2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
28 #include "transaction.h"
31 #include "inode-map.h"
33 #include "dev-replace.h"
36 #define BTRFS_ROOT_TRANS_TAG 0
38 static const unsigned int btrfs_blocked_trans_types
[TRANS_STATE_MAX
] = {
39 [TRANS_STATE_RUNNING
] = 0U,
40 [TRANS_STATE_BLOCKED
] = (__TRANS_USERSPACE
|
42 [TRANS_STATE_COMMIT_START
] = (__TRANS_USERSPACE
|
45 [TRANS_STATE_COMMIT_DOING
] = (__TRANS_USERSPACE
|
49 [TRANS_STATE_UNBLOCKED
] = (__TRANS_USERSPACE
|
54 [TRANS_STATE_COMPLETED
] = (__TRANS_USERSPACE
|
61 void btrfs_put_transaction(struct btrfs_transaction
*transaction
)
63 WARN_ON(atomic_read(&transaction
->use_count
) == 0);
64 if (atomic_dec_and_test(&transaction
->use_count
)) {
65 BUG_ON(!list_empty(&transaction
->list
));
66 WARN_ON(!RB_EMPTY_ROOT(&transaction
->delayed_refs
.href_root
));
67 if (transaction
->delayed_refs
.pending_csums
)
68 btrfs_err(transaction
->fs_info
,
69 "pending csums is %llu",
70 transaction
->delayed_refs
.pending_csums
);
71 while (!list_empty(&transaction
->pending_chunks
)) {
72 struct extent_map
*em
;
74 em
= list_first_entry(&transaction
->pending_chunks
,
75 struct extent_map
, list
);
76 list_del_init(&em
->list
);
80 * If any block groups are found in ->deleted_bgs then it's
81 * because the transaction was aborted and a commit did not
82 * happen (things failed before writing the new superblock
83 * and calling btrfs_finish_extent_commit()), so we can not
84 * discard the physical locations of the block groups.
86 while (!list_empty(&transaction
->deleted_bgs
)) {
87 struct btrfs_block_group_cache
*cache
;
89 cache
= list_first_entry(&transaction
->deleted_bgs
,
90 struct btrfs_block_group_cache
,
92 list_del_init(&cache
->bg_list
);
93 btrfs_put_block_group_trimming(cache
);
94 btrfs_put_block_group(cache
);
96 kmem_cache_free(btrfs_transaction_cachep
, transaction
);
100 static void clear_btree_io_tree(struct extent_io_tree
*tree
)
102 spin_lock(&tree
->lock
);
104 * Do a single barrier for the waitqueue_active check here, the state
105 * of the waitqueue should not change once clear_btree_io_tree is
109 while (!RB_EMPTY_ROOT(&tree
->state
)) {
110 struct rb_node
*node
;
111 struct extent_state
*state
;
113 node
= rb_first(&tree
->state
);
114 state
= rb_entry(node
, struct extent_state
, rb_node
);
115 rb_erase(&state
->rb_node
, &tree
->state
);
116 RB_CLEAR_NODE(&state
->rb_node
);
118 * btree io trees aren't supposed to have tasks waiting for
119 * changes in the flags of extent states ever.
121 ASSERT(!waitqueue_active(&state
->wq
));
122 free_extent_state(state
);
124 cond_resched_lock(&tree
->lock
);
126 spin_unlock(&tree
->lock
);
129 static noinline
void switch_commit_roots(struct btrfs_transaction
*trans
,
130 struct btrfs_fs_info
*fs_info
)
132 struct btrfs_root
*root
, *tmp
;
134 down_write(&fs_info
->commit_root_sem
);
135 list_for_each_entry_safe(root
, tmp
, &trans
->switch_commits
,
137 list_del_init(&root
->dirty_list
);
138 free_extent_buffer(root
->commit_root
);
139 root
->commit_root
= btrfs_root_node(root
);
140 if (is_fstree(root
->objectid
))
141 btrfs_unpin_free_ino(root
);
142 clear_btree_io_tree(&root
->dirty_log_pages
);
145 /* We can free old roots now. */
146 spin_lock(&trans
->dropped_roots_lock
);
147 while (!list_empty(&trans
->dropped_roots
)) {
148 root
= list_first_entry(&trans
->dropped_roots
,
149 struct btrfs_root
, root_list
);
150 list_del_init(&root
->root_list
);
151 spin_unlock(&trans
->dropped_roots_lock
);
152 btrfs_drop_and_free_fs_root(fs_info
, root
);
153 spin_lock(&trans
->dropped_roots_lock
);
155 spin_unlock(&trans
->dropped_roots_lock
);
156 up_write(&fs_info
->commit_root_sem
);
159 static inline void extwriter_counter_inc(struct btrfs_transaction
*trans
,
162 if (type
& TRANS_EXTWRITERS
)
163 atomic_inc(&trans
->num_extwriters
);
166 static inline void extwriter_counter_dec(struct btrfs_transaction
*trans
,
169 if (type
& TRANS_EXTWRITERS
)
170 atomic_dec(&trans
->num_extwriters
);
173 static inline void extwriter_counter_init(struct btrfs_transaction
*trans
,
176 atomic_set(&trans
->num_extwriters
, ((type
& TRANS_EXTWRITERS
) ? 1 : 0));
179 static inline int extwriter_counter_read(struct btrfs_transaction
*trans
)
181 return atomic_read(&trans
->num_extwriters
);
185 * either allocate a new transaction or hop into the existing one
187 static noinline
int join_transaction(struct btrfs_root
*root
, unsigned int type
)
189 struct btrfs_transaction
*cur_trans
;
190 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
192 spin_lock(&fs_info
->trans_lock
);
194 /* The file system has been taken offline. No new transactions. */
195 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
196 spin_unlock(&fs_info
->trans_lock
);
200 cur_trans
= fs_info
->running_transaction
;
202 if (cur_trans
->aborted
) {
203 spin_unlock(&fs_info
->trans_lock
);
204 return cur_trans
->aborted
;
206 if (btrfs_blocked_trans_types
[cur_trans
->state
] & type
) {
207 spin_unlock(&fs_info
->trans_lock
);
210 atomic_inc(&cur_trans
->use_count
);
211 atomic_inc(&cur_trans
->num_writers
);
212 extwriter_counter_inc(cur_trans
, type
);
213 spin_unlock(&fs_info
->trans_lock
);
216 spin_unlock(&fs_info
->trans_lock
);
219 * If we are ATTACH, we just want to catch the current transaction,
220 * and commit it. If there is no transaction, just return ENOENT.
222 if (type
== TRANS_ATTACH
)
226 * JOIN_NOLOCK only happens during the transaction commit, so
227 * it is impossible that ->running_transaction is NULL
229 BUG_ON(type
== TRANS_JOIN_NOLOCK
);
231 cur_trans
= kmem_cache_alloc(btrfs_transaction_cachep
, GFP_NOFS
);
235 spin_lock(&fs_info
->trans_lock
);
236 if (fs_info
->running_transaction
) {
238 * someone started a transaction after we unlocked. Make sure
239 * to redo the checks above
241 kmem_cache_free(btrfs_transaction_cachep
, cur_trans
);
243 } else if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
244 spin_unlock(&fs_info
->trans_lock
);
245 kmem_cache_free(btrfs_transaction_cachep
, cur_trans
);
249 cur_trans
->fs_info
= fs_info
;
250 atomic_set(&cur_trans
->num_writers
, 1);
251 extwriter_counter_init(cur_trans
, type
);
252 init_waitqueue_head(&cur_trans
->writer_wait
);
253 init_waitqueue_head(&cur_trans
->commit_wait
);
254 init_waitqueue_head(&cur_trans
->pending_wait
);
255 cur_trans
->state
= TRANS_STATE_RUNNING
;
257 * One for this trans handle, one so it will live on until we
258 * commit the transaction.
260 atomic_set(&cur_trans
->use_count
, 2);
261 atomic_set(&cur_trans
->pending_ordered
, 0);
262 cur_trans
->flags
= 0;
263 cur_trans
->start_time
= get_seconds();
265 memset(&cur_trans
->delayed_refs
, 0, sizeof(cur_trans
->delayed_refs
));
267 cur_trans
->delayed_refs
.href_root
= RB_ROOT
;
268 cur_trans
->delayed_refs
.dirty_extent_root
= RB_ROOT
;
269 atomic_set(&cur_trans
->delayed_refs
.num_entries
, 0);
272 * although the tree mod log is per file system and not per transaction,
273 * the log must never go across transaction boundaries.
276 if (!list_empty(&fs_info
->tree_mod_seq_list
))
277 WARN(1, KERN_ERR
"BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
278 if (!RB_EMPTY_ROOT(&fs_info
->tree_mod_log
))
279 WARN(1, KERN_ERR
"BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
280 atomic64_set(&fs_info
->tree_mod_seq
, 0);
282 spin_lock_init(&cur_trans
->delayed_refs
.lock
);
284 INIT_LIST_HEAD(&cur_trans
->pending_snapshots
);
285 INIT_LIST_HEAD(&cur_trans
->pending_chunks
);
286 INIT_LIST_HEAD(&cur_trans
->switch_commits
);
287 INIT_LIST_HEAD(&cur_trans
->dirty_bgs
);
288 INIT_LIST_HEAD(&cur_trans
->io_bgs
);
289 INIT_LIST_HEAD(&cur_trans
->dropped_roots
);
290 mutex_init(&cur_trans
->cache_write_mutex
);
291 cur_trans
->num_dirty_bgs
= 0;
292 spin_lock_init(&cur_trans
->dirty_bgs_lock
);
293 INIT_LIST_HEAD(&cur_trans
->deleted_bgs
);
294 spin_lock_init(&cur_trans
->dropped_roots_lock
);
295 list_add_tail(&cur_trans
->list
, &fs_info
->trans_list
);
296 extent_io_tree_init(&cur_trans
->dirty_pages
,
297 fs_info
->btree_inode
->i_mapping
);
298 fs_info
->generation
++;
299 cur_trans
->transid
= fs_info
->generation
;
300 fs_info
->running_transaction
= cur_trans
;
301 cur_trans
->aborted
= 0;
302 spin_unlock(&fs_info
->trans_lock
);
308 * this does all the record keeping required to make sure that a reference
309 * counted root is properly recorded in a given transaction. This is required
310 * to make sure the old root from before we joined the transaction is deleted
311 * when the transaction commits
313 static int record_root_in_trans(struct btrfs_trans_handle
*trans
,
314 struct btrfs_root
*root
,
317 if ((test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
318 root
->last_trans
< trans
->transid
) || force
) {
319 WARN_ON(root
== root
->fs_info
->extent_root
);
320 WARN_ON(root
->commit_root
!= root
->node
);
323 * see below for IN_TRANS_SETUP usage rules
324 * we have the reloc mutex held now, so there
325 * is only one writer in this function
327 set_bit(BTRFS_ROOT_IN_TRANS_SETUP
, &root
->state
);
329 /* make sure readers find IN_TRANS_SETUP before
330 * they find our root->last_trans update
334 spin_lock(&root
->fs_info
->fs_roots_radix_lock
);
335 if (root
->last_trans
== trans
->transid
&& !force
) {
336 spin_unlock(&root
->fs_info
->fs_roots_radix_lock
);
339 radix_tree_tag_set(&root
->fs_info
->fs_roots_radix
,
340 (unsigned long)root
->root_key
.objectid
,
341 BTRFS_ROOT_TRANS_TAG
);
342 spin_unlock(&root
->fs_info
->fs_roots_radix_lock
);
343 root
->last_trans
= trans
->transid
;
345 /* this is pretty tricky. We don't want to
346 * take the relocation lock in btrfs_record_root_in_trans
347 * unless we're really doing the first setup for this root in
350 * Normally we'd use root->last_trans as a flag to decide
351 * if we want to take the expensive mutex.
353 * But, we have to set root->last_trans before we
354 * init the relocation root, otherwise, we trip over warnings
355 * in ctree.c. The solution used here is to flag ourselves
356 * with root IN_TRANS_SETUP. When this is 1, we're still
357 * fixing up the reloc trees and everyone must wait.
359 * When this is zero, they can trust root->last_trans and fly
360 * through btrfs_record_root_in_trans without having to take the
361 * lock. smp_wmb() makes sure that all the writes above are
362 * done before we pop in the zero below
364 btrfs_init_reloc_root(trans
, root
);
365 smp_mb__before_atomic();
366 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP
, &root
->state
);
372 void btrfs_add_dropped_root(struct btrfs_trans_handle
*trans
,
373 struct btrfs_root
*root
)
375 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
377 /* Add ourselves to the transaction dropped list */
378 spin_lock(&cur_trans
->dropped_roots_lock
);
379 list_add_tail(&root
->root_list
, &cur_trans
->dropped_roots
);
380 spin_unlock(&cur_trans
->dropped_roots_lock
);
382 /* Make sure we don't try to update the root at commit time */
383 spin_lock(&root
->fs_info
->fs_roots_radix_lock
);
384 radix_tree_tag_clear(&root
->fs_info
->fs_roots_radix
,
385 (unsigned long)root
->root_key
.objectid
,
386 BTRFS_ROOT_TRANS_TAG
);
387 spin_unlock(&root
->fs_info
->fs_roots_radix_lock
);
390 int btrfs_record_root_in_trans(struct btrfs_trans_handle
*trans
,
391 struct btrfs_root
*root
)
393 if (!test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
))
397 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
401 if (root
->last_trans
== trans
->transid
&&
402 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP
, &root
->state
))
405 mutex_lock(&root
->fs_info
->reloc_mutex
);
406 record_root_in_trans(trans
, root
, 0);
407 mutex_unlock(&root
->fs_info
->reloc_mutex
);
412 static inline int is_transaction_blocked(struct btrfs_transaction
*trans
)
414 return (trans
->state
>= TRANS_STATE_BLOCKED
&&
415 trans
->state
< TRANS_STATE_UNBLOCKED
&&
419 /* wait for commit against the current transaction to become unblocked
420 * when this is done, it is safe to start a new transaction, but the current
421 * transaction might not be fully on disk.
423 static void wait_current_trans(struct btrfs_root
*root
)
425 struct btrfs_transaction
*cur_trans
;
427 spin_lock(&root
->fs_info
->trans_lock
);
428 cur_trans
= root
->fs_info
->running_transaction
;
429 if (cur_trans
&& is_transaction_blocked(cur_trans
)) {
430 atomic_inc(&cur_trans
->use_count
);
431 spin_unlock(&root
->fs_info
->trans_lock
);
433 wait_event(root
->fs_info
->transaction_wait
,
434 cur_trans
->state
>= TRANS_STATE_UNBLOCKED
||
436 btrfs_put_transaction(cur_trans
);
438 spin_unlock(&root
->fs_info
->trans_lock
);
442 static int may_wait_transaction(struct btrfs_root
*root
, int type
)
444 if (test_bit(BTRFS_FS_LOG_RECOVERING
, &root
->fs_info
->flags
))
447 if (type
== TRANS_USERSPACE
)
450 if (type
== TRANS_START
&&
451 !atomic_read(&root
->fs_info
->open_ioctl_trans
))
457 static inline bool need_reserve_reloc_root(struct btrfs_root
*root
)
459 if (!root
->fs_info
->reloc_ctl
||
460 !test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) ||
461 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
||
468 static struct btrfs_trans_handle
*
469 start_transaction(struct btrfs_root
*root
, unsigned int num_items
,
470 unsigned int type
, enum btrfs_reserve_flush_enum flush
)
472 struct btrfs_trans_handle
*h
;
473 struct btrfs_transaction
*cur_trans
;
475 u64 qgroup_reserved
= 0;
476 bool reloc_reserved
= false;
479 /* Send isn't supposed to start transactions. */
480 ASSERT(current
->journal_info
!= BTRFS_SEND_TRANS_STUB
);
482 if (test_bit(BTRFS_FS_STATE_ERROR
, &root
->fs_info
->fs_state
))
483 return ERR_PTR(-EROFS
);
485 if (current
->journal_info
) {
486 WARN_ON(type
& TRANS_EXTWRITERS
);
487 h
= current
->journal_info
;
489 WARN_ON(h
->use_count
> 2);
490 h
->orig_rsv
= h
->block_rsv
;
496 * Do the reservation before we join the transaction so we can do all
497 * the appropriate flushing if need be.
499 if (num_items
> 0 && root
!= root
->fs_info
->chunk_root
) {
500 qgroup_reserved
= num_items
* root
->nodesize
;
501 ret
= btrfs_qgroup_reserve_meta(root
, qgroup_reserved
);
505 num_bytes
= btrfs_calc_trans_metadata_size(root
, num_items
);
507 * Do the reservation for the relocation root creation
509 if (need_reserve_reloc_root(root
)) {
510 num_bytes
+= root
->nodesize
;
511 reloc_reserved
= true;
514 ret
= btrfs_block_rsv_add(root
,
515 &root
->fs_info
->trans_block_rsv
,
521 h
= kmem_cache_zalloc(btrfs_trans_handle_cachep
, GFP_NOFS
);
528 * If we are JOIN_NOLOCK we're already committing a transaction and
529 * waiting on this guy, so we don't need to do the sb_start_intwrite
530 * because we're already holding a ref. We need this because we could
531 * have raced in and did an fsync() on a file which can kick a commit
532 * and then we deadlock with somebody doing a freeze.
534 * If we are ATTACH, it means we just want to catch the current
535 * transaction and commit it, so we needn't do sb_start_intwrite().
537 if (type
& __TRANS_FREEZABLE
)
538 sb_start_intwrite(root
->fs_info
->sb
);
540 if (may_wait_transaction(root
, type
))
541 wait_current_trans(root
);
544 ret
= join_transaction(root
, type
);
546 wait_current_trans(root
);
547 if (unlikely(type
== TRANS_ATTACH
))
550 } while (ret
== -EBUSY
);
555 cur_trans
= root
->fs_info
->running_transaction
;
557 h
->transid
= cur_trans
->transid
;
558 h
->transaction
= cur_trans
;
561 h
->fs_info
= root
->fs_info
;
564 h
->can_flush_pending_bgs
= true;
565 INIT_LIST_HEAD(&h
->qgroup_ref_list
);
566 INIT_LIST_HEAD(&h
->new_bgs
);
569 if (cur_trans
->state
>= TRANS_STATE_BLOCKED
&&
570 may_wait_transaction(root
, type
)) {
571 current
->journal_info
= h
;
572 btrfs_commit_transaction(h
, root
);
577 trace_btrfs_space_reservation(root
->fs_info
, "transaction",
578 h
->transid
, num_bytes
, 1);
579 h
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
580 h
->bytes_reserved
= num_bytes
;
581 h
->reloc_reserved
= reloc_reserved
;
585 btrfs_record_root_in_trans(h
, root
);
587 if (!current
->journal_info
&& type
!= TRANS_USERSPACE
)
588 current
->journal_info
= h
;
592 if (type
& __TRANS_FREEZABLE
)
593 sb_end_intwrite(root
->fs_info
->sb
);
594 kmem_cache_free(btrfs_trans_handle_cachep
, h
);
597 btrfs_block_rsv_release(root
, &root
->fs_info
->trans_block_rsv
,
600 btrfs_qgroup_free_meta(root
, qgroup_reserved
);
604 struct btrfs_trans_handle
*btrfs_start_transaction(struct btrfs_root
*root
,
605 unsigned int num_items
)
607 return start_transaction(root
, num_items
, TRANS_START
,
608 BTRFS_RESERVE_FLUSH_ALL
);
610 struct btrfs_trans_handle
*btrfs_start_transaction_fallback_global_rsv(
611 struct btrfs_root
*root
,
612 unsigned int num_items
,
615 struct btrfs_trans_handle
*trans
;
619 trans
= btrfs_start_transaction(root
, num_items
);
620 if (!IS_ERR(trans
) || PTR_ERR(trans
) != -ENOSPC
)
623 trans
= btrfs_start_transaction(root
, 0);
627 num_bytes
= btrfs_calc_trans_metadata_size(root
, num_items
);
628 ret
= btrfs_cond_migrate_bytes(root
->fs_info
,
629 &root
->fs_info
->trans_block_rsv
,
633 btrfs_end_transaction(trans
, root
);
637 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
638 trans
->bytes_reserved
= num_bytes
;
639 trace_btrfs_space_reservation(root
->fs_info
, "transaction",
640 trans
->transid
, num_bytes
, 1);
645 struct btrfs_trans_handle
*btrfs_start_transaction_lflush(
646 struct btrfs_root
*root
,
647 unsigned int num_items
)
649 return start_transaction(root
, num_items
, TRANS_START
,
650 BTRFS_RESERVE_FLUSH_LIMIT
);
653 struct btrfs_trans_handle
*btrfs_join_transaction(struct btrfs_root
*root
)
655 return start_transaction(root
, 0, TRANS_JOIN
,
656 BTRFS_RESERVE_NO_FLUSH
);
659 struct btrfs_trans_handle
*btrfs_join_transaction_nolock(struct btrfs_root
*root
)
661 return start_transaction(root
, 0, TRANS_JOIN_NOLOCK
,
662 BTRFS_RESERVE_NO_FLUSH
);
665 struct btrfs_trans_handle
*btrfs_start_ioctl_transaction(struct btrfs_root
*root
)
667 return start_transaction(root
, 0, TRANS_USERSPACE
,
668 BTRFS_RESERVE_NO_FLUSH
);
672 * btrfs_attach_transaction() - catch the running transaction
674 * It is used when we want to commit the current the transaction, but
675 * don't want to start a new one.
677 * Note: If this function return -ENOENT, it just means there is no
678 * running transaction. But it is possible that the inactive transaction
679 * is still in the memory, not fully on disk. If you hope there is no
680 * inactive transaction in the fs when -ENOENT is returned, you should
682 * btrfs_attach_transaction_barrier()
684 struct btrfs_trans_handle
*btrfs_attach_transaction(struct btrfs_root
*root
)
686 return start_transaction(root
, 0, TRANS_ATTACH
,
687 BTRFS_RESERVE_NO_FLUSH
);
691 * btrfs_attach_transaction_barrier() - catch the running transaction
693 * It is similar to the above function, the differentia is this one
694 * will wait for all the inactive transactions until they fully
697 struct btrfs_trans_handle
*
698 btrfs_attach_transaction_barrier(struct btrfs_root
*root
)
700 struct btrfs_trans_handle
*trans
;
702 trans
= start_transaction(root
, 0, TRANS_ATTACH
,
703 BTRFS_RESERVE_NO_FLUSH
);
704 if (IS_ERR(trans
) && PTR_ERR(trans
) == -ENOENT
)
705 btrfs_wait_for_commit(root
, 0);
710 /* wait for a transaction commit to be fully complete */
711 static noinline
void wait_for_commit(struct btrfs_root
*root
,
712 struct btrfs_transaction
*commit
)
714 wait_event(commit
->commit_wait
, commit
->state
== TRANS_STATE_COMPLETED
);
717 int btrfs_wait_for_commit(struct btrfs_root
*root
, u64 transid
)
719 struct btrfs_transaction
*cur_trans
= NULL
, *t
;
723 if (transid
<= root
->fs_info
->last_trans_committed
)
726 /* find specified transaction */
727 spin_lock(&root
->fs_info
->trans_lock
);
728 list_for_each_entry(t
, &root
->fs_info
->trans_list
, list
) {
729 if (t
->transid
== transid
) {
731 atomic_inc(&cur_trans
->use_count
);
735 if (t
->transid
> transid
) {
740 spin_unlock(&root
->fs_info
->trans_lock
);
743 * The specified transaction doesn't exist, or we
744 * raced with btrfs_commit_transaction
747 if (transid
> root
->fs_info
->last_trans_committed
)
752 /* find newest transaction that is committing | committed */
753 spin_lock(&root
->fs_info
->trans_lock
);
754 list_for_each_entry_reverse(t
, &root
->fs_info
->trans_list
,
756 if (t
->state
>= TRANS_STATE_COMMIT_START
) {
757 if (t
->state
== TRANS_STATE_COMPLETED
)
760 atomic_inc(&cur_trans
->use_count
);
764 spin_unlock(&root
->fs_info
->trans_lock
);
766 goto out
; /* nothing committing|committed */
769 wait_for_commit(root
, cur_trans
);
770 btrfs_put_transaction(cur_trans
);
775 void btrfs_throttle(struct btrfs_root
*root
)
777 if (!atomic_read(&root
->fs_info
->open_ioctl_trans
))
778 wait_current_trans(root
);
781 static int should_end_transaction(struct btrfs_trans_handle
*trans
,
782 struct btrfs_root
*root
)
784 if (root
->fs_info
->global_block_rsv
.space_info
->full
&&
785 btrfs_check_space_for_delayed_refs(trans
, root
))
788 return !!btrfs_block_rsv_check(root
, &root
->fs_info
->global_block_rsv
, 5);
791 int btrfs_should_end_transaction(struct btrfs_trans_handle
*trans
,
792 struct btrfs_root
*root
)
794 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
799 if (cur_trans
->state
>= TRANS_STATE_BLOCKED
||
800 cur_trans
->delayed_refs
.flushing
)
803 updates
= trans
->delayed_ref_updates
;
804 trans
->delayed_ref_updates
= 0;
806 err
= btrfs_run_delayed_refs(trans
, root
, updates
* 2);
807 if (err
) /* Error code will also eval true */
811 return should_end_transaction(trans
, root
);
814 static int __btrfs_end_transaction(struct btrfs_trans_handle
*trans
,
815 struct btrfs_root
*root
, int throttle
)
817 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
818 struct btrfs_fs_info
*info
= root
->fs_info
;
819 u64 transid
= trans
->transid
;
820 unsigned long cur
= trans
->delayed_ref_updates
;
821 int lock
= (trans
->type
!= TRANS_JOIN_NOLOCK
);
823 int must_run_delayed_refs
= 0;
825 if (trans
->use_count
> 1) {
827 trans
->block_rsv
= trans
->orig_rsv
;
831 btrfs_trans_release_metadata(trans
, root
);
832 trans
->block_rsv
= NULL
;
834 if (!list_empty(&trans
->new_bgs
))
835 btrfs_create_pending_block_groups(trans
, root
);
837 trans
->delayed_ref_updates
= 0;
839 must_run_delayed_refs
=
840 btrfs_should_throttle_delayed_refs(trans
, root
);
841 cur
= max_t(unsigned long, cur
, 32);
844 * don't make the caller wait if they are from a NOLOCK
845 * or ATTACH transaction, it will deadlock with commit
847 if (must_run_delayed_refs
== 1 &&
848 (trans
->type
& (__TRANS_JOIN_NOLOCK
| __TRANS_ATTACH
)))
849 must_run_delayed_refs
= 2;
852 btrfs_trans_release_metadata(trans
, root
);
853 trans
->block_rsv
= NULL
;
855 if (!list_empty(&trans
->new_bgs
))
856 btrfs_create_pending_block_groups(trans
, root
);
858 btrfs_trans_release_chunk_metadata(trans
);
860 if (lock
&& !atomic_read(&root
->fs_info
->open_ioctl_trans
) &&
861 should_end_transaction(trans
, root
) &&
862 ACCESS_ONCE(cur_trans
->state
) == TRANS_STATE_RUNNING
) {
863 spin_lock(&info
->trans_lock
);
864 if (cur_trans
->state
== TRANS_STATE_RUNNING
)
865 cur_trans
->state
= TRANS_STATE_BLOCKED
;
866 spin_unlock(&info
->trans_lock
);
869 if (lock
&& ACCESS_ONCE(cur_trans
->state
) == TRANS_STATE_BLOCKED
) {
871 return btrfs_commit_transaction(trans
, root
);
873 wake_up_process(info
->transaction_kthread
);
876 if (trans
->type
& __TRANS_FREEZABLE
)
877 sb_end_intwrite(root
->fs_info
->sb
);
879 WARN_ON(cur_trans
!= info
->running_transaction
);
880 WARN_ON(atomic_read(&cur_trans
->num_writers
) < 1);
881 atomic_dec(&cur_trans
->num_writers
);
882 extwriter_counter_dec(cur_trans
, trans
->type
);
885 * Make sure counter is updated before we wake up waiters.
888 if (waitqueue_active(&cur_trans
->writer_wait
))
889 wake_up(&cur_trans
->writer_wait
);
890 btrfs_put_transaction(cur_trans
);
892 if (current
->journal_info
== trans
)
893 current
->journal_info
= NULL
;
896 btrfs_run_delayed_iputs(root
);
898 if (trans
->aborted
||
899 test_bit(BTRFS_FS_STATE_ERROR
, &root
->fs_info
->fs_state
)) {
900 wake_up_process(info
->transaction_kthread
);
903 assert_qgroups_uptodate(trans
);
905 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
906 if (must_run_delayed_refs
) {
907 btrfs_async_run_delayed_refs(root
, cur
, transid
,
908 must_run_delayed_refs
== 1);
913 int btrfs_end_transaction(struct btrfs_trans_handle
*trans
,
914 struct btrfs_root
*root
)
916 return __btrfs_end_transaction(trans
, root
, 0);
919 int btrfs_end_transaction_throttle(struct btrfs_trans_handle
*trans
,
920 struct btrfs_root
*root
)
922 return __btrfs_end_transaction(trans
, root
, 1);
926 * when btree blocks are allocated, they have some corresponding bits set for
927 * them in one of two extent_io trees. This is used to make sure all of
928 * those extents are sent to disk but does not wait on them
930 int btrfs_write_marked_extents(struct btrfs_root
*root
,
931 struct extent_io_tree
*dirty_pages
, int mark
)
935 struct address_space
*mapping
= root
->fs_info
->btree_inode
->i_mapping
;
936 struct extent_state
*cached_state
= NULL
;
940 while (!find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
941 mark
, &cached_state
)) {
942 bool wait_writeback
= false;
944 err
= convert_extent_bit(dirty_pages
, start
, end
,
946 mark
, &cached_state
);
948 * convert_extent_bit can return -ENOMEM, which is most of the
949 * time a temporary error. So when it happens, ignore the error
950 * and wait for writeback of this range to finish - because we
951 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
952 * to btrfs_wait_marked_extents() would not know that writeback
953 * for this range started and therefore wouldn't wait for it to
954 * finish - we don't want to commit a superblock that points to
955 * btree nodes/leafs for which writeback hasn't finished yet
956 * (and without errors).
957 * We cleanup any entries left in the io tree when committing
958 * the transaction (through clear_btree_io_tree()).
960 if (err
== -ENOMEM
) {
962 wait_writeback
= true;
965 err
= filemap_fdatawrite_range(mapping
, start
, end
);
968 else if (wait_writeback
)
969 werr
= filemap_fdatawait_range(mapping
, start
, end
);
970 free_extent_state(cached_state
);
979 * when btree blocks are allocated, they have some corresponding bits set for
980 * them in one of two extent_io trees. This is used to make sure all of
981 * those extents are on disk for transaction or log commit. We wait
982 * on all the pages and clear them from the dirty pages state tree
984 int btrfs_wait_marked_extents(struct btrfs_root
*root
,
985 struct extent_io_tree
*dirty_pages
, int mark
)
989 struct address_space
*mapping
= root
->fs_info
->btree_inode
->i_mapping
;
990 struct extent_state
*cached_state
= NULL
;
995 while (!find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
996 EXTENT_NEED_WAIT
, &cached_state
)) {
998 * Ignore -ENOMEM errors returned by clear_extent_bit().
999 * When committing the transaction, we'll remove any entries
1000 * left in the io tree. For a log commit, we don't remove them
1001 * after committing the log because the tree can be accessed
1002 * concurrently - we do it only at transaction commit time when
1003 * it's safe to do it (through clear_btree_io_tree()).
1005 err
= clear_extent_bit(dirty_pages
, start
, end
,
1007 0, 0, &cached_state
, GFP_NOFS
);
1011 err
= filemap_fdatawait_range(mapping
, start
, end
);
1014 free_extent_state(cached_state
);
1015 cached_state
= NULL
;
1022 if (root
->root_key
.objectid
== BTRFS_TREE_LOG_OBJECTID
) {
1023 if ((mark
& EXTENT_DIRTY
) &&
1024 test_and_clear_bit(BTRFS_FS_LOG1_ERR
,
1025 &root
->fs_info
->flags
))
1028 if ((mark
& EXTENT_NEW
) &&
1029 test_and_clear_bit(BTRFS_FS_LOG2_ERR
,
1030 &root
->fs_info
->flags
))
1033 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR
,
1034 &root
->fs_info
->flags
))
1038 if (errors
&& !werr
)
1045 * when btree blocks are allocated, they have some corresponding bits set for
1046 * them in one of two extent_io trees. This is used to make sure all of
1047 * those extents are on disk for transaction or log commit
1049 static int btrfs_write_and_wait_marked_extents(struct btrfs_root
*root
,
1050 struct extent_io_tree
*dirty_pages
, int mark
)
1054 struct blk_plug plug
;
1056 blk_start_plug(&plug
);
1057 ret
= btrfs_write_marked_extents(root
, dirty_pages
, mark
);
1058 blk_finish_plug(&plug
);
1059 ret2
= btrfs_wait_marked_extents(root
, dirty_pages
, mark
);
1068 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle
*trans
,
1069 struct btrfs_root
*root
)
1073 ret
= btrfs_write_and_wait_marked_extents(root
,
1074 &trans
->transaction
->dirty_pages
,
1076 clear_btree_io_tree(&trans
->transaction
->dirty_pages
);
1082 * this is used to update the root pointer in the tree of tree roots.
1084 * But, in the case of the extent allocation tree, updating the root
1085 * pointer may allocate blocks which may change the root of the extent
1088 * So, this loops and repeats and makes sure the cowonly root didn't
1089 * change while the root pointer was being updated in the metadata.
1091 static int update_cowonly_root(struct btrfs_trans_handle
*trans
,
1092 struct btrfs_root
*root
)
1095 u64 old_root_bytenr
;
1097 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
1099 old_root_used
= btrfs_root_used(&root
->root_item
);
1102 old_root_bytenr
= btrfs_root_bytenr(&root
->root_item
);
1103 if (old_root_bytenr
== root
->node
->start
&&
1104 old_root_used
== btrfs_root_used(&root
->root_item
))
1107 btrfs_set_root_node(&root
->root_item
, root
->node
);
1108 ret
= btrfs_update_root(trans
, tree_root
,
1114 old_root_used
= btrfs_root_used(&root
->root_item
);
1121 * update all the cowonly tree roots on disk
1123 * The error handling in this function may not be obvious. Any of the
1124 * failures will cause the file system to go offline. We still need
1125 * to clean up the delayed refs.
1127 static noinline
int commit_cowonly_roots(struct btrfs_trans_handle
*trans
,
1128 struct btrfs_root
*root
)
1130 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1131 struct list_head
*dirty_bgs
= &trans
->transaction
->dirty_bgs
;
1132 struct list_head
*io_bgs
= &trans
->transaction
->io_bgs
;
1133 struct list_head
*next
;
1134 struct extent_buffer
*eb
;
1137 eb
= btrfs_lock_root_node(fs_info
->tree_root
);
1138 ret
= btrfs_cow_block(trans
, fs_info
->tree_root
, eb
, NULL
,
1140 btrfs_tree_unlock(eb
);
1141 free_extent_buffer(eb
);
1146 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1150 ret
= btrfs_run_dev_stats(trans
, root
->fs_info
);
1153 ret
= btrfs_run_dev_replace(trans
, root
->fs_info
);
1156 ret
= btrfs_run_qgroups(trans
, root
->fs_info
);
1160 ret
= btrfs_setup_space_cache(trans
, root
);
1164 /* run_qgroups might have added some more refs */
1165 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1169 while (!list_empty(&fs_info
->dirty_cowonly_roots
)) {
1170 next
= fs_info
->dirty_cowonly_roots
.next
;
1171 list_del_init(next
);
1172 root
= list_entry(next
, struct btrfs_root
, dirty_list
);
1173 clear_bit(BTRFS_ROOT_DIRTY
, &root
->state
);
1175 if (root
!= fs_info
->extent_root
)
1176 list_add_tail(&root
->dirty_list
,
1177 &trans
->transaction
->switch_commits
);
1178 ret
= update_cowonly_root(trans
, root
);
1181 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1186 while (!list_empty(dirty_bgs
) || !list_empty(io_bgs
)) {
1187 ret
= btrfs_write_dirty_block_groups(trans
, root
);
1190 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1195 if (!list_empty(&fs_info
->dirty_cowonly_roots
))
1198 list_add_tail(&fs_info
->extent_root
->dirty_list
,
1199 &trans
->transaction
->switch_commits
);
1200 btrfs_after_dev_replace_commit(fs_info
);
1206 * dead roots are old snapshots that need to be deleted. This allocates
1207 * a dirty root struct and adds it into the list of dead roots that need to
1210 void btrfs_add_dead_root(struct btrfs_root
*root
)
1212 spin_lock(&root
->fs_info
->trans_lock
);
1213 if (list_empty(&root
->root_list
))
1214 list_add_tail(&root
->root_list
, &root
->fs_info
->dead_roots
);
1215 spin_unlock(&root
->fs_info
->trans_lock
);
1219 * update all the cowonly tree roots on disk
1221 static noinline
int commit_fs_roots(struct btrfs_trans_handle
*trans
,
1222 struct btrfs_root
*root
)
1224 struct btrfs_root
*gang
[8];
1225 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1230 spin_lock(&fs_info
->fs_roots_radix_lock
);
1232 ret
= radix_tree_gang_lookup_tag(&fs_info
->fs_roots_radix
,
1235 BTRFS_ROOT_TRANS_TAG
);
1238 for (i
= 0; i
< ret
; i
++) {
1240 radix_tree_tag_clear(&fs_info
->fs_roots_radix
,
1241 (unsigned long)root
->root_key
.objectid
,
1242 BTRFS_ROOT_TRANS_TAG
);
1243 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1245 btrfs_free_log(trans
, root
);
1246 btrfs_update_reloc_root(trans
, root
);
1247 btrfs_orphan_commit_root(trans
, root
);
1249 btrfs_save_ino_cache(root
, trans
);
1251 /* see comments in should_cow_block() */
1252 clear_bit(BTRFS_ROOT_FORCE_COW
, &root
->state
);
1253 smp_mb__after_atomic();
1255 if (root
->commit_root
!= root
->node
) {
1256 list_add_tail(&root
->dirty_list
,
1257 &trans
->transaction
->switch_commits
);
1258 btrfs_set_root_node(&root
->root_item
,
1262 err
= btrfs_update_root(trans
, fs_info
->tree_root
,
1265 spin_lock(&fs_info
->fs_roots_radix_lock
);
1268 btrfs_qgroup_free_meta_all(root
);
1271 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1276 * defrag a given btree.
1277 * Every leaf in the btree is read and defragged.
1279 int btrfs_defrag_root(struct btrfs_root
*root
)
1281 struct btrfs_fs_info
*info
= root
->fs_info
;
1282 struct btrfs_trans_handle
*trans
;
1285 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING
, &root
->state
))
1289 trans
= btrfs_start_transaction(root
, 0);
1291 return PTR_ERR(trans
);
1293 ret
= btrfs_defrag_leaves(trans
, root
);
1295 btrfs_end_transaction(trans
, root
);
1296 btrfs_btree_balance_dirty(info
->tree_root
);
1299 if (btrfs_fs_closing(info
) || ret
!= -EAGAIN
)
1302 if (btrfs_defrag_cancelled(info
)) {
1303 btrfs_debug(info
, "defrag_root cancelled");
1308 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING
, &root
->state
);
1313 * Do all special snapshot related qgroup dirty hack.
1315 * Will do all needed qgroup inherit and dirty hack like switch commit
1316 * roots inside one transaction and write all btree into disk, to make
1319 static int qgroup_account_snapshot(struct btrfs_trans_handle
*trans
,
1320 struct btrfs_root
*src
,
1321 struct btrfs_root
*parent
,
1322 struct btrfs_qgroup_inherit
*inherit
,
1325 struct btrfs_fs_info
*fs_info
= src
->fs_info
;
1329 * Save some performance in the case that qgroups are not
1330 * enabled. If this check races with the ioctl, rescan will
1333 mutex_lock(&fs_info
->qgroup_ioctl_lock
);
1334 if (!test_bit(BTRFS_FS_QUOTA_ENABLED
, &fs_info
->flags
)) {
1335 mutex_unlock(&fs_info
->qgroup_ioctl_lock
);
1338 mutex_unlock(&fs_info
->qgroup_ioctl_lock
);
1341 * We are going to commit transaction, see btrfs_commit_transaction()
1342 * comment for reason locking tree_log_mutex
1344 mutex_lock(&fs_info
->tree_log_mutex
);
1346 ret
= commit_fs_roots(trans
, src
);
1349 ret
= btrfs_qgroup_prepare_account_extents(trans
, fs_info
);
1352 ret
= btrfs_qgroup_account_extents(trans
, fs_info
);
1356 /* Now qgroup are all updated, we can inherit it to new qgroups */
1357 ret
= btrfs_qgroup_inherit(trans
, fs_info
,
1358 src
->root_key
.objectid
, dst_objectid
,
1364 * Now we do a simplified commit transaction, which will:
1365 * 1) commit all subvolume and extent tree
1366 * To ensure all subvolume and extent tree have a valid
1367 * commit_root to accounting later insert_dir_item()
1368 * 2) write all btree blocks onto disk
1369 * This is to make sure later btree modification will be cowed
1370 * Or commit_root can be populated and cause wrong qgroup numbers
1371 * In this simplified commit, we don't really care about other trees
1372 * like chunk and root tree, as they won't affect qgroup.
1373 * And we don't write super to avoid half committed status.
1375 ret
= commit_cowonly_roots(trans
, src
);
1378 switch_commit_roots(trans
->transaction
, fs_info
);
1379 ret
= btrfs_write_and_wait_transaction(trans
, src
);
1381 btrfs_handle_fs_error(fs_info
, ret
,
1382 "Error while writing out transaction for qgroup");
1385 mutex_unlock(&fs_info
->tree_log_mutex
);
1388 * Force parent root to be updated, as we recorded it before so its
1389 * last_trans == cur_transid.
1390 * Or it won't be committed again onto disk after later
1394 record_root_in_trans(trans
, parent
, 1);
1399 * new snapshots need to be created at a very specific time in the
1400 * transaction commit. This does the actual creation.
1403 * If the error which may affect the commitment of the current transaction
1404 * happens, we should return the error number. If the error which just affect
1405 * the creation of the pending snapshots, just return 0.
1407 static noinline
int create_pending_snapshot(struct btrfs_trans_handle
*trans
,
1408 struct btrfs_fs_info
*fs_info
,
1409 struct btrfs_pending_snapshot
*pending
)
1411 struct btrfs_key key
;
1412 struct btrfs_root_item
*new_root_item
;
1413 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1414 struct btrfs_root
*root
= pending
->root
;
1415 struct btrfs_root
*parent_root
;
1416 struct btrfs_block_rsv
*rsv
;
1417 struct inode
*parent_inode
;
1418 struct btrfs_path
*path
;
1419 struct btrfs_dir_item
*dir_item
;
1420 struct dentry
*dentry
;
1421 struct extent_buffer
*tmp
;
1422 struct extent_buffer
*old
;
1423 struct timespec cur_time
;
1431 ASSERT(pending
->path
);
1432 path
= pending
->path
;
1434 ASSERT(pending
->root_item
);
1435 new_root_item
= pending
->root_item
;
1437 pending
->error
= btrfs_find_free_objectid(tree_root
, &objectid
);
1439 goto no_free_objectid
;
1442 * Make qgroup to skip current new snapshot's qgroupid, as it is
1443 * accounted by later btrfs_qgroup_inherit().
1445 btrfs_set_skip_qgroup(trans
, objectid
);
1447 btrfs_reloc_pre_snapshot(pending
, &to_reserve
);
1449 if (to_reserve
> 0) {
1450 pending
->error
= btrfs_block_rsv_add(root
,
1451 &pending
->block_rsv
,
1453 BTRFS_RESERVE_NO_FLUSH
);
1455 goto clear_skip_qgroup
;
1458 key
.objectid
= objectid
;
1459 key
.offset
= (u64
)-1;
1460 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1462 rsv
= trans
->block_rsv
;
1463 trans
->block_rsv
= &pending
->block_rsv
;
1464 trans
->bytes_reserved
= trans
->block_rsv
->reserved
;
1465 trace_btrfs_space_reservation(root
->fs_info
, "transaction",
1467 trans
->bytes_reserved
, 1);
1468 dentry
= pending
->dentry
;
1469 parent_inode
= pending
->dir
;
1470 parent_root
= BTRFS_I(parent_inode
)->root
;
1471 record_root_in_trans(trans
, parent_root
, 0);
1473 cur_time
= current_time(parent_inode
);
1476 * insert the directory item
1478 ret
= btrfs_set_inode_index(parent_inode
, &index
);
1479 BUG_ON(ret
); /* -ENOMEM */
1481 /* check if there is a file/dir which has the same name. */
1482 dir_item
= btrfs_lookup_dir_item(NULL
, parent_root
, path
,
1483 btrfs_ino(parent_inode
),
1484 dentry
->d_name
.name
,
1485 dentry
->d_name
.len
, 0);
1486 if (dir_item
!= NULL
&& !IS_ERR(dir_item
)) {
1487 pending
->error
= -EEXIST
;
1488 goto dir_item_existed
;
1489 } else if (IS_ERR(dir_item
)) {
1490 ret
= PTR_ERR(dir_item
);
1491 btrfs_abort_transaction(trans
, ret
);
1494 btrfs_release_path(path
);
1497 * pull in the delayed directory update
1498 * and the delayed inode item
1499 * otherwise we corrupt the FS during
1502 ret
= btrfs_run_delayed_items(trans
, root
);
1503 if (ret
) { /* Transaction aborted */
1504 btrfs_abort_transaction(trans
, ret
);
1508 record_root_in_trans(trans
, root
, 0);
1509 btrfs_set_root_last_snapshot(&root
->root_item
, trans
->transid
);
1510 memcpy(new_root_item
, &root
->root_item
, sizeof(*new_root_item
));
1511 btrfs_check_and_init_root_item(new_root_item
);
1513 root_flags
= btrfs_root_flags(new_root_item
);
1514 if (pending
->readonly
)
1515 root_flags
|= BTRFS_ROOT_SUBVOL_RDONLY
;
1517 root_flags
&= ~BTRFS_ROOT_SUBVOL_RDONLY
;
1518 btrfs_set_root_flags(new_root_item
, root_flags
);
1520 btrfs_set_root_generation_v2(new_root_item
,
1522 uuid_le_gen(&new_uuid
);
1523 memcpy(new_root_item
->uuid
, new_uuid
.b
, BTRFS_UUID_SIZE
);
1524 memcpy(new_root_item
->parent_uuid
, root
->root_item
.uuid
,
1526 if (!(root_flags
& BTRFS_ROOT_SUBVOL_RDONLY
)) {
1527 memset(new_root_item
->received_uuid
, 0,
1528 sizeof(new_root_item
->received_uuid
));
1529 memset(&new_root_item
->stime
, 0, sizeof(new_root_item
->stime
));
1530 memset(&new_root_item
->rtime
, 0, sizeof(new_root_item
->rtime
));
1531 btrfs_set_root_stransid(new_root_item
, 0);
1532 btrfs_set_root_rtransid(new_root_item
, 0);
1534 btrfs_set_stack_timespec_sec(&new_root_item
->otime
, cur_time
.tv_sec
);
1535 btrfs_set_stack_timespec_nsec(&new_root_item
->otime
, cur_time
.tv_nsec
);
1536 btrfs_set_root_otransid(new_root_item
, trans
->transid
);
1538 old
= btrfs_lock_root_node(root
);
1539 ret
= btrfs_cow_block(trans
, root
, old
, NULL
, 0, &old
);
1541 btrfs_tree_unlock(old
);
1542 free_extent_buffer(old
);
1543 btrfs_abort_transaction(trans
, ret
);
1547 btrfs_set_lock_blocking(old
);
1549 ret
= btrfs_copy_root(trans
, root
, old
, &tmp
, objectid
);
1550 /* clean up in any case */
1551 btrfs_tree_unlock(old
);
1552 free_extent_buffer(old
);
1554 btrfs_abort_transaction(trans
, ret
);
1557 /* see comments in should_cow_block() */
1558 set_bit(BTRFS_ROOT_FORCE_COW
, &root
->state
);
1561 btrfs_set_root_node(new_root_item
, tmp
);
1562 /* record when the snapshot was created in key.offset */
1563 key
.offset
= trans
->transid
;
1564 ret
= btrfs_insert_root(trans
, tree_root
, &key
, new_root_item
);
1565 btrfs_tree_unlock(tmp
);
1566 free_extent_buffer(tmp
);
1568 btrfs_abort_transaction(trans
, ret
);
1573 * insert root back/forward references
1575 ret
= btrfs_add_root_ref(trans
, tree_root
, objectid
,
1576 parent_root
->root_key
.objectid
,
1577 btrfs_ino(parent_inode
), index
,
1578 dentry
->d_name
.name
, dentry
->d_name
.len
);
1580 btrfs_abort_transaction(trans
, ret
);
1584 key
.offset
= (u64
)-1;
1585 pending
->snap
= btrfs_read_fs_root_no_name(root
->fs_info
, &key
);
1586 if (IS_ERR(pending
->snap
)) {
1587 ret
= PTR_ERR(pending
->snap
);
1588 btrfs_abort_transaction(trans
, ret
);
1592 ret
= btrfs_reloc_post_snapshot(trans
, pending
);
1594 btrfs_abort_transaction(trans
, ret
);
1598 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1600 btrfs_abort_transaction(trans
, ret
);
1605 * Do special qgroup accounting for snapshot, as we do some qgroup
1606 * snapshot hack to do fast snapshot.
1607 * To co-operate with that hack, we do hack again.
1608 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1610 ret
= qgroup_account_snapshot(trans
, root
, parent_root
,
1611 pending
->inherit
, objectid
);
1615 ret
= btrfs_insert_dir_item(trans
, parent_root
,
1616 dentry
->d_name
.name
, dentry
->d_name
.len
,
1618 BTRFS_FT_DIR
, index
);
1619 /* We have check then name at the beginning, so it is impossible. */
1620 BUG_ON(ret
== -EEXIST
|| ret
== -EOVERFLOW
);
1622 btrfs_abort_transaction(trans
, ret
);
1626 btrfs_i_size_write(parent_inode
, parent_inode
->i_size
+
1627 dentry
->d_name
.len
* 2);
1628 parent_inode
->i_mtime
= parent_inode
->i_ctime
=
1629 current_time(parent_inode
);
1630 ret
= btrfs_update_inode_fallback(trans
, parent_root
, parent_inode
);
1632 btrfs_abort_transaction(trans
, ret
);
1635 ret
= btrfs_uuid_tree_add(trans
, fs_info
->uuid_root
, new_uuid
.b
,
1636 BTRFS_UUID_KEY_SUBVOL
, objectid
);
1638 btrfs_abort_transaction(trans
, ret
);
1641 if (!btrfs_is_empty_uuid(new_root_item
->received_uuid
)) {
1642 ret
= btrfs_uuid_tree_add(trans
, fs_info
->uuid_root
,
1643 new_root_item
->received_uuid
,
1644 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
1646 if (ret
&& ret
!= -EEXIST
) {
1647 btrfs_abort_transaction(trans
, ret
);
1652 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1654 btrfs_abort_transaction(trans
, ret
);
1659 pending
->error
= ret
;
1661 trans
->block_rsv
= rsv
;
1662 trans
->bytes_reserved
= 0;
1664 btrfs_clear_skip_qgroup(trans
);
1666 kfree(new_root_item
);
1667 pending
->root_item
= NULL
;
1668 btrfs_free_path(path
);
1669 pending
->path
= NULL
;
1675 * create all the snapshots we've scheduled for creation
1677 static noinline
int create_pending_snapshots(struct btrfs_trans_handle
*trans
,
1678 struct btrfs_fs_info
*fs_info
)
1680 struct btrfs_pending_snapshot
*pending
, *next
;
1681 struct list_head
*head
= &trans
->transaction
->pending_snapshots
;
1684 list_for_each_entry_safe(pending
, next
, head
, list
) {
1685 list_del(&pending
->list
);
1686 ret
= create_pending_snapshot(trans
, fs_info
, pending
);
1693 static void update_super_roots(struct btrfs_root
*root
)
1695 struct btrfs_root_item
*root_item
;
1696 struct btrfs_super_block
*super
;
1698 super
= root
->fs_info
->super_copy
;
1700 root_item
= &root
->fs_info
->chunk_root
->root_item
;
1701 super
->chunk_root
= root_item
->bytenr
;
1702 super
->chunk_root_generation
= root_item
->generation
;
1703 super
->chunk_root_level
= root_item
->level
;
1705 root_item
= &root
->fs_info
->tree_root
->root_item
;
1706 super
->root
= root_item
->bytenr
;
1707 super
->generation
= root_item
->generation
;
1708 super
->root_level
= root_item
->level
;
1709 if (btrfs_test_opt(root
->fs_info
, SPACE_CACHE
))
1710 super
->cache_generation
= root_item
->generation
;
1711 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN
, &root
->fs_info
->flags
))
1712 super
->uuid_tree_generation
= root_item
->generation
;
1715 int btrfs_transaction_in_commit(struct btrfs_fs_info
*info
)
1717 struct btrfs_transaction
*trans
;
1720 spin_lock(&info
->trans_lock
);
1721 trans
= info
->running_transaction
;
1723 ret
= (trans
->state
>= TRANS_STATE_COMMIT_START
);
1724 spin_unlock(&info
->trans_lock
);
1728 int btrfs_transaction_blocked(struct btrfs_fs_info
*info
)
1730 struct btrfs_transaction
*trans
;
1733 spin_lock(&info
->trans_lock
);
1734 trans
= info
->running_transaction
;
1736 ret
= is_transaction_blocked(trans
);
1737 spin_unlock(&info
->trans_lock
);
1742 * wait for the current transaction commit to start and block subsequent
1745 static void wait_current_trans_commit_start(struct btrfs_root
*root
,
1746 struct btrfs_transaction
*trans
)
1748 wait_event(root
->fs_info
->transaction_blocked_wait
,
1749 trans
->state
>= TRANS_STATE_COMMIT_START
||
1754 * wait for the current transaction to start and then become unblocked.
1757 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root
*root
,
1758 struct btrfs_transaction
*trans
)
1760 wait_event(root
->fs_info
->transaction_wait
,
1761 trans
->state
>= TRANS_STATE_UNBLOCKED
||
1766 * commit transactions asynchronously. once btrfs_commit_transaction_async
1767 * returns, any subsequent transaction will not be allowed to join.
1769 struct btrfs_async_commit
{
1770 struct btrfs_trans_handle
*newtrans
;
1771 struct btrfs_root
*root
;
1772 struct work_struct work
;
1775 static void do_async_commit(struct work_struct
*work
)
1777 struct btrfs_async_commit
*ac
=
1778 container_of(work
, struct btrfs_async_commit
, work
);
1781 * We've got freeze protection passed with the transaction.
1782 * Tell lockdep about it.
1784 if (ac
->newtrans
->type
& __TRANS_FREEZABLE
)
1785 __sb_writers_acquired(ac
->root
->fs_info
->sb
, SB_FREEZE_FS
);
1787 current
->journal_info
= ac
->newtrans
;
1789 btrfs_commit_transaction(ac
->newtrans
, ac
->root
);
1793 int btrfs_commit_transaction_async(struct btrfs_trans_handle
*trans
,
1794 struct btrfs_root
*root
,
1795 int wait_for_unblock
)
1797 struct btrfs_async_commit
*ac
;
1798 struct btrfs_transaction
*cur_trans
;
1800 ac
= kmalloc(sizeof(*ac
), GFP_NOFS
);
1804 INIT_WORK(&ac
->work
, do_async_commit
);
1806 ac
->newtrans
= btrfs_join_transaction(root
);
1807 if (IS_ERR(ac
->newtrans
)) {
1808 int err
= PTR_ERR(ac
->newtrans
);
1813 /* take transaction reference */
1814 cur_trans
= trans
->transaction
;
1815 atomic_inc(&cur_trans
->use_count
);
1817 btrfs_end_transaction(trans
, root
);
1820 * Tell lockdep we've released the freeze rwsem, since the
1821 * async commit thread will be the one to unlock it.
1823 if (ac
->newtrans
->type
& __TRANS_FREEZABLE
)
1824 __sb_writers_release(root
->fs_info
->sb
, SB_FREEZE_FS
);
1826 schedule_work(&ac
->work
);
1828 /* wait for transaction to start and unblock */
1829 if (wait_for_unblock
)
1830 wait_current_trans_commit_start_and_unblock(root
, cur_trans
);
1832 wait_current_trans_commit_start(root
, cur_trans
);
1834 if (current
->journal_info
== trans
)
1835 current
->journal_info
= NULL
;
1837 btrfs_put_transaction(cur_trans
);
1842 static void cleanup_transaction(struct btrfs_trans_handle
*trans
,
1843 struct btrfs_root
*root
, int err
)
1845 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
1848 WARN_ON(trans
->use_count
> 1);
1850 btrfs_abort_transaction(trans
, err
);
1852 spin_lock(&root
->fs_info
->trans_lock
);
1855 * If the transaction is removed from the list, it means this
1856 * transaction has been committed successfully, so it is impossible
1857 * to call the cleanup function.
1859 BUG_ON(list_empty(&cur_trans
->list
));
1861 list_del_init(&cur_trans
->list
);
1862 if (cur_trans
== root
->fs_info
->running_transaction
) {
1863 cur_trans
->state
= TRANS_STATE_COMMIT_DOING
;
1864 spin_unlock(&root
->fs_info
->trans_lock
);
1865 wait_event(cur_trans
->writer_wait
,
1866 atomic_read(&cur_trans
->num_writers
) == 1);
1868 spin_lock(&root
->fs_info
->trans_lock
);
1870 spin_unlock(&root
->fs_info
->trans_lock
);
1872 btrfs_cleanup_one_transaction(trans
->transaction
, root
);
1874 spin_lock(&root
->fs_info
->trans_lock
);
1875 if (cur_trans
== root
->fs_info
->running_transaction
)
1876 root
->fs_info
->running_transaction
= NULL
;
1877 spin_unlock(&root
->fs_info
->trans_lock
);
1879 if (trans
->type
& __TRANS_FREEZABLE
)
1880 sb_end_intwrite(root
->fs_info
->sb
);
1881 btrfs_put_transaction(cur_trans
);
1882 btrfs_put_transaction(cur_trans
);
1884 trace_btrfs_transaction_commit(root
);
1886 if (current
->journal_info
== trans
)
1887 current
->journal_info
= NULL
;
1888 btrfs_scrub_cancel(root
->fs_info
);
1890 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
1893 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info
*fs_info
)
1895 if (btrfs_test_opt(fs_info
, FLUSHONCOMMIT
))
1896 return btrfs_start_delalloc_roots(fs_info
, 1, -1);
1900 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info
*fs_info
)
1902 if (btrfs_test_opt(fs_info
, FLUSHONCOMMIT
))
1903 btrfs_wait_ordered_roots(fs_info
, -1, 0, (u64
)-1);
1907 btrfs_wait_pending_ordered(struct btrfs_transaction
*cur_trans
)
1909 wait_event(cur_trans
->pending_wait
,
1910 atomic_read(&cur_trans
->pending_ordered
) == 0);
1913 int btrfs_commit_transaction(struct btrfs_trans_handle
*trans
,
1914 struct btrfs_root
*root
)
1916 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
1917 struct btrfs_transaction
*prev_trans
= NULL
;
1920 /* Stop the commit early if ->aborted is set */
1921 if (unlikely(ACCESS_ONCE(cur_trans
->aborted
))) {
1922 ret
= cur_trans
->aborted
;
1923 btrfs_end_transaction(trans
, root
);
1927 /* make a pass through all the delayed refs we have so far
1928 * any runnings procs may add more while we are here
1930 ret
= btrfs_run_delayed_refs(trans
, root
, 0);
1932 btrfs_end_transaction(trans
, root
);
1936 btrfs_trans_release_metadata(trans
, root
);
1937 trans
->block_rsv
= NULL
;
1939 cur_trans
= trans
->transaction
;
1942 * set the flushing flag so procs in this transaction have to
1943 * start sending their work down.
1945 cur_trans
->delayed_refs
.flushing
= 1;
1948 if (!list_empty(&trans
->new_bgs
))
1949 btrfs_create_pending_block_groups(trans
, root
);
1951 ret
= btrfs_run_delayed_refs(trans
, root
, 0);
1953 btrfs_end_transaction(trans
, root
);
1957 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN
, &cur_trans
->flags
)) {
1960 /* this mutex is also taken before trying to set
1961 * block groups readonly. We need to make sure
1962 * that nobody has set a block group readonly
1963 * after a extents from that block group have been
1964 * allocated for cache files. btrfs_set_block_group_ro
1965 * will wait for the transaction to commit if it
1966 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1968 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
1969 * only one process starts all the block group IO. It wouldn't
1970 * hurt to have more than one go through, but there's no
1971 * real advantage to it either.
1973 mutex_lock(&root
->fs_info
->ro_block_group_mutex
);
1974 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN
,
1977 mutex_unlock(&root
->fs_info
->ro_block_group_mutex
);
1980 ret
= btrfs_start_dirty_block_groups(trans
, root
);
1983 btrfs_end_transaction(trans
, root
);
1987 spin_lock(&root
->fs_info
->trans_lock
);
1988 if (cur_trans
->state
>= TRANS_STATE_COMMIT_START
) {
1989 spin_unlock(&root
->fs_info
->trans_lock
);
1990 atomic_inc(&cur_trans
->use_count
);
1991 ret
= btrfs_end_transaction(trans
, root
);
1993 wait_for_commit(root
, cur_trans
);
1995 if (unlikely(cur_trans
->aborted
))
1996 ret
= cur_trans
->aborted
;
1998 btrfs_put_transaction(cur_trans
);
2003 cur_trans
->state
= TRANS_STATE_COMMIT_START
;
2004 wake_up(&root
->fs_info
->transaction_blocked_wait
);
2006 if (cur_trans
->list
.prev
!= &root
->fs_info
->trans_list
) {
2007 prev_trans
= list_entry(cur_trans
->list
.prev
,
2008 struct btrfs_transaction
, list
);
2009 if (prev_trans
->state
!= TRANS_STATE_COMPLETED
) {
2010 atomic_inc(&prev_trans
->use_count
);
2011 spin_unlock(&root
->fs_info
->trans_lock
);
2013 wait_for_commit(root
, prev_trans
);
2014 ret
= prev_trans
->aborted
;
2016 btrfs_put_transaction(prev_trans
);
2018 goto cleanup_transaction
;
2020 spin_unlock(&root
->fs_info
->trans_lock
);
2023 spin_unlock(&root
->fs_info
->trans_lock
);
2026 extwriter_counter_dec(cur_trans
, trans
->type
);
2028 ret
= btrfs_start_delalloc_flush(root
->fs_info
);
2030 goto cleanup_transaction
;
2032 ret
= btrfs_run_delayed_items(trans
, root
);
2034 goto cleanup_transaction
;
2036 wait_event(cur_trans
->writer_wait
,
2037 extwriter_counter_read(cur_trans
) == 0);
2039 /* some pending stuffs might be added after the previous flush. */
2040 ret
= btrfs_run_delayed_items(trans
, root
);
2042 goto cleanup_transaction
;
2044 btrfs_wait_delalloc_flush(root
->fs_info
);
2046 btrfs_wait_pending_ordered(cur_trans
);
2048 btrfs_scrub_pause(root
);
2050 * Ok now we need to make sure to block out any other joins while we
2051 * commit the transaction. We could have started a join before setting
2052 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2054 spin_lock(&root
->fs_info
->trans_lock
);
2055 cur_trans
->state
= TRANS_STATE_COMMIT_DOING
;
2056 spin_unlock(&root
->fs_info
->trans_lock
);
2057 wait_event(cur_trans
->writer_wait
,
2058 atomic_read(&cur_trans
->num_writers
) == 1);
2060 /* ->aborted might be set after the previous check, so check it */
2061 if (unlikely(ACCESS_ONCE(cur_trans
->aborted
))) {
2062 ret
= cur_trans
->aborted
;
2063 goto scrub_continue
;
2066 * the reloc mutex makes sure that we stop
2067 * the balancing code from coming in and moving
2068 * extents around in the middle of the commit
2070 mutex_lock(&root
->fs_info
->reloc_mutex
);
2073 * We needn't worry about the delayed items because we will
2074 * deal with them in create_pending_snapshot(), which is the
2075 * core function of the snapshot creation.
2077 ret
= create_pending_snapshots(trans
, root
->fs_info
);
2079 mutex_unlock(&root
->fs_info
->reloc_mutex
);
2080 goto scrub_continue
;
2084 * We insert the dir indexes of the snapshots and update the inode
2085 * of the snapshots' parents after the snapshot creation, so there
2086 * are some delayed items which are not dealt with. Now deal with
2089 * We needn't worry that this operation will corrupt the snapshots,
2090 * because all the tree which are snapshoted will be forced to COW
2091 * the nodes and leaves.
2093 ret
= btrfs_run_delayed_items(trans
, root
);
2095 mutex_unlock(&root
->fs_info
->reloc_mutex
);
2096 goto scrub_continue
;
2099 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
2101 mutex_unlock(&root
->fs_info
->reloc_mutex
);
2102 goto scrub_continue
;
2105 /* Reocrd old roots for later qgroup accounting */
2106 ret
= btrfs_qgroup_prepare_account_extents(trans
, root
->fs_info
);
2108 mutex_unlock(&root
->fs_info
->reloc_mutex
);
2109 goto scrub_continue
;
2113 * make sure none of the code above managed to slip in a
2116 btrfs_assert_delayed_root_empty(root
);
2118 WARN_ON(cur_trans
!= trans
->transaction
);
2120 /* btrfs_commit_tree_roots is responsible for getting the
2121 * various roots consistent with each other. Every pointer
2122 * in the tree of tree roots has to point to the most up to date
2123 * root for every subvolume and other tree. So, we have to keep
2124 * the tree logging code from jumping in and changing any
2127 * At this point in the commit, there can't be any tree-log
2128 * writers, but a little lower down we drop the trans mutex
2129 * and let new people in. By holding the tree_log_mutex
2130 * from now until after the super is written, we avoid races
2131 * with the tree-log code.
2133 mutex_lock(&root
->fs_info
->tree_log_mutex
);
2135 ret
= commit_fs_roots(trans
, root
);
2137 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
2138 mutex_unlock(&root
->fs_info
->reloc_mutex
);
2139 goto scrub_continue
;
2143 * Since the transaction is done, we can apply the pending changes
2144 * before the next transaction.
2146 btrfs_apply_pending_changes(root
->fs_info
);
2148 /* commit_fs_roots gets rid of all the tree log roots, it is now
2149 * safe to free the root of tree log roots
2151 btrfs_free_log_root_tree(trans
, root
->fs_info
);
2154 * Since fs roots are all committed, we can get a quite accurate
2155 * new_roots. So let's do quota accounting.
2157 ret
= btrfs_qgroup_account_extents(trans
, root
->fs_info
);
2159 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
2160 mutex_unlock(&root
->fs_info
->reloc_mutex
);
2161 goto scrub_continue
;
2164 ret
= commit_cowonly_roots(trans
, root
);
2166 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
2167 mutex_unlock(&root
->fs_info
->reloc_mutex
);
2168 goto scrub_continue
;
2172 * The tasks which save the space cache and inode cache may also
2173 * update ->aborted, check it.
2175 if (unlikely(ACCESS_ONCE(cur_trans
->aborted
))) {
2176 ret
= cur_trans
->aborted
;
2177 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
2178 mutex_unlock(&root
->fs_info
->reloc_mutex
);
2179 goto scrub_continue
;
2182 btrfs_prepare_extent_commit(trans
, root
);
2184 cur_trans
= root
->fs_info
->running_transaction
;
2186 btrfs_set_root_node(&root
->fs_info
->tree_root
->root_item
,
2187 root
->fs_info
->tree_root
->node
);
2188 list_add_tail(&root
->fs_info
->tree_root
->dirty_list
,
2189 &cur_trans
->switch_commits
);
2191 btrfs_set_root_node(&root
->fs_info
->chunk_root
->root_item
,
2192 root
->fs_info
->chunk_root
->node
);
2193 list_add_tail(&root
->fs_info
->chunk_root
->dirty_list
,
2194 &cur_trans
->switch_commits
);
2196 switch_commit_roots(cur_trans
, root
->fs_info
);
2198 assert_qgroups_uptodate(trans
);
2199 ASSERT(list_empty(&cur_trans
->dirty_bgs
));
2200 ASSERT(list_empty(&cur_trans
->io_bgs
));
2201 update_super_roots(root
);
2203 btrfs_set_super_log_root(root
->fs_info
->super_copy
, 0);
2204 btrfs_set_super_log_root_level(root
->fs_info
->super_copy
, 0);
2205 memcpy(root
->fs_info
->super_for_commit
, root
->fs_info
->super_copy
,
2206 sizeof(*root
->fs_info
->super_copy
));
2208 btrfs_update_commit_device_size(root
->fs_info
);
2209 btrfs_update_commit_device_bytes_used(root
, cur_trans
);
2211 clear_bit(BTRFS_FS_LOG1_ERR
, &root
->fs_info
->flags
);
2212 clear_bit(BTRFS_FS_LOG2_ERR
, &root
->fs_info
->flags
);
2214 btrfs_trans_release_chunk_metadata(trans
);
2216 spin_lock(&root
->fs_info
->trans_lock
);
2217 cur_trans
->state
= TRANS_STATE_UNBLOCKED
;
2218 root
->fs_info
->running_transaction
= NULL
;
2219 spin_unlock(&root
->fs_info
->trans_lock
);
2220 mutex_unlock(&root
->fs_info
->reloc_mutex
);
2222 wake_up(&root
->fs_info
->transaction_wait
);
2224 ret
= btrfs_write_and_wait_transaction(trans
, root
);
2226 btrfs_handle_fs_error(root
->fs_info
, ret
,
2227 "Error while writing out transaction");
2228 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
2229 goto scrub_continue
;
2232 ret
= write_ctree_super(trans
, root
, 0);
2234 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
2235 goto scrub_continue
;
2239 * the super is written, we can safely allow the tree-loggers
2240 * to go about their business
2242 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
2244 btrfs_finish_extent_commit(trans
, root
);
2246 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS
, &cur_trans
->flags
))
2247 btrfs_clear_space_info_full(root
->fs_info
);
2249 root
->fs_info
->last_trans_committed
= cur_trans
->transid
;
2251 * We needn't acquire the lock here because there is no other task
2252 * which can change it.
2254 cur_trans
->state
= TRANS_STATE_COMPLETED
;
2255 wake_up(&cur_trans
->commit_wait
);
2257 spin_lock(&root
->fs_info
->trans_lock
);
2258 list_del_init(&cur_trans
->list
);
2259 spin_unlock(&root
->fs_info
->trans_lock
);
2261 btrfs_put_transaction(cur_trans
);
2262 btrfs_put_transaction(cur_trans
);
2264 if (trans
->type
& __TRANS_FREEZABLE
)
2265 sb_end_intwrite(root
->fs_info
->sb
);
2267 trace_btrfs_transaction_commit(root
);
2269 btrfs_scrub_continue(root
);
2271 if (current
->journal_info
== trans
)
2272 current
->journal_info
= NULL
;
2274 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
2277 * If fs has been frozen, we can not handle delayed iputs, otherwise
2278 * it'll result in deadlock about SB_FREEZE_FS.
2280 if (current
!= root
->fs_info
->transaction_kthread
&&
2281 current
!= root
->fs_info
->cleaner_kthread
&&
2282 !root
->fs_info
->fs_frozen
)
2283 btrfs_run_delayed_iputs(root
);
2288 btrfs_scrub_continue(root
);
2289 cleanup_transaction
:
2290 btrfs_trans_release_metadata(trans
, root
);
2291 btrfs_trans_release_chunk_metadata(trans
);
2292 trans
->block_rsv
= NULL
;
2293 btrfs_warn(root
->fs_info
, "Skipping commit of aborted transaction.");
2294 if (current
->journal_info
== trans
)
2295 current
->journal_info
= NULL
;
2296 cleanup_transaction(trans
, root
, ret
);
2302 * return < 0 if error
2303 * 0 if there are no more dead_roots at the time of call
2304 * 1 there are more to be processed, call me again
2306 * The return value indicates there are certainly more snapshots to delete, but
2307 * if there comes a new one during processing, it may return 0. We don't mind,
2308 * because btrfs_commit_super will poke cleaner thread and it will process it a
2309 * few seconds later.
2311 int btrfs_clean_one_deleted_snapshot(struct btrfs_root
*root
)
2314 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2316 spin_lock(&fs_info
->trans_lock
);
2317 if (list_empty(&fs_info
->dead_roots
)) {
2318 spin_unlock(&fs_info
->trans_lock
);
2321 root
= list_first_entry(&fs_info
->dead_roots
,
2322 struct btrfs_root
, root_list
);
2323 list_del_init(&root
->root_list
);
2324 spin_unlock(&fs_info
->trans_lock
);
2326 btrfs_debug(fs_info
, "cleaner removing %llu", root
->objectid
);
2328 btrfs_kill_all_delayed_nodes(root
);
2330 if (btrfs_header_backref_rev(root
->node
) <
2331 BTRFS_MIXED_BACKREF_REV
)
2332 ret
= btrfs_drop_snapshot(root
, NULL
, 0, 0);
2334 ret
= btrfs_drop_snapshot(root
, NULL
, 1, 0);
2336 return (ret
< 0) ? 0 : 1;
2339 void btrfs_apply_pending_changes(struct btrfs_fs_info
*fs_info
)
2344 prev
= xchg(&fs_info
->pending_changes
, 0);
2348 bit
= 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE
;
2350 btrfs_set_opt(fs_info
->mount_opt
, INODE_MAP_CACHE
);
2353 bit
= 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE
;
2355 btrfs_clear_opt(fs_info
->mount_opt
, INODE_MAP_CACHE
);
2358 bit
= 1 << BTRFS_PENDING_COMMIT
;
2360 btrfs_debug(fs_info
, "pending commit done");
2365 "unknown pending changes left 0x%lx, ignoring", prev
);