2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/slab.h>
29 #include <linux/migrate.h>
30 #include <linux/ratelimit.h>
31 #include <linux/uuid.h>
32 #include <linux/semaphore.h>
33 #include <asm/unaligned.h>
37 #include "transaction.h"
38 #include "btrfs_inode.h"
40 #include "print-tree.h"
43 #include "free-space-cache.h"
44 #include "free-space-tree.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
52 #include "compression.h"
55 #include <asm/cpufeature.h>
58 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
59 BTRFS_HEADER_FLAG_RELOC |\
60 BTRFS_SUPER_FLAG_ERROR |\
61 BTRFS_SUPER_FLAG_SEEDING |\
62 BTRFS_SUPER_FLAG_METADUMP)
64 static const struct extent_io_ops btree_extent_io_ops
;
65 static void end_workqueue_fn(struct btrfs_work
*work
);
66 static void free_fs_root(struct btrfs_root
*root
);
67 static int btrfs_check_super_valid(struct btrfs_fs_info
*fs_info
,
69 static void btrfs_destroy_ordered_extents(struct btrfs_root
*root
);
70 static int btrfs_destroy_delayed_refs(struct btrfs_transaction
*trans
,
71 struct btrfs_root
*root
);
72 static void btrfs_destroy_delalloc_inodes(struct btrfs_root
*root
);
73 static int btrfs_destroy_marked_extents(struct btrfs_root
*root
,
74 struct extent_io_tree
*dirty_pages
,
76 static int btrfs_destroy_pinned_extent(struct btrfs_root
*root
,
77 struct extent_io_tree
*pinned_extents
);
78 static int btrfs_cleanup_transaction(struct btrfs_root
*root
);
79 static void btrfs_error_commit_super(struct btrfs_root
*root
);
82 * btrfs_end_io_wq structs are used to do processing in task context when an IO
83 * is complete. This is used during reads to verify checksums, and it is used
84 * by writes to insert metadata for new file extents after IO is complete.
86 struct btrfs_end_io_wq
{
90 struct btrfs_fs_info
*info
;
92 enum btrfs_wq_endio_type metadata
;
93 struct list_head list
;
94 struct btrfs_work work
;
97 static struct kmem_cache
*btrfs_end_io_wq_cache
;
99 int __init
btrfs_end_io_wq_init(void)
101 btrfs_end_io_wq_cache
= kmem_cache_create("btrfs_end_io_wq",
102 sizeof(struct btrfs_end_io_wq
),
106 if (!btrfs_end_io_wq_cache
)
111 void btrfs_end_io_wq_exit(void)
113 kmem_cache_destroy(btrfs_end_io_wq_cache
);
117 * async submit bios are used to offload expensive checksumming
118 * onto the worker threads. They checksum file and metadata bios
119 * just before they are sent down the IO stack.
121 struct async_submit_bio
{
124 struct list_head list
;
125 extent_submit_bio_hook_t
*submit_bio_start
;
126 extent_submit_bio_hook_t
*submit_bio_done
;
128 unsigned long bio_flags
;
130 * bio_offset is optional, can be used if the pages in the bio
131 * can't tell us where in the file the bio should go
134 struct btrfs_work work
;
139 * Lockdep class keys for extent_buffer->lock's in this root. For a given
140 * eb, the lockdep key is determined by the btrfs_root it belongs to and
141 * the level the eb occupies in the tree.
143 * Different roots are used for different purposes and may nest inside each
144 * other and they require separate keysets. As lockdep keys should be
145 * static, assign keysets according to the purpose of the root as indicated
146 * by btrfs_root->objectid. This ensures that all special purpose roots
147 * have separate keysets.
149 * Lock-nesting across peer nodes is always done with the immediate parent
150 * node locked thus preventing deadlock. As lockdep doesn't know this, use
151 * subclass to avoid triggering lockdep warning in such cases.
153 * The key is set by the readpage_end_io_hook after the buffer has passed
154 * csum validation but before the pages are unlocked. It is also set by
155 * btrfs_init_new_buffer on freshly allocated blocks.
157 * We also add a check to make sure the highest level of the tree is the
158 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
159 * needs update as well.
161 #ifdef CONFIG_DEBUG_LOCK_ALLOC
162 # if BTRFS_MAX_LEVEL != 8
166 static struct btrfs_lockdep_keyset
{
167 u64 id
; /* root objectid */
168 const char *name_stem
; /* lock name stem */
169 char names
[BTRFS_MAX_LEVEL
+ 1][20];
170 struct lock_class_key keys
[BTRFS_MAX_LEVEL
+ 1];
171 } btrfs_lockdep_keysets
[] = {
172 { .id
= BTRFS_ROOT_TREE_OBJECTID
, .name_stem
= "root" },
173 { .id
= BTRFS_EXTENT_TREE_OBJECTID
, .name_stem
= "extent" },
174 { .id
= BTRFS_CHUNK_TREE_OBJECTID
, .name_stem
= "chunk" },
175 { .id
= BTRFS_DEV_TREE_OBJECTID
, .name_stem
= "dev" },
176 { .id
= BTRFS_FS_TREE_OBJECTID
, .name_stem
= "fs" },
177 { .id
= BTRFS_CSUM_TREE_OBJECTID
, .name_stem
= "csum" },
178 { .id
= BTRFS_QUOTA_TREE_OBJECTID
, .name_stem
= "quota" },
179 { .id
= BTRFS_TREE_LOG_OBJECTID
, .name_stem
= "log" },
180 { .id
= BTRFS_TREE_RELOC_OBJECTID
, .name_stem
= "treloc" },
181 { .id
= BTRFS_DATA_RELOC_TREE_OBJECTID
, .name_stem
= "dreloc" },
182 { .id
= BTRFS_UUID_TREE_OBJECTID
, .name_stem
= "uuid" },
183 { .id
= BTRFS_FREE_SPACE_TREE_OBJECTID
, .name_stem
= "free-space" },
184 { .id
= 0, .name_stem
= "tree" },
187 void __init
btrfs_init_lockdep(void)
191 /* initialize lockdep class names */
192 for (i
= 0; i
< ARRAY_SIZE(btrfs_lockdep_keysets
); i
++) {
193 struct btrfs_lockdep_keyset
*ks
= &btrfs_lockdep_keysets
[i
];
195 for (j
= 0; j
< ARRAY_SIZE(ks
->names
); j
++)
196 snprintf(ks
->names
[j
], sizeof(ks
->names
[j
]),
197 "btrfs-%s-%02d", ks
->name_stem
, j
);
201 void btrfs_set_buffer_lockdep_class(u64 objectid
, struct extent_buffer
*eb
,
204 struct btrfs_lockdep_keyset
*ks
;
206 BUG_ON(level
>= ARRAY_SIZE(ks
->keys
));
208 /* find the matching keyset, id 0 is the default entry */
209 for (ks
= btrfs_lockdep_keysets
; ks
->id
; ks
++)
210 if (ks
->id
== objectid
)
213 lockdep_set_class_and_name(&eb
->lock
,
214 &ks
->keys
[level
], ks
->names
[level
]);
220 * extents on the btree inode are pretty simple, there's one extent
221 * that covers the entire device
223 static struct extent_map
*btree_get_extent(struct inode
*inode
,
224 struct page
*page
, size_t pg_offset
, u64 start
, u64 len
,
227 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
228 struct extent_map
*em
;
231 read_lock(&em_tree
->lock
);
232 em
= lookup_extent_mapping(em_tree
, start
, len
);
235 BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
236 read_unlock(&em_tree
->lock
);
239 read_unlock(&em_tree
->lock
);
241 em
= alloc_extent_map();
243 em
= ERR_PTR(-ENOMEM
);
248 em
->block_len
= (u64
)-1;
250 em
->bdev
= BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
252 write_lock(&em_tree
->lock
);
253 ret
= add_extent_mapping(em_tree
, em
, 0);
254 if (ret
== -EEXIST
) {
256 em
= lookup_extent_mapping(em_tree
, start
, len
);
263 write_unlock(&em_tree
->lock
);
269 u32
btrfs_csum_data(char *data
, u32 seed
, size_t len
)
271 return btrfs_crc32c(seed
, data
, len
);
274 void btrfs_csum_final(u32 crc
, char *result
)
276 put_unaligned_le32(~crc
, result
);
280 * compute the csum for a btree block, and either verify it or write it
281 * into the csum field of the block.
283 static int csum_tree_block(struct btrfs_fs_info
*fs_info
,
284 struct extent_buffer
*buf
,
287 u16 csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
290 unsigned long cur_len
;
291 unsigned long offset
= BTRFS_CSUM_SIZE
;
293 unsigned long map_start
;
294 unsigned long map_len
;
297 unsigned long inline_result
;
299 len
= buf
->len
- offset
;
301 err
= map_private_extent_buffer(buf
, offset
, 32,
302 &kaddr
, &map_start
, &map_len
);
305 cur_len
= min(len
, map_len
- (offset
- map_start
));
306 crc
= btrfs_csum_data(kaddr
+ offset
- map_start
,
311 if (csum_size
> sizeof(inline_result
)) {
312 result
= kzalloc(csum_size
, GFP_NOFS
);
316 result
= (char *)&inline_result
;
319 btrfs_csum_final(crc
, result
);
322 if (memcmp_extent_buffer(buf
, result
, 0, csum_size
)) {
325 memcpy(&found
, result
, csum_size
);
327 read_extent_buffer(buf
, &val
, 0, csum_size
);
328 btrfs_warn_rl(fs_info
,
329 "%s checksum verify failed on %llu wanted %X found %X level %d",
330 fs_info
->sb
->s_id
, buf
->start
,
331 val
, found
, btrfs_header_level(buf
));
332 if (result
!= (char *)&inline_result
)
337 write_extent_buffer(buf
, result
, 0, csum_size
);
339 if (result
!= (char *)&inline_result
)
345 * we can't consider a given block up to date unless the transid of the
346 * block matches the transid in the parent node's pointer. This is how we
347 * detect blocks that either didn't get written at all or got written
348 * in the wrong place.
350 static int verify_parent_transid(struct extent_io_tree
*io_tree
,
351 struct extent_buffer
*eb
, u64 parent_transid
,
354 struct extent_state
*cached_state
= NULL
;
356 bool need_lock
= (current
->journal_info
== BTRFS_SEND_TRANS_STUB
);
358 if (!parent_transid
|| btrfs_header_generation(eb
) == parent_transid
)
365 btrfs_tree_read_lock(eb
);
366 btrfs_set_lock_blocking_rw(eb
, BTRFS_READ_LOCK
);
369 lock_extent_bits(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
371 if (extent_buffer_uptodate(eb
) &&
372 btrfs_header_generation(eb
) == parent_transid
) {
376 btrfs_err_rl(eb
->fs_info
,
377 "parent transid verify failed on %llu wanted %llu found %llu",
379 parent_transid
, btrfs_header_generation(eb
));
383 * Things reading via commit roots that don't have normal protection,
384 * like send, can have a really old block in cache that may point at a
385 * block that has been freed and re-allocated. So don't clear uptodate
386 * if we find an eb that is under IO (dirty/writeback) because we could
387 * end up reading in the stale data and then writing it back out and
388 * making everybody very sad.
390 if (!extent_buffer_under_io(eb
))
391 clear_extent_buffer_uptodate(eb
);
393 unlock_extent_cached(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
394 &cached_state
, GFP_NOFS
);
396 btrfs_tree_read_unlock_blocking(eb
);
401 * Return 0 if the superblock checksum type matches the checksum value of that
402 * algorithm. Pass the raw disk superblock data.
404 static int btrfs_check_super_csum(struct btrfs_fs_info
*fs_info
,
407 struct btrfs_super_block
*disk_sb
=
408 (struct btrfs_super_block
*)raw_disk_sb
;
409 u16 csum_type
= btrfs_super_csum_type(disk_sb
);
412 if (csum_type
== BTRFS_CSUM_TYPE_CRC32
) {
414 const int csum_size
= sizeof(crc
);
415 char result
[csum_size
];
418 * The super_block structure does not span the whole
419 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
420 * is filled with zeros and is included in the checksum.
422 crc
= btrfs_csum_data(raw_disk_sb
+ BTRFS_CSUM_SIZE
,
423 crc
, BTRFS_SUPER_INFO_SIZE
- BTRFS_CSUM_SIZE
);
424 btrfs_csum_final(crc
, result
);
426 if (memcmp(raw_disk_sb
, result
, csum_size
))
430 if (csum_type
>= ARRAY_SIZE(btrfs_csum_sizes
)) {
431 btrfs_err(fs_info
, "unsupported checksum algorithm %u",
440 * helper to read a given tree block, doing retries as required when
441 * the checksums don't match and we have alternate mirrors to try.
443 static int btree_read_extent_buffer_pages(struct btrfs_root
*root
,
444 struct extent_buffer
*eb
,
447 struct extent_io_tree
*io_tree
;
452 int failed_mirror
= 0;
454 clear_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
);
455 io_tree
= &BTRFS_I(root
->fs_info
->btree_inode
)->io_tree
;
457 ret
= read_extent_buffer_pages(io_tree
, eb
, WAIT_COMPLETE
,
458 btree_get_extent
, mirror_num
);
460 if (!verify_parent_transid(io_tree
, eb
,
468 * This buffer's crc is fine, but its contents are corrupted, so
469 * there is no reason to read the other copies, they won't be
472 if (test_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
))
475 num_copies
= btrfs_num_copies(root
->fs_info
,
480 if (!failed_mirror
) {
482 failed_mirror
= eb
->read_mirror
;
486 if (mirror_num
== failed_mirror
)
489 if (mirror_num
> num_copies
)
493 if (failed
&& !ret
&& failed_mirror
)
494 repair_eb_io_failure(root
, eb
, failed_mirror
);
500 * checksum a dirty tree block before IO. This has extra checks to make sure
501 * we only fill in the checksum field in the first page of a multi-page block
504 static int csum_dirty_buffer(struct btrfs_fs_info
*fs_info
, struct page
*page
)
506 u64 start
= page_offset(page
);
508 struct extent_buffer
*eb
;
510 eb
= (struct extent_buffer
*)page
->private;
511 if (page
!= eb
->pages
[0])
514 found_start
= btrfs_header_bytenr(eb
);
516 * Please do not consolidate these warnings into a single if.
517 * It is useful to know what went wrong.
519 if (WARN_ON(found_start
!= start
))
521 if (WARN_ON(!PageUptodate(page
)))
524 ASSERT(memcmp_extent_buffer(eb
, fs_info
->fsid
,
525 btrfs_header_fsid(), BTRFS_FSID_SIZE
) == 0);
527 return csum_tree_block(fs_info
, eb
, 0);
530 static int check_tree_block_fsid(struct btrfs_fs_info
*fs_info
,
531 struct extent_buffer
*eb
)
533 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
534 u8 fsid
[BTRFS_UUID_SIZE
];
537 read_extent_buffer(eb
, fsid
, btrfs_header_fsid(), BTRFS_FSID_SIZE
);
539 if (!memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
)) {
543 fs_devices
= fs_devices
->seed
;
548 #define CORRUPT(reason, eb, root, slot) \
549 btrfs_crit(root->fs_info, "corrupt %s, %s: block=%llu," \
550 " root=%llu, slot=%d", \
551 btrfs_header_level(eb) == 0 ? "leaf" : "node",\
552 reason, btrfs_header_bytenr(eb), root->objectid, slot)
554 static noinline
int check_leaf(struct btrfs_root
*root
,
555 struct extent_buffer
*leaf
)
557 struct btrfs_key key
;
558 struct btrfs_key leaf_key
;
559 u32 nritems
= btrfs_header_nritems(leaf
);
563 * Extent buffers from a relocation tree have a owner field that
564 * corresponds to the subvolume tree they are based on. So just from an
565 * extent buffer alone we can not find out what is the id of the
566 * corresponding subvolume tree, so we can not figure out if the extent
567 * buffer corresponds to the root of the relocation tree or not. So skip
568 * this check for relocation trees.
570 if (nritems
== 0 && !btrfs_header_flag(leaf
, BTRFS_HEADER_FLAG_RELOC
)) {
571 struct btrfs_root
*check_root
;
573 key
.objectid
= btrfs_header_owner(leaf
);
574 key
.type
= BTRFS_ROOT_ITEM_KEY
;
575 key
.offset
= (u64
)-1;
577 check_root
= btrfs_get_fs_root(root
->fs_info
, &key
, false);
579 * The only reason we also check NULL here is that during
580 * open_ctree() some roots has not yet been set up.
582 if (!IS_ERR_OR_NULL(check_root
)) {
583 struct extent_buffer
*eb
;
585 eb
= btrfs_root_node(check_root
);
586 /* if leaf is the root, then it's fine */
588 CORRUPT("non-root leaf's nritems is 0",
589 leaf
, check_root
, 0);
590 free_extent_buffer(eb
);
593 free_extent_buffer(eb
);
601 /* Check the 0 item */
602 if (btrfs_item_offset_nr(leaf
, 0) + btrfs_item_size_nr(leaf
, 0) !=
603 BTRFS_LEAF_DATA_SIZE(root
)) {
604 CORRUPT("invalid item offset size pair", leaf
, root
, 0);
609 * Check to make sure each items keys are in the correct order and their
610 * offsets make sense. We only have to loop through nritems-1 because
611 * we check the current slot against the next slot, which verifies the
612 * next slot's offset+size makes sense and that the current's slot
615 for (slot
= 0; slot
< nritems
- 1; slot
++) {
616 btrfs_item_key_to_cpu(leaf
, &leaf_key
, slot
);
617 btrfs_item_key_to_cpu(leaf
, &key
, slot
+ 1);
619 /* Make sure the keys are in the right order */
620 if (btrfs_comp_cpu_keys(&leaf_key
, &key
) >= 0) {
621 CORRUPT("bad key order", leaf
, root
, slot
);
626 * Make sure the offset and ends are right, remember that the
627 * item data starts at the end of the leaf and grows towards the
630 if (btrfs_item_offset_nr(leaf
, slot
) !=
631 btrfs_item_end_nr(leaf
, slot
+ 1)) {
632 CORRUPT("slot offset bad", leaf
, root
, slot
);
637 * Check to make sure that we don't point outside of the leaf,
638 * just in case all the items are consistent to each other, but
639 * all point outside of the leaf.
641 if (btrfs_item_end_nr(leaf
, slot
) >
642 BTRFS_LEAF_DATA_SIZE(root
)) {
643 CORRUPT("slot end outside of leaf", leaf
, root
, slot
);
651 static int check_node(struct btrfs_root
*root
, struct extent_buffer
*node
)
653 unsigned long nr
= btrfs_header_nritems(node
);
654 struct btrfs_key key
, next_key
;
659 if (nr
== 0 || nr
> BTRFS_NODEPTRS_PER_BLOCK(root
)) {
660 btrfs_crit(root
->fs_info
,
661 "corrupt node: block %llu root %llu nritems %lu",
662 node
->start
, root
->objectid
, nr
);
666 for (slot
= 0; slot
< nr
- 1; slot
++) {
667 bytenr
= btrfs_node_blockptr(node
, slot
);
668 btrfs_node_key_to_cpu(node
, &key
, slot
);
669 btrfs_node_key_to_cpu(node
, &next_key
, slot
+ 1);
672 CORRUPT("invalid item slot", node
, root
, slot
);
677 if (btrfs_comp_cpu_keys(&key
, &next_key
) >= 0) {
678 CORRUPT("bad key order", node
, root
, slot
);
687 static int btree_readpage_end_io_hook(struct btrfs_io_bio
*io_bio
,
688 u64 phy_offset
, struct page
*page
,
689 u64 start
, u64 end
, int mirror
)
693 struct extent_buffer
*eb
;
694 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
695 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
702 eb
= (struct extent_buffer
*)page
->private;
704 /* the pending IO might have been the only thing that kept this buffer
705 * in memory. Make sure we have a ref for all this other checks
707 extent_buffer_get(eb
);
709 reads_done
= atomic_dec_and_test(&eb
->io_pages
);
713 eb
->read_mirror
= mirror
;
714 if (test_bit(EXTENT_BUFFER_READ_ERR
, &eb
->bflags
)) {
719 found_start
= btrfs_header_bytenr(eb
);
720 if (found_start
!= eb
->start
) {
721 btrfs_err_rl(fs_info
, "bad tree block start %llu %llu",
722 found_start
, eb
->start
);
726 if (check_tree_block_fsid(fs_info
, eb
)) {
727 btrfs_err_rl(fs_info
, "bad fsid on block %llu",
732 found_level
= btrfs_header_level(eb
);
733 if (found_level
>= BTRFS_MAX_LEVEL
) {
734 btrfs_err(fs_info
, "bad tree block level %d",
735 (int)btrfs_header_level(eb
));
740 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb
),
743 ret
= csum_tree_block(fs_info
, eb
, 1);
748 * If this is a leaf block and it is corrupt, set the corrupt bit so
749 * that we don't try and read the other copies of this block, just
752 if (found_level
== 0 && check_leaf(root
, eb
)) {
753 set_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
);
757 if (found_level
> 0 && check_node(root
, eb
))
761 set_extent_buffer_uptodate(eb
);
764 test_and_clear_bit(EXTENT_BUFFER_READAHEAD
, &eb
->bflags
))
765 btree_readahead_hook(fs_info
, eb
, eb
->start
, ret
);
769 * our io error hook is going to dec the io pages
770 * again, we have to make sure it has something
773 atomic_inc(&eb
->io_pages
);
774 clear_extent_buffer_uptodate(eb
);
776 free_extent_buffer(eb
);
781 static int btree_io_failed_hook(struct page
*page
, int failed_mirror
)
783 struct extent_buffer
*eb
;
785 eb
= (struct extent_buffer
*)page
->private;
786 set_bit(EXTENT_BUFFER_READ_ERR
, &eb
->bflags
);
787 eb
->read_mirror
= failed_mirror
;
788 atomic_dec(&eb
->io_pages
);
789 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD
, &eb
->bflags
))
790 btree_readahead_hook(eb
->fs_info
, eb
, eb
->start
, -EIO
);
791 return -EIO
; /* we fixed nothing */
794 static void end_workqueue_bio(struct bio
*bio
)
796 struct btrfs_end_io_wq
*end_io_wq
= bio
->bi_private
;
797 struct btrfs_fs_info
*fs_info
;
798 struct btrfs_workqueue
*wq
;
799 btrfs_work_func_t func
;
801 fs_info
= end_io_wq
->info
;
802 end_io_wq
->error
= bio
->bi_error
;
804 if (bio_op(bio
) == REQ_OP_WRITE
) {
805 if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_METADATA
) {
806 wq
= fs_info
->endio_meta_write_workers
;
807 func
= btrfs_endio_meta_write_helper
;
808 } else if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_FREE_SPACE
) {
809 wq
= fs_info
->endio_freespace_worker
;
810 func
= btrfs_freespace_write_helper
;
811 } else if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_RAID56
) {
812 wq
= fs_info
->endio_raid56_workers
;
813 func
= btrfs_endio_raid56_helper
;
815 wq
= fs_info
->endio_write_workers
;
816 func
= btrfs_endio_write_helper
;
819 if (unlikely(end_io_wq
->metadata
==
820 BTRFS_WQ_ENDIO_DIO_REPAIR
)) {
821 wq
= fs_info
->endio_repair_workers
;
822 func
= btrfs_endio_repair_helper
;
823 } else if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_RAID56
) {
824 wq
= fs_info
->endio_raid56_workers
;
825 func
= btrfs_endio_raid56_helper
;
826 } else if (end_io_wq
->metadata
) {
827 wq
= fs_info
->endio_meta_workers
;
828 func
= btrfs_endio_meta_helper
;
830 wq
= fs_info
->endio_workers
;
831 func
= btrfs_endio_helper
;
835 btrfs_init_work(&end_io_wq
->work
, func
, end_workqueue_fn
, NULL
, NULL
);
836 btrfs_queue_work(wq
, &end_io_wq
->work
);
839 int btrfs_bio_wq_end_io(struct btrfs_fs_info
*info
, struct bio
*bio
,
840 enum btrfs_wq_endio_type metadata
)
842 struct btrfs_end_io_wq
*end_io_wq
;
844 end_io_wq
= kmem_cache_alloc(btrfs_end_io_wq_cache
, GFP_NOFS
);
848 end_io_wq
->private = bio
->bi_private
;
849 end_io_wq
->end_io
= bio
->bi_end_io
;
850 end_io_wq
->info
= info
;
851 end_io_wq
->error
= 0;
852 end_io_wq
->bio
= bio
;
853 end_io_wq
->metadata
= metadata
;
855 bio
->bi_private
= end_io_wq
;
856 bio
->bi_end_io
= end_workqueue_bio
;
860 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info
*info
)
862 unsigned long limit
= min_t(unsigned long,
863 info
->thread_pool_size
,
864 info
->fs_devices
->open_devices
);
868 static void run_one_async_start(struct btrfs_work
*work
)
870 struct async_submit_bio
*async
;
873 async
= container_of(work
, struct async_submit_bio
, work
);
874 ret
= async
->submit_bio_start(async
->inode
, async
->bio
,
875 async
->mirror_num
, async
->bio_flags
,
881 static void run_one_async_done(struct btrfs_work
*work
)
883 struct btrfs_fs_info
*fs_info
;
884 struct async_submit_bio
*async
;
887 async
= container_of(work
, struct async_submit_bio
, work
);
888 fs_info
= BTRFS_I(async
->inode
)->root
->fs_info
;
890 limit
= btrfs_async_submit_limit(fs_info
);
891 limit
= limit
* 2 / 3;
894 * atomic_dec_return implies a barrier for waitqueue_active
896 if (atomic_dec_return(&fs_info
->nr_async_submits
) < limit
&&
897 waitqueue_active(&fs_info
->async_submit_wait
))
898 wake_up(&fs_info
->async_submit_wait
);
900 /* If an error occurred we just want to clean up the bio and move on */
902 async
->bio
->bi_error
= async
->error
;
903 bio_endio(async
->bio
);
907 async
->submit_bio_done(async
->inode
, async
->bio
, async
->mirror_num
,
908 async
->bio_flags
, async
->bio_offset
);
911 static void run_one_async_free(struct btrfs_work
*work
)
913 struct async_submit_bio
*async
;
915 async
= container_of(work
, struct async_submit_bio
, work
);
919 int btrfs_wq_submit_bio(struct btrfs_fs_info
*fs_info
, struct inode
*inode
,
920 struct bio
*bio
, int mirror_num
,
921 unsigned long bio_flags
,
923 extent_submit_bio_hook_t
*submit_bio_start
,
924 extent_submit_bio_hook_t
*submit_bio_done
)
926 struct async_submit_bio
*async
;
928 async
= kmalloc(sizeof(*async
), GFP_NOFS
);
932 async
->inode
= inode
;
934 async
->mirror_num
= mirror_num
;
935 async
->submit_bio_start
= submit_bio_start
;
936 async
->submit_bio_done
= submit_bio_done
;
938 btrfs_init_work(&async
->work
, btrfs_worker_helper
, run_one_async_start
,
939 run_one_async_done
, run_one_async_free
);
941 async
->bio_flags
= bio_flags
;
942 async
->bio_offset
= bio_offset
;
946 atomic_inc(&fs_info
->nr_async_submits
);
948 if (bio
->bi_opf
& REQ_SYNC
)
949 btrfs_set_work_high_priority(&async
->work
);
951 btrfs_queue_work(fs_info
->workers
, &async
->work
);
953 while (atomic_read(&fs_info
->async_submit_draining
) &&
954 atomic_read(&fs_info
->nr_async_submits
)) {
955 wait_event(fs_info
->async_submit_wait
,
956 (atomic_read(&fs_info
->nr_async_submits
) == 0));
962 static int btree_csum_one_bio(struct bio
*bio
)
964 struct bio_vec
*bvec
;
965 struct btrfs_root
*root
;
968 bio_for_each_segment_all(bvec
, bio
, i
) {
969 root
= BTRFS_I(bvec
->bv_page
->mapping
->host
)->root
;
970 ret
= csum_dirty_buffer(root
->fs_info
, bvec
->bv_page
);
978 static int __btree_submit_bio_start(struct inode
*inode
, struct bio
*bio
,
979 int mirror_num
, unsigned long bio_flags
,
983 * when we're called for a write, we're already in the async
984 * submission context. Just jump into btrfs_map_bio
986 return btree_csum_one_bio(bio
);
989 static int __btree_submit_bio_done(struct inode
*inode
, struct bio
*bio
,
990 int mirror_num
, unsigned long bio_flags
,
996 * when we're called for a write, we're already in the async
997 * submission context. Just jump into btrfs_map_bio
999 ret
= btrfs_map_bio(BTRFS_I(inode
)->root
, bio
, mirror_num
, 1);
1001 bio
->bi_error
= ret
;
1007 static int check_async_write(struct inode
*inode
, unsigned long bio_flags
)
1009 if (bio_flags
& EXTENT_BIO_TREE_LOG
)
1012 if (static_cpu_has(X86_FEATURE_XMM4_2
))
1018 static int btree_submit_bio_hook(struct inode
*inode
, struct bio
*bio
,
1019 int mirror_num
, unsigned long bio_flags
,
1022 int async
= check_async_write(inode
, bio_flags
);
1025 if (bio_op(bio
) != REQ_OP_WRITE
) {
1027 * called for a read, do the setup so that checksum validation
1028 * can happen in the async kernel threads
1030 ret
= btrfs_bio_wq_end_io(BTRFS_I(inode
)->root
->fs_info
,
1031 bio
, BTRFS_WQ_ENDIO_METADATA
);
1034 ret
= btrfs_map_bio(BTRFS_I(inode
)->root
, bio
, mirror_num
, 0);
1035 } else if (!async
) {
1036 ret
= btree_csum_one_bio(bio
);
1039 ret
= btrfs_map_bio(BTRFS_I(inode
)->root
, bio
, mirror_num
, 0);
1042 * kthread helpers are used to submit writes so that
1043 * checksumming can happen in parallel across all CPUs
1045 ret
= btrfs_wq_submit_bio(BTRFS_I(inode
)->root
->fs_info
,
1046 inode
, bio
, mirror_num
, 0,
1048 __btree_submit_bio_start
,
1049 __btree_submit_bio_done
);
1057 bio
->bi_error
= ret
;
1062 #ifdef CONFIG_MIGRATION
1063 static int btree_migratepage(struct address_space
*mapping
,
1064 struct page
*newpage
, struct page
*page
,
1065 enum migrate_mode mode
)
1068 * we can't safely write a btree page from here,
1069 * we haven't done the locking hook
1071 if (PageDirty(page
))
1074 * Buffers may be managed in a filesystem specific way.
1075 * We must have no buffers or drop them.
1077 if (page_has_private(page
) &&
1078 !try_to_release_page(page
, GFP_KERNEL
))
1080 return migrate_page(mapping
, newpage
, page
, mode
);
1085 static int btree_writepages(struct address_space
*mapping
,
1086 struct writeback_control
*wbc
)
1088 struct btrfs_fs_info
*fs_info
;
1091 if (wbc
->sync_mode
== WB_SYNC_NONE
) {
1093 if (wbc
->for_kupdate
)
1096 fs_info
= BTRFS_I(mapping
->host
)->root
->fs_info
;
1097 /* this is a bit racy, but that's ok */
1098 ret
= percpu_counter_compare(&fs_info
->dirty_metadata_bytes
,
1099 BTRFS_DIRTY_METADATA_THRESH
);
1103 return btree_write_cache_pages(mapping
, wbc
);
1106 static int btree_readpage(struct file
*file
, struct page
*page
)
1108 struct extent_io_tree
*tree
;
1109 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
1110 return extent_read_full_page(tree
, page
, btree_get_extent
, 0);
1113 static int btree_releasepage(struct page
*page
, gfp_t gfp_flags
)
1115 if (PageWriteback(page
) || PageDirty(page
))
1118 return try_release_extent_buffer(page
);
1121 static void btree_invalidatepage(struct page
*page
, unsigned int offset
,
1122 unsigned int length
)
1124 struct extent_io_tree
*tree
;
1125 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
1126 extent_invalidatepage(tree
, page
, offset
);
1127 btree_releasepage(page
, GFP_NOFS
);
1128 if (PagePrivate(page
)) {
1129 btrfs_warn(BTRFS_I(page
->mapping
->host
)->root
->fs_info
,
1130 "page private not zero on page %llu",
1131 (unsigned long long)page_offset(page
));
1132 ClearPagePrivate(page
);
1133 set_page_private(page
, 0);
1138 static int btree_set_page_dirty(struct page
*page
)
1141 struct extent_buffer
*eb
;
1143 BUG_ON(!PagePrivate(page
));
1144 eb
= (struct extent_buffer
*)page
->private;
1146 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
));
1147 BUG_ON(!atomic_read(&eb
->refs
));
1148 btrfs_assert_tree_locked(eb
);
1150 return __set_page_dirty_nobuffers(page
);
1153 static const struct address_space_operations btree_aops
= {
1154 .readpage
= btree_readpage
,
1155 .writepages
= btree_writepages
,
1156 .releasepage
= btree_releasepage
,
1157 .invalidatepage
= btree_invalidatepage
,
1158 #ifdef CONFIG_MIGRATION
1159 .migratepage
= btree_migratepage
,
1161 .set_page_dirty
= btree_set_page_dirty
,
1164 void readahead_tree_block(struct btrfs_root
*root
, u64 bytenr
)
1166 struct extent_buffer
*buf
= NULL
;
1167 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
1169 buf
= btrfs_find_create_tree_block(root
, bytenr
);
1172 read_extent_buffer_pages(&BTRFS_I(btree_inode
)->io_tree
,
1173 buf
, WAIT_NONE
, btree_get_extent
, 0);
1174 free_extent_buffer(buf
);
1177 int reada_tree_block_flagged(struct btrfs_root
*root
, u64 bytenr
,
1178 int mirror_num
, struct extent_buffer
**eb
)
1180 struct extent_buffer
*buf
= NULL
;
1181 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
1182 struct extent_io_tree
*io_tree
= &BTRFS_I(btree_inode
)->io_tree
;
1185 buf
= btrfs_find_create_tree_block(root
, bytenr
);
1189 set_bit(EXTENT_BUFFER_READAHEAD
, &buf
->bflags
);
1191 ret
= read_extent_buffer_pages(io_tree
, buf
, WAIT_PAGE_LOCK
,
1192 btree_get_extent
, mirror_num
);
1194 free_extent_buffer(buf
);
1198 if (test_bit(EXTENT_BUFFER_CORRUPT
, &buf
->bflags
)) {
1199 free_extent_buffer(buf
);
1201 } else if (extent_buffer_uptodate(buf
)) {
1204 free_extent_buffer(buf
);
1209 struct extent_buffer
*btrfs_find_tree_block(struct btrfs_fs_info
*fs_info
,
1212 return find_extent_buffer(fs_info
, bytenr
);
1215 struct extent_buffer
*btrfs_find_create_tree_block(struct btrfs_root
*root
,
1218 if (btrfs_is_testing(root
->fs_info
))
1219 return alloc_test_extent_buffer(root
->fs_info
, bytenr
,
1221 return alloc_extent_buffer(root
->fs_info
, bytenr
);
1225 int btrfs_write_tree_block(struct extent_buffer
*buf
)
1227 return filemap_fdatawrite_range(buf
->pages
[0]->mapping
, buf
->start
,
1228 buf
->start
+ buf
->len
- 1);
1231 int btrfs_wait_tree_block_writeback(struct extent_buffer
*buf
)
1233 return filemap_fdatawait_range(buf
->pages
[0]->mapping
,
1234 buf
->start
, buf
->start
+ buf
->len
- 1);
1237 struct extent_buffer
*read_tree_block(struct btrfs_root
*root
, u64 bytenr
,
1240 struct extent_buffer
*buf
= NULL
;
1243 buf
= btrfs_find_create_tree_block(root
, bytenr
);
1247 ret
= btree_read_extent_buffer_pages(root
, buf
, parent_transid
);
1249 free_extent_buffer(buf
);
1250 return ERR_PTR(ret
);
1256 void clean_tree_block(struct btrfs_trans_handle
*trans
,
1257 struct btrfs_fs_info
*fs_info
,
1258 struct extent_buffer
*buf
)
1260 if (btrfs_header_generation(buf
) ==
1261 fs_info
->running_transaction
->transid
) {
1262 btrfs_assert_tree_locked(buf
);
1264 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
)) {
1265 __percpu_counter_add(&fs_info
->dirty_metadata_bytes
,
1267 fs_info
->dirty_metadata_batch
);
1268 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1269 btrfs_set_lock_blocking(buf
);
1270 clear_extent_buffer_dirty(buf
);
1275 static struct btrfs_subvolume_writers
*btrfs_alloc_subvolume_writers(void)
1277 struct btrfs_subvolume_writers
*writers
;
1280 writers
= kmalloc(sizeof(*writers
), GFP_NOFS
);
1282 return ERR_PTR(-ENOMEM
);
1284 ret
= percpu_counter_init(&writers
->counter
, 0, GFP_KERNEL
);
1287 return ERR_PTR(ret
);
1290 init_waitqueue_head(&writers
->wait
);
1295 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers
*writers
)
1297 percpu_counter_destroy(&writers
->counter
);
1301 static void __setup_root(u32 nodesize
, u32 sectorsize
, u32 stripesize
,
1302 struct btrfs_root
*root
, struct btrfs_fs_info
*fs_info
,
1305 bool dummy
= test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO
, &fs_info
->fs_state
);
1307 root
->commit_root
= NULL
;
1308 root
->sectorsize
= sectorsize
;
1309 root
->nodesize
= nodesize
;
1310 root
->stripesize
= stripesize
;
1312 root
->orphan_cleanup_state
= 0;
1314 root
->objectid
= objectid
;
1315 root
->last_trans
= 0;
1316 root
->highest_objectid
= 0;
1317 root
->nr_delalloc_inodes
= 0;
1318 root
->nr_ordered_extents
= 0;
1320 root
->inode_tree
= RB_ROOT
;
1321 INIT_RADIX_TREE(&root
->delayed_nodes_tree
, GFP_ATOMIC
);
1322 root
->block_rsv
= NULL
;
1323 root
->orphan_block_rsv
= NULL
;
1325 INIT_LIST_HEAD(&root
->dirty_list
);
1326 INIT_LIST_HEAD(&root
->root_list
);
1327 INIT_LIST_HEAD(&root
->delalloc_inodes
);
1328 INIT_LIST_HEAD(&root
->delalloc_root
);
1329 INIT_LIST_HEAD(&root
->ordered_extents
);
1330 INIT_LIST_HEAD(&root
->ordered_root
);
1331 INIT_LIST_HEAD(&root
->logged_list
[0]);
1332 INIT_LIST_HEAD(&root
->logged_list
[1]);
1333 spin_lock_init(&root
->orphan_lock
);
1334 spin_lock_init(&root
->inode_lock
);
1335 spin_lock_init(&root
->delalloc_lock
);
1336 spin_lock_init(&root
->ordered_extent_lock
);
1337 spin_lock_init(&root
->accounting_lock
);
1338 spin_lock_init(&root
->log_extents_lock
[0]);
1339 spin_lock_init(&root
->log_extents_lock
[1]);
1340 mutex_init(&root
->objectid_mutex
);
1341 mutex_init(&root
->log_mutex
);
1342 mutex_init(&root
->ordered_extent_mutex
);
1343 mutex_init(&root
->delalloc_mutex
);
1344 init_waitqueue_head(&root
->log_writer_wait
);
1345 init_waitqueue_head(&root
->log_commit_wait
[0]);
1346 init_waitqueue_head(&root
->log_commit_wait
[1]);
1347 INIT_LIST_HEAD(&root
->log_ctxs
[0]);
1348 INIT_LIST_HEAD(&root
->log_ctxs
[1]);
1349 atomic_set(&root
->log_commit
[0], 0);
1350 atomic_set(&root
->log_commit
[1], 0);
1351 atomic_set(&root
->log_writers
, 0);
1352 atomic_set(&root
->log_batch
, 0);
1353 atomic_set(&root
->orphan_inodes
, 0);
1354 atomic_set(&root
->refs
, 1);
1355 atomic_set(&root
->will_be_snapshoted
, 0);
1356 atomic_set(&root
->qgroup_meta_rsv
, 0);
1357 root
->log_transid
= 0;
1358 root
->log_transid_committed
= -1;
1359 root
->last_log_commit
= 0;
1361 extent_io_tree_init(&root
->dirty_log_pages
,
1362 fs_info
->btree_inode
->i_mapping
);
1364 memset(&root
->root_key
, 0, sizeof(root
->root_key
));
1365 memset(&root
->root_item
, 0, sizeof(root
->root_item
));
1366 memset(&root
->defrag_progress
, 0, sizeof(root
->defrag_progress
));
1368 root
->defrag_trans_start
= fs_info
->generation
;
1370 root
->defrag_trans_start
= 0;
1371 root
->root_key
.objectid
= objectid
;
1374 spin_lock_init(&root
->root_item_lock
);
1377 static struct btrfs_root
*btrfs_alloc_root(struct btrfs_fs_info
*fs_info
,
1380 struct btrfs_root
*root
= kzalloc(sizeof(*root
), flags
);
1382 root
->fs_info
= fs_info
;
1386 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1387 /* Should only be used by the testing infrastructure */
1388 struct btrfs_root
*btrfs_alloc_dummy_root(struct btrfs_fs_info
*fs_info
,
1389 u32 sectorsize
, u32 nodesize
)
1391 struct btrfs_root
*root
;
1394 return ERR_PTR(-EINVAL
);
1396 root
= btrfs_alloc_root(fs_info
, GFP_KERNEL
);
1398 return ERR_PTR(-ENOMEM
);
1399 /* We don't use the stripesize in selftest, set it as sectorsize */
1400 __setup_root(nodesize
, sectorsize
, sectorsize
, root
, fs_info
,
1401 BTRFS_ROOT_TREE_OBJECTID
);
1402 root
->alloc_bytenr
= 0;
1408 struct btrfs_root
*btrfs_create_tree(struct btrfs_trans_handle
*trans
,
1409 struct btrfs_fs_info
*fs_info
,
1412 struct extent_buffer
*leaf
;
1413 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1414 struct btrfs_root
*root
;
1415 struct btrfs_key key
;
1419 root
= btrfs_alloc_root(fs_info
, GFP_KERNEL
);
1421 return ERR_PTR(-ENOMEM
);
1423 __setup_root(tree_root
->nodesize
, tree_root
->sectorsize
,
1424 tree_root
->stripesize
, root
, fs_info
, objectid
);
1425 root
->root_key
.objectid
= objectid
;
1426 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
1427 root
->root_key
.offset
= 0;
1429 leaf
= btrfs_alloc_tree_block(trans
, root
, 0, objectid
, NULL
, 0, 0, 0);
1431 ret
= PTR_ERR(leaf
);
1436 memset_extent_buffer(leaf
, 0, 0, sizeof(struct btrfs_header
));
1437 btrfs_set_header_bytenr(leaf
, leaf
->start
);
1438 btrfs_set_header_generation(leaf
, trans
->transid
);
1439 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
1440 btrfs_set_header_owner(leaf
, objectid
);
1443 write_extent_buffer(leaf
, fs_info
->fsid
, btrfs_header_fsid(),
1445 write_extent_buffer(leaf
, fs_info
->chunk_tree_uuid
,
1446 btrfs_header_chunk_tree_uuid(leaf
),
1448 btrfs_mark_buffer_dirty(leaf
);
1450 root
->commit_root
= btrfs_root_node(root
);
1451 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
1453 root
->root_item
.flags
= 0;
1454 root
->root_item
.byte_limit
= 0;
1455 btrfs_set_root_bytenr(&root
->root_item
, leaf
->start
);
1456 btrfs_set_root_generation(&root
->root_item
, trans
->transid
);
1457 btrfs_set_root_level(&root
->root_item
, 0);
1458 btrfs_set_root_refs(&root
->root_item
, 1);
1459 btrfs_set_root_used(&root
->root_item
, leaf
->len
);
1460 btrfs_set_root_last_snapshot(&root
->root_item
, 0);
1461 btrfs_set_root_dirid(&root
->root_item
, 0);
1463 memcpy(root
->root_item
.uuid
, uuid
.b
, BTRFS_UUID_SIZE
);
1464 root
->root_item
.drop_level
= 0;
1466 key
.objectid
= objectid
;
1467 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1469 ret
= btrfs_insert_root(trans
, tree_root
, &key
, &root
->root_item
);
1473 btrfs_tree_unlock(leaf
);
1479 btrfs_tree_unlock(leaf
);
1480 free_extent_buffer(root
->commit_root
);
1481 free_extent_buffer(leaf
);
1485 return ERR_PTR(ret
);
1488 static struct btrfs_root
*alloc_log_tree(struct btrfs_trans_handle
*trans
,
1489 struct btrfs_fs_info
*fs_info
)
1491 struct btrfs_root
*root
;
1492 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1493 struct extent_buffer
*leaf
;
1495 root
= btrfs_alloc_root(fs_info
, GFP_NOFS
);
1497 return ERR_PTR(-ENOMEM
);
1499 __setup_root(tree_root
->nodesize
, tree_root
->sectorsize
,
1500 tree_root
->stripesize
, root
, fs_info
,
1501 BTRFS_TREE_LOG_OBJECTID
);
1503 root
->root_key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
1504 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
1505 root
->root_key
.offset
= BTRFS_TREE_LOG_OBJECTID
;
1508 * DON'T set REF_COWS for log trees
1510 * log trees do not get reference counted because they go away
1511 * before a real commit is actually done. They do store pointers
1512 * to file data extents, and those reference counts still get
1513 * updated (along with back refs to the log tree).
1516 leaf
= btrfs_alloc_tree_block(trans
, root
, 0, BTRFS_TREE_LOG_OBJECTID
,
1520 return ERR_CAST(leaf
);
1523 memset_extent_buffer(leaf
, 0, 0, sizeof(struct btrfs_header
));
1524 btrfs_set_header_bytenr(leaf
, leaf
->start
);
1525 btrfs_set_header_generation(leaf
, trans
->transid
);
1526 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
1527 btrfs_set_header_owner(leaf
, BTRFS_TREE_LOG_OBJECTID
);
1530 write_extent_buffer(root
->node
, root
->fs_info
->fsid
,
1531 btrfs_header_fsid(), BTRFS_FSID_SIZE
);
1532 btrfs_mark_buffer_dirty(root
->node
);
1533 btrfs_tree_unlock(root
->node
);
1537 int btrfs_init_log_root_tree(struct btrfs_trans_handle
*trans
,
1538 struct btrfs_fs_info
*fs_info
)
1540 struct btrfs_root
*log_root
;
1542 log_root
= alloc_log_tree(trans
, fs_info
);
1543 if (IS_ERR(log_root
))
1544 return PTR_ERR(log_root
);
1545 WARN_ON(fs_info
->log_root_tree
);
1546 fs_info
->log_root_tree
= log_root
;
1550 int btrfs_add_log_tree(struct btrfs_trans_handle
*trans
,
1551 struct btrfs_root
*root
)
1553 struct btrfs_root
*log_root
;
1554 struct btrfs_inode_item
*inode_item
;
1556 log_root
= alloc_log_tree(trans
, root
->fs_info
);
1557 if (IS_ERR(log_root
))
1558 return PTR_ERR(log_root
);
1560 log_root
->last_trans
= trans
->transid
;
1561 log_root
->root_key
.offset
= root
->root_key
.objectid
;
1563 inode_item
= &log_root
->root_item
.inode
;
1564 btrfs_set_stack_inode_generation(inode_item
, 1);
1565 btrfs_set_stack_inode_size(inode_item
, 3);
1566 btrfs_set_stack_inode_nlink(inode_item
, 1);
1567 btrfs_set_stack_inode_nbytes(inode_item
, root
->nodesize
);
1568 btrfs_set_stack_inode_mode(inode_item
, S_IFDIR
| 0755);
1570 btrfs_set_root_node(&log_root
->root_item
, log_root
->node
);
1572 WARN_ON(root
->log_root
);
1573 root
->log_root
= log_root
;
1574 root
->log_transid
= 0;
1575 root
->log_transid_committed
= -1;
1576 root
->last_log_commit
= 0;
1580 static struct btrfs_root
*btrfs_read_tree_root(struct btrfs_root
*tree_root
,
1581 struct btrfs_key
*key
)
1583 struct btrfs_root
*root
;
1584 struct btrfs_fs_info
*fs_info
= tree_root
->fs_info
;
1585 struct btrfs_path
*path
;
1589 path
= btrfs_alloc_path();
1591 return ERR_PTR(-ENOMEM
);
1593 root
= btrfs_alloc_root(fs_info
, GFP_NOFS
);
1599 __setup_root(tree_root
->nodesize
, tree_root
->sectorsize
,
1600 tree_root
->stripesize
, root
, fs_info
, key
->objectid
);
1602 ret
= btrfs_find_root(tree_root
, key
, path
,
1603 &root
->root_item
, &root
->root_key
);
1610 generation
= btrfs_root_generation(&root
->root_item
);
1611 root
->node
= read_tree_block(root
, btrfs_root_bytenr(&root
->root_item
),
1613 if (IS_ERR(root
->node
)) {
1614 ret
= PTR_ERR(root
->node
);
1616 } else if (!btrfs_buffer_uptodate(root
->node
, generation
, 0)) {
1618 free_extent_buffer(root
->node
);
1621 root
->commit_root
= btrfs_root_node(root
);
1623 btrfs_free_path(path
);
1629 root
= ERR_PTR(ret
);
1633 struct btrfs_root
*btrfs_read_fs_root(struct btrfs_root
*tree_root
,
1634 struct btrfs_key
*location
)
1636 struct btrfs_root
*root
;
1638 root
= btrfs_read_tree_root(tree_root
, location
);
1642 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
1643 set_bit(BTRFS_ROOT_REF_COWS
, &root
->state
);
1644 btrfs_check_and_init_root_item(&root
->root_item
);
1650 int btrfs_init_fs_root(struct btrfs_root
*root
)
1653 struct btrfs_subvolume_writers
*writers
;
1655 root
->free_ino_ctl
= kzalloc(sizeof(*root
->free_ino_ctl
), GFP_NOFS
);
1656 root
->free_ino_pinned
= kzalloc(sizeof(*root
->free_ino_pinned
),
1658 if (!root
->free_ino_pinned
|| !root
->free_ino_ctl
) {
1663 writers
= btrfs_alloc_subvolume_writers();
1664 if (IS_ERR(writers
)) {
1665 ret
= PTR_ERR(writers
);
1668 root
->subv_writers
= writers
;
1670 btrfs_init_free_ino_ctl(root
);
1671 spin_lock_init(&root
->ino_cache_lock
);
1672 init_waitqueue_head(&root
->ino_cache_wait
);
1674 ret
= get_anon_bdev(&root
->anon_dev
);
1678 mutex_lock(&root
->objectid_mutex
);
1679 ret
= btrfs_find_highest_objectid(root
,
1680 &root
->highest_objectid
);
1682 mutex_unlock(&root
->objectid_mutex
);
1686 ASSERT(root
->highest_objectid
<= BTRFS_LAST_FREE_OBJECTID
);
1688 mutex_unlock(&root
->objectid_mutex
);
1692 /* the caller is responsible to call free_fs_root */
1696 struct btrfs_root
*btrfs_lookup_fs_root(struct btrfs_fs_info
*fs_info
,
1699 struct btrfs_root
*root
;
1701 spin_lock(&fs_info
->fs_roots_radix_lock
);
1702 root
= radix_tree_lookup(&fs_info
->fs_roots_radix
,
1703 (unsigned long)root_id
);
1704 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1708 int btrfs_insert_fs_root(struct btrfs_fs_info
*fs_info
,
1709 struct btrfs_root
*root
)
1713 ret
= radix_tree_preload(GFP_NOFS
);
1717 spin_lock(&fs_info
->fs_roots_radix_lock
);
1718 ret
= radix_tree_insert(&fs_info
->fs_roots_radix
,
1719 (unsigned long)root
->root_key
.objectid
,
1722 set_bit(BTRFS_ROOT_IN_RADIX
, &root
->state
);
1723 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1724 radix_tree_preload_end();
1729 struct btrfs_root
*btrfs_get_fs_root(struct btrfs_fs_info
*fs_info
,
1730 struct btrfs_key
*location
,
1733 struct btrfs_root
*root
;
1734 struct btrfs_path
*path
;
1735 struct btrfs_key key
;
1738 if (location
->objectid
== BTRFS_ROOT_TREE_OBJECTID
)
1739 return fs_info
->tree_root
;
1740 if (location
->objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
1741 return fs_info
->extent_root
;
1742 if (location
->objectid
== BTRFS_CHUNK_TREE_OBJECTID
)
1743 return fs_info
->chunk_root
;
1744 if (location
->objectid
== BTRFS_DEV_TREE_OBJECTID
)
1745 return fs_info
->dev_root
;
1746 if (location
->objectid
== BTRFS_CSUM_TREE_OBJECTID
)
1747 return fs_info
->csum_root
;
1748 if (location
->objectid
== BTRFS_QUOTA_TREE_OBJECTID
)
1749 return fs_info
->quota_root
? fs_info
->quota_root
:
1751 if (location
->objectid
== BTRFS_UUID_TREE_OBJECTID
)
1752 return fs_info
->uuid_root
? fs_info
->uuid_root
:
1754 if (location
->objectid
== BTRFS_FREE_SPACE_TREE_OBJECTID
)
1755 return fs_info
->free_space_root
? fs_info
->free_space_root
:
1758 root
= btrfs_lookup_fs_root(fs_info
, location
->objectid
);
1760 if (check_ref
&& btrfs_root_refs(&root
->root_item
) == 0)
1761 return ERR_PTR(-ENOENT
);
1765 root
= btrfs_read_fs_root(fs_info
->tree_root
, location
);
1769 if (check_ref
&& btrfs_root_refs(&root
->root_item
) == 0) {
1774 ret
= btrfs_init_fs_root(root
);
1778 path
= btrfs_alloc_path();
1783 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
1784 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
1785 key
.offset
= location
->objectid
;
1787 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
1788 btrfs_free_path(path
);
1792 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &root
->state
);
1794 ret
= btrfs_insert_fs_root(fs_info
, root
);
1796 if (ret
== -EEXIST
) {
1805 return ERR_PTR(ret
);
1808 static int btrfs_congested_fn(void *congested_data
, int bdi_bits
)
1810 struct btrfs_fs_info
*info
= (struct btrfs_fs_info
*)congested_data
;
1812 struct btrfs_device
*device
;
1813 struct backing_dev_info
*bdi
;
1816 list_for_each_entry_rcu(device
, &info
->fs_devices
->devices
, dev_list
) {
1819 bdi
= blk_get_backing_dev_info(device
->bdev
);
1820 if (bdi_congested(bdi
, bdi_bits
)) {
1829 static int setup_bdi(struct btrfs_fs_info
*info
, struct backing_dev_info
*bdi
)
1833 err
= bdi_setup_and_register(bdi
, "btrfs");
1837 bdi
->ra_pages
= VM_MAX_READAHEAD
* 1024 / PAGE_SIZE
;
1838 bdi
->congested_fn
= btrfs_congested_fn
;
1839 bdi
->congested_data
= info
;
1840 bdi
->capabilities
|= BDI_CAP_CGROUP_WRITEBACK
;
1845 * called by the kthread helper functions to finally call the bio end_io
1846 * functions. This is where read checksum verification actually happens
1848 static void end_workqueue_fn(struct btrfs_work
*work
)
1851 struct btrfs_end_io_wq
*end_io_wq
;
1853 end_io_wq
= container_of(work
, struct btrfs_end_io_wq
, work
);
1854 bio
= end_io_wq
->bio
;
1856 bio
->bi_error
= end_io_wq
->error
;
1857 bio
->bi_private
= end_io_wq
->private;
1858 bio
->bi_end_io
= end_io_wq
->end_io
;
1859 kmem_cache_free(btrfs_end_io_wq_cache
, end_io_wq
);
1863 static int cleaner_kthread(void *arg
)
1865 struct btrfs_root
*root
= arg
;
1867 struct btrfs_trans_handle
*trans
;
1872 /* Make the cleaner go to sleep early. */
1873 if (btrfs_need_cleaner_sleep(root
))
1877 * Do not do anything if we might cause open_ctree() to block
1878 * before we have finished mounting the filesystem.
1880 if (!test_bit(BTRFS_FS_OPEN
, &root
->fs_info
->flags
))
1883 if (!mutex_trylock(&root
->fs_info
->cleaner_mutex
))
1887 * Avoid the problem that we change the status of the fs
1888 * during the above check and trylock.
1890 if (btrfs_need_cleaner_sleep(root
)) {
1891 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
1895 mutex_lock(&root
->fs_info
->cleaner_delayed_iput_mutex
);
1896 btrfs_run_delayed_iputs(root
);
1897 mutex_unlock(&root
->fs_info
->cleaner_delayed_iput_mutex
);
1899 again
= btrfs_clean_one_deleted_snapshot(root
);
1900 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
1903 * The defragger has dealt with the R/O remount and umount,
1904 * needn't do anything special here.
1906 btrfs_run_defrag_inodes(root
->fs_info
);
1909 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1910 * with relocation (btrfs_relocate_chunk) and relocation
1911 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1912 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1913 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1914 * unused block groups.
1916 btrfs_delete_unused_bgs(root
->fs_info
);
1919 set_current_state(TASK_INTERRUPTIBLE
);
1920 if (!kthread_should_stop())
1922 __set_current_state(TASK_RUNNING
);
1924 } while (!kthread_should_stop());
1927 * Transaction kthread is stopped before us and wakes us up.
1928 * However we might have started a new transaction and COWed some
1929 * tree blocks when deleting unused block groups for example. So
1930 * make sure we commit the transaction we started to have a clean
1931 * shutdown when evicting the btree inode - if it has dirty pages
1932 * when we do the final iput() on it, eviction will trigger a
1933 * writeback for it which will fail with null pointer dereferences
1934 * since work queues and other resources were already released and
1935 * destroyed by the time the iput/eviction/writeback is made.
1937 trans
= btrfs_attach_transaction(root
);
1938 if (IS_ERR(trans
)) {
1939 if (PTR_ERR(trans
) != -ENOENT
)
1940 btrfs_err(root
->fs_info
,
1941 "cleaner transaction attach returned %ld",
1946 ret
= btrfs_commit_transaction(trans
, root
);
1948 btrfs_err(root
->fs_info
,
1949 "cleaner open transaction commit returned %d",
1956 static int transaction_kthread(void *arg
)
1958 struct btrfs_root
*root
= arg
;
1959 struct btrfs_trans_handle
*trans
;
1960 struct btrfs_transaction
*cur
;
1963 unsigned long delay
;
1967 cannot_commit
= false;
1968 delay
= HZ
* root
->fs_info
->commit_interval
;
1969 mutex_lock(&root
->fs_info
->transaction_kthread_mutex
);
1971 spin_lock(&root
->fs_info
->trans_lock
);
1972 cur
= root
->fs_info
->running_transaction
;
1974 spin_unlock(&root
->fs_info
->trans_lock
);
1978 now
= get_seconds();
1979 if (cur
->state
< TRANS_STATE_BLOCKED
&&
1980 (now
< cur
->start_time
||
1981 now
- cur
->start_time
< root
->fs_info
->commit_interval
)) {
1982 spin_unlock(&root
->fs_info
->trans_lock
);
1986 transid
= cur
->transid
;
1987 spin_unlock(&root
->fs_info
->trans_lock
);
1989 /* If the file system is aborted, this will always fail. */
1990 trans
= btrfs_attach_transaction(root
);
1991 if (IS_ERR(trans
)) {
1992 if (PTR_ERR(trans
) != -ENOENT
)
1993 cannot_commit
= true;
1996 if (transid
== trans
->transid
) {
1997 btrfs_commit_transaction(trans
, root
);
1999 btrfs_end_transaction(trans
, root
);
2002 wake_up_process(root
->fs_info
->cleaner_kthread
);
2003 mutex_unlock(&root
->fs_info
->transaction_kthread_mutex
);
2005 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR
,
2006 &root
->fs_info
->fs_state
)))
2007 btrfs_cleanup_transaction(root
);
2008 set_current_state(TASK_INTERRUPTIBLE
);
2009 if (!kthread_should_stop() &&
2010 (!btrfs_transaction_blocked(root
->fs_info
) ||
2012 schedule_timeout(delay
);
2013 __set_current_state(TASK_RUNNING
);
2014 } while (!kthread_should_stop());
2019 * this will find the highest generation in the array of
2020 * root backups. The index of the highest array is returned,
2021 * or -1 if we can't find anything.
2023 * We check to make sure the array is valid by comparing the
2024 * generation of the latest root in the array with the generation
2025 * in the super block. If they don't match we pitch it.
2027 static int find_newest_super_backup(struct btrfs_fs_info
*info
, u64 newest_gen
)
2030 int newest_index
= -1;
2031 struct btrfs_root_backup
*root_backup
;
2034 for (i
= 0; i
< BTRFS_NUM_BACKUP_ROOTS
; i
++) {
2035 root_backup
= info
->super_copy
->super_roots
+ i
;
2036 cur
= btrfs_backup_tree_root_gen(root_backup
);
2037 if (cur
== newest_gen
)
2041 /* check to see if we actually wrapped around */
2042 if (newest_index
== BTRFS_NUM_BACKUP_ROOTS
- 1) {
2043 root_backup
= info
->super_copy
->super_roots
;
2044 cur
= btrfs_backup_tree_root_gen(root_backup
);
2045 if (cur
== newest_gen
)
2048 return newest_index
;
2053 * find the oldest backup so we know where to store new entries
2054 * in the backup array. This will set the backup_root_index
2055 * field in the fs_info struct
2057 static void find_oldest_super_backup(struct btrfs_fs_info
*info
,
2060 int newest_index
= -1;
2062 newest_index
= find_newest_super_backup(info
, newest_gen
);
2063 /* if there was garbage in there, just move along */
2064 if (newest_index
== -1) {
2065 info
->backup_root_index
= 0;
2067 info
->backup_root_index
= (newest_index
+ 1) % BTRFS_NUM_BACKUP_ROOTS
;
2072 * copy all the root pointers into the super backup array.
2073 * this will bump the backup pointer by one when it is
2076 static void backup_super_roots(struct btrfs_fs_info
*info
)
2079 struct btrfs_root_backup
*root_backup
;
2082 next_backup
= info
->backup_root_index
;
2083 last_backup
= (next_backup
+ BTRFS_NUM_BACKUP_ROOTS
- 1) %
2084 BTRFS_NUM_BACKUP_ROOTS
;
2087 * just overwrite the last backup if we're at the same generation
2088 * this happens only at umount
2090 root_backup
= info
->super_for_commit
->super_roots
+ last_backup
;
2091 if (btrfs_backup_tree_root_gen(root_backup
) ==
2092 btrfs_header_generation(info
->tree_root
->node
))
2093 next_backup
= last_backup
;
2095 root_backup
= info
->super_for_commit
->super_roots
+ next_backup
;
2098 * make sure all of our padding and empty slots get zero filled
2099 * regardless of which ones we use today
2101 memset(root_backup
, 0, sizeof(*root_backup
));
2103 info
->backup_root_index
= (next_backup
+ 1) % BTRFS_NUM_BACKUP_ROOTS
;
2105 btrfs_set_backup_tree_root(root_backup
, info
->tree_root
->node
->start
);
2106 btrfs_set_backup_tree_root_gen(root_backup
,
2107 btrfs_header_generation(info
->tree_root
->node
));
2109 btrfs_set_backup_tree_root_level(root_backup
,
2110 btrfs_header_level(info
->tree_root
->node
));
2112 btrfs_set_backup_chunk_root(root_backup
, info
->chunk_root
->node
->start
);
2113 btrfs_set_backup_chunk_root_gen(root_backup
,
2114 btrfs_header_generation(info
->chunk_root
->node
));
2115 btrfs_set_backup_chunk_root_level(root_backup
,
2116 btrfs_header_level(info
->chunk_root
->node
));
2118 btrfs_set_backup_extent_root(root_backup
, info
->extent_root
->node
->start
);
2119 btrfs_set_backup_extent_root_gen(root_backup
,
2120 btrfs_header_generation(info
->extent_root
->node
));
2121 btrfs_set_backup_extent_root_level(root_backup
,
2122 btrfs_header_level(info
->extent_root
->node
));
2125 * we might commit during log recovery, which happens before we set
2126 * the fs_root. Make sure it is valid before we fill it in.
2128 if (info
->fs_root
&& info
->fs_root
->node
) {
2129 btrfs_set_backup_fs_root(root_backup
,
2130 info
->fs_root
->node
->start
);
2131 btrfs_set_backup_fs_root_gen(root_backup
,
2132 btrfs_header_generation(info
->fs_root
->node
));
2133 btrfs_set_backup_fs_root_level(root_backup
,
2134 btrfs_header_level(info
->fs_root
->node
));
2137 btrfs_set_backup_dev_root(root_backup
, info
->dev_root
->node
->start
);
2138 btrfs_set_backup_dev_root_gen(root_backup
,
2139 btrfs_header_generation(info
->dev_root
->node
));
2140 btrfs_set_backup_dev_root_level(root_backup
,
2141 btrfs_header_level(info
->dev_root
->node
));
2143 btrfs_set_backup_csum_root(root_backup
, info
->csum_root
->node
->start
);
2144 btrfs_set_backup_csum_root_gen(root_backup
,
2145 btrfs_header_generation(info
->csum_root
->node
));
2146 btrfs_set_backup_csum_root_level(root_backup
,
2147 btrfs_header_level(info
->csum_root
->node
));
2149 btrfs_set_backup_total_bytes(root_backup
,
2150 btrfs_super_total_bytes(info
->super_copy
));
2151 btrfs_set_backup_bytes_used(root_backup
,
2152 btrfs_super_bytes_used(info
->super_copy
));
2153 btrfs_set_backup_num_devices(root_backup
,
2154 btrfs_super_num_devices(info
->super_copy
));
2157 * if we don't copy this out to the super_copy, it won't get remembered
2158 * for the next commit
2160 memcpy(&info
->super_copy
->super_roots
,
2161 &info
->super_for_commit
->super_roots
,
2162 sizeof(*root_backup
) * BTRFS_NUM_BACKUP_ROOTS
);
2166 * this copies info out of the root backup array and back into
2167 * the in-memory super block. It is meant to help iterate through
2168 * the array, so you send it the number of backups you've already
2169 * tried and the last backup index you used.
2171 * this returns -1 when it has tried all the backups
2173 static noinline
int next_root_backup(struct btrfs_fs_info
*info
,
2174 struct btrfs_super_block
*super
,
2175 int *num_backups_tried
, int *backup_index
)
2177 struct btrfs_root_backup
*root_backup
;
2178 int newest
= *backup_index
;
2180 if (*num_backups_tried
== 0) {
2181 u64 gen
= btrfs_super_generation(super
);
2183 newest
= find_newest_super_backup(info
, gen
);
2187 *backup_index
= newest
;
2188 *num_backups_tried
= 1;
2189 } else if (*num_backups_tried
== BTRFS_NUM_BACKUP_ROOTS
) {
2190 /* we've tried all the backups, all done */
2193 /* jump to the next oldest backup */
2194 newest
= (*backup_index
+ BTRFS_NUM_BACKUP_ROOTS
- 1) %
2195 BTRFS_NUM_BACKUP_ROOTS
;
2196 *backup_index
= newest
;
2197 *num_backups_tried
+= 1;
2199 root_backup
= super
->super_roots
+ newest
;
2201 btrfs_set_super_generation(super
,
2202 btrfs_backup_tree_root_gen(root_backup
));
2203 btrfs_set_super_root(super
, btrfs_backup_tree_root(root_backup
));
2204 btrfs_set_super_root_level(super
,
2205 btrfs_backup_tree_root_level(root_backup
));
2206 btrfs_set_super_bytes_used(super
, btrfs_backup_bytes_used(root_backup
));
2209 * fixme: the total bytes and num_devices need to match or we should
2212 btrfs_set_super_total_bytes(super
, btrfs_backup_total_bytes(root_backup
));
2213 btrfs_set_super_num_devices(super
, btrfs_backup_num_devices(root_backup
));
2217 /* helper to cleanup workers */
2218 static void btrfs_stop_all_workers(struct btrfs_fs_info
*fs_info
)
2220 btrfs_destroy_workqueue(fs_info
->fixup_workers
);
2221 btrfs_destroy_workqueue(fs_info
->delalloc_workers
);
2222 btrfs_destroy_workqueue(fs_info
->workers
);
2223 btrfs_destroy_workqueue(fs_info
->endio_workers
);
2224 btrfs_destroy_workqueue(fs_info
->endio_meta_workers
);
2225 btrfs_destroy_workqueue(fs_info
->endio_raid56_workers
);
2226 btrfs_destroy_workqueue(fs_info
->endio_repair_workers
);
2227 btrfs_destroy_workqueue(fs_info
->rmw_workers
);
2228 btrfs_destroy_workqueue(fs_info
->endio_meta_write_workers
);
2229 btrfs_destroy_workqueue(fs_info
->endio_write_workers
);
2230 btrfs_destroy_workqueue(fs_info
->endio_freespace_worker
);
2231 btrfs_destroy_workqueue(fs_info
->submit_workers
);
2232 btrfs_destroy_workqueue(fs_info
->delayed_workers
);
2233 btrfs_destroy_workqueue(fs_info
->caching_workers
);
2234 btrfs_destroy_workqueue(fs_info
->readahead_workers
);
2235 btrfs_destroy_workqueue(fs_info
->flush_workers
);
2236 btrfs_destroy_workqueue(fs_info
->qgroup_rescan_workers
);
2237 btrfs_destroy_workqueue(fs_info
->extent_workers
);
2240 static void free_root_extent_buffers(struct btrfs_root
*root
)
2243 free_extent_buffer(root
->node
);
2244 free_extent_buffer(root
->commit_root
);
2246 root
->commit_root
= NULL
;
2250 /* helper to cleanup tree roots */
2251 static void free_root_pointers(struct btrfs_fs_info
*info
, int chunk_root
)
2253 free_root_extent_buffers(info
->tree_root
);
2255 free_root_extent_buffers(info
->dev_root
);
2256 free_root_extent_buffers(info
->extent_root
);
2257 free_root_extent_buffers(info
->csum_root
);
2258 free_root_extent_buffers(info
->quota_root
);
2259 free_root_extent_buffers(info
->uuid_root
);
2261 free_root_extent_buffers(info
->chunk_root
);
2262 free_root_extent_buffers(info
->free_space_root
);
2265 void btrfs_free_fs_roots(struct btrfs_fs_info
*fs_info
)
2268 struct btrfs_root
*gang
[8];
2271 while (!list_empty(&fs_info
->dead_roots
)) {
2272 gang
[0] = list_entry(fs_info
->dead_roots
.next
,
2273 struct btrfs_root
, root_list
);
2274 list_del(&gang
[0]->root_list
);
2276 if (test_bit(BTRFS_ROOT_IN_RADIX
, &gang
[0]->state
)) {
2277 btrfs_drop_and_free_fs_root(fs_info
, gang
[0]);
2279 free_extent_buffer(gang
[0]->node
);
2280 free_extent_buffer(gang
[0]->commit_root
);
2281 btrfs_put_fs_root(gang
[0]);
2286 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
2291 for (i
= 0; i
< ret
; i
++)
2292 btrfs_drop_and_free_fs_root(fs_info
, gang
[i
]);
2295 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
2296 btrfs_free_log_root_tree(NULL
, fs_info
);
2297 btrfs_destroy_pinned_extent(fs_info
->tree_root
,
2298 fs_info
->pinned_extents
);
2302 static void btrfs_init_scrub(struct btrfs_fs_info
*fs_info
)
2304 mutex_init(&fs_info
->scrub_lock
);
2305 atomic_set(&fs_info
->scrubs_running
, 0);
2306 atomic_set(&fs_info
->scrub_pause_req
, 0);
2307 atomic_set(&fs_info
->scrubs_paused
, 0);
2308 atomic_set(&fs_info
->scrub_cancel_req
, 0);
2309 init_waitqueue_head(&fs_info
->scrub_pause_wait
);
2310 fs_info
->scrub_workers_refcnt
= 0;
2313 static void btrfs_init_balance(struct btrfs_fs_info
*fs_info
)
2315 spin_lock_init(&fs_info
->balance_lock
);
2316 mutex_init(&fs_info
->balance_mutex
);
2317 atomic_set(&fs_info
->balance_running
, 0);
2318 atomic_set(&fs_info
->balance_pause_req
, 0);
2319 atomic_set(&fs_info
->balance_cancel_req
, 0);
2320 fs_info
->balance_ctl
= NULL
;
2321 init_waitqueue_head(&fs_info
->balance_wait_q
);
2324 static void btrfs_init_btree_inode(struct btrfs_fs_info
*fs_info
,
2325 struct btrfs_root
*tree_root
)
2327 fs_info
->btree_inode
->i_ino
= BTRFS_BTREE_INODE_OBJECTID
;
2328 set_nlink(fs_info
->btree_inode
, 1);
2330 * we set the i_size on the btree inode to the max possible int.
2331 * the real end of the address space is determined by all of
2332 * the devices in the system
2334 fs_info
->btree_inode
->i_size
= OFFSET_MAX
;
2335 fs_info
->btree_inode
->i_mapping
->a_ops
= &btree_aops
;
2337 RB_CLEAR_NODE(&BTRFS_I(fs_info
->btree_inode
)->rb_node
);
2338 extent_io_tree_init(&BTRFS_I(fs_info
->btree_inode
)->io_tree
,
2339 fs_info
->btree_inode
->i_mapping
);
2340 BTRFS_I(fs_info
->btree_inode
)->io_tree
.track_uptodate
= 0;
2341 extent_map_tree_init(&BTRFS_I(fs_info
->btree_inode
)->extent_tree
);
2343 BTRFS_I(fs_info
->btree_inode
)->io_tree
.ops
= &btree_extent_io_ops
;
2345 BTRFS_I(fs_info
->btree_inode
)->root
= tree_root
;
2346 memset(&BTRFS_I(fs_info
->btree_inode
)->location
, 0,
2347 sizeof(struct btrfs_key
));
2348 set_bit(BTRFS_INODE_DUMMY
,
2349 &BTRFS_I(fs_info
->btree_inode
)->runtime_flags
);
2350 btrfs_insert_inode_hash(fs_info
->btree_inode
);
2353 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info
*fs_info
)
2355 fs_info
->dev_replace
.lock_owner
= 0;
2356 atomic_set(&fs_info
->dev_replace
.nesting_level
, 0);
2357 mutex_init(&fs_info
->dev_replace
.lock_finishing_cancel_unmount
);
2358 rwlock_init(&fs_info
->dev_replace
.lock
);
2359 atomic_set(&fs_info
->dev_replace
.read_locks
, 0);
2360 atomic_set(&fs_info
->dev_replace
.blocking_readers
, 0);
2361 init_waitqueue_head(&fs_info
->replace_wait
);
2362 init_waitqueue_head(&fs_info
->dev_replace
.read_lock_wq
);
2365 static void btrfs_init_qgroup(struct btrfs_fs_info
*fs_info
)
2367 spin_lock_init(&fs_info
->qgroup_lock
);
2368 mutex_init(&fs_info
->qgroup_ioctl_lock
);
2369 fs_info
->qgroup_tree
= RB_ROOT
;
2370 fs_info
->qgroup_op_tree
= RB_ROOT
;
2371 INIT_LIST_HEAD(&fs_info
->dirty_qgroups
);
2372 fs_info
->qgroup_seq
= 1;
2373 fs_info
->qgroup_ulist
= NULL
;
2374 fs_info
->qgroup_rescan_running
= false;
2375 mutex_init(&fs_info
->qgroup_rescan_lock
);
2378 static int btrfs_init_workqueues(struct btrfs_fs_info
*fs_info
,
2379 struct btrfs_fs_devices
*fs_devices
)
2381 int max_active
= fs_info
->thread_pool_size
;
2382 unsigned int flags
= WQ_MEM_RECLAIM
| WQ_FREEZABLE
| WQ_UNBOUND
;
2385 btrfs_alloc_workqueue(fs_info
, "worker",
2386 flags
| WQ_HIGHPRI
, max_active
, 16);
2388 fs_info
->delalloc_workers
=
2389 btrfs_alloc_workqueue(fs_info
, "delalloc",
2390 flags
, max_active
, 2);
2392 fs_info
->flush_workers
=
2393 btrfs_alloc_workqueue(fs_info
, "flush_delalloc",
2394 flags
, max_active
, 0);
2396 fs_info
->caching_workers
=
2397 btrfs_alloc_workqueue(fs_info
, "cache", flags
, max_active
, 0);
2400 * a higher idle thresh on the submit workers makes it much more
2401 * likely that bios will be send down in a sane order to the
2404 fs_info
->submit_workers
=
2405 btrfs_alloc_workqueue(fs_info
, "submit", flags
,
2406 min_t(u64
, fs_devices
->num_devices
,
2409 fs_info
->fixup_workers
=
2410 btrfs_alloc_workqueue(fs_info
, "fixup", flags
, 1, 0);
2413 * endios are largely parallel and should have a very
2416 fs_info
->endio_workers
=
2417 btrfs_alloc_workqueue(fs_info
, "endio", flags
, max_active
, 4);
2418 fs_info
->endio_meta_workers
=
2419 btrfs_alloc_workqueue(fs_info
, "endio-meta", flags
,
2421 fs_info
->endio_meta_write_workers
=
2422 btrfs_alloc_workqueue(fs_info
, "endio-meta-write", flags
,
2424 fs_info
->endio_raid56_workers
=
2425 btrfs_alloc_workqueue(fs_info
, "endio-raid56", flags
,
2427 fs_info
->endio_repair_workers
=
2428 btrfs_alloc_workqueue(fs_info
, "endio-repair", flags
, 1, 0);
2429 fs_info
->rmw_workers
=
2430 btrfs_alloc_workqueue(fs_info
, "rmw", flags
, max_active
, 2);
2431 fs_info
->endio_write_workers
=
2432 btrfs_alloc_workqueue(fs_info
, "endio-write", flags
,
2434 fs_info
->endio_freespace_worker
=
2435 btrfs_alloc_workqueue(fs_info
, "freespace-write", flags
,
2437 fs_info
->delayed_workers
=
2438 btrfs_alloc_workqueue(fs_info
, "delayed-meta", flags
,
2440 fs_info
->readahead_workers
=
2441 btrfs_alloc_workqueue(fs_info
, "readahead", flags
,
2443 fs_info
->qgroup_rescan_workers
=
2444 btrfs_alloc_workqueue(fs_info
, "qgroup-rescan", flags
, 1, 0);
2445 fs_info
->extent_workers
=
2446 btrfs_alloc_workqueue(fs_info
, "extent-refs", flags
,
2447 min_t(u64
, fs_devices
->num_devices
,
2450 if (!(fs_info
->workers
&& fs_info
->delalloc_workers
&&
2451 fs_info
->submit_workers
&& fs_info
->flush_workers
&&
2452 fs_info
->endio_workers
&& fs_info
->endio_meta_workers
&&
2453 fs_info
->endio_meta_write_workers
&&
2454 fs_info
->endio_repair_workers
&&
2455 fs_info
->endio_write_workers
&& fs_info
->endio_raid56_workers
&&
2456 fs_info
->endio_freespace_worker
&& fs_info
->rmw_workers
&&
2457 fs_info
->caching_workers
&& fs_info
->readahead_workers
&&
2458 fs_info
->fixup_workers
&& fs_info
->delayed_workers
&&
2459 fs_info
->extent_workers
&&
2460 fs_info
->qgroup_rescan_workers
)) {
2467 static int btrfs_replay_log(struct btrfs_fs_info
*fs_info
,
2468 struct btrfs_fs_devices
*fs_devices
)
2471 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
2472 struct btrfs_root
*log_tree_root
;
2473 struct btrfs_super_block
*disk_super
= fs_info
->super_copy
;
2474 u64 bytenr
= btrfs_super_log_root(disk_super
);
2476 if (fs_devices
->rw_devices
== 0) {
2477 btrfs_warn(fs_info
, "log replay required on RO media");
2481 log_tree_root
= btrfs_alloc_root(fs_info
, GFP_KERNEL
);
2485 __setup_root(tree_root
->nodesize
, tree_root
->sectorsize
,
2486 tree_root
->stripesize
, log_tree_root
, fs_info
,
2487 BTRFS_TREE_LOG_OBJECTID
);
2489 log_tree_root
->node
= read_tree_block(tree_root
, bytenr
,
2490 fs_info
->generation
+ 1);
2491 if (IS_ERR(log_tree_root
->node
)) {
2492 btrfs_warn(fs_info
, "failed to read log tree");
2493 ret
= PTR_ERR(log_tree_root
->node
);
2494 kfree(log_tree_root
);
2496 } else if (!extent_buffer_uptodate(log_tree_root
->node
)) {
2497 btrfs_err(fs_info
, "failed to read log tree");
2498 free_extent_buffer(log_tree_root
->node
);
2499 kfree(log_tree_root
);
2502 /* returns with log_tree_root freed on success */
2503 ret
= btrfs_recover_log_trees(log_tree_root
);
2505 btrfs_handle_fs_error(tree_root
->fs_info
, ret
,
2506 "Failed to recover log tree");
2507 free_extent_buffer(log_tree_root
->node
);
2508 kfree(log_tree_root
);
2512 if (fs_info
->sb
->s_flags
& MS_RDONLY
) {
2513 ret
= btrfs_commit_super(tree_root
);
2521 static int btrfs_read_roots(struct btrfs_fs_info
*fs_info
,
2522 struct btrfs_root
*tree_root
)
2524 struct btrfs_root
*root
;
2525 struct btrfs_key location
;
2528 location
.objectid
= BTRFS_EXTENT_TREE_OBJECTID
;
2529 location
.type
= BTRFS_ROOT_ITEM_KEY
;
2530 location
.offset
= 0;
2532 root
= btrfs_read_tree_root(tree_root
, &location
);
2534 return PTR_ERR(root
);
2535 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2536 fs_info
->extent_root
= root
;
2538 location
.objectid
= BTRFS_DEV_TREE_OBJECTID
;
2539 root
= btrfs_read_tree_root(tree_root
, &location
);
2541 return PTR_ERR(root
);
2542 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2543 fs_info
->dev_root
= root
;
2544 btrfs_init_devices_late(fs_info
);
2546 location
.objectid
= BTRFS_CSUM_TREE_OBJECTID
;
2547 root
= btrfs_read_tree_root(tree_root
, &location
);
2549 return PTR_ERR(root
);
2550 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2551 fs_info
->csum_root
= root
;
2553 location
.objectid
= BTRFS_QUOTA_TREE_OBJECTID
;
2554 root
= btrfs_read_tree_root(tree_root
, &location
);
2555 if (!IS_ERR(root
)) {
2556 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2557 set_bit(BTRFS_FS_QUOTA_ENABLED
, &fs_info
->flags
);
2558 fs_info
->quota_root
= root
;
2561 location
.objectid
= BTRFS_UUID_TREE_OBJECTID
;
2562 root
= btrfs_read_tree_root(tree_root
, &location
);
2564 ret
= PTR_ERR(root
);
2568 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2569 fs_info
->uuid_root
= root
;
2572 if (btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
)) {
2573 location
.objectid
= BTRFS_FREE_SPACE_TREE_OBJECTID
;
2574 root
= btrfs_read_tree_root(tree_root
, &location
);
2576 return PTR_ERR(root
);
2577 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2578 fs_info
->free_space_root
= root
;
2584 int open_ctree(struct super_block
*sb
,
2585 struct btrfs_fs_devices
*fs_devices
,
2593 struct btrfs_key location
;
2594 struct buffer_head
*bh
;
2595 struct btrfs_super_block
*disk_super
;
2596 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
2597 struct btrfs_root
*tree_root
;
2598 struct btrfs_root
*chunk_root
;
2601 int num_backups_tried
= 0;
2602 int backup_index
= 0;
2604 int clear_free_space_tree
= 0;
2606 tree_root
= fs_info
->tree_root
= btrfs_alloc_root(fs_info
, GFP_KERNEL
);
2607 chunk_root
= fs_info
->chunk_root
= btrfs_alloc_root(fs_info
, GFP_KERNEL
);
2608 if (!tree_root
|| !chunk_root
) {
2613 ret
= init_srcu_struct(&fs_info
->subvol_srcu
);
2619 ret
= setup_bdi(fs_info
, &fs_info
->bdi
);
2625 ret
= percpu_counter_init(&fs_info
->dirty_metadata_bytes
, 0, GFP_KERNEL
);
2630 fs_info
->dirty_metadata_batch
= PAGE_SIZE
*
2631 (1 + ilog2(nr_cpu_ids
));
2633 ret
= percpu_counter_init(&fs_info
->delalloc_bytes
, 0, GFP_KERNEL
);
2636 goto fail_dirty_metadata_bytes
;
2639 ret
= percpu_counter_init(&fs_info
->bio_counter
, 0, GFP_KERNEL
);
2642 goto fail_delalloc_bytes
;
2645 fs_info
->btree_inode
= new_inode(sb
);
2646 if (!fs_info
->btree_inode
) {
2648 goto fail_bio_counter
;
2651 mapping_set_gfp_mask(fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
2653 INIT_RADIX_TREE(&fs_info
->fs_roots_radix
, GFP_ATOMIC
);
2654 INIT_RADIX_TREE(&fs_info
->buffer_radix
, GFP_ATOMIC
);
2655 INIT_LIST_HEAD(&fs_info
->trans_list
);
2656 INIT_LIST_HEAD(&fs_info
->dead_roots
);
2657 INIT_LIST_HEAD(&fs_info
->delayed_iputs
);
2658 INIT_LIST_HEAD(&fs_info
->delalloc_roots
);
2659 INIT_LIST_HEAD(&fs_info
->caching_block_groups
);
2660 spin_lock_init(&fs_info
->delalloc_root_lock
);
2661 spin_lock_init(&fs_info
->trans_lock
);
2662 spin_lock_init(&fs_info
->fs_roots_radix_lock
);
2663 spin_lock_init(&fs_info
->delayed_iput_lock
);
2664 spin_lock_init(&fs_info
->defrag_inodes_lock
);
2665 spin_lock_init(&fs_info
->free_chunk_lock
);
2666 spin_lock_init(&fs_info
->tree_mod_seq_lock
);
2667 spin_lock_init(&fs_info
->super_lock
);
2668 spin_lock_init(&fs_info
->qgroup_op_lock
);
2669 spin_lock_init(&fs_info
->buffer_lock
);
2670 spin_lock_init(&fs_info
->unused_bgs_lock
);
2671 rwlock_init(&fs_info
->tree_mod_log_lock
);
2672 mutex_init(&fs_info
->unused_bg_unpin_mutex
);
2673 mutex_init(&fs_info
->delete_unused_bgs_mutex
);
2674 mutex_init(&fs_info
->reloc_mutex
);
2675 mutex_init(&fs_info
->delalloc_root_mutex
);
2676 mutex_init(&fs_info
->cleaner_delayed_iput_mutex
);
2677 seqlock_init(&fs_info
->profiles_lock
);
2679 INIT_LIST_HEAD(&fs_info
->dirty_cowonly_roots
);
2680 INIT_LIST_HEAD(&fs_info
->space_info
);
2681 INIT_LIST_HEAD(&fs_info
->tree_mod_seq_list
);
2682 INIT_LIST_HEAD(&fs_info
->unused_bgs
);
2683 btrfs_mapping_init(&fs_info
->mapping_tree
);
2684 btrfs_init_block_rsv(&fs_info
->global_block_rsv
,
2685 BTRFS_BLOCK_RSV_GLOBAL
);
2686 btrfs_init_block_rsv(&fs_info
->delalloc_block_rsv
,
2687 BTRFS_BLOCK_RSV_DELALLOC
);
2688 btrfs_init_block_rsv(&fs_info
->trans_block_rsv
, BTRFS_BLOCK_RSV_TRANS
);
2689 btrfs_init_block_rsv(&fs_info
->chunk_block_rsv
, BTRFS_BLOCK_RSV_CHUNK
);
2690 btrfs_init_block_rsv(&fs_info
->empty_block_rsv
, BTRFS_BLOCK_RSV_EMPTY
);
2691 btrfs_init_block_rsv(&fs_info
->delayed_block_rsv
,
2692 BTRFS_BLOCK_RSV_DELOPS
);
2693 atomic_set(&fs_info
->nr_async_submits
, 0);
2694 atomic_set(&fs_info
->async_delalloc_pages
, 0);
2695 atomic_set(&fs_info
->async_submit_draining
, 0);
2696 atomic_set(&fs_info
->nr_async_bios
, 0);
2697 atomic_set(&fs_info
->defrag_running
, 0);
2698 atomic_set(&fs_info
->qgroup_op_seq
, 0);
2699 atomic_set(&fs_info
->reada_works_cnt
, 0);
2700 atomic64_set(&fs_info
->tree_mod_seq
, 0);
2701 fs_info
->fs_frozen
= 0;
2703 fs_info
->max_inline
= BTRFS_DEFAULT_MAX_INLINE
;
2704 fs_info
->metadata_ratio
= 0;
2705 fs_info
->defrag_inodes
= RB_ROOT
;
2706 fs_info
->free_chunk_space
= 0;
2707 fs_info
->tree_mod_log
= RB_ROOT
;
2708 fs_info
->commit_interval
= BTRFS_DEFAULT_COMMIT_INTERVAL
;
2709 fs_info
->avg_delayed_ref_runtime
= NSEC_PER_SEC
>> 6; /* div by 64 */
2710 /* readahead state */
2711 INIT_RADIX_TREE(&fs_info
->reada_tree
, GFP_NOFS
& ~__GFP_DIRECT_RECLAIM
);
2712 spin_lock_init(&fs_info
->reada_lock
);
2714 fs_info
->thread_pool_size
= min_t(unsigned long,
2715 num_online_cpus() + 2, 8);
2717 INIT_LIST_HEAD(&fs_info
->ordered_roots
);
2718 spin_lock_init(&fs_info
->ordered_root_lock
);
2719 fs_info
->delayed_root
= kmalloc(sizeof(struct btrfs_delayed_root
),
2721 if (!fs_info
->delayed_root
) {
2725 btrfs_init_delayed_root(fs_info
->delayed_root
);
2727 btrfs_init_scrub(fs_info
);
2728 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2729 fs_info
->check_integrity_print_mask
= 0;
2731 btrfs_init_balance(fs_info
);
2732 btrfs_init_async_reclaim_work(&fs_info
->async_reclaim_work
);
2734 sb
->s_blocksize
= 4096;
2735 sb
->s_blocksize_bits
= blksize_bits(4096);
2736 sb
->s_bdi
= &fs_info
->bdi
;
2738 btrfs_init_btree_inode(fs_info
, tree_root
);
2740 spin_lock_init(&fs_info
->block_group_cache_lock
);
2741 fs_info
->block_group_cache_tree
= RB_ROOT
;
2742 fs_info
->first_logical_byte
= (u64
)-1;
2744 extent_io_tree_init(&fs_info
->freed_extents
[0],
2745 fs_info
->btree_inode
->i_mapping
);
2746 extent_io_tree_init(&fs_info
->freed_extents
[1],
2747 fs_info
->btree_inode
->i_mapping
);
2748 fs_info
->pinned_extents
= &fs_info
->freed_extents
[0];
2749 set_bit(BTRFS_FS_BARRIER
, &fs_info
->flags
);
2751 mutex_init(&fs_info
->ordered_operations_mutex
);
2752 mutex_init(&fs_info
->tree_log_mutex
);
2753 mutex_init(&fs_info
->chunk_mutex
);
2754 mutex_init(&fs_info
->transaction_kthread_mutex
);
2755 mutex_init(&fs_info
->cleaner_mutex
);
2756 mutex_init(&fs_info
->volume_mutex
);
2757 mutex_init(&fs_info
->ro_block_group_mutex
);
2758 init_rwsem(&fs_info
->commit_root_sem
);
2759 init_rwsem(&fs_info
->cleanup_work_sem
);
2760 init_rwsem(&fs_info
->subvol_sem
);
2761 sema_init(&fs_info
->uuid_tree_rescan_sem
, 1);
2763 btrfs_init_dev_replace_locks(fs_info
);
2764 btrfs_init_qgroup(fs_info
);
2766 btrfs_init_free_cluster(&fs_info
->meta_alloc_cluster
);
2767 btrfs_init_free_cluster(&fs_info
->data_alloc_cluster
);
2769 init_waitqueue_head(&fs_info
->transaction_throttle
);
2770 init_waitqueue_head(&fs_info
->transaction_wait
);
2771 init_waitqueue_head(&fs_info
->transaction_blocked_wait
);
2772 init_waitqueue_head(&fs_info
->async_submit_wait
);
2774 INIT_LIST_HEAD(&fs_info
->pinned_chunks
);
2776 ret
= btrfs_alloc_stripe_hash_table(fs_info
);
2782 __setup_root(4096, 4096, 4096, tree_root
,
2783 fs_info
, BTRFS_ROOT_TREE_OBJECTID
);
2785 invalidate_bdev(fs_devices
->latest_bdev
);
2788 * Read super block and check the signature bytes only
2790 bh
= btrfs_read_dev_super(fs_devices
->latest_bdev
);
2797 * We want to check superblock checksum, the type is stored inside.
2798 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2800 if (btrfs_check_super_csum(fs_info
, bh
->b_data
)) {
2801 btrfs_err(fs_info
, "superblock checksum mismatch");
2808 * super_copy is zeroed at allocation time and we never touch the
2809 * following bytes up to INFO_SIZE, the checksum is calculated from
2810 * the whole block of INFO_SIZE
2812 memcpy(fs_info
->super_copy
, bh
->b_data
, sizeof(*fs_info
->super_copy
));
2813 memcpy(fs_info
->super_for_commit
, fs_info
->super_copy
,
2814 sizeof(*fs_info
->super_for_commit
));
2817 memcpy(fs_info
->fsid
, fs_info
->super_copy
->fsid
, BTRFS_FSID_SIZE
);
2819 ret
= btrfs_check_super_valid(fs_info
, sb
->s_flags
& MS_RDONLY
);
2821 btrfs_err(fs_info
, "superblock contains fatal errors");
2826 disk_super
= fs_info
->super_copy
;
2827 if (!btrfs_super_root(disk_super
))
2830 /* check FS state, whether FS is broken. */
2831 if (btrfs_super_flags(disk_super
) & BTRFS_SUPER_FLAG_ERROR
)
2832 set_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
);
2835 * run through our array of backup supers and setup
2836 * our ring pointer to the oldest one
2838 generation
= btrfs_super_generation(disk_super
);
2839 find_oldest_super_backup(fs_info
, generation
);
2842 * In the long term, we'll store the compression type in the super
2843 * block, and it'll be used for per file compression control.
2845 fs_info
->compress_type
= BTRFS_COMPRESS_ZLIB
;
2847 ret
= btrfs_parse_options(tree_root
, options
, sb
->s_flags
);
2853 features
= btrfs_super_incompat_flags(disk_super
) &
2854 ~BTRFS_FEATURE_INCOMPAT_SUPP
;
2857 "cannot mount because of unsupported optional features (%llx)",
2863 features
= btrfs_super_incompat_flags(disk_super
);
2864 features
|= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF
;
2865 if (tree_root
->fs_info
->compress_type
== BTRFS_COMPRESS_LZO
)
2866 features
|= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO
;
2868 if (features
& BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA
)
2869 btrfs_info(fs_info
, "has skinny extents");
2872 * flag our filesystem as having big metadata blocks if
2873 * they are bigger than the page size
2875 if (btrfs_super_nodesize(disk_super
) > PAGE_SIZE
) {
2876 if (!(features
& BTRFS_FEATURE_INCOMPAT_BIG_METADATA
))
2878 "flagging fs with big metadata feature");
2879 features
|= BTRFS_FEATURE_INCOMPAT_BIG_METADATA
;
2882 nodesize
= btrfs_super_nodesize(disk_super
);
2883 sectorsize
= btrfs_super_sectorsize(disk_super
);
2884 stripesize
= sectorsize
;
2885 fs_info
->dirty_metadata_batch
= nodesize
* (1 + ilog2(nr_cpu_ids
));
2886 fs_info
->delalloc_batch
= sectorsize
* 512 * (1 + ilog2(nr_cpu_ids
));
2889 * mixed block groups end up with duplicate but slightly offset
2890 * extent buffers for the same range. It leads to corruptions
2892 if ((features
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
) &&
2893 (sectorsize
!= nodesize
)) {
2895 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2896 nodesize
, sectorsize
);
2901 * Needn't use the lock because there is no other task which will
2904 btrfs_set_super_incompat_flags(disk_super
, features
);
2906 features
= btrfs_super_compat_ro_flags(disk_super
) &
2907 ~BTRFS_FEATURE_COMPAT_RO_SUPP
;
2908 if (!(sb
->s_flags
& MS_RDONLY
) && features
) {
2910 "cannot mount read-write because of unsupported optional features (%llx)",
2916 max_active
= fs_info
->thread_pool_size
;
2918 ret
= btrfs_init_workqueues(fs_info
, fs_devices
);
2921 goto fail_sb_buffer
;
2924 fs_info
->bdi
.ra_pages
*= btrfs_super_num_devices(disk_super
);
2925 fs_info
->bdi
.ra_pages
= max(fs_info
->bdi
.ra_pages
,
2928 tree_root
->nodesize
= nodesize
;
2929 tree_root
->sectorsize
= sectorsize
;
2930 tree_root
->stripesize
= stripesize
;
2932 sb
->s_blocksize
= sectorsize
;
2933 sb
->s_blocksize_bits
= blksize_bits(sectorsize
);
2935 mutex_lock(&fs_info
->chunk_mutex
);
2936 ret
= btrfs_read_sys_array(tree_root
);
2937 mutex_unlock(&fs_info
->chunk_mutex
);
2939 btrfs_err(fs_info
, "failed to read the system array: %d", ret
);
2940 goto fail_sb_buffer
;
2943 generation
= btrfs_super_chunk_root_generation(disk_super
);
2945 __setup_root(nodesize
, sectorsize
, stripesize
, chunk_root
,
2946 fs_info
, BTRFS_CHUNK_TREE_OBJECTID
);
2948 chunk_root
->node
= read_tree_block(chunk_root
,
2949 btrfs_super_chunk_root(disk_super
),
2951 if (IS_ERR(chunk_root
->node
) ||
2952 !extent_buffer_uptodate(chunk_root
->node
)) {
2953 btrfs_err(fs_info
, "failed to read chunk root");
2954 if (!IS_ERR(chunk_root
->node
))
2955 free_extent_buffer(chunk_root
->node
);
2956 chunk_root
->node
= NULL
;
2957 goto fail_tree_roots
;
2959 btrfs_set_root_node(&chunk_root
->root_item
, chunk_root
->node
);
2960 chunk_root
->commit_root
= btrfs_root_node(chunk_root
);
2962 read_extent_buffer(chunk_root
->node
, fs_info
->chunk_tree_uuid
,
2963 btrfs_header_chunk_tree_uuid(chunk_root
->node
), BTRFS_UUID_SIZE
);
2965 ret
= btrfs_read_chunk_tree(chunk_root
);
2967 btrfs_err(fs_info
, "failed to read chunk tree: %d", ret
);
2968 goto fail_tree_roots
;
2972 * keep the device that is marked to be the target device for the
2973 * dev_replace procedure
2975 btrfs_close_extra_devices(fs_devices
, 0);
2977 if (!fs_devices
->latest_bdev
) {
2978 btrfs_err(fs_info
, "failed to read devices");
2979 goto fail_tree_roots
;
2983 generation
= btrfs_super_generation(disk_super
);
2985 tree_root
->node
= read_tree_block(tree_root
,
2986 btrfs_super_root(disk_super
),
2988 if (IS_ERR(tree_root
->node
) ||
2989 !extent_buffer_uptodate(tree_root
->node
)) {
2990 btrfs_warn(fs_info
, "failed to read tree root");
2991 if (!IS_ERR(tree_root
->node
))
2992 free_extent_buffer(tree_root
->node
);
2993 tree_root
->node
= NULL
;
2994 goto recovery_tree_root
;
2997 btrfs_set_root_node(&tree_root
->root_item
, tree_root
->node
);
2998 tree_root
->commit_root
= btrfs_root_node(tree_root
);
2999 btrfs_set_root_refs(&tree_root
->root_item
, 1);
3001 mutex_lock(&tree_root
->objectid_mutex
);
3002 ret
= btrfs_find_highest_objectid(tree_root
,
3003 &tree_root
->highest_objectid
);
3005 mutex_unlock(&tree_root
->objectid_mutex
);
3006 goto recovery_tree_root
;
3009 ASSERT(tree_root
->highest_objectid
<= BTRFS_LAST_FREE_OBJECTID
);
3011 mutex_unlock(&tree_root
->objectid_mutex
);
3013 ret
= btrfs_read_roots(fs_info
, tree_root
);
3015 goto recovery_tree_root
;
3017 fs_info
->generation
= generation
;
3018 fs_info
->last_trans_committed
= generation
;
3020 ret
= btrfs_recover_balance(fs_info
);
3022 btrfs_err(fs_info
, "failed to recover balance: %d", ret
);
3023 goto fail_block_groups
;
3026 ret
= btrfs_init_dev_stats(fs_info
);
3028 btrfs_err(fs_info
, "failed to init dev_stats: %d", ret
);
3029 goto fail_block_groups
;
3032 ret
= btrfs_init_dev_replace(fs_info
);
3034 btrfs_err(fs_info
, "failed to init dev_replace: %d", ret
);
3035 goto fail_block_groups
;
3038 btrfs_close_extra_devices(fs_devices
, 1);
3040 ret
= btrfs_sysfs_add_fsid(fs_devices
, NULL
);
3042 btrfs_err(fs_info
, "failed to init sysfs fsid interface: %d",
3044 goto fail_block_groups
;
3047 ret
= btrfs_sysfs_add_device(fs_devices
);
3049 btrfs_err(fs_info
, "failed to init sysfs device interface: %d",
3051 goto fail_fsdev_sysfs
;
3054 ret
= btrfs_sysfs_add_mounted(fs_info
);
3056 btrfs_err(fs_info
, "failed to init sysfs interface: %d", ret
);
3057 goto fail_fsdev_sysfs
;
3060 ret
= btrfs_init_space_info(fs_info
);
3062 btrfs_err(fs_info
, "failed to initialize space info: %d", ret
);
3066 ret
= btrfs_read_block_groups(fs_info
->extent_root
);
3068 btrfs_err(fs_info
, "failed to read block groups: %d", ret
);
3071 fs_info
->num_tolerated_disk_barrier_failures
=
3072 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info
);
3073 if (fs_info
->fs_devices
->missing_devices
>
3074 fs_info
->num_tolerated_disk_barrier_failures
&&
3075 !(sb
->s_flags
& MS_RDONLY
)) {
3077 "missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
3078 fs_info
->fs_devices
->missing_devices
,
3079 fs_info
->num_tolerated_disk_barrier_failures
);
3083 fs_info
->cleaner_kthread
= kthread_run(cleaner_kthread
, tree_root
,
3085 if (IS_ERR(fs_info
->cleaner_kthread
))
3088 fs_info
->transaction_kthread
= kthread_run(transaction_kthread
,
3090 "btrfs-transaction");
3091 if (IS_ERR(fs_info
->transaction_kthread
))
3094 if (!btrfs_test_opt(tree_root
->fs_info
, SSD
) &&
3095 !btrfs_test_opt(tree_root
->fs_info
, NOSSD
) &&
3096 !fs_info
->fs_devices
->rotating
) {
3097 btrfs_info(fs_info
, "detected SSD devices, enabling SSD mode");
3098 btrfs_set_opt(fs_info
->mount_opt
, SSD
);
3102 * Mount does not set all options immediately, we can do it now and do
3103 * not have to wait for transaction commit
3105 btrfs_apply_pending_changes(fs_info
);
3107 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3108 if (btrfs_test_opt(tree_root
->fs_info
, CHECK_INTEGRITY
)) {
3109 ret
= btrfsic_mount(tree_root
, fs_devices
,
3110 btrfs_test_opt(tree_root
->fs_info
,
3111 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA
) ?
3113 fs_info
->check_integrity_print_mask
);
3116 "failed to initialize integrity check module: %d",
3120 ret
= btrfs_read_qgroup_config(fs_info
);
3122 goto fail_trans_kthread
;
3124 /* do not make disk changes in broken FS or nologreplay is given */
3125 if (btrfs_super_log_root(disk_super
) != 0 &&
3126 !btrfs_test_opt(tree_root
->fs_info
, NOLOGREPLAY
)) {
3127 ret
= btrfs_replay_log(fs_info
, fs_devices
);
3134 ret
= btrfs_find_orphan_roots(tree_root
);
3138 if (!(sb
->s_flags
& MS_RDONLY
)) {
3139 ret
= btrfs_cleanup_fs_roots(fs_info
);
3143 mutex_lock(&fs_info
->cleaner_mutex
);
3144 ret
= btrfs_recover_relocation(tree_root
);
3145 mutex_unlock(&fs_info
->cleaner_mutex
);
3147 btrfs_warn(fs_info
, "failed to recover relocation: %d",
3154 location
.objectid
= BTRFS_FS_TREE_OBJECTID
;
3155 location
.type
= BTRFS_ROOT_ITEM_KEY
;
3156 location
.offset
= 0;
3158 fs_info
->fs_root
= btrfs_read_fs_root_no_name(fs_info
, &location
);
3159 if (IS_ERR(fs_info
->fs_root
)) {
3160 err
= PTR_ERR(fs_info
->fs_root
);
3164 if (sb
->s_flags
& MS_RDONLY
)
3167 if (btrfs_test_opt(fs_info
, CLEAR_CACHE
) &&
3168 btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
)) {
3169 clear_free_space_tree
= 1;
3170 } else if (btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
) &&
3171 !btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE_VALID
)) {
3172 btrfs_warn(fs_info
, "free space tree is invalid");
3173 clear_free_space_tree
= 1;
3176 if (clear_free_space_tree
) {
3177 btrfs_info(fs_info
, "clearing free space tree");
3178 ret
= btrfs_clear_free_space_tree(fs_info
);
3181 "failed to clear free space tree: %d", ret
);
3182 close_ctree(tree_root
);
3187 if (btrfs_test_opt(tree_root
->fs_info
, FREE_SPACE_TREE
) &&
3188 !btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
)) {
3189 btrfs_info(fs_info
, "creating free space tree");
3190 ret
= btrfs_create_free_space_tree(fs_info
);
3193 "failed to create free space tree: %d", ret
);
3194 close_ctree(tree_root
);
3199 down_read(&fs_info
->cleanup_work_sem
);
3200 if ((ret
= btrfs_orphan_cleanup(fs_info
->fs_root
)) ||
3201 (ret
= btrfs_orphan_cleanup(fs_info
->tree_root
))) {
3202 up_read(&fs_info
->cleanup_work_sem
);
3203 close_ctree(tree_root
);
3206 up_read(&fs_info
->cleanup_work_sem
);
3208 ret
= btrfs_resume_balance_async(fs_info
);
3210 btrfs_warn(fs_info
, "failed to resume balance: %d", ret
);
3211 close_ctree(tree_root
);
3215 ret
= btrfs_resume_dev_replace_async(fs_info
);
3217 btrfs_warn(fs_info
, "failed to resume device replace: %d", ret
);
3218 close_ctree(tree_root
);
3222 btrfs_qgroup_rescan_resume(fs_info
);
3224 if (!fs_info
->uuid_root
) {
3225 btrfs_info(fs_info
, "creating UUID tree");
3226 ret
= btrfs_create_uuid_tree(fs_info
);
3229 "failed to create the UUID tree: %d", ret
);
3230 close_ctree(tree_root
);
3233 } else if (btrfs_test_opt(tree_root
->fs_info
, RESCAN_UUID_TREE
) ||
3234 fs_info
->generation
!=
3235 btrfs_super_uuid_tree_generation(disk_super
)) {
3236 btrfs_info(fs_info
, "checking UUID tree");
3237 ret
= btrfs_check_uuid_tree(fs_info
);
3240 "failed to check the UUID tree: %d", ret
);
3241 close_ctree(tree_root
);
3245 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN
, &fs_info
->flags
);
3247 set_bit(BTRFS_FS_OPEN
, &fs_info
->flags
);
3250 * backuproot only affect mount behavior, and if open_ctree succeeded,
3251 * no need to keep the flag
3253 btrfs_clear_opt(fs_info
->mount_opt
, USEBACKUPROOT
);
3258 btrfs_free_qgroup_config(fs_info
);
3260 kthread_stop(fs_info
->transaction_kthread
);
3261 btrfs_cleanup_transaction(fs_info
->tree_root
);
3262 btrfs_free_fs_roots(fs_info
);
3264 kthread_stop(fs_info
->cleaner_kthread
);
3267 * make sure we're done with the btree inode before we stop our
3270 filemap_write_and_wait(fs_info
->btree_inode
->i_mapping
);
3273 btrfs_sysfs_remove_mounted(fs_info
);
3276 btrfs_sysfs_remove_fsid(fs_info
->fs_devices
);
3279 btrfs_put_block_group_cache(fs_info
);
3280 btrfs_free_block_groups(fs_info
);
3283 free_root_pointers(fs_info
, 1);
3284 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
3287 btrfs_stop_all_workers(fs_info
);
3290 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
3292 iput(fs_info
->btree_inode
);
3294 percpu_counter_destroy(&fs_info
->bio_counter
);
3295 fail_delalloc_bytes
:
3296 percpu_counter_destroy(&fs_info
->delalloc_bytes
);
3297 fail_dirty_metadata_bytes
:
3298 percpu_counter_destroy(&fs_info
->dirty_metadata_bytes
);
3300 bdi_destroy(&fs_info
->bdi
);
3302 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
3304 btrfs_free_stripe_hash_table(fs_info
);
3305 btrfs_close_devices(fs_info
->fs_devices
);
3309 if (!btrfs_test_opt(tree_root
->fs_info
, USEBACKUPROOT
))
3310 goto fail_tree_roots
;
3312 free_root_pointers(fs_info
, 0);
3314 /* don't use the log in recovery mode, it won't be valid */
3315 btrfs_set_super_log_root(disk_super
, 0);
3317 /* we can't trust the free space cache either */
3318 btrfs_set_opt(fs_info
->mount_opt
, CLEAR_CACHE
);
3320 ret
= next_root_backup(fs_info
, fs_info
->super_copy
,
3321 &num_backups_tried
, &backup_index
);
3323 goto fail_block_groups
;
3324 goto retry_root_backup
;
3327 static void btrfs_end_buffer_write_sync(struct buffer_head
*bh
, int uptodate
)
3330 set_buffer_uptodate(bh
);
3332 struct btrfs_device
*device
= (struct btrfs_device
*)
3335 btrfs_warn_rl_in_rcu(device
->dev_root
->fs_info
,
3336 "lost page write due to IO error on %s",
3337 rcu_str_deref(device
->name
));
3338 /* note, we don't set_buffer_write_io_error because we have
3339 * our own ways of dealing with the IO errors
3341 clear_buffer_uptodate(bh
);
3342 btrfs_dev_stat_inc_and_print(device
, BTRFS_DEV_STAT_WRITE_ERRS
);
3348 int btrfs_read_dev_one_super(struct block_device
*bdev
, int copy_num
,
3349 struct buffer_head
**bh_ret
)
3351 struct buffer_head
*bh
;
3352 struct btrfs_super_block
*super
;
3355 bytenr
= btrfs_sb_offset(copy_num
);
3356 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>= i_size_read(bdev
->bd_inode
))
3359 bh
= __bread(bdev
, bytenr
/ 4096, BTRFS_SUPER_INFO_SIZE
);
3361 * If we fail to read from the underlying devices, as of now
3362 * the best option we have is to mark it EIO.
3367 super
= (struct btrfs_super_block
*)bh
->b_data
;
3368 if (btrfs_super_bytenr(super
) != bytenr
||
3369 btrfs_super_magic(super
) != BTRFS_MAGIC
) {
3379 struct buffer_head
*btrfs_read_dev_super(struct block_device
*bdev
)
3381 struct buffer_head
*bh
;
3382 struct buffer_head
*latest
= NULL
;
3383 struct btrfs_super_block
*super
;
3388 /* we would like to check all the supers, but that would make
3389 * a btrfs mount succeed after a mkfs from a different FS.
3390 * So, we need to add a special mount option to scan for
3391 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3393 for (i
= 0; i
< 1; i
++) {
3394 ret
= btrfs_read_dev_one_super(bdev
, i
, &bh
);
3398 super
= (struct btrfs_super_block
*)bh
->b_data
;
3400 if (!latest
|| btrfs_super_generation(super
) > transid
) {
3403 transid
= btrfs_super_generation(super
);
3410 return ERR_PTR(ret
);
3416 * this should be called twice, once with wait == 0 and
3417 * once with wait == 1. When wait == 0 is done, all the buffer heads
3418 * we write are pinned.
3420 * They are released when wait == 1 is done.
3421 * max_mirrors must be the same for both runs, and it indicates how
3422 * many supers on this one device should be written.
3424 * max_mirrors == 0 means to write them all.
3426 static int write_dev_supers(struct btrfs_device
*device
,
3427 struct btrfs_super_block
*sb
,
3428 int do_barriers
, int wait
, int max_mirrors
)
3430 struct buffer_head
*bh
;
3437 if (max_mirrors
== 0)
3438 max_mirrors
= BTRFS_SUPER_MIRROR_MAX
;
3440 for (i
= 0; i
< max_mirrors
; i
++) {
3441 bytenr
= btrfs_sb_offset(i
);
3442 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>=
3443 device
->commit_total_bytes
)
3447 bh
= __find_get_block(device
->bdev
, bytenr
/ 4096,
3448 BTRFS_SUPER_INFO_SIZE
);
3454 if (!buffer_uptodate(bh
))
3457 /* drop our reference */
3460 /* drop the reference from the wait == 0 run */
3464 btrfs_set_super_bytenr(sb
, bytenr
);
3467 crc
= btrfs_csum_data((char *)sb
+
3468 BTRFS_CSUM_SIZE
, crc
,
3469 BTRFS_SUPER_INFO_SIZE
-
3471 btrfs_csum_final(crc
, sb
->csum
);
3474 * one reference for us, and we leave it for the
3477 bh
= __getblk(device
->bdev
, bytenr
/ 4096,
3478 BTRFS_SUPER_INFO_SIZE
);
3480 btrfs_err(device
->dev_root
->fs_info
,
3481 "couldn't get super buffer head for bytenr %llu",
3487 memcpy(bh
->b_data
, sb
, BTRFS_SUPER_INFO_SIZE
);
3489 /* one reference for submit_bh */
3492 set_buffer_uptodate(bh
);
3494 bh
->b_end_io
= btrfs_end_buffer_write_sync
;
3495 bh
->b_private
= device
;
3499 * we fua the first super. The others we allow
3503 ret
= btrfsic_submit_bh(REQ_OP_WRITE
, WRITE_FUA
, bh
);
3505 ret
= btrfsic_submit_bh(REQ_OP_WRITE
, WRITE_SYNC
, bh
);
3509 return errors
< i
? 0 : -1;
3513 * endio for the write_dev_flush, this will wake anyone waiting
3514 * for the barrier when it is done
3516 static void btrfs_end_empty_barrier(struct bio
*bio
)
3518 if (bio
->bi_private
)
3519 complete(bio
->bi_private
);
3524 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3525 * sent down. With wait == 1, it waits for the previous flush.
3527 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3530 static int write_dev_flush(struct btrfs_device
*device
, int wait
)
3535 if (device
->nobarriers
)
3539 bio
= device
->flush_bio
;
3543 wait_for_completion(&device
->flush_wait
);
3545 if (bio
->bi_error
) {
3546 ret
= bio
->bi_error
;
3547 btrfs_dev_stat_inc_and_print(device
,
3548 BTRFS_DEV_STAT_FLUSH_ERRS
);
3551 /* drop the reference from the wait == 0 run */
3553 device
->flush_bio
= NULL
;
3559 * one reference for us, and we leave it for the
3562 device
->flush_bio
= NULL
;
3563 bio
= btrfs_io_bio_alloc(GFP_NOFS
, 0);
3567 bio
->bi_end_io
= btrfs_end_empty_barrier
;
3568 bio
->bi_bdev
= device
->bdev
;
3569 bio_set_op_attrs(bio
, REQ_OP_WRITE
, WRITE_FLUSH
);
3570 init_completion(&device
->flush_wait
);
3571 bio
->bi_private
= &device
->flush_wait
;
3572 device
->flush_bio
= bio
;
3575 btrfsic_submit_bio(bio
);
3581 * send an empty flush down to each device in parallel,
3582 * then wait for them
3584 static int barrier_all_devices(struct btrfs_fs_info
*info
)
3586 struct list_head
*head
;
3587 struct btrfs_device
*dev
;
3588 int errors_send
= 0;
3589 int errors_wait
= 0;
3592 /* send down all the barriers */
3593 head
= &info
->fs_devices
->devices
;
3594 list_for_each_entry_rcu(dev
, head
, dev_list
) {
3601 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
3604 ret
= write_dev_flush(dev
, 0);
3609 /* wait for all the barriers */
3610 list_for_each_entry_rcu(dev
, head
, dev_list
) {
3617 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
3620 ret
= write_dev_flush(dev
, 1);
3624 if (errors_send
> info
->num_tolerated_disk_barrier_failures
||
3625 errors_wait
> info
->num_tolerated_disk_barrier_failures
)
3630 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags
)
3633 int min_tolerated
= INT_MAX
;
3635 if ((flags
& BTRFS_BLOCK_GROUP_PROFILE_MASK
) == 0 ||
3636 (flags
& BTRFS_AVAIL_ALLOC_BIT_SINGLE
))
3637 min_tolerated
= min(min_tolerated
,
3638 btrfs_raid_array
[BTRFS_RAID_SINGLE
].
3639 tolerated_failures
);
3641 for (raid_type
= 0; raid_type
< BTRFS_NR_RAID_TYPES
; raid_type
++) {
3642 if (raid_type
== BTRFS_RAID_SINGLE
)
3644 if (!(flags
& btrfs_raid_group
[raid_type
]))
3646 min_tolerated
= min(min_tolerated
,
3647 btrfs_raid_array
[raid_type
].
3648 tolerated_failures
);
3651 if (min_tolerated
== INT_MAX
) {
3652 pr_warn("BTRFS: unknown raid flag: %llu", flags
);
3656 return min_tolerated
;
3659 int btrfs_calc_num_tolerated_disk_barrier_failures(
3660 struct btrfs_fs_info
*fs_info
)
3662 struct btrfs_ioctl_space_info space
;
3663 struct btrfs_space_info
*sinfo
;
3664 u64 types
[] = {BTRFS_BLOCK_GROUP_DATA
,
3665 BTRFS_BLOCK_GROUP_SYSTEM
,
3666 BTRFS_BLOCK_GROUP_METADATA
,
3667 BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_METADATA
};
3670 int num_tolerated_disk_barrier_failures
=
3671 (int)fs_info
->fs_devices
->num_devices
;
3673 for (i
= 0; i
< ARRAY_SIZE(types
); i
++) {
3674 struct btrfs_space_info
*tmp
;
3678 list_for_each_entry_rcu(tmp
, &fs_info
->space_info
, list
) {
3679 if (tmp
->flags
== types
[i
]) {
3689 down_read(&sinfo
->groups_sem
);
3690 for (c
= 0; c
< BTRFS_NR_RAID_TYPES
; c
++) {
3693 if (list_empty(&sinfo
->block_groups
[c
]))
3696 btrfs_get_block_group_info(&sinfo
->block_groups
[c
],
3698 if (space
.total_bytes
== 0 || space
.used_bytes
== 0)
3700 flags
= space
.flags
;
3702 num_tolerated_disk_barrier_failures
= min(
3703 num_tolerated_disk_barrier_failures
,
3704 btrfs_get_num_tolerated_disk_barrier_failures(
3707 up_read(&sinfo
->groups_sem
);
3710 return num_tolerated_disk_barrier_failures
;
3713 static int write_all_supers(struct btrfs_root
*root
, int max_mirrors
)
3715 struct list_head
*head
;
3716 struct btrfs_device
*dev
;
3717 struct btrfs_super_block
*sb
;
3718 struct btrfs_dev_item
*dev_item
;
3722 int total_errors
= 0;
3725 do_barriers
= !btrfs_test_opt(root
->fs_info
, NOBARRIER
);
3726 backup_super_roots(root
->fs_info
);
3728 sb
= root
->fs_info
->super_for_commit
;
3729 dev_item
= &sb
->dev_item
;
3731 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
3732 head
= &root
->fs_info
->fs_devices
->devices
;
3733 max_errors
= btrfs_super_num_devices(root
->fs_info
->super_copy
) - 1;
3736 ret
= barrier_all_devices(root
->fs_info
);
3739 &root
->fs_info
->fs_devices
->device_list_mutex
);
3740 btrfs_handle_fs_error(root
->fs_info
, ret
,
3741 "errors while submitting device barriers.");
3746 list_for_each_entry_rcu(dev
, head
, dev_list
) {
3751 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
3754 btrfs_set_stack_device_generation(dev_item
, 0);
3755 btrfs_set_stack_device_type(dev_item
, dev
->type
);
3756 btrfs_set_stack_device_id(dev_item
, dev
->devid
);
3757 btrfs_set_stack_device_total_bytes(dev_item
,
3758 dev
->commit_total_bytes
);
3759 btrfs_set_stack_device_bytes_used(dev_item
,
3760 dev
->commit_bytes_used
);
3761 btrfs_set_stack_device_io_align(dev_item
, dev
->io_align
);
3762 btrfs_set_stack_device_io_width(dev_item
, dev
->io_width
);
3763 btrfs_set_stack_device_sector_size(dev_item
, dev
->sector_size
);
3764 memcpy(dev_item
->uuid
, dev
->uuid
, BTRFS_UUID_SIZE
);
3765 memcpy(dev_item
->fsid
, dev
->fs_devices
->fsid
, BTRFS_UUID_SIZE
);
3767 flags
= btrfs_super_flags(sb
);
3768 btrfs_set_super_flags(sb
, flags
| BTRFS_HEADER_FLAG_WRITTEN
);
3770 ret
= write_dev_supers(dev
, sb
, do_barriers
, 0, max_mirrors
);
3774 if (total_errors
> max_errors
) {
3775 btrfs_err(root
->fs_info
, "%d errors while writing supers",
3777 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
3779 /* FUA is masked off if unsupported and can't be the reason */
3780 btrfs_handle_fs_error(root
->fs_info
, -EIO
,
3781 "%d errors while writing supers", total_errors
);
3786 list_for_each_entry_rcu(dev
, head
, dev_list
) {
3789 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
3792 ret
= write_dev_supers(dev
, sb
, do_barriers
, 1, max_mirrors
);
3796 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
3797 if (total_errors
> max_errors
) {
3798 btrfs_handle_fs_error(root
->fs_info
, -EIO
,
3799 "%d errors while writing supers", total_errors
);
3805 int write_ctree_super(struct btrfs_trans_handle
*trans
,
3806 struct btrfs_root
*root
, int max_mirrors
)
3808 return write_all_supers(root
, max_mirrors
);
3811 /* Drop a fs root from the radix tree and free it. */
3812 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info
*fs_info
,
3813 struct btrfs_root
*root
)
3815 spin_lock(&fs_info
->fs_roots_radix_lock
);
3816 radix_tree_delete(&fs_info
->fs_roots_radix
,
3817 (unsigned long)root
->root_key
.objectid
);
3818 spin_unlock(&fs_info
->fs_roots_radix_lock
);
3820 if (btrfs_root_refs(&root
->root_item
) == 0)
3821 synchronize_srcu(&fs_info
->subvol_srcu
);
3823 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
3824 btrfs_free_log(NULL
, root
);
3825 if (root
->reloc_root
) {
3826 free_extent_buffer(root
->reloc_root
->node
);
3827 free_extent_buffer(root
->reloc_root
->commit_root
);
3828 btrfs_put_fs_root(root
->reloc_root
);
3829 root
->reloc_root
= NULL
;
3833 if (root
->free_ino_pinned
)
3834 __btrfs_remove_free_space_cache(root
->free_ino_pinned
);
3835 if (root
->free_ino_ctl
)
3836 __btrfs_remove_free_space_cache(root
->free_ino_ctl
);
3840 static void free_fs_root(struct btrfs_root
*root
)
3842 iput(root
->ino_cache_inode
);
3843 WARN_ON(!RB_EMPTY_ROOT(&root
->inode_tree
));
3844 btrfs_free_block_rsv(root
, root
->orphan_block_rsv
);
3845 root
->orphan_block_rsv
= NULL
;
3847 free_anon_bdev(root
->anon_dev
);
3848 if (root
->subv_writers
)
3849 btrfs_free_subvolume_writers(root
->subv_writers
);
3850 free_extent_buffer(root
->node
);
3851 free_extent_buffer(root
->commit_root
);
3852 kfree(root
->free_ino_ctl
);
3853 kfree(root
->free_ino_pinned
);
3855 btrfs_put_fs_root(root
);
3858 void btrfs_free_fs_root(struct btrfs_root
*root
)
3863 int btrfs_cleanup_fs_roots(struct btrfs_fs_info
*fs_info
)
3865 u64 root_objectid
= 0;
3866 struct btrfs_root
*gang
[8];
3869 unsigned int ret
= 0;
3873 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
3874 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
3875 (void **)gang
, root_objectid
,
3878 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
3881 root_objectid
= gang
[ret
- 1]->root_key
.objectid
+ 1;
3883 for (i
= 0; i
< ret
; i
++) {
3884 /* Avoid to grab roots in dead_roots */
3885 if (btrfs_root_refs(&gang
[i
]->root_item
) == 0) {
3889 /* grab all the search result for later use */
3890 gang
[i
] = btrfs_grab_fs_root(gang
[i
]);
3892 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
3894 for (i
= 0; i
< ret
; i
++) {
3897 root_objectid
= gang
[i
]->root_key
.objectid
;
3898 err
= btrfs_orphan_cleanup(gang
[i
]);
3901 btrfs_put_fs_root(gang
[i
]);
3906 /* release the uncleaned roots due to error */
3907 for (; i
< ret
; i
++) {
3909 btrfs_put_fs_root(gang
[i
]);
3914 int btrfs_commit_super(struct btrfs_root
*root
)
3916 struct btrfs_trans_handle
*trans
;
3918 mutex_lock(&root
->fs_info
->cleaner_mutex
);
3919 btrfs_run_delayed_iputs(root
);
3920 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
3921 wake_up_process(root
->fs_info
->cleaner_kthread
);
3923 /* wait until ongoing cleanup work done */
3924 down_write(&root
->fs_info
->cleanup_work_sem
);
3925 up_write(&root
->fs_info
->cleanup_work_sem
);
3927 trans
= btrfs_join_transaction(root
);
3929 return PTR_ERR(trans
);
3930 return btrfs_commit_transaction(trans
, root
);
3933 void close_ctree(struct btrfs_root
*root
)
3935 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3938 set_bit(BTRFS_FS_CLOSING_START
, &fs_info
->flags
);
3940 /* wait for the qgroup rescan worker to stop */
3941 btrfs_qgroup_wait_for_completion(fs_info
, false);
3943 /* wait for the uuid_scan task to finish */
3944 down(&fs_info
->uuid_tree_rescan_sem
);
3945 /* avoid complains from lockdep et al., set sem back to initial state */
3946 up(&fs_info
->uuid_tree_rescan_sem
);
3948 /* pause restriper - we want to resume on mount */
3949 btrfs_pause_balance(fs_info
);
3951 btrfs_dev_replace_suspend_for_unmount(fs_info
);
3953 btrfs_scrub_cancel(fs_info
);
3955 /* wait for any defraggers to finish */
3956 wait_event(fs_info
->transaction_wait
,
3957 (atomic_read(&fs_info
->defrag_running
) == 0));
3959 /* clear out the rbtree of defraggable inodes */
3960 btrfs_cleanup_defrag_inodes(fs_info
);
3962 cancel_work_sync(&fs_info
->async_reclaim_work
);
3964 if (!(fs_info
->sb
->s_flags
& MS_RDONLY
)) {
3966 * If the cleaner thread is stopped and there are
3967 * block groups queued for removal, the deletion will be
3968 * skipped when we quit the cleaner thread.
3970 btrfs_delete_unused_bgs(root
->fs_info
);
3972 ret
= btrfs_commit_super(root
);
3974 btrfs_err(fs_info
, "commit super ret %d", ret
);
3977 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
3978 btrfs_error_commit_super(root
);
3980 kthread_stop(fs_info
->transaction_kthread
);
3981 kthread_stop(fs_info
->cleaner_kthread
);
3983 set_bit(BTRFS_FS_CLOSING_DONE
, &fs_info
->flags
);
3985 btrfs_free_qgroup_config(fs_info
);
3987 if (percpu_counter_sum(&fs_info
->delalloc_bytes
)) {
3988 btrfs_info(fs_info
, "at unmount delalloc count %lld",
3989 percpu_counter_sum(&fs_info
->delalloc_bytes
));
3992 btrfs_sysfs_remove_mounted(fs_info
);
3993 btrfs_sysfs_remove_fsid(fs_info
->fs_devices
);
3995 btrfs_free_fs_roots(fs_info
);
3997 btrfs_put_block_group_cache(fs_info
);
3999 btrfs_free_block_groups(fs_info
);
4002 * we must make sure there is not any read request to
4003 * submit after we stopping all workers.
4005 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
4006 btrfs_stop_all_workers(fs_info
);
4008 clear_bit(BTRFS_FS_OPEN
, &fs_info
->flags
);
4009 free_root_pointers(fs_info
, 1);
4011 iput(fs_info
->btree_inode
);
4013 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4014 if (btrfs_test_opt(root
->fs_info
, CHECK_INTEGRITY
))
4015 btrfsic_unmount(root
, fs_info
->fs_devices
);
4018 btrfs_close_devices(fs_info
->fs_devices
);
4019 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
4021 percpu_counter_destroy(&fs_info
->dirty_metadata_bytes
);
4022 percpu_counter_destroy(&fs_info
->delalloc_bytes
);
4023 percpu_counter_destroy(&fs_info
->bio_counter
);
4024 bdi_destroy(&fs_info
->bdi
);
4025 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
4027 btrfs_free_stripe_hash_table(fs_info
);
4029 __btrfs_free_block_rsv(root
->orphan_block_rsv
);
4030 root
->orphan_block_rsv
= NULL
;
4033 while (!list_empty(&fs_info
->pinned_chunks
)) {
4034 struct extent_map
*em
;
4036 em
= list_first_entry(&fs_info
->pinned_chunks
,
4037 struct extent_map
, list
);
4038 list_del_init(&em
->list
);
4039 free_extent_map(em
);
4041 unlock_chunks(root
);
4044 int btrfs_buffer_uptodate(struct extent_buffer
*buf
, u64 parent_transid
,
4048 struct inode
*btree_inode
= buf
->pages
[0]->mapping
->host
;
4050 ret
= extent_buffer_uptodate(buf
);
4054 ret
= verify_parent_transid(&BTRFS_I(btree_inode
)->io_tree
, buf
,
4055 parent_transid
, atomic
);
4061 void btrfs_mark_buffer_dirty(struct extent_buffer
*buf
)
4063 struct btrfs_root
*root
;
4064 u64 transid
= btrfs_header_generation(buf
);
4067 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4069 * This is a fast path so only do this check if we have sanity tests
4070 * enabled. Normal people shouldn't be marking dummy buffers as dirty
4071 * outside of the sanity tests.
4073 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY
, &buf
->bflags
)))
4076 root
= BTRFS_I(buf
->pages
[0]->mapping
->host
)->root
;
4077 btrfs_assert_tree_locked(buf
);
4078 if (transid
!= root
->fs_info
->generation
)
4079 WARN(1, KERN_CRIT
"btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4080 buf
->start
, transid
, root
->fs_info
->generation
);
4081 was_dirty
= set_extent_buffer_dirty(buf
);
4083 __percpu_counter_add(&root
->fs_info
->dirty_metadata_bytes
,
4085 root
->fs_info
->dirty_metadata_batch
);
4086 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4087 if (btrfs_header_level(buf
) == 0 && check_leaf(root
, buf
)) {
4088 btrfs_print_leaf(root
, buf
);
4094 static void __btrfs_btree_balance_dirty(struct btrfs_root
*root
,
4098 * looks as though older kernels can get into trouble with
4099 * this code, they end up stuck in balance_dirty_pages forever
4103 if (current
->flags
& PF_MEMALLOC
)
4107 btrfs_balance_delayed_items(root
);
4109 ret
= percpu_counter_compare(&root
->fs_info
->dirty_metadata_bytes
,
4110 BTRFS_DIRTY_METADATA_THRESH
);
4112 balance_dirty_pages_ratelimited(
4113 root
->fs_info
->btree_inode
->i_mapping
);
4117 void btrfs_btree_balance_dirty(struct btrfs_root
*root
)
4119 __btrfs_btree_balance_dirty(root
, 1);
4122 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root
*root
)
4124 __btrfs_btree_balance_dirty(root
, 0);
4127 int btrfs_read_buffer(struct extent_buffer
*buf
, u64 parent_transid
)
4129 struct btrfs_root
*root
= BTRFS_I(buf
->pages
[0]->mapping
->host
)->root
;
4130 return btree_read_extent_buffer_pages(root
, buf
, parent_transid
);
4133 static int btrfs_check_super_valid(struct btrfs_fs_info
*fs_info
,
4136 struct btrfs_super_block
*sb
= fs_info
->super_copy
;
4137 u64 nodesize
= btrfs_super_nodesize(sb
);
4138 u64 sectorsize
= btrfs_super_sectorsize(sb
);
4141 if (btrfs_super_magic(sb
) != BTRFS_MAGIC
) {
4142 btrfs_err(fs_info
, "no valid FS found");
4145 if (btrfs_super_flags(sb
) & ~BTRFS_SUPER_FLAG_SUPP
)
4146 btrfs_warn(fs_info
, "unrecognized super flag: %llu",
4147 btrfs_super_flags(sb
) & ~BTRFS_SUPER_FLAG_SUPP
);
4148 if (btrfs_super_root_level(sb
) >= BTRFS_MAX_LEVEL
) {
4149 btrfs_err(fs_info
, "tree_root level too big: %d >= %d",
4150 btrfs_super_root_level(sb
), BTRFS_MAX_LEVEL
);
4153 if (btrfs_super_chunk_root_level(sb
) >= BTRFS_MAX_LEVEL
) {
4154 btrfs_err(fs_info
, "chunk_root level too big: %d >= %d",
4155 btrfs_super_chunk_root_level(sb
), BTRFS_MAX_LEVEL
);
4158 if (btrfs_super_log_root_level(sb
) >= BTRFS_MAX_LEVEL
) {
4159 btrfs_err(fs_info
, "log_root level too big: %d >= %d",
4160 btrfs_super_log_root_level(sb
), BTRFS_MAX_LEVEL
);
4165 * Check sectorsize and nodesize first, other check will need it.
4166 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
4168 if (!is_power_of_2(sectorsize
) || sectorsize
< 4096 ||
4169 sectorsize
> BTRFS_MAX_METADATA_BLOCKSIZE
) {
4170 btrfs_err(fs_info
, "invalid sectorsize %llu", sectorsize
);
4173 /* Only PAGE SIZE is supported yet */
4174 if (sectorsize
!= PAGE_SIZE
) {
4176 "sectorsize %llu not supported yet, only support %lu",
4177 sectorsize
, PAGE_SIZE
);
4180 if (!is_power_of_2(nodesize
) || nodesize
< sectorsize
||
4181 nodesize
> BTRFS_MAX_METADATA_BLOCKSIZE
) {
4182 btrfs_err(fs_info
, "invalid nodesize %llu", nodesize
);
4185 if (nodesize
!= le32_to_cpu(sb
->__unused_leafsize
)) {
4186 btrfs_err(fs_info
, "invalid leafsize %u, should be %llu",
4187 le32_to_cpu(sb
->__unused_leafsize
), nodesize
);
4191 /* Root alignment check */
4192 if (!IS_ALIGNED(btrfs_super_root(sb
), sectorsize
)) {
4193 btrfs_warn(fs_info
, "tree_root block unaligned: %llu",
4194 btrfs_super_root(sb
));
4197 if (!IS_ALIGNED(btrfs_super_chunk_root(sb
), sectorsize
)) {
4198 btrfs_warn(fs_info
, "chunk_root block unaligned: %llu",
4199 btrfs_super_chunk_root(sb
));
4202 if (!IS_ALIGNED(btrfs_super_log_root(sb
), sectorsize
)) {
4203 btrfs_warn(fs_info
, "log_root block unaligned: %llu",
4204 btrfs_super_log_root(sb
));
4208 if (memcmp(fs_info
->fsid
, sb
->dev_item
.fsid
, BTRFS_UUID_SIZE
) != 0) {
4210 "dev_item UUID does not match fsid: %pU != %pU",
4211 fs_info
->fsid
, sb
->dev_item
.fsid
);
4216 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4219 if (btrfs_super_bytes_used(sb
) < 6 * btrfs_super_nodesize(sb
)) {
4220 btrfs_err(fs_info
, "bytes_used is too small %llu",
4221 btrfs_super_bytes_used(sb
));
4224 if (!is_power_of_2(btrfs_super_stripesize(sb
))) {
4225 btrfs_err(fs_info
, "invalid stripesize %u",
4226 btrfs_super_stripesize(sb
));
4229 if (btrfs_super_num_devices(sb
) > (1UL << 31))
4230 btrfs_warn(fs_info
, "suspicious number of devices: %llu",
4231 btrfs_super_num_devices(sb
));
4232 if (btrfs_super_num_devices(sb
) == 0) {
4233 btrfs_err(fs_info
, "number of devices is 0");
4237 if (btrfs_super_bytenr(sb
) != BTRFS_SUPER_INFO_OFFSET
) {
4238 btrfs_err(fs_info
, "super offset mismatch %llu != %u",
4239 btrfs_super_bytenr(sb
), BTRFS_SUPER_INFO_OFFSET
);
4244 * Obvious sys_chunk_array corruptions, it must hold at least one key
4247 if (btrfs_super_sys_array_size(sb
) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
) {
4248 btrfs_err(fs_info
, "system chunk array too big %u > %u",
4249 btrfs_super_sys_array_size(sb
),
4250 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
);
4253 if (btrfs_super_sys_array_size(sb
) < sizeof(struct btrfs_disk_key
)
4254 + sizeof(struct btrfs_chunk
)) {
4255 btrfs_err(fs_info
, "system chunk array too small %u < %zu",
4256 btrfs_super_sys_array_size(sb
),
4257 sizeof(struct btrfs_disk_key
)
4258 + sizeof(struct btrfs_chunk
));
4263 * The generation is a global counter, we'll trust it more than the others
4264 * but it's still possible that it's the one that's wrong.
4266 if (btrfs_super_generation(sb
) < btrfs_super_chunk_root_generation(sb
))
4268 "suspicious: generation < chunk_root_generation: %llu < %llu",
4269 btrfs_super_generation(sb
),
4270 btrfs_super_chunk_root_generation(sb
));
4271 if (btrfs_super_generation(sb
) < btrfs_super_cache_generation(sb
)
4272 && btrfs_super_cache_generation(sb
) != (u64
)-1)
4274 "suspicious: generation < cache_generation: %llu < %llu",
4275 btrfs_super_generation(sb
),
4276 btrfs_super_cache_generation(sb
));
4281 static void btrfs_error_commit_super(struct btrfs_root
*root
)
4283 mutex_lock(&root
->fs_info
->cleaner_mutex
);
4284 btrfs_run_delayed_iputs(root
);
4285 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
4287 down_write(&root
->fs_info
->cleanup_work_sem
);
4288 up_write(&root
->fs_info
->cleanup_work_sem
);
4290 /* cleanup FS via transaction */
4291 btrfs_cleanup_transaction(root
);
4294 static void btrfs_destroy_ordered_extents(struct btrfs_root
*root
)
4296 struct btrfs_ordered_extent
*ordered
;
4298 spin_lock(&root
->ordered_extent_lock
);
4300 * This will just short circuit the ordered completion stuff which will
4301 * make sure the ordered extent gets properly cleaned up.
4303 list_for_each_entry(ordered
, &root
->ordered_extents
,
4305 set_bit(BTRFS_ORDERED_IOERR
, &ordered
->flags
);
4306 spin_unlock(&root
->ordered_extent_lock
);
4309 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info
*fs_info
)
4311 struct btrfs_root
*root
;
4312 struct list_head splice
;
4314 INIT_LIST_HEAD(&splice
);
4316 spin_lock(&fs_info
->ordered_root_lock
);
4317 list_splice_init(&fs_info
->ordered_roots
, &splice
);
4318 while (!list_empty(&splice
)) {
4319 root
= list_first_entry(&splice
, struct btrfs_root
,
4321 list_move_tail(&root
->ordered_root
,
4322 &fs_info
->ordered_roots
);
4324 spin_unlock(&fs_info
->ordered_root_lock
);
4325 btrfs_destroy_ordered_extents(root
);
4328 spin_lock(&fs_info
->ordered_root_lock
);
4330 spin_unlock(&fs_info
->ordered_root_lock
);
4333 static int btrfs_destroy_delayed_refs(struct btrfs_transaction
*trans
,
4334 struct btrfs_root
*root
)
4336 struct rb_node
*node
;
4337 struct btrfs_delayed_ref_root
*delayed_refs
;
4338 struct btrfs_delayed_ref_node
*ref
;
4341 delayed_refs
= &trans
->delayed_refs
;
4343 spin_lock(&delayed_refs
->lock
);
4344 if (atomic_read(&delayed_refs
->num_entries
) == 0) {
4345 spin_unlock(&delayed_refs
->lock
);
4346 btrfs_info(root
->fs_info
, "delayed_refs has NO entry");
4350 while ((node
= rb_first(&delayed_refs
->href_root
)) != NULL
) {
4351 struct btrfs_delayed_ref_head
*head
;
4352 struct btrfs_delayed_ref_node
*tmp
;
4353 bool pin_bytes
= false;
4355 head
= rb_entry(node
, struct btrfs_delayed_ref_head
,
4357 if (!mutex_trylock(&head
->mutex
)) {
4358 atomic_inc(&head
->node
.refs
);
4359 spin_unlock(&delayed_refs
->lock
);
4361 mutex_lock(&head
->mutex
);
4362 mutex_unlock(&head
->mutex
);
4363 btrfs_put_delayed_ref(&head
->node
);
4364 spin_lock(&delayed_refs
->lock
);
4367 spin_lock(&head
->lock
);
4368 list_for_each_entry_safe_reverse(ref
, tmp
, &head
->ref_list
,
4371 list_del(&ref
->list
);
4372 atomic_dec(&delayed_refs
->num_entries
);
4373 btrfs_put_delayed_ref(ref
);
4375 if (head
->must_insert_reserved
)
4377 btrfs_free_delayed_extent_op(head
->extent_op
);
4378 delayed_refs
->num_heads
--;
4379 if (head
->processing
== 0)
4380 delayed_refs
->num_heads_ready
--;
4381 atomic_dec(&delayed_refs
->num_entries
);
4382 head
->node
.in_tree
= 0;
4383 rb_erase(&head
->href_node
, &delayed_refs
->href_root
);
4384 spin_unlock(&head
->lock
);
4385 spin_unlock(&delayed_refs
->lock
);
4386 mutex_unlock(&head
->mutex
);
4389 btrfs_pin_extent(root
, head
->node
.bytenr
,
4390 head
->node
.num_bytes
, 1);
4391 btrfs_put_delayed_ref(&head
->node
);
4393 spin_lock(&delayed_refs
->lock
);
4396 spin_unlock(&delayed_refs
->lock
);
4401 static void btrfs_destroy_delalloc_inodes(struct btrfs_root
*root
)
4403 struct btrfs_inode
*btrfs_inode
;
4404 struct list_head splice
;
4406 INIT_LIST_HEAD(&splice
);
4408 spin_lock(&root
->delalloc_lock
);
4409 list_splice_init(&root
->delalloc_inodes
, &splice
);
4411 while (!list_empty(&splice
)) {
4412 btrfs_inode
= list_first_entry(&splice
, struct btrfs_inode
,
4415 list_del_init(&btrfs_inode
->delalloc_inodes
);
4416 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
4417 &btrfs_inode
->runtime_flags
);
4418 spin_unlock(&root
->delalloc_lock
);
4420 btrfs_invalidate_inodes(btrfs_inode
->root
);
4422 spin_lock(&root
->delalloc_lock
);
4425 spin_unlock(&root
->delalloc_lock
);
4428 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info
*fs_info
)
4430 struct btrfs_root
*root
;
4431 struct list_head splice
;
4433 INIT_LIST_HEAD(&splice
);
4435 spin_lock(&fs_info
->delalloc_root_lock
);
4436 list_splice_init(&fs_info
->delalloc_roots
, &splice
);
4437 while (!list_empty(&splice
)) {
4438 root
= list_first_entry(&splice
, struct btrfs_root
,
4440 list_del_init(&root
->delalloc_root
);
4441 root
= btrfs_grab_fs_root(root
);
4443 spin_unlock(&fs_info
->delalloc_root_lock
);
4445 btrfs_destroy_delalloc_inodes(root
);
4446 btrfs_put_fs_root(root
);
4448 spin_lock(&fs_info
->delalloc_root_lock
);
4450 spin_unlock(&fs_info
->delalloc_root_lock
);
4453 static int btrfs_destroy_marked_extents(struct btrfs_root
*root
,
4454 struct extent_io_tree
*dirty_pages
,
4458 struct extent_buffer
*eb
;
4463 ret
= find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
4468 clear_extent_bits(dirty_pages
, start
, end
, mark
);
4469 while (start
<= end
) {
4470 eb
= btrfs_find_tree_block(root
->fs_info
, start
);
4471 start
+= root
->nodesize
;
4474 wait_on_extent_buffer_writeback(eb
);
4476 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
,
4478 clear_extent_buffer_dirty(eb
);
4479 free_extent_buffer_stale(eb
);
4486 static int btrfs_destroy_pinned_extent(struct btrfs_root
*root
,
4487 struct extent_io_tree
*pinned_extents
)
4489 struct extent_io_tree
*unpin
;
4495 unpin
= pinned_extents
;
4498 ret
= find_first_extent_bit(unpin
, 0, &start
, &end
,
4499 EXTENT_DIRTY
, NULL
);
4503 clear_extent_dirty(unpin
, start
, end
);
4504 btrfs_error_unpin_extent_range(root
, start
, end
);
4509 if (unpin
== &root
->fs_info
->freed_extents
[0])
4510 unpin
= &root
->fs_info
->freed_extents
[1];
4512 unpin
= &root
->fs_info
->freed_extents
[0];
4520 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache
*cache
)
4522 struct inode
*inode
;
4524 inode
= cache
->io_ctl
.inode
;
4526 invalidate_inode_pages2(inode
->i_mapping
);
4527 BTRFS_I(inode
)->generation
= 0;
4528 cache
->io_ctl
.inode
= NULL
;
4531 btrfs_put_block_group(cache
);
4534 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction
*cur_trans
,
4535 struct btrfs_root
*root
)
4537 struct btrfs_block_group_cache
*cache
;
4539 spin_lock(&cur_trans
->dirty_bgs_lock
);
4540 while (!list_empty(&cur_trans
->dirty_bgs
)) {
4541 cache
= list_first_entry(&cur_trans
->dirty_bgs
,
4542 struct btrfs_block_group_cache
,
4545 btrfs_err(root
->fs_info
,
4546 "orphan block group dirty_bgs list");
4547 spin_unlock(&cur_trans
->dirty_bgs_lock
);
4551 if (!list_empty(&cache
->io_list
)) {
4552 spin_unlock(&cur_trans
->dirty_bgs_lock
);
4553 list_del_init(&cache
->io_list
);
4554 btrfs_cleanup_bg_io(cache
);
4555 spin_lock(&cur_trans
->dirty_bgs_lock
);
4558 list_del_init(&cache
->dirty_list
);
4559 spin_lock(&cache
->lock
);
4560 cache
->disk_cache_state
= BTRFS_DC_ERROR
;
4561 spin_unlock(&cache
->lock
);
4563 spin_unlock(&cur_trans
->dirty_bgs_lock
);
4564 btrfs_put_block_group(cache
);
4565 spin_lock(&cur_trans
->dirty_bgs_lock
);
4567 spin_unlock(&cur_trans
->dirty_bgs_lock
);
4569 while (!list_empty(&cur_trans
->io_bgs
)) {
4570 cache
= list_first_entry(&cur_trans
->io_bgs
,
4571 struct btrfs_block_group_cache
,
4574 btrfs_err(root
->fs_info
,
4575 "orphan block group on io_bgs list");
4579 list_del_init(&cache
->io_list
);
4580 spin_lock(&cache
->lock
);
4581 cache
->disk_cache_state
= BTRFS_DC_ERROR
;
4582 spin_unlock(&cache
->lock
);
4583 btrfs_cleanup_bg_io(cache
);
4587 void btrfs_cleanup_one_transaction(struct btrfs_transaction
*cur_trans
,
4588 struct btrfs_root
*root
)
4590 btrfs_cleanup_dirty_bgs(cur_trans
, root
);
4591 ASSERT(list_empty(&cur_trans
->dirty_bgs
));
4592 ASSERT(list_empty(&cur_trans
->io_bgs
));
4594 btrfs_destroy_delayed_refs(cur_trans
, root
);
4596 cur_trans
->state
= TRANS_STATE_COMMIT_START
;
4597 wake_up(&root
->fs_info
->transaction_blocked_wait
);
4599 cur_trans
->state
= TRANS_STATE_UNBLOCKED
;
4600 wake_up(&root
->fs_info
->transaction_wait
);
4602 btrfs_destroy_delayed_inodes(root
);
4603 btrfs_assert_delayed_root_empty(root
);
4605 btrfs_destroy_marked_extents(root
, &cur_trans
->dirty_pages
,
4607 btrfs_destroy_pinned_extent(root
,
4608 root
->fs_info
->pinned_extents
);
4610 cur_trans
->state
=TRANS_STATE_COMPLETED
;
4611 wake_up(&cur_trans
->commit_wait
);
4614 memset(cur_trans, 0, sizeof(*cur_trans));
4615 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4619 static int btrfs_cleanup_transaction(struct btrfs_root
*root
)
4621 struct btrfs_transaction
*t
;
4623 mutex_lock(&root
->fs_info
->transaction_kthread_mutex
);
4625 spin_lock(&root
->fs_info
->trans_lock
);
4626 while (!list_empty(&root
->fs_info
->trans_list
)) {
4627 t
= list_first_entry(&root
->fs_info
->trans_list
,
4628 struct btrfs_transaction
, list
);
4629 if (t
->state
>= TRANS_STATE_COMMIT_START
) {
4630 atomic_inc(&t
->use_count
);
4631 spin_unlock(&root
->fs_info
->trans_lock
);
4632 btrfs_wait_for_commit(root
, t
->transid
);
4633 btrfs_put_transaction(t
);
4634 spin_lock(&root
->fs_info
->trans_lock
);
4637 if (t
== root
->fs_info
->running_transaction
) {
4638 t
->state
= TRANS_STATE_COMMIT_DOING
;
4639 spin_unlock(&root
->fs_info
->trans_lock
);
4641 * We wait for 0 num_writers since we don't hold a trans
4642 * handle open currently for this transaction.
4644 wait_event(t
->writer_wait
,
4645 atomic_read(&t
->num_writers
) == 0);
4647 spin_unlock(&root
->fs_info
->trans_lock
);
4649 btrfs_cleanup_one_transaction(t
, root
);
4651 spin_lock(&root
->fs_info
->trans_lock
);
4652 if (t
== root
->fs_info
->running_transaction
)
4653 root
->fs_info
->running_transaction
= NULL
;
4654 list_del_init(&t
->list
);
4655 spin_unlock(&root
->fs_info
->trans_lock
);
4657 btrfs_put_transaction(t
);
4658 trace_btrfs_transaction_commit(root
);
4659 spin_lock(&root
->fs_info
->trans_lock
);
4661 spin_unlock(&root
->fs_info
->trans_lock
);
4662 btrfs_destroy_all_ordered_extents(root
->fs_info
);
4663 btrfs_destroy_delayed_inodes(root
);
4664 btrfs_assert_delayed_root_empty(root
);
4665 btrfs_destroy_pinned_extent(root
, root
->fs_info
->pinned_extents
);
4666 btrfs_destroy_all_delalloc_inodes(root
->fs_info
);
4667 mutex_unlock(&root
->fs_info
->transaction_kthread_mutex
);
4672 static const struct extent_io_ops btree_extent_io_ops
= {
4673 .readpage_end_io_hook
= btree_readpage_end_io_hook
,
4674 .readpage_io_failed_hook
= btree_io_failed_hook
,
4675 .submit_bio_hook
= btree_submit_bio_hook
,
4676 /* note we're sharing with inode.c for the merge bio hook */
4677 .merge_bio_hook
= btrfs_merge_bio_hook
,