 struct page *page;
3220 do {
3221 if (list_empty(list)) {
3222 pcp->count += rmqueue_bulk(zone, 0,
3223 pcp->batch, list,
3224 migratetype, alloc_flags);
3225 if (unlikely(list_empty(list)))
3226 return NULL;
3229 page = list_first_entry(list, struct page, lru);
3230 list_del(&page->lru);
3231 pcp->count--;
3232 } while (check_new_pcp(page));
3234 return page;
3237 /* Lock and remove page from the per-cpu list */
3238 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3239 struct zone *zone, gfp_t gfp_flags,
3240 int migratetype, unsigned int alloc_flags)
3242 struct per_cpu_pages *pcp;
3243 struct list_head *list;
3244 struct page *page;
3245 unsigned long flags;
3247 local_irq_save(flags);
3248 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3249 list = &pcp->lists[migratetype];
3250 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
3251 if (page) {
3252 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3253 zone_statistics(preferred_zone, zone);
3255 local_irq_restore(flags);
3256 return page;
3260 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3262 static inline
3263 struct page *rmqueue(struct zone *preferred_zone,
3264 struct zone *zone, unsigned int order,
3265 gfp_t gfp_flags, unsigned int alloc_flags,
3266 int migratetype)
3268 unsigned long flags;
3269 struct page *page;
3271 if (likely(order == 0)) {
3272 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3273 migratetype, alloc_flags);
3274 goto out;
3278 * We most definitely don't want callers attempting to
3279 * allocate greater than order-1 page units with __GFP_NOFAIL.
3281 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3282 spin_lock_irqsave(&zone->lock, flags);
3284 do {
3285 page = NULL;
3286 if (alloc_flags & ALLOC_HARDER) {
3287 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3288 if (page)
3289 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3291 if (!page)
3292 page = __rmqueue(zone, order, migratetype, alloc_flags);
3293 } while (page && check_new_pages(page, order));
3294 spin_unlock(&zone->lock);
3295 if (!page)
3296 goto failed;
3297 __mod_zone_freepage_state(zone, -(1 << order),
3298 get_pcppage_migratetype(page));
3300 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3301 zone_statistics(preferred_zone, zone);
3302 local_irq_restore(flags);
3304 out:
3305 /* Separate test+clear to avoid unnecessary atomics */
3306 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3307 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3308 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3311 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3312 return page;
3314 failed:
3315 local_irq_restore(flags);
3316 return NULL;
3319 #ifdef CONFIG_FAIL_PAGE_ALLOC
3321 static struct {
3322 struct fault_attr attr;
3324 bool ignore_gfp_highmem;
3325 bool ignore_gfp_reclaim;
3326 u32 min_order;
3327 } fail_page_alloc = {
3328 .attr = FAULT_ATTR_INITIALIZER,
3329 .ignore_gfp_reclaim = true,
3330 .ignore_gfp_highmem = true,
3331 .min_order = 1,
3334 static int __init setup_fail_page_alloc(char *str)
3336 return setup_fault_attr(&fail_page_alloc.attr, str);
3338 __setup("fail_page_alloc=", setup_fail_page_alloc);
3340 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3342 if (order < fail_page_alloc.min_order)
3343 return false;
3344 if (gfp_mask & __GFP_NOFAIL)
3345 return false;
3346 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3347 return false;
3348 if (fail_page_alloc.ignore_gfp_reclaim &&
3349 (gfp_mask & __GFP_DIRECT_RECLAIM))
3350 return false;
3352 return should_fail(&fail_page_alloc.attr, 1 << order);
3355 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3357 static int __init fail_page_alloc_debugfs(void)
3359 umode_t mode = S_IFREG | 0600;
3360 struct dentry *dir;
3362 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3363 &fail_page_alloc.attr);
3365 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3366 &fail_page_alloc.ignore_gfp_reclaim);
3367 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3368 &fail_page_alloc.ignore_gfp_highmem);
3369 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3371 return 0;
3374 late_initcall(fail_page_alloc_debugfs);
3376 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3378 #else /* CONFIG_FAIL_PAGE_ALLOC */
3380 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3382 return false;
3385 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3387 static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3389 return __should_fail_alloc_page(gfp_mask, order);
3391 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3394 * Return true if free base pages are above 'mark'. For high-order checks it
3395 * will return true of the order-0 watermark is reached and there is at least
3396 * one free page of a suitable size. Checking now avoids taking the zone lock
3397 * to check in the allocation paths if no pages are free.
3399 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3400 int classzone_idx, unsigned int alloc_flags,
3401 long free_pages)
3403 long min = mark;
3404 int o;
3405 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3407 /* free_pages may go negative - that's OK */
3408 free_pages -= (1 << order) - 1;
3410 if (alloc_flags & ALLOC_HIGH)
3411 min -= min / 2;
3414 * If the caller does not have rights to ALLOC_HARDER then subtract
3415 * the high-atomic reserves. This will over-estimate the size of the
3416 * atomic reserve but it avoids a search.
3418 if (likely(!alloc_harder)) {
3419 free_pages -= z->nr_reserved_highatomic;
3420 } else {
3422 * OOM victims can try even harder than normal ALLOC_HARDER
3423 * users on the grounds that it's definitely going to be in
3424 * the exit path shortly and free memory. Any allocation it
3425 * makes during the free path will be small and short-lived.
3427 if (alloc_flags & ALLOC_OOM)
3428 min -= min / 2;
3429 else
3430 min -= min / 4;
3434 #ifdef CONFIG_CMA
3435 /* If allocation can't use CMA areas don't use free CMA pages */
3436 if (!(alloc_flags & ALLOC_CMA))
3437 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3438 #endif
3441 * Check watermarks for an order-0 allocation request. If these
3442 * are not met, then a high-order request also cannot go ahead
3443 * even if a suitable page happened to be free.
3445 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3446 return false;
3448 /* If this is an order-0 request then the watermark is fine */
3449 if (!order)
3450 return true;
3452 /* For a high-order request, check at least one suitable page is free */
3453 for (o = order; o < MAX_ORDER; o++) {
3454 struct free_area *area = &z->free_area[o];
3455 int mt;
3457 if (!area->nr_free)
3458 continue;
3460 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3461 if (!free_area_empty(area, mt))
3462 return true;
3465 #ifdef CONFIG_CMA
3466 if ((alloc_flags & ALLOC_CMA) &&
3467 !free_area_empty(area, MIGRATE_CMA)) {
3468 return true;
3470 #endif
3471 if (alloc_harder &&
3472 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3473 return true;
3475 return false;
3478 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3479 int classzone_idx, unsigned int alloc_flags)
3481 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3482 zone_page_state(z, NR_FREE_PAGES));
3485 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3486 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3488 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3489 long cma_pages = 0;
3491 #ifdef CONFIG_CMA
3492 /* If allocation can't use CMA areas don't use free CMA pages */
3493 if (!(alloc_flags & ALLOC_CMA))
3494 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3495 #endif
3498 * Fast check for order-0 only. If this fails then the reserves
3499 * need to be calculated. There is a corner case where the check
3500 * passes but only the high-order atomic reserve are free. If
3501 * the caller is !atomic then it'll uselessly search the free
3502 * list. That corner case is then slower but it is harmless.
3504 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3505 return true;
3507 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3508 free_pages);
3511 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3512 unsigned long mark, int classzone_idx)
3514 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3516 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3517 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3519 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3520 free_pages);
3523 #ifdef CONFIG_NUMA
3524 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3526 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3527 node_reclaim_distance;
3529 #else /* CONFIG_NUMA */
3530 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3532 return true;
3534 #endif /* CONFIG_NUMA */
3537 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3538 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3539 * premature use of a lower zone may cause lowmem pressure problems that
3540 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3541 * probably too small. It only makes sense to spread allocations to avoid
3542 * fragmentation between the Normal and DMA32 zones.
3544 static inline unsigned int
3545 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3547 unsigned int alloc_flags = 0;
3549 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3550 alloc_flags |= ALLOC_KSWAPD;
3552 #ifdef CONFIG_ZONE_DMA32
3553 if (!zone)
3554 return alloc_flags;
3556 if (zone_idx(zone) != ZONE_NORMAL)
3557 return alloc_flags;
3560 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3561 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3562 * on UMA that if Normal is populated then so is DMA32.
3564 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3565 if (nr_online_nodes > 1 && !populated_zone(--zone))
3566 return alloc_flags;
3568 alloc_flags |= ALLOC_NOFRAGMENT;
3569 #endif /* CONFIG_ZONE_DMA32 */
3570 return alloc_flags;
3574 * get_page_from_freelist goes through the zonelist trying to allocate
3575 * a page.
3577 static struct page *
3578 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3579 const struct alloc_context *ac)
3581 struct zoneref *z;
3582 struct zone *zone;
3583 struct pglist_data *last_pgdat_dirty_limit = NULL;
3584 bool no_fallback;
3586 retry:
3588 * Scan zonelist, looking for a zone with enough free.
3589 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3591 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3592 z = ac->preferred_zoneref;
3593 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3594 ac->nodemask) {
3595 struct page *page;
3596 unsigned long mark;
3598 if (cpusets_enabled() &&
3599 (alloc_flags & ALLOC_CPUSET) &&
3600 !__cpuset_zone_allowed(zone, gfp_mask))
3601 continue;
3603 * When allocating a page cache page for writing, we
3604 * want to get it from a node that is within its dirty
3605 * limit, such that no single node holds more than its
3606 * proportional share of globally allowed dirty pages.
3607 * The dirty limits take into account the node's
3608 * lowmem reserves and high watermark so that kswapd
3609 * should be able to balance it without having to
3610 * write pages from its LRU list.
3612 * XXX: For now, allow allocations to potentially
3613 * exceed the per-node dirty limit in the slowpath
3614 * (spread_dirty_pages unset) before going into reclaim,
3615 * which is important when on a NUMA setup the allowed
3616 * nodes are together not big enough to reach the
3617 * global limit. The proper fix for these situations
3618 * will require awareness of nodes in the
3619 * dirty-throttling and the flusher threads.
3621 if (ac->spread_dirty_pages) {
3622 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3623 continue;
3625 if (!node_dirty_ok(zone->zone_pgdat)) {
3626 last_pgdat_dirty_limit = zone->zone_pgdat;
3627 continue;
3631 if (no_fallback && nr_online_nodes > 1 &&
3632 zone != ac->preferred_zoneref->zone) {
3633 int local_nid;
3636 * If moving to a remote node, retry but allow
3637 * fragmenting fallbacks. Locality is more important
3638 * than fragmentation avoidance.
3640 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3641 if (zone_to_nid(zone) != local_nid) {
3642 alloc_flags &= ~ALLOC_NOFRAGMENT;
3643 goto retry;
3647 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3648 if (!zone_watermark_fast(zone, order, mark,
3649 ac_classzone_idx(ac), alloc_flags)) {
3650 int ret;
3652 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3654 * Watermark failed for this zone, but see if we can
3655 * grow this zone if it contains deferred pages.
3657 if (static_branch_unlikely(&deferred_pages)) {
3658 if (_deferred_grow_zone(zone, order))
3659 goto try_this_zone;
3661 #endif
3662 /* Checked here to keep the fast path fast */
3663 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3664 if (alloc_flags & ALLOC_NO_WATERMARKS)
3665 goto try_this_zone;
3667 if (node_reclaim_mode == 0 ||
3668 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3669 continue;
3671 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3672 switch (ret) {
3673 case NODE_RECLAIM_NOSCAN:
3674 /* did not scan */
3675 continue;
3676 case NODE_RECLAIM_FULL:
3677 /* scanned but unreclaimable */
3678 continue;
3679 default:
3680 /* did we reclaim enough */
3681 if (zone_watermark_ok(zone, order, mark,
3682 ac_classzone_idx(ac), alloc_flags))
3683 goto try_this_zone;
3685 continue;
3689 try_this_zone:
3690 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3691 gfp_mask, alloc_flags, ac->migratetype);
3692 if (page) {
3693 prep_new_page(page, order, gfp_mask, alloc_flags);
3696 * If this is a high-order atomic allocation then check
3697 * if the pageblock should be reserved for the future
3699 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3700 reserve_highatomic_pageblock(page, zone, order);
3702 return page;
3703 } else {
3704 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3705 /* Try again if zone has deferred pages */
3706 if (static_branch_unlikely(&deferred_pages)) {
3707 if (_deferred_grow_zone(zone, order))
3708 goto try_this_zone;
3710 #endif
3715 * It's possible on a UMA machine to get through all zones that are
3716 * fragmented. If avoiding fragmentation, reset and try again.
3718 if (no_fallback) {
3719 alloc_flags &= ~ALLOC_NOFRAGMENT;
3720 goto retry;
3723 return NULL;
3726 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3728 unsigned int filter = SHOW_MEM_FILTER_NODES;
3731 * This documents exceptions given to allocations in certain
3732 * contexts that are allowed to allocate outside current's set
3733 * of allowed nodes.
3735 if (!(gfp_mask & __GFP_NOMEMALLOC))
3736 if (tsk_is_oom_victim(current) ||
3737 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3738 filter &= ~SHOW_MEM_FILTER_NODES;
3739 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3740 filter &= ~SHOW_MEM_FILTER_NODES;
3742 show_mem(filter, nodemask);
3745 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3747 struct va_format vaf;
3748 va_list args;
3749 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3751 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3752 return;
3754 va_start(args, fmt);
3755 vaf.fmt = fmt;
3756 vaf.va = &args;
3757 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3758 current->comm, &vaf, gfp_mask, &gfp_mask,
3759 nodemask_pr_args(nodemask));
3760 va_end(args);
3762 cpuset_print_current_mems_allowed();
3763 pr_cont("\n");
3764 dump_stack();
3765 warn_alloc_show_mem(gfp_mask, nodemask);
3768 static inline struct page *
3769 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3770 unsigned int alloc_flags,
3771 const struct alloc_context *ac)
3773 struct page *page;
3775 page = get_page_from_freelist(gfp_mask, order,
3776 alloc_flags|ALLOC_CPUSET, ac);
3778 * fallback to ignore cpuset restriction if our nodes
3779 * are depleted
3781 if (!page)
3782 page = get_page_from_freelist(gfp_mask, order,
3783 alloc_flags, ac);
3785 return page;
3788 static inline struct page *
3789 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3790 const struct alloc_context *ac, unsigned long *did_some_progress)
3792 struct oom_control oc = {
3793 .zonelist = ac->zonelist,
3794 .nodemask = ac->nodemask,
3795 .memcg = NULL,
3796 .gfp_mask = gfp_mask,
3797 .order = order,
3799 struct page *page;
3801 *did_some_progress = 0;
3804 * Acquire the oom lock. If that fails, somebody else is
3805 * making progress for us.
3807 if (!mutex_trylock(&oom_lock)) {
3808 *did_some_progress = 1;
3809 schedule_timeout_uninterruptible(1);
3810 return NULL;
3814 * Go through the zonelist yet one more time, keep very high watermark
3815 * here, this is only to catch a parallel oom killing, we must fail if
3816 * we're still under heavy pressure. But make sure that this reclaim
3817 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3818 * allocation which will never fail due to oom_lock already held.
3820 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3821 ~__GFP_DIRECT_RECLAIM, order,
3822 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3823 if (page)
3824 goto out;
3826 /* Coredumps can quickly deplete all memory reserves */
3827 if (current->flags & PF_DUMPCORE)
3828 goto out;
3829 /* The OOM killer will not help higher order allocs */
3830 if (order > PAGE_ALLOC_COSTLY_ORDER)
3831 goto out;
3833 * We have already exhausted all our reclaim opportunities without any
3834 * success so it is time to admit defeat. We will skip the OOM killer
3835 * because it is very likely that the caller has a more reasonable
3836 * fallback than shooting a random task.
3838 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3839 goto out;
3840 /* The OOM killer does not needlessly kill tasks for lowmem */
3841 if (ac->high_zoneidx < ZONE_NORMAL)
3842 goto out;
3843 if (pm_suspended_storage())
3844 goto out;
3846 * XXX: GFP_NOFS allocations should rather fail than rely on
3847 * other request to make a forward progress.
3848 * We are in an unfortunate situation where out_of_memory cannot
3849 * do much for this context but let's try it to at least get
3850 * access to memory reserved if the current task is killed (see
3851 * out_of_memory). Once filesystems are ready to handle allocation
3852 * failures more gracefully we should just bail out here.
3855 /* The OOM killer may not free memory on a specific node */
3856 if (gfp_mask & __GFP_THISNODE)
3857 goto out;
3859 /* Exhausted what can be done so it's blame time */
3860 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3861 *did_some_progress = 1;
3864 * Help non-failing allocations by giving them access to memory
3865 * reserves
3867 if (gfp_mask & __GFP_NOFAIL)
3868 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3869 ALLOC_NO_WATERMARKS, ac);
3871 out:
3872 mutex_unlock(&oom_lock);
3873 return page;
3877 * Maximum number of compaction retries wit a progress before OOM
3878 * killer is consider as the only way to move forward.
3880 #define MAX_COMPACT_RETRIES 16
3882 #ifdef CONFIG_COMPACTION
3883 /* Try memory compaction for high-order allocations before reclaim */
3884 static struct page *
3885 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3886 unsigned int alloc_flags, const struct alloc_context *ac,
3887 enum compact_priority prio, enum compact_result *compact_result)
3889 struct page *page = NULL;
3890 unsigned long pflags;
3891 unsigned int noreclaim_flag;
3893 if (!order)
3894 return NULL;
3896 psi_memstall_enter(&pflags);
3897 noreclaim_flag = memalloc_noreclaim_save();
3899 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3900 prio, &page);
3902 memalloc_noreclaim_restore(noreclaim_flag);
3903 psi_memstall_leave(&pflags);
3906 * At least in one zone compaction wasn't deferred or skipped, so let's
3907 * count a compaction stall
3909 count_vm_event(COMPACTSTALL);
3911 /* Prep a captured page if available */
3912 if (page)
3913 prep_new_page(page, order, gfp_mask, alloc_flags);
3915 /* Try get a page from the freelist if available */
3916 if (!page)
3917 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3919 if (page) {
3920 struct zone *zone = page_zone(page);
3922 zone->compact_blockskip_flush = false;
3923 compaction_defer_reset(zone, order, true);
3924 count_vm_event(COMPACTSUCCESS);
3925 return page;
3929 * It's bad if compaction run occurs and fails. The most likely reason
3930 * is that pages exist, but not enough to satisfy watermarks.
3932 count_vm_event(COMPACTFAIL);
3934 cond_resched();
3936 return NULL;
3939 static inline bool
3940 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3941 enum compact_result compact_result,
3942 enum compact_priority *compact_priority,
3943 int *compaction_retries)
3945 int max_retries = MAX_COMPACT_RETRIES;
3946 int min_priority;
3947 bool ret = false;
3948 int retries = *compaction_retries;
3949 enum compact_priority priority = *compact_priority;
3951 if (!order)
3952 return false;
3954 if (compaction_made_progress(compact_result))
3955 (*compaction_retries)++;
3958 * compaction considers all the zone as desperately out of memory
3959 * so it doesn't really make much sense to retry except when the
3960 * failure could be caused by insufficient priority
3962 if (compaction_failed(compact_result))
3963 goto check_priority;
3966 * compaction was skipped because there are not enough order-0 pages
3967 * to work with, so we retry only if it looks like reclaim can help.
3969 if (compaction_needs_reclaim(compact_result)) {
3970 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3971 goto out;
3975 * make sure the compaction wasn't deferred or didn't bail out early
3976 * due to locks contention before we declare that we should give up.
3977 * But the next retry should use a higher priority if allowed, so
3978 * we don't just keep bailing out endlessly.
3980 if (compaction_withdrawn(compact_result)) {
3981 goto check_priority;
3985 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3986 * costly ones because they are de facto nofail and invoke OOM
3987 * killer to move on while costly can fail and users are ready
3988 * to cope with that. 1/4 retries is rather arbitrary but we
3989 * would need much more detailed feedback from compaction to
3990 * make a better decision.
3992 if (order > PAGE_ALLOC_COSTLY_ORDER)
3993 max_retries /= 4;
3994 if (*compaction_retries <= max_retries) {
3995 ret = true;
3996 goto out;
4000 * Make sure there are attempts at the highest priority if we exhausted
4001 * all retries or failed at the lower priorities.
4003 check_priority:
4004 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4005 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4007 if (*compact_priority > min_priority) {
4008 (*compact_priority)--;
4009 *compaction_retries = 0;
4010 ret = true;
4012 out:
4013 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4014 return ret;
4016 #else
4017 static inline struct page *
4018 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4019 unsigned int alloc_flags, const struct alloc_context *ac,
4020 enum compact_priority prio, enum compact_result *compact_result)
4022 *compact_result = COMPACT_SKIPPED;
4023 return NULL;
4026 static inline bool
4027 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4028 enum compact_result compact_result,
4029 enum compact_priority *compact_priority,
4030 int *compaction_retries)
4032 struct zone *zone;
4033 struct zoneref *z;
4035 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4036 return false;
4039 * There are setups with compaction disabled which would prefer to loop
4040 * inside the allocator rather than hit the oom killer prematurely.
4041 * Let's give them a good hope and keep retrying while the order-0
4042 * watermarks are OK.
4044 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4045 ac->nodemask) {
4046 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4047 ac_classzone_idx(ac), alloc_flags))
4048 return true;
4050 return false;
4052 #endif /* CONFIG_COMPACTION */
4054 #ifdef CONFIG_LOCKDEP
4055 static struct lockdep_map __fs_reclaim_map =
4056 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4058 static bool __need_fs_reclaim(gfp_t gfp_mask)
4060 gfp_mask = current_gfp_context(gfp_mask);
4062 /* no reclaim without waiting on it */
4063 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4064 return false;
4066 /* this guy won't enter reclaim */
4067 if (current->flags & PF_MEMALLOC)
4068 return false;
4070 /* We're only interested __GFP_FS allocations for now */
4071 if (!(gfp_mask & __GFP_FS))
4072 return false;
4074 if (gfp_mask & __GFP_NOLOCKDEP)
4075 return false;
4077 return true;
4080 void __fs_reclaim_acquire(void)
4082 lock_map_acquire(&__fs_reclaim_map);
4085 void __fs_reclaim_release(void)
4087 lock_map_release(&__fs_reclaim_map);
4090 void fs_reclaim_acquire(gfp_t gfp_mask)
4092 if (__need_fs_reclaim(gfp_mask))
4093 __fs_reclaim_acquire();
4095 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4097 void fs_reclaim_release(gfp_t gfp_mask)
4099 if (__need_fs_reclaim(gfp_mask))
4100 __fs_reclaim_release();
4102 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4103 #endif
4105 /* Perform direct synchronous page reclaim */
4106 static int
4107 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4108 const struct alloc_context *ac)
4110 int progress;
4111 unsigned int noreclaim_flag;
4112 unsigned long pflags;
4114 cond_resched();
4116 /* We now go into synchronous reclaim */
4117 cpuset_memory_pressure_bump();
4118 psi_memstall_enter(&pflags);
4119 fs_reclaim_acquire(gfp_mask);
4120 noreclaim_flag = memalloc_noreclaim_save();
4122 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4123 ac->nodemask);
4125 memalloc_noreclaim_restore(noreclaim_flag);
4126 fs_reclaim_release(gfp_mask);
4127 psi_memstall_leave(&pflags);
4129 cond_resched();
4131 return progress;
4134 /* The really slow allocator path where we enter direct reclaim */
4135 static inline struct page *
4136 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4137 unsigned int alloc_flags, const struct alloc_context *ac,
4138 unsigned long *did_some_progress)
4140 struct page *page = NULL;
4141 bool drained = false;
4143 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4144 if (unlikely(!(*did_some_progress)))
4145 return NULL;
4147 retry:
4148 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4151 * If an allocation failed after direct reclaim, it could be because
4152 * pages are pinned on the per-cpu lists or in high alloc reserves.
4153 * Shrink them them and try again
4155 if (!page && !drained) {
4156 unreserve_highatomic_pageblock(ac, false);
4157 drain_all_pages(NULL);
4158 drained = true;
4159 goto retry;
4162 return page;
4165 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4166 const struct alloc_context *ac)
4168 struct zoneref *z;
4169 struct zone *zone;
4170 pg_data_t *last_pgdat = NULL;
4171 enum zone_type high_zoneidx = ac->high_zoneidx;
4173 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
4174 ac->nodemask) {
4175 if (last_pgdat != zone->zone_pgdat)
4176 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
4177 last_pgdat = zone->zone_pgdat;
4181 static inline unsigned int
4182 gfp_to_alloc_flags(gfp_t gfp_mask)
4184 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4186 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
4187 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4190 * The caller may dip into page reserves a bit more if the caller
4191 * cannot run direct reclaim, or if the caller has realtime scheduling
4192 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4193 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4195 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
4197 if (gfp_mask & __GFP_ATOMIC) {
4199 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4200 * if it can't schedule.
4202 if (!(gfp_mask & __GFP_NOMEMALLOC))
4203 alloc_flags |= ALLOC_HARDER;
4205 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4206 * comment for __cpuset_node_allowed().
4208 alloc_flags &= ~ALLOC_CPUSET;
4209 } else if (unlikely(rt_task(current)) && !in_interrupt())
4210 alloc_flags |= ALLOC_HARDER;
4212 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4213 alloc_flags |= ALLOC_KSWAPD;
4215 #ifdef CONFIG_CMA
4216 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4217 alloc_flags |= ALLOC_CMA;
4218 #endif
4219 return alloc_flags;
4222 static bool oom_reserves_allowed(struct task_struct *tsk)
4224 if (!tsk_is_oom_victim(tsk))
4225 return false;
4228 * !MMU doesn't have oom reaper so give access to memory reserves
4229 * only to the thread with TIF_MEMDIE set
4231 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4232 return false;
4234 return true;
4238 * Distinguish requests which really need access to full memory
4239 * reserves from oom victims which can live with a portion of it
4241 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4243 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4244 return 0;
4245 if (gfp_mask & __GFP_MEMALLOC)
4246 return ALLOC_NO_WATERMARKS;
4247 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4248 return ALLOC_NO_WATERMARKS;
4249 if (!in_interrupt()) {
4250 if (current->flags & PF_MEMALLOC)
4251 return ALLOC_NO_WATERMARKS;
4252 else if (oom_reserves_allowed(current))
4253 return ALLOC_OOM;
4256 return 0;
4259 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4261 return !!__gfp_pfmemalloc_flags(gfp_mask);
4265 * Checks whether it makes sense to retry the reclaim to make a forward progress
4266 * for the given allocation request.
4268 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4269 * without success, or when we couldn't even meet the watermark if we
4270 * reclaimed all remaining pages on the LRU lists.
4272 * Returns true if a retry is viable or false to enter the oom path.
4274 static inline bool
4275 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4276 struct alloc_context *ac, int alloc_flags,
4277 bool did_some_progress, int *no_progress_loops)
4279 struct zone *zone;
4280 struct zoneref *z;
4281 bool ret = false;
4284 * Costly allocations might have made a progress but this doesn't mean
4285 * their order will become available due to high fragmentation so
4286 * always increment the no progress counter for them
4288 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4289 *no_progress_loops = 0;
4290 else
4291 (*no_progress_loops)++;
4294 * Make sure we converge to OOM if we cannot make any progress
4295 * several times in the row.
4297 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4298 /* Before OOM, exhaust highatomic_reserve */
4299 return unreserve_highatomic_pageblock(ac, true);
4303 * Keep reclaiming pages while there is a chance this will lead
4304 * somewhere. If none of the target zones can satisfy our allocation
4305 * request even if all reclaimable pages are considered then we are
4306 * screwed and have to go OOM.
4308 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4309 ac->nodemask) {
4310 unsigned long available;
4311 unsigned long reclaimable;
4312 unsigned long min_wmark = min_wmark_pages(zone);
4313 bool wmark;
4315 available = reclaimable = zone_reclaimable_pages(zone);
4316 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4319 * Would the allocation succeed if we reclaimed all
4320 * reclaimable pages?
4322 wmark = __zone_watermark_ok(zone, order, min_wmark,
4323 ac_classzone_idx(ac), alloc_flags, available);
4324 trace_reclaim_retry_zone(z, order, reclaimable,
4325 available, min_wmark, *no_progress_loops, wmark);
4326 if (wmark) {
4328 * If we didn't make any progress and have a lot of
4329 * dirty + writeback pages then we should wait for
4330 * an IO to complete to slow down the reclaim and
4331 * prevent from pre mature OOM
4333 if (!did_some_progress) {
4334 unsigned long write_pending;
4336 write_pending = zone_page_state_snapshot(zone,
4337 NR_ZONE_WRITE_PENDING);
4339 if (2 * write_pending > reclaimable) {
4340 congestion_wait(BLK_RW_ASYNC, HZ/10);
4341 return true;
4345 ret = true;
4346 goto out;
4350 out:
4352 * Memory allocation/reclaim might be called from a WQ context and the
4353 * current implementation of the WQ concurrency control doesn't
4354 * recognize that a particular WQ is congested if the worker thread is
4355 * looping without ever sleeping. Therefore we have to do a short sleep
4356 * here rather than calling cond_resched().
4358 if (current->flags & PF_WQ_WORKER)
4359 schedule_timeout_uninterruptible(1);
4360 else
4361 cond_resched();
4362 return ret;
4365 static inline bool
4366 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4369 * It's possible that cpuset's mems_allowed and the nodemask from
4370 * mempolicy don't intersect. This should be normally dealt with by
4371 * policy_nodemask(), but it's possible to race with cpuset update in
4372 * such a way the check therein was true, and then it became false
4373 * before we got our cpuset_mems_cookie here.
4374 * This assumes that for all allocations, ac->nodemask can come only
4375 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4376 * when it does not intersect with the cpuset restrictions) or the
4377 * caller can deal with a violated nodemask.
4379 if (cpusets_enabled() && ac->nodemask &&
4380 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4381 ac->nodemask = NULL;
4382 return true;
4386 * When updating a task's mems_allowed or mempolicy nodemask, it is
4387 * possible to race with parallel threads in such a way that our
4388 * allocation can fail while the mask is being updated. If we are about
4389 * to fail, check if the cpuset changed during allocation and if so,
4390 * retry.
4392 if (read_mems_allowed_retry(cpuset_mems_cookie))
4393 return true;
4395 return false;
4398 static inline struct page *
4399 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4400 struct alloc_context *ac)
4402 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4403 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4404 struct page *page = NULL;
4405 unsigned int alloc_flags;
4406 unsigned long did_some_progress;
4407 enum compact_priority compact_priority;
4408 enum compact_result compact_result;
4409 int compaction_retries;
4410 int no_progress_loops;
4411 unsigned int cpuset_mems_cookie;
4412 int reserve_flags;
4415 * We also sanity check to catch abuse of atomic reserves being used by
4416 * callers that are not in atomic context.
4418 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4419 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4420 gfp_mask &= ~__GFP_ATOMIC;
4422 retry_cpuset:
4423 compaction_retries = 0;
4424 no_progress_loops = 0;
4425 compact_priority = DEF_COMPACT_PRIORITY;
4426 cpuset_mems_cookie = read_mems_allowed_begin();
4429 * The fast path uses conservative alloc_flags to succeed only until
4430 * kswapd needs to be woken up, and to avoid the cost of setting up
4431 * alloc_flags precisely. So we do that now.
4433 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4436 * We need to recalculate the starting point for the zonelist iterator
4437 * because we might have used different nodemask in the fast path, or
4438 * there was a cpuset modification and we are retrying - otherwise we
4439 * could end up iterating over non-eligible zones endlessly.
4441 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4442 ac->high_zoneidx, ac->nodemask);
4443 if (!ac->preferred_zoneref->zone)
4444 goto nopage;
4446 if (alloc_flags & ALLOC_KSWAPD)
4447 wake_all_kswapds(order, gfp_mask, ac);
4450 * The adjusted alloc_flags might result in immediate success, so try
4451 * that first
4453 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4454 if (page)
4455 goto got_pg;
4458 * For costly allocations, try direct compaction first, as it's likely
4459 * that we have enough base pages and don't need to reclaim. For non-
4460 * movable high-order allocations, do that as well, as compaction will
4461 * try prevent permanent fragmentation by migrating from blocks of the
4462 * same migratetype.
4463 * Don't try this for allocations that are allowed to ignore
4464 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4466 if (can_direct_reclaim &&
4467 (costly_order ||
4468 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4469 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4470 page = __alloc_pages_direct_compact(gfp_mask, order,
4471 alloc_flags, ac,
4472 INIT_COMPACT_PRIORITY,
4473 &compact_result);
4474 if (page)
4475 goto got_pg;
4477 if (order >= pageblock_order && (gfp_mask & __GFP_IO) &&
4478 !(gfp_mask & __GFP_RETRY_MAYFAIL)) {
4480 * If allocating entire pageblock(s) and compaction
4481 * failed because all zones are below low watermarks
4482 * or is prohibited because it recently failed at this
4483 * order, fail immediately unless the allocator has
4484 * requested compaction and reclaim retry.
4486 * Reclaim is
4487 * - potentially very expensive because zones are far
4488 * below their low watermarks or this is part of very
4489 * bursty high order allocations,
4490 * - not guaranteed to help because isolate_freepages()
4491 * may not iterate over freed pages as part of its
4492 * linear scan, and
4493 * - unlikely to make entire pageblocks free on its
4494 * own.
4496 if (compact_result == COMPACT_SKIPPED ||
4497 compact_result == COMPACT_DEFERRED)
4498 goto nopage;
4502 * Checks for costly allocations with __GFP_NORETRY, which
4503 * includes THP page fault allocations
4505 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4507 * If compaction is deferred for high-order allocations,
4508 * it is because sync compaction recently failed. If
4509 * this is the case and the caller requested a THP
4510 * allocation, we do not want to heavily disrupt the
4511 * system, so we fail the allocation instead of entering
4512 * direct reclaim.
4514 if (compact_result == COMPACT_DEFERRED)
4515 goto nopage;
4518 * Looks like reclaim/compaction is worth trying, but
4519 * sync compaction could be very expensive, so keep
4520 * using async compaction.
4522 compact_priority = INIT_COMPACT_PRIORITY;
4526 retry:
4527 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4528 if (alloc_flags & ALLOC_KSWAPD)
4529 wake_all_kswapds(order, gfp_mask, ac);
4531 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4532 if (reserve_flags)
4533 alloc_flags = reserve_flags;
4536 * Reset the nodemask and zonelist iterators if memory policies can be
4537 * ignored. These allocations are high priority and system rather than
4538 * user oriented.
4540 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4541 ac->nodemask = NULL;
4542 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4543 ac->high_zoneidx, ac->nodemask);
4546 /* Attempt with potentially adjusted zonelist and alloc_flags */
4547 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4548 if (page)
4549 goto got_pg;
4551 /* Caller is not willing to reclaim, we can't balance anything */
4552 if (!can_direct_reclaim)
4553 goto nopage;
4555 /* Avoid recursion of direct reclaim */
4556 if (current->flags & PF_MEMALLOC)
4557 goto nopage;
4559 /* Try direct reclaim and then allocating */
4560 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4561 &did_some_progress);
4562 if (page)
4563 goto got_pg;
4565 /* Try direct compaction and then allocating */
4566 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4567 compact_priority, &compact_result);
4568 if (page)
4569 goto got_pg;
4571 /* Do not loop if specifically requested */
4572 if (gfp_mask & __GFP_NORETRY)
4573 goto nopage;
4576 * Do not retry costly high order allocations unless they are
4577 * __GFP_RETRY_MAYFAIL
4579 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4580 goto nopage;
4582 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4583 did_some_progress > 0, &no_progress_loops))
4584 goto retry;
4587 * It doesn't make any sense to retry for the compaction if the order-0
4588 * reclaim is not able to make any progress because the current
4589 * implementation of the compaction depends on the sufficient amount
4590 * of free memory (see __compaction_suitable)
4592 if (did_some_progress > 0 &&
4593 should_compact_retry(ac, order, alloc_flags,
4594 compact_result, &compact_priority,
4595 &compaction_retries))
4596 goto retry;
4599 /* Deal with possible cpuset update races before we start OOM killing */
4600 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4601 goto retry_cpuset;
4603 /* Reclaim has failed us, start killing things */
4604 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4605 if (page)
4606 goto got_pg;
4608 /* Avoid allocations with no watermarks from looping endlessly */
4609 if (tsk_is_oom_victim(current) &&
4610 (alloc_flags == ALLOC_OOM ||
4611 (gfp_mask & __GFP_NOMEMALLOC)))
4612 goto nopage;
4614 /* Retry as long as the OOM killer is making progress */
4615 if (did_some_progress) {
4616 no_progress_loops = 0;
4617 goto retry;
4620 nopage:
4621 /* Deal with possible cpuset update races before we fail */
4622 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4623 goto retry_cpuset;
4626 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4627 * we always retry
4629 if (gfp_mask & __GFP_NOFAIL) {
4631 * All existing users of the __GFP_NOFAIL are blockable, so warn
4632 * of any new users that actually require GFP_NOWAIT
4634 if (WARN_ON_ONCE(!can_direct_reclaim))
4635 goto fail;
4638 * PF_MEMALLOC request from this context is rather bizarre
4639 * because we cannot reclaim anything and only can loop waiting
4640 * for somebody to do a work for us
4642 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4645 * non failing costly orders are a hard requirement which we
4646 * are not prepared for much so let's warn about these users
4647 * so that we can identify them and convert them to something
4648 * else.
4650 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4653 * Help non-failing allocations by giving them access to memory
4654 * reserves but do not use ALLOC_NO_WATERMARKS because this
4655 * could deplete whole memory reserves which would just make
4656 * the situation worse
4658 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4659 if (page)
4660 goto got_pg;
4662 cond_resched();
4663 goto retry;
4665 fail:
4666 warn_alloc(gfp_mask, ac->nodemask,
4667 "page allocation failure: order:%u", order);
4668 got_pg:
4669 return page;
4672 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4673 int preferred_nid, nodemask_t *nodemask,
4674 struct alloc_context *ac, gfp_t *alloc_mask,
4675 unsigned int *alloc_flags)
4677 ac->high_zoneidx = gfp_zone(gfp_mask);
4678 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4679 ac->nodemask = nodemask;
4680 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4682 if (cpusets_enabled()) {
4683 *alloc_mask |= __GFP_HARDWALL;
4684 if (!ac->nodemask)
4685 ac->nodemask = &cpuset_current_mems_allowed;
4686 else
4687 *alloc_flags |= ALLOC_CPUSET;
4690 fs_reclaim_acquire(gfp_mask);
4691 fs_reclaim_release(gfp_mask);
4693 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4695 if (should_fail_alloc_page(gfp_mask, order))
4696 return false;
4698 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4699 *alloc_flags |= ALLOC_CMA;
4701 return true;
4704 /* Determine whether to spread dirty pages and what the first usable zone */
4705 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4707 /* Dirty zone balancing only done in the fast path */
4708 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4711 * The preferred zone is used for statistics but crucially it is
4712 * also used as the starting point for the zonelist iterator. It
4713 * may get reset for allocations that ignore memory policies.
4715 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4716 ac->high_zoneidx, ac->nodemask);
4720 * This is the 'heart' of the zoned buddy allocator.
4722 struct page *
4723 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4724 nodemask_t *nodemask)
4726 struct page *page;
4727 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4728 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4729 struct alloc_context ac = { };
4732 * There are several places where we assume that the order value is sane
4733 * so bail out early if the request is out of bound.
4735 if (unlikely(order >= MAX_ORDER)) {
4736 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4737 return NULL;
4740 gfp_mask &= gfp_allowed_mask;
4741 alloc_mask = gfp_mask;
4742 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4743 return NULL;
4745 finalise_ac(gfp_mask, &ac);
4748 * Forbid the first pass from falling back to types that fragment
4749 * memory until all local zones are considered.
4751 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4753 /* First allocation attempt */
4754 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4755 if (likely(page))
4756 goto out;
4759 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4760 * resp. GFP_NOIO which has to be inherited for all allocation requests
4761 * from a particular context which has been marked by
4762 * memalloc_no{fs,io}_{save,restore}.
4764 alloc_mask = current_gfp_context(gfp_mask);
4765 ac.spread_dirty_pages = false;
4768 * Restore the original nodemask if it was potentially replaced with
4769 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4771 if (unlikely(ac.nodemask != nodemask))
4772 ac.nodemask = nodemask;
4774 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4776 out:
4777 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4778 unlikely(__memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4779 __free_pages(page, order);
4780 page = NULL;
4783 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4785 return page;
4787 EXPORT_SYMBOL(__alloc_pages_nodemask);
4790 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4791 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4792 * you need to access high mem.
4794 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4796 struct page *page;
4798 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4799 if (!page)
4800 return 0;
4801 return (unsigned long) page_address(page);
4803 EXPORT_SYMBOL(__get_free_pages);
4805 unsigned long get_zeroed_page(gfp_t gfp_mask)
4807 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4809 EXPORT_SYMBOL(get_zeroed_page);
4811 static inline void free_the_page(struct page *page, unsigned int order)
4813 if (order == 0) /* Via pcp? */
4814 free_unref_page(page);
4815 else
4816 __free_pages_ok(page, order);
4819 void __free_pages(struct page *page, unsigned int order)
4821 if (put_page_testzero(page))
4822 free_the_page(page, order);
4824 EXPORT_SYMBOL(__free_pages);
4826 void free_pages(unsigned long addr, unsigned int order)
4828 if (addr != 0) {
4829 VM_BUG_ON(!virt_addr_valid((void *)addr));
4830 __free_pages(virt_to_page((void *)addr), order);
4834 EXPORT_SYMBOL(free_pages);
4837 * Page Fragment:
4838 * An arbitrary-length arbitrary-offset area of memory which resides
4839 * within a 0 or higher order page. Multiple fragments within that page
4840 * are individually refcounted, in the page's reference counter.
4842 * The page_frag functions below provide a simple allocation framework for
4843 * page fragments. This is used by the network stack and network device
4844 * drivers to provide a backing region of memory for use as either an
4845 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4847 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4848 gfp_t gfp_mask)
4850 struct page *page = NULL;
4851 gfp_t gfp = gfp_mask;
4853 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4854 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4855 __GFP_NOMEMALLOC;
4856 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4857 PAGE_FRAG_CACHE_MAX_ORDER);
4858 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4859 #endif
4860 if (unlikely(!page))
4861 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4863 nc->va = page ? page_address(page) : NULL;
4865 return page;
4868 void __page_frag_cache_drain(struct page *page, unsigned int count)
4870 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4872 if (page_ref_sub_and_test(page, count))
4873 free_the_page(page, compound_order(page));
4875 EXPORT_SYMBOL(__page_frag_cache_drain);
4877 void *page_frag_alloc(struct page_frag_cache *nc,
4878 unsigned int fragsz, gfp_t gfp_mask)
4880 unsigned int size = PAGE_SIZE;
4881 struct page *page;
4882 int offset;
4884 if (unlikely(!nc->va)) {
4885 refill:
4886 page = __page_frag_cache_refill(nc, gfp_mask);
4887 if (!page)
4888 return NULL;
4890 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4891 /* if size can vary use size else just use PAGE_SIZE */
4892 size = nc->size;
4893 #endif
4894 /* Even if we own the page, we do not use atomic_set().
4895 * This would break get_page_unless_zero() users.
4897 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4899 /* reset page count bias and offset to start of new frag */
4900 nc->pfmemalloc = page_is_pfmemalloc(page);
4901 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4902 nc->offset = size;
4905 offset = nc->offset - fragsz;
4906 if (unlikely(offset < 0)) {
4907 page = virt_to_page(nc->va);
4909 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4910 goto refill;
4912 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4913 /* if size can vary use size else just use PAGE_SIZE */
4914 size = nc->size;
4915 #endif
4916 /* OK, page count is 0, we can safely set it */
4917 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4919 /* reset page count bias and offset to start of new frag */
4920 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4921 offset = size - fragsz;
4924 nc->pagecnt_bias--;
4925 nc->offset = offset;
4927 return nc->va + offset;
4929 EXPORT_SYMBOL(page_frag_alloc);
4932 * Frees a page fragment allocated out of either a compound or order 0 page.
4934 void page_frag_free(void *addr)
4936 struct page *page = virt_to_head_page(addr);
4938 if (unlikely(put_page_testzero(page)))
4939 free_the_page(page, compound_order(page));
4941 EXPORT_SYMBOL(page_frag_free);
4943 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4944 size_t size)
4946 if (addr) {
4947 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4948 unsigned long used = addr + PAGE_ALIGN(size);
4950 split_page(virt_to_page((void *)addr), order);
4951 while (used < alloc_end) {
4952 free_page(used);
4953 used += PAGE_SIZE;
4956 return (void *)addr;
4960 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4961 * @size: the number of bytes to allocate
4962 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4964 * This function is similar to alloc_pages(), except that it allocates the
4965 * minimum number of pages to satisfy the request. alloc_pages() can only
4966 * allocate memory in power-of-two pages.
4968 * This function is also limited by MAX_ORDER.
4970 * Memory allocated by this function must be released by free_pages_exact().
4972 * Return: pointer to the allocated area or %NULL in case of error.
4974 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4976 unsigned int order = get_order(size);
4977 unsigned long addr;
4979 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
4980 gfp_mask &= ~__GFP_COMP;
4982 addr = __get_free_pages(gfp_mask, order);
4983 return make_alloc_exact(addr, order, size);
4985 EXPORT_SYMBOL(alloc_pages_exact);
4988 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4989 * pages on a node.
4990 * @nid: the preferred node ID where memory should be allocated
4991 * @size: the number of bytes to allocate
4992 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4994 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4995 * back.
4997 * Return: pointer to the allocated area or %NULL in case of error.
4999 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5001 unsigned int order = get_order(size);
5002 struct page *p;
5004 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5005 gfp_mask &= ~__GFP_COMP;
5007 p = alloc_pages_node(nid, gfp_mask, order);
5008 if (!p)
5009 return NULL;
5010 return make_alloc_exact((unsigned long)page_address(p), order, size);
5014 * free_pages_exact - release memory allocated via alloc_pages_exact()
5015 * @virt: the value returned by alloc_pages_exact.
5016 * @size: size of allocation, same value as passed to alloc_pages_exact().
5018 * Release the memory allocated by a previous call to alloc_pages_exact.
5020 void free_pages_exact(void *virt, size_t size)
5022 unsigned long addr = (unsigned long)virt;
5023 unsigned long end = addr + PAGE_ALIGN(size);
5025 while (addr < end) {
5026 free_page(addr);
5027 addr += PAGE_SIZE;
5030 EXPORT_SYMBOL(free_pages_exact);
5033 * nr_free_zone_pages - count number of pages beyond high watermark
5034 * @offset: The zone index of the highest zone
5036 * nr_free_zone_pages() counts the number of pages which are beyond the
5037 * high watermark within all zones at or below a given zone index. For each
5038 * zone, the number of pages is calculated as:
5040 * nr_free_zone_pages = managed_pages - high_pages
5042 * Return: number of pages beyond high watermark.
5044 static unsigned long nr_free_zone_pages(int offset)
5046 struct zoneref *z;
5047 struct zone *zone;
5049 /* Just pick one node, since fallback list is circular */
5050 unsigned long sum = 0;
5052 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5054 for_each_zone_zonelist(zone, z, zonelist, offset) {
5055 unsigned long size = zone_managed_pages(zone);
5056 unsigned long high = high_wmark_pages(zone);
5057 if (size > high)
5058 sum += size - high;
5061 return sum;
5065 * nr_free_buffer_pages - count number of pages beyond high watermark
5067 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5068 * watermark within ZONE_DMA and ZONE_NORMAL.
5070 * Return: number of pages beyond high watermark within ZONE_DMA and
5071 * ZONE_NORMAL.
5073 unsigned long nr_free_buffer_pages(void)
5075 return nr_free_zone_pages(gfp_zone(GFP_USER));
5077 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5080 * nr_free_pagecache_pages - count number of pages beyond high watermark
5082 * nr_free_pagecache_pages() counts the number of pages which are beyond the
5083 * high watermark within all zones.
5085 * Return: number of pages beyond high watermark within all zones.
5087 unsigned long nr_free_pagecache_pages(void)
5089 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5092 static inline void show_node(struct zone *zone)
5094 if (IS_ENABLED(CONFIG_NUMA))
5095 printk("Node %d ", zone_to_nid(zone));
5098 long si_mem_available(void)
5100 long available;
5101 unsigned long pagecache;
5102 unsigned long wmark_low = 0;
5103 unsigned long pages[NR_LRU_LISTS];
5104 unsigned long reclaimable;
5105 struct zone *zone;
5106 int lru;
5108 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5109 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5111 for_each_zone(zone)
5112 wmark_low += low_wmark_pages(zone);
5115 * Estimate the amount of memory available for userspace allocations,
5116 * without causing swapping.
5118 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5121 * Not all the page cache can be freed, otherwise the system will
5122 * start swapping. Assume at least half of the page cache, or the
5123 * low watermark worth of cache, needs to stay.
5125 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5126 pagecache -= min(pagecache / 2, wmark_low);
5127 available += pagecache;
5130 * Part of the reclaimable slab and other kernel memory consists of
5131 * items that are in use, and cannot be freed. Cap this estimate at the
5132 * low watermark.
5134 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
5135 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5136 available += reclaimable - min(reclaimable / 2, wmark_low);
5138 if (available < 0)
5139 available = 0;
5140 return available;
5142 EXPORT_SYMBOL_GPL(si_mem_available);
5144 void si_meminfo(struct sysinfo *val)
5146 val->totalram = totalram_pages();
5147 val->sharedram = global_node_page_state(NR_SHMEM);
5148 val->freeram = global_zone_page_state(NR_FREE_PAGES);
5149 val->bufferram = nr_blockdev_pages();
5150 val->totalhigh = totalhigh_pages();
5151 val->freehigh = nr_free_highpages();
5152 val->mem_unit = PAGE_SIZE;
5155 EXPORT_SYMBOL(si_meminfo);
5157 #ifdef CONFIG_NUMA
5158 void si_meminfo_node(struct sysinfo *val, int nid)
5160 int zone_type; /* needs to be signed */
5161 unsigned long managed_pages = 0;
5162 unsigned long managed_highpages = 0;
5163 unsigned long free_highpages = 0;
5164 pg_data_t *pgdat = NODE_DATA(nid);
5166 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5167 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5168 val->totalram = managed_pages;
5169 val->sharedram = node_page_state(pgdat, NR_SHMEM);
5170 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5171 #ifdef CONFIG_HIGHMEM
5172 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5173 struct zone *zone = &pgdat->node_zones[zone_type];
5175 if (is_highmem(zone)) {
5176 managed_highpages += zone_managed_pages(zone);
5177 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5180 val->totalhigh = managed_highpages;
5181 val->freehigh = free_highpages;
5182 #else
5183 val->totalhigh = managed_highpages;
5184 val->freehigh = free_highpages;
5185 #endif
5186 val->mem_unit = PAGE_SIZE;
5188 #endif
5191 * Determine whether the node should be displayed or not, depending on whether
5192 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5194 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5196 if (!(flags & SHOW_MEM_FILTER_NODES))
5197 return false;
5200 * no node mask - aka implicit memory numa policy. Do not bother with
5201 * the synchronization - read_mems_allowed_begin - because we do not
5202 * have to be precise here.
5204 if (!nodemask)
5205 nodemask = &cpuset_current_mems_allowed;
5207 return !node_isset(nid, *nodemask);
5210 #define K(x) ((x) << (PAGE_SHIFT-10))
5212 static void show_migration_types(unsigned char type)
5214 static const char types[MIGRATE_TYPES] = {
5215 [MIGRATE_UNMOVABLE] = 'U',
5216 [MIGRATE_MOVABLE] = 'M',
5217 [MIGRATE_RECLAIMABLE] = 'E',
5218 [MIGRATE_HIGHATOMIC] = 'H',
5219 #ifdef CONFIG_CMA
5220 [MIGRATE_CMA] = 'C',
5221 #endif
5222 #ifdef CONFIG_MEMORY_ISOLATION
5223 [MIGRATE_ISOLATE] = 'I',
5224 #endif
5226 char tmp[MIGRATE_TYPES + 1];
5227 char *p = tmp;
5228 int i;
5230 for (i = 0; i < MIGRATE_TYPES; i++) {
5231 if (type & (1 << i))
5232 *p++ = types[i];
5235 *p = '\0';
5236 printk(KERN_CONT "(%s) ", tmp);
5240 * Show free area list (used inside shift_scroll-lock stuff)
5241 * We also calculate the percentage fragmentation. We do this by counting the
5242 * memory on each free list with the exception of the first item on the list.
5244 * Bits in @filter:
5245 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5246 * cpuset.
5248 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5250 unsigned long free_pcp = 0;
5251 int cpu;
5252 struct zone *zone;
5253 pg_data_t *pgdat;
5255 for_each_populated_zone(zone) {
5256 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5257 continue;
5259 for_each_online_cpu(cpu)
5260 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5263 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5264 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5265 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
5266 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5267 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5268 " free:%lu free_pcp:%lu free_cma:%lu\n",
5269 global_node_page_state(NR_ACTIVE_ANON),
5270 global_node_page_state(NR_INACTIVE_ANON),
5271 global_node_page_state(NR_ISOLATED_ANON),
5272 global_node_page_state(NR_ACTIVE_FILE),
5273 global_node_page_state(NR_INACTIVE_FILE),
5274 global_node_page_state(NR_ISOLATED_FILE),
5275 global_node_page_state(NR_UNEVICTABLE),
5276 global_node_page_state(NR_FILE_DIRTY),
5277 global_node_page_state(NR_WRITEBACK),
5278 global_node_page_state(NR_UNSTABLE_NFS),
5279 global_node_page_state(NR_SLAB_RECLAIMABLE),
5280 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
5281 global_node_page_state(NR_FILE_MAPPED),
5282 global_node_page_state(NR_SHMEM),
5283 global_zone_page_state(NR_PAGETABLE),
5284 global_zone_page_state(NR_BOUNCE),
5285 global_zone_page_state(NR_FREE_PAGES),
5286 free_pcp,
5287 global_zone_page_state(NR_FREE_CMA_PAGES));
5289 for_each_online_pgdat(pgdat) {
5290 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5291 continue;
5293 printk("Node %d"
5294 " active_anon:%lukB"
5295 " inactive_anon:%lukB"
5296 " active_file:%lukB"
5297 " inactive_file:%lukB"
5298 " unevictable:%lukB"
5299 " isolated(anon):%lukB"
5300 " isolated(file):%lukB"
5301 " mapped:%lukB"
5302 " dirty:%lukB"
5303 " writeback:%lukB"
5304 " shmem:%lukB"
5305 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5306 " shmem_thp: %lukB"
5307 " shmem_pmdmapped: %lukB"
5308 " anon_thp: %lukB"
5309 #endif
5310 " writeback_tmp:%lukB"
5311 " unstable:%lukB"
5312 " all_unreclaimable? %s"
5313 "\n",
5314 pgdat->node_id,
5315 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5316 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5317 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5318 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5319 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5320 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5321 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5322 K(node_page_state(pgdat, NR_FILE_MAPPED)),
5323 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5324 K(node_page_state(pgdat, NR_WRITEBACK)),
5325 K(node_page_state(pgdat, NR_SHMEM)),
5326 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5327 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5328 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5329 * HPAGE_PMD_NR),
5330 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5331 #endif
5332 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5333 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
5334 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5335 "yes" : "no");
5338 for_each_populated_zone(zone) {
5339 int i;
5341 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5342 continue;
5344 free_pcp = 0;
5345 for_each_online_cpu(cpu)
5346 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5348 show_node(zone);
5349 printk(KERN_CONT
5350 "%s"
5351 " free:%lukB"
5352 " min:%lukB"
5353 " low:%lukB"
5354 " high:%lukB"
5355 " active_anon:%lukB"
5356 " inactive_anon:%lukB"
5357 " active_file:%lukB"
5358 " inactive_file:%lukB"
5359 " unevictable:%lukB"
5360 " writepending:%lukB"
5361 " present:%lukB"
5362 " managed:%lukB"
5363 " mlocked:%lukB"
5364 " kernel_stack:%lukB"
5365 " pagetables:%lukB"
5366 " bounce:%lukB"
5367 " free_pcp:%lukB"
5368 " local_pcp:%ukB"
5369 " free_cma:%lukB"
5370 "\n",
5371 zone->name,
5372 K(zone_page_state(zone, NR_FREE_PAGES)),
5373 K(min_wmark_pages(zone)),
5374 K(low_wmark_pages(zone)),
5375 K(high_wmark_pages(zone)),
5376 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5377 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5378 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5379 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5380 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5381 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5382 K(zone->present_pages),
5383 K(zone_managed_pages(zone)),
5384 K(zone_page_state(zone, NR_MLOCK)),
5385 zone_page_state(zone, NR_KERNEL_STACK_KB),
5386 K(zone_page_state(zone, NR_PAGETABLE)),
5387 K(zone_page_state(zone, NR_BOUNCE)),
5388 K(free_pcp),
5389 K(this_cpu_read(zone->pageset->pcp.count)),
5390 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5391 printk("lowmem_reserve[]:");
5392 for (i = 0; i < MAX_NR_ZONES; i++)
5393 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5394 printk(KERN_CONT "\n");
5397 for_each_populated_zone(zone) {
5398 unsigned int order;
5399 unsigned long nr[MAX_ORDER], flags, total = 0;
5400 unsigned char types[MAX_ORDER];
5402 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5403 continue;
5404 show_node(zone);
5405 printk(KERN_CONT "%s: ", zone->name);
5407 spin_lock_irqsave(&zone->lock, flags);
5408 for (order = 0; order < MAX_ORDER; order++) {
5409 struct free_area *area = &zone->free_area[order];
5410 int type;
5412 nr[order] = area->nr_free;
5413 total += nr[order] << order;
5415 types[order] = 0;
5416 for (type = 0; type < MIGRATE_TYPES; type++) {
5417 if (!free_area_empty(area, type))
5418 types[order] |= 1 << type;
5421 spin_unlock_irqrestore(&zone->lock, flags);
5422 for (order = 0; order < MAX_ORDER; order++) {
5423 printk(KERN_CONT "%lu*%lukB ",
5424 nr[order], K(1UL) << order);
5425 if (nr[order])
5426 show_migration_types(types[order]);
5428 printk(KERN_CONT "= %lukB\n", K(total));
5431 hugetlb_show_meminfo();
5433 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5435 show_swap_cache_info();
5438 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5440 zoneref->zone = zone;
5441 zoneref->zone_idx = zone_idx(zone);
5445 * Builds allocation fallback zone lists.
5447 * Add all populated zones of a node to the zonelist.
5449 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5451 struct zone *zone;
5452 enum zone_type zone_type = MAX_NR_ZONES;
5453 int nr_zones = 0;
5455 do {
5456 zone_type--;
5457 zone = pgdat->node_zones + zone_type;
5458 if (managed_zone(zone)) {
5459 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5460 check_highest_zone(zone_type);
5462 } while (zone_type);
5464 return nr_zones;
5467 #ifdef CONFIG_NUMA
5469 static int __parse_numa_zonelist_order(char *s)
5472 * We used to support different zonlists modes but they turned
5473 * out to be just not useful. Let's keep the warning in place
5474 * if somebody still use the cmd line parameter so that we do
5475 * not fail it silently
5477 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5478 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
5479 return -EINVAL;
5481 return 0;
5484 static __init int setup_numa_zonelist_order(char *s)
5486 if (!s)
5487 return 0;
5489 return __parse_numa_zonelist_order(s);
5491 early_param("numa_zonelist_order", setup_numa_zonelist_order);
5493 char numa_zonelist_order[] = "Node";
5496 * sysctl handler for numa_zonelist_order
5498 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5499 void __user *buffer, size_t *length,
5500 loff_t *ppos)
5502 char *str;
5503 int ret;
5505 if (!write)
5506 return proc_dostring(table, write, buffer, length, ppos);
5507 str = memdup_user_nul(buffer, 16);
5508 if (IS_ERR(str))
5509 return PTR_ERR(str);
5511 ret = __parse_numa_zonelist_order(str);
5512 kfree(str);
5513 return ret;
5517 #define MAX_NODE_LOAD (nr_online_nodes)
5518 static int node_load[MAX_NUMNODES];
5521 * find_next_best_node - find the next node that should appear in a given node's fallback list
5522 * @node: node whose fallback list we're appending
5523 * @used_node_mask: nodemask_t of already used nodes
5525 * We use a number of factors to determine which is the next node that should
5526 * appear on a given node's fallback list. The node should not have appeared
5527 * already in @node's fallback list, and it should be the next closest node
5528 * according to the distance array (which contains arbitrary distance values
5529 * from each node to each node in the system), and should also prefer nodes
5530 * with no CPUs, since presumably they'll have very little allocation pressure
5531 * on them otherwise.
5533 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5535 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5537 int n, val;
5538 int min_val = INT_MAX;
5539 int best_node = NUMA_NO_NODE;
5540 const struct cpumask *tmp = cpumask_of_node(0);
5542 /* Use the local node if we haven't already */
5543 if (!node_isset(node, *used_node_mask)) {
5544 node_set(node, *used_node_mask);
5545 return node;
5548 for_each_node_state(n, N_MEMORY) {
5550 /* Don't want a node to appear more than once */
5551 if (node_isset(n, *used_node_mask))
5552 continue;
5554 /* Use the distance array to find the distance */
5555 val = node_distance(node, n);
5557 /* Penalize nodes under us ("prefer the next node") */
5558 val += (n < node);
5560 /* Give preference to headless and unused nodes */
5561 tmp = cpumask_of_node(n);
5562 if (!cpumask_empty(tmp))
5563 val += PENALTY_FOR_NODE_WITH_CPUS;
5565 /* Slight preference for less loaded node */
5566 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5567 val += node_load[n];
5569 if (val < min_val) {
5570 min_val = val;
5571 best_node = n;
5575 if (best_node >= 0)
5576 node_set(best_node, *used_node_mask);
5578 return best_node;
5583 * Build zonelists ordered by node and zones within node.
5584 * This results in maximum locality--normal zone overflows into local
5585 * DMA zone, if any--but risks exhausting DMA zone.
5587 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5588 unsigned nr_nodes)
5590 struct zoneref *zonerefs;
5591 int i;
5593 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5595 for (i = 0; i < nr_nodes; i++) {
5596 int nr_zones;
5598 pg_data_t *node = NODE_DATA(node_order[i]);
5600 nr_zones = build_zonerefs_node(node, zonerefs);
5601 zonerefs += nr_zones;
5603 zonerefs->zone = NULL;
5604 zonerefs->zone_idx = 0;
5608 * Build gfp_thisnode zonelists
5610 static void build_thisnode_zonelists(pg_data_t *pgdat)
5612 struct zoneref *zonerefs;
5613 int nr_zones;
5615 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5616 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5617 zonerefs += nr_zones;
5618 zonerefs->zone = NULL;
5619 zonerefs->zone_idx = 0;
5623 * Build zonelists ordered by zone and nodes within zones.
5624 * This results in conserving DMA zone[s] until all Normal memory is
5625 * exhausted, but results in overflowing to remote node while memory
5626 * may still exist in local DMA zone.
5629 static void build_zonelists(pg_data_t *pgdat)
5631 static int node_order[MAX_NUMNODES];
5632 int node, load, nr_nodes = 0;
5633 nodemask_t used_mask;
5634 int local_node, prev_node;
5636 /* NUMA-aware ordering of nodes */
5637 local_node = pgdat->node_id;
5638 load = nr_online_nodes;
5639 prev_node = local_node;
5640 nodes_clear(used_mask);
5642 memset(node_order, 0, sizeof(node_order));
5643 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5645 * We don't want to pressure a particular node.
5646 * So adding penalty to the first node in same
5647 * distance group to make it round-robin.
5649 if (node_distance(local_node, node) !=
5650 node_distance(local_node, prev_node))
5651 node_load[node] = load;
5653 node_order[nr_nodes++] = node;
5654 prev_node = node;
5655 load--;
5658 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5659 build_thisnode_zonelists(pgdat);
5662 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5664 * Return node id of node used for "local" allocations.
5665 * I.e., first node id of first zone in arg node's generic zonelist.
5666 * Used for initializing percpu 'numa_mem', which is used primarily
5667 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5669 int local_memory_node(int node)
5671 struct zoneref *z;
5673 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5674 gfp_zone(GFP_KERNEL),
5675 NULL);
5676 return zone_to_nid(z->zone);
5678 #endif
5680 static void setup_min_unmapped_ratio(void);
5681 static void setup_min_slab_ratio(void);
5682 #else /* CONFIG_NUMA */
5684 static void build_zonelists(pg_data_t *pgdat)
5686 int node, local_node;
5687 struct zoneref *zonerefs;
5688 int nr_zones;
5690 local_node = pgdat->node_id;
5692 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5693 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5694 zonerefs += nr_zones;
5697 * Now we build the zonelist so that it contains the zones
5698 * of all the other nodes.
5699 * We don't want to pressure a particular node, so when
5700 * building the zones for node N, we make sure that the
5701 * zones coming right after the local ones are those from
5702 * node N+1 (modulo N)
5704 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5705 if (!node_online(node))
5706 continue;
5707 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5708 zonerefs += nr_zones;
5710 for (node = 0; node < local_node; node++) {
5711 if (!node_online(node))
5712 continue;
5713 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5714 zonerefs += nr_zones;
5717 zonerefs->zone = NULL;
5718 zonerefs->zone_idx = 0;
5721 #endif /* CONFIG_NUMA */
5724 * Boot pageset table. One per cpu which is going to be used for all
5725 * zones and all nodes. The parameters will be set in such a way
5726 * that an item put on a list will immediately be handed over to
5727 * the buddy list. This is safe since pageset manipulation is done
5728 * with interrupts disabled.
5730 * The boot_pagesets must be kept even after bootup is complete for
5731 * unused processors and/or zones. They do play a role for bootstrapping
5732 * hotplugged processors.
5734 * zoneinfo_show() and maybe other functions do
5735 * not check if the processor is online before following the pageset pointer.
5736 * Other parts of the kernel may not check if the zone is available.
5738 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5739 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5740 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5742 static void __build_all_zonelists(void *data)
5744 int nid;
5745 int __maybe_unused cpu;
5746 pg_data_t *self = data;
5747 static DEFINE_SPINLOCK(lock);
5749 spin_lock(&lock);
5751 #ifdef CONFIG_NUMA
5752 memset(node_load, 0, sizeof(node_load));
5753 #endif
5756 * This node is hotadded and no memory is yet present. So just
5757 * building zonelists is fine - no need to touch other nodes.
5759 if (self && !node_online(self->node_id)) {
5760 build_zonelists(self);
5761 } else {
5762 for_each_online_node(nid) {
5763 pg_data_t *pgdat = NODE_DATA(nid);
5765 build_zonelists(pgdat);
5768 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5770 * We now know the "local memory node" for each node--
5771 * i.e., the node of the first zone in the generic zonelist.
5772 * Set up numa_mem percpu variable for on-line cpus. During
5773 * boot, only the boot cpu should be on-line; we'll init the
5774 * secondary cpus' numa_mem as they come on-line. During
5775 * node/memory hotplug, we'll fixup all on-line cpus.
5777 for_each_online_cpu(cpu)
5778 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5779 #endif
5782 spin_unlock(&lock);
5785 static noinline void __init
5786 build_all_zonelists_init(void)
5788 int cpu;
5790 __build_all_zonelists(NULL);
5793 * Initialize the boot_pagesets that are going to be used
5794 * for bootstrapping processors. The real pagesets for
5795 * each zone will be allocated later when the per cpu
5796 * allocator is available.
5798 * boot_pagesets are used also for bootstrapping offline
5799 * cpus if the system is already booted because the pagesets
5800 * are needed to initialize allocators on a specific cpu too.
5801 * F.e. the percpu allocator needs the page allocator which
5802 * needs the percpu allocator in order to allocate its pagesets
5803 * (a chicken-egg dilemma).
5805 for_each_possible_cpu(cpu)
5806 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5808 mminit_verify_zonelist();
5809 cpuset_init_current_mems_allowed();
5813 * unless system_state == SYSTEM_BOOTING.
5815 * __ref due to call of __init annotated helper build_all_zonelists_init
5816 * [protected by SYSTEM_BOOTING].
5818 void __ref build_all_zonelists(pg_data_t *pgdat)
5820 if (system_state == SYSTEM_BOOTING) {
5821 build_all_zonelists_init();
5822 } else {
5823 __build_all_zonelists(pgdat);
5824 /* cpuset refresh routine should be here */
5826 vm_total_pages = nr_free_pagecache_pages();
5828 * Disable grouping by mobility if the number of pages in the
5829 * system is too low to allow the mechanism to work. It would be
5830 * more accurate, but expensive to check per-zone. This check is
5831 * made on memory-hotadd so a system can start with mobility
5832 * disabled and enable it later
5834 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5835 page_group_by_mobility_disabled = 1;
5836 else
5837 page_group_by_mobility_disabled = 0;
5839 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
5840 nr_online_nodes,
5841 page_group_by_mobility_disabled ? "off" : "on",
5842 vm_total_pages);
5843 #ifdef CONFIG_NUMA
5844 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5845 #endif
5848 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5849 static bool __meminit
5850 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5852 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5853 static struct memblock_region *r;
5855 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5856 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5857 for_each_memblock(memory, r) {
5858 if (*pfn < memblock_region_memory_end_pfn(r))
5859 break;
5862 if (*pfn >= memblock_region_memory_base_pfn(r) &&
5863 memblock_is_mirror(r)) {
5864 *pfn = memblock_region_memory_end_pfn(r);
5865 return true;
5868 #endif
5869 return false;
5873 * Initially all pages are reserved - free ones are freed
5874 * up by memblock_free_all() once the early boot process is
5875 * done. Non-atomic initialization, single-pass.
5877 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5878 unsigned long start_pfn, enum memmap_context context,
5879 struct vmem_altmap *altmap)
5881 unsigned long pfn, end_pfn = start_pfn + size;
5882 struct page *page;
5884 if (highest_memmap_pfn < end_pfn - 1)
5885 highest_memmap_pfn = end_pfn - 1;
5887 #ifdef CONFIG_ZONE_DEVICE
5889 * Honor reservation requested by the driver for this ZONE_DEVICE
5890 * memory. We limit the total number of pages to initialize to just
5891 * those that might contain the memory mapping. We will defer the
5892 * ZONE_DEVICE page initialization until after we have released
5893 * the hotplug lock.
5895 if (zone == ZONE_DEVICE) {
5896 if (!altmap)
5897 return;
5899 if (start_pfn == altmap->base_pfn)
5900 start_pfn += altmap->reserve;
5901 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5903 #endif
5905 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5907 * There can be holes in boot-time mem_map[]s handed to this
5908 * function. They do not exist on hotplugged memory.
5910 if (context == MEMMAP_EARLY) {
5911 if (!early_pfn_valid(pfn))
5912 continue;
5913 if (!early_pfn_in_nid(pfn, nid))
5914 continue;
5915 if (overlap_memmap_init(zone, &pfn))
5916 continue;
5917 if (defer_init(nid, pfn, end_pfn))
5918 break;
5921 page = pfn_to_page(pfn);
5922 __init_single_page(page, pfn, zone, nid);
5923 if (context == MEMMAP_HOTPLUG)
5924 __SetPageReserved(page);
5927 * Mark the block movable so that blocks are reserved for
5928 * movable at startup. This will force kernel allocations
5929 * to reserve their blocks rather than leaking throughout
5930 * the address space during boot when many long-lived
5931 * kernel allocations are made.
5933 * bitmap is created for zone's valid pfn range. but memmap
5934 * can be created for invalid pages (for alignment)
5935 * check here not to call set_pageblock_migratetype() against
5936 * pfn out of zone.
5938 if (!(pfn & (pageblock_nr_pages - 1))) {
5939 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5940 cond_resched();
5945 #ifdef CONFIG_ZONE_DEVICE
5946 void __ref memmap_init_zone_device(struct zone *zone,
5947 unsigned long start_pfn,
5948 unsigned long size,
5949 struct dev_pagemap *pgmap)
5951 unsigned long pfn, end_pfn = start_pfn + size;
5952 struct pglist_data *pgdat = zone->zone_pgdat;
5953 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
5954 unsigned long zone_idx = zone_idx(zone);
5955 unsigned long start = jiffies;
5956 int nid = pgdat->node_id;
5958 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
5959 return;
5962 * The call to memmap_init_zone should have already taken care
5963 * of the pages reserved for the memmap, so we can just jump to
5964 * the end of that region and start processing the device pages.
5966 if (altmap) {
5967 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5968 size = end_pfn - start_pfn;
5971 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5972 struct page *page = pfn_to_page(pfn);
5974 __init_single_page(page, pfn, zone_idx, nid);
5977 * Mark page reserved as it will need to wait for onlining
5978 * phase for it to be fully associated with a zone.
5980 * We can use the non-atomic __set_bit operation for setting
5981 * the flag as we are still initializing the pages.
5983 __SetPageReserved(page);
5986 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
5987 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
5988 * ever freed or placed on a driver-private list.
5990 page->pgmap = pgmap;
5991 page->zone_device_data = NULL;
5994 * Mark the block movable so that blocks are reserved for
5995 * movable at startup. This will force kernel allocations
5996 * to reserve their blocks rather than leaking throughout
5997 * the address space during boot when many long-lived
5998 * kernel allocations are made.
6000 * bitmap is created for zone's valid pfn range. but memmap
6001 * can be created for invalid pages (for alignment)
6002 * check here not to call set_pageblock_migratetype() against
6003 * pfn out of zone.
6005 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
6006 * because this is done early in section_activate()
6008 if (!(pfn & (pageblock_nr_pages - 1))) {
6009 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6010 cond_resched();
6014 pr_info("%s initialised %lu pages in %ums\n", __func__,
6015 size, jiffies_to_msecs(jiffies - start));
6018 #endif
6019 static void __meminit zone_init_free_lists(struct zone *zone)
6021 unsigned int order, t;
6022 for_each_migratetype_order(order, t) {
6023 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6024 zone->free_area[order].nr_free = 0;
6028 void __meminit __weak memmap_init(unsigned long size, int nid,
6029 unsigned long zone, unsigned long start_pfn)
6031 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
6034 static int zone_batchsize(struct zone *zone)
6036 #ifdef CONFIG_MMU
6037 int batch;
6040 * The per-cpu-pages pools are set to around 1000th of the
6041 * size of the zone.
6043 batch = zone_managed_pages(zone) / 1024;
6044 /* But no more than a meg. */
6045 if (batch * PAGE_SIZE > 1024 * 1024)
6046 batch = (1024 * 1024) / PAGE_SIZE;
6047 batch /= 4; /* We effectively *= 4 below */
6048 if (batch < 1)
6049 batch = 1;
6052 * Clamp the batch to a 2^n - 1 value. Having a power
6053 * of 2 value was found to be more likely to have
6054 * suboptimal cache aliasing properties in some cases.
6056 * For example if 2 tasks are alternately allocating
6057 * batches of pages, one task can end up with a lot
6058 * of pages of one half of the possible page colors
6059 * and the other with pages of the other colors.
6061 batch = rounddown_pow_of_two(batch + batch/2) - 1;
6063 return batch;
6065 #else
6066 /* The deferral and batching of frees should be suppressed under NOMMU
6067 * conditions.
6069 * The problem is that NOMMU needs to be able to allocate large chunks
6070 * of contiguous memory as there's no hardware page translation to
6071 * assemble apparent contiguous memory from discontiguous pages.
6073 * Queueing large contiguous runs of pages for batching, however,
6074 * causes the pages to actually be freed in smaller chunks. As there
6075 * can be a significant delay between the individual batches being
6076 * recycled, this leads to the once large chunks of space being
6077 * fragmented and becoming unavailable for high-order allocations.
6079 return 0;
6080 #endif
6084 * pcp->high and pcp->batch values are related and dependent on one another:
6085 * ->batch must never be higher then ->high.
6086 * The following function updates them in a safe manner without read side
6087 * locking.
6089 * Any new users of pcp->batch and pcp->high should ensure they can cope with
6090 * those fields changing asynchronously (acording the the above rule).
6092 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6093 * outside of boot time (or some other assurance that no concurrent updaters
6094 * exist).
6096 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6097 unsigned long batch)
6099 /* start with a fail safe value for batch */
6100 pcp->batch = 1;
6101 smp_wmb();
6103 /* Update high, then batch, in order */
6104 pcp->high = high;
6105 smp_wmb();
6107 pcp->batch = batch;
6110 /* a companion to pageset_set_high() */
6111 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6113 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6116 static void pageset_init(struct per_cpu_pageset *p)
6118 struct per_cpu_pages *pcp;
6119 int migratetype;
6121 memset(p, 0, sizeof(*p));
6123 pcp = &p->pcp;
6124 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6125 INIT_LIST_HEAD(&pcp->lists[migratetype]);
6128 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6130 pageset_init(p);
6131 pageset_set_batch(p, batch);
6135 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6136 * to the value high for the pageset p.
6138 static void pageset_set_high(struct per_cpu_pageset *p,
6139 unsigned long high)
6141 unsigned long batch = max(1UL, high / 4);
6142 if ((high / 4) > (PAGE_SHIFT * 8))
6143 batch = PAGE_SHIFT * 8;
6145 pageset_update(&p->pcp, high, batch);
6148 static void pageset_set_high_and_batch(struct zone *zone,
6149 struct per_cpu_pageset *pcp)
6151 if (percpu_pagelist_fraction)
6152 pageset_set_high(pcp,
6153 (zone_managed_pages(zone) /
6154 percpu_pagelist_fraction));
6155 else
6156 pageset_set_batch(pcp, zone_batchsize(zone));
6159 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6161 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6163 pageset_init(pcp);
6164 pageset_set_high_and_batch(zone, pcp);
6167 void __meminit setup_zone_pageset(struct zone *zone)
6169 int cpu;
6170 zone->pageset = alloc_percpu(struct per_cpu_pageset);
6171 for_each_possible_cpu(cpu)
6172 zone_pageset_init(zone, cpu);
6176 * Allocate per cpu pagesets and initialize them.
6177 * Before this call only boot pagesets were available.
6179 void __init setup_per_cpu_pageset(void)
6181 struct pglist_data *pgdat;
6182 struct zone *zone;
6184 for_each_populated_zone(zone)
6185 setup_zone_pageset(zone);
6187 for_each_online_pgdat(pgdat)
6188 pgdat->per_cpu_nodestats =
6189 alloc_percpu(struct per_cpu_nodestat);
6192 static __meminit void zone_pcp_init(struct zone *zone)
6195 * per cpu subsystem is not up at this point. The following code
6196 * relies on the ability of the linker to provide the
6197 * offset of a (static) per cpu variable into the per cpu area.
6199 zone->pageset = &boot_pageset;
6201 if (populated_zone(zone))
6202 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6203 zone->name, zone->present_pages,
6204 zone_batchsize(zone));
6207 void __meminit init_currently_empty_zone(struct zone *zone,
6208 unsigned long zone_start_pfn,
6209 unsigned long size)
6211 struct pglist_data *pgdat = zone->zone_pgdat;
6212 int zone_idx = zone_idx(zone) + 1;
6214 if (zone_idx > pgdat->nr_zones)
6215 pgdat->nr_zones = zone_idx;
6217 zone->zone_start_pfn = zone_start_pfn;
6219 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6220 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6221 pgdat->node_id,
6222 (unsigned long)zone_idx(zone),
6223 zone_start_pfn, (zone_start_pfn + size));
6225 zone_init_free_lists(zone);
6226 zone->initialized = 1;
6229 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6230 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
6233 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
6235 int __meminit __early_pfn_to_nid(unsigned long pfn,
6236 struct mminit_pfnnid_cache *state)
6238 unsigned long start_pfn, end_pfn;
6239 int nid;
6241 if (state->last_start <= pfn && pfn < state->last_end)
6242 return state->last_nid;
6244 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
6245 if (nid != NUMA_NO_NODE) {
6246 state->last_start = start_pfn;
6247 state->last_end = end_pfn;
6248 state->last_nid = nid;
6251 return nid;
6253 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
6256 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
6257 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6258 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
6260 * If an architecture guarantees that all ranges registered contain no holes
6261 * and may be freed, this this function may be used instead of calling
6262 * memblock_free_early_nid() manually.
6264 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
6266 unsigned long start_pfn, end_pfn;
6267 int i, this_nid;
6269 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
6270 start_pfn = min(start_pfn, max_low_pfn);
6271 end_pfn = min(end_pfn, max_low_pfn);
6273 if (start_pfn < end_pfn)
6274 memblock_free_early_nid(PFN_PHYS(start_pfn),
6275 (end_pfn - start_pfn) << PAGE_SHIFT,
6276 this_nid);
6281 * sparse_memory_present_with_active_regions - Call memory_present for each active range
6282 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
6284 * If an architecture guarantees that all ranges registered contain no holes and may
6285 * be freed, this function may be used instead of calling memory_present() manually.
6287 void __init sparse_memory_present_with_active_regions(int nid)
6289 unsigned long start_pfn, end_pfn;
6290 int i, this_nid;
6292 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
6293 memory_present(this_nid, start_pfn, end_pfn);
6297 * get_pfn_range_for_nid - Return the start and end page frames for a node
6298 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6299 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6300 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6302 * It returns the start and end page frame of a node based on information
6303 * provided by memblock_set_node(). If called for a node
6304 * with no available memory, a warning is printed and the start and end
6305 * PFNs will be 0.
6307 void __init get_pfn_range_for_nid(unsigned int nid,
6308 unsigned long *start_pfn, unsigned long *end_pfn)
6310 unsigned long this_start_pfn, this_end_pfn;
6311 int i;
6313 *start_pfn = -1UL;
6314 *end_pfn = 0;
6316 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6317 *start_pfn = min(*start_pfn, this_start_pfn);
6318 *end_pfn = max(*end_pfn, this_end_pfn);
6321 if (*start_pfn == -1UL)
6322 *start_pfn = 0;
6326 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6327 * assumption is made that zones within a node are ordered in monotonic
6328 * increasing memory addresses so that the "highest" populated zone is used
6330 static void __init find_usable_zone_for_movable(void)
6332 int zone_index;
6333 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6334 if (zone_index == ZONE_MOVABLE)
6335 continue;
6337 if (arch_zone_highest_possible_pfn[zone_index] >
6338 arch_zone_lowest_possible_pfn[zone_index])
6339 break;
6342 VM_BUG_ON(zone_index == -1);
6343 movable_zone = zone_index;
6347 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6348 * because it is sized independent of architecture. Unlike the other zones,
6349 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6350 * in each node depending on the size of each node and how evenly kernelcore
6351 * is distributed. This helper function adjusts the zone ranges
6352 * provided by the architecture for a given node by using the end of the
6353 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6354 * zones within a node are in order of monotonic increases memory addresses
6356 static void __init adjust_zone_range_for_zone_movable(int nid,
6357 unsigned long zone_type,
6358 unsigned long node_start_pfn,
6359 unsigned long node_end_pfn,
6360 unsigned long *zone_start_pfn,
6361 unsigned long *zone_end_pfn)
6363 /* Only adjust if ZONE_MOVABLE is on this node */
6364 if (zone_movable_pfn[nid]) {
6365 /* Size ZONE_MOVABLE */
6366 if (zone_type == ZONE_MOVABLE) {
6367 *zone_start_pfn = zone_movable_pfn[nid];
6368 *zone_end_pfn = min(node_end_pfn,
6369 arch_zone_highest_possible_pfn[movable_zone]);
6371 /* Adjust for ZONE_MOVABLE starting within this range */
6372 } else if (!mirrored_kernelcore &&
6373 *zone_start_pfn < zone_movable_pfn[nid] &&
6374 *zone_end_pfn > zone_movable_pfn[nid]) {
6375 *zone_end_pfn = zone_movable_pfn[nid];
6377 /* Check if this whole range is within ZONE_MOVABLE */
6378 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6379 *zone_start_pfn = *zone_end_pfn;
6384 * Return the number of pages a zone spans in a node, including holes
6385 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6387 static unsigned long __init zone_spanned_pages_in_node(int nid,
6388 unsigned long zone_type,
6389 unsigned long node_start_pfn,
6390 unsigned long node_end_pfn,
6391 unsigned long *zone_start_pfn,
6392 unsigned long *zone_end_pfn,
6393 unsigned long *ignored)
6395 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6396 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6397 /* When hotadd a new node from cpu_up(), the node should be empty */
6398 if (!node_start_pfn && !node_end_pfn)
6399 return 0;
6401 /* Get the start and end of the zone */
6402 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6403 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6404 adjust_zone_range_for_zone_movable(nid, zone_type,
6405 node_start_pfn, node_end_pfn,
6406 zone_start_pfn, zone_end_pfn);
6408 /* Check that this node has pages within the zone's required range */
6409 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6410 return 0;
6412 /* Move the zone boundaries inside the node if necessary */
6413 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6414 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6416 /* Return the spanned pages */
6417 return *zone_end_pfn - *zone_start_pfn;
6421 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6422 * then all holes in the requested range will be accounted for.
6424 unsigned long __init __absent_pages_in_range(int nid,
6425 unsigned long range_start_pfn,
6426 unsigned long range_end_pfn)
6428 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6429 unsigned long start_pfn, end_pfn;
6430 int i;
6432 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6433 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6434 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6435 nr_absent -= end_pfn - start_pfn;
6437 return nr_absent;
6441 * absent_pages_in_range - Return number of page frames in holes within a range
6442 * @start_pfn: The start PFN to start searching for holes
6443 * @end_pfn: The end PFN to stop searching for holes
6445 * Return: the number of pages frames in memory holes within a range.
6447 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6448 unsigned long end_pfn)
6450 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6453 /* Return the number of page frames in holes in a zone on a node */
6454 static unsigned long __init zone_absent_pages_in_node(int nid,
6455 unsigned long zone_type,
6456 unsigned long node_start_pfn,
6457 unsigned long node_end_pfn,
6458 unsigned long *ignored)
6460 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6461 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6462 unsigned long zone_start_pfn, zone_end_pfn;
6463 unsigned long nr_absent;
6465 /* When hotadd a new node from cpu_up(), the node should be empty */
6466 if (!node_start_pfn && !node_end_pfn)
6467 return 0;
6469 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6470 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6472 adjust_zone_range_for_zone_movable(nid, zone_type,
6473 node_start_pfn, node_end_pfn,
6474 &zone_start_pfn, &zone_end_pfn);
6475 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6478 * ZONE_MOVABLE handling.
6479 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6480 * and vice versa.
6482 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6483 unsigned long start_pfn, end_pfn;
6484 struct memblock_region *r;
6486 for_each_memblock(memory, r) {
6487 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6488 zone_start_pfn, zone_end_pfn);
6489 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6490 zone_start_pfn, zone_end_pfn);
6492 if (zone_type == ZONE_MOVABLE &&
6493 memblock_is_mirror(r))
6494 nr_absent += end_pfn - start_pfn;
6496 if (zone_type == ZONE_NORMAL &&
6497 !memblock_is_mirror(r))
6498 nr_absent += end_pfn - start_pfn;
6502 return nr_absent;
6505 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6506 static inline unsigned long __init zone_spanned_pages_in_node(int nid,
6507 unsigned long zone_type,
6508 unsigned long node_start_pfn,
6509 unsigned long node_end_pfn,
6510 unsigned long *zone_start_pfn,
6511 unsigned long *zone_end_pfn,
6512 unsigned long *zones_size)
6514 unsigned int zone;
6516 *zone_start_pfn = node_start_pfn;
6517 for (zone = 0; zone < zone_type; zone++)
6518 *zone_start_pfn += zones_size[zone];
6520 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6522 return zones_size[zone_type];
6525 static inline unsigned long __init zone_absent_pages_in_node(int nid,
6526 unsigned long zone_type,
6527 unsigned long node_start_pfn,
6528 unsigned long node_end_pfn,
6529 unsigned long *zholes_size)
6531 if (!zholes_size)
6532 return 0;
6534 return zholes_size[zone_type];
6537 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6539 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6540 unsigned long node_start_pfn,
6541 unsigned long node_end_pfn,
6542 unsigned long *zones_size,
6543 unsigned long *zholes_size)
6545 unsigned long realtotalpages = 0, totalpages = 0;
6546 enum zone_type i;
6548 for (i = 0; i < MAX_NR_ZONES; i++) {
6549 struct zone *zone = pgdat->node_zones + i;
6550 unsigned long zone_start_pfn, zone_end_pfn;
6551 unsigned long size, real_size;
6553 size = zone_spanned_pages_in_node(pgdat->node_id, i,
6554 node_start_pfn,
6555 node_end_pfn,
6556 &zone_start_pfn,
6557 &zone_end_pfn,
6558 zones_size);
6559 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6560 node_start_pfn, node_end_pfn,
6561 zholes_size);
6562 if (size)
6563 zone->zone_start_pfn = zone_start_pfn;
6564 else
6565 zone->zone_start_pfn = 0;
6566 zone->spanned_pages = size;
6567 zone->present_pages = real_size;
6569 totalpages += size;
6570 realtotalpages += real_size;
6573 pgdat->node_spanned_pages = totalpages;
6574 pgdat->node_present_pages = realtotalpages;
6575 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6576 realtotalpages);
6579 #ifndef CONFIG_SPARSEMEM
6581 * Calculate the size of the zone->blockflags rounded to an unsigned long
6582 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6583 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6584 * round what is now in bits to nearest long in bits, then return it in
6585 * bytes.
6587 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6589 unsigned long usemapsize;
6591 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6592 usemapsize = roundup(zonesize, pageblock_nr_pages);
6593 usemapsize = usemapsize >> pageblock_order;
6594 usemapsize *= NR_PAGEBLOCK_BITS;
6595 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6597 return usemapsize / 8;
6600 static void __ref setup_usemap(struct pglist_data *pgdat,
6601 struct zone *zone,
6602 unsigned long zone_start_pfn,
6603 unsigned long zonesize)
6605 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6606 zone->pageblock_flags = NULL;
6607 if (usemapsize) {
6608 zone->pageblock_flags =
6609 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6610 pgdat->node_id);
6611 if (!zone->pageblock_flags)
6612 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6613 usemapsize, zone->name, pgdat->node_id);
6616 #else
6617 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6618 unsigned long zone_start_pfn, unsigned long zonesize) {}
6619 #endif /* CONFIG_SPARSEMEM */
6621 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6623 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6624 void __init set_pageblock_order(void)
6626 unsigned int order;
6628 /* Check that pageblock_nr_pages has not already been setup */
6629 if (pageblock_order)
6630 return;
6632 if (HPAGE_SHIFT > PAGE_SHIFT)
6633 order = HUGETLB_PAGE_ORDER;
6634 else
6635 order = MAX_ORDER - 1;
6638 * Assume the largest contiguous order of interest is a huge page.
6639 * This value may be variable depending on boot parameters on IA64 and
6640 * powerpc.
6642 pageblock_order = order;
6644 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6647 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6648 * is unused as pageblock_order is set at compile-time. See
6649 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6650 * the kernel config
6652 void __init set_pageblock_order(void)
6656 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6658 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6659 unsigned long present_pages)
6661 unsigned long pages = spanned_pages;
6664 * Provide a more accurate estimation if there are holes within
6665 * the zone and SPARSEMEM is in use. If there are holes within the
6666 * zone, each populated memory region may cost us one or two extra
6667 * memmap pages due to alignment because memmap pages for each
6668 * populated regions may not be naturally aligned on page boundary.
6669 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6671 if (spanned_pages > present_pages + (present_pages >> 4) &&
6672 IS_ENABLED(CONFIG_SPARSEMEM))
6673 pages = present_pages;
6675 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6678 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6679 static void pgdat_init_split_queue(struct pglist_data *pgdat)
6681 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6683 spin_lock_init(&ds_queue->split_queue_lock);
6684 INIT_LIST_HEAD(&ds_queue->split_queue);
6685 ds_queue->split_queue_len = 0;
6687 #else
6688 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6689 #endif
6691 #ifdef CONFIG_COMPACTION
6692 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6694 init_waitqueue_head(&pgdat->kcompactd_wait);
6696 #else
6697 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6698 #endif
6700 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6702 pgdat_resize_init(pgdat);
6704 pgdat_init_split_queue(pgdat);
6705 pgdat_init_kcompactd(pgdat);
6707 init_waitqueue_head(&pgdat->kswapd_wait);
6708 init_waitqueue_head(&pgdat->pfmemalloc_wait);
6710 pgdat_page_ext_init(pgdat);
6711 spin_lock_init(&pgdat->lru_lock);
6712 lruvec_init(node_lruvec(pgdat));
6715 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6716 unsigned long remaining_pages)
6718 atomic_long_set(&zone->managed_pages, remaining_pages);
6719 zone_set_nid(zone, nid);
6720 zone->name = zone_names[idx];
6721 zone->zone_pgdat = NODE_DATA(nid);
6722 spin_lock_init(&zone->lock);
6723 zone_seqlock_init(zone);
6724 zone_pcp_init(zone);
6728 * Set up the zone data structures
6729 * - init pgdat internals
6730 * - init all zones belonging to this node
6732 * NOTE: this function is only called during memory hotplug
6734 #ifdef CONFIG_MEMORY_HOTPLUG
6735 void __ref free_area_init_core_hotplug(int nid)
6737 enum zone_type z;
6738 pg_data_t *pgdat = NODE_DATA(nid);
6740 pgdat_init_internals(pgdat);
6741 for (z = 0; z < MAX_NR_ZONES; z++)
6742 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6744 #endif
6747 * Set up the zone data structures:
6748 * - mark all pages reserved
6749 * - mark all memory queues empty
6750 * - clear the memory bitmaps
6752 * NOTE: pgdat should get zeroed by caller.
6753 * NOTE: this function is only called during early init.
6755 static void __init free_area_init_core(struct pglist_data *pgdat)
6757 enum zone_type j;
6758 int nid = pgdat->node_id;
6760 pgdat_init_internals(pgdat);
6761 pgdat->per_cpu_nodestats = &boot_nodestats;
6763 for (j = 0; j < MAX_NR_ZONES; j++) {
6764 struct zone *zone = pgdat->node_zones + j;
6765 unsigned long size, freesize, memmap_pages;
6766 unsigned long zone_start_pfn = zone->zone_start_pfn;
6768 size = zone->spanned_pages;
6769 freesize = zone->present_pages;
6772 * Adjust freesize so that it accounts for how much memory
6773 * is used by this zone for memmap. This affects the watermark
6774 * and per-cpu initialisations
6776 memmap_pages = calc_memmap_size(size, freesize);
6777 if (!is_highmem_idx(j)) {
6778 if (freesize >= memmap_pages) {
6779 freesize -= memmap_pages;
6780 if (memmap_pages)
6781 printk(KERN_DEBUG
6782 " %s zone: %lu pages used for memmap\n",
6783 zone_names[j], memmap_pages);
6784 } else
6785 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6786 zone_names[j], memmap_pages, freesize);
6789 /* Account for reserved pages */
6790 if (j == 0 && freesize > dma_reserve) {
6791 freesize -= dma_reserve;
6792 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6793 zone_names[0], dma_reserve);
6796 if (!is_highmem_idx(j))
6797 nr_kernel_pages += freesize;
6798 /* Charge for highmem memmap if there are enough kernel pages */
6799 else if (nr_kernel_pages > memmap_pages * 2)
6800 nr_kernel_pages -= memmap_pages;
6801 nr_all_pages += freesize;
6804 * Set an approximate value for lowmem here, it will be adjusted
6805 * when the bootmem allocator frees pages into the buddy system.
6806 * And all highmem pages will be managed by the buddy system.
6808 zone_init_internals(zone, j, nid, freesize);
6810 if (!size)
6811 continue;
6813 set_pageblock_order();
6814 setup_usemap(pgdat, zone, zone_start_pfn, size);
6815 init_currently_empty_zone(zone, zone_start_pfn, size);
6816 memmap_init(size, nid, j, zone_start_pfn);
6820 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6821 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6823 unsigned long __maybe_unused start = 0;
6824 unsigned long __maybe_unused offset = 0;
6826 /* Skip empty nodes */
6827 if (!pgdat->node_spanned_pages)
6828 return;
6830 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6831 offset = pgdat->node_start_pfn - start;
6832 /* ia64 gets its own node_mem_map, before this, without bootmem */
6833 if (!pgdat->node_mem_map) {
6834 unsigned long size, end;
6835 struct page *map;
6838 * The zone's endpoints aren't required to be MAX_ORDER
6839 * aligned but the node_mem_map endpoints must be in order
6840 * for the buddy allocator to function correctly.
6842 end = pgdat_end_pfn(pgdat);
6843 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6844 size = (end - start) * sizeof(struct page);
6845 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6846 pgdat->node_id);
6847 if (!map)
6848 panic("Failed to allocate %ld bytes for node %d memory map\n",
6849 size, pgdat->node_id);
6850 pgdat->node_mem_map = map + offset;
6852 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6853 __func__, pgdat->node_id, (unsigned long)pgdat,
6854 (unsigned long)pgdat->node_mem_map);
6855 #ifndef CONFIG_NEED_MULTIPLE_NODES
6857 * With no DISCONTIG, the global mem_map is just set as node 0's
6859 if (pgdat == NODE_DATA(0)) {
6860 mem_map = NODE_DATA(0)->node_mem_map;
6861 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6862 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6863 mem_map -= offset;
6864 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6866 #endif
6868 #else
6869 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6870 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6872 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6873 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6875 pgdat->first_deferred_pfn = ULONG_MAX;
6877 #else
6878 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6879 #endif
6881 void __init free_area_init_node(int nid, unsigned long *zones_size,
6882 unsigned long node_start_pfn,
6883 unsigned long *zholes_size)
6885 pg_data_t *pgdat = NODE_DATA(nid);
6886 unsigned long start_pfn = 0;
6887 unsigned long end_pfn = 0;
6889 /* pg_data_t should be reset to zero when it's allocated */
6890 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6892 pgdat->node_id = nid;
6893 pgdat->node_start_pfn = node_start_pfn;
6894 pgdat->per_cpu_nodestats = NULL;
6895 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6896 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6897 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6898 (u64)start_pfn << PAGE_SHIFT,
6899 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6900 #else
6901 start_pfn = node_start_pfn;
6902 #endif
6903 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6904 zones_size, zholes_size);
6906 alloc_node_mem_map(pgdat);
6907 pgdat_set_deferred_range(pgdat);
6909 free_area_init_core(pgdat);
6912 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6914 * Zero all valid struct pages in range [spfn, epfn), return number of struct
6915 * pages zeroed
6917 static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
6919 unsigned long pfn;
6920 u64 pgcnt = 0;
6922 for (pfn = spfn; pfn < epfn; pfn++) {
6923 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6924 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6925 + pageblock_nr_pages - 1;
6926 continue;
6928 mm_zero_struct_page(pfn_to_page(pfn));
6929 pgcnt++;
6932 return pgcnt;
6936 * Only struct pages that are backed by physical memory are zeroed and
6937 * initialized by going through __init_single_page(). But, there are some
6938 * struct pages which are reserved in memblock allocator and their fields
6939 * may be accessed (for example page_to_pfn() on some configuration accesses
6940 * flags). We must explicitly zero those struct pages.
6942 * This function also addresses a similar issue where struct pages are left
6943 * uninitialized because the physical address range is not covered by
6944 * memblock.memory or memblock.reserved. That could happen when memblock
6945 * layout is manually configured via memmap=, or when the highest physical
6946 * address (max_pfn) does not end on a section boundary.
6948 void __init zero_resv_unavail(void)
6950 phys_addr_t start, end;
6951 u64 i, pgcnt;
6952 phys_addr_t next = 0;
6955 * Loop through unavailable ranges not covered by memblock.memory.
6957 pgcnt = 0;
6958 for_each_mem_range(i, &memblock.memory, NULL,
6959 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
6960 if (next < start)
6961 pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
6962 next = end;
6966 * Early sections always have a fully populated memmap for the whole
6967 * section - see pfn_valid(). If the last section has holes at the
6968 * end and that section is marked "online", the memmap will be
6969 * considered initialized. Make sure that memmap has a well defined
6970 * state.
6972 pgcnt += zero_pfn_range(PFN_DOWN(next),
6973 round_up(max_pfn, PAGES_PER_SECTION));
6976 * Struct pages that do not have backing memory. This could be because
6977 * firmware is using some of this memory, or for some other reasons.
6979 if (pgcnt)
6980 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
6982 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */
6984 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6986 #if MAX_NUMNODES > 1
6988 * Figure out the number of possible node ids.
6990 void __init setup_nr_node_ids(void)
6992 unsigned int highest;
6994 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6995 nr_node_ids = highest + 1;
6997 #endif
7000 * node_map_pfn_alignment - determine the maximum internode alignment
7002 * This function should be called after node map is populated and sorted.
7003 * It calculates the maximum power of two alignment which can distinguish
7004 * all the nodes.
7006 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7007 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7008 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7009 * shifted, 1GiB is enough and this function will indicate so.
7011 * This is used to test whether pfn -> nid mapping of the chosen memory
7012 * model has fine enough granularity to avoid incorrect mapping for the
7013 * populated node map.
7015 * Return: the determined alignment in pfn's. 0 if there is no alignment
7016 * requirement (single node).
7018 unsigned long __init node_map_pfn_alignment(void)
7020 unsigned long accl_mask = 0, last_end = 0;
7021 unsigned long start, end, mask;
7022 int last_nid = NUMA_NO_NODE;
7023 int i, nid;
7025 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7026 if (!start || last_nid < 0 || last_nid == nid) {
7027 last_nid = nid;
7028 last_end = end;
7029 continue;
7033 * Start with a mask granular enough to pin-point to the
7034 * start pfn and tick off bits one-by-one until it becomes
7035 * too coarse to separate the current node from the last.
7037 mask = ~((1 << __ffs(start)) - 1);
7038 while (mask && last_end <= (start & (mask << 1)))
7039 mask <<= 1;
7041 /* accumulate all internode masks */
7042 accl_mask |= mask;
7045 /* convert mask to number of pages */
7046 return ~accl_mask + 1;
7049 /* Find the lowest pfn for a node */
7050 static unsigned long __init find_min_pfn_for_node(int nid)
7052 unsigned long min_pfn = ULONG_MAX;
7053 unsigned long start_pfn;
7054 int i;
7056 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
7057 min_pfn = min(min_pfn, start_pfn);
7059 if (min_pfn == ULONG_MAX) {
7060 pr_warn("Could not find start_pfn for node %d\n", nid);
7061 return 0;
7064 return min_pfn;
7068 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7070 * Return: the minimum PFN based on information provided via
7071 * memblock_set_node().
7073 unsigned long __init find_min_pfn_with_active_regions(void)
7075 return find_min_pfn_for_node(MAX_NUMNODES);
7079 * early_calculate_totalpages()
7080 * Sum pages in active regions for movable zone.
7081 * Populate N_MEMORY for calculating usable_nodes.
7083 static unsigned long __init early_calculate_totalpages(void)
7085 unsigned long totalpages = 0;
7086 unsigned long start_pfn, end_pfn;
7087 int i, nid;
7089 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7090 unsigned long pages = end_pfn - start_pfn;
7092 totalpages += pages;
7093 if (pages)
7094 node_set_state(nid, N_MEMORY);
7096 return totalpages;
7100 * Find the PFN the Movable zone begins in each node. Kernel memory
7101 * is spread evenly between nodes as long as the nodes have enough
7102 * memory. When they don't, some nodes will have more kernelcore than
7103 * others
7105 static void __init find_zone_movable_pfns_for_nodes(void)
7107 int i, nid;
7108 unsigned long usable_startpfn;
7109 unsigned long kernelcore_node, kernelcore_remaining;
7110 /* save the state before borrow the nodemask */
7111 nodemask_t saved_node_state = node_states[N_MEMORY];
7112 unsigned long totalpages = early_calculate_totalpages();
7113 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7114 struct memblock_region *r;
7116 /* Need to find movable_zone earlier when movable_node is specified. */
7117 find_usable_zone_for_movable();
7120 * If movable_node is specified, ignore kernelcore and movablecore
7121 * options.
7123 if (movable_node_is_enabled()) {
7124 for_each_memblock(memory, r) {
7125 if (!memblock_is_hotpluggable(r))
7126 continue;
7128 nid = r->nid;
7130 usable_startpfn = PFN_DOWN(r->base);
7131 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7132 min(usable_startpfn, zone_movable_pfn[nid]) :
7133 usable_startpfn;
7136 goto out2;
7140 * If kernelcore=mirror is specified, ignore movablecore option
7142 if (mirrored_kernelcore) {
7143 bool mem_below_4gb_not_mirrored = false;
7145 for_each_memblock(memory, r) {
7146 if (memblock_is_mirror(r))
7147 continue;
7149 nid = r->nid;
7151 usable_startpfn = memblock_region_memory_base_pfn(r);
7153 if (usable_startpfn < 0x100000) {
7154 mem_below_4gb_not_mirrored = true;
7155 continue;
7158 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7159 min(usable_startpfn, zone_movable_pfn[nid]) :
7160 usable_startpfn;
7163 if (mem_below_4gb_not_mirrored)
7164 pr_warn("This configuration results in unmirrored kernel memory.");
7166 goto out2;
7170 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7171 * amount of necessary memory.
7173 if (required_kernelcore_percent)
7174 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7175 10000UL;
7176 if (required_movablecore_percent)
7177 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7178 10000UL;
7181 * If movablecore= was specified, calculate what size of
7182 * kernelcore that corresponds so that memory usable for
7183 * any allocation type is evenly spread. If both kernelcore
7184 * and movablecore are specified, then the value of kernelcore
7185 * will be used for required_kernelcore if it's greater than
7186 * what movablecore would have allowed.
7188 if (required_movablecore) {
7189 unsigned long corepages;
7192 * Round-up so that ZONE_MOVABLE is at least as large as what
7193 * was requested by the user
7195 required_movablecore =
7196 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7197 required_movablecore = min(totalpages, required_movablecore);
7198 corepages = totalpages - required_movablecore;
7200 required_kernelcore = max(required_kernelcore, corepages);
7204 * If kernelcore was not specified or kernelcore size is larger
7205 * than totalpages, there is no ZONE_MOVABLE.
7207 if (!required_kernelcore || required_kernelcore >= totalpages)
7208 goto out;
7210 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7211 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7213 restart:
7214 /* Spread kernelcore memory as evenly as possible throughout nodes */
7215 kernelcore_node = required_kernelcore / usable_nodes;
7216 for_each_node_state(nid, N_MEMORY) {
7217 unsigned long start_pfn, end_pfn;
7220 * Recalculate kernelcore_node if the division per node
7221 * now exceeds what is necessary to satisfy the requested
7222 * amount of memory for the kernel
7224 if (required_kernelcore < kernelcore_node)
7225 kernelcore_node = required_kernelcore / usable_nodes;
7228 * As the map is walked, we track how much memory is usable
7229 * by the kernel using kernelcore_remaining. When it is
7230 * 0, the rest of the node is usable by ZONE_MOVABLE
7232 kernelcore_remaining = kernelcore_node;
7234 /* Go through each range of PFNs within this node */
7235 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7236 unsigned long size_pages;
7238 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7239 if (start_pfn >= end_pfn)
7240 continue;
7242 /* Account for what is only usable for kernelcore */
7243 if (start_pfn < usable_startpfn) {
7244 unsigned long kernel_pages;
7245 kernel_pages = min(end_pfn, usable_startpfn)
7246 - start_pfn;
7248 kernelcore_remaining -= min(kernel_pages,
7249 kernelcore_remaining);
7250 required_kernelcore -= min(kernel_pages,
7251 required_kernelcore);
7253 /* Continue if range is now fully accounted */
7254 if (end_pfn <= usable_startpfn) {
7257 * Push zone_movable_pfn to the end so
7258 * that if we have to rebalance
7259 * kernelcore across nodes, we will
7260 * not double account here
7262 zone_movable_pfn[nid] = end_pfn;
7263 continue;
7265 start_pfn = usable_startpfn;
7269 * The usable PFN range for ZONE_MOVABLE is from
7270 * start_pfn->end_pfn. Calculate size_pages as the
7271 * number of pages used as kernelcore
7273 size_pages = end_pfn - start_pfn;
7274 if (size_pages > kernelcore_remaining)
7275 size_pages = kernelcore_remaining;
7276 zone_movable_pfn[nid] = start_pfn + size_pages;
7279 * Some kernelcore has been met, update counts and
7280 * break if the kernelcore for this node has been
7281 * satisfied
7283 required_kernelcore -= min(required_kernelcore,
7284 size_pages);
7285 kernelcore_remaining -= size_pages;
7286 if (!kernelcore_remaining)
7287 break;
7292 * If there is still required_kernelcore, we do another pass with one
7293 * less node in the count. This will push zone_movable_pfn[nid] further
7294 * along on the nodes that still have memory until kernelcore is
7295 * satisfied
7297 usable_nodes--;
7298 if (usable_nodes && required_kernelcore > usable_nodes)
7299 goto restart;
7301 out2:
7302 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7303 for (nid = 0; nid < MAX_NUMNODES; nid++)
7304 zone_movable_pfn[nid] =
7305 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7307 out:
7308 /* restore the node_state */
7309 node_states[N_MEMORY] = saved_node_state;
7312 /* Any regular or high memory on that node ? */
7313 static void check_for_memory(pg_data_t *pgdat, int nid)
7315 enum zone_type zone_type;
7317 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7318 struct zone *zone = &pgdat->node_zones[zone_type];
7319 if (populated_zone(zone)) {
7320 if (IS_ENABLED(CONFIG_HIGHMEM))
7321 node_set_state(nid, N_HIGH_MEMORY);
7322 if (zone_type <= ZONE_NORMAL)
7323 node_set_state(nid, N_NORMAL_MEMORY);
7324 break;
7330 * free_area_init_nodes - Initialise all pg_data_t and zone data
7331 * @max_zone_pfn: an array of max PFNs for each zone
7333 * This will call free_area_init_node() for each active node in the system.
7334 * Using the page ranges provided by memblock_set_node(), the size of each
7335 * zone in each node and their holes is calculated. If the maximum PFN
7336 * between two adjacent zones match, it is assumed that the zone is empty.
7337 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7338 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7339 * starts where the previous one ended. For example, ZONE_DMA32 starts
7340 * at arch_max_dma_pfn.
7342 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
7344 unsigned long start_pfn, end_pfn;
7345 int i, nid;
7347 /* Record where the zone boundaries are */
7348 memset(arch_zone_lowest_possible_pfn, 0,
7349 sizeof(arch_zone_lowest_possible_pfn));
7350 memset(arch_zone_highest_possible_pfn, 0,
7351 sizeof(arch_zone_highest_possible_pfn));
7353 start_pfn = find_min_pfn_with_active_regions();
7355 for (i = 0; i < MAX_NR_ZONES; i++) {
7356 if (i == ZONE_MOVABLE)
7357 continue;
7359 end_pfn = max(max_zone_pfn[i], start_pfn);
7360 arch_zone_lowest_possible_pfn[i] = start_pfn;
7361 arch_zone_highest_possible_pfn[i] = end_pfn;
7363 start_pfn = end_pfn;
7366 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7367 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7368 find_zone_movable_pfns_for_nodes();
7370 /* Print out the zone ranges */
7371 pr_info("Zone ranges:\n");
7372 for (i = 0; i < MAX_NR_ZONES; i++) {
7373 if (i == ZONE_MOVABLE)
7374 continue;
7375 pr_info(" %-8s ", zone_names[i]);
7376 if (arch_zone_lowest_possible_pfn[i] ==
7377 arch_zone_highest_possible_pfn[i])
7378 pr_cont("empty\n");
7379 else
7380 pr_cont("[mem %#018Lx-%#018Lx]\n",
7381 (u64)arch_zone_lowest_possible_pfn[i]
7382 << PAGE_SHIFT,
7383 ((u64)arch_zone_highest_possible_pfn[i]
7384 << PAGE_SHIFT) - 1);
7387 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
7388 pr_info("Movable zone start for each node\n");
7389 for (i = 0; i < MAX_NUMNODES; i++) {
7390 if (zone_movable_pfn[i])
7391 pr_info(" Node %d: %#018Lx\n", i,
7392 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7396 * Print out the early node map, and initialize the
7397 * subsection-map relative to active online memory ranges to
7398 * enable future "sub-section" extensions of the memory map.
7400 pr_info("Early memory node ranges\n");
7401 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7402 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7403 (u64)start_pfn << PAGE_SHIFT,
7404 ((u64)end_pfn << PAGE_SHIFT) - 1);
7405 subsection_map_init(start_pfn, end_pfn - start_pfn);
7408 /* Initialise every node */
7409 mminit_verify_pageflags_layout();
7410 setup_nr_node_ids();
7411 zero_resv_unavail();
7412 for_each_online_node(nid) {
7413 pg_data_t *pgdat = NODE_DATA(nid);
7414 free_area_init_node(nid, NULL,
7415 find_min_pfn_for_node(nid), NULL);
7417 /* Any memory on that node */
7418 if (pgdat->node_present_pages)
7419 node_set_state(nid, N_MEMORY);
7420 check_for_memory(pgdat, nid);
7424 static int __init cmdline_parse_core(char *p, unsigned long *core,
7425 unsigned long *percent)
7427 unsigned long long coremem;
7428 char *endptr;
7430 if (!p)
7431 return -EINVAL;
7433 /* Value may be a percentage of total memory, otherwise bytes */
7434 coremem = simple_strtoull(p, &endptr, 0);
7435 if (*endptr == '%') {
7436 /* Paranoid check for percent values greater than 100 */
7437 WARN_ON(coremem > 100);
7439 *percent = coremem;
7440 } else {
7441 coremem = memparse(p, &p);
7442 /* Paranoid check that UL is enough for the coremem value */
7443 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7445 *core = coremem >> PAGE_SHIFT;
7446 *percent = 0UL;
7448 return 0;
7452 * kernelcore=size sets the amount of memory for use for allocations that
7453 * cannot be reclaimed or migrated.
7455 static int __init cmdline_parse_kernelcore(char *p)
7457 /* parse kernelcore=mirror */
7458 if (parse_option_str(p, "mirror")) {
7459 mirrored_kernelcore = true;
7460 return 0;
7463 return cmdline_parse_core(p, &required_kernelcore,
7464 &required_kernelcore_percent);
7468 * movablecore=size sets the amount of memory for use for allocations that
7469 * can be reclaimed or migrated.
7471 static int __init cmdline_parse_movablecore(char *p)
7473 return cmdline_parse_core(p, &required_movablecore,
7474 &required_movablecore_percent);
7477 early_param("kernelcore", cmdline_parse_kernelcore);
7478 early_param("movablecore", cmdline_parse_movablecore);
7480 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7482 void adjust_managed_page_count(struct page *page, long count)
7484 atomic_long_add(count, &page_zone(page)->managed_pages);
7485 totalram_pages_add(count);
7486 #ifdef CONFIG_HIGHMEM
7487 if (PageHighMem(page))
7488 totalhigh_pages_add(count);
7489 #endif
7491 EXPORT_SYMBOL(adjust_managed_page_count);
7493 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7495 void *pos;
7496 unsigned long pages = 0;
7498 start = (void *)PAGE_ALIGN((unsigned long)start);
7499 end = (void *)((unsigned long)end & PAGE_MASK);
7500 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7501 struct page *page = virt_to_page(pos);
7502 void *direct_map_addr;
7505 * 'direct_map_addr' might be different from 'pos'
7506 * because some architectures' virt_to_page()
7507 * work with aliases. Getting the direct map
7508 * address ensures that we get a _writeable_
7509 * alias for the memset().
7511 direct_map_addr = page_address(page);
7512 if ((unsigned int)poison <= 0xFF)
7513 memset(direct_map_addr, poison, PAGE_SIZE);
7515 free_reserved_page(page);
7518 if (pages && s)
7519 pr_info("Freeing %s memory: %ldK\n",
7520 s, pages << (PAGE_SHIFT - 10));
7522 return pages;
7525 #ifdef CONFIG_HIGHMEM
7526 void free_highmem_page(struct page *page)
7528 __free_reserved_page(page);
7529 totalram_pages_inc();
7530 atomic_long_inc(&page_zone(page)->managed_pages);
7531 totalhigh_pages_inc();
7533 #endif
7536 void __init mem_init_print_info(const char *str)
7538 unsigned long physpages, codesize, datasize, rosize, bss_size;
7539 unsigned long init_code_size, init_data_size;
7541 physpages = get_num_physpages();
7542 codesize = _etext - _stext;
7543 datasize = _edata - _sdata;
7544 rosize = __end_rodata - __start_rodata;
7545 bss_size = __bss_stop - __bss_start;
7546 init_data_size = __init_end - __init_begin;
7547 init_code_size = _einittext - _sinittext;
7550 * Detect special cases and adjust section sizes accordingly:
7551 * 1) .init.* may be embedded into .data sections
7552 * 2) .init.text.* may be out of [__init_begin, __init_end],
7553 * please refer to arch/tile/kernel/vmlinux.lds.S.
7554 * 3) .rodata.* may be embedded into .text or .data sections.
7556 #define adj_init_size(start, end, size, pos, adj) \
7557 do { \
7558 if (start <= pos && pos < end && size > adj) \
7559 size -= adj; \
7560 } while (0)
7562 adj_init_size(__init_begin, __init_end, init_data_size,
7563 _sinittext, init_code_size);
7564 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7565 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7566 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7567 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7569 #undef adj_init_size
7571 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7572 #ifdef CONFIG_HIGHMEM
7573 ", %luK highmem"
7574 #endif
7575 "%s%s)\n",
7576 nr_free_pages() << (PAGE_SHIFT - 10),
7577 physpages << (PAGE_SHIFT - 10),
7578 codesize >> 10, datasize >> 10, rosize >> 10,
7579 (init_data_size + init_code_size) >> 10, bss_size >> 10,
7580 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7581 totalcma_pages << (PAGE_SHIFT - 10),
7582 #ifdef CONFIG_HIGHMEM
7583 totalhigh_pages() << (PAGE_SHIFT - 10),
7584 #endif
7585 str ? ", " : "", str ? str : "");
7589 * set_dma_reserve - set the specified number of pages reserved in the first zone
7590 * @new_dma_reserve: The number of pages to mark reserved
7592 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7593 * In the DMA zone, a significant percentage may be consumed by kernel image
7594 * and other unfreeable allocations which can skew the watermarks badly. This
7595 * function may optionally be used to account for unfreeable pages in the
7596 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7597 * smaller per-cpu batchsize.
7599 void __init set_dma_reserve(unsigned long new_dma_reserve)
7601 dma_reserve = new_dma_reserve;
7604 void __init free_area_init(unsigned long *zones_size)
7606 zero_resv_unavail();
7607 free_area_init_node(0, zones_size,
7608 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7611 static int page_alloc_cpu_dead(unsigned int cpu)
7614 lru_add_drain_cpu(cpu);
7615 drain_pages(cpu);
7618 * Spill the event counters of the dead processor
7619 * into the current processors event counters.
7620 * This artificially elevates the count of the current
7621 * processor.
7623 vm_events_fold_cpu(cpu);
7626 * Zero the differential counters of the dead processor
7627 * so that the vm statistics are consistent.
7629 * This is only okay since the processor is dead and cannot
7630 * race with what we are doing.
7632 cpu_vm_stats_fold(cpu);
7633 return 0;
7636 #ifdef CONFIG_NUMA
7637 int hashdist = HASHDIST_DEFAULT;
7639 static int __init set_hashdist(char *str)
7641 if (!str)
7642 return 0;
7643 hashdist = simple_strtoul(str, &str, 0);
7644 return 1;
7646 __setup("hashdist=", set_hashdist);
7647 #endif
7649 void __init page_alloc_init(void)
7651 int ret;
7653 #ifdef CONFIG_NUMA
7654 if (num_node_state(N_MEMORY) == 1)
7655 hashdist = 0;
7656 #endif
7658 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7659 "mm/page_alloc:dead", NULL,
7660 page_alloc_cpu_dead);
7661 WARN_ON(ret < 0);
7665 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7666 * or min_free_kbytes changes.
7668 static void calculate_totalreserve_pages(void)
7670 struct pglist_data *pgdat;
7671 unsigned long reserve_pages = 0;
7672 enum zone_type i, j;
7674 for_each_online_pgdat(pgdat) {
7676 pgdat->totalreserve_pages = 0;
7678 for (i = 0; i < MAX_NR_ZONES; i++) {
7679 struct zone *zone = pgdat->node_zones + i;
7680 long max = 0;
7681 unsigned long managed_pages = zone_managed_pages(zone);
7683 /* Find valid and maximum lowmem_reserve in the zone */
7684 for (j = i; j < MAX_NR_ZONES; j++) {
7685 if (zone->lowmem_reserve[j] > max)
7686 max = zone->lowmem_reserve[j];
7689 /* we treat the high watermark as reserved pages. */
7690 max += high_wmark_pages(zone);
7692 if (max > managed_pages)
7693 max = managed_pages;
7695 pgdat->totalreserve_pages += max;
7697 reserve_pages += max;
7700 totalreserve_pages = reserve_pages;
7704 * setup_per_zone_lowmem_reserve - called whenever
7705 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
7706 * has a correct pages reserved value, so an adequate number of
7707 * pages are left in the zone after a successful __alloc_pages().
7709 static void setup_per_zone_lowmem_reserve(void)
7711 struct pglist_data *pgdat;
7712 enum zone_type j, idx;
7714 for_each_online_pgdat(pgdat) {
7715 for (j = 0; j < MAX_NR_ZONES; j++) {
7716 struct zone *zone = pgdat->node_zones + j;
7717 unsigned long managed_pages = zone_managed_pages(zone);
7719 zone->lowmem_reserve[j] = 0;
7721 idx = j;
7722 while (idx) {
7723 struct zone *lower_zone;
7725 idx--;
7726 lower_zone = pgdat->node_zones + idx;
7728 if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7729 sysctl_lowmem_reserve_ratio[idx] = 0;
7730 lower_zone->lowmem_reserve[j] = 0;
7731 } else {
7732 lower_zone->lowmem_reserve[j] =
7733 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7735 managed_pages += zone_managed_pages(lower_zone);
7740 /* update totalreserve_pages */
7741 calculate_totalreserve_pages();
7744 static void __setup_per_zone_wmarks(void)
7746 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7747 unsigned long lowmem_pages = 0;
7748 struct zone *zone;
7749 unsigned long flags;
7751 /* Calculate total number of !ZONE_HIGHMEM pages */
7752 for_each_zone(zone) {
7753 if (!is_highmem(zone))
7754 lowmem_pages += zone_managed_pages(zone);
7757 for_each_zone(zone) {
7758 u64 tmp;
7760 spin_lock_irqsave(&zone->lock, flags);
7761 tmp = (u64)pages_min * zone_managed_pages(zone);
7762 do_div(tmp, lowmem_pages);
7763 if (is_highmem(zone)) {
7765 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7766 * need highmem pages, so cap pages_min to a small
7767 * value here.
7769 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7770 * deltas control async page reclaim, and so should
7771 * not be capped for highmem.
7773 unsigned long min_pages;
7775 min_pages = zone_managed_pages(zone) / 1024;
7776 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7777 zone->_watermark[WMARK_MIN] = min_pages;
7778 } else {
7780 * If it's a lowmem zone, reserve a number of pages
7781 * proportionate to the zone's size.
7783 zone->_watermark[WMARK_MIN] = tmp;
7787 * Set the kswapd watermarks distance according to the
7788 * scale factor in proportion to available memory, but
7789 * ensure a minimum size on small systems.
7791 tmp = max_t(u64, tmp >> 2,
7792 mult_frac(zone_managed_pages(zone),
7793 watermark_scale_factor, 10000));
7795 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7796 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7797 zone->watermark_boost = 0;
7799 spin_unlock_irqrestore(&zone->lock, flags);
7802 /* update totalreserve_pages */
7803 calculate_totalreserve_pages();
7807 * setup_per_zone_wmarks - called when min_free_kbytes changes
7808 * or when memory is hot-{added|removed}
7810 * Ensures that the watermark[min,low,high] values for each zone are set
7811 * correctly with respect to min_free_kbytes.
7813 void setup_per_zone_wmarks(void)
7815 static DEFINE_SPINLOCK(lock);
7817 spin_lock(&lock);
7818 __setup_per_zone_wmarks();
7819 spin_unlock(&lock);
7823 * Initialise min_free_kbytes.
7825 * For small machines we want it small (128k min). For large machines
7826 * we want it large (64MB max). But it is not linear, because network
7827 * bandwidth does not increase linearly with machine size. We use
7829 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7830 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7832 * which yields
7834 * 16MB: 512k
7835 * 32MB: 724k
7836 * 64MB: 1024k
7837 * 128MB: 1448k
7838 * 256MB: 2048k
7839 * 512MB: 2896k
7840 * 1024MB: 4096k
7841 * 2048MB: 5792k
7842 * 4096MB: 8192k
7843 * 8192MB: 11584k
7844 * 16384MB: 16384k
7846 int __meminit init_per_zone_wmark_min(void)
7848 unsigned long lowmem_kbytes;
7849 int new_min_free_kbytes;
7851 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7852 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7854 if (new_min_free_kbytes > user_min_free_kbytes) {
7855 min_free_kbytes = new_min_free_kbytes;
7856 if (min_free_kbytes < 128)
7857 min_free_kbytes = 128;
7858 if (min_free_kbytes > 65536)
7859 min_free_kbytes = 65536;
7860 } else {
7861 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7862 new_min_free_kbytes, user_min_free_kbytes);
7864 setup_per_zone_wmarks();
7865 refresh_zone_stat_thresholds();
7866 setup_per_zone_lowmem_reserve();
7868 #ifdef CONFIG_NUMA
7869 setup_min_unmapped_ratio();
7870 setup_min_slab_ratio();
7871 #endif
7873 return 0;
7875 postcore_initcall(init_per_zone_wmark_min)
7878 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7879 * that we can call two helper functions whenever min_free_kbytes
7880 * changes.
7882 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7883 void __user *buffer, size_t *length, loff_t *ppos)
7885 int rc;
7887 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7888 if (rc)
7889 return rc;
7891 if (write) {
7892 user_min_free_kbytes = min_free_kbytes;
7893 setup_per_zone_wmarks();
7895 return 0;
7898 int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
7899 void __user *buffer, size_t *length, loff_t *ppos)
7901 int rc;
7903 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7904 if (rc)
7905 return rc;
7907 return 0;
7910 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7911 void __user *buffer, size_t *length, loff_t *ppos)
7913 int rc;
7915 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7916 if (rc)
7917 return rc;
7919 if (write)
7920 setup_per_zone_wmarks();
7922 return 0;
7925 #ifdef CONFIG_NUMA
7926 static void setup_min_unmapped_ratio(void)
7928 pg_data_t *pgdat;
7929 struct zone *zone;
7931 for_each_online_pgdat(pgdat)
7932 pgdat->min_unmapped_pages = 0;
7934 for_each_zone(zone)
7935 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7936 sysctl_min_unmapped_ratio) / 100;
7940 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7941 void __user *buffer, size_t *length, loff_t *ppos)
7943 int rc;
7945 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7946 if (rc)
7947 return rc;
7949 setup_min_unmapped_ratio();
7951 return 0;
7954 static void setup_min_slab_ratio(void)
7956 pg_data_t *pgdat;
7957 struct zone *zone;
7959 for_each_online_pgdat(pgdat)
7960 pgdat->min_slab_pages = 0;
7962 for_each_zone(zone)
7963 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7964 sysctl_min_slab_ratio) / 100;
7967 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7968 void __user *buffer, size_t *length, loff_t *ppos)
7970 int rc;
7972 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7973 if (rc)
7974 return rc;
7976 setup_min_slab_ratio();
7978 return 0;
7980 #endif
7983 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7984 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7985 * whenever sysctl_lowmem_reserve_ratio changes.
7987 * The reserve ratio obviously has absolutely no relation with the
7988 * minimum watermarks. The lowmem reserve ratio can only make sense
7989 * if in function of the boot time zone sizes.
7991 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7992 void __user *buffer, size_t *length, loff_t *ppos)
7994 proc_dointvec_minmax(table, write, buffer, length, ppos);
7995 setup_per_zone_lowmem_reserve();
7996 return 0;
8000 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8001 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8002 * pagelist can have before it gets flushed back to buddy allocator.
8004 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8005 void __user *buffer, size_t *length, loff_t *ppos)
8007 struct zone *zone;
8008 int old_percpu_pagelist_fraction;
8009 int ret;
8011 mutex_lock(&pcp_batch_high_lock);
8012 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8014 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8015 if (!write || ret < 0)
8016 goto out;
8018 /* Sanity checking to avoid pcp imbalance */
8019 if (percpu_pagelist_fraction &&
8020 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8021 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8022 ret = -EINVAL;
8023 goto out;
8026 /* No change? */
8027 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8028 goto out;
8030 for_each_populated_zone(zone) {
8031 unsigned int cpu;
8033 for_each_possible_cpu(cpu)
8034 pageset_set_high_and_batch(zone,
8035 per_cpu_ptr(zone->pageset, cpu));
8037 out:
8038 mutex_unlock(&pcp_batch_high_lock);
8039 return ret;
8042 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8044 * Returns the number of pages that arch has reserved but
8045 * is not known to alloc_large_system_hash().
8047 static unsigned long __init arch_reserved_kernel_pages(void)
8049 return 0;
8051 #endif
8054 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8055 * machines. As memory size is increased the scale is also increased but at
8056 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8057 * quadruples the scale is increased by one, which means the size of hash table
8058 * only doubles, instead of quadrupling as well.
8059 * Because 32-bit systems cannot have large physical memory, where this scaling
8060 * makes sense, it is disabled on such platforms.
8062 #if __BITS_PER_LONG > 32
8063 #define ADAPT_SCALE_BASE (64ul << 30)
8064 #define ADAPT_SCALE_SHIFT 2
8065 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8066 #endif
8069 * allocate a large system hash table from bootmem
8070 * - it is assumed that the hash table must contain an exact power-of-2
8071 * quantity of entries
8072 * - limit is the number of hash buckets, not the total allocation size
8074 void *__init alloc_large_system_hash(const char *tablename,
8075 unsigned long bucketsize,
8076 unsigned long numentries,
8077 int scale,
8078 int flags,
8079 unsigned int *_hash_shift,
8080 unsigned int *_hash_mask,
8081 unsigned long low_limit,
8082 unsigned long high_limit)
8084 unsigned long long max = high_limit;
8085 unsigned long log2qty, size;
8086 void *table = NULL;
8087 gfp_t gfp_flags;
8088 bool virt;
8090 /* allow the kernel cmdline to have a say */
8091 if (!numentries) {
8092 /* round applicable memory size up to nearest megabyte */
8093 numentries = nr_kernel_pages;
8094 numentries -= arch_reserved_kernel_pages();
8096 /* It isn't necessary when PAGE_SIZE >= 1MB */
8097 if (PAGE_SHIFT < 20)
8098 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8100 #if __BITS_PER_LONG > 32
8101 if (!high_limit) {
8102 unsigned long adapt;
8104 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8105 adapt <<= ADAPT_SCALE_SHIFT)
8106 scale++;
8108 #endif
8110 /* limit to 1 bucket per 2^scale bytes of low memory */
8111 if (scale > PAGE_SHIFT)
8112 numentries >>= (scale - PAGE_SHIFT);
8113 else
8114 numentries <<= (PAGE_SHIFT - scale);
8116 /* Make sure we've got at least a 0-order allocation.. */
8117 if (unlikely(flags & HASH_SMALL)) {
8118 /* Makes no sense without HASH_EARLY */
8119 WARN_ON(!(flags & HASH_EARLY));
8120 if (!(numentries >> *_hash_shift)) {
8121 numentries = 1UL << *_hash_shift;
8122 BUG_ON(!numentries);
8124 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8125 numentries = PAGE_SIZE / bucketsize;
8127 numentries = roundup_pow_of_two(numentries);
8129 /* limit allocation size to 1/16 total memory by default */
8130 if (max == 0) {
8131 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8132 do_div(max, bucketsize);
8134 max = min(max, 0x80000000ULL);
8136 if (numentries < low_limit)
8137 numentries = low_limit;
8138 if (numentries > max)
8139 numentries = max;
8141 log2qty = ilog2(numentries);
8143 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8144 do {
8145 virt = false;
8146 size = bucketsize << log2qty;
8147 if (flags & HASH_EARLY) {
8148 if (flags & HASH_ZERO)
8149 table = memblock_alloc(size, SMP_CACHE_BYTES);
8150 else
8151 table = memblock_alloc_raw(size,
8152 SMP_CACHE_BYTES);
8153 } else if (get_order(size) >= MAX_ORDER || hashdist) {
8154 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
8155 virt = true;
8156 } else {
8158 * If bucketsize is not a power-of-two, we may free
8159 * some pages at the end of hash table which
8160 * alloc_pages_exact() automatically does
8162 table = alloc_pages_exact(size, gfp_flags);
8163 kmemleak_alloc(table, size, 1, gfp_flags);
8165 } while (!table && size > PAGE_SIZE && --log2qty);
8167 if (!table)
8168 panic("Failed to allocate %s hash table\n", tablename);
8170 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8171 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8172 virt ? "vmalloc" : "linear");
8174 if (_hash_shift)
8175 *_hash_shift = log2qty;
8176 if (_hash_mask)
8177 *_hash_mask = (1 << log2qty) - 1;
8179 return table;
8183 * This function checks whether pageblock includes unmovable pages or not.
8184 * If @count is not zero, it is okay to include less @count unmovable pages
8186 * PageLRU check without isolation or lru_lock could race so that
8187 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8188 * check without lock_page also may miss some movable non-lru pages at
8189 * race condition. So you can't expect this function should be exact.
8191 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
8192 int migratetype, int flags)
8194 unsigned long found;
8195 unsigned long iter = 0;
8196 unsigned long pfn = page_to_pfn(page);
8197 const char *reason = "unmovable page";
8200 * TODO we could make this much more efficient by not checking every
8201 * page in the range if we know all of them are in MOVABLE_ZONE and
8202 * that the movable zone guarantees that pages are migratable but
8203 * the later is not the case right now unfortunatelly. E.g. movablecore
8204 * can still lead to having bootmem allocations in zone_movable.
8207 if (is_migrate_cma_page(page)) {
8209 * CMA allocations (alloc_contig_range) really need to mark
8210 * isolate CMA pageblocks even when they are not movable in fact
8211 * so consider them movable here.
8213 if (is_migrate_cma(migratetype))
8214 return false;
8216 reason = "CMA page";
8217 goto unmovable;
8220 for (found = 0; iter < pageblock_nr_pages; iter++) {
8221 unsigned long check = pfn + iter;
8223 if (!pfn_valid_within(check))
8224 continue;
8226 page = pfn_to_page(check);
8228 if (PageReserved(page))
8229 goto unmovable;
8232 * If the zone is movable and we have ruled out all reserved
8233 * pages then it should be reasonably safe to assume the rest
8234 * is movable.
8236 if (zone_idx(zone) == ZONE_MOVABLE)
8237 continue;
8240 * Hugepages are not in LRU lists, but they're movable.
8241 * We need not scan over tail pages because we don't
8242 * handle each tail page individually in migration.
8244 if (PageHuge(page)) {
8245 struct page *head = compound_head(page);
8246 unsigned int skip_pages;
8248 if (!hugepage_migration_supported(page_hstate(head)))
8249 goto unmovable;
8251 skip_pages = compound_nr(head) - (page - head);
8252 iter += skip_pages - 1;
8253 continue;
8257 * We can't use page_count without pin a page
8258 * because another CPU can free compound page.
8259 * This check already skips compound tails of THP
8260 * because their page->_refcount is zero at all time.
8262 if (!page_ref_count(page)) {
8263 if (PageBuddy(page))
8264 iter += (1 << page_order(page)) - 1;
8265 continue;
8269 * The HWPoisoned page may be not in buddy system, and
8270 * page_count() is not 0.
8272 if ((flags & SKIP_HWPOISON) && PageHWPoison(page))
8273 continue;
8275 if (__PageMovable(page))
8276 continue;
8278 if (!PageLRU(page))
8279 found++;
8281 * If there are RECLAIMABLE pages, we need to check
8282 * it. But now, memory offline itself doesn't call
8283 * shrink_node_slabs() and it still to be fixed.
8286 * If the page is not RAM, page_count()should be 0.
8287 * we don't need more check. This is an _used_ not-movable page.
8289 * The problematic thing here is PG_reserved pages. PG_reserved
8290 * is set to both of a memory hole page and a _used_ kernel
8291 * page at boot.
8293 if (found > count)
8294 goto unmovable;
8296 return false;
8297 unmovable:
8298 WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
8299 if (flags & REPORT_FAILURE)
8300 dump_page(pfn_to_page(pfn + iter), reason);
8301 return true;
8304 #ifdef CONFIG_CONTIG_ALLOC
8305 static unsigned long pfn_max_align_down(unsigned long pfn)
8307 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8308 pageblock_nr_pages) - 1);
8311 static unsigned long pfn_max_align_up(unsigned long pfn)
8313 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8314 pageblock_nr_pages));
8317 /* [start, end) must belong to a single zone. */
8318 static int __alloc_contig_migrate_range(struct compact_control *cc,
8319 unsigned long start, unsigned long end)
8321 /* This function is based on compact_zone() from compaction.c. */
8322 unsigned long nr_reclaimed;
8323 unsigned long pfn = start;
8324 unsigned int tries = 0;
8325 int ret = 0;
8327 migrate_prep();
8329 while (pfn < end || !list_empty(&cc->migratepages)) {
8330 if (fatal_signal_pending(current)) {
8331 ret = -EINTR;
8332 break;
8335 if (list_empty(&cc->migratepages)) {
8336 cc->nr_migratepages = 0;
8337 pfn = isolate_migratepages_range(cc, pfn, end);
8338 if (!pfn) {
8339 ret = -EINTR;
8340 break;
8342 tries = 0;
8343 } else if (++tries == 5) {
8344 ret = ret < 0 ? ret : -EBUSY;
8345 break;
8348 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8349 &cc->migratepages);
8350 cc->nr_migratepages -= nr_reclaimed;
8352 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
8353 NULL, 0, cc->mode, MR_CONTIG_RANGE);
8355 if (ret < 0) {
8356 putback_movable_pages(&cc->migratepages);
8357 return ret;
8359 return 0;
8363 * alloc_contig_range() -- tries to allocate given range of pages
8364 * @start: start PFN to allocate
8365 * @end: one-past-the-last PFN to allocate
8366 * @migratetype: migratetype of the underlaying pageblocks (either
8367 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8368 * in range must have the same migratetype and it must
8369 * be either of the two.
8370 * @gfp_mask: GFP mask to use during compaction
8372 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8373 * aligned. The PFN range must belong to a single zone.
8375 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8376 * pageblocks in the range. Once isolated, the pageblocks should not
8377 * be modified by others.
8379 * Return: zero on success or negative error code. On success all
8380 * pages which PFN is in [start, end) are allocated for the caller and
8381 * need to be freed with free_contig_range().
8383 int alloc_contig_range(unsigned long start, unsigned long end,
8384 unsigned migratetype, gfp_t gfp_mask)
8386 unsigned long outer_start, outer_end;
8387 unsigned int order;
8388 int ret = 0;
8390 struct compact_control cc = {
8391 .nr_migratepages = 0,
8392 .order = -1,
8393 .zone = page_zone(pfn_to_page(start)),
8394 .mode = MIGRATE_SYNC,
8395 .ignore_skip_hint = true,
8396 .no_set_skip_hint = true,
8397 .gfp_mask = current_gfp_context(gfp_mask),
8399 INIT_LIST_HEAD(&cc.migratepages);
8402 * What we do here is we mark all pageblocks in range as
8403 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8404 * have different sizes, and due to the way page allocator
8405 * work, we align the range to biggest of the two pages so
8406 * that page allocator won't try to merge buddies from
8407 * different pageblocks and change MIGRATE_ISOLATE to some
8408 * other migration type.
8410 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8411 * migrate the pages from an unaligned range (ie. pages that
8412 * we are interested in). This will put all the pages in
8413 * range back to page allocator as MIGRATE_ISOLATE.
8415 * When this is done, we take the pages in range from page
8416 * allocator removing them from the buddy system. This way
8417 * page allocator will never consider using them.
8419 * This lets us mark the pageblocks back as
8420 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8421 * aligned range but not in the unaligned, original range are
8422 * put back to page allocator so that buddy can use them.
8425 ret = start_isolate_page_range(pfn_max_align_down(start),
8426 pfn_max_align_up(end), migratetype, 0);
8427 if (ret < 0)
8428 return ret;
8431 * In case of -EBUSY, we'd like to know which page causes problem.
8432 * So, just fall through. test_pages_isolated() has a tracepoint
8433 * which will report the busy page.
8435 * It is possible that busy pages could become available before
8436 * the call to test_pages_isolated, and the range will actually be
8437 * allocated. So, if we fall through be sure to clear ret so that
8438 * -EBUSY is not accidentally used or returned to caller.
8440 ret = __alloc_contig_migrate_range(&cc, start, end);
8441 if (ret && ret != -EBUSY)
8442 goto done;
8443 ret =0;
8446 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8447 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8448 * more, all pages in [start, end) are free in page allocator.
8449 * What we are going to do is to allocate all pages from
8450 * [start, end) (that is remove them from page allocator).
8452 * The only problem is that pages at the beginning and at the
8453 * end of interesting range may be not aligned with pages that
8454 * page allocator holds, ie. they can be part of higher order
8455 * pages. Because of this, we reserve the bigger range and
8456 * once this is done free the pages we are not interested in.
8458 * We don't have to hold zone->lock here because the pages are
8459 * isolated thus they won't get removed from buddy.
8462 lru_add_drain_all();
8464 order = 0;
8465 outer_start = start;
8466 while (!PageBuddy(pfn_to_page(outer_start))) {
8467 if (++order >= MAX_ORDER) {
8468 outer_start = start;
8469 break;
8471 outer_start &= ~0UL << order;
8474 if (outer_start != start) {
8475 order = page_order(pfn_to_page(outer_start));
8478 * outer_start page could be small order buddy page and
8479 * it doesn't include start page. Adjust outer_start
8480 * in this case to report failed page properly
8481 * on tracepoint in test_pages_isolated()
8483 if (outer_start + (1UL << order) <= start)
8484 outer_start = start;
8487 /* Make sure the range is really isolated. */
8488 if (test_pages_isolated(outer_start, end, false)) {
8489 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8490 __func__, outer_start, end);
8491 ret = -EBUSY;
8492 goto done;
8495 /* Grab isolated pages from freelists. */
8496 outer_end = isolate_freepages_range(&cc, outer_start, end);
8497 if (!outer_end) {
8498 ret = -EBUSY;
8499 goto done;
8502 /* Free head and tail (if any) */
8503 if (start != outer_start)
8504 free_contig_range(outer_start, start - outer_start);
8505 if (end != outer_end)
8506 free_contig_range(end, outer_end - end);
8508 done:
8509 undo_isolate_page_range(pfn_max_align_down(start),
8510 pfn_max_align_up(end), migratetype);
8511 return ret;
8513 #endif /* CONFIG_CONTIG_ALLOC */
8515 void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8517 unsigned int count = 0;
8519 for (; nr_pages--; pfn++) {
8520 struct page *page = pfn_to_page(pfn);
8522 count += page_count(page) != 1;
8523 __free_page(page);
8525 WARN(count != 0, "%d pages are still in use!\n", count);
8529 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8530 * page high values need to be recalulated.
8532 void __meminit zone_pcp_update(struct zone *zone)
8534 unsigned cpu;
8535 mutex_lock(&pcp_batch_high_lock);
8536 for_each_possible_cpu(cpu)
8537 pageset_set_high_and_batch(zone,
8538 per_cpu_ptr(zone->pageset, cpu));
8539 mutex_unlock(&pcp_batch_high_lock);
8542 void zone_pcp_reset(struct zone *zone)
8544 unsigned long flags;
8545 int cpu;
8546 struct per_cpu_pageset *pset;
8548 /* avoid races with drain_pages() */
8549 local_irq_save(flags);
8550 if (zone->pageset != &boot_pageset) {
8551 for_each_online_cpu(cpu) {
8552 pset = per_cpu_ptr(zone->pageset, cpu);
8553 drain_zonestat(zone, pset);
8555 free_percpu(zone->pageset);
8556 zone->pageset = &boot_pageset;
8558 local_irq_restore(flags);
8561 #ifdef CONFIG_MEMORY_HOTREMOVE
8563 * All pages in the range must be in a single zone and isolated
8564 * before calling this.
8566 unsigned long
8567 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8569 struct page *page;
8570 struct zone *zone;
8571 unsigned int order, i;
8572 unsigned long pfn;
8573 unsigned long flags;
8574 unsigned long offlined_pages = 0;
8576 /* find the first valid pfn */
8577 for (pfn = start_pfn; pfn < end_pfn; pfn++)
8578 if (pfn_valid(pfn))
8579 break;
8580 if (pfn == end_pfn)
8581 return offlined_pages;
8583 offline_mem_sections(pfn, end_pfn);
8584 zone = page_zone(pfn_to_page(pfn));
8585 spin_lock_irqsave(&zone->lock, flags);
8586 pfn = start_pfn;
8587 while (pfn < end_pfn) {
8588 if (!pfn_valid(pfn)) {
8589 pfn++;
8590 continue;
8592 page = pfn_to_page(pfn);
8594 * The HWPoisoned page may be not in buddy system, and
8595 * page_count() is not 0.
8597 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8598 pfn++;
8599 SetPageReserved(page);
8600 offlined_pages++;
8601 continue;
8604 BUG_ON(page_count(page));
8605 BUG_ON(!PageBuddy(page));
8606 order = page_order(page);
8607 offlined_pages += 1 << order;
8608 #ifdef CONFIG_DEBUG_VM
8609 pr_info("remove from free list %lx %d %lx\n",
8610 pfn, 1 << order, end_pfn);
8611 #endif
8612 del_page_from_free_area(page, &zone->free_area[order]);
8613 for (i = 0; i < (1 << order); i++)
8614 SetPageReserved((page+i));
8615 pfn += (1 << order);
8617 spin_unlock_irqrestore(&zone->lock, flags);
8619 return offlined_pages;
8621 #endif
8623 bool is_free_buddy_page(struct page *page)
8625 struct zone *zone = page_zone(page);
8626 unsigned long pfn = page_to_pfn(page);
8627 unsigned long flags;
8628 unsigned int order;
8630 spin_lock_irqsave(&zone->lock, flags);
8631 for (order = 0; order < MAX_ORDER; order++) {
8632 struct page *page_head = page - (pfn & ((1 << order) - 1));
8634 if (PageBuddy(page_head) && page_order(page_head) >= order)
8635 break;
8637 spin_unlock_irqrestore(&zone->lock, flags);
8639 return order < MAX_ORDER;
8642 #ifdef CONFIG_MEMORY_FAILURE
8644 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8645 * test is performed under the zone lock to prevent a race against page
8646 * allocation.
8648 bool set_hwpoison_free_buddy_page(struct page *page)
8650 struct zone *zone = page_zone(page);
8651 unsigned long pfn = page_to_pfn(page);
8652 unsigned long flags;
8653 unsigned int order;
8654 bool hwpoisoned = false;
8656 spin_lock_irqsave(&zone->lock, flags);
8657 for (order = 0; order < MAX_ORDER; order++) {
8658 struct page *page_head = page - (pfn & ((1 << order) - 1));
8660 if (PageBuddy(page_head) && page_order(page_head) >= order) {
8661 if (!TestSetPageHWPoison(page))
8662 hwpoisoned = true;
8663 break;
8666 spin_unlock_irqrestore(&zone->lock, flags);
8668 return hwpoisoned;
8670 #endif