hyperv: Add processing of MTU reduced by the host
[linux/fpc-iii.git] / fs / dcache.c
blob3ffef7f4e5cdd9d00ca454130070f4619a8707d6
1 /*
2 * fs/dcache.c
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
9 /*
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include "internal.h"
42 #include "mount.h"
45 * Usage:
46 * dcache->d_inode->i_lock protects:
47 * - i_dentry, d_alias, d_inode of aliases
48 * dcache_hash_bucket lock protects:
49 * - the dcache hash table
50 * s_anon bl list spinlock protects:
51 * - the s_anon list (see __d_drop)
52 * dentry->d_sb->s_dentry_lru_lock protects:
53 * - the dcache lru lists and counters
54 * d_lock protects:
55 * - d_flags
56 * - d_name
57 * - d_lru
58 * - d_count
59 * - d_unhashed()
60 * - d_parent and d_subdirs
61 * - childrens' d_child and d_parent
62 * - d_alias, d_inode
64 * Ordering:
65 * dentry->d_inode->i_lock
66 * dentry->d_lock
67 * dentry->d_sb->s_dentry_lru_lock
68 * dcache_hash_bucket lock
69 * s_anon lock
71 * If there is an ancestor relationship:
72 * dentry->d_parent->...->d_parent->d_lock
73 * ...
74 * dentry->d_parent->d_lock
75 * dentry->d_lock
77 * If no ancestor relationship:
78 * if (dentry1 < dentry2)
79 * dentry1->d_lock
80 * dentry2->d_lock
82 int sysctl_vfs_cache_pressure __read_mostly = 100;
83 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
87 EXPORT_SYMBOL(rename_lock);
89 static struct kmem_cache *dentry_cache __read_mostly;
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
100 static unsigned int d_hash_mask __read_mostly;
101 static unsigned int d_hash_shift __read_mostly;
103 static struct hlist_bl_head *dentry_hashtable __read_mostly;
105 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
106 unsigned int hash)
108 hash += (unsigned long) parent / L1_CACHE_BYTES;
109 return dentry_hashtable + hash_32(hash, d_hash_shift);
112 /* Statistics gathering. */
113 struct dentry_stat_t dentry_stat = {
114 .age_limit = 45,
117 static DEFINE_PER_CPU(long, nr_dentry);
118 static DEFINE_PER_CPU(long, nr_dentry_unused);
120 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
123 * Here we resort to our own counters instead of using generic per-cpu counters
124 * for consistency with what the vfs inode code does. We are expected to harvest
125 * better code and performance by having our own specialized counters.
127 * Please note that the loop is done over all possible CPUs, not over all online
128 * CPUs. The reason for this is that we don't want to play games with CPUs going
129 * on and off. If one of them goes off, we will just keep their counters.
131 * glommer: See cffbc8a for details, and if you ever intend to change this,
132 * please update all vfs counters to match.
134 static long get_nr_dentry(void)
136 int i;
137 long sum = 0;
138 for_each_possible_cpu(i)
139 sum += per_cpu(nr_dentry, i);
140 return sum < 0 ? 0 : sum;
143 static long get_nr_dentry_unused(void)
145 int i;
146 long sum = 0;
147 for_each_possible_cpu(i)
148 sum += per_cpu(nr_dentry_unused, i);
149 return sum < 0 ? 0 : sum;
152 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
153 size_t *lenp, loff_t *ppos)
155 dentry_stat.nr_dentry = get_nr_dentry();
156 dentry_stat.nr_unused = get_nr_dentry_unused();
157 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
159 #endif
162 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
163 * The strings are both count bytes long, and count is non-zero.
165 #ifdef CONFIG_DCACHE_WORD_ACCESS
167 #include <asm/word-at-a-time.h>
169 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
170 * aligned allocation for this particular component. We don't
171 * strictly need the load_unaligned_zeropad() safety, but it
172 * doesn't hurt either.
174 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
175 * need the careful unaligned handling.
177 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
179 unsigned long a,b,mask;
181 for (;;) {
182 a = *(unsigned long *)cs;
183 b = load_unaligned_zeropad(ct);
184 if (tcount < sizeof(unsigned long))
185 break;
186 if (unlikely(a != b))
187 return 1;
188 cs += sizeof(unsigned long);
189 ct += sizeof(unsigned long);
190 tcount -= sizeof(unsigned long);
191 if (!tcount)
192 return 0;
194 mask = bytemask_from_count(tcount);
195 return unlikely(!!((a ^ b) & mask));
198 #else
200 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
202 do {
203 if (*cs != *ct)
204 return 1;
205 cs++;
206 ct++;
207 tcount--;
208 } while (tcount);
209 return 0;
212 #endif
214 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
216 const unsigned char *cs;
218 * Be careful about RCU walk racing with rename:
219 * use ACCESS_ONCE to fetch the name pointer.
221 * NOTE! Even if a rename will mean that the length
222 * was not loaded atomically, we don't care. The
223 * RCU walk will check the sequence count eventually,
224 * and catch it. And we won't overrun the buffer,
225 * because we're reading the name pointer atomically,
226 * and a dentry name is guaranteed to be properly
227 * terminated with a NUL byte.
229 * End result: even if 'len' is wrong, we'll exit
230 * early because the data cannot match (there can
231 * be no NUL in the ct/tcount data)
233 cs = ACCESS_ONCE(dentry->d_name.name);
234 smp_read_barrier_depends();
235 return dentry_string_cmp(cs, ct, tcount);
238 struct external_name {
239 union {
240 atomic_t count;
241 struct rcu_head head;
242 } u;
243 unsigned char name[];
246 static inline struct external_name *external_name(struct dentry *dentry)
248 return container_of(dentry->d_name.name, struct external_name, name[0]);
251 static void __d_free(struct rcu_head *head)
253 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
255 WARN_ON(!hlist_unhashed(&dentry->d_alias));
256 kmem_cache_free(dentry_cache, dentry);
259 static void __d_free_external(struct rcu_head *head)
261 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
262 WARN_ON(!hlist_unhashed(&dentry->d_alias));
263 kfree(external_name(dentry));
264 kmem_cache_free(dentry_cache, dentry);
267 static inline int dname_external(const struct dentry *dentry)
269 return dentry->d_name.name != dentry->d_iname;
272 static void dentry_free(struct dentry *dentry)
274 if (unlikely(dname_external(dentry))) {
275 struct external_name *p = external_name(dentry);
276 if (likely(atomic_dec_and_test(&p->u.count))) {
277 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
278 return;
281 /* if dentry was never visible to RCU, immediate free is OK */
282 if (!(dentry->d_flags & DCACHE_RCUACCESS))
283 __d_free(&dentry->d_u.d_rcu);
284 else
285 call_rcu(&dentry->d_u.d_rcu, __d_free);
289 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
290 * @dentry: the target dentry
291 * After this call, in-progress rcu-walk path lookup will fail. This
292 * should be called after unhashing, and after changing d_inode (if
293 * the dentry has not already been unhashed).
295 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
297 assert_spin_locked(&dentry->d_lock);
298 /* Go through a barrier */
299 write_seqcount_barrier(&dentry->d_seq);
303 * Release the dentry's inode, using the filesystem
304 * d_iput() operation if defined. Dentry has no refcount
305 * and is unhashed.
307 static void dentry_iput(struct dentry * dentry)
308 __releases(dentry->d_lock)
309 __releases(dentry->d_inode->i_lock)
311 struct inode *inode = dentry->d_inode;
312 if (inode) {
313 dentry->d_inode = NULL;
314 hlist_del_init(&dentry->d_alias);
315 spin_unlock(&dentry->d_lock);
316 spin_unlock(&inode->i_lock);
317 if (!inode->i_nlink)
318 fsnotify_inoderemove(inode);
319 if (dentry->d_op && dentry->d_op->d_iput)
320 dentry->d_op->d_iput(dentry, inode);
321 else
322 iput(inode);
323 } else {
324 spin_unlock(&dentry->d_lock);
329 * Release the dentry's inode, using the filesystem
330 * d_iput() operation if defined. dentry remains in-use.
332 static void dentry_unlink_inode(struct dentry * dentry)
333 __releases(dentry->d_lock)
334 __releases(dentry->d_inode->i_lock)
336 struct inode *inode = dentry->d_inode;
337 __d_clear_type(dentry);
338 dentry->d_inode = NULL;
339 hlist_del_init(&dentry->d_alias);
340 dentry_rcuwalk_barrier(dentry);
341 spin_unlock(&dentry->d_lock);
342 spin_unlock(&inode->i_lock);
343 if (!inode->i_nlink)
344 fsnotify_inoderemove(inode);
345 if (dentry->d_op && dentry->d_op->d_iput)
346 dentry->d_op->d_iput(dentry, inode);
347 else
348 iput(inode);
352 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
353 * is in use - which includes both the "real" per-superblock
354 * LRU list _and_ the DCACHE_SHRINK_LIST use.
356 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
357 * on the shrink list (ie not on the superblock LRU list).
359 * The per-cpu "nr_dentry_unused" counters are updated with
360 * the DCACHE_LRU_LIST bit.
362 * These helper functions make sure we always follow the
363 * rules. d_lock must be held by the caller.
365 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
366 static void d_lru_add(struct dentry *dentry)
368 D_FLAG_VERIFY(dentry, 0);
369 dentry->d_flags |= DCACHE_LRU_LIST;
370 this_cpu_inc(nr_dentry_unused);
371 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
374 static void d_lru_del(struct dentry *dentry)
376 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
377 dentry->d_flags &= ~DCACHE_LRU_LIST;
378 this_cpu_dec(nr_dentry_unused);
379 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
382 static void d_shrink_del(struct dentry *dentry)
384 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
385 list_del_init(&dentry->d_lru);
386 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
387 this_cpu_dec(nr_dentry_unused);
390 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
392 D_FLAG_VERIFY(dentry, 0);
393 list_add(&dentry->d_lru, list);
394 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
395 this_cpu_inc(nr_dentry_unused);
399 * These can only be called under the global LRU lock, ie during the
400 * callback for freeing the LRU list. "isolate" removes it from the
401 * LRU lists entirely, while shrink_move moves it to the indicated
402 * private list.
404 static void d_lru_isolate(struct dentry *dentry)
406 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
407 dentry->d_flags &= ~DCACHE_LRU_LIST;
408 this_cpu_dec(nr_dentry_unused);
409 list_del_init(&dentry->d_lru);
412 static void d_lru_shrink_move(struct dentry *dentry, struct list_head *list)
414 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
415 dentry->d_flags |= DCACHE_SHRINK_LIST;
416 list_move_tail(&dentry->d_lru, list);
420 * dentry_lru_(add|del)_list) must be called with d_lock held.
422 static void dentry_lru_add(struct dentry *dentry)
424 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
425 d_lru_add(dentry);
429 * d_drop - drop a dentry
430 * @dentry: dentry to drop
432 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
433 * be found through a VFS lookup any more. Note that this is different from
434 * deleting the dentry - d_delete will try to mark the dentry negative if
435 * possible, giving a successful _negative_ lookup, while d_drop will
436 * just make the cache lookup fail.
438 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
439 * reason (NFS timeouts or autofs deletes).
441 * __d_drop requires dentry->d_lock.
443 void __d_drop(struct dentry *dentry)
445 if (!d_unhashed(dentry)) {
446 struct hlist_bl_head *b;
448 * Hashed dentries are normally on the dentry hashtable,
449 * with the exception of those newly allocated by
450 * d_obtain_alias, which are always IS_ROOT:
452 if (unlikely(IS_ROOT(dentry)))
453 b = &dentry->d_sb->s_anon;
454 else
455 b = d_hash(dentry->d_parent, dentry->d_name.hash);
457 hlist_bl_lock(b);
458 __hlist_bl_del(&dentry->d_hash);
459 dentry->d_hash.pprev = NULL;
460 hlist_bl_unlock(b);
461 dentry_rcuwalk_barrier(dentry);
464 EXPORT_SYMBOL(__d_drop);
466 void d_drop(struct dentry *dentry)
468 spin_lock(&dentry->d_lock);
469 __d_drop(dentry);
470 spin_unlock(&dentry->d_lock);
472 EXPORT_SYMBOL(d_drop);
474 static void __dentry_kill(struct dentry *dentry)
476 struct dentry *parent = NULL;
477 bool can_free = true;
478 if (!IS_ROOT(dentry))
479 parent = dentry->d_parent;
482 * The dentry is now unrecoverably dead to the world.
484 lockref_mark_dead(&dentry->d_lockref);
487 * inform the fs via d_prune that this dentry is about to be
488 * unhashed and destroyed.
490 if (dentry->d_flags & DCACHE_OP_PRUNE)
491 dentry->d_op->d_prune(dentry);
493 if (dentry->d_flags & DCACHE_LRU_LIST) {
494 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
495 d_lru_del(dentry);
497 /* if it was on the hash then remove it */
498 __d_drop(dentry);
499 list_del(&dentry->d_u.d_child);
501 * Inform d_walk() that we are no longer attached to the
502 * dentry tree
504 dentry->d_flags |= DCACHE_DENTRY_KILLED;
505 if (parent)
506 spin_unlock(&parent->d_lock);
507 dentry_iput(dentry);
509 * dentry_iput drops the locks, at which point nobody (except
510 * transient RCU lookups) can reach this dentry.
512 BUG_ON((int)dentry->d_lockref.count > 0);
513 this_cpu_dec(nr_dentry);
514 if (dentry->d_op && dentry->d_op->d_release)
515 dentry->d_op->d_release(dentry);
517 spin_lock(&dentry->d_lock);
518 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
519 dentry->d_flags |= DCACHE_MAY_FREE;
520 can_free = false;
522 spin_unlock(&dentry->d_lock);
523 if (likely(can_free))
524 dentry_free(dentry);
528 * Finish off a dentry we've decided to kill.
529 * dentry->d_lock must be held, returns with it unlocked.
530 * If ref is non-zero, then decrement the refcount too.
531 * Returns dentry requiring refcount drop, or NULL if we're done.
533 static struct dentry *dentry_kill(struct dentry *dentry)
534 __releases(dentry->d_lock)
536 struct inode *inode = dentry->d_inode;
537 struct dentry *parent = NULL;
539 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
540 goto failed;
542 if (!IS_ROOT(dentry)) {
543 parent = dentry->d_parent;
544 if (unlikely(!spin_trylock(&parent->d_lock))) {
545 if (inode)
546 spin_unlock(&inode->i_lock);
547 goto failed;
551 __dentry_kill(dentry);
552 return parent;
554 failed:
555 spin_unlock(&dentry->d_lock);
556 cpu_relax();
557 return dentry; /* try again with same dentry */
560 static inline struct dentry *lock_parent(struct dentry *dentry)
562 struct dentry *parent = dentry->d_parent;
563 if (IS_ROOT(dentry))
564 return NULL;
565 if (unlikely((int)dentry->d_lockref.count < 0))
566 return NULL;
567 if (likely(spin_trylock(&parent->d_lock)))
568 return parent;
569 rcu_read_lock();
570 spin_unlock(&dentry->d_lock);
571 again:
572 parent = ACCESS_ONCE(dentry->d_parent);
573 spin_lock(&parent->d_lock);
575 * We can't blindly lock dentry until we are sure
576 * that we won't violate the locking order.
577 * Any changes of dentry->d_parent must have
578 * been done with parent->d_lock held, so
579 * spin_lock() above is enough of a barrier
580 * for checking if it's still our child.
582 if (unlikely(parent != dentry->d_parent)) {
583 spin_unlock(&parent->d_lock);
584 goto again;
586 rcu_read_unlock();
587 if (parent != dentry)
588 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
589 else
590 parent = NULL;
591 return parent;
595 * This is dput
597 * This is complicated by the fact that we do not want to put
598 * dentries that are no longer on any hash chain on the unused
599 * list: we'd much rather just get rid of them immediately.
601 * However, that implies that we have to traverse the dentry
602 * tree upwards to the parents which might _also_ now be
603 * scheduled for deletion (it may have been only waiting for
604 * its last child to go away).
606 * This tail recursion is done by hand as we don't want to depend
607 * on the compiler to always get this right (gcc generally doesn't).
608 * Real recursion would eat up our stack space.
612 * dput - release a dentry
613 * @dentry: dentry to release
615 * Release a dentry. This will drop the usage count and if appropriate
616 * call the dentry unlink method as well as removing it from the queues and
617 * releasing its resources. If the parent dentries were scheduled for release
618 * they too may now get deleted.
620 void dput(struct dentry *dentry)
622 if (unlikely(!dentry))
623 return;
625 repeat:
626 if (lockref_put_or_lock(&dentry->d_lockref))
627 return;
629 /* Unreachable? Get rid of it */
630 if (unlikely(d_unhashed(dentry)))
631 goto kill_it;
633 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
634 if (dentry->d_op->d_delete(dentry))
635 goto kill_it;
638 if (!(dentry->d_flags & DCACHE_REFERENCED))
639 dentry->d_flags |= DCACHE_REFERENCED;
640 dentry_lru_add(dentry);
642 dentry->d_lockref.count--;
643 spin_unlock(&dentry->d_lock);
644 return;
646 kill_it:
647 dentry = dentry_kill(dentry);
648 if (dentry)
649 goto repeat;
651 EXPORT_SYMBOL(dput);
654 /* This must be called with d_lock held */
655 static inline void __dget_dlock(struct dentry *dentry)
657 dentry->d_lockref.count++;
660 static inline void __dget(struct dentry *dentry)
662 lockref_get(&dentry->d_lockref);
665 struct dentry *dget_parent(struct dentry *dentry)
667 int gotref;
668 struct dentry *ret;
671 * Do optimistic parent lookup without any
672 * locking.
674 rcu_read_lock();
675 ret = ACCESS_ONCE(dentry->d_parent);
676 gotref = lockref_get_not_zero(&ret->d_lockref);
677 rcu_read_unlock();
678 if (likely(gotref)) {
679 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
680 return ret;
681 dput(ret);
684 repeat:
686 * Don't need rcu_dereference because we re-check it was correct under
687 * the lock.
689 rcu_read_lock();
690 ret = dentry->d_parent;
691 spin_lock(&ret->d_lock);
692 if (unlikely(ret != dentry->d_parent)) {
693 spin_unlock(&ret->d_lock);
694 rcu_read_unlock();
695 goto repeat;
697 rcu_read_unlock();
698 BUG_ON(!ret->d_lockref.count);
699 ret->d_lockref.count++;
700 spin_unlock(&ret->d_lock);
701 return ret;
703 EXPORT_SYMBOL(dget_parent);
706 * d_find_alias - grab a hashed alias of inode
707 * @inode: inode in question
709 * If inode has a hashed alias, or is a directory and has any alias,
710 * acquire the reference to alias and return it. Otherwise return NULL.
711 * Notice that if inode is a directory there can be only one alias and
712 * it can be unhashed only if it has no children, or if it is the root
713 * of a filesystem, or if the directory was renamed and d_revalidate
714 * was the first vfs operation to notice.
716 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
717 * any other hashed alias over that one.
719 static struct dentry *__d_find_alias(struct inode *inode)
721 struct dentry *alias, *discon_alias;
723 again:
724 discon_alias = NULL;
725 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
726 spin_lock(&alias->d_lock);
727 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
728 if (IS_ROOT(alias) &&
729 (alias->d_flags & DCACHE_DISCONNECTED)) {
730 discon_alias = alias;
731 } else {
732 __dget_dlock(alias);
733 spin_unlock(&alias->d_lock);
734 return alias;
737 spin_unlock(&alias->d_lock);
739 if (discon_alias) {
740 alias = discon_alias;
741 spin_lock(&alias->d_lock);
742 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
743 __dget_dlock(alias);
744 spin_unlock(&alias->d_lock);
745 return alias;
747 spin_unlock(&alias->d_lock);
748 goto again;
750 return NULL;
753 struct dentry *d_find_alias(struct inode *inode)
755 struct dentry *de = NULL;
757 if (!hlist_empty(&inode->i_dentry)) {
758 spin_lock(&inode->i_lock);
759 de = __d_find_alias(inode);
760 spin_unlock(&inode->i_lock);
762 return de;
764 EXPORT_SYMBOL(d_find_alias);
767 * Try to kill dentries associated with this inode.
768 * WARNING: you must own a reference to inode.
770 void d_prune_aliases(struct inode *inode)
772 struct dentry *dentry;
773 restart:
774 spin_lock(&inode->i_lock);
775 hlist_for_each_entry(dentry, &inode->i_dentry, d_alias) {
776 spin_lock(&dentry->d_lock);
777 if (!dentry->d_lockref.count) {
778 struct dentry *parent = lock_parent(dentry);
779 if (likely(!dentry->d_lockref.count)) {
780 __dentry_kill(dentry);
781 goto restart;
783 if (parent)
784 spin_unlock(&parent->d_lock);
786 spin_unlock(&dentry->d_lock);
788 spin_unlock(&inode->i_lock);
790 EXPORT_SYMBOL(d_prune_aliases);
792 static void shrink_dentry_list(struct list_head *list)
794 struct dentry *dentry, *parent;
796 while (!list_empty(list)) {
797 struct inode *inode;
798 dentry = list_entry(list->prev, struct dentry, d_lru);
799 spin_lock(&dentry->d_lock);
800 parent = lock_parent(dentry);
803 * The dispose list is isolated and dentries are not accounted
804 * to the LRU here, so we can simply remove it from the list
805 * here regardless of whether it is referenced or not.
807 d_shrink_del(dentry);
810 * We found an inuse dentry which was not removed from
811 * the LRU because of laziness during lookup. Do not free it.
813 if ((int)dentry->d_lockref.count > 0) {
814 spin_unlock(&dentry->d_lock);
815 if (parent)
816 spin_unlock(&parent->d_lock);
817 continue;
821 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
822 bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
823 spin_unlock(&dentry->d_lock);
824 if (parent)
825 spin_unlock(&parent->d_lock);
826 if (can_free)
827 dentry_free(dentry);
828 continue;
831 inode = dentry->d_inode;
832 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
833 d_shrink_add(dentry, list);
834 spin_unlock(&dentry->d_lock);
835 if (parent)
836 spin_unlock(&parent->d_lock);
837 continue;
840 __dentry_kill(dentry);
843 * We need to prune ancestors too. This is necessary to prevent
844 * quadratic behavior of shrink_dcache_parent(), but is also
845 * expected to be beneficial in reducing dentry cache
846 * fragmentation.
848 dentry = parent;
849 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
850 parent = lock_parent(dentry);
851 if (dentry->d_lockref.count != 1) {
852 dentry->d_lockref.count--;
853 spin_unlock(&dentry->d_lock);
854 if (parent)
855 spin_unlock(&parent->d_lock);
856 break;
858 inode = dentry->d_inode; /* can't be NULL */
859 if (unlikely(!spin_trylock(&inode->i_lock))) {
860 spin_unlock(&dentry->d_lock);
861 if (parent)
862 spin_unlock(&parent->d_lock);
863 cpu_relax();
864 continue;
866 __dentry_kill(dentry);
867 dentry = parent;
872 static enum lru_status
873 dentry_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg)
875 struct list_head *freeable = arg;
876 struct dentry *dentry = container_of(item, struct dentry, d_lru);
880 * we are inverting the lru lock/dentry->d_lock here,
881 * so use a trylock. If we fail to get the lock, just skip
882 * it
884 if (!spin_trylock(&dentry->d_lock))
885 return LRU_SKIP;
888 * Referenced dentries are still in use. If they have active
889 * counts, just remove them from the LRU. Otherwise give them
890 * another pass through the LRU.
892 if (dentry->d_lockref.count) {
893 d_lru_isolate(dentry);
894 spin_unlock(&dentry->d_lock);
895 return LRU_REMOVED;
898 if (dentry->d_flags & DCACHE_REFERENCED) {
899 dentry->d_flags &= ~DCACHE_REFERENCED;
900 spin_unlock(&dentry->d_lock);
903 * The list move itself will be made by the common LRU code. At
904 * this point, we've dropped the dentry->d_lock but keep the
905 * lru lock. This is safe to do, since every list movement is
906 * protected by the lru lock even if both locks are held.
908 * This is guaranteed by the fact that all LRU management
909 * functions are intermediated by the LRU API calls like
910 * list_lru_add and list_lru_del. List movement in this file
911 * only ever occur through this functions or through callbacks
912 * like this one, that are called from the LRU API.
914 * The only exceptions to this are functions like
915 * shrink_dentry_list, and code that first checks for the
916 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
917 * operating only with stack provided lists after they are
918 * properly isolated from the main list. It is thus, always a
919 * local access.
921 return LRU_ROTATE;
924 d_lru_shrink_move(dentry, freeable);
925 spin_unlock(&dentry->d_lock);
927 return LRU_REMOVED;
931 * prune_dcache_sb - shrink the dcache
932 * @sb: superblock
933 * @nr_to_scan : number of entries to try to free
934 * @nid: which node to scan for freeable entities
936 * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
937 * done when we need more memory an called from the superblock shrinker
938 * function.
940 * This function may fail to free any resources if all the dentries are in
941 * use.
943 long prune_dcache_sb(struct super_block *sb, unsigned long nr_to_scan,
944 int nid)
946 LIST_HEAD(dispose);
947 long freed;
949 freed = list_lru_walk_node(&sb->s_dentry_lru, nid, dentry_lru_isolate,
950 &dispose, &nr_to_scan);
951 shrink_dentry_list(&dispose);
952 return freed;
955 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
956 spinlock_t *lru_lock, void *arg)
958 struct list_head *freeable = arg;
959 struct dentry *dentry = container_of(item, struct dentry, d_lru);
962 * we are inverting the lru lock/dentry->d_lock here,
963 * so use a trylock. If we fail to get the lock, just skip
964 * it
966 if (!spin_trylock(&dentry->d_lock))
967 return LRU_SKIP;
969 d_lru_shrink_move(dentry, freeable);
970 spin_unlock(&dentry->d_lock);
972 return LRU_REMOVED;
977 * shrink_dcache_sb - shrink dcache for a superblock
978 * @sb: superblock
980 * Shrink the dcache for the specified super block. This is used to free
981 * the dcache before unmounting a file system.
983 void shrink_dcache_sb(struct super_block *sb)
985 long freed;
987 do {
988 LIST_HEAD(dispose);
990 freed = list_lru_walk(&sb->s_dentry_lru,
991 dentry_lru_isolate_shrink, &dispose, UINT_MAX);
993 this_cpu_sub(nr_dentry_unused, freed);
994 shrink_dentry_list(&dispose);
995 } while (freed > 0);
997 EXPORT_SYMBOL(shrink_dcache_sb);
1000 * enum d_walk_ret - action to talke during tree walk
1001 * @D_WALK_CONTINUE: contrinue walk
1002 * @D_WALK_QUIT: quit walk
1003 * @D_WALK_NORETRY: quit when retry is needed
1004 * @D_WALK_SKIP: skip this dentry and its children
1006 enum d_walk_ret {
1007 D_WALK_CONTINUE,
1008 D_WALK_QUIT,
1009 D_WALK_NORETRY,
1010 D_WALK_SKIP,
1014 * d_walk - walk the dentry tree
1015 * @parent: start of walk
1016 * @data: data passed to @enter() and @finish()
1017 * @enter: callback when first entering the dentry
1018 * @finish: callback when successfully finished the walk
1020 * The @enter() and @finish() callbacks are called with d_lock held.
1022 static void d_walk(struct dentry *parent, void *data,
1023 enum d_walk_ret (*enter)(void *, struct dentry *),
1024 void (*finish)(void *))
1026 struct dentry *this_parent;
1027 struct list_head *next;
1028 unsigned seq = 0;
1029 enum d_walk_ret ret;
1030 bool retry = true;
1032 again:
1033 read_seqbegin_or_lock(&rename_lock, &seq);
1034 this_parent = parent;
1035 spin_lock(&this_parent->d_lock);
1037 ret = enter(data, this_parent);
1038 switch (ret) {
1039 case D_WALK_CONTINUE:
1040 break;
1041 case D_WALK_QUIT:
1042 case D_WALK_SKIP:
1043 goto out_unlock;
1044 case D_WALK_NORETRY:
1045 retry = false;
1046 break;
1048 repeat:
1049 next = this_parent->d_subdirs.next;
1050 resume:
1051 while (next != &this_parent->d_subdirs) {
1052 struct list_head *tmp = next;
1053 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1054 next = tmp->next;
1056 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1058 ret = enter(data, dentry);
1059 switch (ret) {
1060 case D_WALK_CONTINUE:
1061 break;
1062 case D_WALK_QUIT:
1063 spin_unlock(&dentry->d_lock);
1064 goto out_unlock;
1065 case D_WALK_NORETRY:
1066 retry = false;
1067 break;
1068 case D_WALK_SKIP:
1069 spin_unlock(&dentry->d_lock);
1070 continue;
1073 if (!list_empty(&dentry->d_subdirs)) {
1074 spin_unlock(&this_parent->d_lock);
1075 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1076 this_parent = dentry;
1077 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1078 goto repeat;
1080 spin_unlock(&dentry->d_lock);
1083 * All done at this level ... ascend and resume the search.
1085 if (this_parent != parent) {
1086 struct dentry *child = this_parent;
1087 this_parent = child->d_parent;
1089 rcu_read_lock();
1090 spin_unlock(&child->d_lock);
1091 spin_lock(&this_parent->d_lock);
1094 * might go back up the wrong parent if we have had a rename
1095 * or deletion
1097 if (this_parent != child->d_parent ||
1098 (child->d_flags & DCACHE_DENTRY_KILLED) ||
1099 need_seqretry(&rename_lock, seq)) {
1100 spin_unlock(&this_parent->d_lock);
1101 rcu_read_unlock();
1102 goto rename_retry;
1104 rcu_read_unlock();
1105 next = child->d_u.d_child.next;
1106 goto resume;
1108 if (need_seqretry(&rename_lock, seq)) {
1109 spin_unlock(&this_parent->d_lock);
1110 goto rename_retry;
1112 if (finish)
1113 finish(data);
1115 out_unlock:
1116 spin_unlock(&this_parent->d_lock);
1117 done_seqretry(&rename_lock, seq);
1118 return;
1120 rename_retry:
1121 if (!retry)
1122 return;
1123 seq = 1;
1124 goto again;
1128 * Search for at least 1 mount point in the dentry's subdirs.
1129 * We descend to the next level whenever the d_subdirs
1130 * list is non-empty and continue searching.
1133 static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1135 int *ret = data;
1136 if (d_mountpoint(dentry)) {
1137 *ret = 1;
1138 return D_WALK_QUIT;
1140 return D_WALK_CONTINUE;
1144 * have_submounts - check for mounts over a dentry
1145 * @parent: dentry to check.
1147 * Return true if the parent or its subdirectories contain
1148 * a mount point
1150 int have_submounts(struct dentry *parent)
1152 int ret = 0;
1154 d_walk(parent, &ret, check_mount, NULL);
1156 return ret;
1158 EXPORT_SYMBOL(have_submounts);
1161 * Called by mount code to set a mountpoint and check if the mountpoint is
1162 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1163 * subtree can become unreachable).
1165 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1166 * this reason take rename_lock and d_lock on dentry and ancestors.
1168 int d_set_mounted(struct dentry *dentry)
1170 struct dentry *p;
1171 int ret = -ENOENT;
1172 write_seqlock(&rename_lock);
1173 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1174 /* Need exclusion wrt. d_invalidate() */
1175 spin_lock(&p->d_lock);
1176 if (unlikely(d_unhashed(p))) {
1177 spin_unlock(&p->d_lock);
1178 goto out;
1180 spin_unlock(&p->d_lock);
1182 spin_lock(&dentry->d_lock);
1183 if (!d_unlinked(dentry)) {
1184 dentry->d_flags |= DCACHE_MOUNTED;
1185 ret = 0;
1187 spin_unlock(&dentry->d_lock);
1188 out:
1189 write_sequnlock(&rename_lock);
1190 return ret;
1194 * Search the dentry child list of the specified parent,
1195 * and move any unused dentries to the end of the unused
1196 * list for prune_dcache(). We descend to the next level
1197 * whenever the d_subdirs list is non-empty and continue
1198 * searching.
1200 * It returns zero iff there are no unused children,
1201 * otherwise it returns the number of children moved to
1202 * the end of the unused list. This may not be the total
1203 * number of unused children, because select_parent can
1204 * drop the lock and return early due to latency
1205 * constraints.
1208 struct select_data {
1209 struct dentry *start;
1210 struct list_head dispose;
1211 int found;
1214 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1216 struct select_data *data = _data;
1217 enum d_walk_ret ret = D_WALK_CONTINUE;
1219 if (data->start == dentry)
1220 goto out;
1222 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1223 data->found++;
1224 } else {
1225 if (dentry->d_flags & DCACHE_LRU_LIST)
1226 d_lru_del(dentry);
1227 if (!dentry->d_lockref.count) {
1228 d_shrink_add(dentry, &data->dispose);
1229 data->found++;
1233 * We can return to the caller if we have found some (this
1234 * ensures forward progress). We'll be coming back to find
1235 * the rest.
1237 if (!list_empty(&data->dispose))
1238 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1239 out:
1240 return ret;
1244 * shrink_dcache_parent - prune dcache
1245 * @parent: parent of entries to prune
1247 * Prune the dcache to remove unused children of the parent dentry.
1249 void shrink_dcache_parent(struct dentry *parent)
1251 for (;;) {
1252 struct select_data data;
1254 INIT_LIST_HEAD(&data.dispose);
1255 data.start = parent;
1256 data.found = 0;
1258 d_walk(parent, &data, select_collect, NULL);
1259 if (!data.found)
1260 break;
1262 shrink_dentry_list(&data.dispose);
1263 cond_resched();
1266 EXPORT_SYMBOL(shrink_dcache_parent);
1268 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1270 /* it has busy descendents; complain about those instead */
1271 if (!list_empty(&dentry->d_subdirs))
1272 return D_WALK_CONTINUE;
1274 /* root with refcount 1 is fine */
1275 if (dentry == _data && dentry->d_lockref.count == 1)
1276 return D_WALK_CONTINUE;
1278 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1279 " still in use (%d) [unmount of %s %s]\n",
1280 dentry,
1281 dentry->d_inode ?
1282 dentry->d_inode->i_ino : 0UL,
1283 dentry,
1284 dentry->d_lockref.count,
1285 dentry->d_sb->s_type->name,
1286 dentry->d_sb->s_id);
1287 WARN_ON(1);
1288 return D_WALK_CONTINUE;
1291 static void do_one_tree(struct dentry *dentry)
1293 shrink_dcache_parent(dentry);
1294 d_walk(dentry, dentry, umount_check, NULL);
1295 d_drop(dentry);
1296 dput(dentry);
1300 * destroy the dentries attached to a superblock on unmounting
1302 void shrink_dcache_for_umount(struct super_block *sb)
1304 struct dentry *dentry;
1306 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1308 dentry = sb->s_root;
1309 sb->s_root = NULL;
1310 do_one_tree(dentry);
1312 while (!hlist_bl_empty(&sb->s_anon)) {
1313 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1314 do_one_tree(dentry);
1318 struct detach_data {
1319 struct select_data select;
1320 struct dentry *mountpoint;
1322 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1324 struct detach_data *data = _data;
1326 if (d_mountpoint(dentry)) {
1327 __dget_dlock(dentry);
1328 data->mountpoint = dentry;
1329 return D_WALK_QUIT;
1332 return select_collect(&data->select, dentry);
1335 static void check_and_drop(void *_data)
1337 struct detach_data *data = _data;
1339 if (!data->mountpoint && !data->select.found)
1340 __d_drop(data->select.start);
1344 * d_invalidate - detach submounts, prune dcache, and drop
1345 * @dentry: dentry to invalidate (aka detach, prune and drop)
1347 * no dcache lock.
1349 * The final d_drop is done as an atomic operation relative to
1350 * rename_lock ensuring there are no races with d_set_mounted. This
1351 * ensures there are no unhashed dentries on the path to a mountpoint.
1353 void d_invalidate(struct dentry *dentry)
1356 * If it's already been dropped, return OK.
1358 spin_lock(&dentry->d_lock);
1359 if (d_unhashed(dentry)) {
1360 spin_unlock(&dentry->d_lock);
1361 return;
1363 spin_unlock(&dentry->d_lock);
1365 /* Negative dentries can be dropped without further checks */
1366 if (!dentry->d_inode) {
1367 d_drop(dentry);
1368 return;
1371 for (;;) {
1372 struct detach_data data;
1374 data.mountpoint = NULL;
1375 INIT_LIST_HEAD(&data.select.dispose);
1376 data.select.start = dentry;
1377 data.select.found = 0;
1379 d_walk(dentry, &data, detach_and_collect, check_and_drop);
1381 if (data.select.found)
1382 shrink_dentry_list(&data.select.dispose);
1384 if (data.mountpoint) {
1385 detach_mounts(data.mountpoint);
1386 dput(data.mountpoint);
1389 if (!data.mountpoint && !data.select.found)
1390 break;
1392 cond_resched();
1395 EXPORT_SYMBOL(d_invalidate);
1398 * __d_alloc - allocate a dcache entry
1399 * @sb: filesystem it will belong to
1400 * @name: qstr of the name
1402 * Allocates a dentry. It returns %NULL if there is insufficient memory
1403 * available. On a success the dentry is returned. The name passed in is
1404 * copied and the copy passed in may be reused after this call.
1407 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1409 struct dentry *dentry;
1410 char *dname;
1412 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1413 if (!dentry)
1414 return NULL;
1417 * We guarantee that the inline name is always NUL-terminated.
1418 * This way the memcpy() done by the name switching in rename
1419 * will still always have a NUL at the end, even if we might
1420 * be overwriting an internal NUL character
1422 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1423 if (name->len > DNAME_INLINE_LEN-1) {
1424 size_t size = offsetof(struct external_name, name[1]);
1425 struct external_name *p = kmalloc(size + name->len, GFP_KERNEL);
1426 if (!p) {
1427 kmem_cache_free(dentry_cache, dentry);
1428 return NULL;
1430 atomic_set(&p->u.count, 1);
1431 dname = p->name;
1432 } else {
1433 dname = dentry->d_iname;
1436 dentry->d_name.len = name->len;
1437 dentry->d_name.hash = name->hash;
1438 memcpy(dname, name->name, name->len);
1439 dname[name->len] = 0;
1441 /* Make sure we always see the terminating NUL character */
1442 smp_wmb();
1443 dentry->d_name.name = dname;
1445 dentry->d_lockref.count = 1;
1446 dentry->d_flags = 0;
1447 spin_lock_init(&dentry->d_lock);
1448 seqcount_init(&dentry->d_seq);
1449 dentry->d_inode = NULL;
1450 dentry->d_parent = dentry;
1451 dentry->d_sb = sb;
1452 dentry->d_op = NULL;
1453 dentry->d_fsdata = NULL;
1454 INIT_HLIST_BL_NODE(&dentry->d_hash);
1455 INIT_LIST_HEAD(&dentry->d_lru);
1456 INIT_LIST_HEAD(&dentry->d_subdirs);
1457 INIT_HLIST_NODE(&dentry->d_alias);
1458 INIT_LIST_HEAD(&dentry->d_u.d_child);
1459 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1461 this_cpu_inc(nr_dentry);
1463 return dentry;
1467 * d_alloc - allocate a dcache entry
1468 * @parent: parent of entry to allocate
1469 * @name: qstr of the name
1471 * Allocates a dentry. It returns %NULL if there is insufficient memory
1472 * available. On a success the dentry is returned. The name passed in is
1473 * copied and the copy passed in may be reused after this call.
1475 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1477 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1478 if (!dentry)
1479 return NULL;
1481 spin_lock(&parent->d_lock);
1483 * don't need child lock because it is not subject
1484 * to concurrency here
1486 __dget_dlock(parent);
1487 dentry->d_parent = parent;
1488 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1489 spin_unlock(&parent->d_lock);
1491 return dentry;
1493 EXPORT_SYMBOL(d_alloc);
1496 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1497 * @sb: the superblock
1498 * @name: qstr of the name
1500 * For a filesystem that just pins its dentries in memory and never
1501 * performs lookups at all, return an unhashed IS_ROOT dentry.
1503 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1505 return __d_alloc(sb, name);
1507 EXPORT_SYMBOL(d_alloc_pseudo);
1509 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1511 struct qstr q;
1513 q.name = name;
1514 q.len = strlen(name);
1515 q.hash = full_name_hash(q.name, q.len);
1516 return d_alloc(parent, &q);
1518 EXPORT_SYMBOL(d_alloc_name);
1520 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1522 WARN_ON_ONCE(dentry->d_op);
1523 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1524 DCACHE_OP_COMPARE |
1525 DCACHE_OP_REVALIDATE |
1526 DCACHE_OP_WEAK_REVALIDATE |
1527 DCACHE_OP_DELETE ));
1528 dentry->d_op = op;
1529 if (!op)
1530 return;
1531 if (op->d_hash)
1532 dentry->d_flags |= DCACHE_OP_HASH;
1533 if (op->d_compare)
1534 dentry->d_flags |= DCACHE_OP_COMPARE;
1535 if (op->d_revalidate)
1536 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1537 if (op->d_weak_revalidate)
1538 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1539 if (op->d_delete)
1540 dentry->d_flags |= DCACHE_OP_DELETE;
1541 if (op->d_prune)
1542 dentry->d_flags |= DCACHE_OP_PRUNE;
1545 EXPORT_SYMBOL(d_set_d_op);
1547 static unsigned d_flags_for_inode(struct inode *inode)
1549 unsigned add_flags = DCACHE_FILE_TYPE;
1551 if (!inode)
1552 return DCACHE_MISS_TYPE;
1554 if (S_ISDIR(inode->i_mode)) {
1555 add_flags = DCACHE_DIRECTORY_TYPE;
1556 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1557 if (unlikely(!inode->i_op->lookup))
1558 add_flags = DCACHE_AUTODIR_TYPE;
1559 else
1560 inode->i_opflags |= IOP_LOOKUP;
1562 } else if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1563 if (unlikely(inode->i_op->follow_link))
1564 add_flags = DCACHE_SYMLINK_TYPE;
1565 else
1566 inode->i_opflags |= IOP_NOFOLLOW;
1569 if (unlikely(IS_AUTOMOUNT(inode)))
1570 add_flags |= DCACHE_NEED_AUTOMOUNT;
1571 return add_flags;
1574 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1576 unsigned add_flags = d_flags_for_inode(inode);
1578 spin_lock(&dentry->d_lock);
1579 __d_set_type(dentry, add_flags);
1580 if (inode)
1581 hlist_add_head(&dentry->d_alias, &inode->i_dentry);
1582 dentry->d_inode = inode;
1583 dentry_rcuwalk_barrier(dentry);
1584 spin_unlock(&dentry->d_lock);
1585 fsnotify_d_instantiate(dentry, inode);
1589 * d_instantiate - fill in inode information for a dentry
1590 * @entry: dentry to complete
1591 * @inode: inode to attach to this dentry
1593 * Fill in inode information in the entry.
1595 * This turns negative dentries into productive full members
1596 * of society.
1598 * NOTE! This assumes that the inode count has been incremented
1599 * (or otherwise set) by the caller to indicate that it is now
1600 * in use by the dcache.
1603 void d_instantiate(struct dentry *entry, struct inode * inode)
1605 BUG_ON(!hlist_unhashed(&entry->d_alias));
1606 if (inode)
1607 spin_lock(&inode->i_lock);
1608 __d_instantiate(entry, inode);
1609 if (inode)
1610 spin_unlock(&inode->i_lock);
1611 security_d_instantiate(entry, inode);
1613 EXPORT_SYMBOL(d_instantiate);
1616 * d_instantiate_unique - instantiate a non-aliased dentry
1617 * @entry: dentry to instantiate
1618 * @inode: inode to attach to this dentry
1620 * Fill in inode information in the entry. On success, it returns NULL.
1621 * If an unhashed alias of "entry" already exists, then we return the
1622 * aliased dentry instead and drop one reference to inode.
1624 * Note that in order to avoid conflicts with rename() etc, the caller
1625 * had better be holding the parent directory semaphore.
1627 * This also assumes that the inode count has been incremented
1628 * (or otherwise set) by the caller to indicate that it is now
1629 * in use by the dcache.
1631 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1632 struct inode *inode)
1634 struct dentry *alias;
1635 int len = entry->d_name.len;
1636 const char *name = entry->d_name.name;
1637 unsigned int hash = entry->d_name.hash;
1639 if (!inode) {
1640 __d_instantiate(entry, NULL);
1641 return NULL;
1644 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
1646 * Don't need alias->d_lock here, because aliases with
1647 * d_parent == entry->d_parent are not subject to name or
1648 * parent changes, because the parent inode i_mutex is held.
1650 if (alias->d_name.hash != hash)
1651 continue;
1652 if (alias->d_parent != entry->d_parent)
1653 continue;
1654 if (alias->d_name.len != len)
1655 continue;
1656 if (dentry_cmp(alias, name, len))
1657 continue;
1658 __dget(alias);
1659 return alias;
1662 __d_instantiate(entry, inode);
1663 return NULL;
1666 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1668 struct dentry *result;
1670 BUG_ON(!hlist_unhashed(&entry->d_alias));
1672 if (inode)
1673 spin_lock(&inode->i_lock);
1674 result = __d_instantiate_unique(entry, inode);
1675 if (inode)
1676 spin_unlock(&inode->i_lock);
1678 if (!result) {
1679 security_d_instantiate(entry, inode);
1680 return NULL;
1683 BUG_ON(!d_unhashed(result));
1684 iput(inode);
1685 return result;
1688 EXPORT_SYMBOL(d_instantiate_unique);
1691 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1692 * @entry: dentry to complete
1693 * @inode: inode to attach to this dentry
1695 * Fill in inode information in the entry. If a directory alias is found, then
1696 * return an error (and drop inode). Together with d_materialise_unique() this
1697 * guarantees that a directory inode may never have more than one alias.
1699 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1701 BUG_ON(!hlist_unhashed(&entry->d_alias));
1703 spin_lock(&inode->i_lock);
1704 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1705 spin_unlock(&inode->i_lock);
1706 iput(inode);
1707 return -EBUSY;
1709 __d_instantiate(entry, inode);
1710 spin_unlock(&inode->i_lock);
1711 security_d_instantiate(entry, inode);
1713 return 0;
1715 EXPORT_SYMBOL(d_instantiate_no_diralias);
1717 struct dentry *d_make_root(struct inode *root_inode)
1719 struct dentry *res = NULL;
1721 if (root_inode) {
1722 static const struct qstr name = QSTR_INIT("/", 1);
1724 res = __d_alloc(root_inode->i_sb, &name);
1725 if (res)
1726 d_instantiate(res, root_inode);
1727 else
1728 iput(root_inode);
1730 return res;
1732 EXPORT_SYMBOL(d_make_root);
1734 static struct dentry * __d_find_any_alias(struct inode *inode)
1736 struct dentry *alias;
1738 if (hlist_empty(&inode->i_dentry))
1739 return NULL;
1740 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
1741 __dget(alias);
1742 return alias;
1746 * d_find_any_alias - find any alias for a given inode
1747 * @inode: inode to find an alias for
1749 * If any aliases exist for the given inode, take and return a
1750 * reference for one of them. If no aliases exist, return %NULL.
1752 struct dentry *d_find_any_alias(struct inode *inode)
1754 struct dentry *de;
1756 spin_lock(&inode->i_lock);
1757 de = __d_find_any_alias(inode);
1758 spin_unlock(&inode->i_lock);
1759 return de;
1761 EXPORT_SYMBOL(d_find_any_alias);
1763 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
1765 static const struct qstr anonstring = QSTR_INIT("/", 1);
1766 struct dentry *tmp;
1767 struct dentry *res;
1768 unsigned add_flags;
1770 if (!inode)
1771 return ERR_PTR(-ESTALE);
1772 if (IS_ERR(inode))
1773 return ERR_CAST(inode);
1775 res = d_find_any_alias(inode);
1776 if (res)
1777 goto out_iput;
1779 tmp = __d_alloc(inode->i_sb, &anonstring);
1780 if (!tmp) {
1781 res = ERR_PTR(-ENOMEM);
1782 goto out_iput;
1785 spin_lock(&inode->i_lock);
1786 res = __d_find_any_alias(inode);
1787 if (res) {
1788 spin_unlock(&inode->i_lock);
1789 dput(tmp);
1790 goto out_iput;
1793 /* attach a disconnected dentry */
1794 add_flags = d_flags_for_inode(inode);
1796 if (disconnected)
1797 add_flags |= DCACHE_DISCONNECTED;
1799 spin_lock(&tmp->d_lock);
1800 tmp->d_inode = inode;
1801 tmp->d_flags |= add_flags;
1802 hlist_add_head(&tmp->d_alias, &inode->i_dentry);
1803 hlist_bl_lock(&tmp->d_sb->s_anon);
1804 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1805 hlist_bl_unlock(&tmp->d_sb->s_anon);
1806 spin_unlock(&tmp->d_lock);
1807 spin_unlock(&inode->i_lock);
1808 security_d_instantiate(tmp, inode);
1810 return tmp;
1812 out_iput:
1813 if (res && !IS_ERR(res))
1814 security_d_instantiate(res, inode);
1815 iput(inode);
1816 return res;
1820 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1821 * @inode: inode to allocate the dentry for
1823 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1824 * similar open by handle operations. The returned dentry may be anonymous,
1825 * or may have a full name (if the inode was already in the cache).
1827 * When called on a directory inode, we must ensure that the inode only ever
1828 * has one dentry. If a dentry is found, that is returned instead of
1829 * allocating a new one.
1831 * On successful return, the reference to the inode has been transferred
1832 * to the dentry. In case of an error the reference on the inode is released.
1833 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1834 * be passed in and the error will be propagated to the return value,
1835 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1837 struct dentry *d_obtain_alias(struct inode *inode)
1839 return __d_obtain_alias(inode, 1);
1841 EXPORT_SYMBOL(d_obtain_alias);
1844 * d_obtain_root - find or allocate a dentry for a given inode
1845 * @inode: inode to allocate the dentry for
1847 * Obtain an IS_ROOT dentry for the root of a filesystem.
1849 * We must ensure that directory inodes only ever have one dentry. If a
1850 * dentry is found, that is returned instead of allocating a new one.
1852 * On successful return, the reference to the inode has been transferred
1853 * to the dentry. In case of an error the reference on the inode is
1854 * released. A %NULL or IS_ERR inode may be passed in and will be the
1855 * error will be propagate to the return value, with a %NULL @inode
1856 * replaced by ERR_PTR(-ESTALE).
1858 struct dentry *d_obtain_root(struct inode *inode)
1860 return __d_obtain_alias(inode, 0);
1862 EXPORT_SYMBOL(d_obtain_root);
1865 * d_add_ci - lookup or allocate new dentry with case-exact name
1866 * @inode: the inode case-insensitive lookup has found
1867 * @dentry: the negative dentry that was passed to the parent's lookup func
1868 * @name: the case-exact name to be associated with the returned dentry
1870 * This is to avoid filling the dcache with case-insensitive names to the
1871 * same inode, only the actual correct case is stored in the dcache for
1872 * case-insensitive filesystems.
1874 * For a case-insensitive lookup match and if the the case-exact dentry
1875 * already exists in in the dcache, use it and return it.
1877 * If no entry exists with the exact case name, allocate new dentry with
1878 * the exact case, and return the spliced entry.
1880 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1881 struct qstr *name)
1883 struct dentry *found;
1884 struct dentry *new;
1887 * First check if a dentry matching the name already exists,
1888 * if not go ahead and create it now.
1890 found = d_hash_and_lookup(dentry->d_parent, name);
1891 if (unlikely(IS_ERR(found)))
1892 goto err_out;
1893 if (!found) {
1894 new = d_alloc(dentry->d_parent, name);
1895 if (!new) {
1896 found = ERR_PTR(-ENOMEM);
1897 goto err_out;
1900 found = d_splice_alias(inode, new);
1901 if (found) {
1902 dput(new);
1903 return found;
1905 return new;
1909 * If a matching dentry exists, and it's not negative use it.
1911 * Decrement the reference count to balance the iget() done
1912 * earlier on.
1914 if (found->d_inode) {
1915 if (unlikely(found->d_inode != inode)) {
1916 /* This can't happen because bad inodes are unhashed. */
1917 BUG_ON(!is_bad_inode(inode));
1918 BUG_ON(!is_bad_inode(found->d_inode));
1920 iput(inode);
1921 return found;
1925 * Negative dentry: instantiate it unless the inode is a directory and
1926 * already has a dentry.
1928 new = d_splice_alias(inode, found);
1929 if (new) {
1930 dput(found);
1931 found = new;
1933 return found;
1935 err_out:
1936 iput(inode);
1937 return found;
1939 EXPORT_SYMBOL(d_add_ci);
1942 * Do the slow-case of the dentry name compare.
1944 * Unlike the dentry_cmp() function, we need to atomically
1945 * load the name and length information, so that the
1946 * filesystem can rely on them, and can use the 'name' and
1947 * 'len' information without worrying about walking off the
1948 * end of memory etc.
1950 * Thus the read_seqcount_retry() and the "duplicate" info
1951 * in arguments (the low-level filesystem should not look
1952 * at the dentry inode or name contents directly, since
1953 * rename can change them while we're in RCU mode).
1955 enum slow_d_compare {
1956 D_COMP_OK,
1957 D_COMP_NOMATCH,
1958 D_COMP_SEQRETRY,
1961 static noinline enum slow_d_compare slow_dentry_cmp(
1962 const struct dentry *parent,
1963 struct dentry *dentry,
1964 unsigned int seq,
1965 const struct qstr *name)
1967 int tlen = dentry->d_name.len;
1968 const char *tname = dentry->d_name.name;
1970 if (read_seqcount_retry(&dentry->d_seq, seq)) {
1971 cpu_relax();
1972 return D_COMP_SEQRETRY;
1974 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
1975 return D_COMP_NOMATCH;
1976 return D_COMP_OK;
1980 * __d_lookup_rcu - search for a dentry (racy, store-free)
1981 * @parent: parent dentry
1982 * @name: qstr of name we wish to find
1983 * @seqp: returns d_seq value at the point where the dentry was found
1984 * Returns: dentry, or NULL
1986 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1987 * resolution (store-free path walking) design described in
1988 * Documentation/filesystems/path-lookup.txt.
1990 * This is not to be used outside core vfs.
1992 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1993 * held, and rcu_read_lock held. The returned dentry must not be stored into
1994 * without taking d_lock and checking d_seq sequence count against @seq
1995 * returned here.
1997 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
1998 * function.
2000 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2001 * the returned dentry, so long as its parent's seqlock is checked after the
2002 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2003 * is formed, giving integrity down the path walk.
2005 * NOTE! The caller *has* to check the resulting dentry against the sequence
2006 * number we've returned before using any of the resulting dentry state!
2008 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2009 const struct qstr *name,
2010 unsigned *seqp)
2012 u64 hashlen = name->hash_len;
2013 const unsigned char *str = name->name;
2014 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
2015 struct hlist_bl_node *node;
2016 struct dentry *dentry;
2019 * Note: There is significant duplication with __d_lookup_rcu which is
2020 * required to prevent single threaded performance regressions
2021 * especially on architectures where smp_rmb (in seqcounts) are costly.
2022 * Keep the two functions in sync.
2026 * The hash list is protected using RCU.
2028 * Carefully use d_seq when comparing a candidate dentry, to avoid
2029 * races with d_move().
2031 * It is possible that concurrent renames can mess up our list
2032 * walk here and result in missing our dentry, resulting in the
2033 * false-negative result. d_lookup() protects against concurrent
2034 * renames using rename_lock seqlock.
2036 * See Documentation/filesystems/path-lookup.txt for more details.
2038 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2039 unsigned seq;
2041 seqretry:
2043 * The dentry sequence count protects us from concurrent
2044 * renames, and thus protects parent and name fields.
2046 * The caller must perform a seqcount check in order
2047 * to do anything useful with the returned dentry.
2049 * NOTE! We do a "raw" seqcount_begin here. That means that
2050 * we don't wait for the sequence count to stabilize if it
2051 * is in the middle of a sequence change. If we do the slow
2052 * dentry compare, we will do seqretries until it is stable,
2053 * and if we end up with a successful lookup, we actually
2054 * want to exit RCU lookup anyway.
2056 seq = raw_seqcount_begin(&dentry->d_seq);
2057 if (dentry->d_parent != parent)
2058 continue;
2059 if (d_unhashed(dentry))
2060 continue;
2062 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2063 if (dentry->d_name.hash != hashlen_hash(hashlen))
2064 continue;
2065 *seqp = seq;
2066 switch (slow_dentry_cmp(parent, dentry, seq, name)) {
2067 case D_COMP_OK:
2068 return dentry;
2069 case D_COMP_NOMATCH:
2070 continue;
2071 default:
2072 goto seqretry;
2076 if (dentry->d_name.hash_len != hashlen)
2077 continue;
2078 *seqp = seq;
2079 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
2080 return dentry;
2082 return NULL;
2086 * d_lookup - search for a dentry
2087 * @parent: parent dentry
2088 * @name: qstr of name we wish to find
2089 * Returns: dentry, or NULL
2091 * d_lookup searches the children of the parent dentry for the name in
2092 * question. If the dentry is found its reference count is incremented and the
2093 * dentry is returned. The caller must use dput to free the entry when it has
2094 * finished using it. %NULL is returned if the dentry does not exist.
2096 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2098 struct dentry *dentry;
2099 unsigned seq;
2101 do {
2102 seq = read_seqbegin(&rename_lock);
2103 dentry = __d_lookup(parent, name);
2104 if (dentry)
2105 break;
2106 } while (read_seqretry(&rename_lock, seq));
2107 return dentry;
2109 EXPORT_SYMBOL(d_lookup);
2112 * __d_lookup - search for a dentry (racy)
2113 * @parent: parent dentry
2114 * @name: qstr of name we wish to find
2115 * Returns: dentry, or NULL
2117 * __d_lookup is like d_lookup, however it may (rarely) return a
2118 * false-negative result due to unrelated rename activity.
2120 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2121 * however it must be used carefully, eg. with a following d_lookup in
2122 * the case of failure.
2124 * __d_lookup callers must be commented.
2126 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2128 unsigned int len = name->len;
2129 unsigned int hash = name->hash;
2130 const unsigned char *str = name->name;
2131 struct hlist_bl_head *b = d_hash(parent, hash);
2132 struct hlist_bl_node *node;
2133 struct dentry *found = NULL;
2134 struct dentry *dentry;
2137 * Note: There is significant duplication with __d_lookup_rcu which is
2138 * required to prevent single threaded performance regressions
2139 * especially on architectures where smp_rmb (in seqcounts) are costly.
2140 * Keep the two functions in sync.
2144 * The hash list is protected using RCU.
2146 * Take d_lock when comparing a candidate dentry, to avoid races
2147 * with d_move().
2149 * It is possible that concurrent renames can mess up our list
2150 * walk here and result in missing our dentry, resulting in the
2151 * false-negative result. d_lookup() protects against concurrent
2152 * renames using rename_lock seqlock.
2154 * See Documentation/filesystems/path-lookup.txt for more details.
2156 rcu_read_lock();
2158 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2160 if (dentry->d_name.hash != hash)
2161 continue;
2163 spin_lock(&dentry->d_lock);
2164 if (dentry->d_parent != parent)
2165 goto next;
2166 if (d_unhashed(dentry))
2167 goto next;
2170 * It is safe to compare names since d_move() cannot
2171 * change the qstr (protected by d_lock).
2173 if (parent->d_flags & DCACHE_OP_COMPARE) {
2174 int tlen = dentry->d_name.len;
2175 const char *tname = dentry->d_name.name;
2176 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2177 goto next;
2178 } else {
2179 if (dentry->d_name.len != len)
2180 goto next;
2181 if (dentry_cmp(dentry, str, len))
2182 goto next;
2185 dentry->d_lockref.count++;
2186 found = dentry;
2187 spin_unlock(&dentry->d_lock);
2188 break;
2189 next:
2190 spin_unlock(&dentry->d_lock);
2192 rcu_read_unlock();
2194 return found;
2198 * d_hash_and_lookup - hash the qstr then search for a dentry
2199 * @dir: Directory to search in
2200 * @name: qstr of name we wish to find
2202 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2204 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2207 * Check for a fs-specific hash function. Note that we must
2208 * calculate the standard hash first, as the d_op->d_hash()
2209 * routine may choose to leave the hash value unchanged.
2211 name->hash = full_name_hash(name->name, name->len);
2212 if (dir->d_flags & DCACHE_OP_HASH) {
2213 int err = dir->d_op->d_hash(dir, name);
2214 if (unlikely(err < 0))
2215 return ERR_PTR(err);
2217 return d_lookup(dir, name);
2219 EXPORT_SYMBOL(d_hash_and_lookup);
2222 * d_validate - verify dentry provided from insecure source (deprecated)
2223 * @dentry: The dentry alleged to be valid child of @dparent
2224 * @dparent: The parent dentry (known to be valid)
2226 * An insecure source has sent us a dentry, here we verify it and dget() it.
2227 * This is used by ncpfs in its readdir implementation.
2228 * Zero is returned in the dentry is invalid.
2230 * This function is slow for big directories, and deprecated, do not use it.
2232 int d_validate(struct dentry *dentry, struct dentry *dparent)
2234 struct dentry *child;
2236 spin_lock(&dparent->d_lock);
2237 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2238 if (dentry == child) {
2239 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2240 __dget_dlock(dentry);
2241 spin_unlock(&dentry->d_lock);
2242 spin_unlock(&dparent->d_lock);
2243 return 1;
2246 spin_unlock(&dparent->d_lock);
2248 return 0;
2250 EXPORT_SYMBOL(d_validate);
2253 * When a file is deleted, we have two options:
2254 * - turn this dentry into a negative dentry
2255 * - unhash this dentry and free it.
2257 * Usually, we want to just turn this into
2258 * a negative dentry, but if anybody else is
2259 * currently using the dentry or the inode
2260 * we can't do that and we fall back on removing
2261 * it from the hash queues and waiting for
2262 * it to be deleted later when it has no users
2266 * d_delete - delete a dentry
2267 * @dentry: The dentry to delete
2269 * Turn the dentry into a negative dentry if possible, otherwise
2270 * remove it from the hash queues so it can be deleted later
2273 void d_delete(struct dentry * dentry)
2275 struct inode *inode;
2276 int isdir = 0;
2278 * Are we the only user?
2280 again:
2281 spin_lock(&dentry->d_lock);
2282 inode = dentry->d_inode;
2283 isdir = S_ISDIR(inode->i_mode);
2284 if (dentry->d_lockref.count == 1) {
2285 if (!spin_trylock(&inode->i_lock)) {
2286 spin_unlock(&dentry->d_lock);
2287 cpu_relax();
2288 goto again;
2290 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2291 dentry_unlink_inode(dentry);
2292 fsnotify_nameremove(dentry, isdir);
2293 return;
2296 if (!d_unhashed(dentry))
2297 __d_drop(dentry);
2299 spin_unlock(&dentry->d_lock);
2301 fsnotify_nameremove(dentry, isdir);
2303 EXPORT_SYMBOL(d_delete);
2305 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2307 BUG_ON(!d_unhashed(entry));
2308 hlist_bl_lock(b);
2309 entry->d_flags |= DCACHE_RCUACCESS;
2310 hlist_bl_add_head_rcu(&entry->d_hash, b);
2311 hlist_bl_unlock(b);
2314 static void _d_rehash(struct dentry * entry)
2316 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2320 * d_rehash - add an entry back to the hash
2321 * @entry: dentry to add to the hash
2323 * Adds a dentry to the hash according to its name.
2326 void d_rehash(struct dentry * entry)
2328 spin_lock(&entry->d_lock);
2329 _d_rehash(entry);
2330 spin_unlock(&entry->d_lock);
2332 EXPORT_SYMBOL(d_rehash);
2335 * dentry_update_name_case - update case insensitive dentry with a new name
2336 * @dentry: dentry to be updated
2337 * @name: new name
2339 * Update a case insensitive dentry with new case of name.
2341 * dentry must have been returned by d_lookup with name @name. Old and new
2342 * name lengths must match (ie. no d_compare which allows mismatched name
2343 * lengths).
2345 * Parent inode i_mutex must be held over d_lookup and into this call (to
2346 * keep renames and concurrent inserts, and readdir(2) away).
2348 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2350 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2351 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2353 spin_lock(&dentry->d_lock);
2354 write_seqcount_begin(&dentry->d_seq);
2355 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2356 write_seqcount_end(&dentry->d_seq);
2357 spin_unlock(&dentry->d_lock);
2359 EXPORT_SYMBOL(dentry_update_name_case);
2361 static void swap_names(struct dentry *dentry, struct dentry *target)
2363 if (unlikely(dname_external(target))) {
2364 if (unlikely(dname_external(dentry))) {
2366 * Both external: swap the pointers
2368 swap(target->d_name.name, dentry->d_name.name);
2369 } else {
2371 * dentry:internal, target:external. Steal target's
2372 * storage and make target internal.
2374 memcpy(target->d_iname, dentry->d_name.name,
2375 dentry->d_name.len + 1);
2376 dentry->d_name.name = target->d_name.name;
2377 target->d_name.name = target->d_iname;
2379 } else {
2380 if (unlikely(dname_external(dentry))) {
2382 * dentry:external, target:internal. Give dentry's
2383 * storage to target and make dentry internal
2385 memcpy(dentry->d_iname, target->d_name.name,
2386 target->d_name.len + 1);
2387 target->d_name.name = dentry->d_name.name;
2388 dentry->d_name.name = dentry->d_iname;
2389 } else {
2391 * Both are internal.
2393 unsigned int i;
2394 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2395 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2396 swap(((long *) &dentry->d_iname)[i],
2397 ((long *) &target->d_iname)[i]);
2401 swap(dentry->d_name.hash_len, target->d_name.hash_len);
2404 static void copy_name(struct dentry *dentry, struct dentry *target)
2406 struct external_name *old_name = NULL;
2407 if (unlikely(dname_external(dentry)))
2408 old_name = external_name(dentry);
2409 if (unlikely(dname_external(target))) {
2410 atomic_inc(&external_name(target)->u.count);
2411 dentry->d_name = target->d_name;
2412 } else {
2413 memcpy(dentry->d_iname, target->d_name.name,
2414 target->d_name.len + 1);
2415 dentry->d_name.name = dentry->d_iname;
2416 dentry->d_name.hash_len = target->d_name.hash_len;
2418 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2419 kfree_rcu(old_name, u.head);
2422 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2425 * XXXX: do we really need to take target->d_lock?
2427 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2428 spin_lock(&target->d_parent->d_lock);
2429 else {
2430 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2431 spin_lock(&dentry->d_parent->d_lock);
2432 spin_lock_nested(&target->d_parent->d_lock,
2433 DENTRY_D_LOCK_NESTED);
2434 } else {
2435 spin_lock(&target->d_parent->d_lock);
2436 spin_lock_nested(&dentry->d_parent->d_lock,
2437 DENTRY_D_LOCK_NESTED);
2440 if (target < dentry) {
2441 spin_lock_nested(&target->d_lock, 2);
2442 spin_lock_nested(&dentry->d_lock, 3);
2443 } else {
2444 spin_lock_nested(&dentry->d_lock, 2);
2445 spin_lock_nested(&target->d_lock, 3);
2449 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2451 if (target->d_parent != dentry->d_parent)
2452 spin_unlock(&dentry->d_parent->d_lock);
2453 if (target->d_parent != target)
2454 spin_unlock(&target->d_parent->d_lock);
2455 spin_unlock(&target->d_lock);
2456 spin_unlock(&dentry->d_lock);
2460 * When switching names, the actual string doesn't strictly have to
2461 * be preserved in the target - because we're dropping the target
2462 * anyway. As such, we can just do a simple memcpy() to copy over
2463 * the new name before we switch, unless we are going to rehash
2464 * it. Note that if we *do* unhash the target, we are not allowed
2465 * to rehash it without giving it a new name/hash key - whether
2466 * we swap or overwrite the names here, resulting name won't match
2467 * the reality in filesystem; it's only there for d_path() purposes.
2468 * Note that all of this is happening under rename_lock, so the
2469 * any hash lookup seeing it in the middle of manipulations will
2470 * be discarded anyway. So we do not care what happens to the hash
2471 * key in that case.
2474 * __d_move - move a dentry
2475 * @dentry: entry to move
2476 * @target: new dentry
2477 * @exchange: exchange the two dentries
2479 * Update the dcache to reflect the move of a file name. Negative
2480 * dcache entries should not be moved in this way. Caller must hold
2481 * rename_lock, the i_mutex of the source and target directories,
2482 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2484 static void __d_move(struct dentry *dentry, struct dentry *target,
2485 bool exchange)
2487 if (!dentry->d_inode)
2488 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2490 BUG_ON(d_ancestor(dentry, target));
2491 BUG_ON(d_ancestor(target, dentry));
2493 dentry_lock_for_move(dentry, target);
2495 write_seqcount_begin(&dentry->d_seq);
2496 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2498 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2501 * Move the dentry to the target hash queue. Don't bother checking
2502 * for the same hash queue because of how unlikely it is.
2504 __d_drop(dentry);
2505 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2508 * Unhash the target (d_delete() is not usable here). If exchanging
2509 * the two dentries, then rehash onto the other's hash queue.
2511 __d_drop(target);
2512 if (exchange) {
2513 __d_rehash(target,
2514 d_hash(dentry->d_parent, dentry->d_name.hash));
2517 /* Switch the names.. */
2518 if (exchange)
2519 swap_names(dentry, target);
2520 else
2521 copy_name(dentry, target);
2523 /* ... and switch them in the tree */
2524 if (IS_ROOT(dentry)) {
2525 /* splicing a tree */
2526 dentry->d_parent = target->d_parent;
2527 target->d_parent = target;
2528 list_del_init(&target->d_u.d_child);
2529 list_move(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2530 } else {
2531 /* swapping two dentries */
2532 swap(dentry->d_parent, target->d_parent);
2533 list_move(&target->d_u.d_child, &target->d_parent->d_subdirs);
2534 list_move(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2535 if (exchange)
2536 fsnotify_d_move(target);
2537 fsnotify_d_move(dentry);
2540 write_seqcount_end(&target->d_seq);
2541 write_seqcount_end(&dentry->d_seq);
2543 dentry_unlock_for_move(dentry, target);
2547 * d_move - move a dentry
2548 * @dentry: entry to move
2549 * @target: new dentry
2551 * Update the dcache to reflect the move of a file name. Negative
2552 * dcache entries should not be moved in this way. See the locking
2553 * requirements for __d_move.
2555 void d_move(struct dentry *dentry, struct dentry *target)
2557 write_seqlock(&rename_lock);
2558 __d_move(dentry, target, false);
2559 write_sequnlock(&rename_lock);
2561 EXPORT_SYMBOL(d_move);
2564 * d_exchange - exchange two dentries
2565 * @dentry1: first dentry
2566 * @dentry2: second dentry
2568 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2570 write_seqlock(&rename_lock);
2572 WARN_ON(!dentry1->d_inode);
2573 WARN_ON(!dentry2->d_inode);
2574 WARN_ON(IS_ROOT(dentry1));
2575 WARN_ON(IS_ROOT(dentry2));
2577 __d_move(dentry1, dentry2, true);
2579 write_sequnlock(&rename_lock);
2583 * d_ancestor - search for an ancestor
2584 * @p1: ancestor dentry
2585 * @p2: child dentry
2587 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2588 * an ancestor of p2, else NULL.
2590 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2592 struct dentry *p;
2594 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2595 if (p->d_parent == p1)
2596 return p;
2598 return NULL;
2602 * This helper attempts to cope with remotely renamed directories
2604 * It assumes that the caller is already holding
2605 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2607 * Note: If ever the locking in lock_rename() changes, then please
2608 * remember to update this too...
2610 static struct dentry *__d_unalias(struct inode *inode,
2611 struct dentry *dentry, struct dentry *alias)
2613 struct mutex *m1 = NULL, *m2 = NULL;
2614 struct dentry *ret = ERR_PTR(-EBUSY);
2616 /* If alias and dentry share a parent, then no extra locks required */
2617 if (alias->d_parent == dentry->d_parent)
2618 goto out_unalias;
2620 /* See lock_rename() */
2621 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2622 goto out_err;
2623 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2624 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2625 goto out_err;
2626 m2 = &alias->d_parent->d_inode->i_mutex;
2627 out_unalias:
2628 __d_move(alias, dentry, false);
2629 ret = alias;
2630 out_err:
2631 spin_unlock(&inode->i_lock);
2632 if (m2)
2633 mutex_unlock(m2);
2634 if (m1)
2635 mutex_unlock(m1);
2636 return ret;
2640 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2641 * @inode: the inode which may have a disconnected dentry
2642 * @dentry: a negative dentry which we want to point to the inode.
2644 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2645 * place of the given dentry and return it, else simply d_add the inode
2646 * to the dentry and return NULL.
2648 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2649 * we should error out: directories can't have multiple aliases.
2651 * This is needed in the lookup routine of any filesystem that is exportable
2652 * (via knfsd) so that we can build dcache paths to directories effectively.
2654 * If a dentry was found and moved, then it is returned. Otherwise NULL
2655 * is returned. This matches the expected return value of ->lookup.
2657 * Cluster filesystems may call this function with a negative, hashed dentry.
2658 * In that case, we know that the inode will be a regular file, and also this
2659 * will only occur during atomic_open. So we need to check for the dentry
2660 * being already hashed only in the final case.
2662 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2664 struct dentry *new = NULL;
2666 if (IS_ERR(inode))
2667 return ERR_CAST(inode);
2669 if (inode && S_ISDIR(inode->i_mode)) {
2670 spin_lock(&inode->i_lock);
2671 new = __d_find_any_alias(inode);
2672 if (new) {
2673 if (!IS_ROOT(new)) {
2674 spin_unlock(&inode->i_lock);
2675 dput(new);
2676 iput(inode);
2677 return ERR_PTR(-EIO);
2679 if (d_ancestor(new, dentry)) {
2680 spin_unlock(&inode->i_lock);
2681 dput(new);
2682 iput(inode);
2683 return ERR_PTR(-EIO);
2685 write_seqlock(&rename_lock);
2686 __d_move(new, dentry, false);
2687 write_sequnlock(&rename_lock);
2688 spin_unlock(&inode->i_lock);
2689 security_d_instantiate(new, inode);
2690 iput(inode);
2691 } else {
2692 /* already taking inode->i_lock, so d_add() by hand */
2693 __d_instantiate(dentry, inode);
2694 spin_unlock(&inode->i_lock);
2695 security_d_instantiate(dentry, inode);
2696 d_rehash(dentry);
2698 } else {
2699 d_instantiate(dentry, inode);
2700 if (d_unhashed(dentry))
2701 d_rehash(dentry);
2703 return new;
2705 EXPORT_SYMBOL(d_splice_alias);
2708 * d_materialise_unique - introduce an inode into the tree
2709 * @dentry: candidate dentry
2710 * @inode: inode to bind to the dentry, to which aliases may be attached
2712 * Introduces an dentry into the tree, substituting an extant disconnected
2713 * root directory alias in its place if there is one. Caller must hold the
2714 * i_mutex of the parent directory.
2716 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2718 struct dentry *actual;
2720 BUG_ON(!d_unhashed(dentry));
2722 if (!inode) {
2723 actual = dentry;
2724 __d_instantiate(dentry, NULL);
2725 d_rehash(actual);
2726 goto out_nolock;
2729 spin_lock(&inode->i_lock);
2731 if (S_ISDIR(inode->i_mode)) {
2732 struct dentry *alias;
2734 /* Does an aliased dentry already exist? */
2735 alias = __d_find_alias(inode);
2736 if (alias) {
2737 actual = alias;
2738 write_seqlock(&rename_lock);
2740 if (d_ancestor(alias, dentry)) {
2741 /* Check for loops */
2742 actual = ERR_PTR(-ELOOP);
2743 spin_unlock(&inode->i_lock);
2744 } else if (IS_ROOT(alias)) {
2745 /* Is this an anonymous mountpoint that we
2746 * could splice into our tree? */
2747 __d_move(alias, dentry, false);
2748 write_sequnlock(&rename_lock);
2749 goto found;
2750 } else {
2751 /* Nope, but we must(!) avoid directory
2752 * aliasing. This drops inode->i_lock */
2753 actual = __d_unalias(inode, dentry, alias);
2755 write_sequnlock(&rename_lock);
2756 if (IS_ERR(actual)) {
2757 if (PTR_ERR(actual) == -ELOOP)
2758 pr_warn_ratelimited(
2759 "VFS: Lookup of '%s' in %s %s"
2760 " would have caused loop\n",
2761 dentry->d_name.name,
2762 inode->i_sb->s_type->name,
2763 inode->i_sb->s_id);
2764 dput(alias);
2766 goto out_nolock;
2770 /* Add a unique reference */
2771 actual = __d_instantiate_unique(dentry, inode);
2772 if (!actual)
2773 actual = dentry;
2775 d_rehash(actual);
2776 found:
2777 spin_unlock(&inode->i_lock);
2778 out_nolock:
2779 if (actual == dentry) {
2780 security_d_instantiate(dentry, inode);
2781 return NULL;
2784 iput(inode);
2785 return actual;
2787 EXPORT_SYMBOL_GPL(d_materialise_unique);
2789 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2791 *buflen -= namelen;
2792 if (*buflen < 0)
2793 return -ENAMETOOLONG;
2794 *buffer -= namelen;
2795 memcpy(*buffer, str, namelen);
2796 return 0;
2800 * prepend_name - prepend a pathname in front of current buffer pointer
2801 * @buffer: buffer pointer
2802 * @buflen: allocated length of the buffer
2803 * @name: name string and length qstr structure
2805 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2806 * make sure that either the old or the new name pointer and length are
2807 * fetched. However, there may be mismatch between length and pointer.
2808 * The length cannot be trusted, we need to copy it byte-by-byte until
2809 * the length is reached or a null byte is found. It also prepends "/" at
2810 * the beginning of the name. The sequence number check at the caller will
2811 * retry it again when a d_move() does happen. So any garbage in the buffer
2812 * due to mismatched pointer and length will be discarded.
2814 * Data dependency barrier is needed to make sure that we see that terminating
2815 * NUL. Alpha strikes again, film at 11...
2817 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2819 const char *dname = ACCESS_ONCE(name->name);
2820 u32 dlen = ACCESS_ONCE(name->len);
2821 char *p;
2823 smp_read_barrier_depends();
2825 *buflen -= dlen + 1;
2826 if (*buflen < 0)
2827 return -ENAMETOOLONG;
2828 p = *buffer -= dlen + 1;
2829 *p++ = '/';
2830 while (dlen--) {
2831 char c = *dname++;
2832 if (!c)
2833 break;
2834 *p++ = c;
2836 return 0;
2840 * prepend_path - Prepend path string to a buffer
2841 * @path: the dentry/vfsmount to report
2842 * @root: root vfsmnt/dentry
2843 * @buffer: pointer to the end of the buffer
2844 * @buflen: pointer to buffer length
2846 * The function will first try to write out the pathname without taking any
2847 * lock other than the RCU read lock to make sure that dentries won't go away.
2848 * It only checks the sequence number of the global rename_lock as any change
2849 * in the dentry's d_seq will be preceded by changes in the rename_lock
2850 * sequence number. If the sequence number had been changed, it will restart
2851 * the whole pathname back-tracing sequence again by taking the rename_lock.
2852 * In this case, there is no need to take the RCU read lock as the recursive
2853 * parent pointer references will keep the dentry chain alive as long as no
2854 * rename operation is performed.
2856 static int prepend_path(const struct path *path,
2857 const struct path *root,
2858 char **buffer, int *buflen)
2860 struct dentry *dentry;
2861 struct vfsmount *vfsmnt;
2862 struct mount *mnt;
2863 int error = 0;
2864 unsigned seq, m_seq = 0;
2865 char *bptr;
2866 int blen;
2868 rcu_read_lock();
2869 restart_mnt:
2870 read_seqbegin_or_lock(&mount_lock, &m_seq);
2871 seq = 0;
2872 rcu_read_lock();
2873 restart:
2874 bptr = *buffer;
2875 blen = *buflen;
2876 error = 0;
2877 dentry = path->dentry;
2878 vfsmnt = path->mnt;
2879 mnt = real_mount(vfsmnt);
2880 read_seqbegin_or_lock(&rename_lock, &seq);
2881 while (dentry != root->dentry || vfsmnt != root->mnt) {
2882 struct dentry * parent;
2884 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2885 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
2886 /* Global root? */
2887 if (mnt != parent) {
2888 dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
2889 mnt = parent;
2890 vfsmnt = &mnt->mnt;
2891 continue;
2894 * Filesystems needing to implement special "root names"
2895 * should do so with ->d_dname()
2897 if (IS_ROOT(dentry) &&
2898 (dentry->d_name.len != 1 ||
2899 dentry->d_name.name[0] != '/')) {
2900 WARN(1, "Root dentry has weird name <%.*s>\n",
2901 (int) dentry->d_name.len,
2902 dentry->d_name.name);
2904 if (!error)
2905 error = is_mounted(vfsmnt) ? 1 : 2;
2906 break;
2908 parent = dentry->d_parent;
2909 prefetch(parent);
2910 error = prepend_name(&bptr, &blen, &dentry->d_name);
2911 if (error)
2912 break;
2914 dentry = parent;
2916 if (!(seq & 1))
2917 rcu_read_unlock();
2918 if (need_seqretry(&rename_lock, seq)) {
2919 seq = 1;
2920 goto restart;
2922 done_seqretry(&rename_lock, seq);
2924 if (!(m_seq & 1))
2925 rcu_read_unlock();
2926 if (need_seqretry(&mount_lock, m_seq)) {
2927 m_seq = 1;
2928 goto restart_mnt;
2930 done_seqretry(&mount_lock, m_seq);
2932 if (error >= 0 && bptr == *buffer) {
2933 if (--blen < 0)
2934 error = -ENAMETOOLONG;
2935 else
2936 *--bptr = '/';
2938 *buffer = bptr;
2939 *buflen = blen;
2940 return error;
2944 * __d_path - return the path of a dentry
2945 * @path: the dentry/vfsmount to report
2946 * @root: root vfsmnt/dentry
2947 * @buf: buffer to return value in
2948 * @buflen: buffer length
2950 * Convert a dentry into an ASCII path name.
2952 * Returns a pointer into the buffer or an error code if the
2953 * path was too long.
2955 * "buflen" should be positive.
2957 * If the path is not reachable from the supplied root, return %NULL.
2959 char *__d_path(const struct path *path,
2960 const struct path *root,
2961 char *buf, int buflen)
2963 char *res = buf + buflen;
2964 int error;
2966 prepend(&res, &buflen, "\0", 1);
2967 error = prepend_path(path, root, &res, &buflen);
2969 if (error < 0)
2970 return ERR_PTR(error);
2971 if (error > 0)
2972 return NULL;
2973 return res;
2976 char *d_absolute_path(const struct path *path,
2977 char *buf, int buflen)
2979 struct path root = {};
2980 char *res = buf + buflen;
2981 int error;
2983 prepend(&res, &buflen, "\0", 1);
2984 error = prepend_path(path, &root, &res, &buflen);
2986 if (error > 1)
2987 error = -EINVAL;
2988 if (error < 0)
2989 return ERR_PTR(error);
2990 return res;
2994 * same as __d_path but appends "(deleted)" for unlinked files.
2996 static int path_with_deleted(const struct path *path,
2997 const struct path *root,
2998 char **buf, int *buflen)
3000 prepend(buf, buflen, "\0", 1);
3001 if (d_unlinked(path->dentry)) {
3002 int error = prepend(buf, buflen, " (deleted)", 10);
3003 if (error)
3004 return error;
3007 return prepend_path(path, root, buf, buflen);
3010 static int prepend_unreachable(char **buffer, int *buflen)
3012 return prepend(buffer, buflen, "(unreachable)", 13);
3015 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3017 unsigned seq;
3019 do {
3020 seq = read_seqcount_begin(&fs->seq);
3021 *root = fs->root;
3022 } while (read_seqcount_retry(&fs->seq, seq));
3026 * d_path - return the path of a dentry
3027 * @path: path to report
3028 * @buf: buffer to return value in
3029 * @buflen: buffer length
3031 * Convert a dentry into an ASCII path name. If the entry has been deleted
3032 * the string " (deleted)" is appended. Note that this is ambiguous.
3034 * Returns a pointer into the buffer or an error code if the path was
3035 * too long. Note: Callers should use the returned pointer, not the passed
3036 * in buffer, to use the name! The implementation often starts at an offset
3037 * into the buffer, and may leave 0 bytes at the start.
3039 * "buflen" should be positive.
3041 char *d_path(const struct path *path, char *buf, int buflen)
3043 char *res = buf + buflen;
3044 struct path root;
3045 int error;
3048 * We have various synthetic filesystems that never get mounted. On
3049 * these filesystems dentries are never used for lookup purposes, and
3050 * thus don't need to be hashed. They also don't need a name until a
3051 * user wants to identify the object in /proc/pid/fd/. The little hack
3052 * below allows us to generate a name for these objects on demand:
3054 * Some pseudo inodes are mountable. When they are mounted
3055 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3056 * and instead have d_path return the mounted path.
3058 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3059 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3060 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3062 rcu_read_lock();
3063 get_fs_root_rcu(current->fs, &root);
3064 error = path_with_deleted(path, &root, &res, &buflen);
3065 rcu_read_unlock();
3067 if (error < 0)
3068 res = ERR_PTR(error);
3069 return res;
3071 EXPORT_SYMBOL(d_path);
3074 * Helper function for dentry_operations.d_dname() members
3076 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3077 const char *fmt, ...)
3079 va_list args;
3080 char temp[64];
3081 int sz;
3083 va_start(args, fmt);
3084 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3085 va_end(args);
3087 if (sz > sizeof(temp) || sz > buflen)
3088 return ERR_PTR(-ENAMETOOLONG);
3090 buffer += buflen - sz;
3091 return memcpy(buffer, temp, sz);
3094 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3096 char *end = buffer + buflen;
3097 /* these dentries are never renamed, so d_lock is not needed */
3098 if (prepend(&end, &buflen, " (deleted)", 11) ||
3099 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3100 prepend(&end, &buflen, "/", 1))
3101 end = ERR_PTR(-ENAMETOOLONG);
3102 return end;
3104 EXPORT_SYMBOL(simple_dname);
3107 * Write full pathname from the root of the filesystem into the buffer.
3109 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3111 struct dentry *dentry;
3112 char *end, *retval;
3113 int len, seq = 0;
3114 int error = 0;
3116 if (buflen < 2)
3117 goto Elong;
3119 rcu_read_lock();
3120 restart:
3121 dentry = d;
3122 end = buf + buflen;
3123 len = buflen;
3124 prepend(&end, &len, "\0", 1);
3125 /* Get '/' right */
3126 retval = end-1;
3127 *retval = '/';
3128 read_seqbegin_or_lock(&rename_lock, &seq);
3129 while (!IS_ROOT(dentry)) {
3130 struct dentry *parent = dentry->d_parent;
3132 prefetch(parent);
3133 error = prepend_name(&end, &len, &dentry->d_name);
3134 if (error)
3135 break;
3137 retval = end;
3138 dentry = parent;
3140 if (!(seq & 1))
3141 rcu_read_unlock();
3142 if (need_seqretry(&rename_lock, seq)) {
3143 seq = 1;
3144 goto restart;
3146 done_seqretry(&rename_lock, seq);
3147 if (error)
3148 goto Elong;
3149 return retval;
3150 Elong:
3151 return ERR_PTR(-ENAMETOOLONG);
3154 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3156 return __dentry_path(dentry, buf, buflen);
3158 EXPORT_SYMBOL(dentry_path_raw);
3160 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3162 char *p = NULL;
3163 char *retval;
3165 if (d_unlinked(dentry)) {
3166 p = buf + buflen;
3167 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3168 goto Elong;
3169 buflen++;
3171 retval = __dentry_path(dentry, buf, buflen);
3172 if (!IS_ERR(retval) && p)
3173 *p = '/'; /* restore '/' overriden with '\0' */
3174 return retval;
3175 Elong:
3176 return ERR_PTR(-ENAMETOOLONG);
3179 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3180 struct path *pwd)
3182 unsigned seq;
3184 do {
3185 seq = read_seqcount_begin(&fs->seq);
3186 *root = fs->root;
3187 *pwd = fs->pwd;
3188 } while (read_seqcount_retry(&fs->seq, seq));
3192 * NOTE! The user-level library version returns a
3193 * character pointer. The kernel system call just
3194 * returns the length of the buffer filled (which
3195 * includes the ending '\0' character), or a negative
3196 * error value. So libc would do something like
3198 * char *getcwd(char * buf, size_t size)
3200 * int retval;
3202 * retval = sys_getcwd(buf, size);
3203 * if (retval >= 0)
3204 * return buf;
3205 * errno = -retval;
3206 * return NULL;
3209 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3211 int error;
3212 struct path pwd, root;
3213 char *page = __getname();
3215 if (!page)
3216 return -ENOMEM;
3218 rcu_read_lock();
3219 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3221 error = -ENOENT;
3222 if (!d_unlinked(pwd.dentry)) {
3223 unsigned long len;
3224 char *cwd = page + PATH_MAX;
3225 int buflen = PATH_MAX;
3227 prepend(&cwd, &buflen, "\0", 1);
3228 error = prepend_path(&pwd, &root, &cwd, &buflen);
3229 rcu_read_unlock();
3231 if (error < 0)
3232 goto out;
3234 /* Unreachable from current root */
3235 if (error > 0) {
3236 error = prepend_unreachable(&cwd, &buflen);
3237 if (error)
3238 goto out;
3241 error = -ERANGE;
3242 len = PATH_MAX + page - cwd;
3243 if (len <= size) {
3244 error = len;
3245 if (copy_to_user(buf, cwd, len))
3246 error = -EFAULT;
3248 } else {
3249 rcu_read_unlock();
3252 out:
3253 __putname(page);
3254 return error;
3258 * Test whether new_dentry is a subdirectory of old_dentry.
3260 * Trivially implemented using the dcache structure
3264 * is_subdir - is new dentry a subdirectory of old_dentry
3265 * @new_dentry: new dentry
3266 * @old_dentry: old dentry
3268 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3269 * Returns 0 otherwise.
3270 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3273 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3275 int result;
3276 unsigned seq;
3278 if (new_dentry == old_dentry)
3279 return 1;
3281 do {
3282 /* for restarting inner loop in case of seq retry */
3283 seq = read_seqbegin(&rename_lock);
3285 * Need rcu_readlock to protect against the d_parent trashing
3286 * due to d_move
3288 rcu_read_lock();
3289 if (d_ancestor(old_dentry, new_dentry))
3290 result = 1;
3291 else
3292 result = 0;
3293 rcu_read_unlock();
3294 } while (read_seqretry(&rename_lock, seq));
3296 return result;
3299 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3301 struct dentry *root = data;
3302 if (dentry != root) {
3303 if (d_unhashed(dentry) || !dentry->d_inode)
3304 return D_WALK_SKIP;
3306 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3307 dentry->d_flags |= DCACHE_GENOCIDE;
3308 dentry->d_lockref.count--;
3311 return D_WALK_CONTINUE;
3314 void d_genocide(struct dentry *parent)
3316 d_walk(parent, parent, d_genocide_kill, NULL);
3319 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3321 inode_dec_link_count(inode);
3322 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3323 !hlist_unhashed(&dentry->d_alias) ||
3324 !d_unlinked(dentry));
3325 spin_lock(&dentry->d_parent->d_lock);
3326 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3327 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3328 (unsigned long long)inode->i_ino);
3329 spin_unlock(&dentry->d_lock);
3330 spin_unlock(&dentry->d_parent->d_lock);
3331 d_instantiate(dentry, inode);
3333 EXPORT_SYMBOL(d_tmpfile);
3335 static __initdata unsigned long dhash_entries;
3336 static int __init set_dhash_entries(char *str)
3338 if (!str)
3339 return 0;
3340 dhash_entries = simple_strtoul(str, &str, 0);
3341 return 1;
3343 __setup("dhash_entries=", set_dhash_entries);
3345 static void __init dcache_init_early(void)
3347 unsigned int loop;
3349 /* If hashes are distributed across NUMA nodes, defer
3350 * hash allocation until vmalloc space is available.
3352 if (hashdist)
3353 return;
3355 dentry_hashtable =
3356 alloc_large_system_hash("Dentry cache",
3357 sizeof(struct hlist_bl_head),
3358 dhash_entries,
3360 HASH_EARLY,
3361 &d_hash_shift,
3362 &d_hash_mask,
3366 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3367 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3370 static void __init dcache_init(void)
3372 unsigned int loop;
3375 * A constructor could be added for stable state like the lists,
3376 * but it is probably not worth it because of the cache nature
3377 * of the dcache.
3379 dentry_cache = KMEM_CACHE(dentry,
3380 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3382 /* Hash may have been set up in dcache_init_early */
3383 if (!hashdist)
3384 return;
3386 dentry_hashtable =
3387 alloc_large_system_hash("Dentry cache",
3388 sizeof(struct hlist_bl_head),
3389 dhash_entries,
3392 &d_hash_shift,
3393 &d_hash_mask,
3397 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3398 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3401 /* SLAB cache for __getname() consumers */
3402 struct kmem_cache *names_cachep __read_mostly;
3403 EXPORT_SYMBOL(names_cachep);
3405 EXPORT_SYMBOL(d_genocide);
3407 void __init vfs_caches_init_early(void)
3409 dcache_init_early();
3410 inode_init_early();
3413 void __init vfs_caches_init(unsigned long mempages)
3415 unsigned long reserve;
3417 /* Base hash sizes on available memory, with a reserve equal to
3418 150% of current kernel size */
3420 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3421 mempages -= reserve;
3423 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3424 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3426 dcache_init();
3427 inode_init();
3428 files_init(mempages);
3429 mnt_init();
3430 bdev_cache_init();
3431 chrdev_init();