mm: use kcalloc() instead of kzalloc() to allocate array
[linux/fpc-iii.git] / drivers / net / irda / au1k_ir.c
blobfc503aa5288e3f164843f754c6977abf4345705c
1 /*
2 * Alchemy Semi Au1000 IrDA driver
4 * Copyright 2001 MontaVista Software Inc.
5 * Author: MontaVista Software, Inc.
6 * ppopov@mvista.com or source@mvista.com
8 * This program is free software; you can distribute it and/or modify it
9 * under the terms of the GNU General Public License (Version 2) as
10 * published by the Free Software Foundation.
12 * This program is distributed in the hope it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 * for more details.
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, write to the Free Software Foundation, Inc.,
19 * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/netdevice.h>
25 #include <linux/interrupt.h>
26 #include <linux/platform_device.h>
27 #include <linux/slab.h>
28 #include <linux/time.h>
29 #include <linux/types.h>
31 #include <net/irda/irda.h>
32 #include <net/irda/irmod.h>
33 #include <net/irda/wrapper.h>
34 #include <net/irda/irda_device.h>
35 #include <asm/mach-au1x00/au1000.h>
37 /* registers */
38 #define IR_RING_PTR_STATUS 0x00
39 #define IR_RING_BASE_ADDR_H 0x04
40 #define IR_RING_BASE_ADDR_L 0x08
41 #define IR_RING_SIZE 0x0C
42 #define IR_RING_PROMPT 0x10
43 #define IR_RING_ADDR_CMPR 0x14
44 #define IR_INT_CLEAR 0x18
45 #define IR_CONFIG_1 0x20
46 #define IR_SIR_FLAGS 0x24
47 #define IR_STATUS 0x28
48 #define IR_READ_PHY_CONFIG 0x2C
49 #define IR_WRITE_PHY_CONFIG 0x30
50 #define IR_MAX_PKT_LEN 0x34
51 #define IR_RX_BYTE_CNT 0x38
52 #define IR_CONFIG_2 0x3C
53 #define IR_ENABLE 0x40
55 /* Config1 */
56 #define IR_RX_INVERT_LED (1 << 0)
57 #define IR_TX_INVERT_LED (1 << 1)
58 #define IR_ST (1 << 2)
59 #define IR_SF (1 << 3)
60 #define IR_SIR (1 << 4)
61 #define IR_MIR (1 << 5)
62 #define IR_FIR (1 << 6)
63 #define IR_16CRC (1 << 7)
64 #define IR_TD (1 << 8)
65 #define IR_RX_ALL (1 << 9)
66 #define IR_DMA_ENABLE (1 << 10)
67 #define IR_RX_ENABLE (1 << 11)
68 #define IR_TX_ENABLE (1 << 12)
69 #define IR_LOOPBACK (1 << 14)
70 #define IR_SIR_MODE (IR_SIR | IR_DMA_ENABLE | \
71 IR_RX_ALL | IR_RX_ENABLE | IR_SF | \
72 IR_16CRC)
74 /* ir_status */
75 #define IR_RX_STATUS (1 << 9)
76 #define IR_TX_STATUS (1 << 10)
77 #define IR_PHYEN (1 << 15)
79 /* ir_write_phy_config */
80 #define IR_BR(x) (((x) & 0x3f) << 10) /* baud rate */
81 #define IR_PW(x) (((x) & 0x1f) << 5) /* pulse width */
82 #define IR_P(x) ((x) & 0x1f) /* preamble bits */
84 /* Config2 */
85 #define IR_MODE_INV (1 << 0)
86 #define IR_ONE_PIN (1 << 1)
87 #define IR_PHYCLK_40MHZ (0 << 2)
88 #define IR_PHYCLK_48MHZ (1 << 2)
89 #define IR_PHYCLK_56MHZ (2 << 2)
90 #define IR_PHYCLK_64MHZ (3 << 2)
91 #define IR_DP (1 << 4)
92 #define IR_DA (1 << 5)
93 #define IR_FLT_HIGH (0 << 6)
94 #define IR_FLT_MEDHI (1 << 6)
95 #define IR_FLT_MEDLO (2 << 6)
96 #define IR_FLT_LO (3 << 6)
97 #define IR_IEN (1 << 8)
99 /* ir_enable */
100 #define IR_HC (1 << 3) /* divide SBUS clock by 2 */
101 #define IR_CE (1 << 2) /* clock enable */
102 #define IR_C (1 << 1) /* coherency bit */
103 #define IR_BE (1 << 0) /* set in big endian mode */
105 #define NUM_IR_DESC 64
106 #define RING_SIZE_4 0x0
107 #define RING_SIZE_16 0x3
108 #define RING_SIZE_64 0xF
109 #define MAX_NUM_IR_DESC 64
110 #define MAX_BUF_SIZE 2048
112 /* Ring descriptor flags */
113 #define AU_OWN (1 << 7) /* tx,rx */
114 #define IR_DIS_CRC (1 << 6) /* tx */
115 #define IR_BAD_CRC (1 << 5) /* tx */
116 #define IR_NEED_PULSE (1 << 4) /* tx */
117 #define IR_FORCE_UNDER (1 << 3) /* tx */
118 #define IR_DISABLE_TX (1 << 2) /* tx */
119 #define IR_HW_UNDER (1 << 0) /* tx */
120 #define IR_TX_ERROR (IR_DIS_CRC | IR_BAD_CRC | IR_HW_UNDER)
122 #define IR_PHY_ERROR (1 << 6) /* rx */
123 #define IR_CRC_ERROR (1 << 5) /* rx */
124 #define IR_MAX_LEN (1 << 4) /* rx */
125 #define IR_FIFO_OVER (1 << 3) /* rx */
126 #define IR_SIR_ERROR (1 << 2) /* rx */
127 #define IR_RX_ERROR (IR_PHY_ERROR | IR_CRC_ERROR | \
128 IR_MAX_LEN | IR_FIFO_OVER | IR_SIR_ERROR)
130 struct db_dest {
131 struct db_dest *pnext;
132 volatile u32 *vaddr;
133 dma_addr_t dma_addr;
136 struct ring_dest {
137 u8 count_0; /* 7:0 */
138 u8 count_1; /* 12:8 */
139 u8 reserved;
140 u8 flags;
141 u8 addr_0; /* 7:0 */
142 u8 addr_1; /* 15:8 */
143 u8 addr_2; /* 23:16 */
144 u8 addr_3; /* 31:24 */
147 /* Private data for each instance */
148 struct au1k_private {
149 void __iomem *iobase;
150 int irq_rx, irq_tx;
152 struct db_dest *pDBfree;
153 struct db_dest db[2 * NUM_IR_DESC];
154 volatile struct ring_dest *rx_ring[NUM_IR_DESC];
155 volatile struct ring_dest *tx_ring[NUM_IR_DESC];
156 struct db_dest *rx_db_inuse[NUM_IR_DESC];
157 struct db_dest *tx_db_inuse[NUM_IR_DESC];
158 u32 rx_head;
159 u32 tx_head;
160 u32 tx_tail;
161 u32 tx_full;
163 iobuff_t rx_buff;
165 struct net_device *netdev;
166 struct timeval stamp;
167 struct timeval now;
168 struct qos_info qos;
169 struct irlap_cb *irlap;
171 u8 open;
172 u32 speed;
173 u32 newspeed;
175 struct timer_list timer;
177 struct resource *ioarea;
178 struct au1k_irda_platform_data *platdata;
181 static int qos_mtt_bits = 0x07; /* 1 ms or more */
183 #define RUN_AT(x) (jiffies + (x))
185 static void au1k_irda_plat_set_phy_mode(struct au1k_private *p, int mode)
187 if (p->platdata && p->platdata->set_phy_mode)
188 p->platdata->set_phy_mode(mode);
191 static inline unsigned long irda_read(struct au1k_private *p,
192 unsigned long ofs)
195 * IrDA peripheral bug. You have to read the register
196 * twice to get the right value.
198 (void)__raw_readl(p->iobase + ofs);
199 return __raw_readl(p->iobase + ofs);
202 static inline void irda_write(struct au1k_private *p, unsigned long ofs,
203 unsigned long val)
205 __raw_writel(val, p->iobase + ofs);
206 wmb();
210 * Buffer allocation/deallocation routines. The buffer descriptor returned
211 * has the virtual and dma address of a buffer suitable for
212 * both, receive and transmit operations.
214 static struct db_dest *GetFreeDB(struct au1k_private *aup)
216 struct db_dest *db;
217 db = aup->pDBfree;
219 if (db)
220 aup->pDBfree = db->pnext;
221 return db;
225 DMA memory allocation, derived from pci_alloc_consistent.
226 However, the Au1000 data cache is coherent (when programmed
227 so), therefore we return KSEG0 address, not KSEG1.
229 static void *dma_alloc(size_t size, dma_addr_t *dma_handle)
231 void *ret;
232 int gfp = GFP_ATOMIC | GFP_DMA;
234 ret = (void *)__get_free_pages(gfp, get_order(size));
236 if (ret != NULL) {
237 memset(ret, 0, size);
238 *dma_handle = virt_to_bus(ret);
239 ret = (void *)KSEG0ADDR(ret);
241 return ret;
244 static void dma_free(void *vaddr, size_t size)
246 vaddr = (void *)KSEG0ADDR(vaddr);
247 free_pages((unsigned long) vaddr, get_order(size));
251 static void setup_hw_rings(struct au1k_private *aup, u32 rx_base, u32 tx_base)
253 int i;
254 for (i = 0; i < NUM_IR_DESC; i++) {
255 aup->rx_ring[i] = (volatile struct ring_dest *)
256 (rx_base + sizeof(struct ring_dest) * i);
258 for (i = 0; i < NUM_IR_DESC; i++) {
259 aup->tx_ring[i] = (volatile struct ring_dest *)
260 (tx_base + sizeof(struct ring_dest) * i);
264 static int au1k_irda_init_iobuf(iobuff_t *io, int size)
266 io->head = kmalloc(size, GFP_KERNEL);
267 if (io->head != NULL) {
268 io->truesize = size;
269 io->in_frame = FALSE;
270 io->state = OUTSIDE_FRAME;
271 io->data = io->head;
273 return io->head ? 0 : -ENOMEM;
277 * Set the IrDA communications speed.
279 static int au1k_irda_set_speed(struct net_device *dev, int speed)
281 struct au1k_private *aup = netdev_priv(dev);
282 volatile struct ring_dest *ptxd;
283 unsigned long control;
284 int ret = 0, timeout = 10, i;
286 if (speed == aup->speed)
287 return ret;
289 /* disable PHY first */
290 au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_OFF);
291 irda_write(aup, IR_STATUS, irda_read(aup, IR_STATUS) & ~IR_PHYEN);
293 /* disable RX/TX */
294 irda_write(aup, IR_CONFIG_1,
295 irda_read(aup, IR_CONFIG_1) & ~(IR_RX_ENABLE | IR_TX_ENABLE));
296 msleep(20);
297 while (irda_read(aup, IR_STATUS) & (IR_RX_STATUS | IR_TX_STATUS)) {
298 msleep(20);
299 if (!timeout--) {
300 printk(KERN_ERR "%s: rx/tx disable timeout\n",
301 dev->name);
302 break;
306 /* disable DMA */
307 irda_write(aup, IR_CONFIG_1,
308 irda_read(aup, IR_CONFIG_1) & ~IR_DMA_ENABLE);
309 msleep(20);
311 /* After we disable tx/rx. the index pointers go back to zero. */
312 aup->tx_head = aup->tx_tail = aup->rx_head = 0;
313 for (i = 0; i < NUM_IR_DESC; i++) {
314 ptxd = aup->tx_ring[i];
315 ptxd->flags = 0;
316 ptxd->count_0 = 0;
317 ptxd->count_1 = 0;
320 for (i = 0; i < NUM_IR_DESC; i++) {
321 ptxd = aup->rx_ring[i];
322 ptxd->count_0 = 0;
323 ptxd->count_1 = 0;
324 ptxd->flags = AU_OWN;
327 if (speed == 4000000)
328 au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_FIR);
329 else
330 au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_SIR);
332 switch (speed) {
333 case 9600:
334 irda_write(aup, IR_WRITE_PHY_CONFIG, IR_BR(11) | IR_PW(12));
335 irda_write(aup, IR_CONFIG_1, IR_SIR_MODE);
336 break;
337 case 19200:
338 irda_write(aup, IR_WRITE_PHY_CONFIG, IR_BR(5) | IR_PW(12));
339 irda_write(aup, IR_CONFIG_1, IR_SIR_MODE);
340 break;
341 case 38400:
342 irda_write(aup, IR_WRITE_PHY_CONFIG, IR_BR(2) | IR_PW(12));
343 irda_write(aup, IR_CONFIG_1, IR_SIR_MODE);
344 break;
345 case 57600:
346 irda_write(aup, IR_WRITE_PHY_CONFIG, IR_BR(1) | IR_PW(12));
347 irda_write(aup, IR_CONFIG_1, IR_SIR_MODE);
348 break;
349 case 115200:
350 irda_write(aup, IR_WRITE_PHY_CONFIG, IR_PW(12));
351 irda_write(aup, IR_CONFIG_1, IR_SIR_MODE);
352 break;
353 case 4000000:
354 irda_write(aup, IR_WRITE_PHY_CONFIG, IR_P(15));
355 irda_write(aup, IR_CONFIG_1, IR_FIR | IR_DMA_ENABLE |
356 IR_RX_ENABLE);
357 break;
358 default:
359 printk(KERN_ERR "%s unsupported speed %x\n", dev->name, speed);
360 ret = -EINVAL;
361 break;
364 aup->speed = speed;
365 irda_write(aup, IR_STATUS, irda_read(aup, IR_STATUS) | IR_PHYEN);
367 control = irda_read(aup, IR_STATUS);
368 irda_write(aup, IR_RING_PROMPT, 0);
370 if (control & (1 << 14)) {
371 printk(KERN_ERR "%s: configuration error\n", dev->name);
372 } else {
373 if (control & (1 << 11))
374 printk(KERN_DEBUG "%s Valid SIR config\n", dev->name);
375 if (control & (1 << 12))
376 printk(KERN_DEBUG "%s Valid MIR config\n", dev->name);
377 if (control & (1 << 13))
378 printk(KERN_DEBUG "%s Valid FIR config\n", dev->name);
379 if (control & (1 << 10))
380 printk(KERN_DEBUG "%s TX enabled\n", dev->name);
381 if (control & (1 << 9))
382 printk(KERN_DEBUG "%s RX enabled\n", dev->name);
385 return ret;
388 static void update_rx_stats(struct net_device *dev, u32 status, u32 count)
390 struct net_device_stats *ps = &dev->stats;
392 ps->rx_packets++;
394 if (status & IR_RX_ERROR) {
395 ps->rx_errors++;
396 if (status & (IR_PHY_ERROR | IR_FIFO_OVER))
397 ps->rx_missed_errors++;
398 if (status & IR_MAX_LEN)
399 ps->rx_length_errors++;
400 if (status & IR_CRC_ERROR)
401 ps->rx_crc_errors++;
402 } else
403 ps->rx_bytes += count;
406 static void update_tx_stats(struct net_device *dev, u32 status, u32 pkt_len)
408 struct net_device_stats *ps = &dev->stats;
410 ps->tx_packets++;
411 ps->tx_bytes += pkt_len;
413 if (status & IR_TX_ERROR) {
414 ps->tx_errors++;
415 ps->tx_aborted_errors++;
419 static void au1k_tx_ack(struct net_device *dev)
421 struct au1k_private *aup = netdev_priv(dev);
422 volatile struct ring_dest *ptxd;
424 ptxd = aup->tx_ring[aup->tx_tail];
425 while (!(ptxd->flags & AU_OWN) && (aup->tx_tail != aup->tx_head)) {
426 update_tx_stats(dev, ptxd->flags,
427 (ptxd->count_1 << 8) | ptxd->count_0);
428 ptxd->count_0 = 0;
429 ptxd->count_1 = 0;
430 wmb();
431 aup->tx_tail = (aup->tx_tail + 1) & (NUM_IR_DESC - 1);
432 ptxd = aup->tx_ring[aup->tx_tail];
434 if (aup->tx_full) {
435 aup->tx_full = 0;
436 netif_wake_queue(dev);
440 if (aup->tx_tail == aup->tx_head) {
441 if (aup->newspeed) {
442 au1k_irda_set_speed(dev, aup->newspeed);
443 aup->newspeed = 0;
444 } else {
445 irda_write(aup, IR_CONFIG_1,
446 irda_read(aup, IR_CONFIG_1) & ~IR_TX_ENABLE);
447 irda_write(aup, IR_CONFIG_1,
448 irda_read(aup, IR_CONFIG_1) | IR_RX_ENABLE);
449 irda_write(aup, IR_RING_PROMPT, 0);
454 static int au1k_irda_rx(struct net_device *dev)
456 struct au1k_private *aup = netdev_priv(dev);
457 volatile struct ring_dest *prxd;
458 struct sk_buff *skb;
459 struct db_dest *pDB;
460 u32 flags, count;
462 prxd = aup->rx_ring[aup->rx_head];
463 flags = prxd->flags;
465 while (!(flags & AU_OWN)) {
466 pDB = aup->rx_db_inuse[aup->rx_head];
467 count = (prxd->count_1 << 8) | prxd->count_0;
468 if (!(flags & IR_RX_ERROR)) {
469 /* good frame */
470 update_rx_stats(dev, flags, count);
471 skb = alloc_skb(count + 1, GFP_ATOMIC);
472 if (skb == NULL) {
473 dev->stats.rx_dropped++;
474 continue;
476 skb_reserve(skb, 1);
477 if (aup->speed == 4000000)
478 skb_put(skb, count);
479 else
480 skb_put(skb, count - 2);
481 skb_copy_to_linear_data(skb, (void *)pDB->vaddr,
482 count - 2);
483 skb->dev = dev;
484 skb_reset_mac_header(skb);
485 skb->protocol = htons(ETH_P_IRDA);
486 netif_rx(skb);
487 prxd->count_0 = 0;
488 prxd->count_1 = 0;
490 prxd->flags |= AU_OWN;
491 aup->rx_head = (aup->rx_head + 1) & (NUM_IR_DESC - 1);
492 irda_write(aup, IR_RING_PROMPT, 0);
494 /* next descriptor */
495 prxd = aup->rx_ring[aup->rx_head];
496 flags = prxd->flags;
499 return 0;
502 static irqreturn_t au1k_irda_interrupt(int dummy, void *dev_id)
504 struct net_device *dev = dev_id;
505 struct au1k_private *aup = netdev_priv(dev);
507 irda_write(aup, IR_INT_CLEAR, 0); /* ack irda interrupts */
509 au1k_irda_rx(dev);
510 au1k_tx_ack(dev);
512 return IRQ_HANDLED;
515 static int au1k_init(struct net_device *dev)
517 struct au1k_private *aup = netdev_priv(dev);
518 u32 enable, ring_address;
519 int i;
521 enable = IR_HC | IR_CE | IR_C;
522 #ifndef CONFIG_CPU_LITTLE_ENDIAN
523 enable |= IR_BE;
524 #endif
525 aup->tx_head = 0;
526 aup->tx_tail = 0;
527 aup->rx_head = 0;
529 for (i = 0; i < NUM_IR_DESC; i++)
530 aup->rx_ring[i]->flags = AU_OWN;
532 irda_write(aup, IR_ENABLE, enable);
533 msleep(20);
535 /* disable PHY */
536 au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_OFF);
537 irda_write(aup, IR_STATUS, irda_read(aup, IR_STATUS) & ~IR_PHYEN);
538 msleep(20);
540 irda_write(aup, IR_MAX_PKT_LEN, MAX_BUF_SIZE);
542 ring_address = (u32)virt_to_phys((void *)aup->rx_ring[0]);
543 irda_write(aup, IR_RING_BASE_ADDR_H, ring_address >> 26);
544 irda_write(aup, IR_RING_BASE_ADDR_L, (ring_address >> 10) & 0xffff);
546 irda_write(aup, IR_RING_SIZE,
547 (RING_SIZE_64 << 8) | (RING_SIZE_64 << 12));
549 irda_write(aup, IR_CONFIG_2, IR_PHYCLK_48MHZ | IR_ONE_PIN);
550 irda_write(aup, IR_RING_ADDR_CMPR, 0);
552 au1k_irda_set_speed(dev, 9600);
553 return 0;
556 static int au1k_irda_start(struct net_device *dev)
558 struct au1k_private *aup = netdev_priv(dev);
559 char hwname[32];
560 int retval;
562 retval = au1k_init(dev);
563 if (retval) {
564 printk(KERN_ERR "%s: error in au1k_init\n", dev->name);
565 return retval;
568 retval = request_irq(aup->irq_tx, &au1k_irda_interrupt, 0,
569 dev->name, dev);
570 if (retval) {
571 printk(KERN_ERR "%s: unable to get IRQ %d\n",
572 dev->name, dev->irq);
573 return retval;
575 retval = request_irq(aup->irq_rx, &au1k_irda_interrupt, 0,
576 dev->name, dev);
577 if (retval) {
578 free_irq(aup->irq_tx, dev);
579 printk(KERN_ERR "%s: unable to get IRQ %d\n",
580 dev->name, dev->irq);
581 return retval;
584 /* Give self a hardware name */
585 sprintf(hwname, "Au1000 SIR/FIR");
586 aup->irlap = irlap_open(dev, &aup->qos, hwname);
587 netif_start_queue(dev);
589 /* int enable */
590 irda_write(aup, IR_CONFIG_2, irda_read(aup, IR_CONFIG_2) | IR_IEN);
592 /* power up */
593 au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_SIR);
595 aup->timer.expires = RUN_AT((3 * HZ));
596 aup->timer.data = (unsigned long)dev;
597 return 0;
600 static int au1k_irda_stop(struct net_device *dev)
602 struct au1k_private *aup = netdev_priv(dev);
604 au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_OFF);
606 /* disable interrupts */
607 irda_write(aup, IR_CONFIG_2, irda_read(aup, IR_CONFIG_2) & ~IR_IEN);
608 irda_write(aup, IR_CONFIG_1, 0);
609 irda_write(aup, IR_ENABLE, 0); /* disable clock */
611 if (aup->irlap) {
612 irlap_close(aup->irlap);
613 aup->irlap = NULL;
616 netif_stop_queue(dev);
617 del_timer(&aup->timer);
619 /* disable the interrupt */
620 free_irq(aup->irq_tx, dev);
621 free_irq(aup->irq_rx, dev);
623 return 0;
627 * Au1000 transmit routine.
629 static int au1k_irda_hard_xmit(struct sk_buff *skb, struct net_device *dev)
631 struct au1k_private *aup = netdev_priv(dev);
632 int speed = irda_get_next_speed(skb);
633 volatile struct ring_dest *ptxd;
634 struct db_dest *pDB;
635 u32 len, flags;
637 if (speed != aup->speed && speed != -1)
638 aup->newspeed = speed;
640 if ((skb->len == 0) && (aup->newspeed)) {
641 if (aup->tx_tail == aup->tx_head) {
642 au1k_irda_set_speed(dev, speed);
643 aup->newspeed = 0;
645 dev_kfree_skb(skb);
646 return NETDEV_TX_OK;
649 ptxd = aup->tx_ring[aup->tx_head];
650 flags = ptxd->flags;
652 if (flags & AU_OWN) {
653 printk(KERN_DEBUG "%s: tx_full\n", dev->name);
654 netif_stop_queue(dev);
655 aup->tx_full = 1;
656 return 1;
657 } else if (((aup->tx_head + 1) & (NUM_IR_DESC - 1)) == aup->tx_tail) {
658 printk(KERN_DEBUG "%s: tx_full\n", dev->name);
659 netif_stop_queue(dev);
660 aup->tx_full = 1;
661 return 1;
664 pDB = aup->tx_db_inuse[aup->tx_head];
666 #if 0
667 if (irda_read(aup, IR_RX_BYTE_CNT) != 0) {
668 printk(KERN_DEBUG "tx warning: rx byte cnt %x\n",
669 irda_read(aup, IR_RX_BYTE_CNT));
671 #endif
673 if (aup->speed == 4000000) {
674 /* FIR */
675 skb_copy_from_linear_data(skb, (void *)pDB->vaddr, skb->len);
676 ptxd->count_0 = skb->len & 0xff;
677 ptxd->count_1 = (skb->len >> 8) & 0xff;
678 } else {
679 /* SIR */
680 len = async_wrap_skb(skb, (u8 *)pDB->vaddr, MAX_BUF_SIZE);
681 ptxd->count_0 = len & 0xff;
682 ptxd->count_1 = (len >> 8) & 0xff;
683 ptxd->flags |= IR_DIS_CRC;
685 ptxd->flags |= AU_OWN;
686 wmb();
688 irda_write(aup, IR_CONFIG_1,
689 irda_read(aup, IR_CONFIG_1) | IR_TX_ENABLE);
690 irda_write(aup, IR_RING_PROMPT, 0);
692 dev_kfree_skb(skb);
693 aup->tx_head = (aup->tx_head + 1) & (NUM_IR_DESC - 1);
694 return NETDEV_TX_OK;
698 * The Tx ring has been full longer than the watchdog timeout
699 * value. The transmitter must be hung?
701 static void au1k_tx_timeout(struct net_device *dev)
703 u32 speed;
704 struct au1k_private *aup = netdev_priv(dev);
706 printk(KERN_ERR "%s: tx timeout\n", dev->name);
707 speed = aup->speed;
708 aup->speed = 0;
709 au1k_irda_set_speed(dev, speed);
710 aup->tx_full = 0;
711 netif_wake_queue(dev);
714 static int au1k_irda_ioctl(struct net_device *dev, struct ifreq *ifreq, int cmd)
716 struct if_irda_req *rq = (struct if_irda_req *)ifreq;
717 struct au1k_private *aup = netdev_priv(dev);
718 int ret = -EOPNOTSUPP;
720 switch (cmd) {
721 case SIOCSBANDWIDTH:
722 if (capable(CAP_NET_ADMIN)) {
724 * We are unable to set the speed if the
725 * device is not running.
727 if (aup->open)
728 ret = au1k_irda_set_speed(dev,
729 rq->ifr_baudrate);
730 else {
731 printk(KERN_ERR "%s ioctl: !netif_running\n",
732 dev->name);
733 ret = 0;
736 break;
738 case SIOCSMEDIABUSY:
739 ret = -EPERM;
740 if (capable(CAP_NET_ADMIN)) {
741 irda_device_set_media_busy(dev, TRUE);
742 ret = 0;
744 break;
746 case SIOCGRECEIVING:
747 rq->ifr_receiving = 0;
748 break;
749 default:
750 break;
752 return ret;
755 static const struct net_device_ops au1k_irda_netdev_ops = {
756 .ndo_open = au1k_irda_start,
757 .ndo_stop = au1k_irda_stop,
758 .ndo_start_xmit = au1k_irda_hard_xmit,
759 .ndo_tx_timeout = au1k_tx_timeout,
760 .ndo_do_ioctl = au1k_irda_ioctl,
763 static int __devinit au1k_irda_net_init(struct net_device *dev)
765 struct au1k_private *aup = netdev_priv(dev);
766 struct db_dest *pDB, *pDBfree;
767 int i, err, retval = 0;
768 dma_addr_t temp;
770 err = au1k_irda_init_iobuf(&aup->rx_buff, 14384);
771 if (err)
772 goto out1;
774 dev->netdev_ops = &au1k_irda_netdev_ops;
776 irda_init_max_qos_capabilies(&aup->qos);
778 /* The only value we must override it the baudrate */
779 aup->qos.baud_rate.bits = IR_9600 | IR_19200 | IR_38400 |
780 IR_57600 | IR_115200 | IR_576000 | (IR_4000000 << 8);
782 aup->qos.min_turn_time.bits = qos_mtt_bits;
783 irda_qos_bits_to_value(&aup->qos);
785 retval = -ENOMEM;
787 /* Tx ring follows rx ring + 512 bytes */
788 /* we need a 1k aligned buffer */
789 aup->rx_ring[0] = (struct ring_dest *)
790 dma_alloc(2 * MAX_NUM_IR_DESC * (sizeof(struct ring_dest)),
791 &temp);
792 if (!aup->rx_ring[0])
793 goto out2;
795 /* allocate the data buffers */
796 aup->db[0].vaddr =
797 (void *)dma_alloc(MAX_BUF_SIZE * 2 * NUM_IR_DESC, &temp);
798 if (!aup->db[0].vaddr)
799 goto out3;
801 setup_hw_rings(aup, (u32)aup->rx_ring[0], (u32)aup->rx_ring[0] + 512);
803 pDBfree = NULL;
804 pDB = aup->db;
805 for (i = 0; i < (2 * NUM_IR_DESC); i++) {
806 pDB->pnext = pDBfree;
807 pDBfree = pDB;
808 pDB->vaddr =
809 (u32 *)((unsigned)aup->db[0].vaddr + (MAX_BUF_SIZE * i));
810 pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr);
811 pDB++;
813 aup->pDBfree = pDBfree;
815 /* attach a data buffer to each descriptor */
816 for (i = 0; i < NUM_IR_DESC; i++) {
817 pDB = GetFreeDB(aup);
818 if (!pDB)
819 goto out3;
820 aup->rx_ring[i]->addr_0 = (u8)(pDB->dma_addr & 0xff);
821 aup->rx_ring[i]->addr_1 = (u8)((pDB->dma_addr >> 8) & 0xff);
822 aup->rx_ring[i]->addr_2 = (u8)((pDB->dma_addr >> 16) & 0xff);
823 aup->rx_ring[i]->addr_3 = (u8)((pDB->dma_addr >> 24) & 0xff);
824 aup->rx_db_inuse[i] = pDB;
826 for (i = 0; i < NUM_IR_DESC; i++) {
827 pDB = GetFreeDB(aup);
828 if (!pDB)
829 goto out3;
830 aup->tx_ring[i]->addr_0 = (u8)(pDB->dma_addr & 0xff);
831 aup->tx_ring[i]->addr_1 = (u8)((pDB->dma_addr >> 8) & 0xff);
832 aup->tx_ring[i]->addr_2 = (u8)((pDB->dma_addr >> 16) & 0xff);
833 aup->tx_ring[i]->addr_3 = (u8)((pDB->dma_addr >> 24) & 0xff);
834 aup->tx_ring[i]->count_0 = 0;
835 aup->tx_ring[i]->count_1 = 0;
836 aup->tx_ring[i]->flags = 0;
837 aup->tx_db_inuse[i] = pDB;
840 return 0;
842 out3:
843 dma_free((void *)aup->rx_ring[0],
844 2 * MAX_NUM_IR_DESC * (sizeof(struct ring_dest)));
845 out2:
846 kfree(aup->rx_buff.head);
847 out1:
848 printk(KERN_ERR "au1k_irda_net_init() failed. Returns %d\n", retval);
849 return retval;
852 static int __devinit au1k_irda_probe(struct platform_device *pdev)
854 struct au1k_private *aup;
855 struct net_device *dev;
856 struct resource *r;
857 int err;
859 dev = alloc_irdadev(sizeof(struct au1k_private));
860 if (!dev)
861 return -ENOMEM;
863 aup = netdev_priv(dev);
865 aup->platdata = pdev->dev.platform_data;
867 err = -EINVAL;
868 r = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
869 if (!r)
870 goto out;
872 aup->irq_tx = r->start;
874 r = platform_get_resource(pdev, IORESOURCE_IRQ, 1);
875 if (!r)
876 goto out;
878 aup->irq_rx = r->start;
880 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
881 if (!r)
882 goto out;
884 err = -EBUSY;
885 aup->ioarea = request_mem_region(r->start, r->end - r->start + 1,
886 pdev->name);
887 if (!aup->ioarea)
888 goto out;
890 aup->iobase = ioremap_nocache(r->start, r->end - r->start + 1);
891 if (!aup->iobase)
892 goto out2;
894 dev->irq = aup->irq_rx;
896 err = au1k_irda_net_init(dev);
897 if (err)
898 goto out3;
899 err = register_netdev(dev);
900 if (err)
901 goto out4;
903 platform_set_drvdata(pdev, dev);
905 printk(KERN_INFO "IrDA: Registered device %s\n", dev->name);
906 return 0;
908 out4:
909 dma_free((void *)aup->db[0].vaddr,
910 MAX_BUF_SIZE * 2 * NUM_IR_DESC);
911 dma_free((void *)aup->rx_ring[0],
912 2 * MAX_NUM_IR_DESC * (sizeof(struct ring_dest)));
913 kfree(aup->rx_buff.head);
914 out3:
915 iounmap(aup->iobase);
916 out2:
917 release_resource(aup->ioarea);
918 kfree(aup->ioarea);
919 out:
920 free_netdev(dev);
921 return err;
924 static int __devexit au1k_irda_remove(struct platform_device *pdev)
926 struct net_device *dev = platform_get_drvdata(pdev);
927 struct au1k_private *aup = netdev_priv(dev);
929 unregister_netdev(dev);
931 dma_free((void *)aup->db[0].vaddr,
932 MAX_BUF_SIZE * 2 * NUM_IR_DESC);
933 dma_free((void *)aup->rx_ring[0],
934 2 * MAX_NUM_IR_DESC * (sizeof(struct ring_dest)));
935 kfree(aup->rx_buff.head);
937 iounmap(aup->iobase);
938 release_resource(aup->ioarea);
939 kfree(aup->ioarea);
941 free_netdev(dev);
943 return 0;
946 static struct platform_driver au1k_irda_driver = {
947 .driver = {
948 .name = "au1000-irda",
949 .owner = THIS_MODULE,
951 .probe = au1k_irda_probe,
952 .remove = __devexit_p(au1k_irda_remove),
955 static int __init au1k_irda_load(void)
957 return platform_driver_register(&au1k_irda_driver);
960 static void __exit au1k_irda_unload(void)
962 return platform_driver_unregister(&au1k_irda_driver);
965 MODULE_AUTHOR("Pete Popov <ppopov@mvista.com>");
966 MODULE_DESCRIPTION("Au1000 IrDA Device Driver");
968 module_init(au1k_irda_load);
969 module_exit(au1k_irda_unload);