Linux 4.9.42
[linux/fpc-iii.git] / fs / btrfs / disk-io.c
blob1cd325765aaa8cd49be5100250c00e69561a0126
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/slab.h>
29 #include <linux/migrate.h>
30 #include <linux/ratelimit.h>
31 #include <linux/uuid.h>
32 #include <linux/semaphore.h>
33 #include <asm/unaligned.h>
34 #include "ctree.h"
35 #include "disk-io.h"
36 #include "hash.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "locking.h"
42 #include "tree-log.h"
43 #include "free-space-cache.h"
44 #include "free-space-tree.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
52 #include "compression.h"
54 #ifdef CONFIG_X86
55 #include <asm/cpufeature.h>
56 #endif
58 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
59 BTRFS_HEADER_FLAG_RELOC |\
60 BTRFS_SUPER_FLAG_ERROR |\
61 BTRFS_SUPER_FLAG_SEEDING |\
62 BTRFS_SUPER_FLAG_METADUMP)
64 static const struct extent_io_ops btree_extent_io_ops;
65 static void end_workqueue_fn(struct btrfs_work *work);
66 static void free_fs_root(struct btrfs_root *root);
67 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
68 int read_only);
69 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
70 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
71 struct btrfs_root *root);
72 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
73 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
74 struct extent_io_tree *dirty_pages,
75 int mark);
76 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
77 struct extent_io_tree *pinned_extents);
78 static int btrfs_cleanup_transaction(struct btrfs_root *root);
79 static void btrfs_error_commit_super(struct btrfs_root *root);
82 * btrfs_end_io_wq structs are used to do processing in task context when an IO
83 * is complete. This is used during reads to verify checksums, and it is used
84 * by writes to insert metadata for new file extents after IO is complete.
86 struct btrfs_end_io_wq {
87 struct bio *bio;
88 bio_end_io_t *end_io;
89 void *private;
90 struct btrfs_fs_info *info;
91 int error;
92 enum btrfs_wq_endio_type metadata;
93 struct list_head list;
94 struct btrfs_work work;
97 static struct kmem_cache *btrfs_end_io_wq_cache;
99 int __init btrfs_end_io_wq_init(void)
101 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
102 sizeof(struct btrfs_end_io_wq),
104 SLAB_MEM_SPREAD,
105 NULL);
106 if (!btrfs_end_io_wq_cache)
107 return -ENOMEM;
108 return 0;
111 void btrfs_end_io_wq_exit(void)
113 kmem_cache_destroy(btrfs_end_io_wq_cache);
117 * async submit bios are used to offload expensive checksumming
118 * onto the worker threads. They checksum file and metadata bios
119 * just before they are sent down the IO stack.
121 struct async_submit_bio {
122 struct inode *inode;
123 struct bio *bio;
124 struct list_head list;
125 extent_submit_bio_hook_t *submit_bio_start;
126 extent_submit_bio_hook_t *submit_bio_done;
127 int mirror_num;
128 unsigned long bio_flags;
130 * bio_offset is optional, can be used if the pages in the bio
131 * can't tell us where in the file the bio should go
133 u64 bio_offset;
134 struct btrfs_work work;
135 int error;
139 * Lockdep class keys for extent_buffer->lock's in this root. For a given
140 * eb, the lockdep key is determined by the btrfs_root it belongs to and
141 * the level the eb occupies in the tree.
143 * Different roots are used for different purposes and may nest inside each
144 * other and they require separate keysets. As lockdep keys should be
145 * static, assign keysets according to the purpose of the root as indicated
146 * by btrfs_root->objectid. This ensures that all special purpose roots
147 * have separate keysets.
149 * Lock-nesting across peer nodes is always done with the immediate parent
150 * node locked thus preventing deadlock. As lockdep doesn't know this, use
151 * subclass to avoid triggering lockdep warning in such cases.
153 * The key is set by the readpage_end_io_hook after the buffer has passed
154 * csum validation but before the pages are unlocked. It is also set by
155 * btrfs_init_new_buffer on freshly allocated blocks.
157 * We also add a check to make sure the highest level of the tree is the
158 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
159 * needs update as well.
161 #ifdef CONFIG_DEBUG_LOCK_ALLOC
162 # if BTRFS_MAX_LEVEL != 8
163 # error
164 # endif
166 static struct btrfs_lockdep_keyset {
167 u64 id; /* root objectid */
168 const char *name_stem; /* lock name stem */
169 char names[BTRFS_MAX_LEVEL + 1][20];
170 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
171 } btrfs_lockdep_keysets[] = {
172 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
173 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
174 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
175 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
176 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
177 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
178 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
179 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
180 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
181 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
182 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
183 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
184 { .id = 0, .name_stem = "tree" },
187 void __init btrfs_init_lockdep(void)
189 int i, j;
191 /* initialize lockdep class names */
192 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
193 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
195 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
196 snprintf(ks->names[j], sizeof(ks->names[j]),
197 "btrfs-%s-%02d", ks->name_stem, j);
201 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
202 int level)
204 struct btrfs_lockdep_keyset *ks;
206 BUG_ON(level >= ARRAY_SIZE(ks->keys));
208 /* find the matching keyset, id 0 is the default entry */
209 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
210 if (ks->id == objectid)
211 break;
213 lockdep_set_class_and_name(&eb->lock,
214 &ks->keys[level], ks->names[level]);
217 #endif
220 * extents on the btree inode are pretty simple, there's one extent
221 * that covers the entire device
223 static struct extent_map *btree_get_extent(struct inode *inode,
224 struct page *page, size_t pg_offset, u64 start, u64 len,
225 int create)
227 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
228 struct extent_map *em;
229 int ret;
231 read_lock(&em_tree->lock);
232 em = lookup_extent_mapping(em_tree, start, len);
233 if (em) {
234 em->bdev =
235 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
236 read_unlock(&em_tree->lock);
237 goto out;
239 read_unlock(&em_tree->lock);
241 em = alloc_extent_map();
242 if (!em) {
243 em = ERR_PTR(-ENOMEM);
244 goto out;
246 em->start = 0;
247 em->len = (u64)-1;
248 em->block_len = (u64)-1;
249 em->block_start = 0;
250 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
252 write_lock(&em_tree->lock);
253 ret = add_extent_mapping(em_tree, em, 0);
254 if (ret == -EEXIST) {
255 free_extent_map(em);
256 em = lookup_extent_mapping(em_tree, start, len);
257 if (!em)
258 em = ERR_PTR(-EIO);
259 } else if (ret) {
260 free_extent_map(em);
261 em = ERR_PTR(ret);
263 write_unlock(&em_tree->lock);
265 out:
266 return em;
269 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
271 return btrfs_crc32c(seed, data, len);
274 void btrfs_csum_final(u32 crc, char *result)
276 put_unaligned_le32(~crc, result);
280 * compute the csum for a btree block, and either verify it or write it
281 * into the csum field of the block.
283 static int csum_tree_block(struct btrfs_fs_info *fs_info,
284 struct extent_buffer *buf,
285 int verify)
287 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
288 char *result = NULL;
289 unsigned long len;
290 unsigned long cur_len;
291 unsigned long offset = BTRFS_CSUM_SIZE;
292 char *kaddr;
293 unsigned long map_start;
294 unsigned long map_len;
295 int err;
296 u32 crc = ~(u32)0;
297 unsigned long inline_result;
299 len = buf->len - offset;
300 while (len > 0) {
301 err = map_private_extent_buffer(buf, offset, 32,
302 &kaddr, &map_start, &map_len);
303 if (err)
304 return err;
305 cur_len = min(len, map_len - (offset - map_start));
306 crc = btrfs_csum_data(kaddr + offset - map_start,
307 crc, cur_len);
308 len -= cur_len;
309 offset += cur_len;
311 if (csum_size > sizeof(inline_result)) {
312 result = kzalloc(csum_size, GFP_NOFS);
313 if (!result)
314 return -ENOMEM;
315 } else {
316 result = (char *)&inline_result;
319 btrfs_csum_final(crc, result);
321 if (verify) {
322 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
323 u32 val;
324 u32 found = 0;
325 memcpy(&found, result, csum_size);
327 read_extent_buffer(buf, &val, 0, csum_size);
328 btrfs_warn_rl(fs_info,
329 "%s checksum verify failed on %llu wanted %X found %X level %d",
330 fs_info->sb->s_id, buf->start,
331 val, found, btrfs_header_level(buf));
332 if (result != (char *)&inline_result)
333 kfree(result);
334 return -EUCLEAN;
336 } else {
337 write_extent_buffer(buf, result, 0, csum_size);
339 if (result != (char *)&inline_result)
340 kfree(result);
341 return 0;
345 * we can't consider a given block up to date unless the transid of the
346 * block matches the transid in the parent node's pointer. This is how we
347 * detect blocks that either didn't get written at all or got written
348 * in the wrong place.
350 static int verify_parent_transid(struct extent_io_tree *io_tree,
351 struct extent_buffer *eb, u64 parent_transid,
352 int atomic)
354 struct extent_state *cached_state = NULL;
355 int ret;
356 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
358 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
359 return 0;
361 if (atomic)
362 return -EAGAIN;
364 if (need_lock) {
365 btrfs_tree_read_lock(eb);
366 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
369 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
370 &cached_state);
371 if (extent_buffer_uptodate(eb) &&
372 btrfs_header_generation(eb) == parent_transid) {
373 ret = 0;
374 goto out;
376 btrfs_err_rl(eb->fs_info,
377 "parent transid verify failed on %llu wanted %llu found %llu",
378 eb->start,
379 parent_transid, btrfs_header_generation(eb));
380 ret = 1;
383 * Things reading via commit roots that don't have normal protection,
384 * like send, can have a really old block in cache that may point at a
385 * block that has been freed and re-allocated. So don't clear uptodate
386 * if we find an eb that is under IO (dirty/writeback) because we could
387 * end up reading in the stale data and then writing it back out and
388 * making everybody very sad.
390 if (!extent_buffer_under_io(eb))
391 clear_extent_buffer_uptodate(eb);
392 out:
393 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
394 &cached_state, GFP_NOFS);
395 if (need_lock)
396 btrfs_tree_read_unlock_blocking(eb);
397 return ret;
401 * Return 0 if the superblock checksum type matches the checksum value of that
402 * algorithm. Pass the raw disk superblock data.
404 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
405 char *raw_disk_sb)
407 struct btrfs_super_block *disk_sb =
408 (struct btrfs_super_block *)raw_disk_sb;
409 u16 csum_type = btrfs_super_csum_type(disk_sb);
410 int ret = 0;
412 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
413 u32 crc = ~(u32)0;
414 const int csum_size = sizeof(crc);
415 char result[csum_size];
418 * The super_block structure does not span the whole
419 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
420 * is filled with zeros and is included in the checksum.
422 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
423 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
424 btrfs_csum_final(crc, result);
426 if (memcmp(raw_disk_sb, result, csum_size))
427 ret = 1;
430 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
431 btrfs_err(fs_info, "unsupported checksum algorithm %u",
432 csum_type);
433 ret = 1;
436 return ret;
440 * helper to read a given tree block, doing retries as required when
441 * the checksums don't match and we have alternate mirrors to try.
443 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
444 struct extent_buffer *eb,
445 u64 parent_transid)
447 struct extent_io_tree *io_tree;
448 int failed = 0;
449 int ret;
450 int num_copies = 0;
451 int mirror_num = 0;
452 int failed_mirror = 0;
454 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
455 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
456 while (1) {
457 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
458 btree_get_extent, mirror_num);
459 if (!ret) {
460 if (!verify_parent_transid(io_tree, eb,
461 parent_transid, 0))
462 break;
463 else
464 ret = -EIO;
468 * This buffer's crc is fine, but its contents are corrupted, so
469 * there is no reason to read the other copies, they won't be
470 * any less wrong.
472 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
473 break;
475 num_copies = btrfs_num_copies(root->fs_info,
476 eb->start, eb->len);
477 if (num_copies == 1)
478 break;
480 if (!failed_mirror) {
481 failed = 1;
482 failed_mirror = eb->read_mirror;
485 mirror_num++;
486 if (mirror_num == failed_mirror)
487 mirror_num++;
489 if (mirror_num > num_copies)
490 break;
493 if (failed && !ret && failed_mirror)
494 repair_eb_io_failure(root, eb, failed_mirror);
496 return ret;
500 * checksum a dirty tree block before IO. This has extra checks to make sure
501 * we only fill in the checksum field in the first page of a multi-page block
504 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
506 u64 start = page_offset(page);
507 u64 found_start;
508 struct extent_buffer *eb;
510 eb = (struct extent_buffer *)page->private;
511 if (page != eb->pages[0])
512 return 0;
514 found_start = btrfs_header_bytenr(eb);
516 * Please do not consolidate these warnings into a single if.
517 * It is useful to know what went wrong.
519 if (WARN_ON(found_start != start))
520 return -EUCLEAN;
521 if (WARN_ON(!PageUptodate(page)))
522 return -EUCLEAN;
524 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
525 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
527 return csum_tree_block(fs_info, eb, 0);
530 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
531 struct extent_buffer *eb)
533 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
534 u8 fsid[BTRFS_UUID_SIZE];
535 int ret = 1;
537 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
538 while (fs_devices) {
539 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
540 ret = 0;
541 break;
543 fs_devices = fs_devices->seed;
545 return ret;
548 #define CORRUPT(reason, eb, root, slot) \
549 btrfs_crit(root->fs_info, "corrupt %s, %s: block=%llu," \
550 " root=%llu, slot=%d", \
551 btrfs_header_level(eb) == 0 ? "leaf" : "node",\
552 reason, btrfs_header_bytenr(eb), root->objectid, slot)
554 static noinline int check_leaf(struct btrfs_root *root,
555 struct extent_buffer *leaf)
557 struct btrfs_key key;
558 struct btrfs_key leaf_key;
559 u32 nritems = btrfs_header_nritems(leaf);
560 int slot;
563 * Extent buffers from a relocation tree have a owner field that
564 * corresponds to the subvolume tree they are based on. So just from an
565 * extent buffer alone we can not find out what is the id of the
566 * corresponding subvolume tree, so we can not figure out if the extent
567 * buffer corresponds to the root of the relocation tree or not. So skip
568 * this check for relocation trees.
570 if (nritems == 0 && !btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_RELOC)) {
571 struct btrfs_root *check_root;
573 key.objectid = btrfs_header_owner(leaf);
574 key.type = BTRFS_ROOT_ITEM_KEY;
575 key.offset = (u64)-1;
577 check_root = btrfs_get_fs_root(root->fs_info, &key, false);
579 * The only reason we also check NULL here is that during
580 * open_ctree() some roots has not yet been set up.
582 if (!IS_ERR_OR_NULL(check_root)) {
583 struct extent_buffer *eb;
585 eb = btrfs_root_node(check_root);
586 /* if leaf is the root, then it's fine */
587 if (leaf != eb) {
588 CORRUPT("non-root leaf's nritems is 0",
589 leaf, check_root, 0);
590 free_extent_buffer(eb);
591 return -EIO;
593 free_extent_buffer(eb);
595 return 0;
598 if (nritems == 0)
599 return 0;
601 /* Check the 0 item */
602 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
603 BTRFS_LEAF_DATA_SIZE(root)) {
604 CORRUPT("invalid item offset size pair", leaf, root, 0);
605 return -EIO;
609 * Check to make sure each items keys are in the correct order and their
610 * offsets make sense. We only have to loop through nritems-1 because
611 * we check the current slot against the next slot, which verifies the
612 * next slot's offset+size makes sense and that the current's slot
613 * offset is correct.
615 for (slot = 0; slot < nritems - 1; slot++) {
616 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
617 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
619 /* Make sure the keys are in the right order */
620 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
621 CORRUPT("bad key order", leaf, root, slot);
622 return -EIO;
626 * Make sure the offset and ends are right, remember that the
627 * item data starts at the end of the leaf and grows towards the
628 * front.
630 if (btrfs_item_offset_nr(leaf, slot) !=
631 btrfs_item_end_nr(leaf, slot + 1)) {
632 CORRUPT("slot offset bad", leaf, root, slot);
633 return -EIO;
637 * Check to make sure that we don't point outside of the leaf,
638 * just in case all the items are consistent to each other, but
639 * all point outside of the leaf.
641 if (btrfs_item_end_nr(leaf, slot) >
642 BTRFS_LEAF_DATA_SIZE(root)) {
643 CORRUPT("slot end outside of leaf", leaf, root, slot);
644 return -EIO;
648 return 0;
651 static int check_node(struct btrfs_root *root, struct extent_buffer *node)
653 unsigned long nr = btrfs_header_nritems(node);
654 struct btrfs_key key, next_key;
655 int slot;
656 u64 bytenr;
657 int ret = 0;
659 if (nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(root)) {
660 btrfs_crit(root->fs_info,
661 "corrupt node: block %llu root %llu nritems %lu",
662 node->start, root->objectid, nr);
663 return -EIO;
666 for (slot = 0; slot < nr - 1; slot++) {
667 bytenr = btrfs_node_blockptr(node, slot);
668 btrfs_node_key_to_cpu(node, &key, slot);
669 btrfs_node_key_to_cpu(node, &next_key, slot + 1);
671 if (!bytenr) {
672 CORRUPT("invalid item slot", node, root, slot);
673 ret = -EIO;
674 goto out;
677 if (btrfs_comp_cpu_keys(&key, &next_key) >= 0) {
678 CORRUPT("bad key order", node, root, slot);
679 ret = -EIO;
680 goto out;
683 out:
684 return ret;
687 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
688 u64 phy_offset, struct page *page,
689 u64 start, u64 end, int mirror)
691 u64 found_start;
692 int found_level;
693 struct extent_buffer *eb;
694 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
695 struct btrfs_fs_info *fs_info = root->fs_info;
696 int ret = 0;
697 int reads_done;
699 if (!page->private)
700 goto out;
702 eb = (struct extent_buffer *)page->private;
704 /* the pending IO might have been the only thing that kept this buffer
705 * in memory. Make sure we have a ref for all this other checks
707 extent_buffer_get(eb);
709 reads_done = atomic_dec_and_test(&eb->io_pages);
710 if (!reads_done)
711 goto err;
713 eb->read_mirror = mirror;
714 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
715 ret = -EIO;
716 goto err;
719 found_start = btrfs_header_bytenr(eb);
720 if (found_start != eb->start) {
721 btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
722 found_start, eb->start);
723 ret = -EIO;
724 goto err;
726 if (check_tree_block_fsid(fs_info, eb)) {
727 btrfs_err_rl(fs_info, "bad fsid on block %llu",
728 eb->start);
729 ret = -EIO;
730 goto err;
732 found_level = btrfs_header_level(eb);
733 if (found_level >= BTRFS_MAX_LEVEL) {
734 btrfs_err(fs_info, "bad tree block level %d",
735 (int)btrfs_header_level(eb));
736 ret = -EIO;
737 goto err;
740 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
741 eb, found_level);
743 ret = csum_tree_block(fs_info, eb, 1);
744 if (ret)
745 goto err;
748 * If this is a leaf block and it is corrupt, set the corrupt bit so
749 * that we don't try and read the other copies of this block, just
750 * return -EIO.
752 if (found_level == 0 && check_leaf(root, eb)) {
753 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
754 ret = -EIO;
757 if (found_level > 0 && check_node(root, eb))
758 ret = -EIO;
760 if (!ret)
761 set_extent_buffer_uptodate(eb);
762 err:
763 if (reads_done &&
764 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
765 btree_readahead_hook(fs_info, eb, eb->start, ret);
767 if (ret) {
769 * our io error hook is going to dec the io pages
770 * again, we have to make sure it has something
771 * to decrement
773 atomic_inc(&eb->io_pages);
774 clear_extent_buffer_uptodate(eb);
776 free_extent_buffer(eb);
777 out:
778 return ret;
781 static int btree_io_failed_hook(struct page *page, int failed_mirror)
783 struct extent_buffer *eb;
785 eb = (struct extent_buffer *)page->private;
786 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
787 eb->read_mirror = failed_mirror;
788 atomic_dec(&eb->io_pages);
789 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
790 btree_readahead_hook(eb->fs_info, eb, eb->start, -EIO);
791 return -EIO; /* we fixed nothing */
794 static void end_workqueue_bio(struct bio *bio)
796 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
797 struct btrfs_fs_info *fs_info;
798 struct btrfs_workqueue *wq;
799 btrfs_work_func_t func;
801 fs_info = end_io_wq->info;
802 end_io_wq->error = bio->bi_error;
804 if (bio_op(bio) == REQ_OP_WRITE) {
805 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
806 wq = fs_info->endio_meta_write_workers;
807 func = btrfs_endio_meta_write_helper;
808 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
809 wq = fs_info->endio_freespace_worker;
810 func = btrfs_freespace_write_helper;
811 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
812 wq = fs_info->endio_raid56_workers;
813 func = btrfs_endio_raid56_helper;
814 } else {
815 wq = fs_info->endio_write_workers;
816 func = btrfs_endio_write_helper;
818 } else {
819 if (unlikely(end_io_wq->metadata ==
820 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
821 wq = fs_info->endio_repair_workers;
822 func = btrfs_endio_repair_helper;
823 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
824 wq = fs_info->endio_raid56_workers;
825 func = btrfs_endio_raid56_helper;
826 } else if (end_io_wq->metadata) {
827 wq = fs_info->endio_meta_workers;
828 func = btrfs_endio_meta_helper;
829 } else {
830 wq = fs_info->endio_workers;
831 func = btrfs_endio_helper;
835 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
836 btrfs_queue_work(wq, &end_io_wq->work);
839 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
840 enum btrfs_wq_endio_type metadata)
842 struct btrfs_end_io_wq *end_io_wq;
844 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
845 if (!end_io_wq)
846 return -ENOMEM;
848 end_io_wq->private = bio->bi_private;
849 end_io_wq->end_io = bio->bi_end_io;
850 end_io_wq->info = info;
851 end_io_wq->error = 0;
852 end_io_wq->bio = bio;
853 end_io_wq->metadata = metadata;
855 bio->bi_private = end_io_wq;
856 bio->bi_end_io = end_workqueue_bio;
857 return 0;
860 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
862 unsigned long limit = min_t(unsigned long,
863 info->thread_pool_size,
864 info->fs_devices->open_devices);
865 return 256 * limit;
868 static void run_one_async_start(struct btrfs_work *work)
870 struct async_submit_bio *async;
871 int ret;
873 async = container_of(work, struct async_submit_bio, work);
874 ret = async->submit_bio_start(async->inode, async->bio,
875 async->mirror_num, async->bio_flags,
876 async->bio_offset);
877 if (ret)
878 async->error = ret;
881 static void run_one_async_done(struct btrfs_work *work)
883 struct btrfs_fs_info *fs_info;
884 struct async_submit_bio *async;
885 int limit;
887 async = container_of(work, struct async_submit_bio, work);
888 fs_info = BTRFS_I(async->inode)->root->fs_info;
890 limit = btrfs_async_submit_limit(fs_info);
891 limit = limit * 2 / 3;
894 * atomic_dec_return implies a barrier for waitqueue_active
896 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
897 waitqueue_active(&fs_info->async_submit_wait))
898 wake_up(&fs_info->async_submit_wait);
900 /* If an error occurred we just want to clean up the bio and move on */
901 if (async->error) {
902 async->bio->bi_error = async->error;
903 bio_endio(async->bio);
904 return;
907 async->submit_bio_done(async->inode, async->bio, async->mirror_num,
908 async->bio_flags, async->bio_offset);
911 static void run_one_async_free(struct btrfs_work *work)
913 struct async_submit_bio *async;
915 async = container_of(work, struct async_submit_bio, work);
916 kfree(async);
919 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
920 struct bio *bio, int mirror_num,
921 unsigned long bio_flags,
922 u64 bio_offset,
923 extent_submit_bio_hook_t *submit_bio_start,
924 extent_submit_bio_hook_t *submit_bio_done)
926 struct async_submit_bio *async;
928 async = kmalloc(sizeof(*async), GFP_NOFS);
929 if (!async)
930 return -ENOMEM;
932 async->inode = inode;
933 async->bio = bio;
934 async->mirror_num = mirror_num;
935 async->submit_bio_start = submit_bio_start;
936 async->submit_bio_done = submit_bio_done;
938 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
939 run_one_async_done, run_one_async_free);
941 async->bio_flags = bio_flags;
942 async->bio_offset = bio_offset;
944 async->error = 0;
946 atomic_inc(&fs_info->nr_async_submits);
948 if (bio->bi_opf & REQ_SYNC)
949 btrfs_set_work_high_priority(&async->work);
951 btrfs_queue_work(fs_info->workers, &async->work);
953 while (atomic_read(&fs_info->async_submit_draining) &&
954 atomic_read(&fs_info->nr_async_submits)) {
955 wait_event(fs_info->async_submit_wait,
956 (atomic_read(&fs_info->nr_async_submits) == 0));
959 return 0;
962 static int btree_csum_one_bio(struct bio *bio)
964 struct bio_vec *bvec;
965 struct btrfs_root *root;
966 int i, ret = 0;
968 bio_for_each_segment_all(bvec, bio, i) {
969 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
970 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
971 if (ret)
972 break;
975 return ret;
978 static int __btree_submit_bio_start(struct inode *inode, struct bio *bio,
979 int mirror_num, unsigned long bio_flags,
980 u64 bio_offset)
983 * when we're called for a write, we're already in the async
984 * submission context. Just jump into btrfs_map_bio
986 return btree_csum_one_bio(bio);
989 static int __btree_submit_bio_done(struct inode *inode, struct bio *bio,
990 int mirror_num, unsigned long bio_flags,
991 u64 bio_offset)
993 int ret;
996 * when we're called for a write, we're already in the async
997 * submission context. Just jump into btrfs_map_bio
999 ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 1);
1000 if (ret) {
1001 bio->bi_error = ret;
1002 bio_endio(bio);
1004 return ret;
1007 static int check_async_write(struct inode *inode, unsigned long bio_flags)
1009 if (bio_flags & EXTENT_BIO_TREE_LOG)
1010 return 0;
1011 #ifdef CONFIG_X86
1012 if (static_cpu_has(X86_FEATURE_XMM4_2))
1013 return 0;
1014 #endif
1015 return 1;
1018 static int btree_submit_bio_hook(struct inode *inode, struct bio *bio,
1019 int mirror_num, unsigned long bio_flags,
1020 u64 bio_offset)
1022 int async = check_async_write(inode, bio_flags);
1023 int ret;
1025 if (bio_op(bio) != REQ_OP_WRITE) {
1027 * called for a read, do the setup so that checksum validation
1028 * can happen in the async kernel threads
1030 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
1031 bio, BTRFS_WQ_ENDIO_METADATA);
1032 if (ret)
1033 goto out_w_error;
1034 ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 0);
1035 } else if (!async) {
1036 ret = btree_csum_one_bio(bio);
1037 if (ret)
1038 goto out_w_error;
1039 ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 0);
1040 } else {
1042 * kthread helpers are used to submit writes so that
1043 * checksumming can happen in parallel across all CPUs
1045 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1046 inode, bio, mirror_num, 0,
1047 bio_offset,
1048 __btree_submit_bio_start,
1049 __btree_submit_bio_done);
1052 if (ret)
1053 goto out_w_error;
1054 return 0;
1056 out_w_error:
1057 bio->bi_error = ret;
1058 bio_endio(bio);
1059 return ret;
1062 #ifdef CONFIG_MIGRATION
1063 static int btree_migratepage(struct address_space *mapping,
1064 struct page *newpage, struct page *page,
1065 enum migrate_mode mode)
1068 * we can't safely write a btree page from here,
1069 * we haven't done the locking hook
1071 if (PageDirty(page))
1072 return -EAGAIN;
1074 * Buffers may be managed in a filesystem specific way.
1075 * We must have no buffers or drop them.
1077 if (page_has_private(page) &&
1078 !try_to_release_page(page, GFP_KERNEL))
1079 return -EAGAIN;
1080 return migrate_page(mapping, newpage, page, mode);
1082 #endif
1085 static int btree_writepages(struct address_space *mapping,
1086 struct writeback_control *wbc)
1088 struct btrfs_fs_info *fs_info;
1089 int ret;
1091 if (wbc->sync_mode == WB_SYNC_NONE) {
1093 if (wbc->for_kupdate)
1094 return 0;
1096 fs_info = BTRFS_I(mapping->host)->root->fs_info;
1097 /* this is a bit racy, but that's ok */
1098 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1099 BTRFS_DIRTY_METADATA_THRESH);
1100 if (ret < 0)
1101 return 0;
1103 return btree_write_cache_pages(mapping, wbc);
1106 static int btree_readpage(struct file *file, struct page *page)
1108 struct extent_io_tree *tree;
1109 tree = &BTRFS_I(page->mapping->host)->io_tree;
1110 return extent_read_full_page(tree, page, btree_get_extent, 0);
1113 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1115 if (PageWriteback(page) || PageDirty(page))
1116 return 0;
1118 return try_release_extent_buffer(page);
1121 static void btree_invalidatepage(struct page *page, unsigned int offset,
1122 unsigned int length)
1124 struct extent_io_tree *tree;
1125 tree = &BTRFS_I(page->mapping->host)->io_tree;
1126 extent_invalidatepage(tree, page, offset);
1127 btree_releasepage(page, GFP_NOFS);
1128 if (PagePrivate(page)) {
1129 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1130 "page private not zero on page %llu",
1131 (unsigned long long)page_offset(page));
1132 ClearPagePrivate(page);
1133 set_page_private(page, 0);
1134 put_page(page);
1138 static int btree_set_page_dirty(struct page *page)
1140 #ifdef DEBUG
1141 struct extent_buffer *eb;
1143 BUG_ON(!PagePrivate(page));
1144 eb = (struct extent_buffer *)page->private;
1145 BUG_ON(!eb);
1146 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1147 BUG_ON(!atomic_read(&eb->refs));
1148 btrfs_assert_tree_locked(eb);
1149 #endif
1150 return __set_page_dirty_nobuffers(page);
1153 static const struct address_space_operations btree_aops = {
1154 .readpage = btree_readpage,
1155 .writepages = btree_writepages,
1156 .releasepage = btree_releasepage,
1157 .invalidatepage = btree_invalidatepage,
1158 #ifdef CONFIG_MIGRATION
1159 .migratepage = btree_migratepage,
1160 #endif
1161 .set_page_dirty = btree_set_page_dirty,
1164 void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
1166 struct extent_buffer *buf = NULL;
1167 struct inode *btree_inode = root->fs_info->btree_inode;
1169 buf = btrfs_find_create_tree_block(root, bytenr);
1170 if (IS_ERR(buf))
1171 return;
1172 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1173 buf, WAIT_NONE, btree_get_extent, 0);
1174 free_extent_buffer(buf);
1177 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
1178 int mirror_num, struct extent_buffer **eb)
1180 struct extent_buffer *buf = NULL;
1181 struct inode *btree_inode = root->fs_info->btree_inode;
1182 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1183 int ret;
1185 buf = btrfs_find_create_tree_block(root, bytenr);
1186 if (IS_ERR(buf))
1187 return 0;
1189 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1191 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
1192 btree_get_extent, mirror_num);
1193 if (ret) {
1194 free_extent_buffer(buf);
1195 return ret;
1198 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1199 free_extent_buffer(buf);
1200 return -EIO;
1201 } else if (extent_buffer_uptodate(buf)) {
1202 *eb = buf;
1203 } else {
1204 free_extent_buffer(buf);
1206 return 0;
1209 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
1210 u64 bytenr)
1212 return find_extent_buffer(fs_info, bytenr);
1215 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1216 u64 bytenr)
1218 if (btrfs_is_testing(root->fs_info))
1219 return alloc_test_extent_buffer(root->fs_info, bytenr,
1220 root->nodesize);
1221 return alloc_extent_buffer(root->fs_info, bytenr);
1225 int btrfs_write_tree_block(struct extent_buffer *buf)
1227 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1228 buf->start + buf->len - 1);
1231 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1233 return filemap_fdatawait_range(buf->pages[0]->mapping,
1234 buf->start, buf->start + buf->len - 1);
1237 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1238 u64 parent_transid)
1240 struct extent_buffer *buf = NULL;
1241 int ret;
1243 buf = btrfs_find_create_tree_block(root, bytenr);
1244 if (IS_ERR(buf))
1245 return buf;
1247 ret = btree_read_extent_buffer_pages(root, buf, parent_transid);
1248 if (ret) {
1249 free_extent_buffer(buf);
1250 return ERR_PTR(ret);
1252 return buf;
1256 void clean_tree_block(struct btrfs_trans_handle *trans,
1257 struct btrfs_fs_info *fs_info,
1258 struct extent_buffer *buf)
1260 if (btrfs_header_generation(buf) ==
1261 fs_info->running_transaction->transid) {
1262 btrfs_assert_tree_locked(buf);
1264 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1265 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1266 -buf->len,
1267 fs_info->dirty_metadata_batch);
1268 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1269 btrfs_set_lock_blocking(buf);
1270 clear_extent_buffer_dirty(buf);
1275 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1277 struct btrfs_subvolume_writers *writers;
1278 int ret;
1280 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1281 if (!writers)
1282 return ERR_PTR(-ENOMEM);
1284 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1285 if (ret < 0) {
1286 kfree(writers);
1287 return ERR_PTR(ret);
1290 init_waitqueue_head(&writers->wait);
1291 return writers;
1294 static void
1295 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1297 percpu_counter_destroy(&writers->counter);
1298 kfree(writers);
1301 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1302 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1303 u64 objectid)
1305 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1306 root->node = NULL;
1307 root->commit_root = NULL;
1308 root->sectorsize = sectorsize;
1309 root->nodesize = nodesize;
1310 root->stripesize = stripesize;
1311 root->state = 0;
1312 root->orphan_cleanup_state = 0;
1314 root->objectid = objectid;
1315 root->last_trans = 0;
1316 root->highest_objectid = 0;
1317 root->nr_delalloc_inodes = 0;
1318 root->nr_ordered_extents = 0;
1319 root->name = NULL;
1320 root->inode_tree = RB_ROOT;
1321 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1322 root->block_rsv = NULL;
1323 root->orphan_block_rsv = NULL;
1325 INIT_LIST_HEAD(&root->dirty_list);
1326 INIT_LIST_HEAD(&root->root_list);
1327 INIT_LIST_HEAD(&root->delalloc_inodes);
1328 INIT_LIST_HEAD(&root->delalloc_root);
1329 INIT_LIST_HEAD(&root->ordered_extents);
1330 INIT_LIST_HEAD(&root->ordered_root);
1331 INIT_LIST_HEAD(&root->logged_list[0]);
1332 INIT_LIST_HEAD(&root->logged_list[1]);
1333 spin_lock_init(&root->orphan_lock);
1334 spin_lock_init(&root->inode_lock);
1335 spin_lock_init(&root->delalloc_lock);
1336 spin_lock_init(&root->ordered_extent_lock);
1337 spin_lock_init(&root->accounting_lock);
1338 spin_lock_init(&root->log_extents_lock[0]);
1339 spin_lock_init(&root->log_extents_lock[1]);
1340 mutex_init(&root->objectid_mutex);
1341 mutex_init(&root->log_mutex);
1342 mutex_init(&root->ordered_extent_mutex);
1343 mutex_init(&root->delalloc_mutex);
1344 init_waitqueue_head(&root->log_writer_wait);
1345 init_waitqueue_head(&root->log_commit_wait[0]);
1346 init_waitqueue_head(&root->log_commit_wait[1]);
1347 INIT_LIST_HEAD(&root->log_ctxs[0]);
1348 INIT_LIST_HEAD(&root->log_ctxs[1]);
1349 atomic_set(&root->log_commit[0], 0);
1350 atomic_set(&root->log_commit[1], 0);
1351 atomic_set(&root->log_writers, 0);
1352 atomic_set(&root->log_batch, 0);
1353 atomic_set(&root->orphan_inodes, 0);
1354 atomic_set(&root->refs, 1);
1355 atomic_set(&root->will_be_snapshoted, 0);
1356 atomic_set(&root->qgroup_meta_rsv, 0);
1357 root->log_transid = 0;
1358 root->log_transid_committed = -1;
1359 root->last_log_commit = 0;
1360 if (!dummy)
1361 extent_io_tree_init(&root->dirty_log_pages,
1362 fs_info->btree_inode->i_mapping);
1364 memset(&root->root_key, 0, sizeof(root->root_key));
1365 memset(&root->root_item, 0, sizeof(root->root_item));
1366 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1367 if (!dummy)
1368 root->defrag_trans_start = fs_info->generation;
1369 else
1370 root->defrag_trans_start = 0;
1371 root->root_key.objectid = objectid;
1372 root->anon_dev = 0;
1374 spin_lock_init(&root->root_item_lock);
1377 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1378 gfp_t flags)
1380 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1381 if (root)
1382 root->fs_info = fs_info;
1383 return root;
1386 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1387 /* Should only be used by the testing infrastructure */
1388 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info,
1389 u32 sectorsize, u32 nodesize)
1391 struct btrfs_root *root;
1393 if (!fs_info)
1394 return ERR_PTR(-EINVAL);
1396 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1397 if (!root)
1398 return ERR_PTR(-ENOMEM);
1399 /* We don't use the stripesize in selftest, set it as sectorsize */
1400 __setup_root(nodesize, sectorsize, sectorsize, root, fs_info,
1401 BTRFS_ROOT_TREE_OBJECTID);
1402 root->alloc_bytenr = 0;
1404 return root;
1406 #endif
1408 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1409 struct btrfs_fs_info *fs_info,
1410 u64 objectid)
1412 struct extent_buffer *leaf;
1413 struct btrfs_root *tree_root = fs_info->tree_root;
1414 struct btrfs_root *root;
1415 struct btrfs_key key;
1416 int ret = 0;
1417 uuid_le uuid;
1419 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1420 if (!root)
1421 return ERR_PTR(-ENOMEM);
1423 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1424 tree_root->stripesize, root, fs_info, objectid);
1425 root->root_key.objectid = objectid;
1426 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1427 root->root_key.offset = 0;
1429 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1430 if (IS_ERR(leaf)) {
1431 ret = PTR_ERR(leaf);
1432 leaf = NULL;
1433 goto fail;
1436 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1437 btrfs_set_header_bytenr(leaf, leaf->start);
1438 btrfs_set_header_generation(leaf, trans->transid);
1439 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1440 btrfs_set_header_owner(leaf, objectid);
1441 root->node = leaf;
1443 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1444 BTRFS_FSID_SIZE);
1445 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1446 btrfs_header_chunk_tree_uuid(leaf),
1447 BTRFS_UUID_SIZE);
1448 btrfs_mark_buffer_dirty(leaf);
1450 root->commit_root = btrfs_root_node(root);
1451 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1453 root->root_item.flags = 0;
1454 root->root_item.byte_limit = 0;
1455 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1456 btrfs_set_root_generation(&root->root_item, trans->transid);
1457 btrfs_set_root_level(&root->root_item, 0);
1458 btrfs_set_root_refs(&root->root_item, 1);
1459 btrfs_set_root_used(&root->root_item, leaf->len);
1460 btrfs_set_root_last_snapshot(&root->root_item, 0);
1461 btrfs_set_root_dirid(&root->root_item, 0);
1462 uuid_le_gen(&uuid);
1463 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1464 root->root_item.drop_level = 0;
1466 key.objectid = objectid;
1467 key.type = BTRFS_ROOT_ITEM_KEY;
1468 key.offset = 0;
1469 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1470 if (ret)
1471 goto fail;
1473 btrfs_tree_unlock(leaf);
1475 return root;
1477 fail:
1478 if (leaf) {
1479 btrfs_tree_unlock(leaf);
1480 free_extent_buffer(root->commit_root);
1481 free_extent_buffer(leaf);
1483 kfree(root);
1485 return ERR_PTR(ret);
1488 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1489 struct btrfs_fs_info *fs_info)
1491 struct btrfs_root *root;
1492 struct btrfs_root *tree_root = fs_info->tree_root;
1493 struct extent_buffer *leaf;
1495 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1496 if (!root)
1497 return ERR_PTR(-ENOMEM);
1499 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1500 tree_root->stripesize, root, fs_info,
1501 BTRFS_TREE_LOG_OBJECTID);
1503 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1504 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1505 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1508 * DON'T set REF_COWS for log trees
1510 * log trees do not get reference counted because they go away
1511 * before a real commit is actually done. They do store pointers
1512 * to file data extents, and those reference counts still get
1513 * updated (along with back refs to the log tree).
1516 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1517 NULL, 0, 0, 0);
1518 if (IS_ERR(leaf)) {
1519 kfree(root);
1520 return ERR_CAST(leaf);
1523 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1524 btrfs_set_header_bytenr(leaf, leaf->start);
1525 btrfs_set_header_generation(leaf, trans->transid);
1526 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1527 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1528 root->node = leaf;
1530 write_extent_buffer(root->node, root->fs_info->fsid,
1531 btrfs_header_fsid(), BTRFS_FSID_SIZE);
1532 btrfs_mark_buffer_dirty(root->node);
1533 btrfs_tree_unlock(root->node);
1534 return root;
1537 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1538 struct btrfs_fs_info *fs_info)
1540 struct btrfs_root *log_root;
1542 log_root = alloc_log_tree(trans, fs_info);
1543 if (IS_ERR(log_root))
1544 return PTR_ERR(log_root);
1545 WARN_ON(fs_info->log_root_tree);
1546 fs_info->log_root_tree = log_root;
1547 return 0;
1550 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1551 struct btrfs_root *root)
1553 struct btrfs_root *log_root;
1554 struct btrfs_inode_item *inode_item;
1556 log_root = alloc_log_tree(trans, root->fs_info);
1557 if (IS_ERR(log_root))
1558 return PTR_ERR(log_root);
1560 log_root->last_trans = trans->transid;
1561 log_root->root_key.offset = root->root_key.objectid;
1563 inode_item = &log_root->root_item.inode;
1564 btrfs_set_stack_inode_generation(inode_item, 1);
1565 btrfs_set_stack_inode_size(inode_item, 3);
1566 btrfs_set_stack_inode_nlink(inode_item, 1);
1567 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1568 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1570 btrfs_set_root_node(&log_root->root_item, log_root->node);
1572 WARN_ON(root->log_root);
1573 root->log_root = log_root;
1574 root->log_transid = 0;
1575 root->log_transid_committed = -1;
1576 root->last_log_commit = 0;
1577 return 0;
1580 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1581 struct btrfs_key *key)
1583 struct btrfs_root *root;
1584 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1585 struct btrfs_path *path;
1586 u64 generation;
1587 int ret;
1589 path = btrfs_alloc_path();
1590 if (!path)
1591 return ERR_PTR(-ENOMEM);
1593 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1594 if (!root) {
1595 ret = -ENOMEM;
1596 goto alloc_fail;
1599 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1600 tree_root->stripesize, root, fs_info, key->objectid);
1602 ret = btrfs_find_root(tree_root, key, path,
1603 &root->root_item, &root->root_key);
1604 if (ret) {
1605 if (ret > 0)
1606 ret = -ENOENT;
1607 goto find_fail;
1610 generation = btrfs_root_generation(&root->root_item);
1611 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1612 generation);
1613 if (IS_ERR(root->node)) {
1614 ret = PTR_ERR(root->node);
1615 goto find_fail;
1616 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1617 ret = -EIO;
1618 free_extent_buffer(root->node);
1619 goto find_fail;
1621 root->commit_root = btrfs_root_node(root);
1622 out:
1623 btrfs_free_path(path);
1624 return root;
1626 find_fail:
1627 kfree(root);
1628 alloc_fail:
1629 root = ERR_PTR(ret);
1630 goto out;
1633 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1634 struct btrfs_key *location)
1636 struct btrfs_root *root;
1638 root = btrfs_read_tree_root(tree_root, location);
1639 if (IS_ERR(root))
1640 return root;
1642 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1643 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1644 btrfs_check_and_init_root_item(&root->root_item);
1647 return root;
1650 int btrfs_init_fs_root(struct btrfs_root *root)
1652 int ret;
1653 struct btrfs_subvolume_writers *writers;
1655 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1656 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1657 GFP_NOFS);
1658 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1659 ret = -ENOMEM;
1660 goto fail;
1663 writers = btrfs_alloc_subvolume_writers();
1664 if (IS_ERR(writers)) {
1665 ret = PTR_ERR(writers);
1666 goto fail;
1668 root->subv_writers = writers;
1670 btrfs_init_free_ino_ctl(root);
1671 spin_lock_init(&root->ino_cache_lock);
1672 init_waitqueue_head(&root->ino_cache_wait);
1674 ret = get_anon_bdev(&root->anon_dev);
1675 if (ret)
1676 goto fail;
1678 mutex_lock(&root->objectid_mutex);
1679 ret = btrfs_find_highest_objectid(root,
1680 &root->highest_objectid);
1681 if (ret) {
1682 mutex_unlock(&root->objectid_mutex);
1683 goto fail;
1686 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1688 mutex_unlock(&root->objectid_mutex);
1690 return 0;
1691 fail:
1692 /* the caller is responsible to call free_fs_root */
1693 return ret;
1696 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1697 u64 root_id)
1699 struct btrfs_root *root;
1701 spin_lock(&fs_info->fs_roots_radix_lock);
1702 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1703 (unsigned long)root_id);
1704 spin_unlock(&fs_info->fs_roots_radix_lock);
1705 return root;
1708 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1709 struct btrfs_root *root)
1711 int ret;
1713 ret = radix_tree_preload(GFP_NOFS);
1714 if (ret)
1715 return ret;
1717 spin_lock(&fs_info->fs_roots_radix_lock);
1718 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1719 (unsigned long)root->root_key.objectid,
1720 root);
1721 if (ret == 0)
1722 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1723 spin_unlock(&fs_info->fs_roots_radix_lock);
1724 radix_tree_preload_end();
1726 return ret;
1729 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1730 struct btrfs_key *location,
1731 bool check_ref)
1733 struct btrfs_root *root;
1734 struct btrfs_path *path;
1735 struct btrfs_key key;
1736 int ret;
1738 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1739 return fs_info->tree_root;
1740 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1741 return fs_info->extent_root;
1742 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1743 return fs_info->chunk_root;
1744 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1745 return fs_info->dev_root;
1746 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1747 return fs_info->csum_root;
1748 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1749 return fs_info->quota_root ? fs_info->quota_root :
1750 ERR_PTR(-ENOENT);
1751 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1752 return fs_info->uuid_root ? fs_info->uuid_root :
1753 ERR_PTR(-ENOENT);
1754 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1755 return fs_info->free_space_root ? fs_info->free_space_root :
1756 ERR_PTR(-ENOENT);
1757 again:
1758 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1759 if (root) {
1760 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1761 return ERR_PTR(-ENOENT);
1762 return root;
1765 root = btrfs_read_fs_root(fs_info->tree_root, location);
1766 if (IS_ERR(root))
1767 return root;
1769 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1770 ret = -ENOENT;
1771 goto fail;
1774 ret = btrfs_init_fs_root(root);
1775 if (ret)
1776 goto fail;
1778 path = btrfs_alloc_path();
1779 if (!path) {
1780 ret = -ENOMEM;
1781 goto fail;
1783 key.objectid = BTRFS_ORPHAN_OBJECTID;
1784 key.type = BTRFS_ORPHAN_ITEM_KEY;
1785 key.offset = location->objectid;
1787 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1788 btrfs_free_path(path);
1789 if (ret < 0)
1790 goto fail;
1791 if (ret == 0)
1792 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1794 ret = btrfs_insert_fs_root(fs_info, root);
1795 if (ret) {
1796 if (ret == -EEXIST) {
1797 free_fs_root(root);
1798 goto again;
1800 goto fail;
1802 return root;
1803 fail:
1804 free_fs_root(root);
1805 return ERR_PTR(ret);
1808 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1810 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1811 int ret = 0;
1812 struct btrfs_device *device;
1813 struct backing_dev_info *bdi;
1815 rcu_read_lock();
1816 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1817 if (!device->bdev)
1818 continue;
1819 bdi = blk_get_backing_dev_info(device->bdev);
1820 if (bdi_congested(bdi, bdi_bits)) {
1821 ret = 1;
1822 break;
1825 rcu_read_unlock();
1826 return ret;
1829 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1831 int err;
1833 err = bdi_setup_and_register(bdi, "btrfs");
1834 if (err)
1835 return err;
1837 bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
1838 bdi->congested_fn = btrfs_congested_fn;
1839 bdi->congested_data = info;
1840 bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
1841 return 0;
1845 * called by the kthread helper functions to finally call the bio end_io
1846 * functions. This is where read checksum verification actually happens
1848 static void end_workqueue_fn(struct btrfs_work *work)
1850 struct bio *bio;
1851 struct btrfs_end_io_wq *end_io_wq;
1853 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1854 bio = end_io_wq->bio;
1856 bio->bi_error = end_io_wq->error;
1857 bio->bi_private = end_io_wq->private;
1858 bio->bi_end_io = end_io_wq->end_io;
1859 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1860 bio_endio(bio);
1863 static int cleaner_kthread(void *arg)
1865 struct btrfs_root *root = arg;
1866 int again;
1867 struct btrfs_trans_handle *trans;
1869 do {
1870 again = 0;
1872 /* Make the cleaner go to sleep early. */
1873 if (btrfs_need_cleaner_sleep(root))
1874 goto sleep;
1877 * Do not do anything if we might cause open_ctree() to block
1878 * before we have finished mounting the filesystem.
1880 if (!test_bit(BTRFS_FS_OPEN, &root->fs_info->flags))
1881 goto sleep;
1883 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1884 goto sleep;
1887 * Avoid the problem that we change the status of the fs
1888 * during the above check and trylock.
1890 if (btrfs_need_cleaner_sleep(root)) {
1891 mutex_unlock(&root->fs_info->cleaner_mutex);
1892 goto sleep;
1895 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
1896 btrfs_run_delayed_iputs(root);
1897 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
1899 again = btrfs_clean_one_deleted_snapshot(root);
1900 mutex_unlock(&root->fs_info->cleaner_mutex);
1903 * The defragger has dealt with the R/O remount and umount,
1904 * needn't do anything special here.
1906 btrfs_run_defrag_inodes(root->fs_info);
1909 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1910 * with relocation (btrfs_relocate_chunk) and relocation
1911 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1912 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1913 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1914 * unused block groups.
1916 btrfs_delete_unused_bgs(root->fs_info);
1917 sleep:
1918 if (!again) {
1919 set_current_state(TASK_INTERRUPTIBLE);
1920 if (!kthread_should_stop())
1921 schedule();
1922 __set_current_state(TASK_RUNNING);
1924 } while (!kthread_should_stop());
1927 * Transaction kthread is stopped before us and wakes us up.
1928 * However we might have started a new transaction and COWed some
1929 * tree blocks when deleting unused block groups for example. So
1930 * make sure we commit the transaction we started to have a clean
1931 * shutdown when evicting the btree inode - if it has dirty pages
1932 * when we do the final iput() on it, eviction will trigger a
1933 * writeback for it which will fail with null pointer dereferences
1934 * since work queues and other resources were already released and
1935 * destroyed by the time the iput/eviction/writeback is made.
1937 trans = btrfs_attach_transaction(root);
1938 if (IS_ERR(trans)) {
1939 if (PTR_ERR(trans) != -ENOENT)
1940 btrfs_err(root->fs_info,
1941 "cleaner transaction attach returned %ld",
1942 PTR_ERR(trans));
1943 } else {
1944 int ret;
1946 ret = btrfs_commit_transaction(trans, root);
1947 if (ret)
1948 btrfs_err(root->fs_info,
1949 "cleaner open transaction commit returned %d",
1950 ret);
1953 return 0;
1956 static int transaction_kthread(void *arg)
1958 struct btrfs_root *root = arg;
1959 struct btrfs_trans_handle *trans;
1960 struct btrfs_transaction *cur;
1961 u64 transid;
1962 unsigned long now;
1963 unsigned long delay;
1964 bool cannot_commit;
1966 do {
1967 cannot_commit = false;
1968 delay = HZ * root->fs_info->commit_interval;
1969 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1971 spin_lock(&root->fs_info->trans_lock);
1972 cur = root->fs_info->running_transaction;
1973 if (!cur) {
1974 spin_unlock(&root->fs_info->trans_lock);
1975 goto sleep;
1978 now = get_seconds();
1979 if (cur->state < TRANS_STATE_BLOCKED &&
1980 (now < cur->start_time ||
1981 now - cur->start_time < root->fs_info->commit_interval)) {
1982 spin_unlock(&root->fs_info->trans_lock);
1983 delay = HZ * 5;
1984 goto sleep;
1986 transid = cur->transid;
1987 spin_unlock(&root->fs_info->trans_lock);
1989 /* If the file system is aborted, this will always fail. */
1990 trans = btrfs_attach_transaction(root);
1991 if (IS_ERR(trans)) {
1992 if (PTR_ERR(trans) != -ENOENT)
1993 cannot_commit = true;
1994 goto sleep;
1996 if (transid == trans->transid) {
1997 btrfs_commit_transaction(trans, root);
1998 } else {
1999 btrfs_end_transaction(trans, root);
2001 sleep:
2002 wake_up_process(root->fs_info->cleaner_kthread);
2003 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
2005 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
2006 &root->fs_info->fs_state)))
2007 btrfs_cleanup_transaction(root);
2008 set_current_state(TASK_INTERRUPTIBLE);
2009 if (!kthread_should_stop() &&
2010 (!btrfs_transaction_blocked(root->fs_info) ||
2011 cannot_commit))
2012 schedule_timeout(delay);
2013 __set_current_state(TASK_RUNNING);
2014 } while (!kthread_should_stop());
2015 return 0;
2019 * this will find the highest generation in the array of
2020 * root backups. The index of the highest array is returned,
2021 * or -1 if we can't find anything.
2023 * We check to make sure the array is valid by comparing the
2024 * generation of the latest root in the array with the generation
2025 * in the super block. If they don't match we pitch it.
2027 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
2029 u64 cur;
2030 int newest_index = -1;
2031 struct btrfs_root_backup *root_backup;
2032 int i;
2034 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2035 root_backup = info->super_copy->super_roots + i;
2036 cur = btrfs_backup_tree_root_gen(root_backup);
2037 if (cur == newest_gen)
2038 newest_index = i;
2041 /* check to see if we actually wrapped around */
2042 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
2043 root_backup = info->super_copy->super_roots;
2044 cur = btrfs_backup_tree_root_gen(root_backup);
2045 if (cur == newest_gen)
2046 newest_index = 0;
2048 return newest_index;
2053 * find the oldest backup so we know where to store new entries
2054 * in the backup array. This will set the backup_root_index
2055 * field in the fs_info struct
2057 static void find_oldest_super_backup(struct btrfs_fs_info *info,
2058 u64 newest_gen)
2060 int newest_index = -1;
2062 newest_index = find_newest_super_backup(info, newest_gen);
2063 /* if there was garbage in there, just move along */
2064 if (newest_index == -1) {
2065 info->backup_root_index = 0;
2066 } else {
2067 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
2072 * copy all the root pointers into the super backup array.
2073 * this will bump the backup pointer by one when it is
2074 * done
2076 static void backup_super_roots(struct btrfs_fs_info *info)
2078 int next_backup;
2079 struct btrfs_root_backup *root_backup;
2080 int last_backup;
2082 next_backup = info->backup_root_index;
2083 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
2084 BTRFS_NUM_BACKUP_ROOTS;
2087 * just overwrite the last backup if we're at the same generation
2088 * this happens only at umount
2090 root_backup = info->super_for_commit->super_roots + last_backup;
2091 if (btrfs_backup_tree_root_gen(root_backup) ==
2092 btrfs_header_generation(info->tree_root->node))
2093 next_backup = last_backup;
2095 root_backup = info->super_for_commit->super_roots + next_backup;
2098 * make sure all of our padding and empty slots get zero filled
2099 * regardless of which ones we use today
2101 memset(root_backup, 0, sizeof(*root_backup));
2103 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2105 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2106 btrfs_set_backup_tree_root_gen(root_backup,
2107 btrfs_header_generation(info->tree_root->node));
2109 btrfs_set_backup_tree_root_level(root_backup,
2110 btrfs_header_level(info->tree_root->node));
2112 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2113 btrfs_set_backup_chunk_root_gen(root_backup,
2114 btrfs_header_generation(info->chunk_root->node));
2115 btrfs_set_backup_chunk_root_level(root_backup,
2116 btrfs_header_level(info->chunk_root->node));
2118 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2119 btrfs_set_backup_extent_root_gen(root_backup,
2120 btrfs_header_generation(info->extent_root->node));
2121 btrfs_set_backup_extent_root_level(root_backup,
2122 btrfs_header_level(info->extent_root->node));
2125 * we might commit during log recovery, which happens before we set
2126 * the fs_root. Make sure it is valid before we fill it in.
2128 if (info->fs_root && info->fs_root->node) {
2129 btrfs_set_backup_fs_root(root_backup,
2130 info->fs_root->node->start);
2131 btrfs_set_backup_fs_root_gen(root_backup,
2132 btrfs_header_generation(info->fs_root->node));
2133 btrfs_set_backup_fs_root_level(root_backup,
2134 btrfs_header_level(info->fs_root->node));
2137 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2138 btrfs_set_backup_dev_root_gen(root_backup,
2139 btrfs_header_generation(info->dev_root->node));
2140 btrfs_set_backup_dev_root_level(root_backup,
2141 btrfs_header_level(info->dev_root->node));
2143 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2144 btrfs_set_backup_csum_root_gen(root_backup,
2145 btrfs_header_generation(info->csum_root->node));
2146 btrfs_set_backup_csum_root_level(root_backup,
2147 btrfs_header_level(info->csum_root->node));
2149 btrfs_set_backup_total_bytes(root_backup,
2150 btrfs_super_total_bytes(info->super_copy));
2151 btrfs_set_backup_bytes_used(root_backup,
2152 btrfs_super_bytes_used(info->super_copy));
2153 btrfs_set_backup_num_devices(root_backup,
2154 btrfs_super_num_devices(info->super_copy));
2157 * if we don't copy this out to the super_copy, it won't get remembered
2158 * for the next commit
2160 memcpy(&info->super_copy->super_roots,
2161 &info->super_for_commit->super_roots,
2162 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2166 * this copies info out of the root backup array and back into
2167 * the in-memory super block. It is meant to help iterate through
2168 * the array, so you send it the number of backups you've already
2169 * tried and the last backup index you used.
2171 * this returns -1 when it has tried all the backups
2173 static noinline int next_root_backup(struct btrfs_fs_info *info,
2174 struct btrfs_super_block *super,
2175 int *num_backups_tried, int *backup_index)
2177 struct btrfs_root_backup *root_backup;
2178 int newest = *backup_index;
2180 if (*num_backups_tried == 0) {
2181 u64 gen = btrfs_super_generation(super);
2183 newest = find_newest_super_backup(info, gen);
2184 if (newest == -1)
2185 return -1;
2187 *backup_index = newest;
2188 *num_backups_tried = 1;
2189 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2190 /* we've tried all the backups, all done */
2191 return -1;
2192 } else {
2193 /* jump to the next oldest backup */
2194 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2195 BTRFS_NUM_BACKUP_ROOTS;
2196 *backup_index = newest;
2197 *num_backups_tried += 1;
2199 root_backup = super->super_roots + newest;
2201 btrfs_set_super_generation(super,
2202 btrfs_backup_tree_root_gen(root_backup));
2203 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2204 btrfs_set_super_root_level(super,
2205 btrfs_backup_tree_root_level(root_backup));
2206 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2209 * fixme: the total bytes and num_devices need to match or we should
2210 * need a fsck
2212 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2213 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2214 return 0;
2217 /* helper to cleanup workers */
2218 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2220 btrfs_destroy_workqueue(fs_info->fixup_workers);
2221 btrfs_destroy_workqueue(fs_info->delalloc_workers);
2222 btrfs_destroy_workqueue(fs_info->workers);
2223 btrfs_destroy_workqueue(fs_info->endio_workers);
2224 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2225 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2226 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2227 btrfs_destroy_workqueue(fs_info->rmw_workers);
2228 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2229 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2230 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2231 btrfs_destroy_workqueue(fs_info->submit_workers);
2232 btrfs_destroy_workqueue(fs_info->delayed_workers);
2233 btrfs_destroy_workqueue(fs_info->caching_workers);
2234 btrfs_destroy_workqueue(fs_info->readahead_workers);
2235 btrfs_destroy_workqueue(fs_info->flush_workers);
2236 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2237 btrfs_destroy_workqueue(fs_info->extent_workers);
2240 static void free_root_extent_buffers(struct btrfs_root *root)
2242 if (root) {
2243 free_extent_buffer(root->node);
2244 free_extent_buffer(root->commit_root);
2245 root->node = NULL;
2246 root->commit_root = NULL;
2250 /* helper to cleanup tree roots */
2251 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2253 free_root_extent_buffers(info->tree_root);
2255 free_root_extent_buffers(info->dev_root);
2256 free_root_extent_buffers(info->extent_root);
2257 free_root_extent_buffers(info->csum_root);
2258 free_root_extent_buffers(info->quota_root);
2259 free_root_extent_buffers(info->uuid_root);
2260 if (chunk_root)
2261 free_root_extent_buffers(info->chunk_root);
2262 free_root_extent_buffers(info->free_space_root);
2265 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2267 int ret;
2268 struct btrfs_root *gang[8];
2269 int i;
2271 while (!list_empty(&fs_info->dead_roots)) {
2272 gang[0] = list_entry(fs_info->dead_roots.next,
2273 struct btrfs_root, root_list);
2274 list_del(&gang[0]->root_list);
2276 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2277 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2278 } else {
2279 free_extent_buffer(gang[0]->node);
2280 free_extent_buffer(gang[0]->commit_root);
2281 btrfs_put_fs_root(gang[0]);
2285 while (1) {
2286 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2287 (void **)gang, 0,
2288 ARRAY_SIZE(gang));
2289 if (!ret)
2290 break;
2291 for (i = 0; i < ret; i++)
2292 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2295 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2296 btrfs_free_log_root_tree(NULL, fs_info);
2297 btrfs_destroy_pinned_extent(fs_info->tree_root,
2298 fs_info->pinned_extents);
2302 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2304 mutex_init(&fs_info->scrub_lock);
2305 atomic_set(&fs_info->scrubs_running, 0);
2306 atomic_set(&fs_info->scrub_pause_req, 0);
2307 atomic_set(&fs_info->scrubs_paused, 0);
2308 atomic_set(&fs_info->scrub_cancel_req, 0);
2309 init_waitqueue_head(&fs_info->scrub_pause_wait);
2310 fs_info->scrub_workers_refcnt = 0;
2313 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2315 spin_lock_init(&fs_info->balance_lock);
2316 mutex_init(&fs_info->balance_mutex);
2317 atomic_set(&fs_info->balance_running, 0);
2318 atomic_set(&fs_info->balance_pause_req, 0);
2319 atomic_set(&fs_info->balance_cancel_req, 0);
2320 fs_info->balance_ctl = NULL;
2321 init_waitqueue_head(&fs_info->balance_wait_q);
2324 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2325 struct btrfs_root *tree_root)
2327 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2328 set_nlink(fs_info->btree_inode, 1);
2330 * we set the i_size on the btree inode to the max possible int.
2331 * the real end of the address space is determined by all of
2332 * the devices in the system
2334 fs_info->btree_inode->i_size = OFFSET_MAX;
2335 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2337 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2338 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2339 fs_info->btree_inode->i_mapping);
2340 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2341 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2343 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2345 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2346 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2347 sizeof(struct btrfs_key));
2348 set_bit(BTRFS_INODE_DUMMY,
2349 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2350 btrfs_insert_inode_hash(fs_info->btree_inode);
2353 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2355 fs_info->dev_replace.lock_owner = 0;
2356 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2357 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2358 rwlock_init(&fs_info->dev_replace.lock);
2359 atomic_set(&fs_info->dev_replace.read_locks, 0);
2360 atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2361 init_waitqueue_head(&fs_info->replace_wait);
2362 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2365 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2367 spin_lock_init(&fs_info->qgroup_lock);
2368 mutex_init(&fs_info->qgroup_ioctl_lock);
2369 fs_info->qgroup_tree = RB_ROOT;
2370 fs_info->qgroup_op_tree = RB_ROOT;
2371 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2372 fs_info->qgroup_seq = 1;
2373 fs_info->qgroup_ulist = NULL;
2374 fs_info->qgroup_rescan_running = false;
2375 mutex_init(&fs_info->qgroup_rescan_lock);
2378 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2379 struct btrfs_fs_devices *fs_devices)
2381 int max_active = fs_info->thread_pool_size;
2382 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2384 fs_info->workers =
2385 btrfs_alloc_workqueue(fs_info, "worker",
2386 flags | WQ_HIGHPRI, max_active, 16);
2388 fs_info->delalloc_workers =
2389 btrfs_alloc_workqueue(fs_info, "delalloc",
2390 flags, max_active, 2);
2392 fs_info->flush_workers =
2393 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2394 flags, max_active, 0);
2396 fs_info->caching_workers =
2397 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2400 * a higher idle thresh on the submit workers makes it much more
2401 * likely that bios will be send down in a sane order to the
2402 * devices
2404 fs_info->submit_workers =
2405 btrfs_alloc_workqueue(fs_info, "submit", flags,
2406 min_t(u64, fs_devices->num_devices,
2407 max_active), 64);
2409 fs_info->fixup_workers =
2410 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2413 * endios are largely parallel and should have a very
2414 * low idle thresh
2416 fs_info->endio_workers =
2417 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2418 fs_info->endio_meta_workers =
2419 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2420 max_active, 4);
2421 fs_info->endio_meta_write_workers =
2422 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2423 max_active, 2);
2424 fs_info->endio_raid56_workers =
2425 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2426 max_active, 4);
2427 fs_info->endio_repair_workers =
2428 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2429 fs_info->rmw_workers =
2430 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2431 fs_info->endio_write_workers =
2432 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2433 max_active, 2);
2434 fs_info->endio_freespace_worker =
2435 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2436 max_active, 0);
2437 fs_info->delayed_workers =
2438 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2439 max_active, 0);
2440 fs_info->readahead_workers =
2441 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2442 max_active, 2);
2443 fs_info->qgroup_rescan_workers =
2444 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2445 fs_info->extent_workers =
2446 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2447 min_t(u64, fs_devices->num_devices,
2448 max_active), 8);
2450 if (!(fs_info->workers && fs_info->delalloc_workers &&
2451 fs_info->submit_workers && fs_info->flush_workers &&
2452 fs_info->endio_workers && fs_info->endio_meta_workers &&
2453 fs_info->endio_meta_write_workers &&
2454 fs_info->endio_repair_workers &&
2455 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2456 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2457 fs_info->caching_workers && fs_info->readahead_workers &&
2458 fs_info->fixup_workers && fs_info->delayed_workers &&
2459 fs_info->extent_workers &&
2460 fs_info->qgroup_rescan_workers)) {
2461 return -ENOMEM;
2464 return 0;
2467 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2468 struct btrfs_fs_devices *fs_devices)
2470 int ret;
2471 struct btrfs_root *tree_root = fs_info->tree_root;
2472 struct btrfs_root *log_tree_root;
2473 struct btrfs_super_block *disk_super = fs_info->super_copy;
2474 u64 bytenr = btrfs_super_log_root(disk_super);
2476 if (fs_devices->rw_devices == 0) {
2477 btrfs_warn(fs_info, "log replay required on RO media");
2478 return -EIO;
2481 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2482 if (!log_tree_root)
2483 return -ENOMEM;
2485 __setup_root(tree_root->nodesize, tree_root->sectorsize,
2486 tree_root->stripesize, log_tree_root, fs_info,
2487 BTRFS_TREE_LOG_OBJECTID);
2489 log_tree_root->node = read_tree_block(tree_root, bytenr,
2490 fs_info->generation + 1);
2491 if (IS_ERR(log_tree_root->node)) {
2492 btrfs_warn(fs_info, "failed to read log tree");
2493 ret = PTR_ERR(log_tree_root->node);
2494 kfree(log_tree_root);
2495 return ret;
2496 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2497 btrfs_err(fs_info, "failed to read log tree");
2498 free_extent_buffer(log_tree_root->node);
2499 kfree(log_tree_root);
2500 return -EIO;
2502 /* returns with log_tree_root freed on success */
2503 ret = btrfs_recover_log_trees(log_tree_root);
2504 if (ret) {
2505 btrfs_handle_fs_error(tree_root->fs_info, ret,
2506 "Failed to recover log tree");
2507 free_extent_buffer(log_tree_root->node);
2508 kfree(log_tree_root);
2509 return ret;
2512 if (fs_info->sb->s_flags & MS_RDONLY) {
2513 ret = btrfs_commit_super(tree_root);
2514 if (ret)
2515 return ret;
2518 return 0;
2521 static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2522 struct btrfs_root *tree_root)
2524 struct btrfs_root *root;
2525 struct btrfs_key location;
2526 int ret;
2528 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2529 location.type = BTRFS_ROOT_ITEM_KEY;
2530 location.offset = 0;
2532 root = btrfs_read_tree_root(tree_root, &location);
2533 if (IS_ERR(root))
2534 return PTR_ERR(root);
2535 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2536 fs_info->extent_root = root;
2538 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2539 root = btrfs_read_tree_root(tree_root, &location);
2540 if (IS_ERR(root))
2541 return PTR_ERR(root);
2542 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2543 fs_info->dev_root = root;
2544 btrfs_init_devices_late(fs_info);
2546 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2547 root = btrfs_read_tree_root(tree_root, &location);
2548 if (IS_ERR(root))
2549 return PTR_ERR(root);
2550 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2551 fs_info->csum_root = root;
2553 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2554 root = btrfs_read_tree_root(tree_root, &location);
2555 if (!IS_ERR(root)) {
2556 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2557 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2558 fs_info->quota_root = root;
2561 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2562 root = btrfs_read_tree_root(tree_root, &location);
2563 if (IS_ERR(root)) {
2564 ret = PTR_ERR(root);
2565 if (ret != -ENOENT)
2566 return ret;
2567 } else {
2568 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2569 fs_info->uuid_root = root;
2572 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2573 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2574 root = btrfs_read_tree_root(tree_root, &location);
2575 if (IS_ERR(root))
2576 return PTR_ERR(root);
2577 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2578 fs_info->free_space_root = root;
2581 return 0;
2584 int open_ctree(struct super_block *sb,
2585 struct btrfs_fs_devices *fs_devices,
2586 char *options)
2588 u32 sectorsize;
2589 u32 nodesize;
2590 u32 stripesize;
2591 u64 generation;
2592 u64 features;
2593 struct btrfs_key location;
2594 struct buffer_head *bh;
2595 struct btrfs_super_block *disk_super;
2596 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2597 struct btrfs_root *tree_root;
2598 struct btrfs_root *chunk_root;
2599 int ret;
2600 int err = -EINVAL;
2601 int num_backups_tried = 0;
2602 int backup_index = 0;
2603 int max_active;
2604 int clear_free_space_tree = 0;
2606 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2607 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2608 if (!tree_root || !chunk_root) {
2609 err = -ENOMEM;
2610 goto fail;
2613 ret = init_srcu_struct(&fs_info->subvol_srcu);
2614 if (ret) {
2615 err = ret;
2616 goto fail;
2619 ret = setup_bdi(fs_info, &fs_info->bdi);
2620 if (ret) {
2621 err = ret;
2622 goto fail_srcu;
2625 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2626 if (ret) {
2627 err = ret;
2628 goto fail_bdi;
2630 fs_info->dirty_metadata_batch = PAGE_SIZE *
2631 (1 + ilog2(nr_cpu_ids));
2633 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2634 if (ret) {
2635 err = ret;
2636 goto fail_dirty_metadata_bytes;
2639 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2640 if (ret) {
2641 err = ret;
2642 goto fail_delalloc_bytes;
2645 fs_info->btree_inode = new_inode(sb);
2646 if (!fs_info->btree_inode) {
2647 err = -ENOMEM;
2648 goto fail_bio_counter;
2651 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2653 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2654 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2655 INIT_LIST_HEAD(&fs_info->trans_list);
2656 INIT_LIST_HEAD(&fs_info->dead_roots);
2657 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2658 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2659 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2660 spin_lock_init(&fs_info->delalloc_root_lock);
2661 spin_lock_init(&fs_info->trans_lock);
2662 spin_lock_init(&fs_info->fs_roots_radix_lock);
2663 spin_lock_init(&fs_info->delayed_iput_lock);
2664 spin_lock_init(&fs_info->defrag_inodes_lock);
2665 spin_lock_init(&fs_info->free_chunk_lock);
2666 spin_lock_init(&fs_info->tree_mod_seq_lock);
2667 spin_lock_init(&fs_info->super_lock);
2668 spin_lock_init(&fs_info->qgroup_op_lock);
2669 spin_lock_init(&fs_info->buffer_lock);
2670 spin_lock_init(&fs_info->unused_bgs_lock);
2671 rwlock_init(&fs_info->tree_mod_log_lock);
2672 mutex_init(&fs_info->unused_bg_unpin_mutex);
2673 mutex_init(&fs_info->delete_unused_bgs_mutex);
2674 mutex_init(&fs_info->reloc_mutex);
2675 mutex_init(&fs_info->delalloc_root_mutex);
2676 mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2677 seqlock_init(&fs_info->profiles_lock);
2679 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2680 INIT_LIST_HEAD(&fs_info->space_info);
2681 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2682 INIT_LIST_HEAD(&fs_info->unused_bgs);
2683 btrfs_mapping_init(&fs_info->mapping_tree);
2684 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2685 BTRFS_BLOCK_RSV_GLOBAL);
2686 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2687 BTRFS_BLOCK_RSV_DELALLOC);
2688 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2689 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2690 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2691 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2692 BTRFS_BLOCK_RSV_DELOPS);
2693 atomic_set(&fs_info->nr_async_submits, 0);
2694 atomic_set(&fs_info->async_delalloc_pages, 0);
2695 atomic_set(&fs_info->async_submit_draining, 0);
2696 atomic_set(&fs_info->nr_async_bios, 0);
2697 atomic_set(&fs_info->defrag_running, 0);
2698 atomic_set(&fs_info->qgroup_op_seq, 0);
2699 atomic_set(&fs_info->reada_works_cnt, 0);
2700 atomic64_set(&fs_info->tree_mod_seq, 0);
2701 fs_info->fs_frozen = 0;
2702 fs_info->sb = sb;
2703 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2704 fs_info->metadata_ratio = 0;
2705 fs_info->defrag_inodes = RB_ROOT;
2706 fs_info->free_chunk_space = 0;
2707 fs_info->tree_mod_log = RB_ROOT;
2708 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2709 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2710 /* readahead state */
2711 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2712 spin_lock_init(&fs_info->reada_lock);
2714 fs_info->thread_pool_size = min_t(unsigned long,
2715 num_online_cpus() + 2, 8);
2717 INIT_LIST_HEAD(&fs_info->ordered_roots);
2718 spin_lock_init(&fs_info->ordered_root_lock);
2719 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2720 GFP_KERNEL);
2721 if (!fs_info->delayed_root) {
2722 err = -ENOMEM;
2723 goto fail_iput;
2725 btrfs_init_delayed_root(fs_info->delayed_root);
2727 btrfs_init_scrub(fs_info);
2728 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2729 fs_info->check_integrity_print_mask = 0;
2730 #endif
2731 btrfs_init_balance(fs_info);
2732 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2734 sb->s_blocksize = 4096;
2735 sb->s_blocksize_bits = blksize_bits(4096);
2736 sb->s_bdi = &fs_info->bdi;
2738 btrfs_init_btree_inode(fs_info, tree_root);
2740 spin_lock_init(&fs_info->block_group_cache_lock);
2741 fs_info->block_group_cache_tree = RB_ROOT;
2742 fs_info->first_logical_byte = (u64)-1;
2744 extent_io_tree_init(&fs_info->freed_extents[0],
2745 fs_info->btree_inode->i_mapping);
2746 extent_io_tree_init(&fs_info->freed_extents[1],
2747 fs_info->btree_inode->i_mapping);
2748 fs_info->pinned_extents = &fs_info->freed_extents[0];
2749 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2751 mutex_init(&fs_info->ordered_operations_mutex);
2752 mutex_init(&fs_info->tree_log_mutex);
2753 mutex_init(&fs_info->chunk_mutex);
2754 mutex_init(&fs_info->transaction_kthread_mutex);
2755 mutex_init(&fs_info->cleaner_mutex);
2756 mutex_init(&fs_info->volume_mutex);
2757 mutex_init(&fs_info->ro_block_group_mutex);
2758 init_rwsem(&fs_info->commit_root_sem);
2759 init_rwsem(&fs_info->cleanup_work_sem);
2760 init_rwsem(&fs_info->subvol_sem);
2761 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2763 btrfs_init_dev_replace_locks(fs_info);
2764 btrfs_init_qgroup(fs_info);
2766 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2767 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2769 init_waitqueue_head(&fs_info->transaction_throttle);
2770 init_waitqueue_head(&fs_info->transaction_wait);
2771 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2772 init_waitqueue_head(&fs_info->async_submit_wait);
2774 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2776 ret = btrfs_alloc_stripe_hash_table(fs_info);
2777 if (ret) {
2778 err = ret;
2779 goto fail_alloc;
2782 __setup_root(4096, 4096, 4096, tree_root,
2783 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2785 invalidate_bdev(fs_devices->latest_bdev);
2788 * Read super block and check the signature bytes only
2790 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2791 if (IS_ERR(bh)) {
2792 err = PTR_ERR(bh);
2793 goto fail_alloc;
2797 * We want to check superblock checksum, the type is stored inside.
2798 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2800 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2801 btrfs_err(fs_info, "superblock checksum mismatch");
2802 err = -EINVAL;
2803 brelse(bh);
2804 goto fail_alloc;
2808 * super_copy is zeroed at allocation time and we never touch the
2809 * following bytes up to INFO_SIZE, the checksum is calculated from
2810 * the whole block of INFO_SIZE
2812 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2813 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2814 sizeof(*fs_info->super_for_commit));
2815 brelse(bh);
2817 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2819 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2820 if (ret) {
2821 btrfs_err(fs_info, "superblock contains fatal errors");
2822 err = -EINVAL;
2823 goto fail_alloc;
2826 disk_super = fs_info->super_copy;
2827 if (!btrfs_super_root(disk_super))
2828 goto fail_alloc;
2830 /* check FS state, whether FS is broken. */
2831 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2832 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2835 * run through our array of backup supers and setup
2836 * our ring pointer to the oldest one
2838 generation = btrfs_super_generation(disk_super);
2839 find_oldest_super_backup(fs_info, generation);
2842 * In the long term, we'll store the compression type in the super
2843 * block, and it'll be used for per file compression control.
2845 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2847 ret = btrfs_parse_options(tree_root, options, sb->s_flags);
2848 if (ret) {
2849 err = ret;
2850 goto fail_alloc;
2853 features = btrfs_super_incompat_flags(disk_super) &
2854 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2855 if (features) {
2856 btrfs_err(fs_info,
2857 "cannot mount because of unsupported optional features (%llx)",
2858 features);
2859 err = -EINVAL;
2860 goto fail_alloc;
2863 features = btrfs_super_incompat_flags(disk_super);
2864 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2865 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2866 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2868 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2869 btrfs_info(fs_info, "has skinny extents");
2872 * flag our filesystem as having big metadata blocks if
2873 * they are bigger than the page size
2875 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2876 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2877 btrfs_info(fs_info,
2878 "flagging fs with big metadata feature");
2879 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2882 nodesize = btrfs_super_nodesize(disk_super);
2883 sectorsize = btrfs_super_sectorsize(disk_super);
2884 stripesize = sectorsize;
2885 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2886 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2889 * mixed block groups end up with duplicate but slightly offset
2890 * extent buffers for the same range. It leads to corruptions
2892 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2893 (sectorsize != nodesize)) {
2894 btrfs_err(fs_info,
2895 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2896 nodesize, sectorsize);
2897 goto fail_alloc;
2901 * Needn't use the lock because there is no other task which will
2902 * update the flag.
2904 btrfs_set_super_incompat_flags(disk_super, features);
2906 features = btrfs_super_compat_ro_flags(disk_super) &
2907 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2908 if (!(sb->s_flags & MS_RDONLY) && features) {
2909 btrfs_err(fs_info,
2910 "cannot mount read-write because of unsupported optional features (%llx)",
2911 features);
2912 err = -EINVAL;
2913 goto fail_alloc;
2916 max_active = fs_info->thread_pool_size;
2918 ret = btrfs_init_workqueues(fs_info, fs_devices);
2919 if (ret) {
2920 err = ret;
2921 goto fail_sb_buffer;
2924 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2925 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2926 SZ_4M / PAGE_SIZE);
2928 tree_root->nodesize = nodesize;
2929 tree_root->sectorsize = sectorsize;
2930 tree_root->stripesize = stripesize;
2932 sb->s_blocksize = sectorsize;
2933 sb->s_blocksize_bits = blksize_bits(sectorsize);
2935 mutex_lock(&fs_info->chunk_mutex);
2936 ret = btrfs_read_sys_array(tree_root);
2937 mutex_unlock(&fs_info->chunk_mutex);
2938 if (ret) {
2939 btrfs_err(fs_info, "failed to read the system array: %d", ret);
2940 goto fail_sb_buffer;
2943 generation = btrfs_super_chunk_root_generation(disk_super);
2945 __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2946 fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2948 chunk_root->node = read_tree_block(chunk_root,
2949 btrfs_super_chunk_root(disk_super),
2950 generation);
2951 if (IS_ERR(chunk_root->node) ||
2952 !extent_buffer_uptodate(chunk_root->node)) {
2953 btrfs_err(fs_info, "failed to read chunk root");
2954 if (!IS_ERR(chunk_root->node))
2955 free_extent_buffer(chunk_root->node);
2956 chunk_root->node = NULL;
2957 goto fail_tree_roots;
2959 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2960 chunk_root->commit_root = btrfs_root_node(chunk_root);
2962 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2963 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2965 ret = btrfs_read_chunk_tree(chunk_root);
2966 if (ret) {
2967 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2968 goto fail_tree_roots;
2972 * keep the device that is marked to be the target device for the
2973 * dev_replace procedure
2975 btrfs_close_extra_devices(fs_devices, 0);
2977 if (!fs_devices->latest_bdev) {
2978 btrfs_err(fs_info, "failed to read devices");
2979 goto fail_tree_roots;
2982 retry_root_backup:
2983 generation = btrfs_super_generation(disk_super);
2985 tree_root->node = read_tree_block(tree_root,
2986 btrfs_super_root(disk_super),
2987 generation);
2988 if (IS_ERR(tree_root->node) ||
2989 !extent_buffer_uptodate(tree_root->node)) {
2990 btrfs_warn(fs_info, "failed to read tree root");
2991 if (!IS_ERR(tree_root->node))
2992 free_extent_buffer(tree_root->node);
2993 tree_root->node = NULL;
2994 goto recovery_tree_root;
2997 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2998 tree_root->commit_root = btrfs_root_node(tree_root);
2999 btrfs_set_root_refs(&tree_root->root_item, 1);
3001 mutex_lock(&tree_root->objectid_mutex);
3002 ret = btrfs_find_highest_objectid(tree_root,
3003 &tree_root->highest_objectid);
3004 if (ret) {
3005 mutex_unlock(&tree_root->objectid_mutex);
3006 goto recovery_tree_root;
3009 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
3011 mutex_unlock(&tree_root->objectid_mutex);
3013 ret = btrfs_read_roots(fs_info, tree_root);
3014 if (ret)
3015 goto recovery_tree_root;
3017 fs_info->generation = generation;
3018 fs_info->last_trans_committed = generation;
3020 ret = btrfs_recover_balance(fs_info);
3021 if (ret) {
3022 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3023 goto fail_block_groups;
3026 ret = btrfs_init_dev_stats(fs_info);
3027 if (ret) {
3028 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3029 goto fail_block_groups;
3032 ret = btrfs_init_dev_replace(fs_info);
3033 if (ret) {
3034 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3035 goto fail_block_groups;
3038 btrfs_close_extra_devices(fs_devices, 1);
3040 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3041 if (ret) {
3042 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3043 ret);
3044 goto fail_block_groups;
3047 ret = btrfs_sysfs_add_device(fs_devices);
3048 if (ret) {
3049 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3050 ret);
3051 goto fail_fsdev_sysfs;
3054 ret = btrfs_sysfs_add_mounted(fs_info);
3055 if (ret) {
3056 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3057 goto fail_fsdev_sysfs;
3060 ret = btrfs_init_space_info(fs_info);
3061 if (ret) {
3062 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3063 goto fail_sysfs;
3066 ret = btrfs_read_block_groups(fs_info->extent_root);
3067 if (ret) {
3068 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3069 goto fail_sysfs;
3071 fs_info->num_tolerated_disk_barrier_failures =
3072 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3073 if (fs_info->fs_devices->missing_devices >
3074 fs_info->num_tolerated_disk_barrier_failures &&
3075 !(sb->s_flags & MS_RDONLY)) {
3076 btrfs_warn(fs_info,
3077 "missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
3078 fs_info->fs_devices->missing_devices,
3079 fs_info->num_tolerated_disk_barrier_failures);
3080 goto fail_sysfs;
3083 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3084 "btrfs-cleaner");
3085 if (IS_ERR(fs_info->cleaner_kthread))
3086 goto fail_sysfs;
3088 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3089 tree_root,
3090 "btrfs-transaction");
3091 if (IS_ERR(fs_info->transaction_kthread))
3092 goto fail_cleaner;
3094 if (!btrfs_test_opt(tree_root->fs_info, SSD) &&
3095 !btrfs_test_opt(tree_root->fs_info, NOSSD) &&
3096 !fs_info->fs_devices->rotating) {
3097 btrfs_info(fs_info, "detected SSD devices, enabling SSD mode");
3098 btrfs_set_opt(fs_info->mount_opt, SSD);
3102 * Mount does not set all options immediately, we can do it now and do
3103 * not have to wait for transaction commit
3105 btrfs_apply_pending_changes(fs_info);
3107 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3108 if (btrfs_test_opt(tree_root->fs_info, CHECK_INTEGRITY)) {
3109 ret = btrfsic_mount(tree_root, fs_devices,
3110 btrfs_test_opt(tree_root->fs_info,
3111 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3112 1 : 0,
3113 fs_info->check_integrity_print_mask);
3114 if (ret)
3115 btrfs_warn(fs_info,
3116 "failed to initialize integrity check module: %d",
3117 ret);
3119 #endif
3120 ret = btrfs_read_qgroup_config(fs_info);
3121 if (ret)
3122 goto fail_trans_kthread;
3124 /* do not make disk changes in broken FS or nologreplay is given */
3125 if (btrfs_super_log_root(disk_super) != 0 &&
3126 !btrfs_test_opt(tree_root->fs_info, NOLOGREPLAY)) {
3127 ret = btrfs_replay_log(fs_info, fs_devices);
3128 if (ret) {
3129 err = ret;
3130 goto fail_qgroup;
3134 ret = btrfs_find_orphan_roots(tree_root);
3135 if (ret)
3136 goto fail_qgroup;
3138 if (!(sb->s_flags & MS_RDONLY)) {
3139 ret = btrfs_cleanup_fs_roots(fs_info);
3140 if (ret)
3141 goto fail_qgroup;
3143 mutex_lock(&fs_info->cleaner_mutex);
3144 ret = btrfs_recover_relocation(tree_root);
3145 mutex_unlock(&fs_info->cleaner_mutex);
3146 if (ret < 0) {
3147 btrfs_warn(fs_info, "failed to recover relocation: %d",
3148 ret);
3149 err = -EINVAL;
3150 goto fail_qgroup;
3154 location.objectid = BTRFS_FS_TREE_OBJECTID;
3155 location.type = BTRFS_ROOT_ITEM_KEY;
3156 location.offset = 0;
3158 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3159 if (IS_ERR(fs_info->fs_root)) {
3160 err = PTR_ERR(fs_info->fs_root);
3161 goto fail_qgroup;
3164 if (sb->s_flags & MS_RDONLY)
3165 return 0;
3167 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3168 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3169 clear_free_space_tree = 1;
3170 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3171 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3172 btrfs_warn(fs_info, "free space tree is invalid");
3173 clear_free_space_tree = 1;
3176 if (clear_free_space_tree) {
3177 btrfs_info(fs_info, "clearing free space tree");
3178 ret = btrfs_clear_free_space_tree(fs_info);
3179 if (ret) {
3180 btrfs_warn(fs_info,
3181 "failed to clear free space tree: %d", ret);
3182 close_ctree(tree_root);
3183 return ret;
3187 if (btrfs_test_opt(tree_root->fs_info, FREE_SPACE_TREE) &&
3188 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3189 btrfs_info(fs_info, "creating free space tree");
3190 ret = btrfs_create_free_space_tree(fs_info);
3191 if (ret) {
3192 btrfs_warn(fs_info,
3193 "failed to create free space tree: %d", ret);
3194 close_ctree(tree_root);
3195 return ret;
3199 down_read(&fs_info->cleanup_work_sem);
3200 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3201 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3202 up_read(&fs_info->cleanup_work_sem);
3203 close_ctree(tree_root);
3204 return ret;
3206 up_read(&fs_info->cleanup_work_sem);
3208 ret = btrfs_resume_balance_async(fs_info);
3209 if (ret) {
3210 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3211 close_ctree(tree_root);
3212 return ret;
3215 ret = btrfs_resume_dev_replace_async(fs_info);
3216 if (ret) {
3217 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3218 close_ctree(tree_root);
3219 return ret;
3222 btrfs_qgroup_rescan_resume(fs_info);
3224 if (!fs_info->uuid_root) {
3225 btrfs_info(fs_info, "creating UUID tree");
3226 ret = btrfs_create_uuid_tree(fs_info);
3227 if (ret) {
3228 btrfs_warn(fs_info,
3229 "failed to create the UUID tree: %d", ret);
3230 close_ctree(tree_root);
3231 return ret;
3233 } else if (btrfs_test_opt(tree_root->fs_info, RESCAN_UUID_TREE) ||
3234 fs_info->generation !=
3235 btrfs_super_uuid_tree_generation(disk_super)) {
3236 btrfs_info(fs_info, "checking UUID tree");
3237 ret = btrfs_check_uuid_tree(fs_info);
3238 if (ret) {
3239 btrfs_warn(fs_info,
3240 "failed to check the UUID tree: %d", ret);
3241 close_ctree(tree_root);
3242 return ret;
3244 } else {
3245 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3247 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3250 * backuproot only affect mount behavior, and if open_ctree succeeded,
3251 * no need to keep the flag
3253 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3255 return 0;
3257 fail_qgroup:
3258 btrfs_free_qgroup_config(fs_info);
3259 fail_trans_kthread:
3260 kthread_stop(fs_info->transaction_kthread);
3261 btrfs_cleanup_transaction(fs_info->tree_root);
3262 btrfs_free_fs_roots(fs_info);
3263 fail_cleaner:
3264 kthread_stop(fs_info->cleaner_kthread);
3267 * make sure we're done with the btree inode before we stop our
3268 * kthreads
3270 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3272 fail_sysfs:
3273 btrfs_sysfs_remove_mounted(fs_info);
3275 fail_fsdev_sysfs:
3276 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3278 fail_block_groups:
3279 btrfs_put_block_group_cache(fs_info);
3280 btrfs_free_block_groups(fs_info);
3282 fail_tree_roots:
3283 free_root_pointers(fs_info, 1);
3284 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3286 fail_sb_buffer:
3287 btrfs_stop_all_workers(fs_info);
3288 fail_alloc:
3289 fail_iput:
3290 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3292 iput(fs_info->btree_inode);
3293 fail_bio_counter:
3294 percpu_counter_destroy(&fs_info->bio_counter);
3295 fail_delalloc_bytes:
3296 percpu_counter_destroy(&fs_info->delalloc_bytes);
3297 fail_dirty_metadata_bytes:
3298 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3299 fail_bdi:
3300 bdi_destroy(&fs_info->bdi);
3301 fail_srcu:
3302 cleanup_srcu_struct(&fs_info->subvol_srcu);
3303 fail:
3304 btrfs_free_stripe_hash_table(fs_info);
3305 btrfs_close_devices(fs_info->fs_devices);
3306 return err;
3308 recovery_tree_root:
3309 if (!btrfs_test_opt(tree_root->fs_info, USEBACKUPROOT))
3310 goto fail_tree_roots;
3312 free_root_pointers(fs_info, 0);
3314 /* don't use the log in recovery mode, it won't be valid */
3315 btrfs_set_super_log_root(disk_super, 0);
3317 /* we can't trust the free space cache either */
3318 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3320 ret = next_root_backup(fs_info, fs_info->super_copy,
3321 &num_backups_tried, &backup_index);
3322 if (ret == -1)
3323 goto fail_block_groups;
3324 goto retry_root_backup;
3327 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3329 if (uptodate) {
3330 set_buffer_uptodate(bh);
3331 } else {
3332 struct btrfs_device *device = (struct btrfs_device *)
3333 bh->b_private;
3335 btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
3336 "lost page write due to IO error on %s",
3337 rcu_str_deref(device->name));
3338 /* note, we don't set_buffer_write_io_error because we have
3339 * our own ways of dealing with the IO errors
3341 clear_buffer_uptodate(bh);
3342 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3344 unlock_buffer(bh);
3345 put_bh(bh);
3348 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3349 struct buffer_head **bh_ret)
3351 struct buffer_head *bh;
3352 struct btrfs_super_block *super;
3353 u64 bytenr;
3355 bytenr = btrfs_sb_offset(copy_num);
3356 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3357 return -EINVAL;
3359 bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3361 * If we fail to read from the underlying devices, as of now
3362 * the best option we have is to mark it EIO.
3364 if (!bh)
3365 return -EIO;
3367 super = (struct btrfs_super_block *)bh->b_data;
3368 if (btrfs_super_bytenr(super) != bytenr ||
3369 btrfs_super_magic(super) != BTRFS_MAGIC) {
3370 brelse(bh);
3371 return -EINVAL;
3374 *bh_ret = bh;
3375 return 0;
3379 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3381 struct buffer_head *bh;
3382 struct buffer_head *latest = NULL;
3383 struct btrfs_super_block *super;
3384 int i;
3385 u64 transid = 0;
3386 int ret = -EINVAL;
3388 /* we would like to check all the supers, but that would make
3389 * a btrfs mount succeed after a mkfs from a different FS.
3390 * So, we need to add a special mount option to scan for
3391 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3393 for (i = 0; i < 1; i++) {
3394 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3395 if (ret)
3396 continue;
3398 super = (struct btrfs_super_block *)bh->b_data;
3400 if (!latest || btrfs_super_generation(super) > transid) {
3401 brelse(latest);
3402 latest = bh;
3403 transid = btrfs_super_generation(super);
3404 } else {
3405 brelse(bh);
3409 if (!latest)
3410 return ERR_PTR(ret);
3412 return latest;
3416 * this should be called twice, once with wait == 0 and
3417 * once with wait == 1. When wait == 0 is done, all the buffer heads
3418 * we write are pinned.
3420 * They are released when wait == 1 is done.
3421 * max_mirrors must be the same for both runs, and it indicates how
3422 * many supers on this one device should be written.
3424 * max_mirrors == 0 means to write them all.
3426 static int write_dev_supers(struct btrfs_device *device,
3427 struct btrfs_super_block *sb,
3428 int do_barriers, int wait, int max_mirrors)
3430 struct buffer_head *bh;
3431 int i;
3432 int ret;
3433 int errors = 0;
3434 u32 crc;
3435 u64 bytenr;
3437 if (max_mirrors == 0)
3438 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3440 for (i = 0; i < max_mirrors; i++) {
3441 bytenr = btrfs_sb_offset(i);
3442 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3443 device->commit_total_bytes)
3444 break;
3446 if (wait) {
3447 bh = __find_get_block(device->bdev, bytenr / 4096,
3448 BTRFS_SUPER_INFO_SIZE);
3449 if (!bh) {
3450 errors++;
3451 continue;
3453 wait_on_buffer(bh);
3454 if (!buffer_uptodate(bh))
3455 errors++;
3457 /* drop our reference */
3458 brelse(bh);
3460 /* drop the reference from the wait == 0 run */
3461 brelse(bh);
3462 continue;
3463 } else {
3464 btrfs_set_super_bytenr(sb, bytenr);
3466 crc = ~(u32)0;
3467 crc = btrfs_csum_data((char *)sb +
3468 BTRFS_CSUM_SIZE, crc,
3469 BTRFS_SUPER_INFO_SIZE -
3470 BTRFS_CSUM_SIZE);
3471 btrfs_csum_final(crc, sb->csum);
3474 * one reference for us, and we leave it for the
3475 * caller
3477 bh = __getblk(device->bdev, bytenr / 4096,
3478 BTRFS_SUPER_INFO_SIZE);
3479 if (!bh) {
3480 btrfs_err(device->dev_root->fs_info,
3481 "couldn't get super buffer head for bytenr %llu",
3482 bytenr);
3483 errors++;
3484 continue;
3487 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3489 /* one reference for submit_bh */
3490 get_bh(bh);
3492 set_buffer_uptodate(bh);
3493 lock_buffer(bh);
3494 bh->b_end_io = btrfs_end_buffer_write_sync;
3495 bh->b_private = device;
3499 * we fua the first super. The others we allow
3500 * to go down lazy.
3502 if (i == 0)
3503 ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_FUA, bh);
3504 else
3505 ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_SYNC, bh);
3506 if (ret)
3507 errors++;
3509 return errors < i ? 0 : -1;
3513 * endio for the write_dev_flush, this will wake anyone waiting
3514 * for the barrier when it is done
3516 static void btrfs_end_empty_barrier(struct bio *bio)
3518 if (bio->bi_private)
3519 complete(bio->bi_private);
3520 bio_put(bio);
3524 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3525 * sent down. With wait == 1, it waits for the previous flush.
3527 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3528 * capable
3530 static int write_dev_flush(struct btrfs_device *device, int wait)
3532 struct bio *bio;
3533 int ret = 0;
3535 if (device->nobarriers)
3536 return 0;
3538 if (wait) {
3539 bio = device->flush_bio;
3540 if (!bio)
3541 return 0;
3543 wait_for_completion(&device->flush_wait);
3545 if (bio->bi_error) {
3546 ret = bio->bi_error;
3547 btrfs_dev_stat_inc_and_print(device,
3548 BTRFS_DEV_STAT_FLUSH_ERRS);
3551 /* drop the reference from the wait == 0 run */
3552 bio_put(bio);
3553 device->flush_bio = NULL;
3555 return ret;
3559 * one reference for us, and we leave it for the
3560 * caller
3562 device->flush_bio = NULL;
3563 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3564 if (!bio)
3565 return -ENOMEM;
3567 bio->bi_end_io = btrfs_end_empty_barrier;
3568 bio->bi_bdev = device->bdev;
3569 bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH);
3570 init_completion(&device->flush_wait);
3571 bio->bi_private = &device->flush_wait;
3572 device->flush_bio = bio;
3574 bio_get(bio);
3575 btrfsic_submit_bio(bio);
3577 return 0;
3581 * send an empty flush down to each device in parallel,
3582 * then wait for them
3584 static int barrier_all_devices(struct btrfs_fs_info *info)
3586 struct list_head *head;
3587 struct btrfs_device *dev;
3588 int errors_send = 0;
3589 int errors_wait = 0;
3590 int ret;
3592 /* send down all the barriers */
3593 head = &info->fs_devices->devices;
3594 list_for_each_entry_rcu(dev, head, dev_list) {
3595 if (dev->missing)
3596 continue;
3597 if (!dev->bdev) {
3598 errors_send++;
3599 continue;
3601 if (!dev->in_fs_metadata || !dev->writeable)
3602 continue;
3604 ret = write_dev_flush(dev, 0);
3605 if (ret)
3606 errors_send++;
3609 /* wait for all the barriers */
3610 list_for_each_entry_rcu(dev, head, dev_list) {
3611 if (dev->missing)
3612 continue;
3613 if (!dev->bdev) {
3614 errors_wait++;
3615 continue;
3617 if (!dev->in_fs_metadata || !dev->writeable)
3618 continue;
3620 ret = write_dev_flush(dev, 1);
3621 if (ret)
3622 errors_wait++;
3624 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3625 errors_wait > info->num_tolerated_disk_barrier_failures)
3626 return -EIO;
3627 return 0;
3630 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3632 int raid_type;
3633 int min_tolerated = INT_MAX;
3635 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3636 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3637 min_tolerated = min(min_tolerated,
3638 btrfs_raid_array[BTRFS_RAID_SINGLE].
3639 tolerated_failures);
3641 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3642 if (raid_type == BTRFS_RAID_SINGLE)
3643 continue;
3644 if (!(flags & btrfs_raid_group[raid_type]))
3645 continue;
3646 min_tolerated = min(min_tolerated,
3647 btrfs_raid_array[raid_type].
3648 tolerated_failures);
3651 if (min_tolerated == INT_MAX) {
3652 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3653 min_tolerated = 0;
3656 return min_tolerated;
3659 int btrfs_calc_num_tolerated_disk_barrier_failures(
3660 struct btrfs_fs_info *fs_info)
3662 struct btrfs_ioctl_space_info space;
3663 struct btrfs_space_info *sinfo;
3664 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3665 BTRFS_BLOCK_GROUP_SYSTEM,
3666 BTRFS_BLOCK_GROUP_METADATA,
3667 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3668 int i;
3669 int c;
3670 int num_tolerated_disk_barrier_failures =
3671 (int)fs_info->fs_devices->num_devices;
3673 for (i = 0; i < ARRAY_SIZE(types); i++) {
3674 struct btrfs_space_info *tmp;
3676 sinfo = NULL;
3677 rcu_read_lock();
3678 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3679 if (tmp->flags == types[i]) {
3680 sinfo = tmp;
3681 break;
3684 rcu_read_unlock();
3686 if (!sinfo)
3687 continue;
3689 down_read(&sinfo->groups_sem);
3690 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3691 u64 flags;
3693 if (list_empty(&sinfo->block_groups[c]))
3694 continue;
3696 btrfs_get_block_group_info(&sinfo->block_groups[c],
3697 &space);
3698 if (space.total_bytes == 0 || space.used_bytes == 0)
3699 continue;
3700 flags = space.flags;
3702 num_tolerated_disk_barrier_failures = min(
3703 num_tolerated_disk_barrier_failures,
3704 btrfs_get_num_tolerated_disk_barrier_failures(
3705 flags));
3707 up_read(&sinfo->groups_sem);
3710 return num_tolerated_disk_barrier_failures;
3713 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3715 struct list_head *head;
3716 struct btrfs_device *dev;
3717 struct btrfs_super_block *sb;
3718 struct btrfs_dev_item *dev_item;
3719 int ret;
3720 int do_barriers;
3721 int max_errors;
3722 int total_errors = 0;
3723 u64 flags;
3725 do_barriers = !btrfs_test_opt(root->fs_info, NOBARRIER);
3726 backup_super_roots(root->fs_info);
3728 sb = root->fs_info->super_for_commit;
3729 dev_item = &sb->dev_item;
3731 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3732 head = &root->fs_info->fs_devices->devices;
3733 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3735 if (do_barriers) {
3736 ret = barrier_all_devices(root->fs_info);
3737 if (ret) {
3738 mutex_unlock(
3739 &root->fs_info->fs_devices->device_list_mutex);
3740 btrfs_handle_fs_error(root->fs_info, ret,
3741 "errors while submitting device barriers.");
3742 return ret;
3746 list_for_each_entry_rcu(dev, head, dev_list) {
3747 if (!dev->bdev) {
3748 total_errors++;
3749 continue;
3751 if (!dev->in_fs_metadata || !dev->writeable)
3752 continue;
3754 btrfs_set_stack_device_generation(dev_item, 0);
3755 btrfs_set_stack_device_type(dev_item, dev->type);
3756 btrfs_set_stack_device_id(dev_item, dev->devid);
3757 btrfs_set_stack_device_total_bytes(dev_item,
3758 dev->commit_total_bytes);
3759 btrfs_set_stack_device_bytes_used(dev_item,
3760 dev->commit_bytes_used);
3761 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3762 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3763 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3764 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3765 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3767 flags = btrfs_super_flags(sb);
3768 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3770 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3771 if (ret)
3772 total_errors++;
3774 if (total_errors > max_errors) {
3775 btrfs_err(root->fs_info, "%d errors while writing supers",
3776 total_errors);
3777 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3779 /* FUA is masked off if unsupported and can't be the reason */
3780 btrfs_handle_fs_error(root->fs_info, -EIO,
3781 "%d errors while writing supers", total_errors);
3782 return -EIO;
3785 total_errors = 0;
3786 list_for_each_entry_rcu(dev, head, dev_list) {
3787 if (!dev->bdev)
3788 continue;
3789 if (!dev->in_fs_metadata || !dev->writeable)
3790 continue;
3792 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3793 if (ret)
3794 total_errors++;
3796 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3797 if (total_errors > max_errors) {
3798 btrfs_handle_fs_error(root->fs_info, -EIO,
3799 "%d errors while writing supers", total_errors);
3800 return -EIO;
3802 return 0;
3805 int write_ctree_super(struct btrfs_trans_handle *trans,
3806 struct btrfs_root *root, int max_mirrors)
3808 return write_all_supers(root, max_mirrors);
3811 /* Drop a fs root from the radix tree and free it. */
3812 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3813 struct btrfs_root *root)
3815 spin_lock(&fs_info->fs_roots_radix_lock);
3816 radix_tree_delete(&fs_info->fs_roots_radix,
3817 (unsigned long)root->root_key.objectid);
3818 spin_unlock(&fs_info->fs_roots_radix_lock);
3820 if (btrfs_root_refs(&root->root_item) == 0)
3821 synchronize_srcu(&fs_info->subvol_srcu);
3823 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3824 btrfs_free_log(NULL, root);
3825 if (root->reloc_root) {
3826 free_extent_buffer(root->reloc_root->node);
3827 free_extent_buffer(root->reloc_root->commit_root);
3828 btrfs_put_fs_root(root->reloc_root);
3829 root->reloc_root = NULL;
3833 if (root->free_ino_pinned)
3834 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3835 if (root->free_ino_ctl)
3836 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3837 free_fs_root(root);
3840 static void free_fs_root(struct btrfs_root *root)
3842 iput(root->ino_cache_inode);
3843 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3844 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3845 root->orphan_block_rsv = NULL;
3846 if (root->anon_dev)
3847 free_anon_bdev(root->anon_dev);
3848 if (root->subv_writers)
3849 btrfs_free_subvolume_writers(root->subv_writers);
3850 free_extent_buffer(root->node);
3851 free_extent_buffer(root->commit_root);
3852 kfree(root->free_ino_ctl);
3853 kfree(root->free_ino_pinned);
3854 kfree(root->name);
3855 btrfs_put_fs_root(root);
3858 void btrfs_free_fs_root(struct btrfs_root *root)
3860 free_fs_root(root);
3863 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3865 u64 root_objectid = 0;
3866 struct btrfs_root *gang[8];
3867 int i = 0;
3868 int err = 0;
3869 unsigned int ret = 0;
3870 int index;
3872 while (1) {
3873 index = srcu_read_lock(&fs_info->subvol_srcu);
3874 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3875 (void **)gang, root_objectid,
3876 ARRAY_SIZE(gang));
3877 if (!ret) {
3878 srcu_read_unlock(&fs_info->subvol_srcu, index);
3879 break;
3881 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3883 for (i = 0; i < ret; i++) {
3884 /* Avoid to grab roots in dead_roots */
3885 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3886 gang[i] = NULL;
3887 continue;
3889 /* grab all the search result for later use */
3890 gang[i] = btrfs_grab_fs_root(gang[i]);
3892 srcu_read_unlock(&fs_info->subvol_srcu, index);
3894 for (i = 0; i < ret; i++) {
3895 if (!gang[i])
3896 continue;
3897 root_objectid = gang[i]->root_key.objectid;
3898 err = btrfs_orphan_cleanup(gang[i]);
3899 if (err)
3900 break;
3901 btrfs_put_fs_root(gang[i]);
3903 root_objectid++;
3906 /* release the uncleaned roots due to error */
3907 for (; i < ret; i++) {
3908 if (gang[i])
3909 btrfs_put_fs_root(gang[i]);
3911 return err;
3914 int btrfs_commit_super(struct btrfs_root *root)
3916 struct btrfs_trans_handle *trans;
3918 mutex_lock(&root->fs_info->cleaner_mutex);
3919 btrfs_run_delayed_iputs(root);
3920 mutex_unlock(&root->fs_info->cleaner_mutex);
3921 wake_up_process(root->fs_info->cleaner_kthread);
3923 /* wait until ongoing cleanup work done */
3924 down_write(&root->fs_info->cleanup_work_sem);
3925 up_write(&root->fs_info->cleanup_work_sem);
3927 trans = btrfs_join_transaction(root);
3928 if (IS_ERR(trans))
3929 return PTR_ERR(trans);
3930 return btrfs_commit_transaction(trans, root);
3933 void close_ctree(struct btrfs_root *root)
3935 struct btrfs_fs_info *fs_info = root->fs_info;
3936 int ret;
3938 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3940 /* wait for the qgroup rescan worker to stop */
3941 btrfs_qgroup_wait_for_completion(fs_info, false);
3943 /* wait for the uuid_scan task to finish */
3944 down(&fs_info->uuid_tree_rescan_sem);
3945 /* avoid complains from lockdep et al., set sem back to initial state */
3946 up(&fs_info->uuid_tree_rescan_sem);
3948 /* pause restriper - we want to resume on mount */
3949 btrfs_pause_balance(fs_info);
3951 btrfs_dev_replace_suspend_for_unmount(fs_info);
3953 btrfs_scrub_cancel(fs_info);
3955 /* wait for any defraggers to finish */
3956 wait_event(fs_info->transaction_wait,
3957 (atomic_read(&fs_info->defrag_running) == 0));
3959 /* clear out the rbtree of defraggable inodes */
3960 btrfs_cleanup_defrag_inodes(fs_info);
3962 cancel_work_sync(&fs_info->async_reclaim_work);
3964 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3966 * If the cleaner thread is stopped and there are
3967 * block groups queued for removal, the deletion will be
3968 * skipped when we quit the cleaner thread.
3970 btrfs_delete_unused_bgs(root->fs_info);
3972 ret = btrfs_commit_super(root);
3973 if (ret)
3974 btrfs_err(fs_info, "commit super ret %d", ret);
3977 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3978 btrfs_error_commit_super(root);
3980 kthread_stop(fs_info->transaction_kthread);
3981 kthread_stop(fs_info->cleaner_kthread);
3983 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
3985 btrfs_free_qgroup_config(fs_info);
3987 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3988 btrfs_info(fs_info, "at unmount delalloc count %lld",
3989 percpu_counter_sum(&fs_info->delalloc_bytes));
3992 btrfs_sysfs_remove_mounted(fs_info);
3993 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3995 btrfs_free_fs_roots(fs_info);
3997 btrfs_put_block_group_cache(fs_info);
3999 btrfs_free_block_groups(fs_info);
4002 * we must make sure there is not any read request to
4003 * submit after we stopping all workers.
4005 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4006 btrfs_stop_all_workers(fs_info);
4008 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4009 free_root_pointers(fs_info, 1);
4011 iput(fs_info->btree_inode);
4013 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4014 if (btrfs_test_opt(root->fs_info, CHECK_INTEGRITY))
4015 btrfsic_unmount(root, fs_info->fs_devices);
4016 #endif
4018 btrfs_close_devices(fs_info->fs_devices);
4019 btrfs_mapping_tree_free(&fs_info->mapping_tree);
4021 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4022 percpu_counter_destroy(&fs_info->delalloc_bytes);
4023 percpu_counter_destroy(&fs_info->bio_counter);
4024 bdi_destroy(&fs_info->bdi);
4025 cleanup_srcu_struct(&fs_info->subvol_srcu);
4027 btrfs_free_stripe_hash_table(fs_info);
4029 __btrfs_free_block_rsv(root->orphan_block_rsv);
4030 root->orphan_block_rsv = NULL;
4032 lock_chunks(root);
4033 while (!list_empty(&fs_info->pinned_chunks)) {
4034 struct extent_map *em;
4036 em = list_first_entry(&fs_info->pinned_chunks,
4037 struct extent_map, list);
4038 list_del_init(&em->list);
4039 free_extent_map(em);
4041 unlock_chunks(root);
4044 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4045 int atomic)
4047 int ret;
4048 struct inode *btree_inode = buf->pages[0]->mapping->host;
4050 ret = extent_buffer_uptodate(buf);
4051 if (!ret)
4052 return ret;
4054 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4055 parent_transid, atomic);
4056 if (ret == -EAGAIN)
4057 return ret;
4058 return !ret;
4061 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4063 struct btrfs_root *root;
4064 u64 transid = btrfs_header_generation(buf);
4065 int was_dirty;
4067 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4069 * This is a fast path so only do this check if we have sanity tests
4070 * enabled. Normal people shouldn't be marking dummy buffers as dirty
4071 * outside of the sanity tests.
4073 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
4074 return;
4075 #endif
4076 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4077 btrfs_assert_tree_locked(buf);
4078 if (transid != root->fs_info->generation)
4079 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4080 buf->start, transid, root->fs_info->generation);
4081 was_dirty = set_extent_buffer_dirty(buf);
4082 if (!was_dirty)
4083 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
4084 buf->len,
4085 root->fs_info->dirty_metadata_batch);
4086 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4087 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
4088 btrfs_print_leaf(root, buf);
4089 ASSERT(0);
4091 #endif
4094 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
4095 int flush_delayed)
4098 * looks as though older kernels can get into trouble with
4099 * this code, they end up stuck in balance_dirty_pages forever
4101 int ret;
4103 if (current->flags & PF_MEMALLOC)
4104 return;
4106 if (flush_delayed)
4107 btrfs_balance_delayed_items(root);
4109 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
4110 BTRFS_DIRTY_METADATA_THRESH);
4111 if (ret > 0) {
4112 balance_dirty_pages_ratelimited(
4113 root->fs_info->btree_inode->i_mapping);
4117 void btrfs_btree_balance_dirty(struct btrfs_root *root)
4119 __btrfs_btree_balance_dirty(root, 1);
4122 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
4124 __btrfs_btree_balance_dirty(root, 0);
4127 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
4129 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4130 return btree_read_extent_buffer_pages(root, buf, parent_transid);
4133 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
4134 int read_only)
4136 struct btrfs_super_block *sb = fs_info->super_copy;
4137 u64 nodesize = btrfs_super_nodesize(sb);
4138 u64 sectorsize = btrfs_super_sectorsize(sb);
4139 int ret = 0;
4141 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
4142 btrfs_err(fs_info, "no valid FS found");
4143 ret = -EINVAL;
4145 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
4146 btrfs_warn(fs_info, "unrecognized super flag: %llu",
4147 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
4148 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
4149 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
4150 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
4151 ret = -EINVAL;
4153 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4154 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
4155 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
4156 ret = -EINVAL;
4158 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4159 btrfs_err(fs_info, "log_root level too big: %d >= %d",
4160 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
4161 ret = -EINVAL;
4165 * Check sectorsize and nodesize first, other check will need it.
4166 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
4168 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
4169 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4170 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
4171 ret = -EINVAL;
4173 /* Only PAGE SIZE is supported yet */
4174 if (sectorsize != PAGE_SIZE) {
4175 btrfs_err(fs_info,
4176 "sectorsize %llu not supported yet, only support %lu",
4177 sectorsize, PAGE_SIZE);
4178 ret = -EINVAL;
4180 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
4181 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4182 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
4183 ret = -EINVAL;
4185 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
4186 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
4187 le32_to_cpu(sb->__unused_leafsize), nodesize);
4188 ret = -EINVAL;
4191 /* Root alignment check */
4192 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
4193 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
4194 btrfs_super_root(sb));
4195 ret = -EINVAL;
4197 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
4198 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
4199 btrfs_super_chunk_root(sb));
4200 ret = -EINVAL;
4202 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
4203 btrfs_warn(fs_info, "log_root block unaligned: %llu",
4204 btrfs_super_log_root(sb));
4205 ret = -EINVAL;
4208 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4209 btrfs_err(fs_info,
4210 "dev_item UUID does not match fsid: %pU != %pU",
4211 fs_info->fsid, sb->dev_item.fsid);
4212 ret = -EINVAL;
4216 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4217 * done later
4219 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
4220 btrfs_err(fs_info, "bytes_used is too small %llu",
4221 btrfs_super_bytes_used(sb));
4222 ret = -EINVAL;
4224 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
4225 btrfs_err(fs_info, "invalid stripesize %u",
4226 btrfs_super_stripesize(sb));
4227 ret = -EINVAL;
4229 if (btrfs_super_num_devices(sb) > (1UL << 31))
4230 btrfs_warn(fs_info, "suspicious number of devices: %llu",
4231 btrfs_super_num_devices(sb));
4232 if (btrfs_super_num_devices(sb) == 0) {
4233 btrfs_err(fs_info, "number of devices is 0");
4234 ret = -EINVAL;
4237 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4238 btrfs_err(fs_info, "super offset mismatch %llu != %u",
4239 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4240 ret = -EINVAL;
4244 * Obvious sys_chunk_array corruptions, it must hold at least one key
4245 * and one chunk
4247 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4248 btrfs_err(fs_info, "system chunk array too big %u > %u",
4249 btrfs_super_sys_array_size(sb),
4250 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4251 ret = -EINVAL;
4253 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4254 + sizeof(struct btrfs_chunk)) {
4255 btrfs_err(fs_info, "system chunk array too small %u < %zu",
4256 btrfs_super_sys_array_size(sb),
4257 sizeof(struct btrfs_disk_key)
4258 + sizeof(struct btrfs_chunk));
4259 ret = -EINVAL;
4263 * The generation is a global counter, we'll trust it more than the others
4264 * but it's still possible that it's the one that's wrong.
4266 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4267 btrfs_warn(fs_info,
4268 "suspicious: generation < chunk_root_generation: %llu < %llu",
4269 btrfs_super_generation(sb),
4270 btrfs_super_chunk_root_generation(sb));
4271 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4272 && btrfs_super_cache_generation(sb) != (u64)-1)
4273 btrfs_warn(fs_info,
4274 "suspicious: generation < cache_generation: %llu < %llu",
4275 btrfs_super_generation(sb),
4276 btrfs_super_cache_generation(sb));
4278 return ret;
4281 static void btrfs_error_commit_super(struct btrfs_root *root)
4283 mutex_lock(&root->fs_info->cleaner_mutex);
4284 btrfs_run_delayed_iputs(root);
4285 mutex_unlock(&root->fs_info->cleaner_mutex);
4287 down_write(&root->fs_info->cleanup_work_sem);
4288 up_write(&root->fs_info->cleanup_work_sem);
4290 /* cleanup FS via transaction */
4291 btrfs_cleanup_transaction(root);
4294 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4296 struct btrfs_ordered_extent *ordered;
4298 spin_lock(&root->ordered_extent_lock);
4300 * This will just short circuit the ordered completion stuff which will
4301 * make sure the ordered extent gets properly cleaned up.
4303 list_for_each_entry(ordered, &root->ordered_extents,
4304 root_extent_list)
4305 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4306 spin_unlock(&root->ordered_extent_lock);
4309 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4311 struct btrfs_root *root;
4312 struct list_head splice;
4314 INIT_LIST_HEAD(&splice);
4316 spin_lock(&fs_info->ordered_root_lock);
4317 list_splice_init(&fs_info->ordered_roots, &splice);
4318 while (!list_empty(&splice)) {
4319 root = list_first_entry(&splice, struct btrfs_root,
4320 ordered_root);
4321 list_move_tail(&root->ordered_root,
4322 &fs_info->ordered_roots);
4324 spin_unlock(&fs_info->ordered_root_lock);
4325 btrfs_destroy_ordered_extents(root);
4327 cond_resched();
4328 spin_lock(&fs_info->ordered_root_lock);
4330 spin_unlock(&fs_info->ordered_root_lock);
4333 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4334 struct btrfs_root *root)
4336 struct rb_node *node;
4337 struct btrfs_delayed_ref_root *delayed_refs;
4338 struct btrfs_delayed_ref_node *ref;
4339 int ret = 0;
4341 delayed_refs = &trans->delayed_refs;
4343 spin_lock(&delayed_refs->lock);
4344 if (atomic_read(&delayed_refs->num_entries) == 0) {
4345 spin_unlock(&delayed_refs->lock);
4346 btrfs_info(root->fs_info, "delayed_refs has NO entry");
4347 return ret;
4350 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4351 struct btrfs_delayed_ref_head *head;
4352 struct btrfs_delayed_ref_node *tmp;
4353 bool pin_bytes = false;
4355 head = rb_entry(node, struct btrfs_delayed_ref_head,
4356 href_node);
4357 if (!mutex_trylock(&head->mutex)) {
4358 atomic_inc(&head->node.refs);
4359 spin_unlock(&delayed_refs->lock);
4361 mutex_lock(&head->mutex);
4362 mutex_unlock(&head->mutex);
4363 btrfs_put_delayed_ref(&head->node);
4364 spin_lock(&delayed_refs->lock);
4365 continue;
4367 spin_lock(&head->lock);
4368 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4369 list) {
4370 ref->in_tree = 0;
4371 list_del(&ref->list);
4372 atomic_dec(&delayed_refs->num_entries);
4373 btrfs_put_delayed_ref(ref);
4375 if (head->must_insert_reserved)
4376 pin_bytes = true;
4377 btrfs_free_delayed_extent_op(head->extent_op);
4378 delayed_refs->num_heads--;
4379 if (head->processing == 0)
4380 delayed_refs->num_heads_ready--;
4381 atomic_dec(&delayed_refs->num_entries);
4382 head->node.in_tree = 0;
4383 rb_erase(&head->href_node, &delayed_refs->href_root);
4384 spin_unlock(&head->lock);
4385 spin_unlock(&delayed_refs->lock);
4386 mutex_unlock(&head->mutex);
4388 if (pin_bytes)
4389 btrfs_pin_extent(root, head->node.bytenr,
4390 head->node.num_bytes, 1);
4391 btrfs_put_delayed_ref(&head->node);
4392 cond_resched();
4393 spin_lock(&delayed_refs->lock);
4396 spin_unlock(&delayed_refs->lock);
4398 return ret;
4401 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4403 struct btrfs_inode *btrfs_inode;
4404 struct list_head splice;
4406 INIT_LIST_HEAD(&splice);
4408 spin_lock(&root->delalloc_lock);
4409 list_splice_init(&root->delalloc_inodes, &splice);
4411 while (!list_empty(&splice)) {
4412 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4413 delalloc_inodes);
4415 list_del_init(&btrfs_inode->delalloc_inodes);
4416 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4417 &btrfs_inode->runtime_flags);
4418 spin_unlock(&root->delalloc_lock);
4420 btrfs_invalidate_inodes(btrfs_inode->root);
4422 spin_lock(&root->delalloc_lock);
4425 spin_unlock(&root->delalloc_lock);
4428 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4430 struct btrfs_root *root;
4431 struct list_head splice;
4433 INIT_LIST_HEAD(&splice);
4435 spin_lock(&fs_info->delalloc_root_lock);
4436 list_splice_init(&fs_info->delalloc_roots, &splice);
4437 while (!list_empty(&splice)) {
4438 root = list_first_entry(&splice, struct btrfs_root,
4439 delalloc_root);
4440 list_del_init(&root->delalloc_root);
4441 root = btrfs_grab_fs_root(root);
4442 BUG_ON(!root);
4443 spin_unlock(&fs_info->delalloc_root_lock);
4445 btrfs_destroy_delalloc_inodes(root);
4446 btrfs_put_fs_root(root);
4448 spin_lock(&fs_info->delalloc_root_lock);
4450 spin_unlock(&fs_info->delalloc_root_lock);
4453 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4454 struct extent_io_tree *dirty_pages,
4455 int mark)
4457 int ret;
4458 struct extent_buffer *eb;
4459 u64 start = 0;
4460 u64 end;
4462 while (1) {
4463 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4464 mark, NULL);
4465 if (ret)
4466 break;
4468 clear_extent_bits(dirty_pages, start, end, mark);
4469 while (start <= end) {
4470 eb = btrfs_find_tree_block(root->fs_info, start);
4471 start += root->nodesize;
4472 if (!eb)
4473 continue;
4474 wait_on_extent_buffer_writeback(eb);
4476 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4477 &eb->bflags))
4478 clear_extent_buffer_dirty(eb);
4479 free_extent_buffer_stale(eb);
4483 return ret;
4486 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4487 struct extent_io_tree *pinned_extents)
4489 struct extent_io_tree *unpin;
4490 u64 start;
4491 u64 end;
4492 int ret;
4493 bool loop = true;
4495 unpin = pinned_extents;
4496 again:
4497 while (1) {
4498 ret = find_first_extent_bit(unpin, 0, &start, &end,
4499 EXTENT_DIRTY, NULL);
4500 if (ret)
4501 break;
4503 clear_extent_dirty(unpin, start, end);
4504 btrfs_error_unpin_extent_range(root, start, end);
4505 cond_resched();
4508 if (loop) {
4509 if (unpin == &root->fs_info->freed_extents[0])
4510 unpin = &root->fs_info->freed_extents[1];
4511 else
4512 unpin = &root->fs_info->freed_extents[0];
4513 loop = false;
4514 goto again;
4517 return 0;
4520 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4522 struct inode *inode;
4524 inode = cache->io_ctl.inode;
4525 if (inode) {
4526 invalidate_inode_pages2(inode->i_mapping);
4527 BTRFS_I(inode)->generation = 0;
4528 cache->io_ctl.inode = NULL;
4529 iput(inode);
4531 btrfs_put_block_group(cache);
4534 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4535 struct btrfs_root *root)
4537 struct btrfs_block_group_cache *cache;
4539 spin_lock(&cur_trans->dirty_bgs_lock);
4540 while (!list_empty(&cur_trans->dirty_bgs)) {
4541 cache = list_first_entry(&cur_trans->dirty_bgs,
4542 struct btrfs_block_group_cache,
4543 dirty_list);
4544 if (!cache) {
4545 btrfs_err(root->fs_info,
4546 "orphan block group dirty_bgs list");
4547 spin_unlock(&cur_trans->dirty_bgs_lock);
4548 return;
4551 if (!list_empty(&cache->io_list)) {
4552 spin_unlock(&cur_trans->dirty_bgs_lock);
4553 list_del_init(&cache->io_list);
4554 btrfs_cleanup_bg_io(cache);
4555 spin_lock(&cur_trans->dirty_bgs_lock);
4558 list_del_init(&cache->dirty_list);
4559 spin_lock(&cache->lock);
4560 cache->disk_cache_state = BTRFS_DC_ERROR;
4561 spin_unlock(&cache->lock);
4563 spin_unlock(&cur_trans->dirty_bgs_lock);
4564 btrfs_put_block_group(cache);
4565 spin_lock(&cur_trans->dirty_bgs_lock);
4567 spin_unlock(&cur_trans->dirty_bgs_lock);
4569 while (!list_empty(&cur_trans->io_bgs)) {
4570 cache = list_first_entry(&cur_trans->io_bgs,
4571 struct btrfs_block_group_cache,
4572 io_list);
4573 if (!cache) {
4574 btrfs_err(root->fs_info,
4575 "orphan block group on io_bgs list");
4576 return;
4579 list_del_init(&cache->io_list);
4580 spin_lock(&cache->lock);
4581 cache->disk_cache_state = BTRFS_DC_ERROR;
4582 spin_unlock(&cache->lock);
4583 btrfs_cleanup_bg_io(cache);
4587 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4588 struct btrfs_root *root)
4590 btrfs_cleanup_dirty_bgs(cur_trans, root);
4591 ASSERT(list_empty(&cur_trans->dirty_bgs));
4592 ASSERT(list_empty(&cur_trans->io_bgs));
4594 btrfs_destroy_delayed_refs(cur_trans, root);
4596 cur_trans->state = TRANS_STATE_COMMIT_START;
4597 wake_up(&root->fs_info->transaction_blocked_wait);
4599 cur_trans->state = TRANS_STATE_UNBLOCKED;
4600 wake_up(&root->fs_info->transaction_wait);
4602 btrfs_destroy_delayed_inodes(root);
4603 btrfs_assert_delayed_root_empty(root);
4605 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4606 EXTENT_DIRTY);
4607 btrfs_destroy_pinned_extent(root,
4608 root->fs_info->pinned_extents);
4610 cur_trans->state =TRANS_STATE_COMPLETED;
4611 wake_up(&cur_trans->commit_wait);
4614 memset(cur_trans, 0, sizeof(*cur_trans));
4615 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4619 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4621 struct btrfs_transaction *t;
4623 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4625 spin_lock(&root->fs_info->trans_lock);
4626 while (!list_empty(&root->fs_info->trans_list)) {
4627 t = list_first_entry(&root->fs_info->trans_list,
4628 struct btrfs_transaction, list);
4629 if (t->state >= TRANS_STATE_COMMIT_START) {
4630 atomic_inc(&t->use_count);
4631 spin_unlock(&root->fs_info->trans_lock);
4632 btrfs_wait_for_commit(root, t->transid);
4633 btrfs_put_transaction(t);
4634 spin_lock(&root->fs_info->trans_lock);
4635 continue;
4637 if (t == root->fs_info->running_transaction) {
4638 t->state = TRANS_STATE_COMMIT_DOING;
4639 spin_unlock(&root->fs_info->trans_lock);
4641 * We wait for 0 num_writers since we don't hold a trans
4642 * handle open currently for this transaction.
4644 wait_event(t->writer_wait,
4645 atomic_read(&t->num_writers) == 0);
4646 } else {
4647 spin_unlock(&root->fs_info->trans_lock);
4649 btrfs_cleanup_one_transaction(t, root);
4651 spin_lock(&root->fs_info->trans_lock);
4652 if (t == root->fs_info->running_transaction)
4653 root->fs_info->running_transaction = NULL;
4654 list_del_init(&t->list);
4655 spin_unlock(&root->fs_info->trans_lock);
4657 btrfs_put_transaction(t);
4658 trace_btrfs_transaction_commit(root);
4659 spin_lock(&root->fs_info->trans_lock);
4661 spin_unlock(&root->fs_info->trans_lock);
4662 btrfs_destroy_all_ordered_extents(root->fs_info);
4663 btrfs_destroy_delayed_inodes(root);
4664 btrfs_assert_delayed_root_empty(root);
4665 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4666 btrfs_destroy_all_delalloc_inodes(root->fs_info);
4667 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4669 return 0;
4672 static const struct extent_io_ops btree_extent_io_ops = {
4673 .readpage_end_io_hook = btree_readpage_end_io_hook,
4674 .readpage_io_failed_hook = btree_io_failed_hook,
4675 .submit_bio_hook = btree_submit_bio_hook,
4676 /* note we're sharing with inode.c for the merge bio hook */
4677 .merge_bio_hook = btrfs_merge_bio_hook,