2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/kmemcheck.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memory.h>
32 #include <linux/math64.h>
33 #include <linux/fault-inject.h>
34 #include <linux/stacktrace.h>
35 #include <linux/prefetch.h>
36 #include <linux/memcontrol.h>
38 #include <trace/events/kmem.h>
44 * 1. slab_mutex (Global Mutex)
46 * 3. slab_lock(page) (Only on some arches and for debugging)
50 * The role of the slab_mutex is to protect the list of all the slabs
51 * and to synchronize major metadata changes to slab cache structures.
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects the second
55 * double word in the page struct. Meaning
56 * A. page->freelist -> List of object free in a page
57 * B. page->counters -> Counters of objects
58 * C. page->frozen -> frozen state
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list. The processor that froze the slab is the one who can
62 * perform list operations on the page. Other processors may put objects
63 * onto the freelist but the processor that froze the slab is the only
64 * one that can retrieve the objects from the page's freelist.
66 * The list_lock protects the partial and full list on each node and
67 * the partial slab counter. If taken then no new slabs may be added or
68 * removed from the lists nor make the number of partial slabs be modified.
69 * (Note that the total number of slabs is an atomic value that may be
70 * modified without taking the list lock).
72 * The list_lock is a centralized lock and thus we avoid taking it as
73 * much as possible. As long as SLUB does not have to handle partial
74 * slabs, operations can continue without any centralized lock. F.e.
75 * allocating a long series of objects that fill up slabs does not require
77 * Interrupts are disabled during allocation and deallocation in order to
78 * make the slab allocator safe to use in the context of an irq. In addition
79 * interrupts are disabled to ensure that the processor does not change
80 * while handling per_cpu slabs, due to kernel preemption.
82 * SLUB assigns one slab for allocation to each processor.
83 * Allocations only occur from these slabs called cpu slabs.
85 * Slabs with free elements are kept on a partial list and during regular
86 * operations no list for full slabs is used. If an object in a full slab is
87 * freed then the slab will show up again on the partial lists.
88 * We track full slabs for debugging purposes though because otherwise we
89 * cannot scan all objects.
91 * Slabs are freed when they become empty. Teardown and setup is
92 * minimal so we rely on the page allocators per cpu caches for
93 * fast frees and allocs.
95 * Overloading of page flags that are otherwise used for LRU management.
97 * PageActive The slab is frozen and exempt from list processing.
98 * This means that the slab is dedicated to a purpose
99 * such as satisfying allocations for a specific
100 * processor. Objects may be freed in the slab while
101 * it is frozen but slab_free will then skip the usual
102 * list operations. It is up to the processor holding
103 * the slab to integrate the slab into the slab lists
104 * when the slab is no longer needed.
106 * One use of this flag is to mark slabs that are
107 * used for allocations. Then such a slab becomes a cpu
108 * slab. The cpu slab may be equipped with an additional
109 * freelist that allows lockless access to
110 * free objects in addition to the regular freelist
111 * that requires the slab lock.
113 * PageError Slab requires special handling due to debug
114 * options set. This moves slab handling out of
115 * the fast path and disables lockless freelists.
118 static inline int kmem_cache_debug(struct kmem_cache
*s
)
120 #ifdef CONFIG_SLUB_DEBUG
121 return unlikely(s
->flags
& SLAB_DEBUG_FLAGS
);
127 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache
*s
)
129 #ifdef CONFIG_SLUB_CPU_PARTIAL
130 return !kmem_cache_debug(s
);
137 * Issues still to be resolved:
139 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
141 * - Variable sizing of the per node arrays
144 /* Enable to test recovery from slab corruption on boot */
145 #undef SLUB_RESILIENCY_TEST
147 /* Enable to log cmpxchg failures */
148 #undef SLUB_DEBUG_CMPXCHG
151 * Mininum number of partial slabs. These will be left on the partial
152 * lists even if they are empty. kmem_cache_shrink may reclaim them.
154 #define MIN_PARTIAL 5
157 * Maximum number of desirable partial slabs.
158 * The existence of more partial slabs makes kmem_cache_shrink
159 * sort the partial list by the number of objects in use.
161 #define MAX_PARTIAL 10
163 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
164 SLAB_POISON | SLAB_STORE_USER)
167 * Debugging flags that require metadata to be stored in the slab. These get
168 * disabled when slub_debug=O is used and a cache's min order increases with
171 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
174 #define OO_MASK ((1 << OO_SHIFT) - 1)
175 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
177 /* Internal SLUB flags */
178 #define __OBJECT_POISON 0x80000000UL /* Poison object */
179 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
182 static struct notifier_block slab_notifier
;
186 * Tracking user of a slab.
188 #define TRACK_ADDRS_COUNT 16
190 unsigned long addr
; /* Called from address */
191 #ifdef CONFIG_STACKTRACE
192 unsigned long addrs
[TRACK_ADDRS_COUNT
]; /* Called from address */
194 int cpu
; /* Was running on cpu */
195 int pid
; /* Pid context */
196 unsigned long when
; /* When did the operation occur */
199 enum track_item
{ TRACK_ALLOC
, TRACK_FREE
};
202 static int sysfs_slab_add(struct kmem_cache
*);
203 static int sysfs_slab_alias(struct kmem_cache
*, const char *);
204 static void memcg_propagate_slab_attrs(struct kmem_cache
*s
);
206 static inline int sysfs_slab_add(struct kmem_cache
*s
) { return 0; }
207 static inline int sysfs_slab_alias(struct kmem_cache
*s
, const char *p
)
209 static inline void memcg_propagate_slab_attrs(struct kmem_cache
*s
) { }
212 static inline void stat(const struct kmem_cache
*s
, enum stat_item si
)
214 #ifdef CONFIG_SLUB_STATS
216 * The rmw is racy on a preemptible kernel but this is acceptable, so
217 * avoid this_cpu_add()'s irq-disable overhead.
219 raw_cpu_inc(s
->cpu_slab
->stat
[si
]);
223 /********************************************************************
224 * Core slab cache functions
225 *******************************************************************/
227 /* Verify that a pointer has an address that is valid within a slab page */
228 static inline int check_valid_pointer(struct kmem_cache
*s
,
229 struct page
*page
, const void *object
)
236 base
= page_address(page
);
237 if (object
< base
|| object
>= base
+ page
->objects
* s
->size
||
238 (object
- base
) % s
->size
) {
245 static inline void *get_freepointer(struct kmem_cache
*s
, void *object
)
247 return *(void **)(object
+ s
->offset
);
250 static void prefetch_freepointer(const struct kmem_cache
*s
, void *object
)
252 prefetch(object
+ s
->offset
);
255 static inline void *get_freepointer_safe(struct kmem_cache
*s
, void *object
)
259 #ifdef CONFIG_DEBUG_PAGEALLOC
260 probe_kernel_read(&p
, (void **)(object
+ s
->offset
), sizeof(p
));
262 p
= get_freepointer(s
, object
);
267 static inline void set_freepointer(struct kmem_cache
*s
, void *object
, void *fp
)
269 *(void **)(object
+ s
->offset
) = fp
;
272 /* Loop over all objects in a slab */
273 #define for_each_object(__p, __s, __addr, __objects) \
274 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
277 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
278 for (__p = (__addr), __idx = 1; __idx <= __objects;\
279 __p += (__s)->size, __idx++)
281 /* Determine object index from a given position */
282 static inline int slab_index(void *p
, struct kmem_cache
*s
, void *addr
)
284 return (p
- addr
) / s
->size
;
287 static inline size_t slab_ksize(const struct kmem_cache
*s
)
289 #ifdef CONFIG_SLUB_DEBUG
291 * Debugging requires use of the padding between object
292 * and whatever may come after it.
294 if (s
->flags
& (SLAB_RED_ZONE
| SLAB_POISON
))
295 return s
->object_size
;
299 * If we have the need to store the freelist pointer
300 * back there or track user information then we can
301 * only use the space before that information.
303 if (s
->flags
& (SLAB_DESTROY_BY_RCU
| SLAB_STORE_USER
))
306 * Else we can use all the padding etc for the allocation
311 static inline int order_objects(int order
, unsigned long size
, int reserved
)
313 return ((PAGE_SIZE
<< order
) - reserved
) / size
;
316 static inline struct kmem_cache_order_objects
oo_make(int order
,
317 unsigned long size
, int reserved
)
319 struct kmem_cache_order_objects x
= {
320 (order
<< OO_SHIFT
) + order_objects(order
, size
, reserved
)
326 static inline int oo_order(struct kmem_cache_order_objects x
)
328 return x
.x
>> OO_SHIFT
;
331 static inline int oo_objects(struct kmem_cache_order_objects x
)
333 return x
.x
& OO_MASK
;
337 * Per slab locking using the pagelock
339 static __always_inline
void slab_lock(struct page
*page
)
341 bit_spin_lock(PG_locked
, &page
->flags
);
344 static __always_inline
void slab_unlock(struct page
*page
)
346 __bit_spin_unlock(PG_locked
, &page
->flags
);
349 static inline void set_page_slub_counters(struct page
*page
, unsigned long counters_new
)
352 tmp
.counters
= counters_new
;
354 * page->counters can cover frozen/inuse/objects as well
355 * as page->_count. If we assign to ->counters directly
356 * we run the risk of losing updates to page->_count, so
357 * be careful and only assign to the fields we need.
359 page
->frozen
= tmp
.frozen
;
360 page
->inuse
= tmp
.inuse
;
361 page
->objects
= tmp
.objects
;
364 /* Interrupts must be disabled (for the fallback code to work right) */
365 static inline bool __cmpxchg_double_slab(struct kmem_cache
*s
, struct page
*page
,
366 void *freelist_old
, unsigned long counters_old
,
367 void *freelist_new
, unsigned long counters_new
,
370 VM_BUG_ON(!irqs_disabled());
371 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
372 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
373 if (s
->flags
& __CMPXCHG_DOUBLE
) {
374 if (cmpxchg_double(&page
->freelist
, &page
->counters
,
375 freelist_old
, counters_old
,
376 freelist_new
, counters_new
))
382 if (page
->freelist
== freelist_old
&&
383 page
->counters
== counters_old
) {
384 page
->freelist
= freelist_new
;
385 set_page_slub_counters(page
, counters_new
);
393 stat(s
, CMPXCHG_DOUBLE_FAIL
);
395 #ifdef SLUB_DEBUG_CMPXCHG
396 pr_info("%s %s: cmpxchg double redo ", n
, s
->name
);
402 static inline bool cmpxchg_double_slab(struct kmem_cache
*s
, struct page
*page
,
403 void *freelist_old
, unsigned long counters_old
,
404 void *freelist_new
, unsigned long counters_new
,
407 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
408 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
409 if (s
->flags
& __CMPXCHG_DOUBLE
) {
410 if (cmpxchg_double(&page
->freelist
, &page
->counters
,
411 freelist_old
, counters_old
,
412 freelist_new
, counters_new
))
419 local_irq_save(flags
);
421 if (page
->freelist
== freelist_old
&&
422 page
->counters
== counters_old
) {
423 page
->freelist
= freelist_new
;
424 set_page_slub_counters(page
, counters_new
);
426 local_irq_restore(flags
);
430 local_irq_restore(flags
);
434 stat(s
, CMPXCHG_DOUBLE_FAIL
);
436 #ifdef SLUB_DEBUG_CMPXCHG
437 pr_info("%s %s: cmpxchg double redo ", n
, s
->name
);
443 #ifdef CONFIG_SLUB_DEBUG
445 * Determine a map of object in use on a page.
447 * Node listlock must be held to guarantee that the page does
448 * not vanish from under us.
450 static void get_map(struct kmem_cache
*s
, struct page
*page
, unsigned long *map
)
453 void *addr
= page_address(page
);
455 for (p
= page
->freelist
; p
; p
= get_freepointer(s
, p
))
456 set_bit(slab_index(p
, s
, addr
), map
);
462 #if defined(CONFIG_SLUB_DEBUG_ON)
463 static int slub_debug
= DEBUG_DEFAULT_FLAGS
;
464 #elif defined(CONFIG_KASAN)
465 static int slub_debug
= SLAB_STORE_USER
;
467 static int slub_debug
;
470 static char *slub_debug_slabs
;
471 static int disable_higher_order_debug
;
474 * slub is about to manipulate internal object metadata. This memory lies
475 * outside the range of the allocated object, so accessing it would normally
476 * be reported by kasan as a bounds error. metadata_access_enable() is used
477 * to tell kasan that these accesses are OK.
479 static inline void metadata_access_enable(void)
481 kasan_disable_current();
484 static inline void metadata_access_disable(void)
486 kasan_enable_current();
492 static void print_section(char *text
, u8
*addr
, unsigned int length
)
494 metadata_access_enable();
495 print_hex_dump(KERN_ERR
, text
, DUMP_PREFIX_ADDRESS
, 16, 1, addr
,
497 metadata_access_disable();
500 static struct track
*get_track(struct kmem_cache
*s
, void *object
,
501 enum track_item alloc
)
506 p
= object
+ s
->offset
+ sizeof(void *);
508 p
= object
+ s
->inuse
;
513 static void set_track(struct kmem_cache
*s
, void *object
,
514 enum track_item alloc
, unsigned long addr
)
516 struct track
*p
= get_track(s
, object
, alloc
);
519 #ifdef CONFIG_STACKTRACE
520 struct stack_trace trace
;
523 trace
.nr_entries
= 0;
524 trace
.max_entries
= TRACK_ADDRS_COUNT
;
525 trace
.entries
= p
->addrs
;
527 metadata_access_enable();
528 save_stack_trace(&trace
);
529 metadata_access_disable();
531 /* See rant in lockdep.c */
532 if (trace
.nr_entries
!= 0 &&
533 trace
.entries
[trace
.nr_entries
- 1] == ULONG_MAX
)
536 for (i
= trace
.nr_entries
; i
< TRACK_ADDRS_COUNT
; i
++)
540 p
->cpu
= smp_processor_id();
541 p
->pid
= current
->pid
;
544 memset(p
, 0, sizeof(struct track
));
547 static void init_tracking(struct kmem_cache
*s
, void *object
)
549 if (!(s
->flags
& SLAB_STORE_USER
))
552 set_track(s
, object
, TRACK_FREE
, 0UL);
553 set_track(s
, object
, TRACK_ALLOC
, 0UL);
556 static void print_track(const char *s
, struct track
*t
)
561 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
562 s
, (void *)t
->addr
, jiffies
- t
->when
, t
->cpu
, t
->pid
);
563 #ifdef CONFIG_STACKTRACE
566 for (i
= 0; i
< TRACK_ADDRS_COUNT
; i
++)
568 pr_err("\t%pS\n", (void *)t
->addrs
[i
]);
575 static void print_tracking(struct kmem_cache
*s
, void *object
)
577 if (!(s
->flags
& SLAB_STORE_USER
))
580 print_track("Allocated", get_track(s
, object
, TRACK_ALLOC
));
581 print_track("Freed", get_track(s
, object
, TRACK_FREE
));
584 static void print_page_info(struct page
*page
)
586 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
587 page
, page
->objects
, page
->inuse
, page
->freelist
, page
->flags
);
591 static void slab_bug(struct kmem_cache
*s
, char *fmt
, ...)
593 struct va_format vaf
;
599 pr_err("=============================================================================\n");
600 pr_err("BUG %s (%s): %pV\n", s
->name
, print_tainted(), &vaf
);
601 pr_err("-----------------------------------------------------------------------------\n\n");
603 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
607 static void slab_fix(struct kmem_cache
*s
, char *fmt
, ...)
609 struct va_format vaf
;
615 pr_err("FIX %s: %pV\n", s
->name
, &vaf
);
619 static void print_trailer(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
621 unsigned int off
; /* Offset of last byte */
622 u8
*addr
= page_address(page
);
624 print_tracking(s
, p
);
626 print_page_info(page
);
628 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
629 p
, p
- addr
, get_freepointer(s
, p
));
632 print_section("Bytes b4 ", p
- 16, 16);
634 print_section("Object ", p
, min_t(unsigned long, s
->object_size
,
636 if (s
->flags
& SLAB_RED_ZONE
)
637 print_section("Redzone ", p
+ s
->object_size
,
638 s
->inuse
- s
->object_size
);
641 off
= s
->offset
+ sizeof(void *);
645 if (s
->flags
& SLAB_STORE_USER
)
646 off
+= 2 * sizeof(struct track
);
649 /* Beginning of the filler is the free pointer */
650 print_section("Padding ", p
+ off
, s
->size
- off
);
655 void object_err(struct kmem_cache
*s
, struct page
*page
,
656 u8
*object
, char *reason
)
658 slab_bug(s
, "%s", reason
);
659 print_trailer(s
, page
, object
);
662 static void slab_err(struct kmem_cache
*s
, struct page
*page
,
663 const char *fmt
, ...)
669 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
671 slab_bug(s
, "%s", buf
);
672 print_page_info(page
);
676 static void init_object(struct kmem_cache
*s
, void *object
, u8 val
)
680 if (s
->flags
& __OBJECT_POISON
) {
681 memset(p
, POISON_FREE
, s
->object_size
- 1);
682 p
[s
->object_size
- 1] = POISON_END
;
685 if (s
->flags
& SLAB_RED_ZONE
)
686 memset(p
+ s
->object_size
, val
, s
->inuse
- s
->object_size
);
689 static void restore_bytes(struct kmem_cache
*s
, char *message
, u8 data
,
690 void *from
, void *to
)
692 slab_fix(s
, "Restoring 0x%p-0x%p=0x%x\n", from
, to
- 1, data
);
693 memset(from
, data
, to
- from
);
696 static int check_bytes_and_report(struct kmem_cache
*s
, struct page
*page
,
697 u8
*object
, char *what
,
698 u8
*start
, unsigned int value
, unsigned int bytes
)
703 metadata_access_enable();
704 fault
= memchr_inv(start
, value
, bytes
);
705 metadata_access_disable();
710 while (end
> fault
&& end
[-1] == value
)
713 slab_bug(s
, "%s overwritten", what
);
714 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
715 fault
, end
- 1, fault
[0], value
);
716 print_trailer(s
, page
, object
);
718 restore_bytes(s
, what
, value
, fault
, end
);
726 * Bytes of the object to be managed.
727 * If the freepointer may overlay the object then the free
728 * pointer is the first word of the object.
730 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
733 * object + s->object_size
734 * Padding to reach word boundary. This is also used for Redzoning.
735 * Padding is extended by another word if Redzoning is enabled and
736 * object_size == inuse.
738 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
739 * 0xcc (RED_ACTIVE) for objects in use.
742 * Meta data starts here.
744 * A. Free pointer (if we cannot overwrite object on free)
745 * B. Tracking data for SLAB_STORE_USER
746 * C. Padding to reach required alignment boundary or at mininum
747 * one word if debugging is on to be able to detect writes
748 * before the word boundary.
750 * Padding is done using 0x5a (POISON_INUSE)
753 * Nothing is used beyond s->size.
755 * If slabcaches are merged then the object_size and inuse boundaries are mostly
756 * ignored. And therefore no slab options that rely on these boundaries
757 * may be used with merged slabcaches.
760 static int check_pad_bytes(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
762 unsigned long off
= s
->inuse
; /* The end of info */
765 /* Freepointer is placed after the object. */
766 off
+= sizeof(void *);
768 if (s
->flags
& SLAB_STORE_USER
)
769 /* We also have user information there */
770 off
+= 2 * sizeof(struct track
);
775 return check_bytes_and_report(s
, page
, p
, "Object padding",
776 p
+ off
, POISON_INUSE
, s
->size
- off
);
779 /* Check the pad bytes at the end of a slab page */
780 static int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
788 if (!(s
->flags
& SLAB_POISON
))
791 start
= page_address(page
);
792 length
= (PAGE_SIZE
<< compound_order(page
)) - s
->reserved
;
793 end
= start
+ length
;
794 remainder
= length
% s
->size
;
798 metadata_access_enable();
799 fault
= memchr_inv(end
- remainder
, POISON_INUSE
, remainder
);
800 metadata_access_disable();
803 while (end
> fault
&& end
[-1] == POISON_INUSE
)
806 slab_err(s
, page
, "Padding overwritten. 0x%p-0x%p", fault
, end
- 1);
807 print_section("Padding ", end
- remainder
, remainder
);
809 restore_bytes(s
, "slab padding", POISON_INUSE
, end
- remainder
, end
);
813 static int check_object(struct kmem_cache
*s
, struct page
*page
,
814 void *object
, u8 val
)
817 u8
*endobject
= object
+ s
->object_size
;
819 if (s
->flags
& SLAB_RED_ZONE
) {
820 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
821 endobject
, val
, s
->inuse
- s
->object_size
))
824 if ((s
->flags
& SLAB_POISON
) && s
->object_size
< s
->inuse
) {
825 check_bytes_and_report(s
, page
, p
, "Alignment padding",
826 endobject
, POISON_INUSE
,
827 s
->inuse
- s
->object_size
);
831 if (s
->flags
& SLAB_POISON
) {
832 if (val
!= SLUB_RED_ACTIVE
&& (s
->flags
& __OBJECT_POISON
) &&
833 (!check_bytes_and_report(s
, page
, p
, "Poison", p
,
834 POISON_FREE
, s
->object_size
- 1) ||
835 !check_bytes_and_report(s
, page
, p
, "Poison",
836 p
+ s
->object_size
- 1, POISON_END
, 1)))
839 * check_pad_bytes cleans up on its own.
841 check_pad_bytes(s
, page
, p
);
844 if (!s
->offset
&& val
== SLUB_RED_ACTIVE
)
846 * Object and freepointer overlap. Cannot check
847 * freepointer while object is allocated.
851 /* Check free pointer validity */
852 if (!check_valid_pointer(s
, page
, get_freepointer(s
, p
))) {
853 object_err(s
, page
, p
, "Freepointer corrupt");
855 * No choice but to zap it and thus lose the remainder
856 * of the free objects in this slab. May cause
857 * another error because the object count is now wrong.
859 set_freepointer(s
, p
, NULL
);
865 static int check_slab(struct kmem_cache
*s
, struct page
*page
)
869 VM_BUG_ON(!irqs_disabled());
871 if (!PageSlab(page
)) {
872 slab_err(s
, page
, "Not a valid slab page");
876 maxobj
= order_objects(compound_order(page
), s
->size
, s
->reserved
);
877 if (page
->objects
> maxobj
) {
878 slab_err(s
, page
, "objects %u > max %u",
879 page
->objects
, maxobj
);
882 if (page
->inuse
> page
->objects
) {
883 slab_err(s
, page
, "inuse %u > max %u",
884 page
->inuse
, page
->objects
);
887 /* Slab_pad_check fixes things up after itself */
888 slab_pad_check(s
, page
);
893 * Determine if a certain object on a page is on the freelist. Must hold the
894 * slab lock to guarantee that the chains are in a consistent state.
896 static int on_freelist(struct kmem_cache
*s
, struct page
*page
, void *search
)
904 while (fp
&& nr
<= page
->objects
) {
907 if (!check_valid_pointer(s
, page
, fp
)) {
909 object_err(s
, page
, object
,
910 "Freechain corrupt");
911 set_freepointer(s
, object
, NULL
);
913 slab_err(s
, page
, "Freepointer corrupt");
914 page
->freelist
= NULL
;
915 page
->inuse
= page
->objects
;
916 slab_fix(s
, "Freelist cleared");
922 fp
= get_freepointer(s
, object
);
926 max_objects
= order_objects(compound_order(page
), s
->size
, s
->reserved
);
927 if (max_objects
> MAX_OBJS_PER_PAGE
)
928 max_objects
= MAX_OBJS_PER_PAGE
;
930 if (page
->objects
!= max_objects
) {
931 slab_err(s
, page
, "Wrong number of objects. Found %d but "
932 "should be %d", page
->objects
, max_objects
);
933 page
->objects
= max_objects
;
934 slab_fix(s
, "Number of objects adjusted.");
936 if (page
->inuse
!= page
->objects
- nr
) {
937 slab_err(s
, page
, "Wrong object count. Counter is %d but "
938 "counted were %d", page
->inuse
, page
->objects
- nr
);
939 page
->inuse
= page
->objects
- nr
;
940 slab_fix(s
, "Object count adjusted.");
942 return search
== NULL
;
945 static void trace(struct kmem_cache
*s
, struct page
*page
, void *object
,
948 if (s
->flags
& SLAB_TRACE
) {
949 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
951 alloc
? "alloc" : "free",
956 print_section("Object ", (void *)object
,
964 * Tracking of fully allocated slabs for debugging purposes.
966 static void add_full(struct kmem_cache
*s
,
967 struct kmem_cache_node
*n
, struct page
*page
)
969 if (!(s
->flags
& SLAB_STORE_USER
))
972 lockdep_assert_held(&n
->list_lock
);
973 list_add(&page
->lru
, &n
->full
);
976 static void remove_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
, struct page
*page
)
978 if (!(s
->flags
& SLAB_STORE_USER
))
981 lockdep_assert_held(&n
->list_lock
);
982 list_del(&page
->lru
);
985 /* Tracking of the number of slabs for debugging purposes */
986 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
988 struct kmem_cache_node
*n
= get_node(s
, node
);
990 return atomic_long_read(&n
->nr_slabs
);
993 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
995 return atomic_long_read(&n
->nr_slabs
);
998 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
1000 struct kmem_cache_node
*n
= get_node(s
, node
);
1003 * May be called early in order to allocate a slab for the
1004 * kmem_cache_node structure. Solve the chicken-egg
1005 * dilemma by deferring the increment of the count during
1006 * bootstrap (see early_kmem_cache_node_alloc).
1009 atomic_long_inc(&n
->nr_slabs
);
1010 atomic_long_add(objects
, &n
->total_objects
);
1013 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
1015 struct kmem_cache_node
*n
= get_node(s
, node
);
1017 atomic_long_dec(&n
->nr_slabs
);
1018 atomic_long_sub(objects
, &n
->total_objects
);
1021 /* Object debug checks for alloc/free paths */
1022 static void setup_object_debug(struct kmem_cache
*s
, struct page
*page
,
1025 if (!(s
->flags
& (SLAB_STORE_USER
|SLAB_RED_ZONE
|__OBJECT_POISON
)))
1028 init_object(s
, object
, SLUB_RED_INACTIVE
);
1029 init_tracking(s
, object
);
1032 static noinline
int alloc_debug_processing(struct kmem_cache
*s
,
1034 void *object
, unsigned long addr
)
1036 if (!check_slab(s
, page
))
1039 if (!check_valid_pointer(s
, page
, object
)) {
1040 object_err(s
, page
, object
, "Freelist Pointer check fails");
1044 if (!check_object(s
, page
, object
, SLUB_RED_INACTIVE
))
1047 /* Success perform special debug activities for allocs */
1048 if (s
->flags
& SLAB_STORE_USER
)
1049 set_track(s
, object
, TRACK_ALLOC
, addr
);
1050 trace(s
, page
, object
, 1);
1051 init_object(s
, object
, SLUB_RED_ACTIVE
);
1055 if (PageSlab(page
)) {
1057 * If this is a slab page then lets do the best we can
1058 * to avoid issues in the future. Marking all objects
1059 * as used avoids touching the remaining objects.
1061 slab_fix(s
, "Marking all objects used");
1062 page
->inuse
= page
->objects
;
1063 page
->freelist
= NULL
;
1068 /* Supports checking bulk free of a constructed freelist */
1069 static noinline
struct kmem_cache_node
*free_debug_processing(
1070 struct kmem_cache
*s
, struct page
*page
,
1071 void *head
, void *tail
, int bulk_cnt
,
1072 unsigned long addr
, unsigned long *flags
)
1074 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1075 void *object
= head
;
1078 spin_lock_irqsave(&n
->list_lock
, *flags
);
1081 if (!check_slab(s
, page
))
1087 if (!check_valid_pointer(s
, page
, object
)) {
1088 slab_err(s
, page
, "Invalid object pointer 0x%p", object
);
1092 if (on_freelist(s
, page
, object
)) {
1093 object_err(s
, page
, object
, "Object already free");
1097 if (!check_object(s
, page
, object
, SLUB_RED_ACTIVE
))
1100 if (unlikely(s
!= page
->slab_cache
)) {
1101 if (!PageSlab(page
)) {
1102 slab_err(s
, page
, "Attempt to free object(0x%p) "
1103 "outside of slab", object
);
1104 } else if (!page
->slab_cache
) {
1105 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1109 object_err(s
, page
, object
,
1110 "page slab pointer corrupt.");
1114 if (s
->flags
& SLAB_STORE_USER
)
1115 set_track(s
, object
, TRACK_FREE
, addr
);
1116 trace(s
, page
, object
, 0);
1117 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1118 init_object(s
, object
, SLUB_RED_INACTIVE
);
1120 /* Reached end of constructed freelist yet? */
1121 if (object
!= tail
) {
1122 object
= get_freepointer(s
, object
);
1126 if (cnt
!= bulk_cnt
)
1127 slab_err(s
, page
, "Bulk freelist count(%d) invalid(%d)\n",
1132 * Keep node_lock to preserve integrity
1133 * until the object is actually freed
1139 spin_unlock_irqrestore(&n
->list_lock
, *flags
);
1140 slab_fix(s
, "Object at 0x%p not freed", object
);
1144 static int __init
setup_slub_debug(char *str
)
1146 slub_debug
= DEBUG_DEFAULT_FLAGS
;
1147 if (*str
++ != '=' || !*str
)
1149 * No options specified. Switch on full debugging.
1155 * No options but restriction on slabs. This means full
1156 * debugging for slabs matching a pattern.
1163 * Switch off all debugging measures.
1168 * Determine which debug features should be switched on
1170 for (; *str
&& *str
!= ','; str
++) {
1171 switch (tolower(*str
)) {
1173 slub_debug
|= SLAB_DEBUG_FREE
;
1176 slub_debug
|= SLAB_RED_ZONE
;
1179 slub_debug
|= SLAB_POISON
;
1182 slub_debug
|= SLAB_STORE_USER
;
1185 slub_debug
|= SLAB_TRACE
;
1188 slub_debug
|= SLAB_FAILSLAB
;
1192 * Avoid enabling debugging on caches if its minimum
1193 * order would increase as a result.
1195 disable_higher_order_debug
= 1;
1198 pr_err("slub_debug option '%c' unknown. skipped\n",
1205 slub_debug_slabs
= str
+ 1;
1210 __setup("slub_debug", setup_slub_debug
);
1212 unsigned long kmem_cache_flags(unsigned long object_size
,
1213 unsigned long flags
, const char *name
,
1214 void (*ctor
)(void *))
1217 * Enable debugging if selected on the kernel commandline.
1219 if (slub_debug
&& (!slub_debug_slabs
|| (name
&&
1220 !strncmp(slub_debug_slabs
, name
, strlen(slub_debug_slabs
)))))
1221 flags
|= slub_debug
;
1225 #else /* !CONFIG_SLUB_DEBUG */
1226 static inline void setup_object_debug(struct kmem_cache
*s
,
1227 struct page
*page
, void *object
) {}
1229 static inline int alloc_debug_processing(struct kmem_cache
*s
,
1230 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1232 static inline struct kmem_cache_node
*free_debug_processing(
1233 struct kmem_cache
*s
, struct page
*page
,
1234 void *head
, void *tail
, int bulk_cnt
,
1235 unsigned long addr
, unsigned long *flags
) { return NULL
; }
1237 static inline int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
1239 static inline int check_object(struct kmem_cache
*s
, struct page
*page
,
1240 void *object
, u8 val
) { return 1; }
1241 static inline void add_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1242 struct page
*page
) {}
1243 static inline void remove_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1244 struct page
*page
) {}
1245 unsigned long kmem_cache_flags(unsigned long object_size
,
1246 unsigned long flags
, const char *name
,
1247 void (*ctor
)(void *))
1251 #define slub_debug 0
1253 #define disable_higher_order_debug 0
1255 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1257 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1259 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
,
1261 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
,
1264 #endif /* CONFIG_SLUB_DEBUG */
1267 * Hooks for other subsystems that check memory allocations. In a typical
1268 * production configuration these hooks all should produce no code at all.
1270 static inline void kmalloc_large_node_hook(void *ptr
, size_t size
, gfp_t flags
)
1272 kmemleak_alloc(ptr
, size
, 1, flags
);
1273 kasan_kmalloc_large(ptr
, size
);
1276 static inline void kfree_hook(const void *x
)
1279 kasan_kfree_large(x
);
1282 static inline struct kmem_cache
*slab_pre_alloc_hook(struct kmem_cache
*s
,
1285 flags
&= gfp_allowed_mask
;
1286 lockdep_trace_alloc(flags
);
1287 might_sleep_if(gfpflags_allow_blocking(flags
));
1289 if (should_failslab(s
->object_size
, flags
, s
->flags
))
1292 return memcg_kmem_get_cache(s
, flags
);
1295 static inline void slab_post_alloc_hook(struct kmem_cache
*s
, gfp_t flags
,
1296 size_t size
, void **p
)
1300 flags
&= gfp_allowed_mask
;
1301 for (i
= 0; i
< size
; i
++) {
1302 void *object
= p
[i
];
1304 kmemcheck_slab_alloc(s
, flags
, object
, slab_ksize(s
));
1305 kmemleak_alloc_recursive(object
, s
->object_size
, 1,
1307 kasan_slab_alloc(s
, object
);
1309 memcg_kmem_put_cache(s
);
1312 static inline void slab_free_hook(struct kmem_cache
*s
, void *x
)
1314 kmemleak_free_recursive(x
, s
->flags
);
1317 * Trouble is that we may no longer disable interrupts in the fast path
1318 * So in order to make the debug calls that expect irqs to be
1319 * disabled we need to disable interrupts temporarily.
1321 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1323 unsigned long flags
;
1325 local_irq_save(flags
);
1326 kmemcheck_slab_free(s
, x
, s
->object_size
);
1327 debug_check_no_locks_freed(x
, s
->object_size
);
1328 local_irq_restore(flags
);
1331 if (!(s
->flags
& SLAB_DEBUG_OBJECTS
))
1332 debug_check_no_obj_freed(x
, s
->object_size
);
1334 kasan_slab_free(s
, x
);
1337 static inline void slab_free_freelist_hook(struct kmem_cache
*s
,
1338 void *head
, void *tail
)
1341 * Compiler cannot detect this function can be removed if slab_free_hook()
1342 * evaluates to nothing. Thus, catch all relevant config debug options here.
1344 #if defined(CONFIG_KMEMCHECK) || \
1345 defined(CONFIG_LOCKDEP) || \
1346 defined(CONFIG_DEBUG_KMEMLEAK) || \
1347 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1348 defined(CONFIG_KASAN)
1350 void *object
= head
;
1351 void *tail_obj
= tail
? : head
;
1354 slab_free_hook(s
, object
);
1355 } while ((object
!= tail_obj
) &&
1356 (object
= get_freepointer(s
, object
)));
1360 static void setup_object(struct kmem_cache
*s
, struct page
*page
,
1363 setup_object_debug(s
, page
, object
);
1364 if (unlikely(s
->ctor
)) {
1365 kasan_unpoison_object_data(s
, object
);
1367 kasan_poison_object_data(s
, object
);
1372 * Slab allocation and freeing
1374 static inline struct page
*alloc_slab_page(struct kmem_cache
*s
,
1375 gfp_t flags
, int node
, struct kmem_cache_order_objects oo
)
1378 int order
= oo_order(oo
);
1380 flags
|= __GFP_NOTRACK
;
1382 if (node
== NUMA_NO_NODE
)
1383 page
= alloc_pages(flags
, order
);
1385 page
= __alloc_pages_node(node
, flags
, order
);
1387 if (page
&& memcg_charge_slab(page
, flags
, order
, s
)) {
1388 __free_pages(page
, order
);
1395 static struct page
*allocate_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1398 struct kmem_cache_order_objects oo
= s
->oo
;
1403 flags
&= gfp_allowed_mask
;
1405 if (gfpflags_allow_blocking(flags
))
1408 flags
|= s
->allocflags
;
1411 * Let the initial higher-order allocation fail under memory pressure
1412 * so we fall-back to the minimum order allocation.
1414 alloc_gfp
= (flags
| __GFP_NOWARN
| __GFP_NORETRY
) & ~__GFP_NOFAIL
;
1415 if ((alloc_gfp
& __GFP_DIRECT_RECLAIM
) && oo_order(oo
) > oo_order(s
->min
))
1416 alloc_gfp
= (alloc_gfp
| __GFP_NOMEMALLOC
) & ~__GFP_DIRECT_RECLAIM
;
1418 page
= alloc_slab_page(s
, alloc_gfp
, node
, oo
);
1419 if (unlikely(!page
)) {
1423 * Allocation may have failed due to fragmentation.
1424 * Try a lower order alloc if possible
1426 page
= alloc_slab_page(s
, alloc_gfp
, node
, oo
);
1427 if (unlikely(!page
))
1429 stat(s
, ORDER_FALLBACK
);
1432 if (kmemcheck_enabled
&&
1433 !(s
->flags
& (SLAB_NOTRACK
| DEBUG_DEFAULT_FLAGS
))) {
1434 int pages
= 1 << oo_order(oo
);
1436 kmemcheck_alloc_shadow(page
, oo_order(oo
), alloc_gfp
, node
);
1439 * Objects from caches that have a constructor don't get
1440 * cleared when they're allocated, so we need to do it here.
1443 kmemcheck_mark_uninitialized_pages(page
, pages
);
1445 kmemcheck_mark_unallocated_pages(page
, pages
);
1448 page
->objects
= oo_objects(oo
);
1450 order
= compound_order(page
);
1451 page
->slab_cache
= s
;
1452 __SetPageSlab(page
);
1453 if (page_is_pfmemalloc(page
))
1454 SetPageSlabPfmemalloc(page
);
1456 start
= page_address(page
);
1458 if (unlikely(s
->flags
& SLAB_POISON
))
1459 memset(start
, POISON_INUSE
, PAGE_SIZE
<< order
);
1461 kasan_poison_slab(page
);
1463 for_each_object_idx(p
, idx
, s
, start
, page
->objects
) {
1464 setup_object(s
, page
, p
);
1465 if (likely(idx
< page
->objects
))
1466 set_freepointer(s
, p
, p
+ s
->size
);
1468 set_freepointer(s
, p
, NULL
);
1471 page
->freelist
= start
;
1472 page
->inuse
= page
->objects
;
1476 if (gfpflags_allow_blocking(flags
))
1477 local_irq_disable();
1481 mod_zone_page_state(page_zone(page
),
1482 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1483 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1486 inc_slabs_node(s
, page_to_nid(page
), page
->objects
);
1491 static struct page
*new_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1493 if (unlikely(flags
& GFP_SLAB_BUG_MASK
)) {
1494 pr_emerg("gfp: %u\n", flags
& GFP_SLAB_BUG_MASK
);
1498 return allocate_slab(s
,
1499 flags
& (GFP_RECLAIM_MASK
| GFP_CONSTRAINT_MASK
), node
);
1502 static void __free_slab(struct kmem_cache
*s
, struct page
*page
)
1504 int order
= compound_order(page
);
1505 int pages
= 1 << order
;
1507 if (kmem_cache_debug(s
)) {
1510 slab_pad_check(s
, page
);
1511 for_each_object(p
, s
, page_address(page
),
1513 check_object(s
, page
, p
, SLUB_RED_INACTIVE
);
1516 kmemcheck_free_shadow(page
, compound_order(page
));
1518 mod_zone_page_state(page_zone(page
),
1519 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1520 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1523 __ClearPageSlabPfmemalloc(page
);
1524 __ClearPageSlab(page
);
1526 page_mapcount_reset(page
);
1527 if (current
->reclaim_state
)
1528 current
->reclaim_state
->reclaimed_slab
+= pages
;
1529 __free_kmem_pages(page
, order
);
1532 #define need_reserve_slab_rcu \
1533 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1535 static void rcu_free_slab(struct rcu_head
*h
)
1539 if (need_reserve_slab_rcu
)
1540 page
= virt_to_head_page(h
);
1542 page
= container_of((struct list_head
*)h
, struct page
, lru
);
1544 __free_slab(page
->slab_cache
, page
);
1547 static void free_slab(struct kmem_cache
*s
, struct page
*page
)
1549 if (unlikely(s
->flags
& SLAB_DESTROY_BY_RCU
)) {
1550 struct rcu_head
*head
;
1552 if (need_reserve_slab_rcu
) {
1553 int order
= compound_order(page
);
1554 int offset
= (PAGE_SIZE
<< order
) - s
->reserved
;
1556 VM_BUG_ON(s
->reserved
!= sizeof(*head
));
1557 head
= page_address(page
) + offset
;
1559 head
= &page
->rcu_head
;
1562 call_rcu(head
, rcu_free_slab
);
1564 __free_slab(s
, page
);
1567 static void discard_slab(struct kmem_cache
*s
, struct page
*page
)
1569 dec_slabs_node(s
, page_to_nid(page
), page
->objects
);
1574 * Management of partially allocated slabs.
1577 __add_partial(struct kmem_cache_node
*n
, struct page
*page
, int tail
)
1580 if (tail
== DEACTIVATE_TO_TAIL
)
1581 list_add_tail(&page
->lru
, &n
->partial
);
1583 list_add(&page
->lru
, &n
->partial
);
1586 static inline void add_partial(struct kmem_cache_node
*n
,
1587 struct page
*page
, int tail
)
1589 lockdep_assert_held(&n
->list_lock
);
1590 __add_partial(n
, page
, tail
);
1594 __remove_partial(struct kmem_cache_node
*n
, struct page
*page
)
1596 list_del(&page
->lru
);
1600 static inline void remove_partial(struct kmem_cache_node
*n
,
1603 lockdep_assert_held(&n
->list_lock
);
1604 __remove_partial(n
, page
);
1608 * Remove slab from the partial list, freeze it and
1609 * return the pointer to the freelist.
1611 * Returns a list of objects or NULL if it fails.
1613 static inline void *acquire_slab(struct kmem_cache
*s
,
1614 struct kmem_cache_node
*n
, struct page
*page
,
1615 int mode
, int *objects
)
1618 unsigned long counters
;
1621 lockdep_assert_held(&n
->list_lock
);
1624 * Zap the freelist and set the frozen bit.
1625 * The old freelist is the list of objects for the
1626 * per cpu allocation list.
1628 freelist
= page
->freelist
;
1629 counters
= page
->counters
;
1630 new.counters
= counters
;
1631 *objects
= new.objects
- new.inuse
;
1633 new.inuse
= page
->objects
;
1634 new.freelist
= NULL
;
1636 new.freelist
= freelist
;
1639 VM_BUG_ON(new.frozen
);
1642 if (!__cmpxchg_double_slab(s
, page
,
1644 new.freelist
, new.counters
,
1648 remove_partial(n
, page
);
1653 static void put_cpu_partial(struct kmem_cache
*s
, struct page
*page
, int drain
);
1654 static inline bool pfmemalloc_match(struct page
*page
, gfp_t gfpflags
);
1657 * Try to allocate a partial slab from a specific node.
1659 static void *get_partial_node(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1660 struct kmem_cache_cpu
*c
, gfp_t flags
)
1662 struct page
*page
, *page2
;
1663 void *object
= NULL
;
1668 * Racy check. If we mistakenly see no partial slabs then we
1669 * just allocate an empty slab. If we mistakenly try to get a
1670 * partial slab and there is none available then get_partials()
1673 if (!n
|| !n
->nr_partial
)
1676 spin_lock(&n
->list_lock
);
1677 list_for_each_entry_safe(page
, page2
, &n
->partial
, lru
) {
1680 if (!pfmemalloc_match(page
, flags
))
1683 t
= acquire_slab(s
, n
, page
, object
== NULL
, &objects
);
1687 available
+= objects
;
1690 stat(s
, ALLOC_FROM_PARTIAL
);
1693 put_cpu_partial(s
, page
, 0);
1694 stat(s
, CPU_PARTIAL_NODE
);
1696 if (!kmem_cache_has_cpu_partial(s
)
1697 || available
> s
->cpu_partial
/ 2)
1701 spin_unlock(&n
->list_lock
);
1706 * Get a page from somewhere. Search in increasing NUMA distances.
1708 static void *get_any_partial(struct kmem_cache
*s
, gfp_t flags
,
1709 struct kmem_cache_cpu
*c
)
1712 struct zonelist
*zonelist
;
1715 enum zone_type high_zoneidx
= gfp_zone(flags
);
1717 unsigned int cpuset_mems_cookie
;
1720 * The defrag ratio allows a configuration of the tradeoffs between
1721 * inter node defragmentation and node local allocations. A lower
1722 * defrag_ratio increases the tendency to do local allocations
1723 * instead of attempting to obtain partial slabs from other nodes.
1725 * If the defrag_ratio is set to 0 then kmalloc() always
1726 * returns node local objects. If the ratio is higher then kmalloc()
1727 * may return off node objects because partial slabs are obtained
1728 * from other nodes and filled up.
1730 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1731 * defrag_ratio = 1000) then every (well almost) allocation will
1732 * first attempt to defrag slab caches on other nodes. This means
1733 * scanning over all nodes to look for partial slabs which may be
1734 * expensive if we do it every time we are trying to find a slab
1735 * with available objects.
1737 if (!s
->remote_node_defrag_ratio
||
1738 get_cycles() % 1024 > s
->remote_node_defrag_ratio
)
1742 cpuset_mems_cookie
= read_mems_allowed_begin();
1743 zonelist
= node_zonelist(mempolicy_slab_node(), flags
);
1744 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1745 struct kmem_cache_node
*n
;
1747 n
= get_node(s
, zone_to_nid(zone
));
1749 if (n
&& cpuset_zone_allowed(zone
, flags
) &&
1750 n
->nr_partial
> s
->min_partial
) {
1751 object
= get_partial_node(s
, n
, c
, flags
);
1754 * Don't check read_mems_allowed_retry()
1755 * here - if mems_allowed was updated in
1756 * parallel, that was a harmless race
1757 * between allocation and the cpuset
1764 } while (read_mems_allowed_retry(cpuset_mems_cookie
));
1770 * Get a partial page, lock it and return it.
1772 static void *get_partial(struct kmem_cache
*s
, gfp_t flags
, int node
,
1773 struct kmem_cache_cpu
*c
)
1776 int searchnode
= node
;
1778 if (node
== NUMA_NO_NODE
)
1779 searchnode
= numa_mem_id();
1780 else if (!node_present_pages(node
))
1781 searchnode
= node_to_mem_node(node
);
1783 object
= get_partial_node(s
, get_node(s
, searchnode
), c
, flags
);
1784 if (object
|| node
!= NUMA_NO_NODE
)
1787 return get_any_partial(s
, flags
, c
);
1790 #ifdef CONFIG_PREEMPT
1792 * Calculate the next globally unique transaction for disambiguiation
1793 * during cmpxchg. The transactions start with the cpu number and are then
1794 * incremented by CONFIG_NR_CPUS.
1796 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1799 * No preemption supported therefore also no need to check for
1805 static inline unsigned long next_tid(unsigned long tid
)
1807 return tid
+ TID_STEP
;
1810 static inline unsigned int tid_to_cpu(unsigned long tid
)
1812 return tid
% TID_STEP
;
1815 static inline unsigned long tid_to_event(unsigned long tid
)
1817 return tid
/ TID_STEP
;
1820 static inline unsigned int init_tid(int cpu
)
1825 static inline void note_cmpxchg_failure(const char *n
,
1826 const struct kmem_cache
*s
, unsigned long tid
)
1828 #ifdef SLUB_DEBUG_CMPXCHG
1829 unsigned long actual_tid
= __this_cpu_read(s
->cpu_slab
->tid
);
1831 pr_info("%s %s: cmpxchg redo ", n
, s
->name
);
1833 #ifdef CONFIG_PREEMPT
1834 if (tid_to_cpu(tid
) != tid_to_cpu(actual_tid
))
1835 pr_warn("due to cpu change %d -> %d\n",
1836 tid_to_cpu(tid
), tid_to_cpu(actual_tid
));
1839 if (tid_to_event(tid
) != tid_to_event(actual_tid
))
1840 pr_warn("due to cpu running other code. Event %ld->%ld\n",
1841 tid_to_event(tid
), tid_to_event(actual_tid
));
1843 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1844 actual_tid
, tid
, next_tid(tid
));
1846 stat(s
, CMPXCHG_DOUBLE_CPU_FAIL
);
1849 static void init_kmem_cache_cpus(struct kmem_cache
*s
)
1853 for_each_possible_cpu(cpu
)
1854 per_cpu_ptr(s
->cpu_slab
, cpu
)->tid
= init_tid(cpu
);
1858 * Remove the cpu slab
1860 static void deactivate_slab(struct kmem_cache
*s
, struct page
*page
,
1863 enum slab_modes
{ M_NONE
, M_PARTIAL
, M_FULL
, M_FREE
};
1864 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1866 enum slab_modes l
= M_NONE
, m
= M_NONE
;
1868 int tail
= DEACTIVATE_TO_HEAD
;
1872 if (page
->freelist
) {
1873 stat(s
, DEACTIVATE_REMOTE_FREES
);
1874 tail
= DEACTIVATE_TO_TAIL
;
1878 * Stage one: Free all available per cpu objects back
1879 * to the page freelist while it is still frozen. Leave the
1882 * There is no need to take the list->lock because the page
1885 while (freelist
&& (nextfree
= get_freepointer(s
, freelist
))) {
1887 unsigned long counters
;
1890 prior
= page
->freelist
;
1891 counters
= page
->counters
;
1892 set_freepointer(s
, freelist
, prior
);
1893 new.counters
= counters
;
1895 VM_BUG_ON(!new.frozen
);
1897 } while (!__cmpxchg_double_slab(s
, page
,
1899 freelist
, new.counters
,
1900 "drain percpu freelist"));
1902 freelist
= nextfree
;
1906 * Stage two: Ensure that the page is unfrozen while the
1907 * list presence reflects the actual number of objects
1910 * We setup the list membership and then perform a cmpxchg
1911 * with the count. If there is a mismatch then the page
1912 * is not unfrozen but the page is on the wrong list.
1914 * Then we restart the process which may have to remove
1915 * the page from the list that we just put it on again
1916 * because the number of objects in the slab may have
1921 old
.freelist
= page
->freelist
;
1922 old
.counters
= page
->counters
;
1923 VM_BUG_ON(!old
.frozen
);
1925 /* Determine target state of the slab */
1926 new.counters
= old
.counters
;
1929 set_freepointer(s
, freelist
, old
.freelist
);
1930 new.freelist
= freelist
;
1932 new.freelist
= old
.freelist
;
1936 if (!new.inuse
&& n
->nr_partial
>= s
->min_partial
)
1938 else if (new.freelist
) {
1943 * Taking the spinlock removes the possiblity
1944 * that acquire_slab() will see a slab page that
1947 spin_lock(&n
->list_lock
);
1951 if (kmem_cache_debug(s
) && !lock
) {
1954 * This also ensures that the scanning of full
1955 * slabs from diagnostic functions will not see
1958 spin_lock(&n
->list_lock
);
1966 remove_partial(n
, page
);
1968 else if (l
== M_FULL
)
1970 remove_full(s
, n
, page
);
1972 if (m
== M_PARTIAL
) {
1974 add_partial(n
, page
, tail
);
1977 } else if (m
== M_FULL
) {
1979 stat(s
, DEACTIVATE_FULL
);
1980 add_full(s
, n
, page
);
1986 if (!__cmpxchg_double_slab(s
, page
,
1987 old
.freelist
, old
.counters
,
1988 new.freelist
, new.counters
,
1993 spin_unlock(&n
->list_lock
);
1996 stat(s
, DEACTIVATE_EMPTY
);
1997 discard_slab(s
, page
);
2003 * Unfreeze all the cpu partial slabs.
2005 * This function must be called with interrupts disabled
2006 * for the cpu using c (or some other guarantee must be there
2007 * to guarantee no concurrent accesses).
2009 static void unfreeze_partials(struct kmem_cache
*s
,
2010 struct kmem_cache_cpu
*c
)
2012 #ifdef CONFIG_SLUB_CPU_PARTIAL
2013 struct kmem_cache_node
*n
= NULL
, *n2
= NULL
;
2014 struct page
*page
, *discard_page
= NULL
;
2016 while ((page
= c
->partial
)) {
2020 c
->partial
= page
->next
;
2022 n2
= get_node(s
, page_to_nid(page
));
2025 spin_unlock(&n
->list_lock
);
2028 spin_lock(&n
->list_lock
);
2033 old
.freelist
= page
->freelist
;
2034 old
.counters
= page
->counters
;
2035 VM_BUG_ON(!old
.frozen
);
2037 new.counters
= old
.counters
;
2038 new.freelist
= old
.freelist
;
2042 } while (!__cmpxchg_double_slab(s
, page
,
2043 old
.freelist
, old
.counters
,
2044 new.freelist
, new.counters
,
2045 "unfreezing slab"));
2047 if (unlikely(!new.inuse
&& n
->nr_partial
>= s
->min_partial
)) {
2048 page
->next
= discard_page
;
2049 discard_page
= page
;
2051 add_partial(n
, page
, DEACTIVATE_TO_TAIL
);
2052 stat(s
, FREE_ADD_PARTIAL
);
2057 spin_unlock(&n
->list_lock
);
2059 while (discard_page
) {
2060 page
= discard_page
;
2061 discard_page
= discard_page
->next
;
2063 stat(s
, DEACTIVATE_EMPTY
);
2064 discard_slab(s
, page
);
2071 * Put a page that was just frozen (in __slab_free) into a partial page
2072 * slot if available. This is done without interrupts disabled and without
2073 * preemption disabled. The cmpxchg is racy and may put the partial page
2074 * onto a random cpus partial slot.
2076 * If we did not find a slot then simply move all the partials to the
2077 * per node partial list.
2079 static void put_cpu_partial(struct kmem_cache
*s
, struct page
*page
, int drain
)
2081 #ifdef CONFIG_SLUB_CPU_PARTIAL
2082 struct page
*oldpage
;
2090 oldpage
= this_cpu_read(s
->cpu_slab
->partial
);
2093 pobjects
= oldpage
->pobjects
;
2094 pages
= oldpage
->pages
;
2095 if (drain
&& pobjects
> s
->cpu_partial
) {
2096 unsigned long flags
;
2098 * partial array is full. Move the existing
2099 * set to the per node partial list.
2101 local_irq_save(flags
);
2102 unfreeze_partials(s
, this_cpu_ptr(s
->cpu_slab
));
2103 local_irq_restore(flags
);
2107 stat(s
, CPU_PARTIAL_DRAIN
);
2112 pobjects
+= page
->objects
- page
->inuse
;
2114 page
->pages
= pages
;
2115 page
->pobjects
= pobjects
;
2116 page
->next
= oldpage
;
2118 } while (this_cpu_cmpxchg(s
->cpu_slab
->partial
, oldpage
, page
)
2120 if (unlikely(!s
->cpu_partial
)) {
2121 unsigned long flags
;
2123 local_irq_save(flags
);
2124 unfreeze_partials(s
, this_cpu_ptr(s
->cpu_slab
));
2125 local_irq_restore(flags
);
2131 static inline void flush_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
2133 stat(s
, CPUSLAB_FLUSH
);
2134 deactivate_slab(s
, c
->page
, c
->freelist
);
2136 c
->tid
= next_tid(c
->tid
);
2144 * Called from IPI handler with interrupts disabled.
2146 static inline void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
)
2148 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
2154 unfreeze_partials(s
, c
);
2158 static void flush_cpu_slab(void *d
)
2160 struct kmem_cache
*s
= d
;
2162 __flush_cpu_slab(s
, smp_processor_id());
2165 static bool has_cpu_slab(int cpu
, void *info
)
2167 struct kmem_cache
*s
= info
;
2168 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
2170 return c
->page
|| c
->partial
;
2173 static void flush_all(struct kmem_cache
*s
)
2175 on_each_cpu_cond(has_cpu_slab
, flush_cpu_slab
, s
, 1, GFP_ATOMIC
);
2179 * Check if the objects in a per cpu structure fit numa
2180 * locality expectations.
2182 static inline int node_match(struct page
*page
, int node
)
2185 if (!page
|| (node
!= NUMA_NO_NODE
&& page_to_nid(page
) != node
))
2191 #ifdef CONFIG_SLUB_DEBUG
2192 static int count_free(struct page
*page
)
2194 return page
->objects
- page
->inuse
;
2197 static inline unsigned long node_nr_objs(struct kmem_cache_node
*n
)
2199 return atomic_long_read(&n
->total_objects
);
2201 #endif /* CONFIG_SLUB_DEBUG */
2203 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2204 static unsigned long count_partial(struct kmem_cache_node
*n
,
2205 int (*get_count
)(struct page
*))
2207 unsigned long flags
;
2208 unsigned long x
= 0;
2211 spin_lock_irqsave(&n
->list_lock
, flags
);
2212 list_for_each_entry(page
, &n
->partial
, lru
)
2213 x
+= get_count(page
);
2214 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2217 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2219 static noinline
void
2220 slab_out_of_memory(struct kmem_cache
*s
, gfp_t gfpflags
, int nid
)
2222 #ifdef CONFIG_SLUB_DEBUG
2223 static DEFINE_RATELIMIT_STATE(slub_oom_rs
, DEFAULT_RATELIMIT_INTERVAL
,
2224 DEFAULT_RATELIMIT_BURST
);
2226 struct kmem_cache_node
*n
;
2228 if ((gfpflags
& __GFP_NOWARN
) || !__ratelimit(&slub_oom_rs
))
2231 pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2233 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2234 s
->name
, s
->object_size
, s
->size
, oo_order(s
->oo
),
2237 if (oo_order(s
->min
) > get_order(s
->object_size
))
2238 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2241 for_each_kmem_cache_node(s
, node
, n
) {
2242 unsigned long nr_slabs
;
2243 unsigned long nr_objs
;
2244 unsigned long nr_free
;
2246 nr_free
= count_partial(n
, count_free
);
2247 nr_slabs
= node_nr_slabs(n
);
2248 nr_objs
= node_nr_objs(n
);
2250 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2251 node
, nr_slabs
, nr_objs
, nr_free
);
2256 static inline void *new_slab_objects(struct kmem_cache
*s
, gfp_t flags
,
2257 int node
, struct kmem_cache_cpu
**pc
)
2260 struct kmem_cache_cpu
*c
= *pc
;
2263 freelist
= get_partial(s
, flags
, node
, c
);
2268 page
= new_slab(s
, flags
, node
);
2270 c
= raw_cpu_ptr(s
->cpu_slab
);
2275 * No other reference to the page yet so we can
2276 * muck around with it freely without cmpxchg
2278 freelist
= page
->freelist
;
2279 page
->freelist
= NULL
;
2281 stat(s
, ALLOC_SLAB
);
2290 static inline bool pfmemalloc_match(struct page
*page
, gfp_t gfpflags
)
2292 if (unlikely(PageSlabPfmemalloc(page
)))
2293 return gfp_pfmemalloc_allowed(gfpflags
);
2299 * Check the page->freelist of a page and either transfer the freelist to the
2300 * per cpu freelist or deactivate the page.
2302 * The page is still frozen if the return value is not NULL.
2304 * If this function returns NULL then the page has been unfrozen.
2306 * This function must be called with interrupt disabled.
2308 static inline void *get_freelist(struct kmem_cache
*s
, struct page
*page
)
2311 unsigned long counters
;
2315 freelist
= page
->freelist
;
2316 counters
= page
->counters
;
2318 new.counters
= counters
;
2319 VM_BUG_ON(!new.frozen
);
2321 new.inuse
= page
->objects
;
2322 new.frozen
= freelist
!= NULL
;
2324 } while (!__cmpxchg_double_slab(s
, page
,
2333 * Slow path. The lockless freelist is empty or we need to perform
2336 * Processing is still very fast if new objects have been freed to the
2337 * regular freelist. In that case we simply take over the regular freelist
2338 * as the lockless freelist and zap the regular freelist.
2340 * If that is not working then we fall back to the partial lists. We take the
2341 * first element of the freelist as the object to allocate now and move the
2342 * rest of the freelist to the lockless freelist.
2344 * And if we were unable to get a new slab from the partial slab lists then
2345 * we need to allocate a new slab. This is the slowest path since it involves
2346 * a call to the page allocator and the setup of a new slab.
2348 * Version of __slab_alloc to use when we know that interrupts are
2349 * already disabled (which is the case for bulk allocation).
2351 static void *___slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
2352 unsigned long addr
, struct kmem_cache_cpu
*c
)
2362 if (unlikely(!node_match(page
, node
))) {
2363 int searchnode
= node
;
2365 if (node
!= NUMA_NO_NODE
&& !node_present_pages(node
))
2366 searchnode
= node_to_mem_node(node
);
2368 if (unlikely(!node_match(page
, searchnode
))) {
2369 stat(s
, ALLOC_NODE_MISMATCH
);
2370 deactivate_slab(s
, page
, c
->freelist
);
2378 * By rights, we should be searching for a slab page that was
2379 * PFMEMALLOC but right now, we are losing the pfmemalloc
2380 * information when the page leaves the per-cpu allocator
2382 if (unlikely(!pfmemalloc_match(page
, gfpflags
))) {
2383 deactivate_slab(s
, page
, c
->freelist
);
2389 /* must check again c->freelist in case of cpu migration or IRQ */
2390 freelist
= c
->freelist
;
2394 freelist
= get_freelist(s
, page
);
2398 stat(s
, DEACTIVATE_BYPASS
);
2402 stat(s
, ALLOC_REFILL
);
2406 * freelist is pointing to the list of objects to be used.
2407 * page is pointing to the page from which the objects are obtained.
2408 * That page must be frozen for per cpu allocations to work.
2410 VM_BUG_ON(!c
->page
->frozen
);
2411 c
->freelist
= get_freepointer(s
, freelist
);
2412 c
->tid
= next_tid(c
->tid
);
2418 page
= c
->page
= c
->partial
;
2419 c
->partial
= page
->next
;
2420 stat(s
, CPU_PARTIAL_ALLOC
);
2425 freelist
= new_slab_objects(s
, gfpflags
, node
, &c
);
2427 if (unlikely(!freelist
)) {
2428 slab_out_of_memory(s
, gfpflags
, node
);
2433 if (likely(!kmem_cache_debug(s
) && pfmemalloc_match(page
, gfpflags
)))
2436 /* Only entered in the debug case */
2437 if (kmem_cache_debug(s
) &&
2438 !alloc_debug_processing(s
, page
, freelist
, addr
))
2439 goto new_slab
; /* Slab failed checks. Next slab needed */
2441 deactivate_slab(s
, page
, get_freepointer(s
, freelist
));
2448 * Another one that disabled interrupt and compensates for possible
2449 * cpu changes by refetching the per cpu area pointer.
2451 static void *__slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
2452 unsigned long addr
, struct kmem_cache_cpu
*c
)
2455 unsigned long flags
;
2457 local_irq_save(flags
);
2458 #ifdef CONFIG_PREEMPT
2460 * We may have been preempted and rescheduled on a different
2461 * cpu before disabling interrupts. Need to reload cpu area
2464 c
= this_cpu_ptr(s
->cpu_slab
);
2467 p
= ___slab_alloc(s
, gfpflags
, node
, addr
, c
);
2468 local_irq_restore(flags
);
2473 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2474 * have the fastpath folded into their functions. So no function call
2475 * overhead for requests that can be satisfied on the fastpath.
2477 * The fastpath works by first checking if the lockless freelist can be used.
2478 * If not then __slab_alloc is called for slow processing.
2480 * Otherwise we can simply pick the next object from the lockless free list.
2482 static __always_inline
void *slab_alloc_node(struct kmem_cache
*s
,
2483 gfp_t gfpflags
, int node
, unsigned long addr
)
2486 struct kmem_cache_cpu
*c
;
2490 s
= slab_pre_alloc_hook(s
, gfpflags
);
2495 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2496 * enabled. We may switch back and forth between cpus while
2497 * reading from one cpu area. That does not matter as long
2498 * as we end up on the original cpu again when doing the cmpxchg.
2500 * We should guarantee that tid and kmem_cache are retrieved on
2501 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2502 * to check if it is matched or not.
2505 tid
= this_cpu_read(s
->cpu_slab
->tid
);
2506 c
= raw_cpu_ptr(s
->cpu_slab
);
2507 } while (IS_ENABLED(CONFIG_PREEMPT
) &&
2508 unlikely(tid
!= READ_ONCE(c
->tid
)));
2511 * Irqless object alloc/free algorithm used here depends on sequence
2512 * of fetching cpu_slab's data. tid should be fetched before anything
2513 * on c to guarantee that object and page associated with previous tid
2514 * won't be used with current tid. If we fetch tid first, object and
2515 * page could be one associated with next tid and our alloc/free
2516 * request will be failed. In this case, we will retry. So, no problem.
2521 * The transaction ids are globally unique per cpu and per operation on
2522 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2523 * occurs on the right processor and that there was no operation on the
2524 * linked list in between.
2527 object
= c
->freelist
;
2529 if (unlikely(!object
|| !node_match(page
, node
))) {
2530 object
= __slab_alloc(s
, gfpflags
, node
, addr
, c
);
2531 stat(s
, ALLOC_SLOWPATH
);
2533 void *next_object
= get_freepointer_safe(s
, object
);
2536 * The cmpxchg will only match if there was no additional
2537 * operation and if we are on the right processor.
2539 * The cmpxchg does the following atomically (without lock
2541 * 1. Relocate first pointer to the current per cpu area.
2542 * 2. Verify that tid and freelist have not been changed
2543 * 3. If they were not changed replace tid and freelist
2545 * Since this is without lock semantics the protection is only
2546 * against code executing on this cpu *not* from access by
2549 if (unlikely(!this_cpu_cmpxchg_double(
2550 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
2552 next_object
, next_tid(tid
)))) {
2554 note_cmpxchg_failure("slab_alloc", s
, tid
);
2557 prefetch_freepointer(s
, next_object
);
2558 stat(s
, ALLOC_FASTPATH
);
2561 if (unlikely(gfpflags
& __GFP_ZERO
) && object
)
2562 memset(object
, 0, s
->object_size
);
2564 slab_post_alloc_hook(s
, gfpflags
, 1, &object
);
2569 static __always_inline
void *slab_alloc(struct kmem_cache
*s
,
2570 gfp_t gfpflags
, unsigned long addr
)
2572 return slab_alloc_node(s
, gfpflags
, NUMA_NO_NODE
, addr
);
2575 void *kmem_cache_alloc(struct kmem_cache
*s
, gfp_t gfpflags
)
2577 void *ret
= slab_alloc(s
, gfpflags
, _RET_IP_
);
2579 trace_kmem_cache_alloc(_RET_IP_
, ret
, s
->object_size
,
2584 EXPORT_SYMBOL(kmem_cache_alloc
);
2586 #ifdef CONFIG_TRACING
2587 void *kmem_cache_alloc_trace(struct kmem_cache
*s
, gfp_t gfpflags
, size_t size
)
2589 void *ret
= slab_alloc(s
, gfpflags
, _RET_IP_
);
2590 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, gfpflags
);
2591 kasan_kmalloc(s
, ret
, size
);
2594 EXPORT_SYMBOL(kmem_cache_alloc_trace
);
2598 void *kmem_cache_alloc_node(struct kmem_cache
*s
, gfp_t gfpflags
, int node
)
2600 void *ret
= slab_alloc_node(s
, gfpflags
, node
, _RET_IP_
);
2602 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
2603 s
->object_size
, s
->size
, gfpflags
, node
);
2607 EXPORT_SYMBOL(kmem_cache_alloc_node
);
2609 #ifdef CONFIG_TRACING
2610 void *kmem_cache_alloc_node_trace(struct kmem_cache
*s
,
2612 int node
, size_t size
)
2614 void *ret
= slab_alloc_node(s
, gfpflags
, node
, _RET_IP_
);
2616 trace_kmalloc_node(_RET_IP_
, ret
,
2617 size
, s
->size
, gfpflags
, node
);
2619 kasan_kmalloc(s
, ret
, size
);
2622 EXPORT_SYMBOL(kmem_cache_alloc_node_trace
);
2627 * Slow path handling. This may still be called frequently since objects
2628 * have a longer lifetime than the cpu slabs in most processing loads.
2630 * So we still attempt to reduce cache line usage. Just take the slab
2631 * lock and free the item. If there is no additional partial page
2632 * handling required then we can return immediately.
2634 static void __slab_free(struct kmem_cache
*s
, struct page
*page
,
2635 void *head
, void *tail
, int cnt
,
2642 unsigned long counters
;
2643 struct kmem_cache_node
*n
= NULL
;
2644 unsigned long uninitialized_var(flags
);
2646 stat(s
, FREE_SLOWPATH
);
2648 if (kmem_cache_debug(s
) &&
2649 !(n
= free_debug_processing(s
, page
, head
, tail
, cnt
,
2655 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2658 prior
= page
->freelist
;
2659 counters
= page
->counters
;
2660 set_freepointer(s
, tail
, prior
);
2661 new.counters
= counters
;
2662 was_frozen
= new.frozen
;
2664 if ((!new.inuse
|| !prior
) && !was_frozen
) {
2666 if (kmem_cache_has_cpu_partial(s
) && !prior
) {
2669 * Slab was on no list before and will be
2671 * We can defer the list move and instead
2676 } else { /* Needs to be taken off a list */
2678 n
= get_node(s
, page_to_nid(page
));
2680 * Speculatively acquire the list_lock.
2681 * If the cmpxchg does not succeed then we may
2682 * drop the list_lock without any processing.
2684 * Otherwise the list_lock will synchronize with
2685 * other processors updating the list of slabs.
2687 spin_lock_irqsave(&n
->list_lock
, flags
);
2692 } while (!cmpxchg_double_slab(s
, page
,
2700 * If we just froze the page then put it onto the
2701 * per cpu partial list.
2703 if (new.frozen
&& !was_frozen
) {
2704 put_cpu_partial(s
, page
, 1);
2705 stat(s
, CPU_PARTIAL_FREE
);
2708 * The list lock was not taken therefore no list
2709 * activity can be necessary.
2712 stat(s
, FREE_FROZEN
);
2716 if (unlikely(!new.inuse
&& n
->nr_partial
>= s
->min_partial
))
2720 * Objects left in the slab. If it was not on the partial list before
2723 if (!kmem_cache_has_cpu_partial(s
) && unlikely(!prior
)) {
2724 if (kmem_cache_debug(s
))
2725 remove_full(s
, n
, page
);
2726 add_partial(n
, page
, DEACTIVATE_TO_TAIL
);
2727 stat(s
, FREE_ADD_PARTIAL
);
2729 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2735 * Slab on the partial list.
2737 remove_partial(n
, page
);
2738 stat(s
, FREE_REMOVE_PARTIAL
);
2740 /* Slab must be on the full list */
2741 remove_full(s
, n
, page
);
2744 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2746 discard_slab(s
, page
);
2750 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2751 * can perform fastpath freeing without additional function calls.
2753 * The fastpath is only possible if we are freeing to the current cpu slab
2754 * of this processor. This typically the case if we have just allocated
2757 * If fastpath is not possible then fall back to __slab_free where we deal
2758 * with all sorts of special processing.
2760 * Bulk free of a freelist with several objects (all pointing to the
2761 * same page) possible by specifying head and tail ptr, plus objects
2762 * count (cnt). Bulk free indicated by tail pointer being set.
2764 static __always_inline
void slab_free(struct kmem_cache
*s
, struct page
*page
,
2765 void *head
, void *tail
, int cnt
,
2768 void *tail_obj
= tail
? : head
;
2769 struct kmem_cache_cpu
*c
;
2772 slab_free_freelist_hook(s
, head
, tail
);
2776 * Determine the currently cpus per cpu slab.
2777 * The cpu may change afterward. However that does not matter since
2778 * data is retrieved via this pointer. If we are on the same cpu
2779 * during the cmpxchg then the free will succeed.
2782 tid
= this_cpu_read(s
->cpu_slab
->tid
);
2783 c
= raw_cpu_ptr(s
->cpu_slab
);
2784 } while (IS_ENABLED(CONFIG_PREEMPT
) &&
2785 unlikely(tid
!= READ_ONCE(c
->tid
)));
2787 /* Same with comment on barrier() in slab_alloc_node() */
2790 if (likely(page
== c
->page
)) {
2791 set_freepointer(s
, tail_obj
, c
->freelist
);
2793 if (unlikely(!this_cpu_cmpxchg_double(
2794 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
2796 head
, next_tid(tid
)))) {
2798 note_cmpxchg_failure("slab_free", s
, tid
);
2801 stat(s
, FREE_FASTPATH
);
2803 __slab_free(s
, page
, head
, tail_obj
, cnt
, addr
);
2807 void kmem_cache_free(struct kmem_cache
*s
, void *x
)
2809 s
= cache_from_obj(s
, x
);
2812 slab_free(s
, virt_to_head_page(x
), x
, NULL
, 1, _RET_IP_
);
2813 trace_kmem_cache_free(_RET_IP_
, x
);
2815 EXPORT_SYMBOL(kmem_cache_free
);
2817 struct detached_freelist
{
2825 * This function progressively scans the array with free objects (with
2826 * a limited look ahead) and extract objects belonging to the same
2827 * page. It builds a detached freelist directly within the given
2828 * page/objects. This can happen without any need for
2829 * synchronization, because the objects are owned by running process.
2830 * The freelist is build up as a single linked list in the objects.
2831 * The idea is, that this detached freelist can then be bulk
2832 * transferred to the real freelist(s), but only requiring a single
2833 * synchronization primitive. Look ahead in the array is limited due
2834 * to performance reasons.
2836 static int build_detached_freelist(struct kmem_cache
*s
, size_t size
,
2837 void **p
, struct detached_freelist
*df
)
2839 size_t first_skipped_index
= 0;
2843 /* Always re-init detached_freelist */
2848 } while (!object
&& size
);
2853 /* Start new detached freelist */
2854 set_freepointer(s
, object
, NULL
);
2855 df
->page
= virt_to_head_page(object
);
2857 df
->freelist
= object
;
2858 p
[size
] = NULL
; /* mark object processed */
2864 continue; /* Skip processed objects */
2866 /* df->page is always set at this point */
2867 if (df
->page
== virt_to_head_page(object
)) {
2868 /* Opportunity build freelist */
2869 set_freepointer(s
, object
, df
->freelist
);
2870 df
->freelist
= object
;
2872 p
[size
] = NULL
; /* mark object processed */
2877 /* Limit look ahead search */
2881 if (!first_skipped_index
)
2882 first_skipped_index
= size
+ 1;
2885 return first_skipped_index
;
2889 /* Note that interrupts must be enabled when calling this function. */
2890 void kmem_cache_free_bulk(struct kmem_cache
*orig_s
, size_t size
, void **p
)
2896 struct detached_freelist df
;
2897 struct kmem_cache
*s
;
2899 /* Support for memcg */
2900 s
= cache_from_obj(orig_s
, p
[size
- 1]);
2902 size
= build_detached_freelist(s
, size
, p
, &df
);
2903 if (unlikely(!df
.page
))
2906 slab_free(s
, df
.page
, df
.freelist
, df
.tail
, df
.cnt
, _RET_IP_
);
2907 } while (likely(size
));
2909 EXPORT_SYMBOL(kmem_cache_free_bulk
);
2911 /* Note that interrupts must be enabled when calling this function. */
2912 int kmem_cache_alloc_bulk(struct kmem_cache
*s
, gfp_t flags
, size_t size
,
2915 struct kmem_cache_cpu
*c
;
2918 /* memcg and kmem_cache debug support */
2919 s
= slab_pre_alloc_hook(s
, flags
);
2923 * Drain objects in the per cpu slab, while disabling local
2924 * IRQs, which protects against PREEMPT and interrupts
2925 * handlers invoking normal fastpath.
2927 local_irq_disable();
2928 c
= this_cpu_ptr(s
->cpu_slab
);
2930 for (i
= 0; i
< size
; i
++) {
2931 void *object
= c
->freelist
;
2933 if (unlikely(!object
)) {
2935 * Invoking slow path likely have side-effect
2936 * of re-populating per CPU c->freelist
2938 p
[i
] = ___slab_alloc(s
, flags
, NUMA_NO_NODE
,
2940 if (unlikely(!p
[i
]))
2943 c
= this_cpu_ptr(s
->cpu_slab
);
2944 continue; /* goto for-loop */
2946 c
->freelist
= get_freepointer(s
, object
);
2949 c
->tid
= next_tid(c
->tid
);
2952 /* Clear memory outside IRQ disabled fastpath loop */
2953 if (unlikely(flags
& __GFP_ZERO
)) {
2956 for (j
= 0; j
< i
; j
++)
2957 memset(p
[j
], 0, s
->object_size
);
2960 /* memcg and kmem_cache debug support */
2961 slab_post_alloc_hook(s
, flags
, size
, p
);
2965 slab_post_alloc_hook(s
, flags
, i
, p
);
2966 __kmem_cache_free_bulk(s
, i
, p
);
2969 EXPORT_SYMBOL(kmem_cache_alloc_bulk
);
2973 * Object placement in a slab is made very easy because we always start at
2974 * offset 0. If we tune the size of the object to the alignment then we can
2975 * get the required alignment by putting one properly sized object after
2978 * Notice that the allocation order determines the sizes of the per cpu
2979 * caches. Each processor has always one slab available for allocations.
2980 * Increasing the allocation order reduces the number of times that slabs
2981 * must be moved on and off the partial lists and is therefore a factor in
2986 * Mininum / Maximum order of slab pages. This influences locking overhead
2987 * and slab fragmentation. A higher order reduces the number of partial slabs
2988 * and increases the number of allocations possible without having to
2989 * take the list_lock.
2991 static int slub_min_order
;
2992 static int slub_max_order
= PAGE_ALLOC_COSTLY_ORDER
;
2993 static int slub_min_objects
;
2996 * Calculate the order of allocation given an slab object size.
2998 * The order of allocation has significant impact on performance and other
2999 * system components. Generally order 0 allocations should be preferred since
3000 * order 0 does not cause fragmentation in the page allocator. Larger objects
3001 * be problematic to put into order 0 slabs because there may be too much
3002 * unused space left. We go to a higher order if more than 1/16th of the slab
3005 * In order to reach satisfactory performance we must ensure that a minimum
3006 * number of objects is in one slab. Otherwise we may generate too much
3007 * activity on the partial lists which requires taking the list_lock. This is
3008 * less a concern for large slabs though which are rarely used.
3010 * slub_max_order specifies the order where we begin to stop considering the
3011 * number of objects in a slab as critical. If we reach slub_max_order then
3012 * we try to keep the page order as low as possible. So we accept more waste
3013 * of space in favor of a small page order.
3015 * Higher order allocations also allow the placement of more objects in a
3016 * slab and thereby reduce object handling overhead. If the user has
3017 * requested a higher mininum order then we start with that one instead of
3018 * the smallest order which will fit the object.
3020 static inline int slab_order(int size
, int min_objects
,
3021 int max_order
, int fract_leftover
, int reserved
)
3025 int min_order
= slub_min_order
;
3027 if (order_objects(min_order
, size
, reserved
) > MAX_OBJS_PER_PAGE
)
3028 return get_order(size
* MAX_OBJS_PER_PAGE
) - 1;
3030 for (order
= max(min_order
, get_order(min_objects
* size
+ reserved
));
3031 order
<= max_order
; order
++) {
3033 unsigned long slab_size
= PAGE_SIZE
<< order
;
3035 rem
= (slab_size
- reserved
) % size
;
3037 if (rem
<= slab_size
/ fract_leftover
)
3044 static inline int calculate_order(int size
, int reserved
)
3052 * Attempt to find best configuration for a slab. This
3053 * works by first attempting to generate a layout with
3054 * the best configuration and backing off gradually.
3056 * First we increase the acceptable waste in a slab. Then
3057 * we reduce the minimum objects required in a slab.
3059 min_objects
= slub_min_objects
;
3061 min_objects
= 4 * (fls(nr_cpu_ids
) + 1);
3062 max_objects
= order_objects(slub_max_order
, size
, reserved
);
3063 min_objects
= min(min_objects
, max_objects
);
3065 while (min_objects
> 1) {
3067 while (fraction
>= 4) {
3068 order
= slab_order(size
, min_objects
,
3069 slub_max_order
, fraction
, reserved
);
3070 if (order
<= slub_max_order
)
3078 * We were unable to place multiple objects in a slab. Now
3079 * lets see if we can place a single object there.
3081 order
= slab_order(size
, 1, slub_max_order
, 1, reserved
);
3082 if (order
<= slub_max_order
)
3086 * Doh this slab cannot be placed using slub_max_order.
3088 order
= slab_order(size
, 1, MAX_ORDER
, 1, reserved
);
3089 if (order
< MAX_ORDER
)
3095 init_kmem_cache_node(struct kmem_cache_node
*n
)
3098 spin_lock_init(&n
->list_lock
);
3099 INIT_LIST_HEAD(&n
->partial
);
3100 #ifdef CONFIG_SLUB_DEBUG
3101 atomic_long_set(&n
->nr_slabs
, 0);
3102 atomic_long_set(&n
->total_objects
, 0);
3103 INIT_LIST_HEAD(&n
->full
);
3107 static inline int alloc_kmem_cache_cpus(struct kmem_cache
*s
)
3109 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE
<
3110 KMALLOC_SHIFT_HIGH
* sizeof(struct kmem_cache_cpu
));
3113 * Must align to double word boundary for the double cmpxchg
3114 * instructions to work; see __pcpu_double_call_return_bool().
3116 s
->cpu_slab
= __alloc_percpu(sizeof(struct kmem_cache_cpu
),
3117 2 * sizeof(void *));
3122 init_kmem_cache_cpus(s
);
3127 static struct kmem_cache
*kmem_cache_node
;
3130 * No kmalloc_node yet so do it by hand. We know that this is the first
3131 * slab on the node for this slabcache. There are no concurrent accesses
3134 * Note that this function only works on the kmem_cache_node
3135 * when allocating for the kmem_cache_node. This is used for bootstrapping
3136 * memory on a fresh node that has no slab structures yet.
3138 static void early_kmem_cache_node_alloc(int node
)
3141 struct kmem_cache_node
*n
;
3143 BUG_ON(kmem_cache_node
->size
< sizeof(struct kmem_cache_node
));
3145 page
= new_slab(kmem_cache_node
, GFP_NOWAIT
, node
);
3148 if (page_to_nid(page
) != node
) {
3149 pr_err("SLUB: Unable to allocate memory from node %d\n", node
);
3150 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3155 page
->freelist
= get_freepointer(kmem_cache_node
, n
);
3158 kmem_cache_node
->node
[node
] = n
;
3159 #ifdef CONFIG_SLUB_DEBUG
3160 init_object(kmem_cache_node
, n
, SLUB_RED_ACTIVE
);
3161 init_tracking(kmem_cache_node
, n
);
3163 kasan_kmalloc(kmem_cache_node
, n
, sizeof(struct kmem_cache_node
));
3164 init_kmem_cache_node(n
);
3165 inc_slabs_node(kmem_cache_node
, node
, page
->objects
);
3168 * No locks need to be taken here as it has just been
3169 * initialized and there is no concurrent access.
3171 __add_partial(n
, page
, DEACTIVATE_TO_HEAD
);
3174 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
3177 struct kmem_cache_node
*n
;
3179 for_each_kmem_cache_node(s
, node
, n
) {
3180 kmem_cache_free(kmem_cache_node
, n
);
3181 s
->node
[node
] = NULL
;
3185 static int init_kmem_cache_nodes(struct kmem_cache
*s
)
3189 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3190 struct kmem_cache_node
*n
;
3192 if (slab_state
== DOWN
) {
3193 early_kmem_cache_node_alloc(node
);
3196 n
= kmem_cache_alloc_node(kmem_cache_node
,
3200 free_kmem_cache_nodes(s
);
3205 init_kmem_cache_node(n
);
3210 static void set_min_partial(struct kmem_cache
*s
, unsigned long min
)
3212 if (min
< MIN_PARTIAL
)
3214 else if (min
> MAX_PARTIAL
)
3216 s
->min_partial
= min
;
3220 * calculate_sizes() determines the order and the distribution of data within
3223 static int calculate_sizes(struct kmem_cache
*s
, int forced_order
)
3225 unsigned long flags
= s
->flags
;
3226 unsigned long size
= s
->object_size
;
3230 * Round up object size to the next word boundary. We can only
3231 * place the free pointer at word boundaries and this determines
3232 * the possible location of the free pointer.
3234 size
= ALIGN(size
, sizeof(void *));
3236 #ifdef CONFIG_SLUB_DEBUG
3238 * Determine if we can poison the object itself. If the user of
3239 * the slab may touch the object after free or before allocation
3240 * then we should never poison the object itself.
3242 if ((flags
& SLAB_POISON
) && !(flags
& SLAB_DESTROY_BY_RCU
) &&
3244 s
->flags
|= __OBJECT_POISON
;
3246 s
->flags
&= ~__OBJECT_POISON
;
3250 * If we are Redzoning then check if there is some space between the
3251 * end of the object and the free pointer. If not then add an
3252 * additional word to have some bytes to store Redzone information.
3254 if ((flags
& SLAB_RED_ZONE
) && size
== s
->object_size
)
3255 size
+= sizeof(void *);
3259 * With that we have determined the number of bytes in actual use
3260 * by the object. This is the potential offset to the free pointer.
3264 if (((flags
& (SLAB_DESTROY_BY_RCU
| SLAB_POISON
)) ||
3267 * Relocate free pointer after the object if it is not
3268 * permitted to overwrite the first word of the object on
3271 * This is the case if we do RCU, have a constructor or
3272 * destructor or are poisoning the objects.
3275 size
+= sizeof(void *);
3278 #ifdef CONFIG_SLUB_DEBUG
3279 if (flags
& SLAB_STORE_USER
)
3281 * Need to store information about allocs and frees after
3284 size
+= 2 * sizeof(struct track
);
3286 if (flags
& SLAB_RED_ZONE
)
3288 * Add some empty padding so that we can catch
3289 * overwrites from earlier objects rather than let
3290 * tracking information or the free pointer be
3291 * corrupted if a user writes before the start
3294 size
+= sizeof(void *);
3298 * SLUB stores one object immediately after another beginning from
3299 * offset 0. In order to align the objects we have to simply size
3300 * each object to conform to the alignment.
3302 size
= ALIGN(size
, s
->align
);
3304 if (forced_order
>= 0)
3305 order
= forced_order
;
3307 order
= calculate_order(size
, s
->reserved
);
3314 s
->allocflags
|= __GFP_COMP
;
3316 if (s
->flags
& SLAB_CACHE_DMA
)
3317 s
->allocflags
|= GFP_DMA
;
3319 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
3320 s
->allocflags
|= __GFP_RECLAIMABLE
;
3323 * Determine the number of objects per slab
3325 s
->oo
= oo_make(order
, size
, s
->reserved
);
3326 s
->min
= oo_make(get_order(size
), size
, s
->reserved
);
3327 if (oo_objects(s
->oo
) > oo_objects(s
->max
))
3330 return !!oo_objects(s
->oo
);
3333 static int kmem_cache_open(struct kmem_cache
*s
, unsigned long flags
)
3335 s
->flags
= kmem_cache_flags(s
->size
, flags
, s
->name
, s
->ctor
);
3338 if (need_reserve_slab_rcu
&& (s
->flags
& SLAB_DESTROY_BY_RCU
))
3339 s
->reserved
= sizeof(struct rcu_head
);
3341 if (!calculate_sizes(s
, -1))
3343 if (disable_higher_order_debug
) {
3345 * Disable debugging flags that store metadata if the min slab
3348 if (get_order(s
->size
) > get_order(s
->object_size
)) {
3349 s
->flags
&= ~DEBUG_METADATA_FLAGS
;
3351 if (!calculate_sizes(s
, -1))
3356 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3357 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3358 if (system_has_cmpxchg_double() && (s
->flags
& SLAB_DEBUG_FLAGS
) == 0)
3359 /* Enable fast mode */
3360 s
->flags
|= __CMPXCHG_DOUBLE
;
3364 * The larger the object size is, the more pages we want on the partial
3365 * list to avoid pounding the page allocator excessively.
3367 set_min_partial(s
, ilog2(s
->size
) / 2);
3370 * cpu_partial determined the maximum number of objects kept in the
3371 * per cpu partial lists of a processor.
3373 * Per cpu partial lists mainly contain slabs that just have one
3374 * object freed. If they are used for allocation then they can be
3375 * filled up again with minimal effort. The slab will never hit the
3376 * per node partial lists and therefore no locking will be required.
3378 * This setting also determines
3380 * A) The number of objects from per cpu partial slabs dumped to the
3381 * per node list when we reach the limit.
3382 * B) The number of objects in cpu partial slabs to extract from the
3383 * per node list when we run out of per cpu objects. We only fetch
3384 * 50% to keep some capacity around for frees.
3386 if (!kmem_cache_has_cpu_partial(s
))
3388 else if (s
->size
>= PAGE_SIZE
)
3390 else if (s
->size
>= 1024)
3392 else if (s
->size
>= 256)
3393 s
->cpu_partial
= 13;
3395 s
->cpu_partial
= 30;
3398 s
->remote_node_defrag_ratio
= 1000;
3400 if (!init_kmem_cache_nodes(s
))
3403 if (alloc_kmem_cache_cpus(s
))
3406 free_kmem_cache_nodes(s
);
3408 if (flags
& SLAB_PANIC
)
3409 panic("Cannot create slab %s size=%lu realsize=%u "
3410 "order=%u offset=%u flags=%lx\n",
3411 s
->name
, (unsigned long)s
->size
, s
->size
,
3412 oo_order(s
->oo
), s
->offset
, flags
);
3416 static void list_slab_objects(struct kmem_cache
*s
, struct page
*page
,
3419 #ifdef CONFIG_SLUB_DEBUG
3420 void *addr
= page_address(page
);
3422 unsigned long *map
= kzalloc(BITS_TO_LONGS(page
->objects
) *
3423 sizeof(long), GFP_ATOMIC
);
3426 slab_err(s
, page
, text
, s
->name
);
3429 get_map(s
, page
, map
);
3430 for_each_object(p
, s
, addr
, page
->objects
) {
3432 if (!test_bit(slab_index(p
, s
, addr
), map
)) {
3433 pr_err("INFO: Object 0x%p @offset=%tu\n", p
, p
- addr
);
3434 print_tracking(s
, p
);
3443 * Attempt to free all partial slabs on a node.
3444 * This is called from kmem_cache_close(). We must be the last thread
3445 * using the cache and therefore we do not need to lock anymore.
3447 static void free_partial(struct kmem_cache
*s
, struct kmem_cache_node
*n
)
3449 struct page
*page
, *h
;
3451 list_for_each_entry_safe(page
, h
, &n
->partial
, lru
) {
3453 __remove_partial(n
, page
);
3454 discard_slab(s
, page
);
3456 list_slab_objects(s
, page
,
3457 "Objects remaining in %s on kmem_cache_close()");
3463 * Release all resources used by a slab cache.
3465 static inline int kmem_cache_close(struct kmem_cache
*s
)
3468 struct kmem_cache_node
*n
;
3471 /* Attempt to free all objects */
3472 for_each_kmem_cache_node(s
, node
, n
) {
3474 if (n
->nr_partial
|| slabs_node(s
, node
))
3477 free_percpu(s
->cpu_slab
);
3478 free_kmem_cache_nodes(s
);
3482 int __kmem_cache_shutdown(struct kmem_cache
*s
)
3484 return kmem_cache_close(s
);
3487 /********************************************************************
3489 *******************************************************************/
3491 static int __init
setup_slub_min_order(char *str
)
3493 get_option(&str
, &slub_min_order
);
3498 __setup("slub_min_order=", setup_slub_min_order
);
3500 static int __init
setup_slub_max_order(char *str
)
3502 get_option(&str
, &slub_max_order
);
3503 slub_max_order
= min(slub_max_order
, MAX_ORDER
- 1);
3508 __setup("slub_max_order=", setup_slub_max_order
);
3510 static int __init
setup_slub_min_objects(char *str
)
3512 get_option(&str
, &slub_min_objects
);
3517 __setup("slub_min_objects=", setup_slub_min_objects
);
3519 void *__kmalloc(size_t size
, gfp_t flags
)
3521 struct kmem_cache
*s
;
3524 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
))
3525 return kmalloc_large(size
, flags
);
3527 s
= kmalloc_slab(size
, flags
);
3529 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3532 ret
= slab_alloc(s
, flags
, _RET_IP_
);
3534 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, flags
);
3536 kasan_kmalloc(s
, ret
, size
);
3540 EXPORT_SYMBOL(__kmalloc
);
3543 static void *kmalloc_large_node(size_t size
, gfp_t flags
, int node
)
3548 flags
|= __GFP_COMP
| __GFP_NOTRACK
;
3549 page
= alloc_kmem_pages_node(node
, flags
, get_order(size
));
3551 ptr
= page_address(page
);
3553 kmalloc_large_node_hook(ptr
, size
, flags
);
3557 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3559 struct kmem_cache
*s
;
3562 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
)) {
3563 ret
= kmalloc_large_node(size
, flags
, node
);
3565 trace_kmalloc_node(_RET_IP_
, ret
,
3566 size
, PAGE_SIZE
<< get_order(size
),
3572 s
= kmalloc_slab(size
, flags
);
3574 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3577 ret
= slab_alloc_node(s
, flags
, node
, _RET_IP_
);
3579 trace_kmalloc_node(_RET_IP_
, ret
, size
, s
->size
, flags
, node
);
3581 kasan_kmalloc(s
, ret
, size
);
3585 EXPORT_SYMBOL(__kmalloc_node
);
3588 static size_t __ksize(const void *object
)
3592 if (unlikely(object
== ZERO_SIZE_PTR
))
3595 page
= virt_to_head_page(object
);
3597 if (unlikely(!PageSlab(page
))) {
3598 WARN_ON(!PageCompound(page
));
3599 return PAGE_SIZE
<< compound_order(page
);
3602 return slab_ksize(page
->slab_cache
);
3605 size_t ksize(const void *object
)
3607 size_t size
= __ksize(object
);
3608 /* We assume that ksize callers could use whole allocated area,
3609 so we need unpoison this area. */
3610 kasan_krealloc(object
, size
);
3613 EXPORT_SYMBOL(ksize
);
3615 void kfree(const void *x
)
3618 void *object
= (void *)x
;
3620 trace_kfree(_RET_IP_
, x
);
3622 if (unlikely(ZERO_OR_NULL_PTR(x
)))
3625 page
= virt_to_head_page(x
);
3626 if (unlikely(!PageSlab(page
))) {
3627 BUG_ON(!PageCompound(page
));
3629 __free_kmem_pages(page
, compound_order(page
));
3632 slab_free(page
->slab_cache
, page
, object
, NULL
, 1, _RET_IP_
);
3634 EXPORT_SYMBOL(kfree
);
3636 #define SHRINK_PROMOTE_MAX 32
3639 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3640 * up most to the head of the partial lists. New allocations will then
3641 * fill those up and thus they can be removed from the partial lists.
3643 * The slabs with the least items are placed last. This results in them
3644 * being allocated from last increasing the chance that the last objects
3645 * are freed in them.
3647 int __kmem_cache_shrink(struct kmem_cache
*s
, bool deactivate
)
3651 struct kmem_cache_node
*n
;
3654 struct list_head discard
;
3655 struct list_head promote
[SHRINK_PROMOTE_MAX
];
3656 unsigned long flags
;
3661 * Disable empty slabs caching. Used to avoid pinning offline
3662 * memory cgroups by kmem pages that can be freed.
3668 * s->cpu_partial is checked locklessly (see put_cpu_partial),
3669 * so we have to make sure the change is visible.
3671 kick_all_cpus_sync();
3675 for_each_kmem_cache_node(s
, node
, n
) {
3676 INIT_LIST_HEAD(&discard
);
3677 for (i
= 0; i
< SHRINK_PROMOTE_MAX
; i
++)
3678 INIT_LIST_HEAD(promote
+ i
);
3680 spin_lock_irqsave(&n
->list_lock
, flags
);
3683 * Build lists of slabs to discard or promote.
3685 * Note that concurrent frees may occur while we hold the
3686 * list_lock. page->inuse here is the upper limit.
3688 list_for_each_entry_safe(page
, t
, &n
->partial
, lru
) {
3689 int free
= page
->objects
- page
->inuse
;
3691 /* Do not reread page->inuse */
3694 /* We do not keep full slabs on the list */
3697 if (free
== page
->objects
) {
3698 list_move(&page
->lru
, &discard
);
3700 } else if (free
<= SHRINK_PROMOTE_MAX
)
3701 list_move(&page
->lru
, promote
+ free
- 1);
3705 * Promote the slabs filled up most to the head of the
3708 for (i
= SHRINK_PROMOTE_MAX
- 1; i
>= 0; i
--)
3709 list_splice(promote
+ i
, &n
->partial
);
3711 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3713 /* Release empty slabs */
3714 list_for_each_entry_safe(page
, t
, &discard
, lru
)
3715 discard_slab(s
, page
);
3717 if (slabs_node(s
, node
))
3724 static int slab_mem_going_offline_callback(void *arg
)
3726 struct kmem_cache
*s
;
3728 mutex_lock(&slab_mutex
);
3729 list_for_each_entry(s
, &slab_caches
, list
)
3730 __kmem_cache_shrink(s
, false);
3731 mutex_unlock(&slab_mutex
);
3736 static void slab_mem_offline_callback(void *arg
)
3738 struct kmem_cache_node
*n
;
3739 struct kmem_cache
*s
;
3740 struct memory_notify
*marg
= arg
;
3743 offline_node
= marg
->status_change_nid_normal
;
3746 * If the node still has available memory. we need kmem_cache_node
3749 if (offline_node
< 0)
3752 mutex_lock(&slab_mutex
);
3753 list_for_each_entry(s
, &slab_caches
, list
) {
3754 n
= get_node(s
, offline_node
);
3757 * if n->nr_slabs > 0, slabs still exist on the node
3758 * that is going down. We were unable to free them,
3759 * and offline_pages() function shouldn't call this
3760 * callback. So, we must fail.
3762 BUG_ON(slabs_node(s
, offline_node
));
3764 s
->node
[offline_node
] = NULL
;
3765 kmem_cache_free(kmem_cache_node
, n
);
3768 mutex_unlock(&slab_mutex
);
3771 static int slab_mem_going_online_callback(void *arg
)
3773 struct kmem_cache_node
*n
;
3774 struct kmem_cache
*s
;
3775 struct memory_notify
*marg
= arg
;
3776 int nid
= marg
->status_change_nid_normal
;
3780 * If the node's memory is already available, then kmem_cache_node is
3781 * already created. Nothing to do.
3787 * We are bringing a node online. No memory is available yet. We must
3788 * allocate a kmem_cache_node structure in order to bring the node
3791 mutex_lock(&slab_mutex
);
3792 list_for_each_entry(s
, &slab_caches
, list
) {
3794 * XXX: kmem_cache_alloc_node will fallback to other nodes
3795 * since memory is not yet available from the node that
3798 n
= kmem_cache_alloc(kmem_cache_node
, GFP_KERNEL
);
3803 init_kmem_cache_node(n
);
3807 mutex_unlock(&slab_mutex
);
3811 static int slab_memory_callback(struct notifier_block
*self
,
3812 unsigned long action
, void *arg
)
3817 case MEM_GOING_ONLINE
:
3818 ret
= slab_mem_going_online_callback(arg
);
3820 case MEM_GOING_OFFLINE
:
3821 ret
= slab_mem_going_offline_callback(arg
);
3824 case MEM_CANCEL_ONLINE
:
3825 slab_mem_offline_callback(arg
);
3828 case MEM_CANCEL_OFFLINE
:
3832 ret
= notifier_from_errno(ret
);
3838 static struct notifier_block slab_memory_callback_nb
= {
3839 .notifier_call
= slab_memory_callback
,
3840 .priority
= SLAB_CALLBACK_PRI
,
3843 /********************************************************************
3844 * Basic setup of slabs
3845 *******************************************************************/
3848 * Used for early kmem_cache structures that were allocated using
3849 * the page allocator. Allocate them properly then fix up the pointers
3850 * that may be pointing to the wrong kmem_cache structure.
3853 static struct kmem_cache
* __init
bootstrap(struct kmem_cache
*static_cache
)
3856 struct kmem_cache
*s
= kmem_cache_zalloc(kmem_cache
, GFP_NOWAIT
);
3857 struct kmem_cache_node
*n
;
3859 memcpy(s
, static_cache
, kmem_cache
->object_size
);
3862 * This runs very early, and only the boot processor is supposed to be
3863 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3866 __flush_cpu_slab(s
, smp_processor_id());
3867 for_each_kmem_cache_node(s
, node
, n
) {
3870 list_for_each_entry(p
, &n
->partial
, lru
)
3873 #ifdef CONFIG_SLUB_DEBUG
3874 list_for_each_entry(p
, &n
->full
, lru
)
3878 slab_init_memcg_params(s
);
3879 list_add(&s
->list
, &slab_caches
);
3883 void __init
kmem_cache_init(void)
3885 static __initdata
struct kmem_cache boot_kmem_cache
,
3886 boot_kmem_cache_node
;
3888 if (debug_guardpage_minorder())
3891 kmem_cache_node
= &boot_kmem_cache_node
;
3892 kmem_cache
= &boot_kmem_cache
;
3894 create_boot_cache(kmem_cache_node
, "kmem_cache_node",
3895 sizeof(struct kmem_cache_node
), SLAB_HWCACHE_ALIGN
);
3897 register_hotmemory_notifier(&slab_memory_callback_nb
);
3899 /* Able to allocate the per node structures */
3900 slab_state
= PARTIAL
;
3902 create_boot_cache(kmem_cache
, "kmem_cache",
3903 offsetof(struct kmem_cache
, node
) +
3904 nr_node_ids
* sizeof(struct kmem_cache_node
*),
3905 SLAB_HWCACHE_ALIGN
);
3907 kmem_cache
= bootstrap(&boot_kmem_cache
);
3910 * Allocate kmem_cache_node properly from the kmem_cache slab.
3911 * kmem_cache_node is separately allocated so no need to
3912 * update any list pointers.
3914 kmem_cache_node
= bootstrap(&boot_kmem_cache_node
);
3916 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3917 setup_kmalloc_cache_index_table();
3918 create_kmalloc_caches(0);
3921 register_cpu_notifier(&slab_notifier
);
3924 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
3926 slub_min_order
, slub_max_order
, slub_min_objects
,
3927 nr_cpu_ids
, nr_node_ids
);
3930 void __init
kmem_cache_init_late(void)
3935 __kmem_cache_alias(const char *name
, size_t size
, size_t align
,
3936 unsigned long flags
, void (*ctor
)(void *))
3938 struct kmem_cache
*s
, *c
;
3940 s
= find_mergeable(size
, align
, flags
, name
, ctor
);
3945 * Adjust the object sizes so that we clear
3946 * the complete object on kzalloc.
3948 s
->object_size
= max(s
->object_size
, (int)size
);
3949 s
->inuse
= max_t(int, s
->inuse
, ALIGN(size
, sizeof(void *)));
3951 for_each_memcg_cache(c
, s
) {
3952 c
->object_size
= s
->object_size
;
3953 c
->inuse
= max_t(int, c
->inuse
,
3954 ALIGN(size
, sizeof(void *)));
3957 if (sysfs_slab_alias(s
, name
)) {
3966 int __kmem_cache_create(struct kmem_cache
*s
, unsigned long flags
)
3970 err
= kmem_cache_open(s
, flags
);
3974 /* Mutex is not taken during early boot */
3975 if (slab_state
<= UP
)
3978 memcg_propagate_slab_attrs(s
);
3979 err
= sysfs_slab_add(s
);
3981 kmem_cache_close(s
);
3988 * Use the cpu notifier to insure that the cpu slabs are flushed when
3991 static int slab_cpuup_callback(struct notifier_block
*nfb
,
3992 unsigned long action
, void *hcpu
)
3994 long cpu
= (long)hcpu
;
3995 struct kmem_cache
*s
;
3996 unsigned long flags
;
3999 case CPU_UP_CANCELED
:
4000 case CPU_UP_CANCELED_FROZEN
:
4002 case CPU_DEAD_FROZEN
:
4003 mutex_lock(&slab_mutex
);
4004 list_for_each_entry(s
, &slab_caches
, list
) {
4005 local_irq_save(flags
);
4006 __flush_cpu_slab(s
, cpu
);
4007 local_irq_restore(flags
);
4009 mutex_unlock(&slab_mutex
);
4017 static struct notifier_block slab_notifier
= {
4018 .notifier_call
= slab_cpuup_callback
4023 void *__kmalloc_track_caller(size_t size
, gfp_t gfpflags
, unsigned long caller
)
4025 struct kmem_cache
*s
;
4028 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
))
4029 return kmalloc_large(size
, gfpflags
);
4031 s
= kmalloc_slab(size
, gfpflags
);
4033 if (unlikely(ZERO_OR_NULL_PTR(s
)))
4036 ret
= slab_alloc(s
, gfpflags
, caller
);
4038 /* Honor the call site pointer we received. */
4039 trace_kmalloc(caller
, ret
, size
, s
->size
, gfpflags
);
4045 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfpflags
,
4046 int node
, unsigned long caller
)
4048 struct kmem_cache
*s
;
4051 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
)) {
4052 ret
= kmalloc_large_node(size
, gfpflags
, node
);
4054 trace_kmalloc_node(caller
, ret
,
4055 size
, PAGE_SIZE
<< get_order(size
),
4061 s
= kmalloc_slab(size
, gfpflags
);
4063 if (unlikely(ZERO_OR_NULL_PTR(s
)))
4066 ret
= slab_alloc_node(s
, gfpflags
, node
, caller
);
4068 /* Honor the call site pointer we received. */
4069 trace_kmalloc_node(caller
, ret
, size
, s
->size
, gfpflags
, node
);
4076 static int count_inuse(struct page
*page
)
4081 static int count_total(struct page
*page
)
4083 return page
->objects
;
4087 #ifdef CONFIG_SLUB_DEBUG
4088 static int validate_slab(struct kmem_cache
*s
, struct page
*page
,
4092 void *addr
= page_address(page
);
4094 if (!check_slab(s
, page
) ||
4095 !on_freelist(s
, page
, NULL
))
4098 /* Now we know that a valid freelist exists */
4099 bitmap_zero(map
, page
->objects
);
4101 get_map(s
, page
, map
);
4102 for_each_object(p
, s
, addr
, page
->objects
) {
4103 if (test_bit(slab_index(p
, s
, addr
), map
))
4104 if (!check_object(s
, page
, p
, SLUB_RED_INACTIVE
))
4108 for_each_object(p
, s
, addr
, page
->objects
)
4109 if (!test_bit(slab_index(p
, s
, addr
), map
))
4110 if (!check_object(s
, page
, p
, SLUB_RED_ACTIVE
))
4115 static void validate_slab_slab(struct kmem_cache
*s
, struct page
*page
,
4119 validate_slab(s
, page
, map
);
4123 static int validate_slab_node(struct kmem_cache
*s
,
4124 struct kmem_cache_node
*n
, unsigned long *map
)
4126 unsigned long count
= 0;
4128 unsigned long flags
;
4130 spin_lock_irqsave(&n
->list_lock
, flags
);
4132 list_for_each_entry(page
, &n
->partial
, lru
) {
4133 validate_slab_slab(s
, page
, map
);
4136 if (count
!= n
->nr_partial
)
4137 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4138 s
->name
, count
, n
->nr_partial
);
4140 if (!(s
->flags
& SLAB_STORE_USER
))
4143 list_for_each_entry(page
, &n
->full
, lru
) {
4144 validate_slab_slab(s
, page
, map
);
4147 if (count
!= atomic_long_read(&n
->nr_slabs
))
4148 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4149 s
->name
, count
, atomic_long_read(&n
->nr_slabs
));
4152 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4156 static long validate_slab_cache(struct kmem_cache
*s
)
4159 unsigned long count
= 0;
4160 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
4161 sizeof(unsigned long), GFP_KERNEL
);
4162 struct kmem_cache_node
*n
;
4168 for_each_kmem_cache_node(s
, node
, n
)
4169 count
+= validate_slab_node(s
, n
, map
);
4174 * Generate lists of code addresses where slabcache objects are allocated
4179 unsigned long count
;
4186 DECLARE_BITMAP(cpus
, NR_CPUS
);
4192 unsigned long count
;
4193 struct location
*loc
;
4196 static void free_loc_track(struct loc_track
*t
)
4199 free_pages((unsigned long)t
->loc
,
4200 get_order(sizeof(struct location
) * t
->max
));
4203 static int alloc_loc_track(struct loc_track
*t
, unsigned long max
, gfp_t flags
)
4208 order
= get_order(sizeof(struct location
) * max
);
4210 l
= (void *)__get_free_pages(flags
, order
);
4215 memcpy(l
, t
->loc
, sizeof(struct location
) * t
->count
);
4223 static int add_location(struct loc_track
*t
, struct kmem_cache
*s
,
4224 const struct track
*track
)
4226 long start
, end
, pos
;
4228 unsigned long caddr
;
4229 unsigned long age
= jiffies
- track
->when
;
4235 pos
= start
+ (end
- start
+ 1) / 2;
4238 * There is nothing at "end". If we end up there
4239 * we need to add something to before end.
4244 caddr
= t
->loc
[pos
].addr
;
4245 if (track
->addr
== caddr
) {
4251 if (age
< l
->min_time
)
4253 if (age
> l
->max_time
)
4256 if (track
->pid
< l
->min_pid
)
4257 l
->min_pid
= track
->pid
;
4258 if (track
->pid
> l
->max_pid
)
4259 l
->max_pid
= track
->pid
;
4261 cpumask_set_cpu(track
->cpu
,
4262 to_cpumask(l
->cpus
));
4264 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
4268 if (track
->addr
< caddr
)
4275 * Not found. Insert new tracking element.
4277 if (t
->count
>= t
->max
&& !alloc_loc_track(t
, 2 * t
->max
, GFP_ATOMIC
))
4283 (t
->count
- pos
) * sizeof(struct location
));
4286 l
->addr
= track
->addr
;
4290 l
->min_pid
= track
->pid
;
4291 l
->max_pid
= track
->pid
;
4292 cpumask_clear(to_cpumask(l
->cpus
));
4293 cpumask_set_cpu(track
->cpu
, to_cpumask(l
->cpus
));
4294 nodes_clear(l
->nodes
);
4295 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
4299 static void process_slab(struct loc_track
*t
, struct kmem_cache
*s
,
4300 struct page
*page
, enum track_item alloc
,
4303 void *addr
= page_address(page
);
4306 bitmap_zero(map
, page
->objects
);
4307 get_map(s
, page
, map
);
4309 for_each_object(p
, s
, addr
, page
->objects
)
4310 if (!test_bit(slab_index(p
, s
, addr
), map
))
4311 add_location(t
, s
, get_track(s
, p
, alloc
));
4314 static int list_locations(struct kmem_cache
*s
, char *buf
,
4315 enum track_item alloc
)
4319 struct loc_track t
= { 0, 0, NULL
};
4321 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
4322 sizeof(unsigned long), GFP_KERNEL
);
4323 struct kmem_cache_node
*n
;
4325 if (!map
|| !alloc_loc_track(&t
, PAGE_SIZE
/ sizeof(struct location
),
4328 return sprintf(buf
, "Out of memory\n");
4330 /* Push back cpu slabs */
4333 for_each_kmem_cache_node(s
, node
, n
) {
4334 unsigned long flags
;
4337 if (!atomic_long_read(&n
->nr_slabs
))
4340 spin_lock_irqsave(&n
->list_lock
, flags
);
4341 list_for_each_entry(page
, &n
->partial
, lru
)
4342 process_slab(&t
, s
, page
, alloc
, map
);
4343 list_for_each_entry(page
, &n
->full
, lru
)
4344 process_slab(&t
, s
, page
, alloc
, map
);
4345 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4348 for (i
= 0; i
< t
.count
; i
++) {
4349 struct location
*l
= &t
.loc
[i
];
4351 if (len
> PAGE_SIZE
- KSYM_SYMBOL_LEN
- 100)
4353 len
+= sprintf(buf
+ len
, "%7ld ", l
->count
);
4356 len
+= sprintf(buf
+ len
, "%pS", (void *)l
->addr
);
4358 len
+= sprintf(buf
+ len
, "<not-available>");
4360 if (l
->sum_time
!= l
->min_time
) {
4361 len
+= sprintf(buf
+ len
, " age=%ld/%ld/%ld",
4363 (long)div_u64(l
->sum_time
, l
->count
),
4366 len
+= sprintf(buf
+ len
, " age=%ld",
4369 if (l
->min_pid
!= l
->max_pid
)
4370 len
+= sprintf(buf
+ len
, " pid=%ld-%ld",
4371 l
->min_pid
, l
->max_pid
);
4373 len
+= sprintf(buf
+ len
, " pid=%ld",
4376 if (num_online_cpus() > 1 &&
4377 !cpumask_empty(to_cpumask(l
->cpus
)) &&
4378 len
< PAGE_SIZE
- 60)
4379 len
+= scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
4381 cpumask_pr_args(to_cpumask(l
->cpus
)));
4383 if (nr_online_nodes
> 1 && !nodes_empty(l
->nodes
) &&
4384 len
< PAGE_SIZE
- 60)
4385 len
+= scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
4387 nodemask_pr_args(&l
->nodes
));
4389 len
+= sprintf(buf
+ len
, "\n");
4395 len
+= sprintf(buf
, "No data\n");
4400 #ifdef SLUB_RESILIENCY_TEST
4401 static void __init
resiliency_test(void)
4405 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 16 || KMALLOC_SHIFT_HIGH
< 10);
4407 pr_err("SLUB resiliency testing\n");
4408 pr_err("-----------------------\n");
4409 pr_err("A. Corruption after allocation\n");
4411 p
= kzalloc(16, GFP_KERNEL
);
4413 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4416 validate_slab_cache(kmalloc_caches
[4]);
4418 /* Hmmm... The next two are dangerous */
4419 p
= kzalloc(32, GFP_KERNEL
);
4420 p
[32 + sizeof(void *)] = 0x34;
4421 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4423 pr_err("If allocated object is overwritten then not detectable\n\n");
4425 validate_slab_cache(kmalloc_caches
[5]);
4426 p
= kzalloc(64, GFP_KERNEL
);
4427 p
+= 64 + (get_cycles() & 0xff) * sizeof(void *);
4429 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4431 pr_err("If allocated object is overwritten then not detectable\n\n");
4432 validate_slab_cache(kmalloc_caches
[6]);
4434 pr_err("\nB. Corruption after free\n");
4435 p
= kzalloc(128, GFP_KERNEL
);
4438 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p
);
4439 validate_slab_cache(kmalloc_caches
[7]);
4441 p
= kzalloc(256, GFP_KERNEL
);
4444 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p
);
4445 validate_slab_cache(kmalloc_caches
[8]);
4447 p
= kzalloc(512, GFP_KERNEL
);
4450 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p
);
4451 validate_slab_cache(kmalloc_caches
[9]);
4455 static void resiliency_test(void) {};
4460 enum slab_stat_type
{
4461 SL_ALL
, /* All slabs */
4462 SL_PARTIAL
, /* Only partially allocated slabs */
4463 SL_CPU
, /* Only slabs used for cpu caches */
4464 SL_OBJECTS
, /* Determine allocated objects not slabs */
4465 SL_TOTAL
/* Determine object capacity not slabs */
4468 #define SO_ALL (1 << SL_ALL)
4469 #define SO_PARTIAL (1 << SL_PARTIAL)
4470 #define SO_CPU (1 << SL_CPU)
4471 #define SO_OBJECTS (1 << SL_OBJECTS)
4472 #define SO_TOTAL (1 << SL_TOTAL)
4474 static ssize_t
show_slab_objects(struct kmem_cache
*s
,
4475 char *buf
, unsigned long flags
)
4477 unsigned long total
= 0;
4480 unsigned long *nodes
;
4482 nodes
= kzalloc(sizeof(unsigned long) * nr_node_ids
, GFP_KERNEL
);
4486 if (flags
& SO_CPU
) {
4489 for_each_possible_cpu(cpu
) {
4490 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
,
4495 page
= READ_ONCE(c
->page
);
4499 node
= page_to_nid(page
);
4500 if (flags
& SO_TOTAL
)
4502 else if (flags
& SO_OBJECTS
)
4510 page
= READ_ONCE(c
->partial
);
4512 node
= page_to_nid(page
);
4513 if (flags
& SO_TOTAL
)
4515 else if (flags
& SO_OBJECTS
)
4526 #ifdef CONFIG_SLUB_DEBUG
4527 if (flags
& SO_ALL
) {
4528 struct kmem_cache_node
*n
;
4530 for_each_kmem_cache_node(s
, node
, n
) {
4532 if (flags
& SO_TOTAL
)
4533 x
= atomic_long_read(&n
->total_objects
);
4534 else if (flags
& SO_OBJECTS
)
4535 x
= atomic_long_read(&n
->total_objects
) -
4536 count_partial(n
, count_free
);
4538 x
= atomic_long_read(&n
->nr_slabs
);
4545 if (flags
& SO_PARTIAL
) {
4546 struct kmem_cache_node
*n
;
4548 for_each_kmem_cache_node(s
, node
, n
) {
4549 if (flags
& SO_TOTAL
)
4550 x
= count_partial(n
, count_total
);
4551 else if (flags
& SO_OBJECTS
)
4552 x
= count_partial(n
, count_inuse
);
4559 x
= sprintf(buf
, "%lu", total
);
4561 for (node
= 0; node
< nr_node_ids
; node
++)
4563 x
+= sprintf(buf
+ x
, " N%d=%lu",
4568 return x
+ sprintf(buf
+ x
, "\n");
4571 #ifdef CONFIG_SLUB_DEBUG
4572 static int any_slab_objects(struct kmem_cache
*s
)
4575 struct kmem_cache_node
*n
;
4577 for_each_kmem_cache_node(s
, node
, n
)
4578 if (atomic_long_read(&n
->total_objects
))
4585 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4586 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4588 struct slab_attribute
{
4589 struct attribute attr
;
4590 ssize_t (*show
)(struct kmem_cache
*s
, char *buf
);
4591 ssize_t (*store
)(struct kmem_cache
*s
, const char *x
, size_t count
);
4594 #define SLAB_ATTR_RO(_name) \
4595 static struct slab_attribute _name##_attr = \
4596 __ATTR(_name, 0400, _name##_show, NULL)
4598 #define SLAB_ATTR(_name) \
4599 static struct slab_attribute _name##_attr = \
4600 __ATTR(_name, 0600, _name##_show, _name##_store)
4602 static ssize_t
slab_size_show(struct kmem_cache
*s
, char *buf
)
4604 return sprintf(buf
, "%d\n", s
->size
);
4606 SLAB_ATTR_RO(slab_size
);
4608 static ssize_t
align_show(struct kmem_cache
*s
, char *buf
)
4610 return sprintf(buf
, "%d\n", s
->align
);
4612 SLAB_ATTR_RO(align
);
4614 static ssize_t
object_size_show(struct kmem_cache
*s
, char *buf
)
4616 return sprintf(buf
, "%d\n", s
->object_size
);
4618 SLAB_ATTR_RO(object_size
);
4620 static ssize_t
objs_per_slab_show(struct kmem_cache
*s
, char *buf
)
4622 return sprintf(buf
, "%d\n", oo_objects(s
->oo
));
4624 SLAB_ATTR_RO(objs_per_slab
);
4626 static ssize_t
order_store(struct kmem_cache
*s
,
4627 const char *buf
, size_t length
)
4629 unsigned long order
;
4632 err
= kstrtoul(buf
, 10, &order
);
4636 if (order
> slub_max_order
|| order
< slub_min_order
)
4639 calculate_sizes(s
, order
);
4643 static ssize_t
order_show(struct kmem_cache
*s
, char *buf
)
4645 return sprintf(buf
, "%d\n", oo_order(s
->oo
));
4649 static ssize_t
min_partial_show(struct kmem_cache
*s
, char *buf
)
4651 return sprintf(buf
, "%lu\n", s
->min_partial
);
4654 static ssize_t
min_partial_store(struct kmem_cache
*s
, const char *buf
,
4660 err
= kstrtoul(buf
, 10, &min
);
4664 set_min_partial(s
, min
);
4667 SLAB_ATTR(min_partial
);
4669 static ssize_t
cpu_partial_show(struct kmem_cache
*s
, char *buf
)
4671 return sprintf(buf
, "%u\n", s
->cpu_partial
);
4674 static ssize_t
cpu_partial_store(struct kmem_cache
*s
, const char *buf
,
4677 unsigned long objects
;
4680 err
= kstrtoul(buf
, 10, &objects
);
4683 if (objects
&& !kmem_cache_has_cpu_partial(s
))
4686 s
->cpu_partial
= objects
;
4690 SLAB_ATTR(cpu_partial
);
4692 static ssize_t
ctor_show(struct kmem_cache
*s
, char *buf
)
4696 return sprintf(buf
, "%pS\n", s
->ctor
);
4700 static ssize_t
aliases_show(struct kmem_cache
*s
, char *buf
)
4702 return sprintf(buf
, "%d\n", s
->refcount
< 0 ? 0 : s
->refcount
- 1);
4704 SLAB_ATTR_RO(aliases
);
4706 static ssize_t
partial_show(struct kmem_cache
*s
, char *buf
)
4708 return show_slab_objects(s
, buf
, SO_PARTIAL
);
4710 SLAB_ATTR_RO(partial
);
4712 static ssize_t
cpu_slabs_show(struct kmem_cache
*s
, char *buf
)
4714 return show_slab_objects(s
, buf
, SO_CPU
);
4716 SLAB_ATTR_RO(cpu_slabs
);
4718 static ssize_t
objects_show(struct kmem_cache
*s
, char *buf
)
4720 return show_slab_objects(s
, buf
, SO_ALL
|SO_OBJECTS
);
4722 SLAB_ATTR_RO(objects
);
4724 static ssize_t
objects_partial_show(struct kmem_cache
*s
, char *buf
)
4726 return show_slab_objects(s
, buf
, SO_PARTIAL
|SO_OBJECTS
);
4728 SLAB_ATTR_RO(objects_partial
);
4730 static ssize_t
slabs_cpu_partial_show(struct kmem_cache
*s
, char *buf
)
4737 for_each_online_cpu(cpu
) {
4738 struct page
*page
= per_cpu_ptr(s
->cpu_slab
, cpu
)->partial
;
4741 pages
+= page
->pages
;
4742 objects
+= page
->pobjects
;
4746 len
= sprintf(buf
, "%d(%d)", objects
, pages
);
4749 for_each_online_cpu(cpu
) {
4750 struct page
*page
= per_cpu_ptr(s
->cpu_slab
, cpu
) ->partial
;
4752 if (page
&& len
< PAGE_SIZE
- 20)
4753 len
+= sprintf(buf
+ len
, " C%d=%d(%d)", cpu
,
4754 page
->pobjects
, page
->pages
);
4757 return len
+ sprintf(buf
+ len
, "\n");
4759 SLAB_ATTR_RO(slabs_cpu_partial
);
4761 static ssize_t
reclaim_account_show(struct kmem_cache
*s
, char *buf
)
4763 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RECLAIM_ACCOUNT
));
4766 static ssize_t
reclaim_account_store(struct kmem_cache
*s
,
4767 const char *buf
, size_t length
)
4769 s
->flags
&= ~SLAB_RECLAIM_ACCOUNT
;
4771 s
->flags
|= SLAB_RECLAIM_ACCOUNT
;
4774 SLAB_ATTR(reclaim_account
);
4776 static ssize_t
hwcache_align_show(struct kmem_cache
*s
, char *buf
)
4778 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_HWCACHE_ALIGN
));
4780 SLAB_ATTR_RO(hwcache_align
);
4782 #ifdef CONFIG_ZONE_DMA
4783 static ssize_t
cache_dma_show(struct kmem_cache
*s
, char *buf
)
4785 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CACHE_DMA
));
4787 SLAB_ATTR_RO(cache_dma
);
4790 static ssize_t
destroy_by_rcu_show(struct kmem_cache
*s
, char *buf
)
4792 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DESTROY_BY_RCU
));
4794 SLAB_ATTR_RO(destroy_by_rcu
);
4796 static ssize_t
reserved_show(struct kmem_cache
*s
, char *buf
)
4798 return sprintf(buf
, "%d\n", s
->reserved
);
4800 SLAB_ATTR_RO(reserved
);
4802 #ifdef CONFIG_SLUB_DEBUG
4803 static ssize_t
slabs_show(struct kmem_cache
*s
, char *buf
)
4805 return show_slab_objects(s
, buf
, SO_ALL
);
4807 SLAB_ATTR_RO(slabs
);
4809 static ssize_t
total_objects_show(struct kmem_cache
*s
, char *buf
)
4811 return show_slab_objects(s
, buf
, SO_ALL
|SO_TOTAL
);
4813 SLAB_ATTR_RO(total_objects
);
4815 static ssize_t
sanity_checks_show(struct kmem_cache
*s
, char *buf
)
4817 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DEBUG_FREE
));
4820 static ssize_t
sanity_checks_store(struct kmem_cache
*s
,
4821 const char *buf
, size_t length
)
4823 s
->flags
&= ~SLAB_DEBUG_FREE
;
4824 if (buf
[0] == '1') {
4825 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4826 s
->flags
|= SLAB_DEBUG_FREE
;
4830 SLAB_ATTR(sanity_checks
);
4832 static ssize_t
trace_show(struct kmem_cache
*s
, char *buf
)
4834 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TRACE
));
4837 static ssize_t
trace_store(struct kmem_cache
*s
, const char *buf
,
4841 * Tracing a merged cache is going to give confusing results
4842 * as well as cause other issues like converting a mergeable
4843 * cache into an umergeable one.
4845 if (s
->refcount
> 1)
4848 s
->flags
&= ~SLAB_TRACE
;
4849 if (buf
[0] == '1') {
4850 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4851 s
->flags
|= SLAB_TRACE
;
4857 static ssize_t
red_zone_show(struct kmem_cache
*s
, char *buf
)
4859 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RED_ZONE
));
4862 static ssize_t
red_zone_store(struct kmem_cache
*s
,
4863 const char *buf
, size_t length
)
4865 if (any_slab_objects(s
))
4868 s
->flags
&= ~SLAB_RED_ZONE
;
4869 if (buf
[0] == '1') {
4870 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4871 s
->flags
|= SLAB_RED_ZONE
;
4873 calculate_sizes(s
, -1);
4876 SLAB_ATTR(red_zone
);
4878 static ssize_t
poison_show(struct kmem_cache
*s
, char *buf
)
4880 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_POISON
));
4883 static ssize_t
poison_store(struct kmem_cache
*s
,
4884 const char *buf
, size_t length
)
4886 if (any_slab_objects(s
))
4889 s
->flags
&= ~SLAB_POISON
;
4890 if (buf
[0] == '1') {
4891 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4892 s
->flags
|= SLAB_POISON
;
4894 calculate_sizes(s
, -1);
4899 static ssize_t
store_user_show(struct kmem_cache
*s
, char *buf
)
4901 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_STORE_USER
));
4904 static ssize_t
store_user_store(struct kmem_cache
*s
,
4905 const char *buf
, size_t length
)
4907 if (any_slab_objects(s
))
4910 s
->flags
&= ~SLAB_STORE_USER
;
4911 if (buf
[0] == '1') {
4912 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4913 s
->flags
|= SLAB_STORE_USER
;
4915 calculate_sizes(s
, -1);
4918 SLAB_ATTR(store_user
);
4920 static ssize_t
validate_show(struct kmem_cache
*s
, char *buf
)
4925 static ssize_t
validate_store(struct kmem_cache
*s
,
4926 const char *buf
, size_t length
)
4930 if (buf
[0] == '1') {
4931 ret
= validate_slab_cache(s
);
4937 SLAB_ATTR(validate
);
4939 static ssize_t
alloc_calls_show(struct kmem_cache
*s
, char *buf
)
4941 if (!(s
->flags
& SLAB_STORE_USER
))
4943 return list_locations(s
, buf
, TRACK_ALLOC
);
4945 SLAB_ATTR_RO(alloc_calls
);
4947 static ssize_t
free_calls_show(struct kmem_cache
*s
, char *buf
)
4949 if (!(s
->flags
& SLAB_STORE_USER
))
4951 return list_locations(s
, buf
, TRACK_FREE
);
4953 SLAB_ATTR_RO(free_calls
);
4954 #endif /* CONFIG_SLUB_DEBUG */
4956 #ifdef CONFIG_FAILSLAB
4957 static ssize_t
failslab_show(struct kmem_cache
*s
, char *buf
)
4959 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_FAILSLAB
));
4962 static ssize_t
failslab_store(struct kmem_cache
*s
, const char *buf
,
4965 if (s
->refcount
> 1)
4968 s
->flags
&= ~SLAB_FAILSLAB
;
4970 s
->flags
|= SLAB_FAILSLAB
;
4973 SLAB_ATTR(failslab
);
4976 static ssize_t
shrink_show(struct kmem_cache
*s
, char *buf
)
4981 static ssize_t
shrink_store(struct kmem_cache
*s
,
4982 const char *buf
, size_t length
)
4985 kmem_cache_shrink(s
);
4993 static ssize_t
remote_node_defrag_ratio_show(struct kmem_cache
*s
, char *buf
)
4995 return sprintf(buf
, "%d\n", s
->remote_node_defrag_ratio
/ 10);
4998 static ssize_t
remote_node_defrag_ratio_store(struct kmem_cache
*s
,
4999 const char *buf
, size_t length
)
5001 unsigned long ratio
;
5004 err
= kstrtoul(buf
, 10, &ratio
);
5009 s
->remote_node_defrag_ratio
= ratio
* 10;
5013 SLAB_ATTR(remote_node_defrag_ratio
);
5016 #ifdef CONFIG_SLUB_STATS
5017 static int show_stat(struct kmem_cache
*s
, char *buf
, enum stat_item si
)
5019 unsigned long sum
= 0;
5022 int *data
= kmalloc(nr_cpu_ids
* sizeof(int), GFP_KERNEL
);
5027 for_each_online_cpu(cpu
) {
5028 unsigned x
= per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
];
5034 len
= sprintf(buf
, "%lu", sum
);
5037 for_each_online_cpu(cpu
) {
5038 if (data
[cpu
] && len
< PAGE_SIZE
- 20)
5039 len
+= sprintf(buf
+ len
, " C%d=%u", cpu
, data
[cpu
]);
5043 return len
+ sprintf(buf
+ len
, "\n");
5046 static void clear_stat(struct kmem_cache
*s
, enum stat_item si
)
5050 for_each_online_cpu(cpu
)
5051 per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
] = 0;
5054 #define STAT_ATTR(si, text) \
5055 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5057 return show_stat(s, buf, si); \
5059 static ssize_t text##_store(struct kmem_cache *s, \
5060 const char *buf, size_t length) \
5062 if (buf[0] != '0') \
5064 clear_stat(s, si); \
5069 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5070 STAT_ATTR(ALLOC_SLOWPATH
, alloc_slowpath
);
5071 STAT_ATTR(FREE_FASTPATH
, free_fastpath
);
5072 STAT_ATTR(FREE_SLOWPATH
, free_slowpath
);
5073 STAT_ATTR(FREE_FROZEN
, free_frozen
);
5074 STAT_ATTR(FREE_ADD_PARTIAL
, free_add_partial
);
5075 STAT_ATTR(FREE_REMOVE_PARTIAL
, free_remove_partial
);
5076 STAT_ATTR(ALLOC_FROM_PARTIAL
, alloc_from_partial
);
5077 STAT_ATTR(ALLOC_SLAB
, alloc_slab
);
5078 STAT_ATTR(ALLOC_REFILL
, alloc_refill
);
5079 STAT_ATTR(ALLOC_NODE_MISMATCH
, alloc_node_mismatch
);
5080 STAT_ATTR(FREE_SLAB
, free_slab
);
5081 STAT_ATTR(CPUSLAB_FLUSH
, cpuslab_flush
);
5082 STAT_ATTR(DEACTIVATE_FULL
, deactivate_full
);
5083 STAT_ATTR(DEACTIVATE_EMPTY
, deactivate_empty
);
5084 STAT_ATTR(DEACTIVATE_TO_HEAD
, deactivate_to_head
);
5085 STAT_ATTR(DEACTIVATE_TO_TAIL
, deactivate_to_tail
);
5086 STAT_ATTR(DEACTIVATE_REMOTE_FREES
, deactivate_remote_frees
);
5087 STAT_ATTR(DEACTIVATE_BYPASS
, deactivate_bypass
);
5088 STAT_ATTR(ORDER_FALLBACK
, order_fallback
);
5089 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL
, cmpxchg_double_cpu_fail
);
5090 STAT_ATTR(CMPXCHG_DOUBLE_FAIL
, cmpxchg_double_fail
);
5091 STAT_ATTR(CPU_PARTIAL_ALLOC
, cpu_partial_alloc
);
5092 STAT_ATTR(CPU_PARTIAL_FREE
, cpu_partial_free
);
5093 STAT_ATTR(CPU_PARTIAL_NODE
, cpu_partial_node
);
5094 STAT_ATTR(CPU_PARTIAL_DRAIN
, cpu_partial_drain
);
5097 static struct attribute
*slab_attrs
[] = {
5098 &slab_size_attr
.attr
,
5099 &object_size_attr
.attr
,
5100 &objs_per_slab_attr
.attr
,
5102 &min_partial_attr
.attr
,
5103 &cpu_partial_attr
.attr
,
5105 &objects_partial_attr
.attr
,
5107 &cpu_slabs_attr
.attr
,
5111 &hwcache_align_attr
.attr
,
5112 &reclaim_account_attr
.attr
,
5113 &destroy_by_rcu_attr
.attr
,
5115 &reserved_attr
.attr
,
5116 &slabs_cpu_partial_attr
.attr
,
5117 #ifdef CONFIG_SLUB_DEBUG
5118 &total_objects_attr
.attr
,
5120 &sanity_checks_attr
.attr
,
5122 &red_zone_attr
.attr
,
5124 &store_user_attr
.attr
,
5125 &validate_attr
.attr
,
5126 &alloc_calls_attr
.attr
,
5127 &free_calls_attr
.attr
,
5129 #ifdef CONFIG_ZONE_DMA
5130 &cache_dma_attr
.attr
,
5133 &remote_node_defrag_ratio_attr
.attr
,
5135 #ifdef CONFIG_SLUB_STATS
5136 &alloc_fastpath_attr
.attr
,
5137 &alloc_slowpath_attr
.attr
,
5138 &free_fastpath_attr
.attr
,
5139 &free_slowpath_attr
.attr
,
5140 &free_frozen_attr
.attr
,
5141 &free_add_partial_attr
.attr
,
5142 &free_remove_partial_attr
.attr
,
5143 &alloc_from_partial_attr
.attr
,
5144 &alloc_slab_attr
.attr
,
5145 &alloc_refill_attr
.attr
,
5146 &alloc_node_mismatch_attr
.attr
,
5147 &free_slab_attr
.attr
,
5148 &cpuslab_flush_attr
.attr
,
5149 &deactivate_full_attr
.attr
,
5150 &deactivate_empty_attr
.attr
,
5151 &deactivate_to_head_attr
.attr
,
5152 &deactivate_to_tail_attr
.attr
,
5153 &deactivate_remote_frees_attr
.attr
,
5154 &deactivate_bypass_attr
.attr
,
5155 &order_fallback_attr
.attr
,
5156 &cmpxchg_double_fail_attr
.attr
,
5157 &cmpxchg_double_cpu_fail_attr
.attr
,
5158 &cpu_partial_alloc_attr
.attr
,
5159 &cpu_partial_free_attr
.attr
,
5160 &cpu_partial_node_attr
.attr
,
5161 &cpu_partial_drain_attr
.attr
,
5163 #ifdef CONFIG_FAILSLAB
5164 &failslab_attr
.attr
,
5170 static struct attribute_group slab_attr_group
= {
5171 .attrs
= slab_attrs
,
5174 static ssize_t
slab_attr_show(struct kobject
*kobj
,
5175 struct attribute
*attr
,
5178 struct slab_attribute
*attribute
;
5179 struct kmem_cache
*s
;
5182 attribute
= to_slab_attr(attr
);
5185 if (!attribute
->show
)
5188 err
= attribute
->show(s
, buf
);
5193 static ssize_t
slab_attr_store(struct kobject
*kobj
,
5194 struct attribute
*attr
,
5195 const char *buf
, size_t len
)
5197 struct slab_attribute
*attribute
;
5198 struct kmem_cache
*s
;
5201 attribute
= to_slab_attr(attr
);
5204 if (!attribute
->store
)
5207 err
= attribute
->store(s
, buf
, len
);
5208 #ifdef CONFIG_MEMCG_KMEM
5209 if (slab_state
>= FULL
&& err
>= 0 && is_root_cache(s
)) {
5210 struct kmem_cache
*c
;
5212 mutex_lock(&slab_mutex
);
5213 if (s
->max_attr_size
< len
)
5214 s
->max_attr_size
= len
;
5217 * This is a best effort propagation, so this function's return
5218 * value will be determined by the parent cache only. This is
5219 * basically because not all attributes will have a well
5220 * defined semantics for rollbacks - most of the actions will
5221 * have permanent effects.
5223 * Returning the error value of any of the children that fail
5224 * is not 100 % defined, in the sense that users seeing the
5225 * error code won't be able to know anything about the state of
5228 * Only returning the error code for the parent cache at least
5229 * has well defined semantics. The cache being written to
5230 * directly either failed or succeeded, in which case we loop
5231 * through the descendants with best-effort propagation.
5233 for_each_memcg_cache(c
, s
)
5234 attribute
->store(c
, buf
, len
);
5235 mutex_unlock(&slab_mutex
);
5241 static void memcg_propagate_slab_attrs(struct kmem_cache
*s
)
5243 #ifdef CONFIG_MEMCG_KMEM
5245 char *buffer
= NULL
;
5246 struct kmem_cache
*root_cache
;
5248 if (is_root_cache(s
))
5251 root_cache
= s
->memcg_params
.root_cache
;
5254 * This mean this cache had no attribute written. Therefore, no point
5255 * in copying default values around
5257 if (!root_cache
->max_attr_size
)
5260 for (i
= 0; i
< ARRAY_SIZE(slab_attrs
); i
++) {
5263 struct slab_attribute
*attr
= to_slab_attr(slab_attrs
[i
]);
5265 if (!attr
|| !attr
->store
|| !attr
->show
)
5269 * It is really bad that we have to allocate here, so we will
5270 * do it only as a fallback. If we actually allocate, though,
5271 * we can just use the allocated buffer until the end.
5273 * Most of the slub attributes will tend to be very small in
5274 * size, but sysfs allows buffers up to a page, so they can
5275 * theoretically happen.
5279 else if (root_cache
->max_attr_size
< ARRAY_SIZE(mbuf
))
5282 buffer
= (char *) get_zeroed_page(GFP_KERNEL
);
5283 if (WARN_ON(!buffer
))
5288 attr
->show(root_cache
, buf
);
5289 attr
->store(s
, buf
, strlen(buf
));
5293 free_page((unsigned long)buffer
);
5297 static void kmem_cache_release(struct kobject
*k
)
5299 slab_kmem_cache_release(to_slab(k
));
5302 static const struct sysfs_ops slab_sysfs_ops
= {
5303 .show
= slab_attr_show
,
5304 .store
= slab_attr_store
,
5307 static struct kobj_type slab_ktype
= {
5308 .sysfs_ops
= &slab_sysfs_ops
,
5309 .release
= kmem_cache_release
,
5312 static int uevent_filter(struct kset
*kset
, struct kobject
*kobj
)
5314 struct kobj_type
*ktype
= get_ktype(kobj
);
5316 if (ktype
== &slab_ktype
)
5321 static const struct kset_uevent_ops slab_uevent_ops
= {
5322 .filter
= uevent_filter
,
5325 static struct kset
*slab_kset
;
5327 static inline struct kset
*cache_kset(struct kmem_cache
*s
)
5329 #ifdef CONFIG_MEMCG_KMEM
5330 if (!is_root_cache(s
))
5331 return s
->memcg_params
.root_cache
->memcg_kset
;
5336 #define ID_STR_LENGTH 64
5338 /* Create a unique string id for a slab cache:
5340 * Format :[flags-]size
5342 static char *create_unique_id(struct kmem_cache
*s
)
5344 char *name
= kmalloc(ID_STR_LENGTH
, GFP_KERNEL
);
5351 * First flags affecting slabcache operations. We will only
5352 * get here for aliasable slabs so we do not need to support
5353 * too many flags. The flags here must cover all flags that
5354 * are matched during merging to guarantee that the id is
5357 if (s
->flags
& SLAB_CACHE_DMA
)
5359 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
5361 if (s
->flags
& SLAB_DEBUG_FREE
)
5363 if (!(s
->flags
& SLAB_NOTRACK
))
5367 p
+= sprintf(p
, "%07d", s
->size
);
5369 BUG_ON(p
> name
+ ID_STR_LENGTH
- 1);
5373 static int sysfs_slab_add(struct kmem_cache
*s
)
5377 int unmergeable
= slab_unmergeable(s
);
5381 * Slabcache can never be merged so we can use the name proper.
5382 * This is typically the case for debug situations. In that
5383 * case we can catch duplicate names easily.
5385 sysfs_remove_link(&slab_kset
->kobj
, s
->name
);
5389 * Create a unique name for the slab as a target
5392 name
= create_unique_id(s
);
5395 s
->kobj
.kset
= cache_kset(s
);
5396 err
= kobject_init_and_add(&s
->kobj
, &slab_ktype
, NULL
, "%s", name
);
5400 err
= sysfs_create_group(&s
->kobj
, &slab_attr_group
);
5404 #ifdef CONFIG_MEMCG_KMEM
5405 if (is_root_cache(s
)) {
5406 s
->memcg_kset
= kset_create_and_add("cgroup", NULL
, &s
->kobj
);
5407 if (!s
->memcg_kset
) {
5414 kobject_uevent(&s
->kobj
, KOBJ_ADD
);
5416 /* Setup first alias */
5417 sysfs_slab_alias(s
, s
->name
);
5424 kobject_del(&s
->kobj
);
5428 void sysfs_slab_remove(struct kmem_cache
*s
)
5430 if (slab_state
< FULL
)
5432 * Sysfs has not been setup yet so no need to remove the
5437 #ifdef CONFIG_MEMCG_KMEM
5438 kset_unregister(s
->memcg_kset
);
5440 kobject_uevent(&s
->kobj
, KOBJ_REMOVE
);
5441 kobject_del(&s
->kobj
);
5442 kobject_put(&s
->kobj
);
5446 * Need to buffer aliases during bootup until sysfs becomes
5447 * available lest we lose that information.
5449 struct saved_alias
{
5450 struct kmem_cache
*s
;
5452 struct saved_alias
*next
;
5455 static struct saved_alias
*alias_list
;
5457 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *name
)
5459 struct saved_alias
*al
;
5461 if (slab_state
== FULL
) {
5463 * If we have a leftover link then remove it.
5465 sysfs_remove_link(&slab_kset
->kobj
, name
);
5466 return sysfs_create_link(&slab_kset
->kobj
, &s
->kobj
, name
);
5469 al
= kmalloc(sizeof(struct saved_alias
), GFP_KERNEL
);
5475 al
->next
= alias_list
;
5480 static int __init
slab_sysfs_init(void)
5482 struct kmem_cache
*s
;
5485 mutex_lock(&slab_mutex
);
5487 slab_kset
= kset_create_and_add("slab", &slab_uevent_ops
, kernel_kobj
);
5489 mutex_unlock(&slab_mutex
);
5490 pr_err("Cannot register slab subsystem.\n");
5496 list_for_each_entry(s
, &slab_caches
, list
) {
5497 err
= sysfs_slab_add(s
);
5499 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5503 while (alias_list
) {
5504 struct saved_alias
*al
= alias_list
;
5506 alias_list
= alias_list
->next
;
5507 err
= sysfs_slab_alias(al
->s
, al
->name
);
5509 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5514 mutex_unlock(&slab_mutex
);
5519 __initcall(slab_sysfs_init
);
5520 #endif /* CONFIG_SYSFS */
5523 * The /proc/slabinfo ABI
5525 #ifdef CONFIG_SLABINFO
5526 void get_slabinfo(struct kmem_cache
*s
, struct slabinfo
*sinfo
)
5528 unsigned long nr_slabs
= 0;
5529 unsigned long nr_objs
= 0;
5530 unsigned long nr_free
= 0;
5532 struct kmem_cache_node
*n
;
5534 for_each_kmem_cache_node(s
, node
, n
) {
5535 nr_slabs
+= node_nr_slabs(n
);
5536 nr_objs
+= node_nr_objs(n
);
5537 nr_free
+= count_partial(n
, count_free
);
5540 sinfo
->active_objs
= nr_objs
- nr_free
;
5541 sinfo
->num_objs
= nr_objs
;
5542 sinfo
->active_slabs
= nr_slabs
;
5543 sinfo
->num_slabs
= nr_slabs
;
5544 sinfo
->objects_per_slab
= oo_objects(s
->oo
);
5545 sinfo
->cache_order
= oo_order(s
->oo
);
5548 void slabinfo_show_stats(struct seq_file
*m
, struct kmem_cache
*s
)
5552 ssize_t
slabinfo_write(struct file
*file
, const char __user
*buffer
,
5553 size_t count
, loff_t
*ppos
)
5557 #endif /* CONFIG_SLABINFO */