iwlwifi: mvm: fix pending frame counter calculation
[linux/fpc-iii.git] / net / socket.c
blob6bbccf05854f2e08624d0b608023f1716ef842be
1 /*
2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
58 * Based upon Swansea University Computer Society NET3.039
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
93 #include <asm/uaccess.h>
94 #include <asm/unistd.h>
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
120 static int sock_close(struct inode *inode, struct file *file);
121 static unsigned int sock_poll(struct file *file,
122 struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 struct pipe_inode_info *pipe, size_t len,
133 unsigned int flags);
136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137 * in the operation structures but are done directly via the socketcall() multiplexor.
140 static const struct file_operations socket_file_ops = {
141 .owner = THIS_MODULE,
142 .llseek = no_llseek,
143 .read_iter = sock_read_iter,
144 .write_iter = sock_write_iter,
145 .poll = sock_poll,
146 .unlocked_ioctl = sock_ioctl,
147 #ifdef CONFIG_COMPAT
148 .compat_ioctl = compat_sock_ioctl,
149 #endif
150 .mmap = sock_mmap,
151 .release = sock_close,
152 .fasync = sock_fasync,
153 .sendpage = sock_sendpage,
154 .splice_write = generic_splice_sendpage,
155 .splice_read = sock_splice_read,
159 * The protocol list. Each protocol is registered in here.
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
166 * Statistics counters of the socket lists
169 static DEFINE_PER_CPU(int, sockets_in_use);
172 * Support routines.
173 * Move socket addresses back and forth across the kernel/user
174 * divide and look after the messy bits.
178 * move_addr_to_kernel - copy a socket address into kernel space
179 * @uaddr: Address in user space
180 * @kaddr: Address in kernel space
181 * @ulen: Length in user space
183 * The address is copied into kernel space. If the provided address is
184 * too long an error code of -EINVAL is returned. If the copy gives
185 * invalid addresses -EFAULT is returned. On a success 0 is returned.
188 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
190 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
191 return -EINVAL;
192 if (ulen == 0)
193 return 0;
194 if (copy_from_user(kaddr, uaddr, ulen))
195 return -EFAULT;
196 return audit_sockaddr(ulen, kaddr);
200 * move_addr_to_user - copy an address to user space
201 * @kaddr: kernel space address
202 * @klen: length of address in kernel
203 * @uaddr: user space address
204 * @ulen: pointer to user length field
206 * The value pointed to by ulen on entry is the buffer length available.
207 * This is overwritten with the buffer space used. -EINVAL is returned
208 * if an overlong buffer is specified or a negative buffer size. -EFAULT
209 * is returned if either the buffer or the length field are not
210 * accessible.
211 * After copying the data up to the limit the user specifies, the true
212 * length of the data is written over the length limit the user
213 * specified. Zero is returned for a success.
216 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
217 void __user *uaddr, int __user *ulen)
219 int err;
220 int len;
222 BUG_ON(klen > sizeof(struct sockaddr_storage));
223 err = get_user(len, ulen);
224 if (err)
225 return err;
226 if (len > klen)
227 len = klen;
228 if (len < 0)
229 return -EINVAL;
230 if (len) {
231 if (audit_sockaddr(klen, kaddr))
232 return -ENOMEM;
233 if (copy_to_user(uaddr, kaddr, len))
234 return -EFAULT;
237 * "fromlen shall refer to the value before truncation.."
238 * 1003.1g
240 return __put_user(klen, ulen);
243 static struct kmem_cache *sock_inode_cachep __read_mostly;
245 static struct inode *sock_alloc_inode(struct super_block *sb)
247 struct socket_alloc *ei;
248 struct socket_wq *wq;
250 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
251 if (!ei)
252 return NULL;
253 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
254 if (!wq) {
255 kmem_cache_free(sock_inode_cachep, ei);
256 return NULL;
258 init_waitqueue_head(&wq->wait);
259 wq->fasync_list = NULL;
260 wq->flags = 0;
261 RCU_INIT_POINTER(ei->socket.wq, wq);
263 ei->socket.state = SS_UNCONNECTED;
264 ei->socket.flags = 0;
265 ei->socket.ops = NULL;
266 ei->socket.sk = NULL;
267 ei->socket.file = NULL;
269 return &ei->vfs_inode;
272 static void sock_destroy_inode(struct inode *inode)
274 struct socket_alloc *ei;
275 struct socket_wq *wq;
277 ei = container_of(inode, struct socket_alloc, vfs_inode);
278 wq = rcu_dereference_protected(ei->socket.wq, 1);
279 kfree_rcu(wq, rcu);
280 kmem_cache_free(sock_inode_cachep, ei);
283 static void init_once(void *foo)
285 struct socket_alloc *ei = (struct socket_alloc *)foo;
287 inode_init_once(&ei->vfs_inode);
290 static int init_inodecache(void)
292 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
293 sizeof(struct socket_alloc),
295 (SLAB_HWCACHE_ALIGN |
296 SLAB_RECLAIM_ACCOUNT |
297 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
298 init_once);
299 if (sock_inode_cachep == NULL)
300 return -ENOMEM;
301 return 0;
304 static const struct super_operations sockfs_ops = {
305 .alloc_inode = sock_alloc_inode,
306 .destroy_inode = sock_destroy_inode,
307 .statfs = simple_statfs,
311 * sockfs_dname() is called from d_path().
313 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
315 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
316 d_inode(dentry)->i_ino);
319 static const struct dentry_operations sockfs_dentry_operations = {
320 .d_dname = sockfs_dname,
323 static int sockfs_xattr_get(const struct xattr_handler *handler,
324 struct dentry *dentry, struct inode *inode,
325 const char *suffix, void *value, size_t size)
327 if (value) {
328 if (dentry->d_name.len + 1 > size)
329 return -ERANGE;
330 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
332 return dentry->d_name.len + 1;
335 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
336 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
337 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
339 static const struct xattr_handler sockfs_xattr_handler = {
340 .name = XATTR_NAME_SOCKPROTONAME,
341 .get = sockfs_xattr_get,
344 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
345 struct dentry *dentry, struct inode *inode,
346 const char *suffix, const void *value,
347 size_t size, int flags)
349 /* Handled by LSM. */
350 return -EAGAIN;
353 static const struct xattr_handler sockfs_security_xattr_handler = {
354 .prefix = XATTR_SECURITY_PREFIX,
355 .set = sockfs_security_xattr_set,
358 static const struct xattr_handler *sockfs_xattr_handlers[] = {
359 &sockfs_xattr_handler,
360 &sockfs_security_xattr_handler,
361 NULL
364 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
365 int flags, const char *dev_name, void *data)
367 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
368 sockfs_xattr_handlers,
369 &sockfs_dentry_operations, SOCKFS_MAGIC);
372 static struct vfsmount *sock_mnt __read_mostly;
374 static struct file_system_type sock_fs_type = {
375 .name = "sockfs",
376 .mount = sockfs_mount,
377 .kill_sb = kill_anon_super,
381 * Obtains the first available file descriptor and sets it up for use.
383 * These functions create file structures and maps them to fd space
384 * of the current process. On success it returns file descriptor
385 * and file struct implicitly stored in sock->file.
386 * Note that another thread may close file descriptor before we return
387 * from this function. We use the fact that now we do not refer
388 * to socket after mapping. If one day we will need it, this
389 * function will increment ref. count on file by 1.
391 * In any case returned fd MAY BE not valid!
392 * This race condition is unavoidable
393 * with shared fd spaces, we cannot solve it inside kernel,
394 * but we take care of internal coherence yet.
397 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
399 struct qstr name = { .name = "" };
400 struct path path;
401 struct file *file;
403 if (dname) {
404 name.name = dname;
405 name.len = strlen(name.name);
406 } else if (sock->sk) {
407 name.name = sock->sk->sk_prot_creator->name;
408 name.len = strlen(name.name);
410 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
411 if (unlikely(!path.dentry))
412 return ERR_PTR(-ENOMEM);
413 path.mnt = mntget(sock_mnt);
415 d_instantiate(path.dentry, SOCK_INODE(sock));
417 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
418 &socket_file_ops);
419 if (IS_ERR(file)) {
420 /* drop dentry, keep inode */
421 ihold(d_inode(path.dentry));
422 path_put(&path);
423 return file;
426 sock->file = file;
427 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
428 file->private_data = sock;
429 return file;
431 EXPORT_SYMBOL(sock_alloc_file);
433 static int sock_map_fd(struct socket *sock, int flags)
435 struct file *newfile;
436 int fd = get_unused_fd_flags(flags);
437 if (unlikely(fd < 0))
438 return fd;
440 newfile = sock_alloc_file(sock, flags, NULL);
441 if (likely(!IS_ERR(newfile))) {
442 fd_install(fd, newfile);
443 return fd;
446 put_unused_fd(fd);
447 return PTR_ERR(newfile);
450 struct socket *sock_from_file(struct file *file, int *err)
452 if (file->f_op == &socket_file_ops)
453 return file->private_data; /* set in sock_map_fd */
455 *err = -ENOTSOCK;
456 return NULL;
458 EXPORT_SYMBOL(sock_from_file);
461 * sockfd_lookup - Go from a file number to its socket slot
462 * @fd: file handle
463 * @err: pointer to an error code return
465 * The file handle passed in is locked and the socket it is bound
466 * too is returned. If an error occurs the err pointer is overwritten
467 * with a negative errno code and NULL is returned. The function checks
468 * for both invalid handles and passing a handle which is not a socket.
470 * On a success the socket object pointer is returned.
473 struct socket *sockfd_lookup(int fd, int *err)
475 struct file *file;
476 struct socket *sock;
478 file = fget(fd);
479 if (!file) {
480 *err = -EBADF;
481 return NULL;
484 sock = sock_from_file(file, err);
485 if (!sock)
486 fput(file);
487 return sock;
489 EXPORT_SYMBOL(sockfd_lookup);
491 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
493 struct fd f = fdget(fd);
494 struct socket *sock;
496 *err = -EBADF;
497 if (f.file) {
498 sock = sock_from_file(f.file, err);
499 if (likely(sock)) {
500 *fput_needed = f.flags;
501 return sock;
503 fdput(f);
505 return NULL;
508 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
509 size_t size)
511 ssize_t len;
512 ssize_t used = 0;
514 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
515 if (len < 0)
516 return len;
517 used += len;
518 if (buffer) {
519 if (size < used)
520 return -ERANGE;
521 buffer += len;
524 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
525 used += len;
526 if (buffer) {
527 if (size < used)
528 return -ERANGE;
529 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
530 buffer += len;
533 return used;
536 static const struct inode_operations sockfs_inode_ops = {
537 .listxattr = sockfs_listxattr,
541 * sock_alloc - allocate a socket
543 * Allocate a new inode and socket object. The two are bound together
544 * and initialised. The socket is then returned. If we are out of inodes
545 * NULL is returned.
548 struct socket *sock_alloc(void)
550 struct inode *inode;
551 struct socket *sock;
553 inode = new_inode_pseudo(sock_mnt->mnt_sb);
554 if (!inode)
555 return NULL;
557 sock = SOCKET_I(inode);
559 kmemcheck_annotate_bitfield(sock, type);
560 inode->i_ino = get_next_ino();
561 inode->i_mode = S_IFSOCK | S_IRWXUGO;
562 inode->i_uid = current_fsuid();
563 inode->i_gid = current_fsgid();
564 inode->i_op = &sockfs_inode_ops;
566 this_cpu_add(sockets_in_use, 1);
567 return sock;
569 EXPORT_SYMBOL(sock_alloc);
572 * sock_release - close a socket
573 * @sock: socket to close
575 * The socket is released from the protocol stack if it has a release
576 * callback, and the inode is then released if the socket is bound to
577 * an inode not a file.
580 void sock_release(struct socket *sock)
582 if (sock->ops) {
583 struct module *owner = sock->ops->owner;
585 sock->ops->release(sock);
586 sock->ops = NULL;
587 module_put(owner);
590 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
591 pr_err("%s: fasync list not empty!\n", __func__);
593 this_cpu_sub(sockets_in_use, 1);
594 if (!sock->file) {
595 iput(SOCK_INODE(sock));
596 return;
598 sock->file = NULL;
600 EXPORT_SYMBOL(sock_release);
602 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
604 u8 flags = *tx_flags;
606 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
607 flags |= SKBTX_HW_TSTAMP;
609 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
610 flags |= SKBTX_SW_TSTAMP;
612 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
613 flags |= SKBTX_SCHED_TSTAMP;
615 *tx_flags = flags;
617 EXPORT_SYMBOL(__sock_tx_timestamp);
619 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
621 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
622 BUG_ON(ret == -EIOCBQUEUED);
623 return ret;
626 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
628 int err = security_socket_sendmsg(sock, msg,
629 msg_data_left(msg));
631 return err ?: sock_sendmsg_nosec(sock, msg);
633 EXPORT_SYMBOL(sock_sendmsg);
635 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
636 struct kvec *vec, size_t num, size_t size)
638 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
639 return sock_sendmsg(sock, msg);
641 EXPORT_SYMBOL(kernel_sendmsg);
644 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
646 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
647 struct sk_buff *skb)
649 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
650 struct scm_timestamping tss;
651 int empty = 1;
652 struct skb_shared_hwtstamps *shhwtstamps =
653 skb_hwtstamps(skb);
655 /* Race occurred between timestamp enabling and packet
656 receiving. Fill in the current time for now. */
657 if (need_software_tstamp && skb->tstamp.tv64 == 0)
658 __net_timestamp(skb);
660 if (need_software_tstamp) {
661 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
662 struct timeval tv;
663 skb_get_timestamp(skb, &tv);
664 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
665 sizeof(tv), &tv);
666 } else {
667 struct timespec ts;
668 skb_get_timestampns(skb, &ts);
669 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
670 sizeof(ts), &ts);
674 memset(&tss, 0, sizeof(tss));
675 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
676 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
677 empty = 0;
678 if (shhwtstamps &&
679 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
680 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
681 empty = 0;
682 if (!empty)
683 put_cmsg(msg, SOL_SOCKET,
684 SCM_TIMESTAMPING, sizeof(tss), &tss);
686 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
688 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
689 struct sk_buff *skb)
691 int ack;
693 if (!sock_flag(sk, SOCK_WIFI_STATUS))
694 return;
695 if (!skb->wifi_acked_valid)
696 return;
698 ack = skb->wifi_acked;
700 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
702 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
704 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
705 struct sk_buff *skb)
707 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
708 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
709 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
712 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
713 struct sk_buff *skb)
715 sock_recv_timestamp(msg, sk, skb);
716 sock_recv_drops(msg, sk, skb);
718 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
720 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
721 int flags)
723 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
726 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
728 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
730 return err ?: sock_recvmsg_nosec(sock, msg, flags);
732 EXPORT_SYMBOL(sock_recvmsg);
735 * kernel_recvmsg - Receive a message from a socket (kernel space)
736 * @sock: The socket to receive the message from
737 * @msg: Received message
738 * @vec: Input s/g array for message data
739 * @num: Size of input s/g array
740 * @size: Number of bytes to read
741 * @flags: Message flags (MSG_DONTWAIT, etc...)
743 * On return the msg structure contains the scatter/gather array passed in the
744 * vec argument. The array is modified so that it consists of the unfilled
745 * portion of the original array.
747 * The returned value is the total number of bytes received, or an error.
749 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
750 struct kvec *vec, size_t num, size_t size, int flags)
752 mm_segment_t oldfs = get_fs();
753 int result;
755 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
756 set_fs(KERNEL_DS);
757 result = sock_recvmsg(sock, msg, flags);
758 set_fs(oldfs);
759 return result;
761 EXPORT_SYMBOL(kernel_recvmsg);
763 static ssize_t sock_sendpage(struct file *file, struct page *page,
764 int offset, size_t size, loff_t *ppos, int more)
766 struct socket *sock;
767 int flags;
769 sock = file->private_data;
771 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
772 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
773 flags |= more;
775 return kernel_sendpage(sock, page, offset, size, flags);
778 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
779 struct pipe_inode_info *pipe, size_t len,
780 unsigned int flags)
782 struct socket *sock = file->private_data;
784 if (unlikely(!sock->ops->splice_read))
785 return -EINVAL;
787 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
790 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
792 struct file *file = iocb->ki_filp;
793 struct socket *sock = file->private_data;
794 struct msghdr msg = {.msg_iter = *to,
795 .msg_iocb = iocb};
796 ssize_t res;
798 if (file->f_flags & O_NONBLOCK)
799 msg.msg_flags = MSG_DONTWAIT;
801 if (iocb->ki_pos != 0)
802 return -ESPIPE;
804 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
805 return 0;
807 res = sock_recvmsg(sock, &msg, msg.msg_flags);
808 *to = msg.msg_iter;
809 return res;
812 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
814 struct file *file = iocb->ki_filp;
815 struct socket *sock = file->private_data;
816 struct msghdr msg = {.msg_iter = *from,
817 .msg_iocb = iocb};
818 ssize_t res;
820 if (iocb->ki_pos != 0)
821 return -ESPIPE;
823 if (file->f_flags & O_NONBLOCK)
824 msg.msg_flags = MSG_DONTWAIT;
826 if (sock->type == SOCK_SEQPACKET)
827 msg.msg_flags |= MSG_EOR;
829 res = sock_sendmsg(sock, &msg);
830 *from = msg.msg_iter;
831 return res;
835 * Atomic setting of ioctl hooks to avoid race
836 * with module unload.
839 static DEFINE_MUTEX(br_ioctl_mutex);
840 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
842 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
844 mutex_lock(&br_ioctl_mutex);
845 br_ioctl_hook = hook;
846 mutex_unlock(&br_ioctl_mutex);
848 EXPORT_SYMBOL(brioctl_set);
850 static DEFINE_MUTEX(vlan_ioctl_mutex);
851 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
853 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
855 mutex_lock(&vlan_ioctl_mutex);
856 vlan_ioctl_hook = hook;
857 mutex_unlock(&vlan_ioctl_mutex);
859 EXPORT_SYMBOL(vlan_ioctl_set);
861 static DEFINE_MUTEX(dlci_ioctl_mutex);
862 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
864 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
866 mutex_lock(&dlci_ioctl_mutex);
867 dlci_ioctl_hook = hook;
868 mutex_unlock(&dlci_ioctl_mutex);
870 EXPORT_SYMBOL(dlci_ioctl_set);
872 static long sock_do_ioctl(struct net *net, struct socket *sock,
873 unsigned int cmd, unsigned long arg)
875 int err;
876 void __user *argp = (void __user *)arg;
878 err = sock->ops->ioctl(sock, cmd, arg);
881 * If this ioctl is unknown try to hand it down
882 * to the NIC driver.
884 if (err == -ENOIOCTLCMD)
885 err = dev_ioctl(net, cmd, argp);
887 return err;
891 * With an ioctl, arg may well be a user mode pointer, but we don't know
892 * what to do with it - that's up to the protocol still.
895 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
897 struct socket *sock;
898 struct sock *sk;
899 void __user *argp = (void __user *)arg;
900 int pid, err;
901 struct net *net;
903 sock = file->private_data;
904 sk = sock->sk;
905 net = sock_net(sk);
906 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
907 err = dev_ioctl(net, cmd, argp);
908 } else
909 #ifdef CONFIG_WEXT_CORE
910 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
911 err = dev_ioctl(net, cmd, argp);
912 } else
913 #endif
914 switch (cmd) {
915 case FIOSETOWN:
916 case SIOCSPGRP:
917 err = -EFAULT;
918 if (get_user(pid, (int __user *)argp))
919 break;
920 f_setown(sock->file, pid, 1);
921 err = 0;
922 break;
923 case FIOGETOWN:
924 case SIOCGPGRP:
925 err = put_user(f_getown(sock->file),
926 (int __user *)argp);
927 break;
928 case SIOCGIFBR:
929 case SIOCSIFBR:
930 case SIOCBRADDBR:
931 case SIOCBRDELBR:
932 err = -ENOPKG;
933 if (!br_ioctl_hook)
934 request_module("bridge");
936 mutex_lock(&br_ioctl_mutex);
937 if (br_ioctl_hook)
938 err = br_ioctl_hook(net, cmd, argp);
939 mutex_unlock(&br_ioctl_mutex);
940 break;
941 case SIOCGIFVLAN:
942 case SIOCSIFVLAN:
943 err = -ENOPKG;
944 if (!vlan_ioctl_hook)
945 request_module("8021q");
947 mutex_lock(&vlan_ioctl_mutex);
948 if (vlan_ioctl_hook)
949 err = vlan_ioctl_hook(net, argp);
950 mutex_unlock(&vlan_ioctl_mutex);
951 break;
952 case SIOCADDDLCI:
953 case SIOCDELDLCI:
954 err = -ENOPKG;
955 if (!dlci_ioctl_hook)
956 request_module("dlci");
958 mutex_lock(&dlci_ioctl_mutex);
959 if (dlci_ioctl_hook)
960 err = dlci_ioctl_hook(cmd, argp);
961 mutex_unlock(&dlci_ioctl_mutex);
962 break;
963 default:
964 err = sock_do_ioctl(net, sock, cmd, arg);
965 break;
967 return err;
970 int sock_create_lite(int family, int type, int protocol, struct socket **res)
972 int err;
973 struct socket *sock = NULL;
975 err = security_socket_create(family, type, protocol, 1);
976 if (err)
977 goto out;
979 sock = sock_alloc();
980 if (!sock) {
981 err = -ENOMEM;
982 goto out;
985 sock->type = type;
986 err = security_socket_post_create(sock, family, type, protocol, 1);
987 if (err)
988 goto out_release;
990 out:
991 *res = sock;
992 return err;
993 out_release:
994 sock_release(sock);
995 sock = NULL;
996 goto out;
998 EXPORT_SYMBOL(sock_create_lite);
1000 /* No kernel lock held - perfect */
1001 static unsigned int sock_poll(struct file *file, poll_table *wait)
1003 unsigned int busy_flag = 0;
1004 struct socket *sock;
1007 * We can't return errors to poll, so it's either yes or no.
1009 sock = file->private_data;
1011 if (sk_can_busy_loop(sock->sk)) {
1012 /* this socket can poll_ll so tell the system call */
1013 busy_flag = POLL_BUSY_LOOP;
1015 /* once, only if requested by syscall */
1016 if (wait && (wait->_key & POLL_BUSY_LOOP))
1017 sk_busy_loop(sock->sk, 1);
1020 return busy_flag | sock->ops->poll(file, sock, wait);
1023 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1025 struct socket *sock = file->private_data;
1027 return sock->ops->mmap(file, sock, vma);
1030 static int sock_close(struct inode *inode, struct file *filp)
1032 sock_release(SOCKET_I(inode));
1033 return 0;
1037 * Update the socket async list
1039 * Fasync_list locking strategy.
1041 * 1. fasync_list is modified only under process context socket lock
1042 * i.e. under semaphore.
1043 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1044 * or under socket lock
1047 static int sock_fasync(int fd, struct file *filp, int on)
1049 struct socket *sock = filp->private_data;
1050 struct sock *sk = sock->sk;
1051 struct socket_wq *wq;
1053 if (sk == NULL)
1054 return -EINVAL;
1056 lock_sock(sk);
1057 wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1058 fasync_helper(fd, filp, on, &wq->fasync_list);
1060 if (!wq->fasync_list)
1061 sock_reset_flag(sk, SOCK_FASYNC);
1062 else
1063 sock_set_flag(sk, SOCK_FASYNC);
1065 release_sock(sk);
1066 return 0;
1069 /* This function may be called only under rcu_lock */
1071 int sock_wake_async(struct socket_wq *wq, int how, int band)
1073 if (!wq || !wq->fasync_list)
1074 return -1;
1076 switch (how) {
1077 case SOCK_WAKE_WAITD:
1078 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1079 break;
1080 goto call_kill;
1081 case SOCK_WAKE_SPACE:
1082 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1083 break;
1084 /* fall through */
1085 case SOCK_WAKE_IO:
1086 call_kill:
1087 kill_fasync(&wq->fasync_list, SIGIO, band);
1088 break;
1089 case SOCK_WAKE_URG:
1090 kill_fasync(&wq->fasync_list, SIGURG, band);
1093 return 0;
1095 EXPORT_SYMBOL(sock_wake_async);
1097 int __sock_create(struct net *net, int family, int type, int protocol,
1098 struct socket **res, int kern)
1100 int err;
1101 struct socket *sock;
1102 const struct net_proto_family *pf;
1105 * Check protocol is in range
1107 if (family < 0 || family >= NPROTO)
1108 return -EAFNOSUPPORT;
1109 if (type < 0 || type >= SOCK_MAX)
1110 return -EINVAL;
1112 /* Compatibility.
1114 This uglymoron is moved from INET layer to here to avoid
1115 deadlock in module load.
1117 if (family == PF_INET && type == SOCK_PACKET) {
1118 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1119 current->comm);
1120 family = PF_PACKET;
1123 err = security_socket_create(family, type, protocol, kern);
1124 if (err)
1125 return err;
1128 * Allocate the socket and allow the family to set things up. if
1129 * the protocol is 0, the family is instructed to select an appropriate
1130 * default.
1132 sock = sock_alloc();
1133 if (!sock) {
1134 net_warn_ratelimited("socket: no more sockets\n");
1135 return -ENFILE; /* Not exactly a match, but its the
1136 closest posix thing */
1139 sock->type = type;
1141 #ifdef CONFIG_MODULES
1142 /* Attempt to load a protocol module if the find failed.
1144 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1145 * requested real, full-featured networking support upon configuration.
1146 * Otherwise module support will break!
1148 if (rcu_access_pointer(net_families[family]) == NULL)
1149 request_module("net-pf-%d", family);
1150 #endif
1152 rcu_read_lock();
1153 pf = rcu_dereference(net_families[family]);
1154 err = -EAFNOSUPPORT;
1155 if (!pf)
1156 goto out_release;
1159 * We will call the ->create function, that possibly is in a loadable
1160 * module, so we have to bump that loadable module refcnt first.
1162 if (!try_module_get(pf->owner))
1163 goto out_release;
1165 /* Now protected by module ref count */
1166 rcu_read_unlock();
1168 err = pf->create(net, sock, protocol, kern);
1169 if (err < 0)
1170 goto out_module_put;
1173 * Now to bump the refcnt of the [loadable] module that owns this
1174 * socket at sock_release time we decrement its refcnt.
1176 if (!try_module_get(sock->ops->owner))
1177 goto out_module_busy;
1180 * Now that we're done with the ->create function, the [loadable]
1181 * module can have its refcnt decremented
1183 module_put(pf->owner);
1184 err = security_socket_post_create(sock, family, type, protocol, kern);
1185 if (err)
1186 goto out_sock_release;
1187 *res = sock;
1189 return 0;
1191 out_module_busy:
1192 err = -EAFNOSUPPORT;
1193 out_module_put:
1194 sock->ops = NULL;
1195 module_put(pf->owner);
1196 out_sock_release:
1197 sock_release(sock);
1198 return err;
1200 out_release:
1201 rcu_read_unlock();
1202 goto out_sock_release;
1204 EXPORT_SYMBOL(__sock_create);
1206 int sock_create(int family, int type, int protocol, struct socket **res)
1208 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1210 EXPORT_SYMBOL(sock_create);
1212 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1214 return __sock_create(net, family, type, protocol, res, 1);
1216 EXPORT_SYMBOL(sock_create_kern);
1218 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1220 int retval;
1221 struct socket *sock;
1222 int flags;
1224 /* Check the SOCK_* constants for consistency. */
1225 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1226 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1227 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1228 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1230 flags = type & ~SOCK_TYPE_MASK;
1231 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1232 return -EINVAL;
1233 type &= SOCK_TYPE_MASK;
1235 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1236 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1238 retval = sock_create(family, type, protocol, &sock);
1239 if (retval < 0)
1240 goto out;
1242 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1243 if (retval < 0)
1244 goto out_release;
1246 out:
1247 /* It may be already another descriptor 8) Not kernel problem. */
1248 return retval;
1250 out_release:
1251 sock_release(sock);
1252 return retval;
1256 * Create a pair of connected sockets.
1259 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1260 int __user *, usockvec)
1262 struct socket *sock1, *sock2;
1263 int fd1, fd2, err;
1264 struct file *newfile1, *newfile2;
1265 int flags;
1267 flags = type & ~SOCK_TYPE_MASK;
1268 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1269 return -EINVAL;
1270 type &= SOCK_TYPE_MASK;
1272 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1273 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1276 * Obtain the first socket and check if the underlying protocol
1277 * supports the socketpair call.
1280 err = sock_create(family, type, protocol, &sock1);
1281 if (err < 0)
1282 goto out;
1284 err = sock_create(family, type, protocol, &sock2);
1285 if (err < 0)
1286 goto out_release_1;
1288 err = sock1->ops->socketpair(sock1, sock2);
1289 if (err < 0)
1290 goto out_release_both;
1292 fd1 = get_unused_fd_flags(flags);
1293 if (unlikely(fd1 < 0)) {
1294 err = fd1;
1295 goto out_release_both;
1298 fd2 = get_unused_fd_flags(flags);
1299 if (unlikely(fd2 < 0)) {
1300 err = fd2;
1301 goto out_put_unused_1;
1304 newfile1 = sock_alloc_file(sock1, flags, NULL);
1305 if (IS_ERR(newfile1)) {
1306 err = PTR_ERR(newfile1);
1307 goto out_put_unused_both;
1310 newfile2 = sock_alloc_file(sock2, flags, NULL);
1311 if (IS_ERR(newfile2)) {
1312 err = PTR_ERR(newfile2);
1313 goto out_fput_1;
1316 err = put_user(fd1, &usockvec[0]);
1317 if (err)
1318 goto out_fput_both;
1320 err = put_user(fd2, &usockvec[1]);
1321 if (err)
1322 goto out_fput_both;
1324 audit_fd_pair(fd1, fd2);
1326 fd_install(fd1, newfile1);
1327 fd_install(fd2, newfile2);
1328 /* fd1 and fd2 may be already another descriptors.
1329 * Not kernel problem.
1332 return 0;
1334 out_fput_both:
1335 fput(newfile2);
1336 fput(newfile1);
1337 put_unused_fd(fd2);
1338 put_unused_fd(fd1);
1339 goto out;
1341 out_fput_1:
1342 fput(newfile1);
1343 put_unused_fd(fd2);
1344 put_unused_fd(fd1);
1345 sock_release(sock2);
1346 goto out;
1348 out_put_unused_both:
1349 put_unused_fd(fd2);
1350 out_put_unused_1:
1351 put_unused_fd(fd1);
1352 out_release_both:
1353 sock_release(sock2);
1354 out_release_1:
1355 sock_release(sock1);
1356 out:
1357 return err;
1361 * Bind a name to a socket. Nothing much to do here since it's
1362 * the protocol's responsibility to handle the local address.
1364 * We move the socket address to kernel space before we call
1365 * the protocol layer (having also checked the address is ok).
1368 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1370 struct socket *sock;
1371 struct sockaddr_storage address;
1372 int err, fput_needed;
1374 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1375 if (sock) {
1376 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1377 if (err >= 0) {
1378 err = security_socket_bind(sock,
1379 (struct sockaddr *)&address,
1380 addrlen);
1381 if (!err)
1382 err = sock->ops->bind(sock,
1383 (struct sockaddr *)
1384 &address, addrlen);
1386 fput_light(sock->file, fput_needed);
1388 return err;
1392 * Perform a listen. Basically, we allow the protocol to do anything
1393 * necessary for a listen, and if that works, we mark the socket as
1394 * ready for listening.
1397 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1399 struct socket *sock;
1400 int err, fput_needed;
1401 int somaxconn;
1403 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1404 if (sock) {
1405 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1406 if ((unsigned int)backlog > somaxconn)
1407 backlog = somaxconn;
1409 err = security_socket_listen(sock, backlog);
1410 if (!err)
1411 err = sock->ops->listen(sock, backlog);
1413 fput_light(sock->file, fput_needed);
1415 return err;
1419 * For accept, we attempt to create a new socket, set up the link
1420 * with the client, wake up the client, then return the new
1421 * connected fd. We collect the address of the connector in kernel
1422 * space and move it to user at the very end. This is unclean because
1423 * we open the socket then return an error.
1425 * 1003.1g adds the ability to recvmsg() to query connection pending
1426 * status to recvmsg. We need to add that support in a way thats
1427 * clean when we restucture accept also.
1430 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1431 int __user *, upeer_addrlen, int, flags)
1433 struct socket *sock, *newsock;
1434 struct file *newfile;
1435 int err, len, newfd, fput_needed;
1436 struct sockaddr_storage address;
1438 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1439 return -EINVAL;
1441 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1442 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1444 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1445 if (!sock)
1446 goto out;
1448 err = -ENFILE;
1449 newsock = sock_alloc();
1450 if (!newsock)
1451 goto out_put;
1453 newsock->type = sock->type;
1454 newsock->ops = sock->ops;
1457 * We don't need try_module_get here, as the listening socket (sock)
1458 * has the protocol module (sock->ops->owner) held.
1460 __module_get(newsock->ops->owner);
1462 newfd = get_unused_fd_flags(flags);
1463 if (unlikely(newfd < 0)) {
1464 err = newfd;
1465 sock_release(newsock);
1466 goto out_put;
1468 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1469 if (IS_ERR(newfile)) {
1470 err = PTR_ERR(newfile);
1471 put_unused_fd(newfd);
1472 sock_release(newsock);
1473 goto out_put;
1476 err = security_socket_accept(sock, newsock);
1477 if (err)
1478 goto out_fd;
1480 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1481 if (err < 0)
1482 goto out_fd;
1484 if (upeer_sockaddr) {
1485 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1486 &len, 2) < 0) {
1487 err = -ECONNABORTED;
1488 goto out_fd;
1490 err = move_addr_to_user(&address,
1491 len, upeer_sockaddr, upeer_addrlen);
1492 if (err < 0)
1493 goto out_fd;
1496 /* File flags are not inherited via accept() unlike another OSes. */
1498 fd_install(newfd, newfile);
1499 err = newfd;
1501 out_put:
1502 fput_light(sock->file, fput_needed);
1503 out:
1504 return err;
1505 out_fd:
1506 fput(newfile);
1507 put_unused_fd(newfd);
1508 goto out_put;
1511 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1512 int __user *, upeer_addrlen)
1514 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1518 * Attempt to connect to a socket with the server address. The address
1519 * is in user space so we verify it is OK and move it to kernel space.
1521 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1522 * break bindings
1524 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1525 * other SEQPACKET protocols that take time to connect() as it doesn't
1526 * include the -EINPROGRESS status for such sockets.
1529 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1530 int, addrlen)
1532 struct socket *sock;
1533 struct sockaddr_storage address;
1534 int err, fput_needed;
1536 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1537 if (!sock)
1538 goto out;
1539 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1540 if (err < 0)
1541 goto out_put;
1543 err =
1544 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1545 if (err)
1546 goto out_put;
1548 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1549 sock->file->f_flags);
1550 out_put:
1551 fput_light(sock->file, fput_needed);
1552 out:
1553 return err;
1557 * Get the local address ('name') of a socket object. Move the obtained
1558 * name to user space.
1561 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1562 int __user *, usockaddr_len)
1564 struct socket *sock;
1565 struct sockaddr_storage address;
1566 int len, err, fput_needed;
1568 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1569 if (!sock)
1570 goto out;
1572 err = security_socket_getsockname(sock);
1573 if (err)
1574 goto out_put;
1576 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1577 if (err)
1578 goto out_put;
1579 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1581 out_put:
1582 fput_light(sock->file, fput_needed);
1583 out:
1584 return err;
1588 * Get the remote address ('name') of a socket object. Move the obtained
1589 * name to user space.
1592 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1593 int __user *, usockaddr_len)
1595 struct socket *sock;
1596 struct sockaddr_storage address;
1597 int len, err, fput_needed;
1599 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1600 if (sock != NULL) {
1601 err = security_socket_getpeername(sock);
1602 if (err) {
1603 fput_light(sock->file, fput_needed);
1604 return err;
1607 err =
1608 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1610 if (!err)
1611 err = move_addr_to_user(&address, len, usockaddr,
1612 usockaddr_len);
1613 fput_light(sock->file, fput_needed);
1615 return err;
1619 * Send a datagram to a given address. We move the address into kernel
1620 * space and check the user space data area is readable before invoking
1621 * the protocol.
1624 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1625 unsigned int, flags, struct sockaddr __user *, addr,
1626 int, addr_len)
1628 struct socket *sock;
1629 struct sockaddr_storage address;
1630 int err;
1631 struct msghdr msg;
1632 struct iovec iov;
1633 int fput_needed;
1635 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1636 if (unlikely(err))
1637 return err;
1638 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1639 if (!sock)
1640 goto out;
1642 msg.msg_name = NULL;
1643 msg.msg_control = NULL;
1644 msg.msg_controllen = 0;
1645 msg.msg_namelen = 0;
1646 if (addr) {
1647 err = move_addr_to_kernel(addr, addr_len, &address);
1648 if (err < 0)
1649 goto out_put;
1650 msg.msg_name = (struct sockaddr *)&address;
1651 msg.msg_namelen = addr_len;
1653 if (sock->file->f_flags & O_NONBLOCK)
1654 flags |= MSG_DONTWAIT;
1655 msg.msg_flags = flags;
1656 err = sock_sendmsg(sock, &msg);
1658 out_put:
1659 fput_light(sock->file, fput_needed);
1660 out:
1661 return err;
1665 * Send a datagram down a socket.
1668 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1669 unsigned int, flags)
1671 return sys_sendto(fd, buff, len, flags, NULL, 0);
1675 * Receive a frame from the socket and optionally record the address of the
1676 * sender. We verify the buffers are writable and if needed move the
1677 * sender address from kernel to user space.
1680 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1681 unsigned int, flags, struct sockaddr __user *, addr,
1682 int __user *, addr_len)
1684 struct socket *sock;
1685 struct iovec iov;
1686 struct msghdr msg;
1687 struct sockaddr_storage address;
1688 int err, err2;
1689 int fput_needed;
1691 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1692 if (unlikely(err))
1693 return err;
1694 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1695 if (!sock)
1696 goto out;
1698 msg.msg_control = NULL;
1699 msg.msg_controllen = 0;
1700 /* Save some cycles and don't copy the address if not needed */
1701 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1702 /* We assume all kernel code knows the size of sockaddr_storage */
1703 msg.msg_namelen = 0;
1704 msg.msg_iocb = NULL;
1705 if (sock->file->f_flags & O_NONBLOCK)
1706 flags |= MSG_DONTWAIT;
1707 err = sock_recvmsg(sock, &msg, flags);
1709 if (err >= 0 && addr != NULL) {
1710 err2 = move_addr_to_user(&address,
1711 msg.msg_namelen, addr, addr_len);
1712 if (err2 < 0)
1713 err = err2;
1716 fput_light(sock->file, fput_needed);
1717 out:
1718 return err;
1722 * Receive a datagram from a socket.
1725 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1726 unsigned int, flags)
1728 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1732 * Set a socket option. Because we don't know the option lengths we have
1733 * to pass the user mode parameter for the protocols to sort out.
1736 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1737 char __user *, optval, int, optlen)
1739 int err, fput_needed;
1740 struct socket *sock;
1742 if (optlen < 0)
1743 return -EINVAL;
1745 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1746 if (sock != NULL) {
1747 err = security_socket_setsockopt(sock, level, optname);
1748 if (err)
1749 goto out_put;
1751 if (level == SOL_SOCKET)
1752 err =
1753 sock_setsockopt(sock, level, optname, optval,
1754 optlen);
1755 else
1756 err =
1757 sock->ops->setsockopt(sock, level, optname, optval,
1758 optlen);
1759 out_put:
1760 fput_light(sock->file, fput_needed);
1762 return err;
1766 * Get a socket option. Because we don't know the option lengths we have
1767 * to pass a user mode parameter for the protocols to sort out.
1770 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1771 char __user *, optval, int __user *, optlen)
1773 int err, fput_needed;
1774 struct socket *sock;
1776 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1777 if (sock != NULL) {
1778 err = security_socket_getsockopt(sock, level, optname);
1779 if (err)
1780 goto out_put;
1782 if (level == SOL_SOCKET)
1783 err =
1784 sock_getsockopt(sock, level, optname, optval,
1785 optlen);
1786 else
1787 err =
1788 sock->ops->getsockopt(sock, level, optname, optval,
1789 optlen);
1790 out_put:
1791 fput_light(sock->file, fput_needed);
1793 return err;
1797 * Shutdown a socket.
1800 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1802 int err, fput_needed;
1803 struct socket *sock;
1805 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1806 if (sock != NULL) {
1807 err = security_socket_shutdown(sock, how);
1808 if (!err)
1809 err = sock->ops->shutdown(sock, how);
1810 fput_light(sock->file, fput_needed);
1812 return err;
1815 /* A couple of helpful macros for getting the address of the 32/64 bit
1816 * fields which are the same type (int / unsigned) on our platforms.
1818 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1819 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1820 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1822 struct used_address {
1823 struct sockaddr_storage name;
1824 unsigned int name_len;
1827 static int copy_msghdr_from_user(struct msghdr *kmsg,
1828 struct user_msghdr __user *umsg,
1829 struct sockaddr __user **save_addr,
1830 struct iovec **iov)
1832 struct sockaddr __user *uaddr;
1833 struct iovec __user *uiov;
1834 size_t nr_segs;
1835 ssize_t err;
1837 if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1838 __get_user(uaddr, &umsg->msg_name) ||
1839 __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1840 __get_user(uiov, &umsg->msg_iov) ||
1841 __get_user(nr_segs, &umsg->msg_iovlen) ||
1842 __get_user(kmsg->msg_control, &umsg->msg_control) ||
1843 __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1844 __get_user(kmsg->msg_flags, &umsg->msg_flags))
1845 return -EFAULT;
1847 if (!uaddr)
1848 kmsg->msg_namelen = 0;
1850 if (kmsg->msg_namelen < 0)
1851 return -EINVAL;
1853 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1854 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1856 if (save_addr)
1857 *save_addr = uaddr;
1859 if (uaddr && kmsg->msg_namelen) {
1860 if (!save_addr) {
1861 err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
1862 kmsg->msg_name);
1863 if (err < 0)
1864 return err;
1866 } else {
1867 kmsg->msg_name = NULL;
1868 kmsg->msg_namelen = 0;
1871 if (nr_segs > UIO_MAXIOV)
1872 return -EMSGSIZE;
1874 kmsg->msg_iocb = NULL;
1876 return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs,
1877 UIO_FASTIOV, iov, &kmsg->msg_iter);
1880 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1881 struct msghdr *msg_sys, unsigned int flags,
1882 struct used_address *used_address,
1883 unsigned int allowed_msghdr_flags)
1885 struct compat_msghdr __user *msg_compat =
1886 (struct compat_msghdr __user *)msg;
1887 struct sockaddr_storage address;
1888 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1889 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1890 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1891 /* 20 is size of ipv6_pktinfo */
1892 unsigned char *ctl_buf = ctl;
1893 int ctl_len;
1894 ssize_t err;
1896 msg_sys->msg_name = &address;
1898 if (MSG_CMSG_COMPAT & flags)
1899 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1900 else
1901 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1902 if (err < 0)
1903 return err;
1905 err = -ENOBUFS;
1907 if (msg_sys->msg_controllen > INT_MAX)
1908 goto out_freeiov;
1909 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
1910 ctl_len = msg_sys->msg_controllen;
1911 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1912 err =
1913 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1914 sizeof(ctl));
1915 if (err)
1916 goto out_freeiov;
1917 ctl_buf = msg_sys->msg_control;
1918 ctl_len = msg_sys->msg_controllen;
1919 } else if (ctl_len) {
1920 if (ctl_len > sizeof(ctl)) {
1921 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1922 if (ctl_buf == NULL)
1923 goto out_freeiov;
1925 err = -EFAULT;
1927 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1928 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1929 * checking falls down on this.
1931 if (copy_from_user(ctl_buf,
1932 (void __user __force *)msg_sys->msg_control,
1933 ctl_len))
1934 goto out_freectl;
1935 msg_sys->msg_control = ctl_buf;
1937 msg_sys->msg_flags = flags;
1939 if (sock->file->f_flags & O_NONBLOCK)
1940 msg_sys->msg_flags |= MSG_DONTWAIT;
1942 * If this is sendmmsg() and current destination address is same as
1943 * previously succeeded address, omit asking LSM's decision.
1944 * used_address->name_len is initialized to UINT_MAX so that the first
1945 * destination address never matches.
1947 if (used_address && msg_sys->msg_name &&
1948 used_address->name_len == msg_sys->msg_namelen &&
1949 !memcmp(&used_address->name, msg_sys->msg_name,
1950 used_address->name_len)) {
1951 err = sock_sendmsg_nosec(sock, msg_sys);
1952 goto out_freectl;
1954 err = sock_sendmsg(sock, msg_sys);
1956 * If this is sendmmsg() and sending to current destination address was
1957 * successful, remember it.
1959 if (used_address && err >= 0) {
1960 used_address->name_len = msg_sys->msg_namelen;
1961 if (msg_sys->msg_name)
1962 memcpy(&used_address->name, msg_sys->msg_name,
1963 used_address->name_len);
1966 out_freectl:
1967 if (ctl_buf != ctl)
1968 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1969 out_freeiov:
1970 kfree(iov);
1971 return err;
1975 * BSD sendmsg interface
1978 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
1980 int fput_needed, err;
1981 struct msghdr msg_sys;
1982 struct socket *sock;
1984 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1985 if (!sock)
1986 goto out;
1988 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
1990 fput_light(sock->file, fput_needed);
1991 out:
1992 return err;
1995 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
1997 if (flags & MSG_CMSG_COMPAT)
1998 return -EINVAL;
1999 return __sys_sendmsg(fd, msg, flags);
2003 * Linux sendmmsg interface
2006 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2007 unsigned int flags)
2009 int fput_needed, err, datagrams;
2010 struct socket *sock;
2011 struct mmsghdr __user *entry;
2012 struct compat_mmsghdr __user *compat_entry;
2013 struct msghdr msg_sys;
2014 struct used_address used_address;
2015 unsigned int oflags = flags;
2017 if (vlen > UIO_MAXIOV)
2018 vlen = UIO_MAXIOV;
2020 datagrams = 0;
2022 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2023 if (!sock)
2024 return err;
2026 used_address.name_len = UINT_MAX;
2027 entry = mmsg;
2028 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2029 err = 0;
2030 flags |= MSG_BATCH;
2032 while (datagrams < vlen) {
2033 if (datagrams == vlen - 1)
2034 flags = oflags;
2036 if (MSG_CMSG_COMPAT & flags) {
2037 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2038 &msg_sys, flags, &used_address, MSG_EOR);
2039 if (err < 0)
2040 break;
2041 err = __put_user(err, &compat_entry->msg_len);
2042 ++compat_entry;
2043 } else {
2044 err = ___sys_sendmsg(sock,
2045 (struct user_msghdr __user *)entry,
2046 &msg_sys, flags, &used_address, MSG_EOR);
2047 if (err < 0)
2048 break;
2049 err = put_user(err, &entry->msg_len);
2050 ++entry;
2053 if (err)
2054 break;
2055 ++datagrams;
2056 if (msg_data_left(&msg_sys))
2057 break;
2058 cond_resched();
2061 fput_light(sock->file, fput_needed);
2063 /* We only return an error if no datagrams were able to be sent */
2064 if (datagrams != 0)
2065 return datagrams;
2067 return err;
2070 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2071 unsigned int, vlen, unsigned int, flags)
2073 if (flags & MSG_CMSG_COMPAT)
2074 return -EINVAL;
2075 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2078 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2079 struct msghdr *msg_sys, unsigned int flags, int nosec)
2081 struct compat_msghdr __user *msg_compat =
2082 (struct compat_msghdr __user *)msg;
2083 struct iovec iovstack[UIO_FASTIOV];
2084 struct iovec *iov = iovstack;
2085 unsigned long cmsg_ptr;
2086 int len;
2087 ssize_t err;
2089 /* kernel mode address */
2090 struct sockaddr_storage addr;
2092 /* user mode address pointers */
2093 struct sockaddr __user *uaddr;
2094 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2096 msg_sys->msg_name = &addr;
2098 if (MSG_CMSG_COMPAT & flags)
2099 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2100 else
2101 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2102 if (err < 0)
2103 return err;
2105 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2106 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2108 /* We assume all kernel code knows the size of sockaddr_storage */
2109 msg_sys->msg_namelen = 0;
2111 if (sock->file->f_flags & O_NONBLOCK)
2112 flags |= MSG_DONTWAIT;
2113 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2114 if (err < 0)
2115 goto out_freeiov;
2116 len = err;
2118 if (uaddr != NULL) {
2119 err = move_addr_to_user(&addr,
2120 msg_sys->msg_namelen, uaddr,
2121 uaddr_len);
2122 if (err < 0)
2123 goto out_freeiov;
2125 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2126 COMPAT_FLAGS(msg));
2127 if (err)
2128 goto out_freeiov;
2129 if (MSG_CMSG_COMPAT & flags)
2130 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2131 &msg_compat->msg_controllen);
2132 else
2133 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2134 &msg->msg_controllen);
2135 if (err)
2136 goto out_freeiov;
2137 err = len;
2139 out_freeiov:
2140 kfree(iov);
2141 return err;
2145 * BSD recvmsg interface
2148 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2150 int fput_needed, err;
2151 struct msghdr msg_sys;
2152 struct socket *sock;
2154 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2155 if (!sock)
2156 goto out;
2158 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2160 fput_light(sock->file, fput_needed);
2161 out:
2162 return err;
2165 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2166 unsigned int, flags)
2168 if (flags & MSG_CMSG_COMPAT)
2169 return -EINVAL;
2170 return __sys_recvmsg(fd, msg, flags);
2174 * Linux recvmmsg interface
2177 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2178 unsigned int flags, struct timespec *timeout)
2180 int fput_needed, err, datagrams;
2181 struct socket *sock;
2182 struct mmsghdr __user *entry;
2183 struct compat_mmsghdr __user *compat_entry;
2184 struct msghdr msg_sys;
2185 struct timespec64 end_time;
2186 struct timespec64 timeout64;
2188 if (timeout &&
2189 poll_select_set_timeout(&end_time, timeout->tv_sec,
2190 timeout->tv_nsec))
2191 return -EINVAL;
2193 datagrams = 0;
2195 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2196 if (!sock)
2197 return err;
2199 err = sock_error(sock->sk);
2200 if (err) {
2201 datagrams = err;
2202 goto out_put;
2205 entry = mmsg;
2206 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2208 while (datagrams < vlen) {
2210 * No need to ask LSM for more than the first datagram.
2212 if (MSG_CMSG_COMPAT & flags) {
2213 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2214 &msg_sys, flags & ~MSG_WAITFORONE,
2215 datagrams);
2216 if (err < 0)
2217 break;
2218 err = __put_user(err, &compat_entry->msg_len);
2219 ++compat_entry;
2220 } else {
2221 err = ___sys_recvmsg(sock,
2222 (struct user_msghdr __user *)entry,
2223 &msg_sys, flags & ~MSG_WAITFORONE,
2224 datagrams);
2225 if (err < 0)
2226 break;
2227 err = put_user(err, &entry->msg_len);
2228 ++entry;
2231 if (err)
2232 break;
2233 ++datagrams;
2235 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2236 if (flags & MSG_WAITFORONE)
2237 flags |= MSG_DONTWAIT;
2239 if (timeout) {
2240 ktime_get_ts64(&timeout64);
2241 *timeout = timespec64_to_timespec(
2242 timespec64_sub(end_time, timeout64));
2243 if (timeout->tv_sec < 0) {
2244 timeout->tv_sec = timeout->tv_nsec = 0;
2245 break;
2248 /* Timeout, return less than vlen datagrams */
2249 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2250 break;
2253 /* Out of band data, return right away */
2254 if (msg_sys.msg_flags & MSG_OOB)
2255 break;
2256 cond_resched();
2259 if (err == 0)
2260 goto out_put;
2262 if (datagrams == 0) {
2263 datagrams = err;
2264 goto out_put;
2268 * We may return less entries than requested (vlen) if the
2269 * sock is non block and there aren't enough datagrams...
2271 if (err != -EAGAIN) {
2273 * ... or if recvmsg returns an error after we
2274 * received some datagrams, where we record the
2275 * error to return on the next call or if the
2276 * app asks about it using getsockopt(SO_ERROR).
2278 sock->sk->sk_err = -err;
2280 out_put:
2281 fput_light(sock->file, fput_needed);
2283 return datagrams;
2286 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2287 unsigned int, vlen, unsigned int, flags,
2288 struct timespec __user *, timeout)
2290 int datagrams;
2291 struct timespec timeout_sys;
2293 if (flags & MSG_CMSG_COMPAT)
2294 return -EINVAL;
2296 if (!timeout)
2297 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2299 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2300 return -EFAULT;
2302 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2304 if (datagrams > 0 &&
2305 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2306 datagrams = -EFAULT;
2308 return datagrams;
2311 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2312 /* Argument list sizes for sys_socketcall */
2313 #define AL(x) ((x) * sizeof(unsigned long))
2314 static const unsigned char nargs[21] = {
2315 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2316 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2317 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2318 AL(4), AL(5), AL(4)
2321 #undef AL
2324 * System call vectors.
2326 * Argument checking cleaned up. Saved 20% in size.
2327 * This function doesn't need to set the kernel lock because
2328 * it is set by the callees.
2331 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2333 unsigned long a[AUDITSC_ARGS];
2334 unsigned long a0, a1;
2335 int err;
2336 unsigned int len;
2338 if (call < 1 || call > SYS_SENDMMSG)
2339 return -EINVAL;
2341 len = nargs[call];
2342 if (len > sizeof(a))
2343 return -EINVAL;
2345 /* copy_from_user should be SMP safe. */
2346 if (copy_from_user(a, args, len))
2347 return -EFAULT;
2349 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2350 if (err)
2351 return err;
2353 a0 = a[0];
2354 a1 = a[1];
2356 switch (call) {
2357 case SYS_SOCKET:
2358 err = sys_socket(a0, a1, a[2]);
2359 break;
2360 case SYS_BIND:
2361 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2362 break;
2363 case SYS_CONNECT:
2364 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2365 break;
2366 case SYS_LISTEN:
2367 err = sys_listen(a0, a1);
2368 break;
2369 case SYS_ACCEPT:
2370 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2371 (int __user *)a[2], 0);
2372 break;
2373 case SYS_GETSOCKNAME:
2374 err =
2375 sys_getsockname(a0, (struct sockaddr __user *)a1,
2376 (int __user *)a[2]);
2377 break;
2378 case SYS_GETPEERNAME:
2379 err =
2380 sys_getpeername(a0, (struct sockaddr __user *)a1,
2381 (int __user *)a[2]);
2382 break;
2383 case SYS_SOCKETPAIR:
2384 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2385 break;
2386 case SYS_SEND:
2387 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2388 break;
2389 case SYS_SENDTO:
2390 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2391 (struct sockaddr __user *)a[4], a[5]);
2392 break;
2393 case SYS_RECV:
2394 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2395 break;
2396 case SYS_RECVFROM:
2397 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2398 (struct sockaddr __user *)a[4],
2399 (int __user *)a[5]);
2400 break;
2401 case SYS_SHUTDOWN:
2402 err = sys_shutdown(a0, a1);
2403 break;
2404 case SYS_SETSOCKOPT:
2405 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2406 break;
2407 case SYS_GETSOCKOPT:
2408 err =
2409 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2410 (int __user *)a[4]);
2411 break;
2412 case SYS_SENDMSG:
2413 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2414 break;
2415 case SYS_SENDMMSG:
2416 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2417 break;
2418 case SYS_RECVMSG:
2419 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2420 break;
2421 case SYS_RECVMMSG:
2422 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2423 (struct timespec __user *)a[4]);
2424 break;
2425 case SYS_ACCEPT4:
2426 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2427 (int __user *)a[2], a[3]);
2428 break;
2429 default:
2430 err = -EINVAL;
2431 break;
2433 return err;
2436 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2439 * sock_register - add a socket protocol handler
2440 * @ops: description of protocol
2442 * This function is called by a protocol handler that wants to
2443 * advertise its address family, and have it linked into the
2444 * socket interface. The value ops->family corresponds to the
2445 * socket system call protocol family.
2447 int sock_register(const struct net_proto_family *ops)
2449 int err;
2451 if (ops->family >= NPROTO) {
2452 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2453 return -ENOBUFS;
2456 spin_lock(&net_family_lock);
2457 if (rcu_dereference_protected(net_families[ops->family],
2458 lockdep_is_held(&net_family_lock)))
2459 err = -EEXIST;
2460 else {
2461 rcu_assign_pointer(net_families[ops->family], ops);
2462 err = 0;
2464 spin_unlock(&net_family_lock);
2466 pr_info("NET: Registered protocol family %d\n", ops->family);
2467 return err;
2469 EXPORT_SYMBOL(sock_register);
2472 * sock_unregister - remove a protocol handler
2473 * @family: protocol family to remove
2475 * This function is called by a protocol handler that wants to
2476 * remove its address family, and have it unlinked from the
2477 * new socket creation.
2479 * If protocol handler is a module, then it can use module reference
2480 * counts to protect against new references. If protocol handler is not
2481 * a module then it needs to provide its own protection in
2482 * the ops->create routine.
2484 void sock_unregister(int family)
2486 BUG_ON(family < 0 || family >= NPROTO);
2488 spin_lock(&net_family_lock);
2489 RCU_INIT_POINTER(net_families[family], NULL);
2490 spin_unlock(&net_family_lock);
2492 synchronize_rcu();
2494 pr_info("NET: Unregistered protocol family %d\n", family);
2496 EXPORT_SYMBOL(sock_unregister);
2498 static int __init sock_init(void)
2500 int err;
2502 * Initialize the network sysctl infrastructure.
2504 err = net_sysctl_init();
2505 if (err)
2506 goto out;
2509 * Initialize skbuff SLAB cache
2511 skb_init();
2514 * Initialize the protocols module.
2517 init_inodecache();
2519 err = register_filesystem(&sock_fs_type);
2520 if (err)
2521 goto out_fs;
2522 sock_mnt = kern_mount(&sock_fs_type);
2523 if (IS_ERR(sock_mnt)) {
2524 err = PTR_ERR(sock_mnt);
2525 goto out_mount;
2528 /* The real protocol initialization is performed in later initcalls.
2531 #ifdef CONFIG_NETFILTER
2532 err = netfilter_init();
2533 if (err)
2534 goto out;
2535 #endif
2537 ptp_classifier_init();
2539 out:
2540 return err;
2542 out_mount:
2543 unregister_filesystem(&sock_fs_type);
2544 out_fs:
2545 goto out;
2548 core_initcall(sock_init); /* early initcall */
2550 #ifdef CONFIG_PROC_FS
2551 void socket_seq_show(struct seq_file *seq)
2553 int cpu;
2554 int counter = 0;
2556 for_each_possible_cpu(cpu)
2557 counter += per_cpu(sockets_in_use, cpu);
2559 /* It can be negative, by the way. 8) */
2560 if (counter < 0)
2561 counter = 0;
2563 seq_printf(seq, "sockets: used %d\n", counter);
2565 #endif /* CONFIG_PROC_FS */
2567 #ifdef CONFIG_COMPAT
2568 static int do_siocgstamp(struct net *net, struct socket *sock,
2569 unsigned int cmd, void __user *up)
2571 mm_segment_t old_fs = get_fs();
2572 struct timeval ktv;
2573 int err;
2575 set_fs(KERNEL_DS);
2576 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2577 set_fs(old_fs);
2578 if (!err)
2579 err = compat_put_timeval(&ktv, up);
2581 return err;
2584 static int do_siocgstampns(struct net *net, struct socket *sock,
2585 unsigned int cmd, void __user *up)
2587 mm_segment_t old_fs = get_fs();
2588 struct timespec kts;
2589 int err;
2591 set_fs(KERNEL_DS);
2592 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2593 set_fs(old_fs);
2594 if (!err)
2595 err = compat_put_timespec(&kts, up);
2597 return err;
2600 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2602 struct ifreq __user *uifr;
2603 int err;
2605 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2606 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2607 return -EFAULT;
2609 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2610 if (err)
2611 return err;
2613 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2614 return -EFAULT;
2616 return 0;
2619 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2621 struct compat_ifconf ifc32;
2622 struct ifconf ifc;
2623 struct ifconf __user *uifc;
2624 struct compat_ifreq __user *ifr32;
2625 struct ifreq __user *ifr;
2626 unsigned int i, j;
2627 int err;
2629 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2630 return -EFAULT;
2632 memset(&ifc, 0, sizeof(ifc));
2633 if (ifc32.ifcbuf == 0) {
2634 ifc32.ifc_len = 0;
2635 ifc.ifc_len = 0;
2636 ifc.ifc_req = NULL;
2637 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2638 } else {
2639 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2640 sizeof(struct ifreq);
2641 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2642 ifc.ifc_len = len;
2643 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2644 ifr32 = compat_ptr(ifc32.ifcbuf);
2645 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2646 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2647 return -EFAULT;
2648 ifr++;
2649 ifr32++;
2652 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2653 return -EFAULT;
2655 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2656 if (err)
2657 return err;
2659 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2660 return -EFAULT;
2662 ifr = ifc.ifc_req;
2663 ifr32 = compat_ptr(ifc32.ifcbuf);
2664 for (i = 0, j = 0;
2665 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2666 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2667 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2668 return -EFAULT;
2669 ifr32++;
2670 ifr++;
2673 if (ifc32.ifcbuf == 0) {
2674 /* Translate from 64-bit structure multiple to
2675 * a 32-bit one.
2677 i = ifc.ifc_len;
2678 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2679 ifc32.ifc_len = i;
2680 } else {
2681 ifc32.ifc_len = i;
2683 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2684 return -EFAULT;
2686 return 0;
2689 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2691 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2692 bool convert_in = false, convert_out = false;
2693 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2694 struct ethtool_rxnfc __user *rxnfc;
2695 struct ifreq __user *ifr;
2696 u32 rule_cnt = 0, actual_rule_cnt;
2697 u32 ethcmd;
2698 u32 data;
2699 int ret;
2701 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2702 return -EFAULT;
2704 compat_rxnfc = compat_ptr(data);
2706 if (get_user(ethcmd, &compat_rxnfc->cmd))
2707 return -EFAULT;
2709 /* Most ethtool structures are defined without padding.
2710 * Unfortunately struct ethtool_rxnfc is an exception.
2712 switch (ethcmd) {
2713 default:
2714 break;
2715 case ETHTOOL_GRXCLSRLALL:
2716 /* Buffer size is variable */
2717 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2718 return -EFAULT;
2719 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2720 return -ENOMEM;
2721 buf_size += rule_cnt * sizeof(u32);
2722 /* fall through */
2723 case ETHTOOL_GRXRINGS:
2724 case ETHTOOL_GRXCLSRLCNT:
2725 case ETHTOOL_GRXCLSRULE:
2726 case ETHTOOL_SRXCLSRLINS:
2727 convert_out = true;
2728 /* fall through */
2729 case ETHTOOL_SRXCLSRLDEL:
2730 buf_size += sizeof(struct ethtool_rxnfc);
2731 convert_in = true;
2732 break;
2735 ifr = compat_alloc_user_space(buf_size);
2736 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2738 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2739 return -EFAULT;
2741 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2742 &ifr->ifr_ifru.ifru_data))
2743 return -EFAULT;
2745 if (convert_in) {
2746 /* We expect there to be holes between fs.m_ext and
2747 * fs.ring_cookie and at the end of fs, but nowhere else.
2749 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2750 sizeof(compat_rxnfc->fs.m_ext) !=
2751 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2752 sizeof(rxnfc->fs.m_ext));
2753 BUILD_BUG_ON(
2754 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2755 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2756 offsetof(struct ethtool_rxnfc, fs.location) -
2757 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2759 if (copy_in_user(rxnfc, compat_rxnfc,
2760 (void __user *)(&rxnfc->fs.m_ext + 1) -
2761 (void __user *)rxnfc) ||
2762 copy_in_user(&rxnfc->fs.ring_cookie,
2763 &compat_rxnfc->fs.ring_cookie,
2764 (void __user *)(&rxnfc->fs.location + 1) -
2765 (void __user *)&rxnfc->fs.ring_cookie) ||
2766 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2767 sizeof(rxnfc->rule_cnt)))
2768 return -EFAULT;
2771 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2772 if (ret)
2773 return ret;
2775 if (convert_out) {
2776 if (copy_in_user(compat_rxnfc, rxnfc,
2777 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2778 (const void __user *)rxnfc) ||
2779 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2780 &rxnfc->fs.ring_cookie,
2781 (const void __user *)(&rxnfc->fs.location + 1) -
2782 (const void __user *)&rxnfc->fs.ring_cookie) ||
2783 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2784 sizeof(rxnfc->rule_cnt)))
2785 return -EFAULT;
2787 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2788 /* As an optimisation, we only copy the actual
2789 * number of rules that the underlying
2790 * function returned. Since Mallory might
2791 * change the rule count in user memory, we
2792 * check that it is less than the rule count
2793 * originally given (as the user buffer size),
2794 * which has been range-checked.
2796 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2797 return -EFAULT;
2798 if (actual_rule_cnt < rule_cnt)
2799 rule_cnt = actual_rule_cnt;
2800 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2801 &rxnfc->rule_locs[0],
2802 rule_cnt * sizeof(u32)))
2803 return -EFAULT;
2807 return 0;
2810 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2812 void __user *uptr;
2813 compat_uptr_t uptr32;
2814 struct ifreq __user *uifr;
2816 uifr = compat_alloc_user_space(sizeof(*uifr));
2817 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2818 return -EFAULT;
2820 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2821 return -EFAULT;
2823 uptr = compat_ptr(uptr32);
2825 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2826 return -EFAULT;
2828 return dev_ioctl(net, SIOCWANDEV, uifr);
2831 static int bond_ioctl(struct net *net, unsigned int cmd,
2832 struct compat_ifreq __user *ifr32)
2834 struct ifreq kifr;
2835 mm_segment_t old_fs;
2836 int err;
2838 switch (cmd) {
2839 case SIOCBONDENSLAVE:
2840 case SIOCBONDRELEASE:
2841 case SIOCBONDSETHWADDR:
2842 case SIOCBONDCHANGEACTIVE:
2843 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2844 return -EFAULT;
2846 old_fs = get_fs();
2847 set_fs(KERNEL_DS);
2848 err = dev_ioctl(net, cmd,
2849 (struct ifreq __user __force *) &kifr);
2850 set_fs(old_fs);
2852 return err;
2853 default:
2854 return -ENOIOCTLCMD;
2858 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2859 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2860 struct compat_ifreq __user *u_ifreq32)
2862 struct ifreq __user *u_ifreq64;
2863 char tmp_buf[IFNAMSIZ];
2864 void __user *data64;
2865 u32 data32;
2867 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2868 IFNAMSIZ))
2869 return -EFAULT;
2870 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2871 return -EFAULT;
2872 data64 = compat_ptr(data32);
2874 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2876 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2877 IFNAMSIZ))
2878 return -EFAULT;
2879 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2880 return -EFAULT;
2882 return dev_ioctl(net, cmd, u_ifreq64);
2885 static int dev_ifsioc(struct net *net, struct socket *sock,
2886 unsigned int cmd, struct compat_ifreq __user *uifr32)
2888 struct ifreq __user *uifr;
2889 int err;
2891 uifr = compat_alloc_user_space(sizeof(*uifr));
2892 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2893 return -EFAULT;
2895 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2897 if (!err) {
2898 switch (cmd) {
2899 case SIOCGIFFLAGS:
2900 case SIOCGIFMETRIC:
2901 case SIOCGIFMTU:
2902 case SIOCGIFMEM:
2903 case SIOCGIFHWADDR:
2904 case SIOCGIFINDEX:
2905 case SIOCGIFADDR:
2906 case SIOCGIFBRDADDR:
2907 case SIOCGIFDSTADDR:
2908 case SIOCGIFNETMASK:
2909 case SIOCGIFPFLAGS:
2910 case SIOCGIFTXQLEN:
2911 case SIOCGMIIPHY:
2912 case SIOCGMIIREG:
2913 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2914 err = -EFAULT;
2915 break;
2918 return err;
2921 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2922 struct compat_ifreq __user *uifr32)
2924 struct ifreq ifr;
2925 struct compat_ifmap __user *uifmap32;
2926 mm_segment_t old_fs;
2927 int err;
2929 uifmap32 = &uifr32->ifr_ifru.ifru_map;
2930 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2931 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2932 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2933 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2934 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2935 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2936 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2937 if (err)
2938 return -EFAULT;
2940 old_fs = get_fs();
2941 set_fs(KERNEL_DS);
2942 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
2943 set_fs(old_fs);
2945 if (cmd == SIOCGIFMAP && !err) {
2946 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2947 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2948 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2949 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2950 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2951 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2952 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2953 if (err)
2954 err = -EFAULT;
2956 return err;
2959 struct rtentry32 {
2960 u32 rt_pad1;
2961 struct sockaddr rt_dst; /* target address */
2962 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
2963 struct sockaddr rt_genmask; /* target network mask (IP) */
2964 unsigned short rt_flags;
2965 short rt_pad2;
2966 u32 rt_pad3;
2967 unsigned char rt_tos;
2968 unsigned char rt_class;
2969 short rt_pad4;
2970 short rt_metric; /* +1 for binary compatibility! */
2971 /* char * */ u32 rt_dev; /* forcing the device at add */
2972 u32 rt_mtu; /* per route MTU/Window */
2973 u32 rt_window; /* Window clamping */
2974 unsigned short rt_irtt; /* Initial RTT */
2977 struct in6_rtmsg32 {
2978 struct in6_addr rtmsg_dst;
2979 struct in6_addr rtmsg_src;
2980 struct in6_addr rtmsg_gateway;
2981 u32 rtmsg_type;
2982 u16 rtmsg_dst_len;
2983 u16 rtmsg_src_len;
2984 u32 rtmsg_metric;
2985 u32 rtmsg_info;
2986 u32 rtmsg_flags;
2987 s32 rtmsg_ifindex;
2990 static int routing_ioctl(struct net *net, struct socket *sock,
2991 unsigned int cmd, void __user *argp)
2993 int ret;
2994 void *r = NULL;
2995 struct in6_rtmsg r6;
2996 struct rtentry r4;
2997 char devname[16];
2998 u32 rtdev;
2999 mm_segment_t old_fs = get_fs();
3001 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3002 struct in6_rtmsg32 __user *ur6 = argp;
3003 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3004 3 * sizeof(struct in6_addr));
3005 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3006 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3007 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3008 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3009 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3010 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3011 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3013 r = (void *) &r6;
3014 } else { /* ipv4 */
3015 struct rtentry32 __user *ur4 = argp;
3016 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3017 3 * sizeof(struct sockaddr));
3018 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3019 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3020 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3021 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3022 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3023 ret |= get_user(rtdev, &(ur4->rt_dev));
3024 if (rtdev) {
3025 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3026 r4.rt_dev = (char __user __force *)devname;
3027 devname[15] = 0;
3028 } else
3029 r4.rt_dev = NULL;
3031 r = (void *) &r4;
3034 if (ret) {
3035 ret = -EFAULT;
3036 goto out;
3039 set_fs(KERNEL_DS);
3040 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3041 set_fs(old_fs);
3043 out:
3044 return ret;
3047 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3048 * for some operations; this forces use of the newer bridge-utils that
3049 * use compatible ioctls
3051 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3053 compat_ulong_t tmp;
3055 if (get_user(tmp, argp))
3056 return -EFAULT;
3057 if (tmp == BRCTL_GET_VERSION)
3058 return BRCTL_VERSION + 1;
3059 return -EINVAL;
3062 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3063 unsigned int cmd, unsigned long arg)
3065 void __user *argp = compat_ptr(arg);
3066 struct sock *sk = sock->sk;
3067 struct net *net = sock_net(sk);
3069 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3070 return compat_ifr_data_ioctl(net, cmd, argp);
3072 switch (cmd) {
3073 case SIOCSIFBR:
3074 case SIOCGIFBR:
3075 return old_bridge_ioctl(argp);
3076 case SIOCGIFNAME:
3077 return dev_ifname32(net, argp);
3078 case SIOCGIFCONF:
3079 return dev_ifconf(net, argp);
3080 case SIOCETHTOOL:
3081 return ethtool_ioctl(net, argp);
3082 case SIOCWANDEV:
3083 return compat_siocwandev(net, argp);
3084 case SIOCGIFMAP:
3085 case SIOCSIFMAP:
3086 return compat_sioc_ifmap(net, cmd, argp);
3087 case SIOCBONDENSLAVE:
3088 case SIOCBONDRELEASE:
3089 case SIOCBONDSETHWADDR:
3090 case SIOCBONDCHANGEACTIVE:
3091 return bond_ioctl(net, cmd, argp);
3092 case SIOCADDRT:
3093 case SIOCDELRT:
3094 return routing_ioctl(net, sock, cmd, argp);
3095 case SIOCGSTAMP:
3096 return do_siocgstamp(net, sock, cmd, argp);
3097 case SIOCGSTAMPNS:
3098 return do_siocgstampns(net, sock, cmd, argp);
3099 case SIOCBONDSLAVEINFOQUERY:
3100 case SIOCBONDINFOQUERY:
3101 case SIOCSHWTSTAMP:
3102 case SIOCGHWTSTAMP:
3103 return compat_ifr_data_ioctl(net, cmd, argp);
3105 case FIOSETOWN:
3106 case SIOCSPGRP:
3107 case FIOGETOWN:
3108 case SIOCGPGRP:
3109 case SIOCBRADDBR:
3110 case SIOCBRDELBR:
3111 case SIOCGIFVLAN:
3112 case SIOCSIFVLAN:
3113 case SIOCADDDLCI:
3114 case SIOCDELDLCI:
3115 return sock_ioctl(file, cmd, arg);
3117 case SIOCGIFFLAGS:
3118 case SIOCSIFFLAGS:
3119 case SIOCGIFMETRIC:
3120 case SIOCSIFMETRIC:
3121 case SIOCGIFMTU:
3122 case SIOCSIFMTU:
3123 case SIOCGIFMEM:
3124 case SIOCSIFMEM:
3125 case SIOCGIFHWADDR:
3126 case SIOCSIFHWADDR:
3127 case SIOCADDMULTI:
3128 case SIOCDELMULTI:
3129 case SIOCGIFINDEX:
3130 case SIOCGIFADDR:
3131 case SIOCSIFADDR:
3132 case SIOCSIFHWBROADCAST:
3133 case SIOCDIFADDR:
3134 case SIOCGIFBRDADDR:
3135 case SIOCSIFBRDADDR:
3136 case SIOCGIFDSTADDR:
3137 case SIOCSIFDSTADDR:
3138 case SIOCGIFNETMASK:
3139 case SIOCSIFNETMASK:
3140 case SIOCSIFPFLAGS:
3141 case SIOCGIFPFLAGS:
3142 case SIOCGIFTXQLEN:
3143 case SIOCSIFTXQLEN:
3144 case SIOCBRADDIF:
3145 case SIOCBRDELIF:
3146 case SIOCSIFNAME:
3147 case SIOCGMIIPHY:
3148 case SIOCGMIIREG:
3149 case SIOCSMIIREG:
3150 return dev_ifsioc(net, sock, cmd, argp);
3152 case SIOCSARP:
3153 case SIOCGARP:
3154 case SIOCDARP:
3155 case SIOCATMARK:
3156 return sock_do_ioctl(net, sock, cmd, arg);
3159 return -ENOIOCTLCMD;
3162 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3163 unsigned long arg)
3165 struct socket *sock = file->private_data;
3166 int ret = -ENOIOCTLCMD;
3167 struct sock *sk;
3168 struct net *net;
3170 sk = sock->sk;
3171 net = sock_net(sk);
3173 if (sock->ops->compat_ioctl)
3174 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3176 if (ret == -ENOIOCTLCMD &&
3177 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3178 ret = compat_wext_handle_ioctl(net, cmd, arg);
3180 if (ret == -ENOIOCTLCMD)
3181 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3183 return ret;
3185 #endif
3187 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3189 return sock->ops->bind(sock, addr, addrlen);
3191 EXPORT_SYMBOL(kernel_bind);
3193 int kernel_listen(struct socket *sock, int backlog)
3195 return sock->ops->listen(sock, backlog);
3197 EXPORT_SYMBOL(kernel_listen);
3199 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3201 struct sock *sk = sock->sk;
3202 int err;
3204 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3205 newsock);
3206 if (err < 0)
3207 goto done;
3209 err = sock->ops->accept(sock, *newsock, flags);
3210 if (err < 0) {
3211 sock_release(*newsock);
3212 *newsock = NULL;
3213 goto done;
3216 (*newsock)->ops = sock->ops;
3217 __module_get((*newsock)->ops->owner);
3219 done:
3220 return err;
3222 EXPORT_SYMBOL(kernel_accept);
3224 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3225 int flags)
3227 return sock->ops->connect(sock, addr, addrlen, flags);
3229 EXPORT_SYMBOL(kernel_connect);
3231 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3232 int *addrlen)
3234 return sock->ops->getname(sock, addr, addrlen, 0);
3236 EXPORT_SYMBOL(kernel_getsockname);
3238 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3239 int *addrlen)
3241 return sock->ops->getname(sock, addr, addrlen, 1);
3243 EXPORT_SYMBOL(kernel_getpeername);
3245 int kernel_getsockopt(struct socket *sock, int level, int optname,
3246 char *optval, int *optlen)
3248 mm_segment_t oldfs = get_fs();
3249 char __user *uoptval;
3250 int __user *uoptlen;
3251 int err;
3253 uoptval = (char __user __force *) optval;
3254 uoptlen = (int __user __force *) optlen;
3256 set_fs(KERNEL_DS);
3257 if (level == SOL_SOCKET)
3258 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3259 else
3260 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3261 uoptlen);
3262 set_fs(oldfs);
3263 return err;
3265 EXPORT_SYMBOL(kernel_getsockopt);
3267 int kernel_setsockopt(struct socket *sock, int level, int optname,
3268 char *optval, unsigned int optlen)
3270 mm_segment_t oldfs = get_fs();
3271 char __user *uoptval;
3272 int err;
3274 uoptval = (char __user __force *) optval;
3276 set_fs(KERNEL_DS);
3277 if (level == SOL_SOCKET)
3278 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3279 else
3280 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3281 optlen);
3282 set_fs(oldfs);
3283 return err;
3285 EXPORT_SYMBOL(kernel_setsockopt);
3287 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3288 size_t size, int flags)
3290 if (sock->ops->sendpage)
3291 return sock->ops->sendpage(sock, page, offset, size, flags);
3293 return sock_no_sendpage(sock, page, offset, size, flags);
3295 EXPORT_SYMBOL(kernel_sendpage);
3297 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3299 mm_segment_t oldfs = get_fs();
3300 int err;
3302 set_fs(KERNEL_DS);
3303 err = sock->ops->ioctl(sock, cmd, arg);
3304 set_fs(oldfs);
3306 return err;
3308 EXPORT_SYMBOL(kernel_sock_ioctl);
3310 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3312 return sock->ops->shutdown(sock, how);
3314 EXPORT_SYMBOL(kernel_sock_shutdown);