powerpc/powernv: Drop PHB operation post_init()
[linux/fpc-iii.git] / fs / ubifs / super.c
blob93e946561c5c8f35dad07b30f5b0484b7b9ceacd
1 /*
2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
24 * This file implements UBIFS initialization and VFS superblock operations. Some
25 * initialization stuff which is rather large and complex is placed at
26 * corresponding subsystems, but most of it is here.
29 #include <linux/init.h>
30 #include <linux/slab.h>
31 #include <linux/module.h>
32 #include <linux/ctype.h>
33 #include <linux/kthread.h>
34 #include <linux/parser.h>
35 #include <linux/seq_file.h>
36 #include <linux/mount.h>
37 #include <linux/math64.h>
38 #include <linux/writeback.h>
39 #include "ubifs.h"
42 * Maximum amount of memory we may 'kmalloc()' without worrying that we are
43 * allocating too much.
45 #define UBIFS_KMALLOC_OK (128*1024)
47 /* Slab cache for UBIFS inodes */
48 struct kmem_cache *ubifs_inode_slab;
50 /* UBIFS TNC shrinker description */
51 static struct shrinker ubifs_shrinker_info = {
52 .scan_objects = ubifs_shrink_scan,
53 .count_objects = ubifs_shrink_count,
54 .seeks = DEFAULT_SEEKS,
57 /**
58 * validate_inode - validate inode.
59 * @c: UBIFS file-system description object
60 * @inode: the inode to validate
62 * This is a helper function for 'ubifs_iget()' which validates various fields
63 * of a newly built inode to make sure they contain sane values and prevent
64 * possible vulnerabilities. Returns zero if the inode is all right and
65 * a non-zero error code if not.
67 static int validate_inode(struct ubifs_info *c, const struct inode *inode)
69 int err;
70 const struct ubifs_inode *ui = ubifs_inode(inode);
72 if (inode->i_size > c->max_inode_sz) {
73 ubifs_err("inode is too large (%lld)",
74 (long long)inode->i_size);
75 return 1;
78 if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
79 ubifs_err("unknown compression type %d", ui->compr_type);
80 return 2;
83 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
84 return 3;
86 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
87 return 4;
89 if (ui->xattr && !S_ISREG(inode->i_mode))
90 return 5;
92 if (!ubifs_compr_present(ui->compr_type)) {
93 ubifs_warn("inode %lu uses '%s' compression, but it was not compiled in",
94 inode->i_ino, ubifs_compr_name(ui->compr_type));
97 err = dbg_check_dir(c, inode);
98 return err;
101 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
103 int err;
104 union ubifs_key key;
105 struct ubifs_ino_node *ino;
106 struct ubifs_info *c = sb->s_fs_info;
107 struct inode *inode;
108 struct ubifs_inode *ui;
110 dbg_gen("inode %lu", inum);
112 inode = iget_locked(sb, inum);
113 if (!inode)
114 return ERR_PTR(-ENOMEM);
115 if (!(inode->i_state & I_NEW))
116 return inode;
117 ui = ubifs_inode(inode);
119 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
120 if (!ino) {
121 err = -ENOMEM;
122 goto out;
125 ino_key_init(c, &key, inode->i_ino);
127 err = ubifs_tnc_lookup(c, &key, ino);
128 if (err)
129 goto out_ino;
131 inode->i_flags |= (S_NOCMTIME | S_NOATIME);
132 set_nlink(inode, le32_to_cpu(ino->nlink));
133 i_uid_write(inode, le32_to_cpu(ino->uid));
134 i_gid_write(inode, le32_to_cpu(ino->gid));
135 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec);
136 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
137 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec);
138 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
139 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec);
140 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
141 inode->i_mode = le32_to_cpu(ino->mode);
142 inode->i_size = le64_to_cpu(ino->size);
144 ui->data_len = le32_to_cpu(ino->data_len);
145 ui->flags = le32_to_cpu(ino->flags);
146 ui->compr_type = le16_to_cpu(ino->compr_type);
147 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
148 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
149 ui->xattr_size = le32_to_cpu(ino->xattr_size);
150 ui->xattr_names = le32_to_cpu(ino->xattr_names);
151 ui->synced_i_size = ui->ui_size = inode->i_size;
153 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
155 err = validate_inode(c, inode);
156 if (err)
157 goto out_invalid;
159 switch (inode->i_mode & S_IFMT) {
160 case S_IFREG:
161 inode->i_mapping->a_ops = &ubifs_file_address_operations;
162 inode->i_op = &ubifs_file_inode_operations;
163 inode->i_fop = &ubifs_file_operations;
164 if (ui->xattr) {
165 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
166 if (!ui->data) {
167 err = -ENOMEM;
168 goto out_ino;
170 memcpy(ui->data, ino->data, ui->data_len);
171 ((char *)ui->data)[ui->data_len] = '\0';
172 } else if (ui->data_len != 0) {
173 err = 10;
174 goto out_invalid;
176 break;
177 case S_IFDIR:
178 inode->i_op = &ubifs_dir_inode_operations;
179 inode->i_fop = &ubifs_dir_operations;
180 if (ui->data_len != 0) {
181 err = 11;
182 goto out_invalid;
184 break;
185 case S_IFLNK:
186 inode->i_op = &ubifs_symlink_inode_operations;
187 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
188 err = 12;
189 goto out_invalid;
191 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
192 if (!ui->data) {
193 err = -ENOMEM;
194 goto out_ino;
196 memcpy(ui->data, ino->data, ui->data_len);
197 ((char *)ui->data)[ui->data_len] = '\0';
198 break;
199 case S_IFBLK:
200 case S_IFCHR:
202 dev_t rdev;
203 union ubifs_dev_desc *dev;
205 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
206 if (!ui->data) {
207 err = -ENOMEM;
208 goto out_ino;
211 dev = (union ubifs_dev_desc *)ino->data;
212 if (ui->data_len == sizeof(dev->new))
213 rdev = new_decode_dev(le32_to_cpu(dev->new));
214 else if (ui->data_len == sizeof(dev->huge))
215 rdev = huge_decode_dev(le64_to_cpu(dev->huge));
216 else {
217 err = 13;
218 goto out_invalid;
220 memcpy(ui->data, ino->data, ui->data_len);
221 inode->i_op = &ubifs_file_inode_operations;
222 init_special_inode(inode, inode->i_mode, rdev);
223 break;
225 case S_IFSOCK:
226 case S_IFIFO:
227 inode->i_op = &ubifs_file_inode_operations;
228 init_special_inode(inode, inode->i_mode, 0);
229 if (ui->data_len != 0) {
230 err = 14;
231 goto out_invalid;
233 break;
234 default:
235 err = 15;
236 goto out_invalid;
239 kfree(ino);
240 ubifs_set_inode_flags(inode);
241 unlock_new_inode(inode);
242 return inode;
244 out_invalid:
245 ubifs_err("inode %lu validation failed, error %d", inode->i_ino, err);
246 ubifs_dump_node(c, ino);
247 ubifs_dump_inode(c, inode);
248 err = -EINVAL;
249 out_ino:
250 kfree(ino);
251 out:
252 ubifs_err("failed to read inode %lu, error %d", inode->i_ino, err);
253 iget_failed(inode);
254 return ERR_PTR(err);
257 static struct inode *ubifs_alloc_inode(struct super_block *sb)
259 struct ubifs_inode *ui;
261 ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
262 if (!ui)
263 return NULL;
265 memset((void *)ui + sizeof(struct inode), 0,
266 sizeof(struct ubifs_inode) - sizeof(struct inode));
267 mutex_init(&ui->ui_mutex);
268 spin_lock_init(&ui->ui_lock);
269 return &ui->vfs_inode;
272 static void ubifs_i_callback(struct rcu_head *head)
274 struct inode *inode = container_of(head, struct inode, i_rcu);
275 struct ubifs_inode *ui = ubifs_inode(inode);
276 kmem_cache_free(ubifs_inode_slab, ui);
279 static void ubifs_destroy_inode(struct inode *inode)
281 struct ubifs_inode *ui = ubifs_inode(inode);
283 kfree(ui->data);
284 call_rcu(&inode->i_rcu, ubifs_i_callback);
288 * Note, Linux write-back code calls this without 'i_mutex'.
290 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
292 int err = 0;
293 struct ubifs_info *c = inode->i_sb->s_fs_info;
294 struct ubifs_inode *ui = ubifs_inode(inode);
296 ubifs_assert(!ui->xattr);
297 if (is_bad_inode(inode))
298 return 0;
300 mutex_lock(&ui->ui_mutex);
302 * Due to races between write-back forced by budgeting
303 * (see 'sync_some_inodes()') and background write-back, the inode may
304 * have already been synchronized, do not do this again. This might
305 * also happen if it was synchronized in an VFS operation, e.g.
306 * 'ubifs_link()'.
308 if (!ui->dirty) {
309 mutex_unlock(&ui->ui_mutex);
310 return 0;
314 * As an optimization, do not write orphan inodes to the media just
315 * because this is not needed.
317 dbg_gen("inode %lu, mode %#x, nlink %u",
318 inode->i_ino, (int)inode->i_mode, inode->i_nlink);
319 if (inode->i_nlink) {
320 err = ubifs_jnl_write_inode(c, inode);
321 if (err)
322 ubifs_err("can't write inode %lu, error %d",
323 inode->i_ino, err);
324 else
325 err = dbg_check_inode_size(c, inode, ui->ui_size);
328 ui->dirty = 0;
329 mutex_unlock(&ui->ui_mutex);
330 ubifs_release_dirty_inode_budget(c, ui);
331 return err;
334 static void ubifs_evict_inode(struct inode *inode)
336 int err;
337 struct ubifs_info *c = inode->i_sb->s_fs_info;
338 struct ubifs_inode *ui = ubifs_inode(inode);
340 if (ui->xattr)
342 * Extended attribute inode deletions are fully handled in
343 * 'ubifs_removexattr()'. These inodes are special and have
344 * limited usage, so there is nothing to do here.
346 goto out;
348 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
349 ubifs_assert(!atomic_read(&inode->i_count));
351 truncate_inode_pages_final(&inode->i_data);
353 if (inode->i_nlink)
354 goto done;
356 if (is_bad_inode(inode))
357 goto out;
359 ui->ui_size = inode->i_size = 0;
360 err = ubifs_jnl_delete_inode(c, inode);
361 if (err)
363 * Worst case we have a lost orphan inode wasting space, so a
364 * simple error message is OK here.
366 ubifs_err("can't delete inode %lu, error %d",
367 inode->i_ino, err);
369 out:
370 if (ui->dirty)
371 ubifs_release_dirty_inode_budget(c, ui);
372 else {
373 /* We've deleted something - clean the "no space" flags */
374 c->bi.nospace = c->bi.nospace_rp = 0;
375 smp_wmb();
377 done:
378 clear_inode(inode);
381 static void ubifs_dirty_inode(struct inode *inode, int flags)
383 struct ubifs_inode *ui = ubifs_inode(inode);
385 ubifs_assert(mutex_is_locked(&ui->ui_mutex));
386 if (!ui->dirty) {
387 ui->dirty = 1;
388 dbg_gen("inode %lu", inode->i_ino);
392 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
394 struct ubifs_info *c = dentry->d_sb->s_fs_info;
395 unsigned long long free;
396 __le32 *uuid = (__le32 *)c->uuid;
398 free = ubifs_get_free_space(c);
399 dbg_gen("free space %lld bytes (%lld blocks)",
400 free, free >> UBIFS_BLOCK_SHIFT);
402 buf->f_type = UBIFS_SUPER_MAGIC;
403 buf->f_bsize = UBIFS_BLOCK_SIZE;
404 buf->f_blocks = c->block_cnt;
405 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
406 if (free > c->report_rp_size)
407 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
408 else
409 buf->f_bavail = 0;
410 buf->f_files = 0;
411 buf->f_ffree = 0;
412 buf->f_namelen = UBIFS_MAX_NLEN;
413 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
414 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
415 ubifs_assert(buf->f_bfree <= c->block_cnt);
416 return 0;
419 static int ubifs_show_options(struct seq_file *s, struct dentry *root)
421 struct ubifs_info *c = root->d_sb->s_fs_info;
423 if (c->mount_opts.unmount_mode == 2)
424 seq_puts(s, ",fast_unmount");
425 else if (c->mount_opts.unmount_mode == 1)
426 seq_puts(s, ",norm_unmount");
428 if (c->mount_opts.bulk_read == 2)
429 seq_puts(s, ",bulk_read");
430 else if (c->mount_opts.bulk_read == 1)
431 seq_puts(s, ",no_bulk_read");
433 if (c->mount_opts.chk_data_crc == 2)
434 seq_puts(s, ",chk_data_crc");
435 else if (c->mount_opts.chk_data_crc == 1)
436 seq_puts(s, ",no_chk_data_crc");
438 if (c->mount_opts.override_compr) {
439 seq_printf(s, ",compr=%s",
440 ubifs_compr_name(c->mount_opts.compr_type));
443 return 0;
446 static int ubifs_sync_fs(struct super_block *sb, int wait)
448 int i, err;
449 struct ubifs_info *c = sb->s_fs_info;
452 * Zero @wait is just an advisory thing to help the file system shove
453 * lots of data into the queues, and there will be the second
454 * '->sync_fs()' call, with non-zero @wait.
456 if (!wait)
457 return 0;
460 * Synchronize write buffers, because 'ubifs_run_commit()' does not
461 * do this if it waits for an already running commit.
463 for (i = 0; i < c->jhead_cnt; i++) {
464 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
465 if (err)
466 return err;
470 * Strictly speaking, it is not necessary to commit the journal here,
471 * synchronizing write-buffers would be enough. But committing makes
472 * UBIFS free space predictions much more accurate, so we want to let
473 * the user be able to get more accurate results of 'statfs()' after
474 * they synchronize the file system.
476 err = ubifs_run_commit(c);
477 if (err)
478 return err;
480 return ubi_sync(c->vi.ubi_num);
484 * init_constants_early - initialize UBIFS constants.
485 * @c: UBIFS file-system description object
487 * This function initialize UBIFS constants which do not need the superblock to
488 * be read. It also checks that the UBI volume satisfies basic UBIFS
489 * requirements. Returns zero in case of success and a negative error code in
490 * case of failure.
492 static int init_constants_early(struct ubifs_info *c)
494 if (c->vi.corrupted) {
495 ubifs_warn("UBI volume is corrupted - read-only mode");
496 c->ro_media = 1;
499 if (c->di.ro_mode) {
500 ubifs_msg("read-only UBI device");
501 c->ro_media = 1;
504 if (c->vi.vol_type == UBI_STATIC_VOLUME) {
505 ubifs_msg("static UBI volume - read-only mode");
506 c->ro_media = 1;
509 c->leb_cnt = c->vi.size;
510 c->leb_size = c->vi.usable_leb_size;
511 c->leb_start = c->di.leb_start;
512 c->half_leb_size = c->leb_size / 2;
513 c->min_io_size = c->di.min_io_size;
514 c->min_io_shift = fls(c->min_io_size) - 1;
515 c->max_write_size = c->di.max_write_size;
516 c->max_write_shift = fls(c->max_write_size) - 1;
518 if (c->leb_size < UBIFS_MIN_LEB_SZ) {
519 ubifs_err("too small LEBs (%d bytes), min. is %d bytes",
520 c->leb_size, UBIFS_MIN_LEB_SZ);
521 return -EINVAL;
524 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
525 ubifs_err("too few LEBs (%d), min. is %d",
526 c->leb_cnt, UBIFS_MIN_LEB_CNT);
527 return -EINVAL;
530 if (!is_power_of_2(c->min_io_size)) {
531 ubifs_err("bad min. I/O size %d", c->min_io_size);
532 return -EINVAL;
536 * Maximum write size has to be greater or equivalent to min. I/O
537 * size, and be multiple of min. I/O size.
539 if (c->max_write_size < c->min_io_size ||
540 c->max_write_size % c->min_io_size ||
541 !is_power_of_2(c->max_write_size)) {
542 ubifs_err("bad write buffer size %d for %d min. I/O unit",
543 c->max_write_size, c->min_io_size);
544 return -EINVAL;
548 * UBIFS aligns all node to 8-byte boundary, so to make function in
549 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
550 * less than 8.
552 if (c->min_io_size < 8) {
553 c->min_io_size = 8;
554 c->min_io_shift = 3;
555 if (c->max_write_size < c->min_io_size) {
556 c->max_write_size = c->min_io_size;
557 c->max_write_shift = c->min_io_shift;
561 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
562 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
565 * Initialize node length ranges which are mostly needed for node
566 * length validation.
568 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ;
569 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ;
570 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ;
571 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ;
572 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
573 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ;
575 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ;
576 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ;
577 c->ranges[UBIFS_ORPH_NODE].min_len =
578 UBIFS_ORPH_NODE_SZ + sizeof(__le64);
579 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
580 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
581 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
582 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
583 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
584 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
585 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
587 * Minimum indexing node size is amended later when superblock is
588 * read and the key length is known.
590 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
592 * Maximum indexing node size is amended later when superblock is
593 * read and the fanout is known.
595 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
598 * Initialize dead and dark LEB space watermarks. See gc.c for comments
599 * about these values.
601 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
602 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
605 * Calculate how many bytes would be wasted at the end of LEB if it was
606 * fully filled with data nodes of maximum size. This is used in
607 * calculations when reporting free space.
609 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
611 /* Buffer size for bulk-reads */
612 c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
613 if (c->max_bu_buf_len > c->leb_size)
614 c->max_bu_buf_len = c->leb_size;
615 return 0;
619 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
620 * @c: UBIFS file-system description object
621 * @lnum: LEB the write-buffer was synchronized to
622 * @free: how many free bytes left in this LEB
623 * @pad: how many bytes were padded
625 * This is a callback function which is called by the I/O unit when the
626 * write-buffer is synchronized. We need this to correctly maintain space
627 * accounting in bud logical eraseblocks. This function returns zero in case of
628 * success and a negative error code in case of failure.
630 * This function actually belongs to the journal, but we keep it here because
631 * we want to keep it static.
633 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
635 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
639 * init_constants_sb - initialize UBIFS constants.
640 * @c: UBIFS file-system description object
642 * This is a helper function which initializes various UBIFS constants after
643 * the superblock has been read. It also checks various UBIFS parameters and
644 * makes sure they are all right. Returns zero in case of success and a
645 * negative error code in case of failure.
647 static int init_constants_sb(struct ubifs_info *c)
649 int tmp, err;
650 long long tmp64;
652 c->main_bytes = (long long)c->main_lebs * c->leb_size;
653 c->max_znode_sz = sizeof(struct ubifs_znode) +
654 c->fanout * sizeof(struct ubifs_zbranch);
656 tmp = ubifs_idx_node_sz(c, 1);
657 c->ranges[UBIFS_IDX_NODE].min_len = tmp;
658 c->min_idx_node_sz = ALIGN(tmp, 8);
660 tmp = ubifs_idx_node_sz(c, c->fanout);
661 c->ranges[UBIFS_IDX_NODE].max_len = tmp;
662 c->max_idx_node_sz = ALIGN(tmp, 8);
664 /* Make sure LEB size is large enough to fit full commit */
665 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
666 tmp = ALIGN(tmp, c->min_io_size);
667 if (tmp > c->leb_size) {
668 ubifs_err("too small LEB size %d, at least %d needed",
669 c->leb_size, tmp);
670 return -EINVAL;
674 * Make sure that the log is large enough to fit reference nodes for
675 * all buds plus one reserved LEB.
677 tmp64 = c->max_bud_bytes + c->leb_size - 1;
678 c->max_bud_cnt = div_u64(tmp64, c->leb_size);
679 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
680 tmp /= c->leb_size;
681 tmp += 1;
682 if (c->log_lebs < tmp) {
683 ubifs_err("too small log %d LEBs, required min. %d LEBs",
684 c->log_lebs, tmp);
685 return -EINVAL;
689 * When budgeting we assume worst-case scenarios when the pages are not
690 * be compressed and direntries are of the maximum size.
692 * Note, data, which may be stored in inodes is budgeted separately, so
693 * it is not included into 'c->bi.inode_budget'.
695 c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
696 c->bi.inode_budget = UBIFS_INO_NODE_SZ;
697 c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
700 * When the amount of flash space used by buds becomes
701 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
702 * The writers are unblocked when the commit is finished. To avoid
703 * writers to be blocked UBIFS initiates background commit in advance,
704 * when number of bud bytes becomes above the limit defined below.
706 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
709 * Ensure minimum journal size. All the bytes in the journal heads are
710 * considered to be used, when calculating the current journal usage.
711 * Consequently, if the journal is too small, UBIFS will treat it as
712 * always full.
714 tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
715 if (c->bg_bud_bytes < tmp64)
716 c->bg_bud_bytes = tmp64;
717 if (c->max_bud_bytes < tmp64 + c->leb_size)
718 c->max_bud_bytes = tmp64 + c->leb_size;
720 err = ubifs_calc_lpt_geom(c);
721 if (err)
722 return err;
724 /* Initialize effective LEB size used in budgeting calculations */
725 c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
726 return 0;
730 * init_constants_master - initialize UBIFS constants.
731 * @c: UBIFS file-system description object
733 * This is a helper function which initializes various UBIFS constants after
734 * the master node has been read. It also checks various UBIFS parameters and
735 * makes sure they are all right.
737 static void init_constants_master(struct ubifs_info *c)
739 long long tmp64;
741 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
742 c->report_rp_size = ubifs_reported_space(c, c->rp_size);
745 * Calculate total amount of FS blocks. This number is not used
746 * internally because it does not make much sense for UBIFS, but it is
747 * necessary to report something for the 'statfs()' call.
749 * Subtract the LEB reserved for GC, the LEB which is reserved for
750 * deletions, minimum LEBs for the index, and assume only one journal
751 * head is available.
753 tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
754 tmp64 *= (long long)c->leb_size - c->leb_overhead;
755 tmp64 = ubifs_reported_space(c, tmp64);
756 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
760 * take_gc_lnum - reserve GC LEB.
761 * @c: UBIFS file-system description object
763 * This function ensures that the LEB reserved for garbage collection is marked
764 * as "taken" in lprops. We also have to set free space to LEB size and dirty
765 * space to zero, because lprops may contain out-of-date information if the
766 * file-system was un-mounted before it has been committed. This function
767 * returns zero in case of success and a negative error code in case of
768 * failure.
770 static int take_gc_lnum(struct ubifs_info *c)
772 int err;
774 if (c->gc_lnum == -1) {
775 ubifs_err("no LEB for GC");
776 return -EINVAL;
779 /* And we have to tell lprops that this LEB is taken */
780 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
781 LPROPS_TAKEN, 0, 0);
782 return err;
786 * alloc_wbufs - allocate write-buffers.
787 * @c: UBIFS file-system description object
789 * This helper function allocates and initializes UBIFS write-buffers. Returns
790 * zero in case of success and %-ENOMEM in case of failure.
792 static int alloc_wbufs(struct ubifs_info *c)
794 int i, err;
796 c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead),
797 GFP_KERNEL);
798 if (!c->jheads)
799 return -ENOMEM;
801 /* Initialize journal heads */
802 for (i = 0; i < c->jhead_cnt; i++) {
803 INIT_LIST_HEAD(&c->jheads[i].buds_list);
804 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
805 if (err)
806 return err;
808 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
809 c->jheads[i].wbuf.jhead = i;
810 c->jheads[i].grouped = 1;
814 * Garbage Collector head does not need to be synchronized by timer.
815 * Also GC head nodes are not grouped.
817 c->jheads[GCHD].wbuf.no_timer = 1;
818 c->jheads[GCHD].grouped = 0;
820 return 0;
824 * free_wbufs - free write-buffers.
825 * @c: UBIFS file-system description object
827 static void free_wbufs(struct ubifs_info *c)
829 int i;
831 if (c->jheads) {
832 for (i = 0; i < c->jhead_cnt; i++) {
833 kfree(c->jheads[i].wbuf.buf);
834 kfree(c->jheads[i].wbuf.inodes);
836 kfree(c->jheads);
837 c->jheads = NULL;
842 * free_orphans - free orphans.
843 * @c: UBIFS file-system description object
845 static void free_orphans(struct ubifs_info *c)
847 struct ubifs_orphan *orph;
849 while (c->orph_dnext) {
850 orph = c->orph_dnext;
851 c->orph_dnext = orph->dnext;
852 list_del(&orph->list);
853 kfree(orph);
856 while (!list_empty(&c->orph_list)) {
857 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
858 list_del(&orph->list);
859 kfree(orph);
860 ubifs_err("orphan list not empty at unmount");
863 vfree(c->orph_buf);
864 c->orph_buf = NULL;
868 * free_buds - free per-bud objects.
869 * @c: UBIFS file-system description object
871 static void free_buds(struct ubifs_info *c)
873 struct ubifs_bud *bud, *n;
875 rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb)
876 kfree(bud);
880 * check_volume_empty - check if the UBI volume is empty.
881 * @c: UBIFS file-system description object
883 * This function checks if the UBIFS volume is empty by looking if its LEBs are
884 * mapped or not. The result of checking is stored in the @c->empty variable.
885 * Returns zero in case of success and a negative error code in case of
886 * failure.
888 static int check_volume_empty(struct ubifs_info *c)
890 int lnum, err;
892 c->empty = 1;
893 for (lnum = 0; lnum < c->leb_cnt; lnum++) {
894 err = ubifs_is_mapped(c, lnum);
895 if (unlikely(err < 0))
896 return err;
897 if (err == 1) {
898 c->empty = 0;
899 break;
902 cond_resched();
905 return 0;
909 * UBIFS mount options.
911 * Opt_fast_unmount: do not run a journal commit before un-mounting
912 * Opt_norm_unmount: run a journal commit before un-mounting
913 * Opt_bulk_read: enable bulk-reads
914 * Opt_no_bulk_read: disable bulk-reads
915 * Opt_chk_data_crc: check CRCs when reading data nodes
916 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
917 * Opt_override_compr: override default compressor
918 * Opt_err: just end of array marker
920 enum {
921 Opt_fast_unmount,
922 Opt_norm_unmount,
923 Opt_bulk_read,
924 Opt_no_bulk_read,
925 Opt_chk_data_crc,
926 Opt_no_chk_data_crc,
927 Opt_override_compr,
928 Opt_err,
931 static const match_table_t tokens = {
932 {Opt_fast_unmount, "fast_unmount"},
933 {Opt_norm_unmount, "norm_unmount"},
934 {Opt_bulk_read, "bulk_read"},
935 {Opt_no_bulk_read, "no_bulk_read"},
936 {Opt_chk_data_crc, "chk_data_crc"},
937 {Opt_no_chk_data_crc, "no_chk_data_crc"},
938 {Opt_override_compr, "compr=%s"},
939 {Opt_err, NULL},
943 * parse_standard_option - parse a standard mount option.
944 * @option: the option to parse
946 * Normally, standard mount options like "sync" are passed to file-systems as
947 * flags. However, when a "rootflags=" kernel boot parameter is used, they may
948 * be present in the options string. This function tries to deal with this
949 * situation and parse standard options. Returns 0 if the option was not
950 * recognized, and the corresponding integer flag if it was.
952 * UBIFS is only interested in the "sync" option, so do not check for anything
953 * else.
955 static int parse_standard_option(const char *option)
957 ubifs_msg("parse %s", option);
958 if (!strcmp(option, "sync"))
959 return MS_SYNCHRONOUS;
960 return 0;
964 * ubifs_parse_options - parse mount parameters.
965 * @c: UBIFS file-system description object
966 * @options: parameters to parse
967 * @is_remount: non-zero if this is FS re-mount
969 * This function parses UBIFS mount options and returns zero in case success
970 * and a negative error code in case of failure.
972 static int ubifs_parse_options(struct ubifs_info *c, char *options,
973 int is_remount)
975 char *p;
976 substring_t args[MAX_OPT_ARGS];
978 if (!options)
979 return 0;
981 while ((p = strsep(&options, ","))) {
982 int token;
984 if (!*p)
985 continue;
987 token = match_token(p, tokens, args);
988 switch (token) {
990 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
991 * We accept them in order to be backward-compatible. But this
992 * should be removed at some point.
994 case Opt_fast_unmount:
995 c->mount_opts.unmount_mode = 2;
996 break;
997 case Opt_norm_unmount:
998 c->mount_opts.unmount_mode = 1;
999 break;
1000 case Opt_bulk_read:
1001 c->mount_opts.bulk_read = 2;
1002 c->bulk_read = 1;
1003 break;
1004 case Opt_no_bulk_read:
1005 c->mount_opts.bulk_read = 1;
1006 c->bulk_read = 0;
1007 break;
1008 case Opt_chk_data_crc:
1009 c->mount_opts.chk_data_crc = 2;
1010 c->no_chk_data_crc = 0;
1011 break;
1012 case Opt_no_chk_data_crc:
1013 c->mount_opts.chk_data_crc = 1;
1014 c->no_chk_data_crc = 1;
1015 break;
1016 case Opt_override_compr:
1018 char *name = match_strdup(&args[0]);
1020 if (!name)
1021 return -ENOMEM;
1022 if (!strcmp(name, "none"))
1023 c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1024 else if (!strcmp(name, "lzo"))
1025 c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1026 else if (!strcmp(name, "zlib"))
1027 c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1028 else {
1029 ubifs_err("unknown compressor \"%s\"", name);
1030 kfree(name);
1031 return -EINVAL;
1033 kfree(name);
1034 c->mount_opts.override_compr = 1;
1035 c->default_compr = c->mount_opts.compr_type;
1036 break;
1038 default:
1040 unsigned long flag;
1041 struct super_block *sb = c->vfs_sb;
1043 flag = parse_standard_option(p);
1044 if (!flag) {
1045 ubifs_err("unrecognized mount option \"%s\" or missing value",
1047 return -EINVAL;
1049 sb->s_flags |= flag;
1050 break;
1055 return 0;
1059 * destroy_journal - destroy journal data structures.
1060 * @c: UBIFS file-system description object
1062 * This function destroys journal data structures including those that may have
1063 * been created by recovery functions.
1065 static void destroy_journal(struct ubifs_info *c)
1067 while (!list_empty(&c->unclean_leb_list)) {
1068 struct ubifs_unclean_leb *ucleb;
1070 ucleb = list_entry(c->unclean_leb_list.next,
1071 struct ubifs_unclean_leb, list);
1072 list_del(&ucleb->list);
1073 kfree(ucleb);
1075 while (!list_empty(&c->old_buds)) {
1076 struct ubifs_bud *bud;
1078 bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1079 list_del(&bud->list);
1080 kfree(bud);
1082 ubifs_destroy_idx_gc(c);
1083 ubifs_destroy_size_tree(c);
1084 ubifs_tnc_close(c);
1085 free_buds(c);
1089 * bu_init - initialize bulk-read information.
1090 * @c: UBIFS file-system description object
1092 static void bu_init(struct ubifs_info *c)
1094 ubifs_assert(c->bulk_read == 1);
1096 if (c->bu.buf)
1097 return; /* Already initialized */
1099 again:
1100 c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1101 if (!c->bu.buf) {
1102 if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1103 c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1104 goto again;
1107 /* Just disable bulk-read */
1108 ubifs_warn("cannot allocate %d bytes of memory for bulk-read, disabling it",
1109 c->max_bu_buf_len);
1110 c->mount_opts.bulk_read = 1;
1111 c->bulk_read = 0;
1112 return;
1117 * check_free_space - check if there is enough free space to mount.
1118 * @c: UBIFS file-system description object
1120 * This function makes sure UBIFS has enough free space to be mounted in
1121 * read/write mode. UBIFS must always have some free space to allow deletions.
1123 static int check_free_space(struct ubifs_info *c)
1125 ubifs_assert(c->dark_wm > 0);
1126 if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1127 ubifs_err("insufficient free space to mount in R/W mode");
1128 ubifs_dump_budg(c, &c->bi);
1129 ubifs_dump_lprops(c);
1130 return -ENOSPC;
1132 return 0;
1136 * mount_ubifs - mount UBIFS file-system.
1137 * @c: UBIFS file-system description object
1139 * This function mounts UBIFS file system. Returns zero in case of success and
1140 * a negative error code in case of failure.
1142 static int mount_ubifs(struct ubifs_info *c)
1144 int err;
1145 long long x, y;
1146 size_t sz;
1148 c->ro_mount = !!(c->vfs_sb->s_flags & MS_RDONLY);
1149 /* Suppress error messages while probing if MS_SILENT is set */
1150 c->probing = !!(c->vfs_sb->s_flags & MS_SILENT);
1152 err = init_constants_early(c);
1153 if (err)
1154 return err;
1156 err = ubifs_debugging_init(c);
1157 if (err)
1158 return err;
1160 err = check_volume_empty(c);
1161 if (err)
1162 goto out_free;
1164 if (c->empty && (c->ro_mount || c->ro_media)) {
1166 * This UBI volume is empty, and read-only, or the file system
1167 * is mounted read-only - we cannot format it.
1169 ubifs_err("can't format empty UBI volume: read-only %s",
1170 c->ro_media ? "UBI volume" : "mount");
1171 err = -EROFS;
1172 goto out_free;
1175 if (c->ro_media && !c->ro_mount) {
1176 ubifs_err("cannot mount read-write - read-only media");
1177 err = -EROFS;
1178 goto out_free;
1182 * The requirement for the buffer is that it should fit indexing B-tree
1183 * height amount of integers. We assume the height if the TNC tree will
1184 * never exceed 64.
1186 err = -ENOMEM;
1187 c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL);
1188 if (!c->bottom_up_buf)
1189 goto out_free;
1191 c->sbuf = vmalloc(c->leb_size);
1192 if (!c->sbuf)
1193 goto out_free;
1195 if (!c->ro_mount) {
1196 c->ileb_buf = vmalloc(c->leb_size);
1197 if (!c->ileb_buf)
1198 goto out_free;
1201 if (c->bulk_read == 1)
1202 bu_init(c);
1204 if (!c->ro_mount) {
1205 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ,
1206 GFP_KERNEL);
1207 if (!c->write_reserve_buf)
1208 goto out_free;
1211 c->mounting = 1;
1213 err = ubifs_read_superblock(c);
1214 if (err)
1215 goto out_free;
1217 c->probing = 0;
1220 * Make sure the compressor which is set as default in the superblock
1221 * or overridden by mount options is actually compiled in.
1223 if (!ubifs_compr_present(c->default_compr)) {
1224 ubifs_err("'compressor \"%s\" is not compiled in",
1225 ubifs_compr_name(c->default_compr));
1226 err = -ENOTSUPP;
1227 goto out_free;
1230 err = init_constants_sb(c);
1231 if (err)
1232 goto out_free;
1234 sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1235 sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1236 c->cbuf = kmalloc(sz, GFP_NOFS);
1237 if (!c->cbuf) {
1238 err = -ENOMEM;
1239 goto out_free;
1242 err = alloc_wbufs(c);
1243 if (err)
1244 goto out_cbuf;
1246 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1247 if (!c->ro_mount) {
1248 /* Create background thread */
1249 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1250 if (IS_ERR(c->bgt)) {
1251 err = PTR_ERR(c->bgt);
1252 c->bgt = NULL;
1253 ubifs_err("cannot spawn \"%s\", error %d",
1254 c->bgt_name, err);
1255 goto out_wbufs;
1257 wake_up_process(c->bgt);
1260 err = ubifs_read_master(c);
1261 if (err)
1262 goto out_master;
1264 init_constants_master(c);
1266 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1267 ubifs_msg("recovery needed");
1268 c->need_recovery = 1;
1271 if (c->need_recovery && !c->ro_mount) {
1272 err = ubifs_recover_inl_heads(c, c->sbuf);
1273 if (err)
1274 goto out_master;
1277 err = ubifs_lpt_init(c, 1, !c->ro_mount);
1278 if (err)
1279 goto out_master;
1281 if (!c->ro_mount && c->space_fixup) {
1282 err = ubifs_fixup_free_space(c);
1283 if (err)
1284 goto out_lpt;
1287 if (!c->ro_mount) {
1289 * Set the "dirty" flag so that if we reboot uncleanly we
1290 * will notice this immediately on the next mount.
1292 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1293 err = ubifs_write_master(c);
1294 if (err)
1295 goto out_lpt;
1298 err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1299 if (err)
1300 goto out_lpt;
1302 err = ubifs_replay_journal(c);
1303 if (err)
1304 goto out_journal;
1306 /* Calculate 'min_idx_lebs' after journal replay */
1307 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1309 err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1310 if (err)
1311 goto out_orphans;
1313 if (!c->ro_mount) {
1314 int lnum;
1316 err = check_free_space(c);
1317 if (err)
1318 goto out_orphans;
1320 /* Check for enough log space */
1321 lnum = c->lhead_lnum + 1;
1322 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1323 lnum = UBIFS_LOG_LNUM;
1324 if (lnum == c->ltail_lnum) {
1325 err = ubifs_consolidate_log(c);
1326 if (err)
1327 goto out_orphans;
1330 if (c->need_recovery) {
1331 err = ubifs_recover_size(c);
1332 if (err)
1333 goto out_orphans;
1334 err = ubifs_rcvry_gc_commit(c);
1335 if (err)
1336 goto out_orphans;
1337 } else {
1338 err = take_gc_lnum(c);
1339 if (err)
1340 goto out_orphans;
1343 * GC LEB may contain garbage if there was an unclean
1344 * reboot, and it should be un-mapped.
1346 err = ubifs_leb_unmap(c, c->gc_lnum);
1347 if (err)
1348 goto out_orphans;
1351 err = dbg_check_lprops(c);
1352 if (err)
1353 goto out_orphans;
1354 } else if (c->need_recovery) {
1355 err = ubifs_recover_size(c);
1356 if (err)
1357 goto out_orphans;
1358 } else {
1360 * Even if we mount read-only, we have to set space in GC LEB
1361 * to proper value because this affects UBIFS free space
1362 * reporting. We do not want to have a situation when
1363 * re-mounting from R/O to R/W changes amount of free space.
1365 err = take_gc_lnum(c);
1366 if (err)
1367 goto out_orphans;
1370 spin_lock(&ubifs_infos_lock);
1371 list_add_tail(&c->infos_list, &ubifs_infos);
1372 spin_unlock(&ubifs_infos_lock);
1374 if (c->need_recovery) {
1375 if (c->ro_mount)
1376 ubifs_msg("recovery deferred");
1377 else {
1378 c->need_recovery = 0;
1379 ubifs_msg("recovery completed");
1381 * GC LEB has to be empty and taken at this point. But
1382 * the journal head LEBs may also be accounted as
1383 * "empty taken" if they are empty.
1385 ubifs_assert(c->lst.taken_empty_lebs > 0);
1387 } else
1388 ubifs_assert(c->lst.taken_empty_lebs > 0);
1390 err = dbg_check_filesystem(c);
1391 if (err)
1392 goto out_infos;
1394 err = dbg_debugfs_init_fs(c);
1395 if (err)
1396 goto out_infos;
1398 c->mounting = 0;
1400 ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"%s",
1401 c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1402 c->ro_mount ? ", R/O mode" : "");
1403 x = (long long)c->main_lebs * c->leb_size;
1404 y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1405 ubifs_msg("LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1406 c->leb_size, c->leb_size >> 10, c->min_io_size,
1407 c->max_write_size);
1408 ubifs_msg("FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)",
1409 x, x >> 20, c->main_lebs,
1410 y, y >> 20, c->log_lebs + c->max_bud_cnt);
1411 ubifs_msg("reserved for root: %llu bytes (%llu KiB)",
1412 c->report_rp_size, c->report_rp_size >> 10);
1413 ubifs_msg("media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1414 c->fmt_version, c->ro_compat_version,
1415 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1416 c->big_lpt ? ", big LPT model" : ", small LPT model");
1418 dbg_gen("default compressor: %s", ubifs_compr_name(c->default_compr));
1419 dbg_gen("data journal heads: %d",
1420 c->jhead_cnt - NONDATA_JHEADS_CNT);
1421 dbg_gen("log LEBs: %d (%d - %d)",
1422 c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1423 dbg_gen("LPT area LEBs: %d (%d - %d)",
1424 c->lpt_lebs, c->lpt_first, c->lpt_last);
1425 dbg_gen("orphan area LEBs: %d (%d - %d)",
1426 c->orph_lebs, c->orph_first, c->orph_last);
1427 dbg_gen("main area LEBs: %d (%d - %d)",
1428 c->main_lebs, c->main_first, c->leb_cnt - 1);
1429 dbg_gen("index LEBs: %d", c->lst.idx_lebs);
1430 dbg_gen("total index bytes: %lld (%lld KiB, %lld MiB)",
1431 c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1432 c->bi.old_idx_sz >> 20);
1433 dbg_gen("key hash type: %d", c->key_hash_type);
1434 dbg_gen("tree fanout: %d", c->fanout);
1435 dbg_gen("reserved GC LEB: %d", c->gc_lnum);
1436 dbg_gen("max. znode size %d", c->max_znode_sz);
1437 dbg_gen("max. index node size %d", c->max_idx_node_sz);
1438 dbg_gen("node sizes: data %zu, inode %zu, dentry %zu",
1439 UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1440 dbg_gen("node sizes: trun %zu, sb %zu, master %zu",
1441 UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1442 dbg_gen("node sizes: ref %zu, cmt. start %zu, orph %zu",
1443 UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1444 dbg_gen("max. node sizes: data %zu, inode %zu dentry %zu, idx %d",
1445 UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1446 UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1447 dbg_gen("dead watermark: %d", c->dead_wm);
1448 dbg_gen("dark watermark: %d", c->dark_wm);
1449 dbg_gen("LEB overhead: %d", c->leb_overhead);
1450 x = (long long)c->main_lebs * c->dark_wm;
1451 dbg_gen("max. dark space: %lld (%lld KiB, %lld MiB)",
1452 x, x >> 10, x >> 20);
1453 dbg_gen("maximum bud bytes: %lld (%lld KiB, %lld MiB)",
1454 c->max_bud_bytes, c->max_bud_bytes >> 10,
1455 c->max_bud_bytes >> 20);
1456 dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1457 c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1458 c->bg_bud_bytes >> 20);
1459 dbg_gen("current bud bytes %lld (%lld KiB, %lld MiB)",
1460 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1461 dbg_gen("max. seq. number: %llu", c->max_sqnum);
1462 dbg_gen("commit number: %llu", c->cmt_no);
1464 return 0;
1466 out_infos:
1467 spin_lock(&ubifs_infos_lock);
1468 list_del(&c->infos_list);
1469 spin_unlock(&ubifs_infos_lock);
1470 out_orphans:
1471 free_orphans(c);
1472 out_journal:
1473 destroy_journal(c);
1474 out_lpt:
1475 ubifs_lpt_free(c, 0);
1476 out_master:
1477 kfree(c->mst_node);
1478 kfree(c->rcvrd_mst_node);
1479 if (c->bgt)
1480 kthread_stop(c->bgt);
1481 out_wbufs:
1482 free_wbufs(c);
1483 out_cbuf:
1484 kfree(c->cbuf);
1485 out_free:
1486 kfree(c->write_reserve_buf);
1487 kfree(c->bu.buf);
1488 vfree(c->ileb_buf);
1489 vfree(c->sbuf);
1490 kfree(c->bottom_up_buf);
1491 ubifs_debugging_exit(c);
1492 return err;
1496 * ubifs_umount - un-mount UBIFS file-system.
1497 * @c: UBIFS file-system description object
1499 * Note, this function is called to free allocated resourced when un-mounting,
1500 * as well as free resources when an error occurred while we were half way
1501 * through mounting (error path cleanup function). So it has to make sure the
1502 * resource was actually allocated before freeing it.
1504 static void ubifs_umount(struct ubifs_info *c)
1506 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1507 c->vi.vol_id);
1509 dbg_debugfs_exit_fs(c);
1510 spin_lock(&ubifs_infos_lock);
1511 list_del(&c->infos_list);
1512 spin_unlock(&ubifs_infos_lock);
1514 if (c->bgt)
1515 kthread_stop(c->bgt);
1517 destroy_journal(c);
1518 free_wbufs(c);
1519 free_orphans(c);
1520 ubifs_lpt_free(c, 0);
1522 kfree(c->cbuf);
1523 kfree(c->rcvrd_mst_node);
1524 kfree(c->mst_node);
1525 kfree(c->write_reserve_buf);
1526 kfree(c->bu.buf);
1527 vfree(c->ileb_buf);
1528 vfree(c->sbuf);
1529 kfree(c->bottom_up_buf);
1530 ubifs_debugging_exit(c);
1534 * ubifs_remount_rw - re-mount in read-write mode.
1535 * @c: UBIFS file-system description object
1537 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1538 * mode. This function allocates the needed resources and re-mounts UBIFS in
1539 * read-write mode.
1541 static int ubifs_remount_rw(struct ubifs_info *c)
1543 int err, lnum;
1545 if (c->rw_incompat) {
1546 ubifs_err("the file-system is not R/W-compatible");
1547 ubifs_msg("on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1548 c->fmt_version, c->ro_compat_version,
1549 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1550 return -EROFS;
1553 mutex_lock(&c->umount_mutex);
1554 dbg_save_space_info(c);
1555 c->remounting_rw = 1;
1556 c->ro_mount = 0;
1558 if (c->space_fixup) {
1559 err = ubifs_fixup_free_space(c);
1560 if (err)
1561 goto out;
1564 err = check_free_space(c);
1565 if (err)
1566 goto out;
1568 if (c->old_leb_cnt != c->leb_cnt) {
1569 struct ubifs_sb_node *sup;
1571 sup = ubifs_read_sb_node(c);
1572 if (IS_ERR(sup)) {
1573 err = PTR_ERR(sup);
1574 goto out;
1576 sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1577 err = ubifs_write_sb_node(c, sup);
1578 kfree(sup);
1579 if (err)
1580 goto out;
1583 if (c->need_recovery) {
1584 ubifs_msg("completing deferred recovery");
1585 err = ubifs_write_rcvrd_mst_node(c);
1586 if (err)
1587 goto out;
1588 err = ubifs_recover_size(c);
1589 if (err)
1590 goto out;
1591 err = ubifs_clean_lebs(c, c->sbuf);
1592 if (err)
1593 goto out;
1594 err = ubifs_recover_inl_heads(c, c->sbuf);
1595 if (err)
1596 goto out;
1597 } else {
1598 /* A readonly mount is not allowed to have orphans */
1599 ubifs_assert(c->tot_orphans == 0);
1600 err = ubifs_clear_orphans(c);
1601 if (err)
1602 goto out;
1605 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1606 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1607 err = ubifs_write_master(c);
1608 if (err)
1609 goto out;
1612 c->ileb_buf = vmalloc(c->leb_size);
1613 if (!c->ileb_buf) {
1614 err = -ENOMEM;
1615 goto out;
1618 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, GFP_KERNEL);
1619 if (!c->write_reserve_buf) {
1620 err = -ENOMEM;
1621 goto out;
1624 err = ubifs_lpt_init(c, 0, 1);
1625 if (err)
1626 goto out;
1628 /* Create background thread */
1629 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1630 if (IS_ERR(c->bgt)) {
1631 err = PTR_ERR(c->bgt);
1632 c->bgt = NULL;
1633 ubifs_err("cannot spawn \"%s\", error %d",
1634 c->bgt_name, err);
1635 goto out;
1637 wake_up_process(c->bgt);
1639 c->orph_buf = vmalloc(c->leb_size);
1640 if (!c->orph_buf) {
1641 err = -ENOMEM;
1642 goto out;
1645 /* Check for enough log space */
1646 lnum = c->lhead_lnum + 1;
1647 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1648 lnum = UBIFS_LOG_LNUM;
1649 if (lnum == c->ltail_lnum) {
1650 err = ubifs_consolidate_log(c);
1651 if (err)
1652 goto out;
1655 if (c->need_recovery)
1656 err = ubifs_rcvry_gc_commit(c);
1657 else
1658 err = ubifs_leb_unmap(c, c->gc_lnum);
1659 if (err)
1660 goto out;
1662 dbg_gen("re-mounted read-write");
1663 c->remounting_rw = 0;
1665 if (c->need_recovery) {
1666 c->need_recovery = 0;
1667 ubifs_msg("deferred recovery completed");
1668 } else {
1670 * Do not run the debugging space check if the were doing
1671 * recovery, because when we saved the information we had the
1672 * file-system in a state where the TNC and lprops has been
1673 * modified in memory, but all the I/O operations (including a
1674 * commit) were deferred. So the file-system was in
1675 * "non-committed" state. Now the file-system is in committed
1676 * state, and of course the amount of free space will change
1677 * because, for example, the old index size was imprecise.
1679 err = dbg_check_space_info(c);
1682 mutex_unlock(&c->umount_mutex);
1683 return err;
1685 out:
1686 c->ro_mount = 1;
1687 vfree(c->orph_buf);
1688 c->orph_buf = NULL;
1689 if (c->bgt) {
1690 kthread_stop(c->bgt);
1691 c->bgt = NULL;
1693 free_wbufs(c);
1694 kfree(c->write_reserve_buf);
1695 c->write_reserve_buf = NULL;
1696 vfree(c->ileb_buf);
1697 c->ileb_buf = NULL;
1698 ubifs_lpt_free(c, 1);
1699 c->remounting_rw = 0;
1700 mutex_unlock(&c->umount_mutex);
1701 return err;
1705 * ubifs_remount_ro - re-mount in read-only mode.
1706 * @c: UBIFS file-system description object
1708 * We assume VFS has stopped writing. Possibly the background thread could be
1709 * running a commit, however kthread_stop will wait in that case.
1711 static void ubifs_remount_ro(struct ubifs_info *c)
1713 int i, err;
1715 ubifs_assert(!c->need_recovery);
1716 ubifs_assert(!c->ro_mount);
1718 mutex_lock(&c->umount_mutex);
1719 if (c->bgt) {
1720 kthread_stop(c->bgt);
1721 c->bgt = NULL;
1724 dbg_save_space_info(c);
1726 for (i = 0; i < c->jhead_cnt; i++)
1727 ubifs_wbuf_sync(&c->jheads[i].wbuf);
1729 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1730 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1731 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1732 err = ubifs_write_master(c);
1733 if (err)
1734 ubifs_ro_mode(c, err);
1736 vfree(c->orph_buf);
1737 c->orph_buf = NULL;
1738 kfree(c->write_reserve_buf);
1739 c->write_reserve_buf = NULL;
1740 vfree(c->ileb_buf);
1741 c->ileb_buf = NULL;
1742 ubifs_lpt_free(c, 1);
1743 c->ro_mount = 1;
1744 err = dbg_check_space_info(c);
1745 if (err)
1746 ubifs_ro_mode(c, err);
1747 mutex_unlock(&c->umount_mutex);
1750 static void ubifs_put_super(struct super_block *sb)
1752 int i;
1753 struct ubifs_info *c = sb->s_fs_info;
1755 ubifs_msg("un-mount UBI device %d, volume %d", c->vi.ubi_num,
1756 c->vi.vol_id);
1759 * The following asserts are only valid if there has not been a failure
1760 * of the media. For example, there will be dirty inodes if we failed
1761 * to write them back because of I/O errors.
1763 if (!c->ro_error) {
1764 ubifs_assert(c->bi.idx_growth == 0);
1765 ubifs_assert(c->bi.dd_growth == 0);
1766 ubifs_assert(c->bi.data_growth == 0);
1770 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1771 * and file system un-mount. Namely, it prevents the shrinker from
1772 * picking this superblock for shrinking - it will be just skipped if
1773 * the mutex is locked.
1775 mutex_lock(&c->umount_mutex);
1776 if (!c->ro_mount) {
1778 * First of all kill the background thread to make sure it does
1779 * not interfere with un-mounting and freeing resources.
1781 if (c->bgt) {
1782 kthread_stop(c->bgt);
1783 c->bgt = NULL;
1787 * On fatal errors c->ro_error is set to 1, in which case we do
1788 * not write the master node.
1790 if (!c->ro_error) {
1791 int err;
1793 /* Synchronize write-buffers */
1794 for (i = 0; i < c->jhead_cnt; i++)
1795 ubifs_wbuf_sync(&c->jheads[i].wbuf);
1798 * We are being cleanly unmounted which means the
1799 * orphans were killed - indicate this in the master
1800 * node. Also save the reserved GC LEB number.
1802 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1803 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1804 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1805 err = ubifs_write_master(c);
1806 if (err)
1808 * Recovery will attempt to fix the master area
1809 * next mount, so we just print a message and
1810 * continue to unmount normally.
1812 ubifs_err("failed to write master node, error %d",
1813 err);
1814 } else {
1815 for (i = 0; i < c->jhead_cnt; i++)
1816 /* Make sure write-buffer timers are canceled */
1817 hrtimer_cancel(&c->jheads[i].wbuf.timer);
1821 ubifs_umount(c);
1822 bdi_destroy(&c->bdi);
1823 ubi_close_volume(c->ubi);
1824 mutex_unlock(&c->umount_mutex);
1827 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1829 int err;
1830 struct ubifs_info *c = sb->s_fs_info;
1832 sync_filesystem(sb);
1833 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
1835 err = ubifs_parse_options(c, data, 1);
1836 if (err) {
1837 ubifs_err("invalid or unknown remount parameter");
1838 return err;
1841 if (c->ro_mount && !(*flags & MS_RDONLY)) {
1842 if (c->ro_error) {
1843 ubifs_msg("cannot re-mount R/W due to prior errors");
1844 return -EROFS;
1846 if (c->ro_media) {
1847 ubifs_msg("cannot re-mount R/W - UBI volume is R/O");
1848 return -EROFS;
1850 err = ubifs_remount_rw(c);
1851 if (err)
1852 return err;
1853 } else if (!c->ro_mount && (*flags & MS_RDONLY)) {
1854 if (c->ro_error) {
1855 ubifs_msg("cannot re-mount R/O due to prior errors");
1856 return -EROFS;
1858 ubifs_remount_ro(c);
1861 if (c->bulk_read == 1)
1862 bu_init(c);
1863 else {
1864 dbg_gen("disable bulk-read");
1865 kfree(c->bu.buf);
1866 c->bu.buf = NULL;
1869 ubifs_assert(c->lst.taken_empty_lebs > 0);
1870 return 0;
1873 const struct super_operations ubifs_super_operations = {
1874 .alloc_inode = ubifs_alloc_inode,
1875 .destroy_inode = ubifs_destroy_inode,
1876 .put_super = ubifs_put_super,
1877 .write_inode = ubifs_write_inode,
1878 .evict_inode = ubifs_evict_inode,
1879 .statfs = ubifs_statfs,
1880 .dirty_inode = ubifs_dirty_inode,
1881 .remount_fs = ubifs_remount_fs,
1882 .show_options = ubifs_show_options,
1883 .sync_fs = ubifs_sync_fs,
1887 * open_ubi - parse UBI device name string and open the UBI device.
1888 * @name: UBI volume name
1889 * @mode: UBI volume open mode
1891 * The primary method of mounting UBIFS is by specifying the UBI volume
1892 * character device node path. However, UBIFS may also be mounted withoug any
1893 * character device node using one of the following methods:
1895 * o ubiX_Y - mount UBI device number X, volume Y;
1896 * o ubiY - mount UBI device number 0, volume Y;
1897 * o ubiX:NAME - mount UBI device X, volume with name NAME;
1898 * o ubi:NAME - mount UBI device 0, volume with name NAME.
1900 * Alternative '!' separator may be used instead of ':' (because some shells
1901 * like busybox may interpret ':' as an NFS host name separator). This function
1902 * returns UBI volume description object in case of success and a negative
1903 * error code in case of failure.
1905 static struct ubi_volume_desc *open_ubi(const char *name, int mode)
1907 struct ubi_volume_desc *ubi;
1908 int dev, vol;
1909 char *endptr;
1911 /* First, try to open using the device node path method */
1912 ubi = ubi_open_volume_path(name, mode);
1913 if (!IS_ERR(ubi))
1914 return ubi;
1916 /* Try the "nodev" method */
1917 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
1918 return ERR_PTR(-EINVAL);
1920 /* ubi:NAME method */
1921 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
1922 return ubi_open_volume_nm(0, name + 4, mode);
1924 if (!isdigit(name[3]))
1925 return ERR_PTR(-EINVAL);
1927 dev = simple_strtoul(name + 3, &endptr, 0);
1929 /* ubiY method */
1930 if (*endptr == '\0')
1931 return ubi_open_volume(0, dev, mode);
1933 /* ubiX_Y method */
1934 if (*endptr == '_' && isdigit(endptr[1])) {
1935 vol = simple_strtoul(endptr + 1, &endptr, 0);
1936 if (*endptr != '\0')
1937 return ERR_PTR(-EINVAL);
1938 return ubi_open_volume(dev, vol, mode);
1941 /* ubiX:NAME method */
1942 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
1943 return ubi_open_volume_nm(dev, ++endptr, mode);
1945 return ERR_PTR(-EINVAL);
1948 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
1950 struct ubifs_info *c;
1952 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
1953 if (c) {
1954 spin_lock_init(&c->cnt_lock);
1955 spin_lock_init(&c->cs_lock);
1956 spin_lock_init(&c->buds_lock);
1957 spin_lock_init(&c->space_lock);
1958 spin_lock_init(&c->orphan_lock);
1959 init_rwsem(&c->commit_sem);
1960 mutex_init(&c->lp_mutex);
1961 mutex_init(&c->tnc_mutex);
1962 mutex_init(&c->log_mutex);
1963 mutex_init(&c->umount_mutex);
1964 mutex_init(&c->bu_mutex);
1965 mutex_init(&c->write_reserve_mutex);
1966 init_waitqueue_head(&c->cmt_wq);
1967 c->buds = RB_ROOT;
1968 c->old_idx = RB_ROOT;
1969 c->size_tree = RB_ROOT;
1970 c->orph_tree = RB_ROOT;
1971 INIT_LIST_HEAD(&c->infos_list);
1972 INIT_LIST_HEAD(&c->idx_gc);
1973 INIT_LIST_HEAD(&c->replay_list);
1974 INIT_LIST_HEAD(&c->replay_buds);
1975 INIT_LIST_HEAD(&c->uncat_list);
1976 INIT_LIST_HEAD(&c->empty_list);
1977 INIT_LIST_HEAD(&c->freeable_list);
1978 INIT_LIST_HEAD(&c->frdi_idx_list);
1979 INIT_LIST_HEAD(&c->unclean_leb_list);
1980 INIT_LIST_HEAD(&c->old_buds);
1981 INIT_LIST_HEAD(&c->orph_list);
1982 INIT_LIST_HEAD(&c->orph_new);
1983 c->no_chk_data_crc = 1;
1985 c->highest_inum = UBIFS_FIRST_INO;
1986 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
1988 ubi_get_volume_info(ubi, &c->vi);
1989 ubi_get_device_info(c->vi.ubi_num, &c->di);
1991 return c;
1994 static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
1996 struct ubifs_info *c = sb->s_fs_info;
1997 struct inode *root;
1998 int err;
2000 c->vfs_sb = sb;
2001 /* Re-open the UBI device in read-write mode */
2002 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2003 if (IS_ERR(c->ubi)) {
2004 err = PTR_ERR(c->ubi);
2005 goto out;
2009 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2010 * UBIFS, I/O is not deferred, it is done immediately in readpage,
2011 * which means the user would have to wait not just for their own I/O
2012 * but the read-ahead I/O as well i.e. completely pointless.
2014 * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
2016 c->bdi.name = "ubifs",
2017 c->bdi.capabilities = 0;
2018 err = bdi_init(&c->bdi);
2019 if (err)
2020 goto out_close;
2021 err = bdi_register(&c->bdi, NULL, "ubifs_%d_%d",
2022 c->vi.ubi_num, c->vi.vol_id);
2023 if (err)
2024 goto out_bdi;
2026 err = ubifs_parse_options(c, data, 0);
2027 if (err)
2028 goto out_bdi;
2030 sb->s_bdi = &c->bdi;
2031 sb->s_fs_info = c;
2032 sb->s_magic = UBIFS_SUPER_MAGIC;
2033 sb->s_blocksize = UBIFS_BLOCK_SIZE;
2034 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2035 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2036 if (c->max_inode_sz > MAX_LFS_FILESIZE)
2037 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2038 sb->s_op = &ubifs_super_operations;
2039 sb->s_xattr = ubifs_xattr_handlers;
2041 mutex_lock(&c->umount_mutex);
2042 err = mount_ubifs(c);
2043 if (err) {
2044 ubifs_assert(err < 0);
2045 goto out_unlock;
2048 /* Read the root inode */
2049 root = ubifs_iget(sb, UBIFS_ROOT_INO);
2050 if (IS_ERR(root)) {
2051 err = PTR_ERR(root);
2052 goto out_umount;
2055 sb->s_root = d_make_root(root);
2056 if (!sb->s_root) {
2057 err = -ENOMEM;
2058 goto out_umount;
2061 mutex_unlock(&c->umount_mutex);
2062 return 0;
2064 out_umount:
2065 ubifs_umount(c);
2066 out_unlock:
2067 mutex_unlock(&c->umount_mutex);
2068 out_bdi:
2069 bdi_destroy(&c->bdi);
2070 out_close:
2071 ubi_close_volume(c->ubi);
2072 out:
2073 return err;
2076 static int sb_test(struct super_block *sb, void *data)
2078 struct ubifs_info *c1 = data;
2079 struct ubifs_info *c = sb->s_fs_info;
2081 return c->vi.cdev == c1->vi.cdev;
2084 static int sb_set(struct super_block *sb, void *data)
2086 sb->s_fs_info = data;
2087 return set_anon_super(sb, NULL);
2090 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2091 const char *name, void *data)
2093 struct ubi_volume_desc *ubi;
2094 struct ubifs_info *c;
2095 struct super_block *sb;
2096 int err;
2098 dbg_gen("name %s, flags %#x", name, flags);
2101 * Get UBI device number and volume ID. Mount it read-only so far
2102 * because this might be a new mount point, and UBI allows only one
2103 * read-write user at a time.
2105 ubi = open_ubi(name, UBI_READONLY);
2106 if (IS_ERR(ubi)) {
2107 ubifs_err("cannot open \"%s\", error %d",
2108 name, (int)PTR_ERR(ubi));
2109 return ERR_CAST(ubi);
2112 c = alloc_ubifs_info(ubi);
2113 if (!c) {
2114 err = -ENOMEM;
2115 goto out_close;
2118 dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2120 sb = sget(fs_type, sb_test, sb_set, flags, c);
2121 if (IS_ERR(sb)) {
2122 err = PTR_ERR(sb);
2123 kfree(c);
2124 goto out_close;
2127 if (sb->s_root) {
2128 struct ubifs_info *c1 = sb->s_fs_info;
2129 kfree(c);
2130 /* A new mount point for already mounted UBIFS */
2131 dbg_gen("this ubi volume is already mounted");
2132 if (!!(flags & MS_RDONLY) != c1->ro_mount) {
2133 err = -EBUSY;
2134 goto out_deact;
2136 } else {
2137 err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
2138 if (err)
2139 goto out_deact;
2140 /* We do not support atime */
2141 sb->s_flags |= MS_ACTIVE | MS_NOATIME;
2144 /* 'fill_super()' opens ubi again so we must close it here */
2145 ubi_close_volume(ubi);
2147 return dget(sb->s_root);
2149 out_deact:
2150 deactivate_locked_super(sb);
2151 out_close:
2152 ubi_close_volume(ubi);
2153 return ERR_PTR(err);
2156 static void kill_ubifs_super(struct super_block *s)
2158 struct ubifs_info *c = s->s_fs_info;
2159 kill_anon_super(s);
2160 kfree(c);
2163 static struct file_system_type ubifs_fs_type = {
2164 .name = "ubifs",
2165 .owner = THIS_MODULE,
2166 .mount = ubifs_mount,
2167 .kill_sb = kill_ubifs_super,
2169 MODULE_ALIAS_FS("ubifs");
2172 * Inode slab cache constructor.
2174 static void inode_slab_ctor(void *obj)
2176 struct ubifs_inode *ui = obj;
2177 inode_init_once(&ui->vfs_inode);
2180 static int __init ubifs_init(void)
2182 int err;
2184 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2186 /* Make sure node sizes are 8-byte aligned */
2187 BUILD_BUG_ON(UBIFS_CH_SZ & 7);
2188 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7);
2189 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2190 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2191 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2192 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2193 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7);
2194 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7);
2195 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7);
2196 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7);
2197 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2199 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2200 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2201 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2202 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7);
2203 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7);
2204 BUILD_BUG_ON(MIN_WRITE_SZ & 7);
2206 /* Check min. node size */
2207 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ);
2208 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2209 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2210 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2212 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2213 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2214 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2215 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ);
2217 /* Defined node sizes */
2218 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096);
2219 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2220 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2221 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2224 * We use 2 bit wide bit-fields to store compression type, which should
2225 * be amended if more compressors are added. The bit-fields are:
2226 * @compr_type in 'struct ubifs_inode', @default_compr in
2227 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2229 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2232 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to
2233 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2235 if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) {
2236 ubifs_err("VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2237 (unsigned int)PAGE_CACHE_SIZE);
2238 return -EINVAL;
2241 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2242 sizeof(struct ubifs_inode), 0,
2243 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT,
2244 &inode_slab_ctor);
2245 if (!ubifs_inode_slab)
2246 return -ENOMEM;
2248 register_shrinker(&ubifs_shrinker_info);
2250 err = ubifs_compressors_init();
2251 if (err)
2252 goto out_shrinker;
2254 err = dbg_debugfs_init();
2255 if (err)
2256 goto out_compr;
2258 err = register_filesystem(&ubifs_fs_type);
2259 if (err) {
2260 ubifs_err("cannot register file system, error %d", err);
2261 goto out_dbg;
2263 return 0;
2265 out_dbg:
2266 dbg_debugfs_exit();
2267 out_compr:
2268 ubifs_compressors_exit();
2269 out_shrinker:
2270 unregister_shrinker(&ubifs_shrinker_info);
2271 kmem_cache_destroy(ubifs_inode_slab);
2272 return err;
2274 /* late_initcall to let compressors initialize first */
2275 late_initcall(ubifs_init);
2277 static void __exit ubifs_exit(void)
2279 ubifs_assert(list_empty(&ubifs_infos));
2280 ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
2282 dbg_debugfs_exit();
2283 ubifs_compressors_exit();
2284 unregister_shrinker(&ubifs_shrinker_info);
2287 * Make sure all delayed rcu free inodes are flushed before we
2288 * destroy cache.
2290 rcu_barrier();
2291 kmem_cache_destroy(ubifs_inode_slab);
2292 unregister_filesystem(&ubifs_fs_type);
2294 module_exit(ubifs_exit);
2296 MODULE_LICENSE("GPL");
2297 MODULE_VERSION(__stringify(UBIFS_VERSION));
2298 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2299 MODULE_DESCRIPTION("UBIFS - UBI File System");