2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
24 * This file implements UBIFS initialization and VFS superblock operations. Some
25 * initialization stuff which is rather large and complex is placed at
26 * corresponding subsystems, but most of it is here.
29 #include <linux/init.h>
30 #include <linux/slab.h>
31 #include <linux/module.h>
32 #include <linux/ctype.h>
33 #include <linux/kthread.h>
34 #include <linux/parser.h>
35 #include <linux/seq_file.h>
36 #include <linux/mount.h>
37 #include <linux/math64.h>
38 #include <linux/writeback.h>
42 * Maximum amount of memory we may 'kmalloc()' without worrying that we are
43 * allocating too much.
45 #define UBIFS_KMALLOC_OK (128*1024)
47 /* Slab cache for UBIFS inodes */
48 struct kmem_cache
*ubifs_inode_slab
;
50 /* UBIFS TNC shrinker description */
51 static struct shrinker ubifs_shrinker_info
= {
52 .scan_objects
= ubifs_shrink_scan
,
53 .count_objects
= ubifs_shrink_count
,
54 .seeks
= DEFAULT_SEEKS
,
58 * validate_inode - validate inode.
59 * @c: UBIFS file-system description object
60 * @inode: the inode to validate
62 * This is a helper function for 'ubifs_iget()' which validates various fields
63 * of a newly built inode to make sure they contain sane values and prevent
64 * possible vulnerabilities. Returns zero if the inode is all right and
65 * a non-zero error code if not.
67 static int validate_inode(struct ubifs_info
*c
, const struct inode
*inode
)
70 const struct ubifs_inode
*ui
= ubifs_inode(inode
);
72 if (inode
->i_size
> c
->max_inode_sz
) {
73 ubifs_err("inode is too large (%lld)",
74 (long long)inode
->i_size
);
78 if (ui
->compr_type
>= UBIFS_COMPR_TYPES_CNT
) {
79 ubifs_err("unknown compression type %d", ui
->compr_type
);
83 if (ui
->xattr_names
+ ui
->xattr_cnt
> XATTR_LIST_MAX
)
86 if (ui
->data_len
< 0 || ui
->data_len
> UBIFS_MAX_INO_DATA
)
89 if (ui
->xattr
&& !S_ISREG(inode
->i_mode
))
92 if (!ubifs_compr_present(ui
->compr_type
)) {
93 ubifs_warn("inode %lu uses '%s' compression, but it was not compiled in",
94 inode
->i_ino
, ubifs_compr_name(ui
->compr_type
));
97 err
= dbg_check_dir(c
, inode
);
101 struct inode
*ubifs_iget(struct super_block
*sb
, unsigned long inum
)
105 struct ubifs_ino_node
*ino
;
106 struct ubifs_info
*c
= sb
->s_fs_info
;
108 struct ubifs_inode
*ui
;
110 dbg_gen("inode %lu", inum
);
112 inode
= iget_locked(sb
, inum
);
114 return ERR_PTR(-ENOMEM
);
115 if (!(inode
->i_state
& I_NEW
))
117 ui
= ubifs_inode(inode
);
119 ino
= kmalloc(UBIFS_MAX_INO_NODE_SZ
, GFP_NOFS
);
125 ino_key_init(c
, &key
, inode
->i_ino
);
127 err
= ubifs_tnc_lookup(c
, &key
, ino
);
131 inode
->i_flags
|= (S_NOCMTIME
| S_NOATIME
);
132 set_nlink(inode
, le32_to_cpu(ino
->nlink
));
133 i_uid_write(inode
, le32_to_cpu(ino
->uid
));
134 i_gid_write(inode
, le32_to_cpu(ino
->gid
));
135 inode
->i_atime
.tv_sec
= (int64_t)le64_to_cpu(ino
->atime_sec
);
136 inode
->i_atime
.tv_nsec
= le32_to_cpu(ino
->atime_nsec
);
137 inode
->i_mtime
.tv_sec
= (int64_t)le64_to_cpu(ino
->mtime_sec
);
138 inode
->i_mtime
.tv_nsec
= le32_to_cpu(ino
->mtime_nsec
);
139 inode
->i_ctime
.tv_sec
= (int64_t)le64_to_cpu(ino
->ctime_sec
);
140 inode
->i_ctime
.tv_nsec
= le32_to_cpu(ino
->ctime_nsec
);
141 inode
->i_mode
= le32_to_cpu(ino
->mode
);
142 inode
->i_size
= le64_to_cpu(ino
->size
);
144 ui
->data_len
= le32_to_cpu(ino
->data_len
);
145 ui
->flags
= le32_to_cpu(ino
->flags
);
146 ui
->compr_type
= le16_to_cpu(ino
->compr_type
);
147 ui
->creat_sqnum
= le64_to_cpu(ino
->creat_sqnum
);
148 ui
->xattr_cnt
= le32_to_cpu(ino
->xattr_cnt
);
149 ui
->xattr_size
= le32_to_cpu(ino
->xattr_size
);
150 ui
->xattr_names
= le32_to_cpu(ino
->xattr_names
);
151 ui
->synced_i_size
= ui
->ui_size
= inode
->i_size
;
153 ui
->xattr
= (ui
->flags
& UBIFS_XATTR_FL
) ? 1 : 0;
155 err
= validate_inode(c
, inode
);
159 switch (inode
->i_mode
& S_IFMT
) {
161 inode
->i_mapping
->a_ops
= &ubifs_file_address_operations
;
162 inode
->i_op
= &ubifs_file_inode_operations
;
163 inode
->i_fop
= &ubifs_file_operations
;
165 ui
->data
= kmalloc(ui
->data_len
+ 1, GFP_NOFS
);
170 memcpy(ui
->data
, ino
->data
, ui
->data_len
);
171 ((char *)ui
->data
)[ui
->data_len
] = '\0';
172 } else if (ui
->data_len
!= 0) {
178 inode
->i_op
= &ubifs_dir_inode_operations
;
179 inode
->i_fop
= &ubifs_dir_operations
;
180 if (ui
->data_len
!= 0) {
186 inode
->i_op
= &ubifs_symlink_inode_operations
;
187 if (ui
->data_len
<= 0 || ui
->data_len
> UBIFS_MAX_INO_DATA
) {
191 ui
->data
= kmalloc(ui
->data_len
+ 1, GFP_NOFS
);
196 memcpy(ui
->data
, ino
->data
, ui
->data_len
);
197 ((char *)ui
->data
)[ui
->data_len
] = '\0';
203 union ubifs_dev_desc
*dev
;
205 ui
->data
= kmalloc(sizeof(union ubifs_dev_desc
), GFP_NOFS
);
211 dev
= (union ubifs_dev_desc
*)ino
->data
;
212 if (ui
->data_len
== sizeof(dev
->new))
213 rdev
= new_decode_dev(le32_to_cpu(dev
->new));
214 else if (ui
->data_len
== sizeof(dev
->huge
))
215 rdev
= huge_decode_dev(le64_to_cpu(dev
->huge
));
220 memcpy(ui
->data
, ino
->data
, ui
->data_len
);
221 inode
->i_op
= &ubifs_file_inode_operations
;
222 init_special_inode(inode
, inode
->i_mode
, rdev
);
227 inode
->i_op
= &ubifs_file_inode_operations
;
228 init_special_inode(inode
, inode
->i_mode
, 0);
229 if (ui
->data_len
!= 0) {
240 ubifs_set_inode_flags(inode
);
241 unlock_new_inode(inode
);
245 ubifs_err("inode %lu validation failed, error %d", inode
->i_ino
, err
);
246 ubifs_dump_node(c
, ino
);
247 ubifs_dump_inode(c
, inode
);
252 ubifs_err("failed to read inode %lu, error %d", inode
->i_ino
, err
);
257 static struct inode
*ubifs_alloc_inode(struct super_block
*sb
)
259 struct ubifs_inode
*ui
;
261 ui
= kmem_cache_alloc(ubifs_inode_slab
, GFP_NOFS
);
265 memset((void *)ui
+ sizeof(struct inode
), 0,
266 sizeof(struct ubifs_inode
) - sizeof(struct inode
));
267 mutex_init(&ui
->ui_mutex
);
268 spin_lock_init(&ui
->ui_lock
);
269 return &ui
->vfs_inode
;
272 static void ubifs_i_callback(struct rcu_head
*head
)
274 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
275 struct ubifs_inode
*ui
= ubifs_inode(inode
);
276 kmem_cache_free(ubifs_inode_slab
, ui
);
279 static void ubifs_destroy_inode(struct inode
*inode
)
281 struct ubifs_inode
*ui
= ubifs_inode(inode
);
284 call_rcu(&inode
->i_rcu
, ubifs_i_callback
);
288 * Note, Linux write-back code calls this without 'i_mutex'.
290 static int ubifs_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
293 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
294 struct ubifs_inode
*ui
= ubifs_inode(inode
);
296 ubifs_assert(!ui
->xattr
);
297 if (is_bad_inode(inode
))
300 mutex_lock(&ui
->ui_mutex
);
302 * Due to races between write-back forced by budgeting
303 * (see 'sync_some_inodes()') and background write-back, the inode may
304 * have already been synchronized, do not do this again. This might
305 * also happen if it was synchronized in an VFS operation, e.g.
309 mutex_unlock(&ui
->ui_mutex
);
314 * As an optimization, do not write orphan inodes to the media just
315 * because this is not needed.
317 dbg_gen("inode %lu, mode %#x, nlink %u",
318 inode
->i_ino
, (int)inode
->i_mode
, inode
->i_nlink
);
319 if (inode
->i_nlink
) {
320 err
= ubifs_jnl_write_inode(c
, inode
);
322 ubifs_err("can't write inode %lu, error %d",
325 err
= dbg_check_inode_size(c
, inode
, ui
->ui_size
);
329 mutex_unlock(&ui
->ui_mutex
);
330 ubifs_release_dirty_inode_budget(c
, ui
);
334 static void ubifs_evict_inode(struct inode
*inode
)
337 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
338 struct ubifs_inode
*ui
= ubifs_inode(inode
);
342 * Extended attribute inode deletions are fully handled in
343 * 'ubifs_removexattr()'. These inodes are special and have
344 * limited usage, so there is nothing to do here.
348 dbg_gen("inode %lu, mode %#x", inode
->i_ino
, (int)inode
->i_mode
);
349 ubifs_assert(!atomic_read(&inode
->i_count
));
351 truncate_inode_pages_final(&inode
->i_data
);
356 if (is_bad_inode(inode
))
359 ui
->ui_size
= inode
->i_size
= 0;
360 err
= ubifs_jnl_delete_inode(c
, inode
);
363 * Worst case we have a lost orphan inode wasting space, so a
364 * simple error message is OK here.
366 ubifs_err("can't delete inode %lu, error %d",
371 ubifs_release_dirty_inode_budget(c
, ui
);
373 /* We've deleted something - clean the "no space" flags */
374 c
->bi
.nospace
= c
->bi
.nospace_rp
= 0;
381 static void ubifs_dirty_inode(struct inode
*inode
, int flags
)
383 struct ubifs_inode
*ui
= ubifs_inode(inode
);
385 ubifs_assert(mutex_is_locked(&ui
->ui_mutex
));
388 dbg_gen("inode %lu", inode
->i_ino
);
392 static int ubifs_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
394 struct ubifs_info
*c
= dentry
->d_sb
->s_fs_info
;
395 unsigned long long free
;
396 __le32
*uuid
= (__le32
*)c
->uuid
;
398 free
= ubifs_get_free_space(c
);
399 dbg_gen("free space %lld bytes (%lld blocks)",
400 free
, free
>> UBIFS_BLOCK_SHIFT
);
402 buf
->f_type
= UBIFS_SUPER_MAGIC
;
403 buf
->f_bsize
= UBIFS_BLOCK_SIZE
;
404 buf
->f_blocks
= c
->block_cnt
;
405 buf
->f_bfree
= free
>> UBIFS_BLOCK_SHIFT
;
406 if (free
> c
->report_rp_size
)
407 buf
->f_bavail
= (free
- c
->report_rp_size
) >> UBIFS_BLOCK_SHIFT
;
412 buf
->f_namelen
= UBIFS_MAX_NLEN
;
413 buf
->f_fsid
.val
[0] = le32_to_cpu(uuid
[0]) ^ le32_to_cpu(uuid
[2]);
414 buf
->f_fsid
.val
[1] = le32_to_cpu(uuid
[1]) ^ le32_to_cpu(uuid
[3]);
415 ubifs_assert(buf
->f_bfree
<= c
->block_cnt
);
419 static int ubifs_show_options(struct seq_file
*s
, struct dentry
*root
)
421 struct ubifs_info
*c
= root
->d_sb
->s_fs_info
;
423 if (c
->mount_opts
.unmount_mode
== 2)
424 seq_puts(s
, ",fast_unmount");
425 else if (c
->mount_opts
.unmount_mode
== 1)
426 seq_puts(s
, ",norm_unmount");
428 if (c
->mount_opts
.bulk_read
== 2)
429 seq_puts(s
, ",bulk_read");
430 else if (c
->mount_opts
.bulk_read
== 1)
431 seq_puts(s
, ",no_bulk_read");
433 if (c
->mount_opts
.chk_data_crc
== 2)
434 seq_puts(s
, ",chk_data_crc");
435 else if (c
->mount_opts
.chk_data_crc
== 1)
436 seq_puts(s
, ",no_chk_data_crc");
438 if (c
->mount_opts
.override_compr
) {
439 seq_printf(s
, ",compr=%s",
440 ubifs_compr_name(c
->mount_opts
.compr_type
));
446 static int ubifs_sync_fs(struct super_block
*sb
, int wait
)
449 struct ubifs_info
*c
= sb
->s_fs_info
;
452 * Zero @wait is just an advisory thing to help the file system shove
453 * lots of data into the queues, and there will be the second
454 * '->sync_fs()' call, with non-zero @wait.
460 * Synchronize write buffers, because 'ubifs_run_commit()' does not
461 * do this if it waits for an already running commit.
463 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
464 err
= ubifs_wbuf_sync(&c
->jheads
[i
].wbuf
);
470 * Strictly speaking, it is not necessary to commit the journal here,
471 * synchronizing write-buffers would be enough. But committing makes
472 * UBIFS free space predictions much more accurate, so we want to let
473 * the user be able to get more accurate results of 'statfs()' after
474 * they synchronize the file system.
476 err
= ubifs_run_commit(c
);
480 return ubi_sync(c
->vi
.ubi_num
);
484 * init_constants_early - initialize UBIFS constants.
485 * @c: UBIFS file-system description object
487 * This function initialize UBIFS constants which do not need the superblock to
488 * be read. It also checks that the UBI volume satisfies basic UBIFS
489 * requirements. Returns zero in case of success and a negative error code in
492 static int init_constants_early(struct ubifs_info
*c
)
494 if (c
->vi
.corrupted
) {
495 ubifs_warn("UBI volume is corrupted - read-only mode");
500 ubifs_msg("read-only UBI device");
504 if (c
->vi
.vol_type
== UBI_STATIC_VOLUME
) {
505 ubifs_msg("static UBI volume - read-only mode");
509 c
->leb_cnt
= c
->vi
.size
;
510 c
->leb_size
= c
->vi
.usable_leb_size
;
511 c
->leb_start
= c
->di
.leb_start
;
512 c
->half_leb_size
= c
->leb_size
/ 2;
513 c
->min_io_size
= c
->di
.min_io_size
;
514 c
->min_io_shift
= fls(c
->min_io_size
) - 1;
515 c
->max_write_size
= c
->di
.max_write_size
;
516 c
->max_write_shift
= fls(c
->max_write_size
) - 1;
518 if (c
->leb_size
< UBIFS_MIN_LEB_SZ
) {
519 ubifs_err("too small LEBs (%d bytes), min. is %d bytes",
520 c
->leb_size
, UBIFS_MIN_LEB_SZ
);
524 if (c
->leb_cnt
< UBIFS_MIN_LEB_CNT
) {
525 ubifs_err("too few LEBs (%d), min. is %d",
526 c
->leb_cnt
, UBIFS_MIN_LEB_CNT
);
530 if (!is_power_of_2(c
->min_io_size
)) {
531 ubifs_err("bad min. I/O size %d", c
->min_io_size
);
536 * Maximum write size has to be greater or equivalent to min. I/O
537 * size, and be multiple of min. I/O size.
539 if (c
->max_write_size
< c
->min_io_size
||
540 c
->max_write_size
% c
->min_io_size
||
541 !is_power_of_2(c
->max_write_size
)) {
542 ubifs_err("bad write buffer size %d for %d min. I/O unit",
543 c
->max_write_size
, c
->min_io_size
);
548 * UBIFS aligns all node to 8-byte boundary, so to make function in
549 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
552 if (c
->min_io_size
< 8) {
555 if (c
->max_write_size
< c
->min_io_size
) {
556 c
->max_write_size
= c
->min_io_size
;
557 c
->max_write_shift
= c
->min_io_shift
;
561 c
->ref_node_alsz
= ALIGN(UBIFS_REF_NODE_SZ
, c
->min_io_size
);
562 c
->mst_node_alsz
= ALIGN(UBIFS_MST_NODE_SZ
, c
->min_io_size
);
565 * Initialize node length ranges which are mostly needed for node
568 c
->ranges
[UBIFS_PAD_NODE
].len
= UBIFS_PAD_NODE_SZ
;
569 c
->ranges
[UBIFS_SB_NODE
].len
= UBIFS_SB_NODE_SZ
;
570 c
->ranges
[UBIFS_MST_NODE
].len
= UBIFS_MST_NODE_SZ
;
571 c
->ranges
[UBIFS_REF_NODE
].len
= UBIFS_REF_NODE_SZ
;
572 c
->ranges
[UBIFS_TRUN_NODE
].len
= UBIFS_TRUN_NODE_SZ
;
573 c
->ranges
[UBIFS_CS_NODE
].len
= UBIFS_CS_NODE_SZ
;
575 c
->ranges
[UBIFS_INO_NODE
].min_len
= UBIFS_INO_NODE_SZ
;
576 c
->ranges
[UBIFS_INO_NODE
].max_len
= UBIFS_MAX_INO_NODE_SZ
;
577 c
->ranges
[UBIFS_ORPH_NODE
].min_len
=
578 UBIFS_ORPH_NODE_SZ
+ sizeof(__le64
);
579 c
->ranges
[UBIFS_ORPH_NODE
].max_len
= c
->leb_size
;
580 c
->ranges
[UBIFS_DENT_NODE
].min_len
= UBIFS_DENT_NODE_SZ
;
581 c
->ranges
[UBIFS_DENT_NODE
].max_len
= UBIFS_MAX_DENT_NODE_SZ
;
582 c
->ranges
[UBIFS_XENT_NODE
].min_len
= UBIFS_XENT_NODE_SZ
;
583 c
->ranges
[UBIFS_XENT_NODE
].max_len
= UBIFS_MAX_XENT_NODE_SZ
;
584 c
->ranges
[UBIFS_DATA_NODE
].min_len
= UBIFS_DATA_NODE_SZ
;
585 c
->ranges
[UBIFS_DATA_NODE
].max_len
= UBIFS_MAX_DATA_NODE_SZ
;
587 * Minimum indexing node size is amended later when superblock is
588 * read and the key length is known.
590 c
->ranges
[UBIFS_IDX_NODE
].min_len
= UBIFS_IDX_NODE_SZ
+ UBIFS_BRANCH_SZ
;
592 * Maximum indexing node size is amended later when superblock is
593 * read and the fanout is known.
595 c
->ranges
[UBIFS_IDX_NODE
].max_len
= INT_MAX
;
598 * Initialize dead and dark LEB space watermarks. See gc.c for comments
599 * about these values.
601 c
->dead_wm
= ALIGN(MIN_WRITE_SZ
, c
->min_io_size
);
602 c
->dark_wm
= ALIGN(UBIFS_MAX_NODE_SZ
, c
->min_io_size
);
605 * Calculate how many bytes would be wasted at the end of LEB if it was
606 * fully filled with data nodes of maximum size. This is used in
607 * calculations when reporting free space.
609 c
->leb_overhead
= c
->leb_size
% UBIFS_MAX_DATA_NODE_SZ
;
611 /* Buffer size for bulk-reads */
612 c
->max_bu_buf_len
= UBIFS_MAX_BULK_READ
* UBIFS_MAX_DATA_NODE_SZ
;
613 if (c
->max_bu_buf_len
> c
->leb_size
)
614 c
->max_bu_buf_len
= c
->leb_size
;
619 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
620 * @c: UBIFS file-system description object
621 * @lnum: LEB the write-buffer was synchronized to
622 * @free: how many free bytes left in this LEB
623 * @pad: how many bytes were padded
625 * This is a callback function which is called by the I/O unit when the
626 * write-buffer is synchronized. We need this to correctly maintain space
627 * accounting in bud logical eraseblocks. This function returns zero in case of
628 * success and a negative error code in case of failure.
630 * This function actually belongs to the journal, but we keep it here because
631 * we want to keep it static.
633 static int bud_wbuf_callback(struct ubifs_info
*c
, int lnum
, int free
, int pad
)
635 return ubifs_update_one_lp(c
, lnum
, free
, pad
, 0, 0);
639 * init_constants_sb - initialize UBIFS constants.
640 * @c: UBIFS file-system description object
642 * This is a helper function which initializes various UBIFS constants after
643 * the superblock has been read. It also checks various UBIFS parameters and
644 * makes sure they are all right. Returns zero in case of success and a
645 * negative error code in case of failure.
647 static int init_constants_sb(struct ubifs_info
*c
)
652 c
->main_bytes
= (long long)c
->main_lebs
* c
->leb_size
;
653 c
->max_znode_sz
= sizeof(struct ubifs_znode
) +
654 c
->fanout
* sizeof(struct ubifs_zbranch
);
656 tmp
= ubifs_idx_node_sz(c
, 1);
657 c
->ranges
[UBIFS_IDX_NODE
].min_len
= tmp
;
658 c
->min_idx_node_sz
= ALIGN(tmp
, 8);
660 tmp
= ubifs_idx_node_sz(c
, c
->fanout
);
661 c
->ranges
[UBIFS_IDX_NODE
].max_len
= tmp
;
662 c
->max_idx_node_sz
= ALIGN(tmp
, 8);
664 /* Make sure LEB size is large enough to fit full commit */
665 tmp
= UBIFS_CS_NODE_SZ
+ UBIFS_REF_NODE_SZ
* c
->jhead_cnt
;
666 tmp
= ALIGN(tmp
, c
->min_io_size
);
667 if (tmp
> c
->leb_size
) {
668 ubifs_err("too small LEB size %d, at least %d needed",
674 * Make sure that the log is large enough to fit reference nodes for
675 * all buds plus one reserved LEB.
677 tmp64
= c
->max_bud_bytes
+ c
->leb_size
- 1;
678 c
->max_bud_cnt
= div_u64(tmp64
, c
->leb_size
);
679 tmp
= (c
->ref_node_alsz
* c
->max_bud_cnt
+ c
->leb_size
- 1);
682 if (c
->log_lebs
< tmp
) {
683 ubifs_err("too small log %d LEBs, required min. %d LEBs",
689 * When budgeting we assume worst-case scenarios when the pages are not
690 * be compressed and direntries are of the maximum size.
692 * Note, data, which may be stored in inodes is budgeted separately, so
693 * it is not included into 'c->bi.inode_budget'.
695 c
->bi
.page_budget
= UBIFS_MAX_DATA_NODE_SZ
* UBIFS_BLOCKS_PER_PAGE
;
696 c
->bi
.inode_budget
= UBIFS_INO_NODE_SZ
;
697 c
->bi
.dent_budget
= UBIFS_MAX_DENT_NODE_SZ
;
700 * When the amount of flash space used by buds becomes
701 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
702 * The writers are unblocked when the commit is finished. To avoid
703 * writers to be blocked UBIFS initiates background commit in advance,
704 * when number of bud bytes becomes above the limit defined below.
706 c
->bg_bud_bytes
= (c
->max_bud_bytes
* 13) >> 4;
709 * Ensure minimum journal size. All the bytes in the journal heads are
710 * considered to be used, when calculating the current journal usage.
711 * Consequently, if the journal is too small, UBIFS will treat it as
714 tmp64
= (long long)(c
->jhead_cnt
+ 1) * c
->leb_size
+ 1;
715 if (c
->bg_bud_bytes
< tmp64
)
716 c
->bg_bud_bytes
= tmp64
;
717 if (c
->max_bud_bytes
< tmp64
+ c
->leb_size
)
718 c
->max_bud_bytes
= tmp64
+ c
->leb_size
;
720 err
= ubifs_calc_lpt_geom(c
);
724 /* Initialize effective LEB size used in budgeting calculations */
725 c
->idx_leb_size
= c
->leb_size
- c
->max_idx_node_sz
;
730 * init_constants_master - initialize UBIFS constants.
731 * @c: UBIFS file-system description object
733 * This is a helper function which initializes various UBIFS constants after
734 * the master node has been read. It also checks various UBIFS parameters and
735 * makes sure they are all right.
737 static void init_constants_master(struct ubifs_info
*c
)
741 c
->bi
.min_idx_lebs
= ubifs_calc_min_idx_lebs(c
);
742 c
->report_rp_size
= ubifs_reported_space(c
, c
->rp_size
);
745 * Calculate total amount of FS blocks. This number is not used
746 * internally because it does not make much sense for UBIFS, but it is
747 * necessary to report something for the 'statfs()' call.
749 * Subtract the LEB reserved for GC, the LEB which is reserved for
750 * deletions, minimum LEBs for the index, and assume only one journal
753 tmp64
= c
->main_lebs
- 1 - 1 - MIN_INDEX_LEBS
- c
->jhead_cnt
+ 1;
754 tmp64
*= (long long)c
->leb_size
- c
->leb_overhead
;
755 tmp64
= ubifs_reported_space(c
, tmp64
);
756 c
->block_cnt
= tmp64
>> UBIFS_BLOCK_SHIFT
;
760 * take_gc_lnum - reserve GC LEB.
761 * @c: UBIFS file-system description object
763 * This function ensures that the LEB reserved for garbage collection is marked
764 * as "taken" in lprops. We also have to set free space to LEB size and dirty
765 * space to zero, because lprops may contain out-of-date information if the
766 * file-system was un-mounted before it has been committed. This function
767 * returns zero in case of success and a negative error code in case of
770 static int take_gc_lnum(struct ubifs_info
*c
)
774 if (c
->gc_lnum
== -1) {
775 ubifs_err("no LEB for GC");
779 /* And we have to tell lprops that this LEB is taken */
780 err
= ubifs_change_one_lp(c
, c
->gc_lnum
, c
->leb_size
, 0,
786 * alloc_wbufs - allocate write-buffers.
787 * @c: UBIFS file-system description object
789 * This helper function allocates and initializes UBIFS write-buffers. Returns
790 * zero in case of success and %-ENOMEM in case of failure.
792 static int alloc_wbufs(struct ubifs_info
*c
)
796 c
->jheads
= kcalloc(c
->jhead_cnt
, sizeof(struct ubifs_jhead
),
801 /* Initialize journal heads */
802 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
803 INIT_LIST_HEAD(&c
->jheads
[i
].buds_list
);
804 err
= ubifs_wbuf_init(c
, &c
->jheads
[i
].wbuf
);
808 c
->jheads
[i
].wbuf
.sync_callback
= &bud_wbuf_callback
;
809 c
->jheads
[i
].wbuf
.jhead
= i
;
810 c
->jheads
[i
].grouped
= 1;
814 * Garbage Collector head does not need to be synchronized by timer.
815 * Also GC head nodes are not grouped.
817 c
->jheads
[GCHD
].wbuf
.no_timer
= 1;
818 c
->jheads
[GCHD
].grouped
= 0;
824 * free_wbufs - free write-buffers.
825 * @c: UBIFS file-system description object
827 static void free_wbufs(struct ubifs_info
*c
)
832 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
833 kfree(c
->jheads
[i
].wbuf
.buf
);
834 kfree(c
->jheads
[i
].wbuf
.inodes
);
842 * free_orphans - free orphans.
843 * @c: UBIFS file-system description object
845 static void free_orphans(struct ubifs_info
*c
)
847 struct ubifs_orphan
*orph
;
849 while (c
->orph_dnext
) {
850 orph
= c
->orph_dnext
;
851 c
->orph_dnext
= orph
->dnext
;
852 list_del(&orph
->list
);
856 while (!list_empty(&c
->orph_list
)) {
857 orph
= list_entry(c
->orph_list
.next
, struct ubifs_orphan
, list
);
858 list_del(&orph
->list
);
860 ubifs_err("orphan list not empty at unmount");
868 * free_buds - free per-bud objects.
869 * @c: UBIFS file-system description object
871 static void free_buds(struct ubifs_info
*c
)
873 struct ubifs_bud
*bud
, *n
;
875 rbtree_postorder_for_each_entry_safe(bud
, n
, &c
->buds
, rb
)
880 * check_volume_empty - check if the UBI volume is empty.
881 * @c: UBIFS file-system description object
883 * This function checks if the UBIFS volume is empty by looking if its LEBs are
884 * mapped or not. The result of checking is stored in the @c->empty variable.
885 * Returns zero in case of success and a negative error code in case of
888 static int check_volume_empty(struct ubifs_info
*c
)
893 for (lnum
= 0; lnum
< c
->leb_cnt
; lnum
++) {
894 err
= ubifs_is_mapped(c
, lnum
);
895 if (unlikely(err
< 0))
909 * UBIFS mount options.
911 * Opt_fast_unmount: do not run a journal commit before un-mounting
912 * Opt_norm_unmount: run a journal commit before un-mounting
913 * Opt_bulk_read: enable bulk-reads
914 * Opt_no_bulk_read: disable bulk-reads
915 * Opt_chk_data_crc: check CRCs when reading data nodes
916 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
917 * Opt_override_compr: override default compressor
918 * Opt_err: just end of array marker
931 static const match_table_t tokens
= {
932 {Opt_fast_unmount
, "fast_unmount"},
933 {Opt_norm_unmount
, "norm_unmount"},
934 {Opt_bulk_read
, "bulk_read"},
935 {Opt_no_bulk_read
, "no_bulk_read"},
936 {Opt_chk_data_crc
, "chk_data_crc"},
937 {Opt_no_chk_data_crc
, "no_chk_data_crc"},
938 {Opt_override_compr
, "compr=%s"},
943 * parse_standard_option - parse a standard mount option.
944 * @option: the option to parse
946 * Normally, standard mount options like "sync" are passed to file-systems as
947 * flags. However, when a "rootflags=" kernel boot parameter is used, they may
948 * be present in the options string. This function tries to deal with this
949 * situation and parse standard options. Returns 0 if the option was not
950 * recognized, and the corresponding integer flag if it was.
952 * UBIFS is only interested in the "sync" option, so do not check for anything
955 static int parse_standard_option(const char *option
)
957 ubifs_msg("parse %s", option
);
958 if (!strcmp(option
, "sync"))
959 return MS_SYNCHRONOUS
;
964 * ubifs_parse_options - parse mount parameters.
965 * @c: UBIFS file-system description object
966 * @options: parameters to parse
967 * @is_remount: non-zero if this is FS re-mount
969 * This function parses UBIFS mount options and returns zero in case success
970 * and a negative error code in case of failure.
972 static int ubifs_parse_options(struct ubifs_info
*c
, char *options
,
976 substring_t args
[MAX_OPT_ARGS
];
981 while ((p
= strsep(&options
, ","))) {
987 token
= match_token(p
, tokens
, args
);
990 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
991 * We accept them in order to be backward-compatible. But this
992 * should be removed at some point.
994 case Opt_fast_unmount
:
995 c
->mount_opts
.unmount_mode
= 2;
997 case Opt_norm_unmount
:
998 c
->mount_opts
.unmount_mode
= 1;
1001 c
->mount_opts
.bulk_read
= 2;
1004 case Opt_no_bulk_read
:
1005 c
->mount_opts
.bulk_read
= 1;
1008 case Opt_chk_data_crc
:
1009 c
->mount_opts
.chk_data_crc
= 2;
1010 c
->no_chk_data_crc
= 0;
1012 case Opt_no_chk_data_crc
:
1013 c
->mount_opts
.chk_data_crc
= 1;
1014 c
->no_chk_data_crc
= 1;
1016 case Opt_override_compr
:
1018 char *name
= match_strdup(&args
[0]);
1022 if (!strcmp(name
, "none"))
1023 c
->mount_opts
.compr_type
= UBIFS_COMPR_NONE
;
1024 else if (!strcmp(name
, "lzo"))
1025 c
->mount_opts
.compr_type
= UBIFS_COMPR_LZO
;
1026 else if (!strcmp(name
, "zlib"))
1027 c
->mount_opts
.compr_type
= UBIFS_COMPR_ZLIB
;
1029 ubifs_err("unknown compressor \"%s\"", name
);
1034 c
->mount_opts
.override_compr
= 1;
1035 c
->default_compr
= c
->mount_opts
.compr_type
;
1041 struct super_block
*sb
= c
->vfs_sb
;
1043 flag
= parse_standard_option(p
);
1045 ubifs_err("unrecognized mount option \"%s\" or missing value",
1049 sb
->s_flags
|= flag
;
1059 * destroy_journal - destroy journal data structures.
1060 * @c: UBIFS file-system description object
1062 * This function destroys journal data structures including those that may have
1063 * been created by recovery functions.
1065 static void destroy_journal(struct ubifs_info
*c
)
1067 while (!list_empty(&c
->unclean_leb_list
)) {
1068 struct ubifs_unclean_leb
*ucleb
;
1070 ucleb
= list_entry(c
->unclean_leb_list
.next
,
1071 struct ubifs_unclean_leb
, list
);
1072 list_del(&ucleb
->list
);
1075 while (!list_empty(&c
->old_buds
)) {
1076 struct ubifs_bud
*bud
;
1078 bud
= list_entry(c
->old_buds
.next
, struct ubifs_bud
, list
);
1079 list_del(&bud
->list
);
1082 ubifs_destroy_idx_gc(c
);
1083 ubifs_destroy_size_tree(c
);
1089 * bu_init - initialize bulk-read information.
1090 * @c: UBIFS file-system description object
1092 static void bu_init(struct ubifs_info
*c
)
1094 ubifs_assert(c
->bulk_read
== 1);
1097 return; /* Already initialized */
1100 c
->bu
.buf
= kmalloc(c
->max_bu_buf_len
, GFP_KERNEL
| __GFP_NOWARN
);
1102 if (c
->max_bu_buf_len
> UBIFS_KMALLOC_OK
) {
1103 c
->max_bu_buf_len
= UBIFS_KMALLOC_OK
;
1107 /* Just disable bulk-read */
1108 ubifs_warn("cannot allocate %d bytes of memory for bulk-read, disabling it",
1110 c
->mount_opts
.bulk_read
= 1;
1117 * check_free_space - check if there is enough free space to mount.
1118 * @c: UBIFS file-system description object
1120 * This function makes sure UBIFS has enough free space to be mounted in
1121 * read/write mode. UBIFS must always have some free space to allow deletions.
1123 static int check_free_space(struct ubifs_info
*c
)
1125 ubifs_assert(c
->dark_wm
> 0);
1126 if (c
->lst
.total_free
+ c
->lst
.total_dirty
< c
->dark_wm
) {
1127 ubifs_err("insufficient free space to mount in R/W mode");
1128 ubifs_dump_budg(c
, &c
->bi
);
1129 ubifs_dump_lprops(c
);
1136 * mount_ubifs - mount UBIFS file-system.
1137 * @c: UBIFS file-system description object
1139 * This function mounts UBIFS file system. Returns zero in case of success and
1140 * a negative error code in case of failure.
1142 static int mount_ubifs(struct ubifs_info
*c
)
1148 c
->ro_mount
= !!(c
->vfs_sb
->s_flags
& MS_RDONLY
);
1149 /* Suppress error messages while probing if MS_SILENT is set */
1150 c
->probing
= !!(c
->vfs_sb
->s_flags
& MS_SILENT
);
1152 err
= init_constants_early(c
);
1156 err
= ubifs_debugging_init(c
);
1160 err
= check_volume_empty(c
);
1164 if (c
->empty
&& (c
->ro_mount
|| c
->ro_media
)) {
1166 * This UBI volume is empty, and read-only, or the file system
1167 * is mounted read-only - we cannot format it.
1169 ubifs_err("can't format empty UBI volume: read-only %s",
1170 c
->ro_media
? "UBI volume" : "mount");
1175 if (c
->ro_media
&& !c
->ro_mount
) {
1176 ubifs_err("cannot mount read-write - read-only media");
1182 * The requirement for the buffer is that it should fit indexing B-tree
1183 * height amount of integers. We assume the height if the TNC tree will
1187 c
->bottom_up_buf
= kmalloc(BOTTOM_UP_HEIGHT
* sizeof(int), GFP_KERNEL
);
1188 if (!c
->bottom_up_buf
)
1191 c
->sbuf
= vmalloc(c
->leb_size
);
1196 c
->ileb_buf
= vmalloc(c
->leb_size
);
1201 if (c
->bulk_read
== 1)
1205 c
->write_reserve_buf
= kmalloc(COMPRESSED_DATA_NODE_BUF_SZ
,
1207 if (!c
->write_reserve_buf
)
1213 err
= ubifs_read_superblock(c
);
1220 * Make sure the compressor which is set as default in the superblock
1221 * or overridden by mount options is actually compiled in.
1223 if (!ubifs_compr_present(c
->default_compr
)) {
1224 ubifs_err("'compressor \"%s\" is not compiled in",
1225 ubifs_compr_name(c
->default_compr
));
1230 err
= init_constants_sb(c
);
1234 sz
= ALIGN(c
->max_idx_node_sz
, c
->min_io_size
);
1235 sz
= ALIGN(sz
+ c
->max_idx_node_sz
, c
->min_io_size
);
1236 c
->cbuf
= kmalloc(sz
, GFP_NOFS
);
1242 err
= alloc_wbufs(c
);
1246 sprintf(c
->bgt_name
, BGT_NAME_PATTERN
, c
->vi
.ubi_num
, c
->vi
.vol_id
);
1248 /* Create background thread */
1249 c
->bgt
= kthread_create(ubifs_bg_thread
, c
, "%s", c
->bgt_name
);
1250 if (IS_ERR(c
->bgt
)) {
1251 err
= PTR_ERR(c
->bgt
);
1253 ubifs_err("cannot spawn \"%s\", error %d",
1257 wake_up_process(c
->bgt
);
1260 err
= ubifs_read_master(c
);
1264 init_constants_master(c
);
1266 if ((c
->mst_node
->flags
& cpu_to_le32(UBIFS_MST_DIRTY
)) != 0) {
1267 ubifs_msg("recovery needed");
1268 c
->need_recovery
= 1;
1271 if (c
->need_recovery
&& !c
->ro_mount
) {
1272 err
= ubifs_recover_inl_heads(c
, c
->sbuf
);
1277 err
= ubifs_lpt_init(c
, 1, !c
->ro_mount
);
1281 if (!c
->ro_mount
&& c
->space_fixup
) {
1282 err
= ubifs_fixup_free_space(c
);
1289 * Set the "dirty" flag so that if we reboot uncleanly we
1290 * will notice this immediately on the next mount.
1292 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_DIRTY
);
1293 err
= ubifs_write_master(c
);
1298 err
= dbg_check_idx_size(c
, c
->bi
.old_idx_sz
);
1302 err
= ubifs_replay_journal(c
);
1306 /* Calculate 'min_idx_lebs' after journal replay */
1307 c
->bi
.min_idx_lebs
= ubifs_calc_min_idx_lebs(c
);
1309 err
= ubifs_mount_orphans(c
, c
->need_recovery
, c
->ro_mount
);
1316 err
= check_free_space(c
);
1320 /* Check for enough log space */
1321 lnum
= c
->lhead_lnum
+ 1;
1322 if (lnum
>= UBIFS_LOG_LNUM
+ c
->log_lebs
)
1323 lnum
= UBIFS_LOG_LNUM
;
1324 if (lnum
== c
->ltail_lnum
) {
1325 err
= ubifs_consolidate_log(c
);
1330 if (c
->need_recovery
) {
1331 err
= ubifs_recover_size(c
);
1334 err
= ubifs_rcvry_gc_commit(c
);
1338 err
= take_gc_lnum(c
);
1343 * GC LEB may contain garbage if there was an unclean
1344 * reboot, and it should be un-mapped.
1346 err
= ubifs_leb_unmap(c
, c
->gc_lnum
);
1351 err
= dbg_check_lprops(c
);
1354 } else if (c
->need_recovery
) {
1355 err
= ubifs_recover_size(c
);
1360 * Even if we mount read-only, we have to set space in GC LEB
1361 * to proper value because this affects UBIFS free space
1362 * reporting. We do not want to have a situation when
1363 * re-mounting from R/O to R/W changes amount of free space.
1365 err
= take_gc_lnum(c
);
1370 spin_lock(&ubifs_infos_lock
);
1371 list_add_tail(&c
->infos_list
, &ubifs_infos
);
1372 spin_unlock(&ubifs_infos_lock
);
1374 if (c
->need_recovery
) {
1376 ubifs_msg("recovery deferred");
1378 c
->need_recovery
= 0;
1379 ubifs_msg("recovery completed");
1381 * GC LEB has to be empty and taken at this point. But
1382 * the journal head LEBs may also be accounted as
1383 * "empty taken" if they are empty.
1385 ubifs_assert(c
->lst
.taken_empty_lebs
> 0);
1388 ubifs_assert(c
->lst
.taken_empty_lebs
> 0);
1390 err
= dbg_check_filesystem(c
);
1394 err
= dbg_debugfs_init_fs(c
);
1400 ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"%s",
1401 c
->vi
.ubi_num
, c
->vi
.vol_id
, c
->vi
.name
,
1402 c
->ro_mount
? ", R/O mode" : "");
1403 x
= (long long)c
->main_lebs
* c
->leb_size
;
1404 y
= (long long)c
->log_lebs
* c
->leb_size
+ c
->max_bud_bytes
;
1405 ubifs_msg("LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1406 c
->leb_size
, c
->leb_size
>> 10, c
->min_io_size
,
1408 ubifs_msg("FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)",
1409 x
, x
>> 20, c
->main_lebs
,
1410 y
, y
>> 20, c
->log_lebs
+ c
->max_bud_cnt
);
1411 ubifs_msg("reserved for root: %llu bytes (%llu KiB)",
1412 c
->report_rp_size
, c
->report_rp_size
>> 10);
1413 ubifs_msg("media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1414 c
->fmt_version
, c
->ro_compat_version
,
1415 UBIFS_FORMAT_VERSION
, UBIFS_RO_COMPAT_VERSION
, c
->uuid
,
1416 c
->big_lpt
? ", big LPT model" : ", small LPT model");
1418 dbg_gen("default compressor: %s", ubifs_compr_name(c
->default_compr
));
1419 dbg_gen("data journal heads: %d",
1420 c
->jhead_cnt
- NONDATA_JHEADS_CNT
);
1421 dbg_gen("log LEBs: %d (%d - %d)",
1422 c
->log_lebs
, UBIFS_LOG_LNUM
, c
->log_last
);
1423 dbg_gen("LPT area LEBs: %d (%d - %d)",
1424 c
->lpt_lebs
, c
->lpt_first
, c
->lpt_last
);
1425 dbg_gen("orphan area LEBs: %d (%d - %d)",
1426 c
->orph_lebs
, c
->orph_first
, c
->orph_last
);
1427 dbg_gen("main area LEBs: %d (%d - %d)",
1428 c
->main_lebs
, c
->main_first
, c
->leb_cnt
- 1);
1429 dbg_gen("index LEBs: %d", c
->lst
.idx_lebs
);
1430 dbg_gen("total index bytes: %lld (%lld KiB, %lld MiB)",
1431 c
->bi
.old_idx_sz
, c
->bi
.old_idx_sz
>> 10,
1432 c
->bi
.old_idx_sz
>> 20);
1433 dbg_gen("key hash type: %d", c
->key_hash_type
);
1434 dbg_gen("tree fanout: %d", c
->fanout
);
1435 dbg_gen("reserved GC LEB: %d", c
->gc_lnum
);
1436 dbg_gen("max. znode size %d", c
->max_znode_sz
);
1437 dbg_gen("max. index node size %d", c
->max_idx_node_sz
);
1438 dbg_gen("node sizes: data %zu, inode %zu, dentry %zu",
1439 UBIFS_DATA_NODE_SZ
, UBIFS_INO_NODE_SZ
, UBIFS_DENT_NODE_SZ
);
1440 dbg_gen("node sizes: trun %zu, sb %zu, master %zu",
1441 UBIFS_TRUN_NODE_SZ
, UBIFS_SB_NODE_SZ
, UBIFS_MST_NODE_SZ
);
1442 dbg_gen("node sizes: ref %zu, cmt. start %zu, orph %zu",
1443 UBIFS_REF_NODE_SZ
, UBIFS_CS_NODE_SZ
, UBIFS_ORPH_NODE_SZ
);
1444 dbg_gen("max. node sizes: data %zu, inode %zu dentry %zu, idx %d",
1445 UBIFS_MAX_DATA_NODE_SZ
, UBIFS_MAX_INO_NODE_SZ
,
1446 UBIFS_MAX_DENT_NODE_SZ
, ubifs_idx_node_sz(c
, c
->fanout
));
1447 dbg_gen("dead watermark: %d", c
->dead_wm
);
1448 dbg_gen("dark watermark: %d", c
->dark_wm
);
1449 dbg_gen("LEB overhead: %d", c
->leb_overhead
);
1450 x
= (long long)c
->main_lebs
* c
->dark_wm
;
1451 dbg_gen("max. dark space: %lld (%lld KiB, %lld MiB)",
1452 x
, x
>> 10, x
>> 20);
1453 dbg_gen("maximum bud bytes: %lld (%lld KiB, %lld MiB)",
1454 c
->max_bud_bytes
, c
->max_bud_bytes
>> 10,
1455 c
->max_bud_bytes
>> 20);
1456 dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1457 c
->bg_bud_bytes
, c
->bg_bud_bytes
>> 10,
1458 c
->bg_bud_bytes
>> 20);
1459 dbg_gen("current bud bytes %lld (%lld KiB, %lld MiB)",
1460 c
->bud_bytes
, c
->bud_bytes
>> 10, c
->bud_bytes
>> 20);
1461 dbg_gen("max. seq. number: %llu", c
->max_sqnum
);
1462 dbg_gen("commit number: %llu", c
->cmt_no
);
1467 spin_lock(&ubifs_infos_lock
);
1468 list_del(&c
->infos_list
);
1469 spin_unlock(&ubifs_infos_lock
);
1475 ubifs_lpt_free(c
, 0);
1478 kfree(c
->rcvrd_mst_node
);
1480 kthread_stop(c
->bgt
);
1486 kfree(c
->write_reserve_buf
);
1490 kfree(c
->bottom_up_buf
);
1491 ubifs_debugging_exit(c
);
1496 * ubifs_umount - un-mount UBIFS file-system.
1497 * @c: UBIFS file-system description object
1499 * Note, this function is called to free allocated resourced when un-mounting,
1500 * as well as free resources when an error occurred while we were half way
1501 * through mounting (error path cleanup function). So it has to make sure the
1502 * resource was actually allocated before freeing it.
1504 static void ubifs_umount(struct ubifs_info
*c
)
1506 dbg_gen("un-mounting UBI device %d, volume %d", c
->vi
.ubi_num
,
1509 dbg_debugfs_exit_fs(c
);
1510 spin_lock(&ubifs_infos_lock
);
1511 list_del(&c
->infos_list
);
1512 spin_unlock(&ubifs_infos_lock
);
1515 kthread_stop(c
->bgt
);
1520 ubifs_lpt_free(c
, 0);
1523 kfree(c
->rcvrd_mst_node
);
1525 kfree(c
->write_reserve_buf
);
1529 kfree(c
->bottom_up_buf
);
1530 ubifs_debugging_exit(c
);
1534 * ubifs_remount_rw - re-mount in read-write mode.
1535 * @c: UBIFS file-system description object
1537 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1538 * mode. This function allocates the needed resources and re-mounts UBIFS in
1541 static int ubifs_remount_rw(struct ubifs_info
*c
)
1545 if (c
->rw_incompat
) {
1546 ubifs_err("the file-system is not R/W-compatible");
1547 ubifs_msg("on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1548 c
->fmt_version
, c
->ro_compat_version
,
1549 UBIFS_FORMAT_VERSION
, UBIFS_RO_COMPAT_VERSION
);
1553 mutex_lock(&c
->umount_mutex
);
1554 dbg_save_space_info(c
);
1555 c
->remounting_rw
= 1;
1558 if (c
->space_fixup
) {
1559 err
= ubifs_fixup_free_space(c
);
1564 err
= check_free_space(c
);
1568 if (c
->old_leb_cnt
!= c
->leb_cnt
) {
1569 struct ubifs_sb_node
*sup
;
1571 sup
= ubifs_read_sb_node(c
);
1576 sup
->leb_cnt
= cpu_to_le32(c
->leb_cnt
);
1577 err
= ubifs_write_sb_node(c
, sup
);
1583 if (c
->need_recovery
) {
1584 ubifs_msg("completing deferred recovery");
1585 err
= ubifs_write_rcvrd_mst_node(c
);
1588 err
= ubifs_recover_size(c
);
1591 err
= ubifs_clean_lebs(c
, c
->sbuf
);
1594 err
= ubifs_recover_inl_heads(c
, c
->sbuf
);
1598 /* A readonly mount is not allowed to have orphans */
1599 ubifs_assert(c
->tot_orphans
== 0);
1600 err
= ubifs_clear_orphans(c
);
1605 if (!(c
->mst_node
->flags
& cpu_to_le32(UBIFS_MST_DIRTY
))) {
1606 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_DIRTY
);
1607 err
= ubifs_write_master(c
);
1612 c
->ileb_buf
= vmalloc(c
->leb_size
);
1618 c
->write_reserve_buf
= kmalloc(COMPRESSED_DATA_NODE_BUF_SZ
, GFP_KERNEL
);
1619 if (!c
->write_reserve_buf
) {
1624 err
= ubifs_lpt_init(c
, 0, 1);
1628 /* Create background thread */
1629 c
->bgt
= kthread_create(ubifs_bg_thread
, c
, "%s", c
->bgt_name
);
1630 if (IS_ERR(c
->bgt
)) {
1631 err
= PTR_ERR(c
->bgt
);
1633 ubifs_err("cannot spawn \"%s\", error %d",
1637 wake_up_process(c
->bgt
);
1639 c
->orph_buf
= vmalloc(c
->leb_size
);
1645 /* Check for enough log space */
1646 lnum
= c
->lhead_lnum
+ 1;
1647 if (lnum
>= UBIFS_LOG_LNUM
+ c
->log_lebs
)
1648 lnum
= UBIFS_LOG_LNUM
;
1649 if (lnum
== c
->ltail_lnum
) {
1650 err
= ubifs_consolidate_log(c
);
1655 if (c
->need_recovery
)
1656 err
= ubifs_rcvry_gc_commit(c
);
1658 err
= ubifs_leb_unmap(c
, c
->gc_lnum
);
1662 dbg_gen("re-mounted read-write");
1663 c
->remounting_rw
= 0;
1665 if (c
->need_recovery
) {
1666 c
->need_recovery
= 0;
1667 ubifs_msg("deferred recovery completed");
1670 * Do not run the debugging space check if the were doing
1671 * recovery, because when we saved the information we had the
1672 * file-system in a state where the TNC and lprops has been
1673 * modified in memory, but all the I/O operations (including a
1674 * commit) were deferred. So the file-system was in
1675 * "non-committed" state. Now the file-system is in committed
1676 * state, and of course the amount of free space will change
1677 * because, for example, the old index size was imprecise.
1679 err
= dbg_check_space_info(c
);
1682 mutex_unlock(&c
->umount_mutex
);
1690 kthread_stop(c
->bgt
);
1694 kfree(c
->write_reserve_buf
);
1695 c
->write_reserve_buf
= NULL
;
1698 ubifs_lpt_free(c
, 1);
1699 c
->remounting_rw
= 0;
1700 mutex_unlock(&c
->umount_mutex
);
1705 * ubifs_remount_ro - re-mount in read-only mode.
1706 * @c: UBIFS file-system description object
1708 * We assume VFS has stopped writing. Possibly the background thread could be
1709 * running a commit, however kthread_stop will wait in that case.
1711 static void ubifs_remount_ro(struct ubifs_info
*c
)
1715 ubifs_assert(!c
->need_recovery
);
1716 ubifs_assert(!c
->ro_mount
);
1718 mutex_lock(&c
->umount_mutex
);
1720 kthread_stop(c
->bgt
);
1724 dbg_save_space_info(c
);
1726 for (i
= 0; i
< c
->jhead_cnt
; i
++)
1727 ubifs_wbuf_sync(&c
->jheads
[i
].wbuf
);
1729 c
->mst_node
->flags
&= ~cpu_to_le32(UBIFS_MST_DIRTY
);
1730 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_NO_ORPHS
);
1731 c
->mst_node
->gc_lnum
= cpu_to_le32(c
->gc_lnum
);
1732 err
= ubifs_write_master(c
);
1734 ubifs_ro_mode(c
, err
);
1738 kfree(c
->write_reserve_buf
);
1739 c
->write_reserve_buf
= NULL
;
1742 ubifs_lpt_free(c
, 1);
1744 err
= dbg_check_space_info(c
);
1746 ubifs_ro_mode(c
, err
);
1747 mutex_unlock(&c
->umount_mutex
);
1750 static void ubifs_put_super(struct super_block
*sb
)
1753 struct ubifs_info
*c
= sb
->s_fs_info
;
1755 ubifs_msg("un-mount UBI device %d, volume %d", c
->vi
.ubi_num
,
1759 * The following asserts are only valid if there has not been a failure
1760 * of the media. For example, there will be dirty inodes if we failed
1761 * to write them back because of I/O errors.
1764 ubifs_assert(c
->bi
.idx_growth
== 0);
1765 ubifs_assert(c
->bi
.dd_growth
== 0);
1766 ubifs_assert(c
->bi
.data_growth
== 0);
1770 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1771 * and file system un-mount. Namely, it prevents the shrinker from
1772 * picking this superblock for shrinking - it will be just skipped if
1773 * the mutex is locked.
1775 mutex_lock(&c
->umount_mutex
);
1778 * First of all kill the background thread to make sure it does
1779 * not interfere with un-mounting and freeing resources.
1782 kthread_stop(c
->bgt
);
1787 * On fatal errors c->ro_error is set to 1, in which case we do
1788 * not write the master node.
1793 /* Synchronize write-buffers */
1794 for (i
= 0; i
< c
->jhead_cnt
; i
++)
1795 ubifs_wbuf_sync(&c
->jheads
[i
].wbuf
);
1798 * We are being cleanly unmounted which means the
1799 * orphans were killed - indicate this in the master
1800 * node. Also save the reserved GC LEB number.
1802 c
->mst_node
->flags
&= ~cpu_to_le32(UBIFS_MST_DIRTY
);
1803 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_NO_ORPHS
);
1804 c
->mst_node
->gc_lnum
= cpu_to_le32(c
->gc_lnum
);
1805 err
= ubifs_write_master(c
);
1808 * Recovery will attempt to fix the master area
1809 * next mount, so we just print a message and
1810 * continue to unmount normally.
1812 ubifs_err("failed to write master node, error %d",
1815 for (i
= 0; i
< c
->jhead_cnt
; i
++)
1816 /* Make sure write-buffer timers are canceled */
1817 hrtimer_cancel(&c
->jheads
[i
].wbuf
.timer
);
1822 bdi_destroy(&c
->bdi
);
1823 ubi_close_volume(c
->ubi
);
1824 mutex_unlock(&c
->umount_mutex
);
1827 static int ubifs_remount_fs(struct super_block
*sb
, int *flags
, char *data
)
1830 struct ubifs_info
*c
= sb
->s_fs_info
;
1832 sync_filesystem(sb
);
1833 dbg_gen("old flags %#lx, new flags %#x", sb
->s_flags
, *flags
);
1835 err
= ubifs_parse_options(c
, data
, 1);
1837 ubifs_err("invalid or unknown remount parameter");
1841 if (c
->ro_mount
&& !(*flags
& MS_RDONLY
)) {
1843 ubifs_msg("cannot re-mount R/W due to prior errors");
1847 ubifs_msg("cannot re-mount R/W - UBI volume is R/O");
1850 err
= ubifs_remount_rw(c
);
1853 } else if (!c
->ro_mount
&& (*flags
& MS_RDONLY
)) {
1855 ubifs_msg("cannot re-mount R/O due to prior errors");
1858 ubifs_remount_ro(c
);
1861 if (c
->bulk_read
== 1)
1864 dbg_gen("disable bulk-read");
1869 ubifs_assert(c
->lst
.taken_empty_lebs
> 0);
1873 const struct super_operations ubifs_super_operations
= {
1874 .alloc_inode
= ubifs_alloc_inode
,
1875 .destroy_inode
= ubifs_destroy_inode
,
1876 .put_super
= ubifs_put_super
,
1877 .write_inode
= ubifs_write_inode
,
1878 .evict_inode
= ubifs_evict_inode
,
1879 .statfs
= ubifs_statfs
,
1880 .dirty_inode
= ubifs_dirty_inode
,
1881 .remount_fs
= ubifs_remount_fs
,
1882 .show_options
= ubifs_show_options
,
1883 .sync_fs
= ubifs_sync_fs
,
1887 * open_ubi - parse UBI device name string and open the UBI device.
1888 * @name: UBI volume name
1889 * @mode: UBI volume open mode
1891 * The primary method of mounting UBIFS is by specifying the UBI volume
1892 * character device node path. However, UBIFS may also be mounted withoug any
1893 * character device node using one of the following methods:
1895 * o ubiX_Y - mount UBI device number X, volume Y;
1896 * o ubiY - mount UBI device number 0, volume Y;
1897 * o ubiX:NAME - mount UBI device X, volume with name NAME;
1898 * o ubi:NAME - mount UBI device 0, volume with name NAME.
1900 * Alternative '!' separator may be used instead of ':' (because some shells
1901 * like busybox may interpret ':' as an NFS host name separator). This function
1902 * returns UBI volume description object in case of success and a negative
1903 * error code in case of failure.
1905 static struct ubi_volume_desc
*open_ubi(const char *name
, int mode
)
1907 struct ubi_volume_desc
*ubi
;
1911 /* First, try to open using the device node path method */
1912 ubi
= ubi_open_volume_path(name
, mode
);
1916 /* Try the "nodev" method */
1917 if (name
[0] != 'u' || name
[1] != 'b' || name
[2] != 'i')
1918 return ERR_PTR(-EINVAL
);
1920 /* ubi:NAME method */
1921 if ((name
[3] == ':' || name
[3] == '!') && name
[4] != '\0')
1922 return ubi_open_volume_nm(0, name
+ 4, mode
);
1924 if (!isdigit(name
[3]))
1925 return ERR_PTR(-EINVAL
);
1927 dev
= simple_strtoul(name
+ 3, &endptr
, 0);
1930 if (*endptr
== '\0')
1931 return ubi_open_volume(0, dev
, mode
);
1934 if (*endptr
== '_' && isdigit(endptr
[1])) {
1935 vol
= simple_strtoul(endptr
+ 1, &endptr
, 0);
1936 if (*endptr
!= '\0')
1937 return ERR_PTR(-EINVAL
);
1938 return ubi_open_volume(dev
, vol
, mode
);
1941 /* ubiX:NAME method */
1942 if ((*endptr
== ':' || *endptr
== '!') && endptr
[1] != '\0')
1943 return ubi_open_volume_nm(dev
, ++endptr
, mode
);
1945 return ERR_PTR(-EINVAL
);
1948 static struct ubifs_info
*alloc_ubifs_info(struct ubi_volume_desc
*ubi
)
1950 struct ubifs_info
*c
;
1952 c
= kzalloc(sizeof(struct ubifs_info
), GFP_KERNEL
);
1954 spin_lock_init(&c
->cnt_lock
);
1955 spin_lock_init(&c
->cs_lock
);
1956 spin_lock_init(&c
->buds_lock
);
1957 spin_lock_init(&c
->space_lock
);
1958 spin_lock_init(&c
->orphan_lock
);
1959 init_rwsem(&c
->commit_sem
);
1960 mutex_init(&c
->lp_mutex
);
1961 mutex_init(&c
->tnc_mutex
);
1962 mutex_init(&c
->log_mutex
);
1963 mutex_init(&c
->umount_mutex
);
1964 mutex_init(&c
->bu_mutex
);
1965 mutex_init(&c
->write_reserve_mutex
);
1966 init_waitqueue_head(&c
->cmt_wq
);
1968 c
->old_idx
= RB_ROOT
;
1969 c
->size_tree
= RB_ROOT
;
1970 c
->orph_tree
= RB_ROOT
;
1971 INIT_LIST_HEAD(&c
->infos_list
);
1972 INIT_LIST_HEAD(&c
->idx_gc
);
1973 INIT_LIST_HEAD(&c
->replay_list
);
1974 INIT_LIST_HEAD(&c
->replay_buds
);
1975 INIT_LIST_HEAD(&c
->uncat_list
);
1976 INIT_LIST_HEAD(&c
->empty_list
);
1977 INIT_LIST_HEAD(&c
->freeable_list
);
1978 INIT_LIST_HEAD(&c
->frdi_idx_list
);
1979 INIT_LIST_HEAD(&c
->unclean_leb_list
);
1980 INIT_LIST_HEAD(&c
->old_buds
);
1981 INIT_LIST_HEAD(&c
->orph_list
);
1982 INIT_LIST_HEAD(&c
->orph_new
);
1983 c
->no_chk_data_crc
= 1;
1985 c
->highest_inum
= UBIFS_FIRST_INO
;
1986 c
->lhead_lnum
= c
->ltail_lnum
= UBIFS_LOG_LNUM
;
1988 ubi_get_volume_info(ubi
, &c
->vi
);
1989 ubi_get_device_info(c
->vi
.ubi_num
, &c
->di
);
1994 static int ubifs_fill_super(struct super_block
*sb
, void *data
, int silent
)
1996 struct ubifs_info
*c
= sb
->s_fs_info
;
2001 /* Re-open the UBI device in read-write mode */
2002 c
->ubi
= ubi_open_volume(c
->vi
.ubi_num
, c
->vi
.vol_id
, UBI_READWRITE
);
2003 if (IS_ERR(c
->ubi
)) {
2004 err
= PTR_ERR(c
->ubi
);
2009 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2010 * UBIFS, I/O is not deferred, it is done immediately in readpage,
2011 * which means the user would have to wait not just for their own I/O
2012 * but the read-ahead I/O as well i.e. completely pointless.
2014 * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
2016 c
->bdi
.name
= "ubifs",
2017 c
->bdi
.capabilities
= 0;
2018 err
= bdi_init(&c
->bdi
);
2021 err
= bdi_register(&c
->bdi
, NULL
, "ubifs_%d_%d",
2022 c
->vi
.ubi_num
, c
->vi
.vol_id
);
2026 err
= ubifs_parse_options(c
, data
, 0);
2030 sb
->s_bdi
= &c
->bdi
;
2032 sb
->s_magic
= UBIFS_SUPER_MAGIC
;
2033 sb
->s_blocksize
= UBIFS_BLOCK_SIZE
;
2034 sb
->s_blocksize_bits
= UBIFS_BLOCK_SHIFT
;
2035 sb
->s_maxbytes
= c
->max_inode_sz
= key_max_inode_size(c
);
2036 if (c
->max_inode_sz
> MAX_LFS_FILESIZE
)
2037 sb
->s_maxbytes
= c
->max_inode_sz
= MAX_LFS_FILESIZE
;
2038 sb
->s_op
= &ubifs_super_operations
;
2039 sb
->s_xattr
= ubifs_xattr_handlers
;
2041 mutex_lock(&c
->umount_mutex
);
2042 err
= mount_ubifs(c
);
2044 ubifs_assert(err
< 0);
2048 /* Read the root inode */
2049 root
= ubifs_iget(sb
, UBIFS_ROOT_INO
);
2051 err
= PTR_ERR(root
);
2055 sb
->s_root
= d_make_root(root
);
2061 mutex_unlock(&c
->umount_mutex
);
2067 mutex_unlock(&c
->umount_mutex
);
2069 bdi_destroy(&c
->bdi
);
2071 ubi_close_volume(c
->ubi
);
2076 static int sb_test(struct super_block
*sb
, void *data
)
2078 struct ubifs_info
*c1
= data
;
2079 struct ubifs_info
*c
= sb
->s_fs_info
;
2081 return c
->vi
.cdev
== c1
->vi
.cdev
;
2084 static int sb_set(struct super_block
*sb
, void *data
)
2086 sb
->s_fs_info
= data
;
2087 return set_anon_super(sb
, NULL
);
2090 static struct dentry
*ubifs_mount(struct file_system_type
*fs_type
, int flags
,
2091 const char *name
, void *data
)
2093 struct ubi_volume_desc
*ubi
;
2094 struct ubifs_info
*c
;
2095 struct super_block
*sb
;
2098 dbg_gen("name %s, flags %#x", name
, flags
);
2101 * Get UBI device number and volume ID. Mount it read-only so far
2102 * because this might be a new mount point, and UBI allows only one
2103 * read-write user at a time.
2105 ubi
= open_ubi(name
, UBI_READONLY
);
2107 ubifs_err("cannot open \"%s\", error %d",
2108 name
, (int)PTR_ERR(ubi
));
2109 return ERR_CAST(ubi
);
2112 c
= alloc_ubifs_info(ubi
);
2118 dbg_gen("opened ubi%d_%d", c
->vi
.ubi_num
, c
->vi
.vol_id
);
2120 sb
= sget(fs_type
, sb_test
, sb_set
, flags
, c
);
2128 struct ubifs_info
*c1
= sb
->s_fs_info
;
2130 /* A new mount point for already mounted UBIFS */
2131 dbg_gen("this ubi volume is already mounted");
2132 if (!!(flags
& MS_RDONLY
) != c1
->ro_mount
) {
2137 err
= ubifs_fill_super(sb
, data
, flags
& MS_SILENT
? 1 : 0);
2140 /* We do not support atime */
2141 sb
->s_flags
|= MS_ACTIVE
| MS_NOATIME
;
2144 /* 'fill_super()' opens ubi again so we must close it here */
2145 ubi_close_volume(ubi
);
2147 return dget(sb
->s_root
);
2150 deactivate_locked_super(sb
);
2152 ubi_close_volume(ubi
);
2153 return ERR_PTR(err
);
2156 static void kill_ubifs_super(struct super_block
*s
)
2158 struct ubifs_info
*c
= s
->s_fs_info
;
2163 static struct file_system_type ubifs_fs_type
= {
2165 .owner
= THIS_MODULE
,
2166 .mount
= ubifs_mount
,
2167 .kill_sb
= kill_ubifs_super
,
2169 MODULE_ALIAS_FS("ubifs");
2172 * Inode slab cache constructor.
2174 static void inode_slab_ctor(void *obj
)
2176 struct ubifs_inode
*ui
= obj
;
2177 inode_init_once(&ui
->vfs_inode
);
2180 static int __init
ubifs_init(void)
2184 BUILD_BUG_ON(sizeof(struct ubifs_ch
) != 24);
2186 /* Make sure node sizes are 8-byte aligned */
2187 BUILD_BUG_ON(UBIFS_CH_SZ
& 7);
2188 BUILD_BUG_ON(UBIFS_INO_NODE_SZ
& 7);
2189 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ
& 7);
2190 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ
& 7);
2191 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ
& 7);
2192 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ
& 7);
2193 BUILD_BUG_ON(UBIFS_SB_NODE_SZ
& 7);
2194 BUILD_BUG_ON(UBIFS_MST_NODE_SZ
& 7);
2195 BUILD_BUG_ON(UBIFS_REF_NODE_SZ
& 7);
2196 BUILD_BUG_ON(UBIFS_CS_NODE_SZ
& 7);
2197 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ
& 7);
2199 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ
& 7);
2200 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ
& 7);
2201 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ
& 7);
2202 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ
& 7);
2203 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ
& 7);
2204 BUILD_BUG_ON(MIN_WRITE_SZ
& 7);
2206 /* Check min. node size */
2207 BUILD_BUG_ON(UBIFS_INO_NODE_SZ
< MIN_WRITE_SZ
);
2208 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ
< MIN_WRITE_SZ
);
2209 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ
< MIN_WRITE_SZ
);
2210 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ
< MIN_WRITE_SZ
);
2212 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ
> UBIFS_MAX_NODE_SZ
);
2213 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ
> UBIFS_MAX_NODE_SZ
);
2214 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ
> UBIFS_MAX_NODE_SZ
);
2215 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ
> UBIFS_MAX_NODE_SZ
);
2217 /* Defined node sizes */
2218 BUILD_BUG_ON(UBIFS_SB_NODE_SZ
!= 4096);
2219 BUILD_BUG_ON(UBIFS_MST_NODE_SZ
!= 512);
2220 BUILD_BUG_ON(UBIFS_INO_NODE_SZ
!= 160);
2221 BUILD_BUG_ON(UBIFS_REF_NODE_SZ
!= 64);
2224 * We use 2 bit wide bit-fields to store compression type, which should
2225 * be amended if more compressors are added. The bit-fields are:
2226 * @compr_type in 'struct ubifs_inode', @default_compr in
2227 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2229 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT
> 4);
2232 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to
2233 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2235 if (PAGE_CACHE_SIZE
< UBIFS_BLOCK_SIZE
) {
2236 ubifs_err("VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2237 (unsigned int)PAGE_CACHE_SIZE
);
2241 ubifs_inode_slab
= kmem_cache_create("ubifs_inode_slab",
2242 sizeof(struct ubifs_inode
), 0,
2243 SLAB_MEM_SPREAD
| SLAB_RECLAIM_ACCOUNT
,
2245 if (!ubifs_inode_slab
)
2248 register_shrinker(&ubifs_shrinker_info
);
2250 err
= ubifs_compressors_init();
2254 err
= dbg_debugfs_init();
2258 err
= register_filesystem(&ubifs_fs_type
);
2260 ubifs_err("cannot register file system, error %d", err
);
2268 ubifs_compressors_exit();
2270 unregister_shrinker(&ubifs_shrinker_info
);
2271 kmem_cache_destroy(ubifs_inode_slab
);
2274 /* late_initcall to let compressors initialize first */
2275 late_initcall(ubifs_init
);
2277 static void __exit
ubifs_exit(void)
2279 ubifs_assert(list_empty(&ubifs_infos
));
2280 ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt
) == 0);
2283 ubifs_compressors_exit();
2284 unregister_shrinker(&ubifs_shrinker_info
);
2287 * Make sure all delayed rcu free inodes are flushed before we
2291 kmem_cache_destroy(ubifs_inode_slab
);
2292 unregister_filesystem(&ubifs_fs_type
);
2294 module_exit(ubifs_exit
);
2296 MODULE_LICENSE("GPL");
2297 MODULE_VERSION(__stringify(UBIFS_VERSION
));
2298 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2299 MODULE_DESCRIPTION("UBIFS - UBI File System");