2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2016 Microsemi Corporation
4 * Copyright 2014-2015 PMC-Sierra, Inc.
5 * Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; version 2 of the License.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14 * NON INFRINGEMENT. See the GNU General Public License for more details.
16 * Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
60 * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61 * with an optional trailing '-' followed by a byte value (0-255).
63 #define HPSA_DRIVER_VERSION "3.4.16-0"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20 /* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10 /* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000 /* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000 /* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
77 /* Embedded module documentation macros - see modules.h */
78 MODULE_AUTHOR("Hewlett-Packard Company");
79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82 MODULE_VERSION(HPSA_DRIVER_VERSION
);
83 MODULE_LICENSE("GPL");
85 static int hpsa_allow_any
;
86 module_param(hpsa_allow_any
, int, S_IRUGO
|S_IWUSR
);
87 MODULE_PARM_DESC(hpsa_allow_any
,
88 "Allow hpsa driver to access unknown HP Smart Array hardware");
89 static int hpsa_simple_mode
;
90 module_param(hpsa_simple_mode
, int, S_IRUGO
|S_IWUSR
);
91 MODULE_PARM_DESC(hpsa_simple_mode
,
92 "Use 'simple mode' rather than 'performant mode'");
94 /* define the PCI info for the cards we can control */
95 static const struct pci_device_id hpsa_pci_device_id
[] = {
96 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3241},
97 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3243},
98 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3245},
99 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3247},
100 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3249},
101 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324A},
102 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324B},
103 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3233},
104 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3350},
105 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3351},
106 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3352},
107 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3353},
108 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3354},
109 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3355},
110 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3356},
111 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1921},
112 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1922},
113 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1923},
114 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1924},
115 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1926},
116 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1928},
117 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1929},
118 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BD},
119 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BE},
120 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BF},
121 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C0},
122 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C1},
123 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C2},
124 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C3},
125 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C4},
126 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C5},
127 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C6},
128 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C7},
129 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C8},
130 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C9},
131 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CA},
132 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CB},
133 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CC},
134 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CD},
135 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CE},
136 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0580},
137 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0581},
138 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0582},
139 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0583},
140 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0584},
141 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0585},
142 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x0076},
143 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x0087},
144 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x007D},
145 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x0088},
146 {PCI_VENDOR_ID_HP
, 0x333f, 0x103c, 0x333f},
147 {PCI_VENDOR_ID_HP
, PCI_ANY_ID
, PCI_ANY_ID
, PCI_ANY_ID
,
148 PCI_CLASS_STORAGE_RAID
<< 8, 0xffff << 8, 0},
152 MODULE_DEVICE_TABLE(pci
, hpsa_pci_device_id
);
154 /* board_id = Subsystem Device ID & Vendor ID
155 * product = Marketing Name for the board
156 * access = Address of the struct of function pointers
158 static struct board_type products
[] = {
159 {0x3241103C, "Smart Array P212", &SA5_access
},
160 {0x3243103C, "Smart Array P410", &SA5_access
},
161 {0x3245103C, "Smart Array P410i", &SA5_access
},
162 {0x3247103C, "Smart Array P411", &SA5_access
},
163 {0x3249103C, "Smart Array P812", &SA5_access
},
164 {0x324A103C, "Smart Array P712m", &SA5_access
},
165 {0x324B103C, "Smart Array P711m", &SA5_access
},
166 {0x3233103C, "HP StorageWorks 1210m", &SA5_access
}, /* alias of 333f */
167 {0x3350103C, "Smart Array P222", &SA5_access
},
168 {0x3351103C, "Smart Array P420", &SA5_access
},
169 {0x3352103C, "Smart Array P421", &SA5_access
},
170 {0x3353103C, "Smart Array P822", &SA5_access
},
171 {0x3354103C, "Smart Array P420i", &SA5_access
},
172 {0x3355103C, "Smart Array P220i", &SA5_access
},
173 {0x3356103C, "Smart Array P721m", &SA5_access
},
174 {0x1921103C, "Smart Array P830i", &SA5_access
},
175 {0x1922103C, "Smart Array P430", &SA5_access
},
176 {0x1923103C, "Smart Array P431", &SA5_access
},
177 {0x1924103C, "Smart Array P830", &SA5_access
},
178 {0x1926103C, "Smart Array P731m", &SA5_access
},
179 {0x1928103C, "Smart Array P230i", &SA5_access
},
180 {0x1929103C, "Smart Array P530", &SA5_access
},
181 {0x21BD103C, "Smart Array P244br", &SA5_access
},
182 {0x21BE103C, "Smart Array P741m", &SA5_access
},
183 {0x21BF103C, "Smart HBA H240ar", &SA5_access
},
184 {0x21C0103C, "Smart Array P440ar", &SA5_access
},
185 {0x21C1103C, "Smart Array P840ar", &SA5_access
},
186 {0x21C2103C, "Smart Array P440", &SA5_access
},
187 {0x21C3103C, "Smart Array P441", &SA5_access
},
188 {0x21C4103C, "Smart Array", &SA5_access
},
189 {0x21C5103C, "Smart Array P841", &SA5_access
},
190 {0x21C6103C, "Smart HBA H244br", &SA5_access
},
191 {0x21C7103C, "Smart HBA H240", &SA5_access
},
192 {0x21C8103C, "Smart HBA H241", &SA5_access
},
193 {0x21C9103C, "Smart Array", &SA5_access
},
194 {0x21CA103C, "Smart Array P246br", &SA5_access
},
195 {0x21CB103C, "Smart Array P840", &SA5_access
},
196 {0x21CC103C, "Smart Array", &SA5_access
},
197 {0x21CD103C, "Smart Array", &SA5_access
},
198 {0x21CE103C, "Smart HBA", &SA5_access
},
199 {0x05809005, "SmartHBA-SA", &SA5_access
},
200 {0x05819005, "SmartHBA-SA 8i", &SA5_access
},
201 {0x05829005, "SmartHBA-SA 8i8e", &SA5_access
},
202 {0x05839005, "SmartHBA-SA 8e", &SA5_access
},
203 {0x05849005, "SmartHBA-SA 16i", &SA5_access
},
204 {0x05859005, "SmartHBA-SA 4i4e", &SA5_access
},
205 {0x00761590, "HP Storage P1224 Array Controller", &SA5_access
},
206 {0x00871590, "HP Storage P1224e Array Controller", &SA5_access
},
207 {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access
},
208 {0x00881590, "HP Storage P1228e Array Controller", &SA5_access
},
209 {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access
},
210 {0xFFFF103C, "Unknown Smart Array", &SA5_access
},
213 static struct scsi_transport_template
*hpsa_sas_transport_template
;
214 static int hpsa_add_sas_host(struct ctlr_info
*h
);
215 static void hpsa_delete_sas_host(struct ctlr_info
*h
);
216 static int hpsa_add_sas_device(struct hpsa_sas_node
*hpsa_sas_node
,
217 struct hpsa_scsi_dev_t
*device
);
218 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t
*device
);
219 static struct hpsa_scsi_dev_t
220 *hpsa_find_device_by_sas_rphy(struct ctlr_info
*h
,
221 struct sas_rphy
*rphy
);
223 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
224 static const struct scsi_cmnd hpsa_cmd_busy
;
225 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
226 static const struct scsi_cmnd hpsa_cmd_idle
;
227 static int number_of_controllers
;
229 static irqreturn_t
do_hpsa_intr_intx(int irq
, void *dev_id
);
230 static irqreturn_t
do_hpsa_intr_msi(int irq
, void *dev_id
);
231 static int hpsa_ioctl(struct scsi_device
*dev
, int cmd
, void __user
*arg
);
234 static int hpsa_compat_ioctl(struct scsi_device
*dev
, int cmd
,
238 static void cmd_free(struct ctlr_info
*h
, struct CommandList
*c
);
239 static struct CommandList
*cmd_alloc(struct ctlr_info
*h
);
240 static void cmd_tagged_free(struct ctlr_info
*h
, struct CommandList
*c
);
241 static struct CommandList
*cmd_tagged_alloc(struct ctlr_info
*h
,
242 struct scsi_cmnd
*scmd
);
243 static int fill_cmd(struct CommandList
*c
, u8 cmd
, struct ctlr_info
*h
,
244 void *buff
, size_t size
, u16 page_code
, unsigned char *scsi3addr
,
246 static void hpsa_free_cmd_pool(struct ctlr_info
*h
);
247 #define VPD_PAGE (1 << 8)
248 #define HPSA_SIMPLE_ERROR_BITS 0x03
250 static int hpsa_scsi_queue_command(struct Scsi_Host
*h
, struct scsi_cmnd
*cmd
);
251 static void hpsa_scan_start(struct Scsi_Host
*);
252 static int hpsa_scan_finished(struct Scsi_Host
*sh
,
253 unsigned long elapsed_time
);
254 static int hpsa_change_queue_depth(struct scsi_device
*sdev
, int qdepth
);
256 static int hpsa_eh_device_reset_handler(struct scsi_cmnd
*scsicmd
);
257 static int hpsa_eh_abort_handler(struct scsi_cmnd
*scsicmd
);
258 static int hpsa_slave_alloc(struct scsi_device
*sdev
);
259 static int hpsa_slave_configure(struct scsi_device
*sdev
);
260 static void hpsa_slave_destroy(struct scsi_device
*sdev
);
262 static void hpsa_update_scsi_devices(struct ctlr_info
*h
);
263 static int check_for_unit_attention(struct ctlr_info
*h
,
264 struct CommandList
*c
);
265 static void check_ioctl_unit_attention(struct ctlr_info
*h
,
266 struct CommandList
*c
);
267 /* performant mode helper functions */
268 static void calc_bucket_map(int *bucket
, int num_buckets
,
269 int nsgs
, int min_blocks
, u32
*bucket_map
);
270 static void hpsa_free_performant_mode(struct ctlr_info
*h
);
271 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info
*h
);
272 static inline u32
next_command(struct ctlr_info
*h
, u8 q
);
273 static int hpsa_find_cfg_addrs(struct pci_dev
*pdev
, void __iomem
*vaddr
,
274 u32
*cfg_base_addr
, u64
*cfg_base_addr_index
,
276 static int hpsa_pci_find_memory_BAR(struct pci_dev
*pdev
,
277 unsigned long *memory_bar
);
278 static int hpsa_lookup_board_id(struct pci_dev
*pdev
, u32
*board_id
);
279 static int hpsa_wait_for_board_state(struct pci_dev
*pdev
, void __iomem
*vaddr
,
281 static inline void finish_cmd(struct CommandList
*c
);
282 static int hpsa_wait_for_mode_change_ack(struct ctlr_info
*h
);
283 #define BOARD_NOT_READY 0
284 #define BOARD_READY 1
285 static void hpsa_drain_accel_commands(struct ctlr_info
*h
);
286 static void hpsa_flush_cache(struct ctlr_info
*h
);
287 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info
*h
,
288 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
289 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
);
290 static void hpsa_command_resubmit_worker(struct work_struct
*work
);
291 static u32
lockup_detected(struct ctlr_info
*h
);
292 static int detect_controller_lockup(struct ctlr_info
*h
);
293 static void hpsa_disable_rld_caching(struct ctlr_info
*h
);
294 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info
*h
,
295 struct ReportExtendedLUNdata
*buf
, int bufsize
);
296 static bool hpsa_vpd_page_supported(struct ctlr_info
*h
,
297 unsigned char scsi3addr
[], u8 page
);
298 static int hpsa_luns_changed(struct ctlr_info
*h
);
299 static bool hpsa_cmd_dev_match(struct ctlr_info
*h
, struct CommandList
*c
,
300 struct hpsa_scsi_dev_t
*dev
,
301 unsigned char *scsi3addr
);
303 static inline struct ctlr_info
*sdev_to_hba(struct scsi_device
*sdev
)
305 unsigned long *priv
= shost_priv(sdev
->host
);
306 return (struct ctlr_info
*) *priv
;
309 static inline struct ctlr_info
*shost_to_hba(struct Scsi_Host
*sh
)
311 unsigned long *priv
= shost_priv(sh
);
312 return (struct ctlr_info
*) *priv
;
315 static inline bool hpsa_is_cmd_idle(struct CommandList
*c
)
317 return c
->scsi_cmd
== SCSI_CMD_IDLE
;
320 static inline bool hpsa_is_pending_event(struct CommandList
*c
)
322 return c
->abort_pending
|| c
->reset_pending
;
325 /* extract sense key, asc, and ascq from sense data. -1 means invalid. */
326 static void decode_sense_data(const u8
*sense_data
, int sense_data_len
,
327 u8
*sense_key
, u8
*asc
, u8
*ascq
)
329 struct scsi_sense_hdr sshdr
;
336 if (sense_data_len
< 1)
339 rc
= scsi_normalize_sense(sense_data
, sense_data_len
, &sshdr
);
341 *sense_key
= sshdr
.sense_key
;
347 static int check_for_unit_attention(struct ctlr_info
*h
,
348 struct CommandList
*c
)
350 u8 sense_key
, asc
, ascq
;
353 if (c
->err_info
->SenseLen
> sizeof(c
->err_info
->SenseInfo
))
354 sense_len
= sizeof(c
->err_info
->SenseInfo
);
356 sense_len
= c
->err_info
->SenseLen
;
358 decode_sense_data(c
->err_info
->SenseInfo
, sense_len
,
359 &sense_key
, &asc
, &ascq
);
360 if (sense_key
!= UNIT_ATTENTION
|| asc
== 0xff)
365 dev_warn(&h
->pdev
->dev
,
366 "%s: a state change detected, command retried\n",
370 dev_warn(&h
->pdev
->dev
,
371 "%s: LUN failure detected\n", h
->devname
);
373 case REPORT_LUNS_CHANGED
:
374 dev_warn(&h
->pdev
->dev
,
375 "%s: report LUN data changed\n", h
->devname
);
377 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
378 * target (array) devices.
382 dev_warn(&h
->pdev
->dev
,
383 "%s: a power on or device reset detected\n",
386 case UNIT_ATTENTION_CLEARED
:
387 dev_warn(&h
->pdev
->dev
,
388 "%s: unit attention cleared by another initiator\n",
392 dev_warn(&h
->pdev
->dev
,
393 "%s: unknown unit attention detected\n",
400 static int check_for_busy(struct ctlr_info
*h
, struct CommandList
*c
)
402 if (c
->err_info
->CommandStatus
!= CMD_TARGET_STATUS
||
403 (c
->err_info
->ScsiStatus
!= SAM_STAT_BUSY
&&
404 c
->err_info
->ScsiStatus
!= SAM_STAT_TASK_SET_FULL
))
406 dev_warn(&h
->pdev
->dev
, HPSA
"device busy");
410 static u32
lockup_detected(struct ctlr_info
*h
);
411 static ssize_t
host_show_lockup_detected(struct device
*dev
,
412 struct device_attribute
*attr
, char *buf
)
416 struct Scsi_Host
*shost
= class_to_shost(dev
);
418 h
= shost_to_hba(shost
);
419 ld
= lockup_detected(h
);
421 return sprintf(buf
, "ld=%d\n", ld
);
424 static ssize_t
host_store_hp_ssd_smart_path_status(struct device
*dev
,
425 struct device_attribute
*attr
,
426 const char *buf
, size_t count
)
430 struct Scsi_Host
*shost
= class_to_shost(dev
);
433 if (!capable(CAP_SYS_ADMIN
) || !capable(CAP_SYS_RAWIO
))
435 len
= count
> sizeof(tmpbuf
) - 1 ? sizeof(tmpbuf
) - 1 : count
;
436 strncpy(tmpbuf
, buf
, len
);
438 if (sscanf(tmpbuf
, "%d", &status
) != 1)
440 h
= shost_to_hba(shost
);
441 h
->acciopath_status
= !!status
;
442 dev_warn(&h
->pdev
->dev
,
443 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
444 h
->acciopath_status
? "enabled" : "disabled");
448 static ssize_t
host_store_raid_offload_debug(struct device
*dev
,
449 struct device_attribute
*attr
,
450 const char *buf
, size_t count
)
452 int debug_level
, len
;
454 struct Scsi_Host
*shost
= class_to_shost(dev
);
457 if (!capable(CAP_SYS_ADMIN
) || !capable(CAP_SYS_RAWIO
))
459 len
= count
> sizeof(tmpbuf
) - 1 ? sizeof(tmpbuf
) - 1 : count
;
460 strncpy(tmpbuf
, buf
, len
);
462 if (sscanf(tmpbuf
, "%d", &debug_level
) != 1)
466 h
= shost_to_hba(shost
);
467 h
->raid_offload_debug
= debug_level
;
468 dev_warn(&h
->pdev
->dev
, "hpsa: Set raid_offload_debug level = %d\n",
469 h
->raid_offload_debug
);
473 static ssize_t
host_store_rescan(struct device
*dev
,
474 struct device_attribute
*attr
,
475 const char *buf
, size_t count
)
478 struct Scsi_Host
*shost
= class_to_shost(dev
);
479 h
= shost_to_hba(shost
);
480 hpsa_scan_start(h
->scsi_host
);
484 static ssize_t
host_show_firmware_revision(struct device
*dev
,
485 struct device_attribute
*attr
, char *buf
)
488 struct Scsi_Host
*shost
= class_to_shost(dev
);
489 unsigned char *fwrev
;
491 h
= shost_to_hba(shost
);
492 if (!h
->hba_inquiry_data
)
494 fwrev
= &h
->hba_inquiry_data
[32];
495 return snprintf(buf
, 20, "%c%c%c%c\n",
496 fwrev
[0], fwrev
[1], fwrev
[2], fwrev
[3]);
499 static ssize_t
host_show_commands_outstanding(struct device
*dev
,
500 struct device_attribute
*attr
, char *buf
)
502 struct Scsi_Host
*shost
= class_to_shost(dev
);
503 struct ctlr_info
*h
= shost_to_hba(shost
);
505 return snprintf(buf
, 20, "%d\n",
506 atomic_read(&h
->commands_outstanding
));
509 static ssize_t
host_show_transport_mode(struct device
*dev
,
510 struct device_attribute
*attr
, char *buf
)
513 struct Scsi_Host
*shost
= class_to_shost(dev
);
515 h
= shost_to_hba(shost
);
516 return snprintf(buf
, 20, "%s\n",
517 h
->transMethod
& CFGTBL_Trans_Performant
?
518 "performant" : "simple");
521 static ssize_t
host_show_hp_ssd_smart_path_status(struct device
*dev
,
522 struct device_attribute
*attr
, char *buf
)
525 struct Scsi_Host
*shost
= class_to_shost(dev
);
527 h
= shost_to_hba(shost
);
528 return snprintf(buf
, 30, "HP SSD Smart Path %s\n",
529 (h
->acciopath_status
== 1) ? "enabled" : "disabled");
532 /* List of controllers which cannot be hard reset on kexec with reset_devices */
533 static u32 unresettable_controller
[] = {
534 0x324a103C, /* Smart Array P712m */
535 0x324b103C, /* Smart Array P711m */
536 0x3223103C, /* Smart Array P800 */
537 0x3234103C, /* Smart Array P400 */
538 0x3235103C, /* Smart Array P400i */
539 0x3211103C, /* Smart Array E200i */
540 0x3212103C, /* Smart Array E200 */
541 0x3213103C, /* Smart Array E200i */
542 0x3214103C, /* Smart Array E200i */
543 0x3215103C, /* Smart Array E200i */
544 0x3237103C, /* Smart Array E500 */
545 0x323D103C, /* Smart Array P700m */
546 0x40800E11, /* Smart Array 5i */
547 0x409C0E11, /* Smart Array 6400 */
548 0x409D0E11, /* Smart Array 6400 EM */
549 0x40700E11, /* Smart Array 5300 */
550 0x40820E11, /* Smart Array 532 */
551 0x40830E11, /* Smart Array 5312 */
552 0x409A0E11, /* Smart Array 641 */
553 0x409B0E11, /* Smart Array 642 */
554 0x40910E11, /* Smart Array 6i */
557 /* List of controllers which cannot even be soft reset */
558 static u32 soft_unresettable_controller
[] = {
559 0x40800E11, /* Smart Array 5i */
560 0x40700E11, /* Smart Array 5300 */
561 0x40820E11, /* Smart Array 532 */
562 0x40830E11, /* Smart Array 5312 */
563 0x409A0E11, /* Smart Array 641 */
564 0x409B0E11, /* Smart Array 642 */
565 0x40910E11, /* Smart Array 6i */
566 /* Exclude 640x boards. These are two pci devices in one slot
567 * which share a battery backed cache module. One controls the
568 * cache, the other accesses the cache through the one that controls
569 * it. If we reset the one controlling the cache, the other will
570 * likely not be happy. Just forbid resetting this conjoined mess.
571 * The 640x isn't really supported by hpsa anyway.
573 0x409C0E11, /* Smart Array 6400 */
574 0x409D0E11, /* Smart Array 6400 EM */
577 static u32 needs_abort_tags_swizzled
[] = {
578 0x323D103C, /* Smart Array P700m */
579 0x324a103C, /* Smart Array P712m */
580 0x324b103C, /* SmartArray P711m */
583 static int board_id_in_array(u32 a
[], int nelems
, u32 board_id
)
587 for (i
= 0; i
< nelems
; i
++)
588 if (a
[i
] == board_id
)
593 static int ctlr_is_hard_resettable(u32 board_id
)
595 return !board_id_in_array(unresettable_controller
,
596 ARRAY_SIZE(unresettable_controller
), board_id
);
599 static int ctlr_is_soft_resettable(u32 board_id
)
601 return !board_id_in_array(soft_unresettable_controller
,
602 ARRAY_SIZE(soft_unresettable_controller
), board_id
);
605 static int ctlr_is_resettable(u32 board_id
)
607 return ctlr_is_hard_resettable(board_id
) ||
608 ctlr_is_soft_resettable(board_id
);
611 static int ctlr_needs_abort_tags_swizzled(u32 board_id
)
613 return board_id_in_array(needs_abort_tags_swizzled
,
614 ARRAY_SIZE(needs_abort_tags_swizzled
), board_id
);
617 static ssize_t
host_show_resettable(struct device
*dev
,
618 struct device_attribute
*attr
, char *buf
)
621 struct Scsi_Host
*shost
= class_to_shost(dev
);
623 h
= shost_to_hba(shost
);
624 return snprintf(buf
, 20, "%d\n", ctlr_is_resettable(h
->board_id
));
627 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr
[])
629 return (scsi3addr
[3] & 0xC0) == 0x40;
632 static const char * const raid_label
[] = { "0", "4", "1(+0)", "5", "5+1", "6",
633 "1(+0)ADM", "UNKNOWN", "PHYS DRV"
635 #define HPSA_RAID_0 0
636 #define HPSA_RAID_4 1
637 #define HPSA_RAID_1 2 /* also used for RAID 10 */
638 #define HPSA_RAID_5 3 /* also used for RAID 50 */
639 #define HPSA_RAID_51 4
640 #define HPSA_RAID_6 5 /* also used for RAID 60 */
641 #define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */
642 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
643 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
645 static inline bool is_logical_device(struct hpsa_scsi_dev_t
*device
)
647 return !device
->physical_device
;
650 static ssize_t
raid_level_show(struct device
*dev
,
651 struct device_attribute
*attr
, char *buf
)
654 unsigned char rlevel
;
656 struct scsi_device
*sdev
;
657 struct hpsa_scsi_dev_t
*hdev
;
660 sdev
= to_scsi_device(dev
);
661 h
= sdev_to_hba(sdev
);
662 spin_lock_irqsave(&h
->lock
, flags
);
663 hdev
= sdev
->hostdata
;
665 spin_unlock_irqrestore(&h
->lock
, flags
);
669 /* Is this even a logical drive? */
670 if (!is_logical_device(hdev
)) {
671 spin_unlock_irqrestore(&h
->lock
, flags
);
672 l
= snprintf(buf
, PAGE_SIZE
, "N/A\n");
676 rlevel
= hdev
->raid_level
;
677 spin_unlock_irqrestore(&h
->lock
, flags
);
678 if (rlevel
> RAID_UNKNOWN
)
679 rlevel
= RAID_UNKNOWN
;
680 l
= snprintf(buf
, PAGE_SIZE
, "RAID %s\n", raid_label
[rlevel
]);
684 static ssize_t
lunid_show(struct device
*dev
,
685 struct device_attribute
*attr
, char *buf
)
688 struct scsi_device
*sdev
;
689 struct hpsa_scsi_dev_t
*hdev
;
691 unsigned char lunid
[8];
693 sdev
= to_scsi_device(dev
);
694 h
= sdev_to_hba(sdev
);
695 spin_lock_irqsave(&h
->lock
, flags
);
696 hdev
= sdev
->hostdata
;
698 spin_unlock_irqrestore(&h
->lock
, flags
);
701 memcpy(lunid
, hdev
->scsi3addr
, sizeof(lunid
));
702 spin_unlock_irqrestore(&h
->lock
, flags
);
703 return snprintf(buf
, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
704 lunid
[0], lunid
[1], lunid
[2], lunid
[3],
705 lunid
[4], lunid
[5], lunid
[6], lunid
[7]);
708 static ssize_t
unique_id_show(struct device
*dev
,
709 struct device_attribute
*attr
, char *buf
)
712 struct scsi_device
*sdev
;
713 struct hpsa_scsi_dev_t
*hdev
;
715 unsigned char sn
[16];
717 sdev
= to_scsi_device(dev
);
718 h
= sdev_to_hba(sdev
);
719 spin_lock_irqsave(&h
->lock
, flags
);
720 hdev
= sdev
->hostdata
;
722 spin_unlock_irqrestore(&h
->lock
, flags
);
725 memcpy(sn
, hdev
->device_id
, sizeof(sn
));
726 spin_unlock_irqrestore(&h
->lock
, flags
);
727 return snprintf(buf
, 16 * 2 + 2,
728 "%02X%02X%02X%02X%02X%02X%02X%02X"
729 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
730 sn
[0], sn
[1], sn
[2], sn
[3],
731 sn
[4], sn
[5], sn
[6], sn
[7],
732 sn
[8], sn
[9], sn
[10], sn
[11],
733 sn
[12], sn
[13], sn
[14], sn
[15]);
736 static ssize_t
sas_address_show(struct device
*dev
,
737 struct device_attribute
*attr
, char *buf
)
740 struct scsi_device
*sdev
;
741 struct hpsa_scsi_dev_t
*hdev
;
745 sdev
= to_scsi_device(dev
);
746 h
= sdev_to_hba(sdev
);
747 spin_lock_irqsave(&h
->lock
, flags
);
748 hdev
= sdev
->hostdata
;
749 if (!hdev
|| is_logical_device(hdev
) || !hdev
->expose_device
) {
750 spin_unlock_irqrestore(&h
->lock
, flags
);
753 sas_address
= hdev
->sas_address
;
754 spin_unlock_irqrestore(&h
->lock
, flags
);
756 return snprintf(buf
, PAGE_SIZE
, "0x%016llx\n", sas_address
);
759 static ssize_t
host_show_hp_ssd_smart_path_enabled(struct device
*dev
,
760 struct device_attribute
*attr
, char *buf
)
763 struct scsi_device
*sdev
;
764 struct hpsa_scsi_dev_t
*hdev
;
768 sdev
= to_scsi_device(dev
);
769 h
= sdev_to_hba(sdev
);
770 spin_lock_irqsave(&h
->lock
, flags
);
771 hdev
= sdev
->hostdata
;
773 spin_unlock_irqrestore(&h
->lock
, flags
);
776 offload_enabled
= hdev
->offload_enabled
;
777 spin_unlock_irqrestore(&h
->lock
, flags
);
778 return snprintf(buf
, 20, "%d\n", offload_enabled
);
782 static ssize_t
path_info_show(struct device
*dev
,
783 struct device_attribute
*attr
, char *buf
)
786 struct scsi_device
*sdev
;
787 struct hpsa_scsi_dev_t
*hdev
;
793 u8 path_map_index
= 0;
795 unsigned char phys_connector
[2];
797 sdev
= to_scsi_device(dev
);
798 h
= sdev_to_hba(sdev
);
799 spin_lock_irqsave(&h
->devlock
, flags
);
800 hdev
= sdev
->hostdata
;
802 spin_unlock_irqrestore(&h
->devlock
, flags
);
807 for (i
= 0; i
< MAX_PATHS
; i
++) {
808 path_map_index
= 1<<i
;
809 if (i
== hdev
->active_path_index
)
811 else if (hdev
->path_map
& path_map_index
)
816 output_len
+= scnprintf(buf
+ output_len
,
817 PAGE_SIZE
- output_len
,
818 "[%d:%d:%d:%d] %20.20s ",
819 h
->scsi_host
->host_no
,
820 hdev
->bus
, hdev
->target
, hdev
->lun
,
821 scsi_device_type(hdev
->devtype
));
823 if (hdev
->devtype
== TYPE_RAID
|| is_logical_device(hdev
)) {
824 output_len
+= scnprintf(buf
+ output_len
,
825 PAGE_SIZE
- output_len
,
831 memcpy(&phys_connector
, &hdev
->phys_connector
[i
],
832 sizeof(phys_connector
));
833 if (phys_connector
[0] < '0')
834 phys_connector
[0] = '0';
835 if (phys_connector
[1] < '0')
836 phys_connector
[1] = '0';
837 output_len
+= scnprintf(buf
+ output_len
,
838 PAGE_SIZE
- output_len
,
841 if ((hdev
->devtype
== TYPE_DISK
|| hdev
->devtype
== TYPE_ZBC
) &&
842 hdev
->expose_device
) {
843 if (box
== 0 || box
== 0xFF) {
844 output_len
+= scnprintf(buf
+ output_len
,
845 PAGE_SIZE
- output_len
,
849 output_len
+= scnprintf(buf
+ output_len
,
850 PAGE_SIZE
- output_len
,
851 "BOX: %hhu BAY: %hhu %s\n",
854 } else if (box
!= 0 && box
!= 0xFF) {
855 output_len
+= scnprintf(buf
+ output_len
,
856 PAGE_SIZE
- output_len
, "BOX: %hhu %s\n",
859 output_len
+= scnprintf(buf
+ output_len
,
860 PAGE_SIZE
- output_len
, "%s\n", active
);
863 spin_unlock_irqrestore(&h
->devlock
, flags
);
867 static DEVICE_ATTR(raid_level
, S_IRUGO
, raid_level_show
, NULL
);
868 static DEVICE_ATTR(lunid
, S_IRUGO
, lunid_show
, NULL
);
869 static DEVICE_ATTR(unique_id
, S_IRUGO
, unique_id_show
, NULL
);
870 static DEVICE_ATTR(rescan
, S_IWUSR
, NULL
, host_store_rescan
);
871 static DEVICE_ATTR(sas_address
, S_IRUGO
, sas_address_show
, NULL
);
872 static DEVICE_ATTR(hp_ssd_smart_path_enabled
, S_IRUGO
,
873 host_show_hp_ssd_smart_path_enabled
, NULL
);
874 static DEVICE_ATTR(path_info
, S_IRUGO
, path_info_show
, NULL
);
875 static DEVICE_ATTR(hp_ssd_smart_path_status
, S_IWUSR
|S_IRUGO
|S_IROTH
,
876 host_show_hp_ssd_smart_path_status
,
877 host_store_hp_ssd_smart_path_status
);
878 static DEVICE_ATTR(raid_offload_debug
, S_IWUSR
, NULL
,
879 host_store_raid_offload_debug
);
880 static DEVICE_ATTR(firmware_revision
, S_IRUGO
,
881 host_show_firmware_revision
, NULL
);
882 static DEVICE_ATTR(commands_outstanding
, S_IRUGO
,
883 host_show_commands_outstanding
, NULL
);
884 static DEVICE_ATTR(transport_mode
, S_IRUGO
,
885 host_show_transport_mode
, NULL
);
886 static DEVICE_ATTR(resettable
, S_IRUGO
,
887 host_show_resettable
, NULL
);
888 static DEVICE_ATTR(lockup_detected
, S_IRUGO
,
889 host_show_lockup_detected
, NULL
);
891 static struct device_attribute
*hpsa_sdev_attrs
[] = {
892 &dev_attr_raid_level
,
895 &dev_attr_hp_ssd_smart_path_enabled
,
897 &dev_attr_sas_address
,
901 static struct device_attribute
*hpsa_shost_attrs
[] = {
903 &dev_attr_firmware_revision
,
904 &dev_attr_commands_outstanding
,
905 &dev_attr_transport_mode
,
906 &dev_attr_resettable
,
907 &dev_attr_hp_ssd_smart_path_status
,
908 &dev_attr_raid_offload_debug
,
909 &dev_attr_lockup_detected
,
913 #define HPSA_NRESERVED_CMDS (HPSA_CMDS_RESERVED_FOR_ABORTS + \
914 HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
916 static struct scsi_host_template hpsa_driver_template
= {
917 .module
= THIS_MODULE
,
920 .queuecommand
= hpsa_scsi_queue_command
,
921 .scan_start
= hpsa_scan_start
,
922 .scan_finished
= hpsa_scan_finished
,
923 .change_queue_depth
= hpsa_change_queue_depth
,
925 .use_clustering
= ENABLE_CLUSTERING
,
926 .eh_abort_handler
= hpsa_eh_abort_handler
,
927 .eh_device_reset_handler
= hpsa_eh_device_reset_handler
,
929 .slave_alloc
= hpsa_slave_alloc
,
930 .slave_configure
= hpsa_slave_configure
,
931 .slave_destroy
= hpsa_slave_destroy
,
933 .compat_ioctl
= hpsa_compat_ioctl
,
935 .sdev_attrs
= hpsa_sdev_attrs
,
936 .shost_attrs
= hpsa_shost_attrs
,
941 static inline u32
next_command(struct ctlr_info
*h
, u8 q
)
944 struct reply_queue_buffer
*rq
= &h
->reply_queue
[q
];
946 if (h
->transMethod
& CFGTBL_Trans_io_accel1
)
947 return h
->access
.command_completed(h
, q
);
949 if (unlikely(!(h
->transMethod
& CFGTBL_Trans_Performant
)))
950 return h
->access
.command_completed(h
, q
);
952 if ((rq
->head
[rq
->current_entry
] & 1) == rq
->wraparound
) {
953 a
= rq
->head
[rq
->current_entry
];
955 atomic_dec(&h
->commands_outstanding
);
959 /* Check for wraparound */
960 if (rq
->current_entry
== h
->max_commands
) {
961 rq
->current_entry
= 0;
968 * There are some special bits in the bus address of the
969 * command that we have to set for the controller to know
970 * how to process the command:
972 * Normal performant mode:
973 * bit 0: 1 means performant mode, 0 means simple mode.
974 * bits 1-3 = block fetch table entry
975 * bits 4-6 = command type (== 0)
978 * bit 0 = "performant mode" bit.
979 * bits 1-3 = block fetch table entry
980 * bits 4-6 = command type (== 110)
981 * (command type is needed because ioaccel1 mode
982 * commands are submitted through the same register as normal
983 * mode commands, so this is how the controller knows whether
984 * the command is normal mode or ioaccel1 mode.)
987 * bit 0 = "performant mode" bit.
988 * bits 1-4 = block fetch table entry (note extra bit)
989 * bits 4-6 = not needed, because ioaccel2 mode has
990 * a separate special register for submitting commands.
994 * set_performant_mode: Modify the tag for cciss performant
995 * set bit 0 for pull model, bits 3-1 for block fetch
998 #define DEFAULT_REPLY_QUEUE (-1)
999 static void set_performant_mode(struct ctlr_info
*h
, struct CommandList
*c
,
1002 if (likely(h
->transMethod
& CFGTBL_Trans_Performant
)) {
1003 c
->busaddr
|= 1 | (h
->blockFetchTable
[c
->Header
.SGList
] << 1);
1004 if (unlikely(!h
->msix_vector
))
1006 if (likely(reply_queue
== DEFAULT_REPLY_QUEUE
))
1007 c
->Header
.ReplyQueue
=
1008 raw_smp_processor_id() % h
->nreply_queues
;
1010 c
->Header
.ReplyQueue
= reply_queue
% h
->nreply_queues
;
1014 static void set_ioaccel1_performant_mode(struct ctlr_info
*h
,
1015 struct CommandList
*c
,
1018 struct io_accel1_cmd
*cp
= &h
->ioaccel_cmd_pool
[c
->cmdindex
];
1021 * Tell the controller to post the reply to the queue for this
1022 * processor. This seems to give the best I/O throughput.
1024 if (likely(reply_queue
== DEFAULT_REPLY_QUEUE
))
1025 cp
->ReplyQueue
= smp_processor_id() % h
->nreply_queues
;
1027 cp
->ReplyQueue
= reply_queue
% h
->nreply_queues
;
1029 * Set the bits in the address sent down to include:
1030 * - performant mode bit (bit 0)
1031 * - pull count (bits 1-3)
1032 * - command type (bits 4-6)
1034 c
->busaddr
|= 1 | (h
->ioaccel1_blockFetchTable
[c
->Header
.SGList
] << 1) |
1035 IOACCEL1_BUSADDR_CMDTYPE
;
1038 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info
*h
,
1039 struct CommandList
*c
,
1042 struct hpsa_tmf_struct
*cp
= (struct hpsa_tmf_struct
*)
1043 &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
1045 /* Tell the controller to post the reply to the queue for this
1046 * processor. This seems to give the best I/O throughput.
1048 if (likely(reply_queue
== DEFAULT_REPLY_QUEUE
))
1049 cp
->reply_queue
= smp_processor_id() % h
->nreply_queues
;
1051 cp
->reply_queue
= reply_queue
% h
->nreply_queues
;
1052 /* Set the bits in the address sent down to include:
1053 * - performant mode bit not used in ioaccel mode 2
1054 * - pull count (bits 0-3)
1055 * - command type isn't needed for ioaccel2
1057 c
->busaddr
|= h
->ioaccel2_blockFetchTable
[0];
1060 static void set_ioaccel2_performant_mode(struct ctlr_info
*h
,
1061 struct CommandList
*c
,
1064 struct io_accel2_cmd
*cp
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
1067 * Tell the controller to post the reply to the queue for this
1068 * processor. This seems to give the best I/O throughput.
1070 if (likely(reply_queue
== DEFAULT_REPLY_QUEUE
))
1071 cp
->reply_queue
= smp_processor_id() % h
->nreply_queues
;
1073 cp
->reply_queue
= reply_queue
% h
->nreply_queues
;
1075 * Set the bits in the address sent down to include:
1076 * - performant mode bit not used in ioaccel mode 2
1077 * - pull count (bits 0-3)
1078 * - command type isn't needed for ioaccel2
1080 c
->busaddr
|= (h
->ioaccel2_blockFetchTable
[cp
->sg_count
]);
1083 static int is_firmware_flash_cmd(u8
*cdb
)
1085 return cdb
[0] == BMIC_WRITE
&& cdb
[6] == BMIC_FLASH_FIRMWARE
;
1089 * During firmware flash, the heartbeat register may not update as frequently
1090 * as it should. So we dial down lockup detection during firmware flash. and
1091 * dial it back up when firmware flash completes.
1093 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1094 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1095 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info
*h
,
1096 struct CommandList
*c
)
1098 if (!is_firmware_flash_cmd(c
->Request
.CDB
))
1100 atomic_inc(&h
->firmware_flash_in_progress
);
1101 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH
;
1104 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info
*h
,
1105 struct CommandList
*c
)
1107 if (is_firmware_flash_cmd(c
->Request
.CDB
) &&
1108 atomic_dec_and_test(&h
->firmware_flash_in_progress
))
1109 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL
;
1112 static void __enqueue_cmd_and_start_io(struct ctlr_info
*h
,
1113 struct CommandList
*c
, int reply_queue
)
1115 dial_down_lockup_detection_during_fw_flash(h
, c
);
1116 atomic_inc(&h
->commands_outstanding
);
1117 switch (c
->cmd_type
) {
1119 set_ioaccel1_performant_mode(h
, c
, reply_queue
);
1120 writel(c
->busaddr
, h
->vaddr
+ SA5_REQUEST_PORT_OFFSET
);
1123 set_ioaccel2_performant_mode(h
, c
, reply_queue
);
1124 writel(c
->busaddr
, h
->vaddr
+ IOACCEL2_INBOUND_POSTQ_32
);
1127 set_ioaccel2_tmf_performant_mode(h
, c
, reply_queue
);
1128 writel(c
->busaddr
, h
->vaddr
+ IOACCEL2_INBOUND_POSTQ_32
);
1131 set_performant_mode(h
, c
, reply_queue
);
1132 h
->access
.submit_command(h
, c
);
1136 static void enqueue_cmd_and_start_io(struct ctlr_info
*h
, struct CommandList
*c
)
1138 if (unlikely(hpsa_is_pending_event(c
)))
1139 return finish_cmd(c
);
1141 __enqueue_cmd_and_start_io(h
, c
, DEFAULT_REPLY_QUEUE
);
1144 static inline int is_hba_lunid(unsigned char scsi3addr
[])
1146 return memcmp(scsi3addr
, RAID_CTLR_LUNID
, 8) == 0;
1149 static inline int is_scsi_rev_5(struct ctlr_info
*h
)
1151 if (!h
->hba_inquiry_data
)
1153 if ((h
->hba_inquiry_data
[2] & 0x07) == 5)
1158 static int hpsa_find_target_lun(struct ctlr_info
*h
,
1159 unsigned char scsi3addr
[], int bus
, int *target
, int *lun
)
1161 /* finds an unused bus, target, lun for a new physical device
1162 * assumes h->devlock is held
1165 DECLARE_BITMAP(lun_taken
, HPSA_MAX_DEVICES
);
1167 bitmap_zero(lun_taken
, HPSA_MAX_DEVICES
);
1169 for (i
= 0; i
< h
->ndevices
; i
++) {
1170 if (h
->dev
[i
]->bus
== bus
&& h
->dev
[i
]->target
!= -1)
1171 __set_bit(h
->dev
[i
]->target
, lun_taken
);
1174 i
= find_first_zero_bit(lun_taken
, HPSA_MAX_DEVICES
);
1175 if (i
< HPSA_MAX_DEVICES
) {
1184 static void hpsa_show_dev_msg(const char *level
, struct ctlr_info
*h
,
1185 struct hpsa_scsi_dev_t
*dev
, char *description
)
1187 #define LABEL_SIZE 25
1188 char label
[LABEL_SIZE
];
1190 if (h
== NULL
|| h
->pdev
== NULL
|| h
->scsi_host
== NULL
)
1193 switch (dev
->devtype
) {
1195 snprintf(label
, LABEL_SIZE
, "controller");
1197 case TYPE_ENCLOSURE
:
1198 snprintf(label
, LABEL_SIZE
, "enclosure");
1203 snprintf(label
, LABEL_SIZE
, "external");
1204 else if (!is_logical_dev_addr_mode(dev
->scsi3addr
))
1205 snprintf(label
, LABEL_SIZE
, "%s",
1206 raid_label
[PHYSICAL_DRIVE
]);
1208 snprintf(label
, LABEL_SIZE
, "RAID-%s",
1209 dev
->raid_level
> RAID_UNKNOWN
? "?" :
1210 raid_label
[dev
->raid_level
]);
1213 snprintf(label
, LABEL_SIZE
, "rom");
1216 snprintf(label
, LABEL_SIZE
, "tape");
1218 case TYPE_MEDIUM_CHANGER
:
1219 snprintf(label
, LABEL_SIZE
, "changer");
1222 snprintf(label
, LABEL_SIZE
, "UNKNOWN");
1226 dev_printk(level
, &h
->pdev
->dev
,
1227 "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1228 h
->scsi_host
->host_no
, dev
->bus
, dev
->target
, dev
->lun
,
1230 scsi_device_type(dev
->devtype
),
1234 dev
->offload_config
? '+' : '-',
1235 dev
->offload_enabled
? '+' : '-',
1236 dev
->expose_device
);
1239 /* Add an entry into h->dev[] array. */
1240 static int hpsa_scsi_add_entry(struct ctlr_info
*h
,
1241 struct hpsa_scsi_dev_t
*device
,
1242 struct hpsa_scsi_dev_t
*added
[], int *nadded
)
1244 /* assumes h->devlock is held */
1245 int n
= h
->ndevices
;
1247 unsigned char addr1
[8], addr2
[8];
1248 struct hpsa_scsi_dev_t
*sd
;
1250 if (n
>= HPSA_MAX_DEVICES
) {
1251 dev_err(&h
->pdev
->dev
, "too many devices, some will be "
1256 /* physical devices do not have lun or target assigned until now. */
1257 if (device
->lun
!= -1)
1258 /* Logical device, lun is already assigned. */
1261 /* If this device a non-zero lun of a multi-lun device
1262 * byte 4 of the 8-byte LUN addr will contain the logical
1263 * unit no, zero otherwise.
1265 if (device
->scsi3addr
[4] == 0) {
1266 /* This is not a non-zero lun of a multi-lun device */
1267 if (hpsa_find_target_lun(h
, device
->scsi3addr
,
1268 device
->bus
, &device
->target
, &device
->lun
) != 0)
1273 /* This is a non-zero lun of a multi-lun device.
1274 * Search through our list and find the device which
1275 * has the same 8 byte LUN address, excepting byte 4 and 5.
1276 * Assign the same bus and target for this new LUN.
1277 * Use the logical unit number from the firmware.
1279 memcpy(addr1
, device
->scsi3addr
, 8);
1282 for (i
= 0; i
< n
; i
++) {
1284 memcpy(addr2
, sd
->scsi3addr
, 8);
1287 /* differ only in byte 4 and 5? */
1288 if (memcmp(addr1
, addr2
, 8) == 0) {
1289 device
->bus
= sd
->bus
;
1290 device
->target
= sd
->target
;
1291 device
->lun
= device
->scsi3addr
[4];
1295 if (device
->lun
== -1) {
1296 dev_warn(&h
->pdev
->dev
, "physical device with no LUN=0,"
1297 " suspect firmware bug or unsupported hardware "
1298 "configuration.\n");
1306 added
[*nadded
] = device
;
1308 hpsa_show_dev_msg(KERN_INFO
, h
, device
,
1309 device
->expose_device
? "added" : "masked");
1310 device
->offload_to_be_enabled
= device
->offload_enabled
;
1311 device
->offload_enabled
= 0;
1315 /* Update an entry in h->dev[] array. */
1316 static void hpsa_scsi_update_entry(struct ctlr_info
*h
,
1317 int entry
, struct hpsa_scsi_dev_t
*new_entry
)
1319 int offload_enabled
;
1320 /* assumes h->devlock is held */
1321 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
1323 /* Raid level changed. */
1324 h
->dev
[entry
]->raid_level
= new_entry
->raid_level
;
1326 /* Raid offload parameters changed. Careful about the ordering. */
1327 if (new_entry
->offload_config
&& new_entry
->offload_enabled
) {
1329 * if drive is newly offload_enabled, we want to copy the
1330 * raid map data first. If previously offload_enabled and
1331 * offload_config were set, raid map data had better be
1332 * the same as it was before. if raid map data is changed
1333 * then it had better be the case that
1334 * h->dev[entry]->offload_enabled is currently 0.
1336 h
->dev
[entry
]->raid_map
= new_entry
->raid_map
;
1337 h
->dev
[entry
]->ioaccel_handle
= new_entry
->ioaccel_handle
;
1339 if (new_entry
->hba_ioaccel_enabled
) {
1340 h
->dev
[entry
]->ioaccel_handle
= new_entry
->ioaccel_handle
;
1341 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1343 h
->dev
[entry
]->hba_ioaccel_enabled
= new_entry
->hba_ioaccel_enabled
;
1344 h
->dev
[entry
]->offload_config
= new_entry
->offload_config
;
1345 h
->dev
[entry
]->offload_to_mirror
= new_entry
->offload_to_mirror
;
1346 h
->dev
[entry
]->queue_depth
= new_entry
->queue_depth
;
1349 * We can turn off ioaccel offload now, but need to delay turning
1350 * it on until we can update h->dev[entry]->phys_disk[], but we
1351 * can't do that until all the devices are updated.
1353 h
->dev
[entry
]->offload_to_be_enabled
= new_entry
->offload_enabled
;
1354 if (!new_entry
->offload_enabled
)
1355 h
->dev
[entry
]->offload_enabled
= 0;
1357 offload_enabled
= h
->dev
[entry
]->offload_enabled
;
1358 h
->dev
[entry
]->offload_enabled
= h
->dev
[entry
]->offload_to_be_enabled
;
1359 hpsa_show_dev_msg(KERN_INFO
, h
, h
->dev
[entry
], "updated");
1360 h
->dev
[entry
]->offload_enabled
= offload_enabled
;
1363 /* Replace an entry from h->dev[] array. */
1364 static void hpsa_scsi_replace_entry(struct ctlr_info
*h
,
1365 int entry
, struct hpsa_scsi_dev_t
*new_entry
,
1366 struct hpsa_scsi_dev_t
*added
[], int *nadded
,
1367 struct hpsa_scsi_dev_t
*removed
[], int *nremoved
)
1369 /* assumes h->devlock is held */
1370 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
1371 removed
[*nremoved
] = h
->dev
[entry
];
1375 * New physical devices won't have target/lun assigned yet
1376 * so we need to preserve the values in the slot we are replacing.
1378 if (new_entry
->target
== -1) {
1379 new_entry
->target
= h
->dev
[entry
]->target
;
1380 new_entry
->lun
= h
->dev
[entry
]->lun
;
1383 h
->dev
[entry
] = new_entry
;
1384 added
[*nadded
] = new_entry
;
1386 hpsa_show_dev_msg(KERN_INFO
, h
, new_entry
, "replaced");
1387 new_entry
->offload_to_be_enabled
= new_entry
->offload_enabled
;
1388 new_entry
->offload_enabled
= 0;
1391 /* Remove an entry from h->dev[] array. */
1392 static void hpsa_scsi_remove_entry(struct ctlr_info
*h
, int entry
,
1393 struct hpsa_scsi_dev_t
*removed
[], int *nremoved
)
1395 /* assumes h->devlock is held */
1397 struct hpsa_scsi_dev_t
*sd
;
1399 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
1402 removed
[*nremoved
] = h
->dev
[entry
];
1405 for (i
= entry
; i
< h
->ndevices
-1; i
++)
1406 h
->dev
[i
] = h
->dev
[i
+1];
1408 hpsa_show_dev_msg(KERN_INFO
, h
, sd
, "removed");
1411 #define SCSI3ADDR_EQ(a, b) ( \
1412 (a)[7] == (b)[7] && \
1413 (a)[6] == (b)[6] && \
1414 (a)[5] == (b)[5] && \
1415 (a)[4] == (b)[4] && \
1416 (a)[3] == (b)[3] && \
1417 (a)[2] == (b)[2] && \
1418 (a)[1] == (b)[1] && \
1421 static void fixup_botched_add(struct ctlr_info
*h
,
1422 struct hpsa_scsi_dev_t
*added
)
1424 /* called when scsi_add_device fails in order to re-adjust
1425 * h->dev[] to match the mid layer's view.
1427 unsigned long flags
;
1430 spin_lock_irqsave(&h
->lock
, flags
);
1431 for (i
= 0; i
< h
->ndevices
; i
++) {
1432 if (h
->dev
[i
] == added
) {
1433 for (j
= i
; j
< h
->ndevices
-1; j
++)
1434 h
->dev
[j
] = h
->dev
[j
+1];
1439 spin_unlock_irqrestore(&h
->lock
, flags
);
1443 static inline int device_is_the_same(struct hpsa_scsi_dev_t
*dev1
,
1444 struct hpsa_scsi_dev_t
*dev2
)
1446 /* we compare everything except lun and target as these
1447 * are not yet assigned. Compare parts likely
1450 if (memcmp(dev1
->scsi3addr
, dev2
->scsi3addr
,
1451 sizeof(dev1
->scsi3addr
)) != 0)
1453 if (memcmp(dev1
->device_id
, dev2
->device_id
,
1454 sizeof(dev1
->device_id
)) != 0)
1456 if (memcmp(dev1
->model
, dev2
->model
, sizeof(dev1
->model
)) != 0)
1458 if (memcmp(dev1
->vendor
, dev2
->vendor
, sizeof(dev1
->vendor
)) != 0)
1460 if (dev1
->devtype
!= dev2
->devtype
)
1462 if (dev1
->bus
!= dev2
->bus
)
1467 static inline int device_updated(struct hpsa_scsi_dev_t
*dev1
,
1468 struct hpsa_scsi_dev_t
*dev2
)
1470 /* Device attributes that can change, but don't mean
1471 * that the device is a different device, nor that the OS
1472 * needs to be told anything about the change.
1474 if (dev1
->raid_level
!= dev2
->raid_level
)
1476 if (dev1
->offload_config
!= dev2
->offload_config
)
1478 if (dev1
->offload_enabled
!= dev2
->offload_enabled
)
1480 if (!is_logical_dev_addr_mode(dev1
->scsi3addr
))
1481 if (dev1
->queue_depth
!= dev2
->queue_depth
)
1486 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
1487 * and return needle location in *index. If scsi3addr matches, but not
1488 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1489 * location in *index.
1490 * In the case of a minor device attribute change, such as RAID level, just
1491 * return DEVICE_UPDATED, along with the updated device's location in index.
1492 * If needle not found, return DEVICE_NOT_FOUND.
1494 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t
*needle
,
1495 struct hpsa_scsi_dev_t
*haystack
[], int haystack_size
,
1499 #define DEVICE_NOT_FOUND 0
1500 #define DEVICE_CHANGED 1
1501 #define DEVICE_SAME 2
1502 #define DEVICE_UPDATED 3
1504 return DEVICE_NOT_FOUND
;
1506 for (i
= 0; i
< haystack_size
; i
++) {
1507 if (haystack
[i
] == NULL
) /* previously removed. */
1509 if (SCSI3ADDR_EQ(needle
->scsi3addr
, haystack
[i
]->scsi3addr
)) {
1511 if (device_is_the_same(needle
, haystack
[i
])) {
1512 if (device_updated(needle
, haystack
[i
]))
1513 return DEVICE_UPDATED
;
1516 /* Keep offline devices offline */
1517 if (needle
->volume_offline
)
1518 return DEVICE_NOT_FOUND
;
1519 return DEVICE_CHANGED
;
1524 return DEVICE_NOT_FOUND
;
1527 static void hpsa_monitor_offline_device(struct ctlr_info
*h
,
1528 unsigned char scsi3addr
[])
1530 struct offline_device_entry
*device
;
1531 unsigned long flags
;
1533 /* Check to see if device is already on the list */
1534 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
1535 list_for_each_entry(device
, &h
->offline_device_list
, offline_list
) {
1536 if (memcmp(device
->scsi3addr
, scsi3addr
,
1537 sizeof(device
->scsi3addr
)) == 0) {
1538 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
1542 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
1544 /* Device is not on the list, add it. */
1545 device
= kmalloc(sizeof(*device
), GFP_KERNEL
);
1547 dev_warn(&h
->pdev
->dev
, "out of memory in %s\n", __func__
);
1550 memcpy(device
->scsi3addr
, scsi3addr
, sizeof(device
->scsi3addr
));
1551 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
1552 list_add_tail(&device
->offline_list
, &h
->offline_device_list
);
1553 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
1556 /* Print a message explaining various offline volume states */
1557 static void hpsa_show_volume_status(struct ctlr_info
*h
,
1558 struct hpsa_scsi_dev_t
*sd
)
1560 if (sd
->volume_offline
== HPSA_VPD_LV_STATUS_UNSUPPORTED
)
1561 dev_info(&h
->pdev
->dev
,
1562 "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1563 h
->scsi_host
->host_no
,
1564 sd
->bus
, sd
->target
, sd
->lun
);
1565 switch (sd
->volume_offline
) {
1568 case HPSA_LV_UNDERGOING_ERASE
:
1569 dev_info(&h
->pdev
->dev
,
1570 "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1571 h
->scsi_host
->host_no
,
1572 sd
->bus
, sd
->target
, sd
->lun
);
1574 case HPSA_LV_NOT_AVAILABLE
:
1575 dev_info(&h
->pdev
->dev
,
1576 "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1577 h
->scsi_host
->host_no
,
1578 sd
->bus
, sd
->target
, sd
->lun
);
1580 case HPSA_LV_UNDERGOING_RPI
:
1581 dev_info(&h
->pdev
->dev
,
1582 "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1583 h
->scsi_host
->host_no
,
1584 sd
->bus
, sd
->target
, sd
->lun
);
1586 case HPSA_LV_PENDING_RPI
:
1587 dev_info(&h
->pdev
->dev
,
1588 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1589 h
->scsi_host
->host_no
,
1590 sd
->bus
, sd
->target
, sd
->lun
);
1592 case HPSA_LV_ENCRYPTED_NO_KEY
:
1593 dev_info(&h
->pdev
->dev
,
1594 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1595 h
->scsi_host
->host_no
,
1596 sd
->bus
, sd
->target
, sd
->lun
);
1598 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER
:
1599 dev_info(&h
->pdev
->dev
,
1600 "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1601 h
->scsi_host
->host_no
,
1602 sd
->bus
, sd
->target
, sd
->lun
);
1604 case HPSA_LV_UNDERGOING_ENCRYPTION
:
1605 dev_info(&h
->pdev
->dev
,
1606 "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1607 h
->scsi_host
->host_no
,
1608 sd
->bus
, sd
->target
, sd
->lun
);
1610 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING
:
1611 dev_info(&h
->pdev
->dev
,
1612 "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1613 h
->scsi_host
->host_no
,
1614 sd
->bus
, sd
->target
, sd
->lun
);
1616 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER
:
1617 dev_info(&h
->pdev
->dev
,
1618 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1619 h
->scsi_host
->host_no
,
1620 sd
->bus
, sd
->target
, sd
->lun
);
1622 case HPSA_LV_PENDING_ENCRYPTION
:
1623 dev_info(&h
->pdev
->dev
,
1624 "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1625 h
->scsi_host
->host_no
,
1626 sd
->bus
, sd
->target
, sd
->lun
);
1628 case HPSA_LV_PENDING_ENCRYPTION_REKEYING
:
1629 dev_info(&h
->pdev
->dev
,
1630 "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1631 h
->scsi_host
->host_no
,
1632 sd
->bus
, sd
->target
, sd
->lun
);
1638 * Figure the list of physical drive pointers for a logical drive with
1639 * raid offload configured.
1641 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info
*h
,
1642 struct hpsa_scsi_dev_t
*dev
[], int ndevices
,
1643 struct hpsa_scsi_dev_t
*logical_drive
)
1645 struct raid_map_data
*map
= &logical_drive
->raid_map
;
1646 struct raid_map_disk_data
*dd
= &map
->data
[0];
1648 int total_disks_per_row
= le16_to_cpu(map
->data_disks_per_row
) +
1649 le16_to_cpu(map
->metadata_disks_per_row
);
1650 int nraid_map_entries
= le16_to_cpu(map
->row_cnt
) *
1651 le16_to_cpu(map
->layout_map_count
) *
1652 total_disks_per_row
;
1653 int nphys_disk
= le16_to_cpu(map
->layout_map_count
) *
1654 total_disks_per_row
;
1657 if (nraid_map_entries
> RAID_MAP_MAX_ENTRIES
)
1658 nraid_map_entries
= RAID_MAP_MAX_ENTRIES
;
1660 logical_drive
->nphysical_disks
= nraid_map_entries
;
1663 for (i
= 0; i
< nraid_map_entries
; i
++) {
1664 logical_drive
->phys_disk
[i
] = NULL
;
1665 if (!logical_drive
->offload_config
)
1667 for (j
= 0; j
< ndevices
; j
++) {
1670 if (dev
[j
]->devtype
!= TYPE_DISK
&&
1671 dev
[j
]->devtype
!= TYPE_ZBC
)
1673 if (is_logical_device(dev
[j
]))
1675 if (dev
[j
]->ioaccel_handle
!= dd
[i
].ioaccel_handle
)
1678 logical_drive
->phys_disk
[i
] = dev
[j
];
1680 qdepth
= min(h
->nr_cmds
, qdepth
+
1681 logical_drive
->phys_disk
[i
]->queue_depth
);
1686 * This can happen if a physical drive is removed and
1687 * the logical drive is degraded. In that case, the RAID
1688 * map data will refer to a physical disk which isn't actually
1689 * present. And in that case offload_enabled should already
1690 * be 0, but we'll turn it off here just in case
1692 if (!logical_drive
->phys_disk
[i
]) {
1693 logical_drive
->offload_enabled
= 0;
1694 logical_drive
->offload_to_be_enabled
= 0;
1695 logical_drive
->queue_depth
= 8;
1698 if (nraid_map_entries
)
1700 * This is correct for reads, too high for full stripe writes,
1701 * way too high for partial stripe writes
1703 logical_drive
->queue_depth
= qdepth
;
1705 logical_drive
->queue_depth
= h
->nr_cmds
;
1708 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info
*h
,
1709 struct hpsa_scsi_dev_t
*dev
[], int ndevices
)
1713 for (i
= 0; i
< ndevices
; i
++) {
1716 if (dev
[i
]->devtype
!= TYPE_DISK
&&
1717 dev
[i
]->devtype
!= TYPE_ZBC
)
1719 if (!is_logical_device(dev
[i
]))
1723 * If offload is currently enabled, the RAID map and
1724 * phys_disk[] assignment *better* not be changing
1725 * and since it isn't changing, we do not need to
1728 if (dev
[i
]->offload_enabled
)
1731 hpsa_figure_phys_disk_ptrs(h
, dev
, ndevices
, dev
[i
]);
1735 static int hpsa_add_device(struct ctlr_info
*h
, struct hpsa_scsi_dev_t
*device
)
1742 if (is_logical_device(device
)) /* RAID */
1743 rc
= scsi_add_device(h
->scsi_host
, device
->bus
,
1744 device
->target
, device
->lun
);
1746 rc
= hpsa_add_sas_device(h
->sas_host
, device
);
1751 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info
*h
,
1752 struct hpsa_scsi_dev_t
*dev
)
1757 for (i
= 0; i
< h
->nr_cmds
; i
++) {
1758 struct CommandList
*c
= h
->cmd_pool
+ i
;
1759 int refcount
= atomic_inc_return(&c
->refcount
);
1761 if (refcount
> 1 && hpsa_cmd_dev_match(h
, c
, dev
,
1763 unsigned long flags
;
1765 spin_lock_irqsave(&h
->lock
, flags
); /* Implied MB */
1766 if (!hpsa_is_cmd_idle(c
))
1768 spin_unlock_irqrestore(&h
->lock
, flags
);
1777 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info
*h
,
1778 struct hpsa_scsi_dev_t
*device
)
1784 cmds
= hpsa_find_outstanding_commands_for_dev(h
, device
);
1789 dev_warn(&h
->pdev
->dev
,
1790 "%s: removing device with %d outstanding commands!\n",
1796 static void hpsa_remove_device(struct ctlr_info
*h
,
1797 struct hpsa_scsi_dev_t
*device
)
1799 struct scsi_device
*sdev
= NULL
;
1804 if (is_logical_device(device
)) { /* RAID */
1805 sdev
= scsi_device_lookup(h
->scsi_host
, device
->bus
,
1806 device
->target
, device
->lun
);
1808 scsi_remove_device(sdev
);
1809 scsi_device_put(sdev
);
1812 * We don't expect to get here. Future commands
1813 * to this device will get a selection timeout as
1814 * if the device were gone.
1816 hpsa_show_dev_msg(KERN_WARNING
, h
, device
,
1817 "didn't find device for removal.");
1821 device
->removed
= 1;
1822 hpsa_wait_for_outstanding_commands_for_dev(h
, device
);
1824 hpsa_remove_sas_device(device
);
1828 static void adjust_hpsa_scsi_table(struct ctlr_info
*h
,
1829 struct hpsa_scsi_dev_t
*sd
[], int nsds
)
1831 /* sd contains scsi3 addresses and devtypes, and inquiry
1832 * data. This function takes what's in sd to be the current
1833 * reality and updates h->dev[] to reflect that reality.
1835 int i
, entry
, device_change
, changes
= 0;
1836 struct hpsa_scsi_dev_t
*csd
;
1837 unsigned long flags
;
1838 struct hpsa_scsi_dev_t
**added
, **removed
;
1839 int nadded
, nremoved
;
1842 * A reset can cause a device status to change
1843 * re-schedule the scan to see what happened.
1845 if (h
->reset_in_progress
) {
1846 h
->drv_req_rescan
= 1;
1850 added
= kzalloc(sizeof(*added
) * HPSA_MAX_DEVICES
, GFP_KERNEL
);
1851 removed
= kzalloc(sizeof(*removed
) * HPSA_MAX_DEVICES
, GFP_KERNEL
);
1853 if (!added
|| !removed
) {
1854 dev_warn(&h
->pdev
->dev
, "out of memory in "
1855 "adjust_hpsa_scsi_table\n");
1859 spin_lock_irqsave(&h
->devlock
, flags
);
1861 /* find any devices in h->dev[] that are not in
1862 * sd[] and remove them from h->dev[], and for any
1863 * devices which have changed, remove the old device
1864 * info and add the new device info.
1865 * If minor device attributes change, just update
1866 * the existing device structure.
1871 while (i
< h
->ndevices
) {
1873 device_change
= hpsa_scsi_find_entry(csd
, sd
, nsds
, &entry
);
1874 if (device_change
== DEVICE_NOT_FOUND
) {
1876 hpsa_scsi_remove_entry(h
, i
, removed
, &nremoved
);
1877 continue; /* remove ^^^, hence i not incremented */
1878 } else if (device_change
== DEVICE_CHANGED
) {
1880 hpsa_scsi_replace_entry(h
, i
, sd
[entry
],
1881 added
, &nadded
, removed
, &nremoved
);
1882 /* Set it to NULL to prevent it from being freed
1883 * at the bottom of hpsa_update_scsi_devices()
1886 } else if (device_change
== DEVICE_UPDATED
) {
1887 hpsa_scsi_update_entry(h
, i
, sd
[entry
]);
1892 /* Now, make sure every device listed in sd[] is also
1893 * listed in h->dev[], adding them if they aren't found
1896 for (i
= 0; i
< nsds
; i
++) {
1897 if (!sd
[i
]) /* if already added above. */
1900 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1901 * as the SCSI mid-layer does not handle such devices well.
1902 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1903 * at 160Hz, and prevents the system from coming up.
1905 if (sd
[i
]->volume_offline
) {
1906 hpsa_show_volume_status(h
, sd
[i
]);
1907 hpsa_show_dev_msg(KERN_INFO
, h
, sd
[i
], "offline");
1911 device_change
= hpsa_scsi_find_entry(sd
[i
], h
->dev
,
1912 h
->ndevices
, &entry
);
1913 if (device_change
== DEVICE_NOT_FOUND
) {
1915 if (hpsa_scsi_add_entry(h
, sd
[i
], added
, &nadded
) != 0)
1917 sd
[i
] = NULL
; /* prevent from being freed later. */
1918 } else if (device_change
== DEVICE_CHANGED
) {
1919 /* should never happen... */
1921 dev_warn(&h
->pdev
->dev
,
1922 "device unexpectedly changed.\n");
1923 /* but if it does happen, we just ignore that device */
1926 hpsa_update_log_drive_phys_drive_ptrs(h
, h
->dev
, h
->ndevices
);
1928 /* Now that h->dev[]->phys_disk[] is coherent, we can enable
1929 * any logical drives that need it enabled.
1931 for (i
= 0; i
< h
->ndevices
; i
++) {
1932 if (h
->dev
[i
] == NULL
)
1934 h
->dev
[i
]->offload_enabled
= h
->dev
[i
]->offload_to_be_enabled
;
1937 spin_unlock_irqrestore(&h
->devlock
, flags
);
1939 /* Monitor devices which are in one of several NOT READY states to be
1940 * brought online later. This must be done without holding h->devlock,
1941 * so don't touch h->dev[]
1943 for (i
= 0; i
< nsds
; i
++) {
1944 if (!sd
[i
]) /* if already added above. */
1946 if (sd
[i
]->volume_offline
)
1947 hpsa_monitor_offline_device(h
, sd
[i
]->scsi3addr
);
1950 /* Don't notify scsi mid layer of any changes the first time through
1951 * (or if there are no changes) scsi_scan_host will do it later the
1952 * first time through.
1957 /* Notify scsi mid layer of any removed devices */
1958 for (i
= 0; i
< nremoved
; i
++) {
1959 if (removed
[i
] == NULL
)
1961 if (removed
[i
]->expose_device
)
1962 hpsa_remove_device(h
, removed
[i
]);
1967 /* Notify scsi mid layer of any added devices */
1968 for (i
= 0; i
< nadded
; i
++) {
1971 if (added
[i
] == NULL
)
1973 if (!(added
[i
]->expose_device
))
1975 rc
= hpsa_add_device(h
, added
[i
]);
1978 dev_warn(&h
->pdev
->dev
,
1979 "addition failed %d, device not added.", rc
);
1980 /* now we have to remove it from h->dev,
1981 * since it didn't get added to scsi mid layer
1983 fixup_botched_add(h
, added
[i
]);
1984 h
->drv_req_rescan
= 1;
1993 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1994 * Assume's h->devlock is held.
1996 static struct hpsa_scsi_dev_t
*lookup_hpsa_scsi_dev(struct ctlr_info
*h
,
1997 int bus
, int target
, int lun
)
2000 struct hpsa_scsi_dev_t
*sd
;
2002 for (i
= 0; i
< h
->ndevices
; i
++) {
2004 if (sd
->bus
== bus
&& sd
->target
== target
&& sd
->lun
== lun
)
2010 static int hpsa_slave_alloc(struct scsi_device
*sdev
)
2012 struct hpsa_scsi_dev_t
*sd
= NULL
;
2013 unsigned long flags
;
2014 struct ctlr_info
*h
;
2016 h
= sdev_to_hba(sdev
);
2017 spin_lock_irqsave(&h
->devlock
, flags
);
2018 if (sdev_channel(sdev
) == HPSA_PHYSICAL_DEVICE_BUS
) {
2019 struct scsi_target
*starget
;
2020 struct sas_rphy
*rphy
;
2022 starget
= scsi_target(sdev
);
2023 rphy
= target_to_rphy(starget
);
2024 sd
= hpsa_find_device_by_sas_rphy(h
, rphy
);
2026 sd
->target
= sdev_id(sdev
);
2027 sd
->lun
= sdev
->lun
;
2031 sd
= lookup_hpsa_scsi_dev(h
, sdev_channel(sdev
),
2032 sdev_id(sdev
), sdev
->lun
);
2034 if (sd
&& sd
->expose_device
) {
2035 atomic_set(&sd
->ioaccel_cmds_out
, 0);
2036 sdev
->hostdata
= sd
;
2038 sdev
->hostdata
= NULL
;
2039 spin_unlock_irqrestore(&h
->devlock
, flags
);
2043 /* configure scsi device based on internal per-device structure */
2044 static int hpsa_slave_configure(struct scsi_device
*sdev
)
2046 struct hpsa_scsi_dev_t
*sd
;
2049 sd
= sdev
->hostdata
;
2050 sdev
->no_uld_attach
= !sd
|| !sd
->expose_device
;
2053 queue_depth
= sd
->queue_depth
!= 0 ?
2054 sd
->queue_depth
: sdev
->host
->can_queue
;
2056 queue_depth
= sdev
->host
->can_queue
;
2058 scsi_change_queue_depth(sdev
, queue_depth
);
2063 static void hpsa_slave_destroy(struct scsi_device
*sdev
)
2065 /* nothing to do. */
2068 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info
*h
)
2072 if (!h
->ioaccel2_cmd_sg_list
)
2074 for (i
= 0; i
< h
->nr_cmds
; i
++) {
2075 kfree(h
->ioaccel2_cmd_sg_list
[i
]);
2076 h
->ioaccel2_cmd_sg_list
[i
] = NULL
;
2078 kfree(h
->ioaccel2_cmd_sg_list
);
2079 h
->ioaccel2_cmd_sg_list
= NULL
;
2082 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info
*h
)
2086 if (h
->chainsize
<= 0)
2089 h
->ioaccel2_cmd_sg_list
=
2090 kzalloc(sizeof(*h
->ioaccel2_cmd_sg_list
) * h
->nr_cmds
,
2092 if (!h
->ioaccel2_cmd_sg_list
)
2094 for (i
= 0; i
< h
->nr_cmds
; i
++) {
2095 h
->ioaccel2_cmd_sg_list
[i
] =
2096 kmalloc(sizeof(*h
->ioaccel2_cmd_sg_list
[i
]) *
2097 h
->maxsgentries
, GFP_KERNEL
);
2098 if (!h
->ioaccel2_cmd_sg_list
[i
])
2104 hpsa_free_ioaccel2_sg_chain_blocks(h
);
2108 static void hpsa_free_sg_chain_blocks(struct ctlr_info
*h
)
2112 if (!h
->cmd_sg_list
)
2114 for (i
= 0; i
< h
->nr_cmds
; i
++) {
2115 kfree(h
->cmd_sg_list
[i
]);
2116 h
->cmd_sg_list
[i
] = NULL
;
2118 kfree(h
->cmd_sg_list
);
2119 h
->cmd_sg_list
= NULL
;
2122 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info
*h
)
2126 if (h
->chainsize
<= 0)
2129 h
->cmd_sg_list
= kzalloc(sizeof(*h
->cmd_sg_list
) * h
->nr_cmds
,
2131 if (!h
->cmd_sg_list
) {
2132 dev_err(&h
->pdev
->dev
, "Failed to allocate SG list\n");
2135 for (i
= 0; i
< h
->nr_cmds
; i
++) {
2136 h
->cmd_sg_list
[i
] = kmalloc(sizeof(*h
->cmd_sg_list
[i
]) *
2137 h
->chainsize
, GFP_KERNEL
);
2138 if (!h
->cmd_sg_list
[i
]) {
2139 dev_err(&h
->pdev
->dev
, "Failed to allocate cmd SG\n");
2146 hpsa_free_sg_chain_blocks(h
);
2150 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info
*h
,
2151 struct io_accel2_cmd
*cp
, struct CommandList
*c
)
2153 struct ioaccel2_sg_element
*chain_block
;
2157 chain_block
= h
->ioaccel2_cmd_sg_list
[c
->cmdindex
];
2158 chain_size
= le32_to_cpu(cp
->sg
[0].length
);
2159 temp64
= pci_map_single(h
->pdev
, chain_block
, chain_size
,
2161 if (dma_mapping_error(&h
->pdev
->dev
, temp64
)) {
2162 /* prevent subsequent unmapping */
2163 cp
->sg
->address
= 0;
2166 cp
->sg
->address
= cpu_to_le64(temp64
);
2170 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info
*h
,
2171 struct io_accel2_cmd
*cp
)
2173 struct ioaccel2_sg_element
*chain_sg
;
2178 temp64
= le64_to_cpu(chain_sg
->address
);
2179 chain_size
= le32_to_cpu(cp
->sg
[0].length
);
2180 pci_unmap_single(h
->pdev
, temp64
, chain_size
, PCI_DMA_TODEVICE
);
2183 static int hpsa_map_sg_chain_block(struct ctlr_info
*h
,
2184 struct CommandList
*c
)
2186 struct SGDescriptor
*chain_sg
, *chain_block
;
2190 chain_sg
= &c
->SG
[h
->max_cmd_sg_entries
- 1];
2191 chain_block
= h
->cmd_sg_list
[c
->cmdindex
];
2192 chain_sg
->Ext
= cpu_to_le32(HPSA_SG_CHAIN
);
2193 chain_len
= sizeof(*chain_sg
) *
2194 (le16_to_cpu(c
->Header
.SGTotal
) - h
->max_cmd_sg_entries
);
2195 chain_sg
->Len
= cpu_to_le32(chain_len
);
2196 temp64
= pci_map_single(h
->pdev
, chain_block
, chain_len
,
2198 if (dma_mapping_error(&h
->pdev
->dev
, temp64
)) {
2199 /* prevent subsequent unmapping */
2200 chain_sg
->Addr
= cpu_to_le64(0);
2203 chain_sg
->Addr
= cpu_to_le64(temp64
);
2207 static void hpsa_unmap_sg_chain_block(struct ctlr_info
*h
,
2208 struct CommandList
*c
)
2210 struct SGDescriptor
*chain_sg
;
2212 if (le16_to_cpu(c
->Header
.SGTotal
) <= h
->max_cmd_sg_entries
)
2215 chain_sg
= &c
->SG
[h
->max_cmd_sg_entries
- 1];
2216 pci_unmap_single(h
->pdev
, le64_to_cpu(chain_sg
->Addr
),
2217 le32_to_cpu(chain_sg
->Len
), PCI_DMA_TODEVICE
);
2221 /* Decode the various types of errors on ioaccel2 path.
2222 * Return 1 for any error that should generate a RAID path retry.
2223 * Return 0 for errors that don't require a RAID path retry.
2225 static int handle_ioaccel_mode2_error(struct ctlr_info
*h
,
2226 struct CommandList
*c
,
2227 struct scsi_cmnd
*cmd
,
2228 struct io_accel2_cmd
*c2
,
2229 struct hpsa_scsi_dev_t
*dev
)
2233 u32 ioaccel2_resid
= 0;
2235 switch (c2
->error_data
.serv_response
) {
2236 case IOACCEL2_SERV_RESPONSE_COMPLETE
:
2237 switch (c2
->error_data
.status
) {
2238 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD
:
2242 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND
:
2243 cmd
->result
|= SAM_STAT_CHECK_CONDITION
;
2244 if (c2
->error_data
.data_present
!=
2245 IOACCEL2_SENSE_DATA_PRESENT
) {
2246 memset(cmd
->sense_buffer
, 0,
2247 SCSI_SENSE_BUFFERSIZE
);
2250 /* copy the sense data */
2251 data_len
= c2
->error_data
.sense_data_len
;
2252 if (data_len
> SCSI_SENSE_BUFFERSIZE
)
2253 data_len
= SCSI_SENSE_BUFFERSIZE
;
2254 if (data_len
> sizeof(c2
->error_data
.sense_data_buff
))
2256 sizeof(c2
->error_data
.sense_data_buff
);
2257 memcpy(cmd
->sense_buffer
,
2258 c2
->error_data
.sense_data_buff
, data_len
);
2261 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY
:
2264 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON
:
2267 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL
:
2270 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED
:
2278 case IOACCEL2_SERV_RESPONSE_FAILURE
:
2279 switch (c2
->error_data
.status
) {
2280 case IOACCEL2_STATUS_SR_IO_ERROR
:
2281 case IOACCEL2_STATUS_SR_IO_ABORTED
:
2282 case IOACCEL2_STATUS_SR_OVERRUN
:
2285 case IOACCEL2_STATUS_SR_UNDERRUN
:
2286 cmd
->result
= (DID_OK
<< 16); /* host byte */
2287 cmd
->result
|= (COMMAND_COMPLETE
<< 8); /* msg byte */
2288 ioaccel2_resid
= get_unaligned_le32(
2289 &c2
->error_data
.resid_cnt
[0]);
2290 scsi_set_resid(cmd
, ioaccel2_resid
);
2292 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE
:
2293 case IOACCEL2_STATUS_SR_INVALID_DEVICE
:
2294 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED
:
2296 * Did an HBA disk disappear? We will eventually
2297 * get a state change event from the controller but
2298 * in the meantime, we need to tell the OS that the
2299 * HBA disk is no longer there and stop I/O
2300 * from going down. This allows the potential re-insert
2301 * of the disk to get the same device node.
2303 if (dev
->physical_device
&& dev
->expose_device
) {
2304 cmd
->result
= DID_NO_CONNECT
<< 16;
2306 h
->drv_req_rescan
= 1;
2307 dev_warn(&h
->pdev
->dev
,
2308 "%s: device is gone!\n", __func__
);
2311 * Retry by sending down the RAID path.
2312 * We will get an event from ctlr to
2313 * trigger rescan regardless.
2321 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE
:
2323 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS
:
2325 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED
:
2328 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN
:
2335 return retry
; /* retry on raid path? */
2338 static void hpsa_cmd_resolve_events(struct ctlr_info
*h
,
2339 struct CommandList
*c
)
2341 bool do_wake
= false;
2344 * Prevent the following race in the abort handler:
2346 * 1. LLD is requested to abort a SCSI command
2347 * 2. The SCSI command completes
2348 * 3. The struct CommandList associated with step 2 is made available
2349 * 4. New I/O request to LLD to another LUN re-uses struct CommandList
2350 * 5. Abort handler follows scsi_cmnd->host_scribble and
2351 * finds struct CommandList and tries to aborts it
2352 * Now we have aborted the wrong command.
2354 * Reset c->scsi_cmd here so that the abort or reset handler will know
2355 * this command has completed. Then, check to see if the handler is
2356 * waiting for this command, and, if so, wake it.
2358 c
->scsi_cmd
= SCSI_CMD_IDLE
;
2359 mb(); /* Declare command idle before checking for pending events. */
2360 if (c
->abort_pending
) {
2362 c
->abort_pending
= false;
2364 if (c
->reset_pending
) {
2365 unsigned long flags
;
2366 struct hpsa_scsi_dev_t
*dev
;
2369 * There appears to be a reset pending; lock the lock and
2370 * reconfirm. If so, then decrement the count of outstanding
2371 * commands and wake the reset command if this is the last one.
2373 spin_lock_irqsave(&h
->lock
, flags
);
2374 dev
= c
->reset_pending
; /* Re-fetch under the lock. */
2375 if (dev
&& atomic_dec_and_test(&dev
->reset_cmds_out
))
2377 c
->reset_pending
= NULL
;
2378 spin_unlock_irqrestore(&h
->lock
, flags
);
2382 wake_up_all(&h
->event_sync_wait_queue
);
2385 static void hpsa_cmd_resolve_and_free(struct ctlr_info
*h
,
2386 struct CommandList
*c
)
2388 hpsa_cmd_resolve_events(h
, c
);
2389 cmd_tagged_free(h
, c
);
2392 static void hpsa_cmd_free_and_done(struct ctlr_info
*h
,
2393 struct CommandList
*c
, struct scsi_cmnd
*cmd
)
2395 hpsa_cmd_resolve_and_free(h
, c
);
2396 if (cmd
&& cmd
->scsi_done
)
2397 cmd
->scsi_done(cmd
);
2400 static void hpsa_retry_cmd(struct ctlr_info
*h
, struct CommandList
*c
)
2402 INIT_WORK(&c
->work
, hpsa_command_resubmit_worker
);
2403 queue_work_on(raw_smp_processor_id(), h
->resubmit_wq
, &c
->work
);
2406 static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd
*cmd
)
2408 cmd
->result
= DID_ABORT
<< 16;
2411 static void hpsa_cmd_abort_and_free(struct ctlr_info
*h
, struct CommandList
*c
,
2412 struct scsi_cmnd
*cmd
)
2414 hpsa_set_scsi_cmd_aborted(cmd
);
2415 dev_warn(&h
->pdev
->dev
, "CDB %16phN was aborted with status 0x%x\n",
2416 c
->Request
.CDB
, c
->err_info
->ScsiStatus
);
2417 hpsa_cmd_resolve_and_free(h
, c
);
2420 static void process_ioaccel2_completion(struct ctlr_info
*h
,
2421 struct CommandList
*c
, struct scsi_cmnd
*cmd
,
2422 struct hpsa_scsi_dev_t
*dev
)
2424 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
2426 /* check for good status */
2427 if (likely(c2
->error_data
.serv_response
== 0 &&
2428 c2
->error_data
.status
== 0)) {
2430 return hpsa_cmd_free_and_done(h
, c
, cmd
);
2434 * Any RAID offload error results in retry which will use
2435 * the normal I/O path so the controller can handle whatever's
2438 if (is_logical_device(dev
) &&
2439 c2
->error_data
.serv_response
==
2440 IOACCEL2_SERV_RESPONSE_FAILURE
) {
2441 if (c2
->error_data
.status
==
2442 IOACCEL2_STATUS_SR_IOACCEL_DISABLED
) {
2443 dev
->offload_enabled
= 0;
2444 dev
->offload_to_be_enabled
= 0;
2447 return hpsa_retry_cmd(h
, c
);
2450 if (handle_ioaccel_mode2_error(h
, c
, cmd
, c2
, dev
))
2451 return hpsa_retry_cmd(h
, c
);
2453 return hpsa_cmd_free_and_done(h
, c
, cmd
);
2456 /* Returns 0 on success, < 0 otherwise. */
2457 static int hpsa_evaluate_tmf_status(struct ctlr_info
*h
,
2458 struct CommandList
*cp
)
2460 u8 tmf_status
= cp
->err_info
->ScsiStatus
;
2462 switch (tmf_status
) {
2463 case CISS_TMF_COMPLETE
:
2465 * CISS_TMF_COMPLETE never happens, instead,
2466 * ei->CommandStatus == 0 for this case.
2468 case CISS_TMF_SUCCESS
:
2470 case CISS_TMF_INVALID_FRAME
:
2471 case CISS_TMF_NOT_SUPPORTED
:
2472 case CISS_TMF_FAILED
:
2473 case CISS_TMF_WRONG_LUN
:
2474 case CISS_TMF_OVERLAPPED_TAG
:
2477 dev_warn(&h
->pdev
->dev
, "Unknown TMF status: 0x%02x\n",
2484 static void complete_scsi_command(struct CommandList
*cp
)
2486 struct scsi_cmnd
*cmd
;
2487 struct ctlr_info
*h
;
2488 struct ErrorInfo
*ei
;
2489 struct hpsa_scsi_dev_t
*dev
;
2490 struct io_accel2_cmd
*c2
;
2493 u8 asc
; /* additional sense code */
2494 u8 ascq
; /* additional sense code qualifier */
2495 unsigned long sense_data_size
;
2502 cmd
->result
= DID_NO_CONNECT
<< 16;
2503 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2506 dev
= cmd
->device
->hostdata
;
2508 cmd
->result
= DID_NO_CONNECT
<< 16;
2509 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2511 c2
= &h
->ioaccel2_cmd_pool
[cp
->cmdindex
];
2513 scsi_dma_unmap(cmd
); /* undo the DMA mappings */
2514 if ((cp
->cmd_type
== CMD_SCSI
) &&
2515 (le16_to_cpu(cp
->Header
.SGTotal
) > h
->max_cmd_sg_entries
))
2516 hpsa_unmap_sg_chain_block(h
, cp
);
2518 if ((cp
->cmd_type
== CMD_IOACCEL2
) &&
2519 (c2
->sg
[0].chain_indicator
== IOACCEL2_CHAIN
))
2520 hpsa_unmap_ioaccel2_sg_chain_block(h
, c2
);
2522 cmd
->result
= (DID_OK
<< 16); /* host byte */
2523 cmd
->result
|= (COMMAND_COMPLETE
<< 8); /* msg byte */
2525 if (cp
->cmd_type
== CMD_IOACCEL2
|| cp
->cmd_type
== CMD_IOACCEL1
) {
2526 if (dev
->physical_device
&& dev
->expose_device
&&
2528 cmd
->result
= DID_NO_CONNECT
<< 16;
2529 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2531 if (likely(cp
->phys_disk
!= NULL
))
2532 atomic_dec(&cp
->phys_disk
->ioaccel_cmds_out
);
2536 * We check for lockup status here as it may be set for
2537 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2538 * fail_all_oustanding_cmds()
2540 if (unlikely(ei
->CommandStatus
== CMD_CTLR_LOCKUP
)) {
2541 /* DID_NO_CONNECT will prevent a retry */
2542 cmd
->result
= DID_NO_CONNECT
<< 16;
2543 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2546 if ((unlikely(hpsa_is_pending_event(cp
)))) {
2547 if (cp
->reset_pending
)
2548 return hpsa_cmd_resolve_and_free(h
, cp
);
2549 if (cp
->abort_pending
)
2550 return hpsa_cmd_abort_and_free(h
, cp
, cmd
);
2553 if (cp
->cmd_type
== CMD_IOACCEL2
)
2554 return process_ioaccel2_completion(h
, cp
, cmd
, dev
);
2556 scsi_set_resid(cmd
, ei
->ResidualCnt
);
2557 if (ei
->CommandStatus
== 0)
2558 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2560 /* For I/O accelerator commands, copy over some fields to the normal
2561 * CISS header used below for error handling.
2563 if (cp
->cmd_type
== CMD_IOACCEL1
) {
2564 struct io_accel1_cmd
*c
= &h
->ioaccel_cmd_pool
[cp
->cmdindex
];
2565 cp
->Header
.SGList
= scsi_sg_count(cmd
);
2566 cp
->Header
.SGTotal
= cpu_to_le16(cp
->Header
.SGList
);
2567 cp
->Request
.CDBLen
= le16_to_cpu(c
->io_flags
) &
2568 IOACCEL1_IOFLAGS_CDBLEN_MASK
;
2569 cp
->Header
.tag
= c
->tag
;
2570 memcpy(cp
->Header
.LUN
.LunAddrBytes
, c
->CISS_LUN
, 8);
2571 memcpy(cp
->Request
.CDB
, c
->CDB
, cp
->Request
.CDBLen
);
2573 /* Any RAID offload error results in retry which will use
2574 * the normal I/O path so the controller can handle whatever's
2577 if (is_logical_device(dev
)) {
2578 if (ei
->CommandStatus
== CMD_IOACCEL_DISABLED
)
2579 dev
->offload_enabled
= 0;
2580 return hpsa_retry_cmd(h
, cp
);
2584 /* an error has occurred */
2585 switch (ei
->CommandStatus
) {
2587 case CMD_TARGET_STATUS
:
2588 cmd
->result
|= ei
->ScsiStatus
;
2589 /* copy the sense data */
2590 if (SCSI_SENSE_BUFFERSIZE
< sizeof(ei
->SenseInfo
))
2591 sense_data_size
= SCSI_SENSE_BUFFERSIZE
;
2593 sense_data_size
= sizeof(ei
->SenseInfo
);
2594 if (ei
->SenseLen
< sense_data_size
)
2595 sense_data_size
= ei
->SenseLen
;
2596 memcpy(cmd
->sense_buffer
, ei
->SenseInfo
, sense_data_size
);
2598 decode_sense_data(ei
->SenseInfo
, sense_data_size
,
2599 &sense_key
, &asc
, &ascq
);
2600 if (ei
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
) {
2601 if (sense_key
== ABORTED_COMMAND
) {
2602 cmd
->result
|= DID_SOFT_ERROR
<< 16;
2607 /* Problem was not a check condition
2608 * Pass it up to the upper layers...
2610 if (ei
->ScsiStatus
) {
2611 dev_warn(&h
->pdev
->dev
, "cp %p has status 0x%x "
2612 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2613 "Returning result: 0x%x\n",
2615 sense_key
, asc
, ascq
,
2617 } else { /* scsi status is zero??? How??? */
2618 dev_warn(&h
->pdev
->dev
, "cp %p SCSI status was 0. "
2619 "Returning no connection.\n", cp
),
2621 /* Ordinarily, this case should never happen,
2622 * but there is a bug in some released firmware
2623 * revisions that allows it to happen if, for
2624 * example, a 4100 backplane loses power and
2625 * the tape drive is in it. We assume that
2626 * it's a fatal error of some kind because we
2627 * can't show that it wasn't. We will make it
2628 * look like selection timeout since that is
2629 * the most common reason for this to occur,
2630 * and it's severe enough.
2633 cmd
->result
= DID_NO_CONNECT
<< 16;
2637 case CMD_DATA_UNDERRUN
: /* let mid layer handle it. */
2639 case CMD_DATA_OVERRUN
:
2640 dev_warn(&h
->pdev
->dev
,
2641 "CDB %16phN data overrun\n", cp
->Request
.CDB
);
2644 /* print_bytes(cp, sizeof(*cp), 1, 0);
2646 /* We get CMD_INVALID if you address a non-existent device
2647 * instead of a selection timeout (no response). You will
2648 * see this if you yank out a drive, then try to access it.
2649 * This is kind of a shame because it means that any other
2650 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2651 * missing target. */
2652 cmd
->result
= DID_NO_CONNECT
<< 16;
2655 case CMD_PROTOCOL_ERR
:
2656 cmd
->result
= DID_ERROR
<< 16;
2657 dev_warn(&h
->pdev
->dev
, "CDB %16phN : protocol error\n",
2660 case CMD_HARDWARE_ERR
:
2661 cmd
->result
= DID_ERROR
<< 16;
2662 dev_warn(&h
->pdev
->dev
, "CDB %16phN : hardware error\n",
2665 case CMD_CONNECTION_LOST
:
2666 cmd
->result
= DID_ERROR
<< 16;
2667 dev_warn(&h
->pdev
->dev
, "CDB %16phN : connection lost\n",
2671 /* Return now to avoid calling scsi_done(). */
2672 return hpsa_cmd_abort_and_free(h
, cp
, cmd
);
2673 case CMD_ABORT_FAILED
:
2674 cmd
->result
= DID_ERROR
<< 16;
2675 dev_warn(&h
->pdev
->dev
, "CDB %16phN : abort failed\n",
2678 case CMD_UNSOLICITED_ABORT
:
2679 cmd
->result
= DID_SOFT_ERROR
<< 16; /* retry the command */
2680 dev_warn(&h
->pdev
->dev
, "CDB %16phN : unsolicited abort\n",
2684 cmd
->result
= DID_TIME_OUT
<< 16;
2685 dev_warn(&h
->pdev
->dev
, "CDB %16phN timed out\n",
2688 case CMD_UNABORTABLE
:
2689 cmd
->result
= DID_ERROR
<< 16;
2690 dev_warn(&h
->pdev
->dev
, "Command unabortable\n");
2692 case CMD_TMF_STATUS
:
2693 if (hpsa_evaluate_tmf_status(h
, cp
)) /* TMF failed? */
2694 cmd
->result
= DID_ERROR
<< 16;
2696 case CMD_IOACCEL_DISABLED
:
2697 /* This only handles the direct pass-through case since RAID
2698 * offload is handled above. Just attempt a retry.
2700 cmd
->result
= DID_SOFT_ERROR
<< 16;
2701 dev_warn(&h
->pdev
->dev
,
2702 "cp %p had HP SSD Smart Path error\n", cp
);
2705 cmd
->result
= DID_ERROR
<< 16;
2706 dev_warn(&h
->pdev
->dev
, "cp %p returned unknown status %x\n",
2707 cp
, ei
->CommandStatus
);
2710 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2713 static void hpsa_pci_unmap(struct pci_dev
*pdev
,
2714 struct CommandList
*c
, int sg_used
, int data_direction
)
2718 for (i
= 0; i
< sg_used
; i
++)
2719 pci_unmap_single(pdev
, (dma_addr_t
) le64_to_cpu(c
->SG
[i
].Addr
),
2720 le32_to_cpu(c
->SG
[i
].Len
),
2724 static int hpsa_map_one(struct pci_dev
*pdev
,
2725 struct CommandList
*cp
,
2732 if (buflen
== 0 || data_direction
== PCI_DMA_NONE
) {
2733 cp
->Header
.SGList
= 0;
2734 cp
->Header
.SGTotal
= cpu_to_le16(0);
2738 addr64
= pci_map_single(pdev
, buf
, buflen
, data_direction
);
2739 if (dma_mapping_error(&pdev
->dev
, addr64
)) {
2740 /* Prevent subsequent unmap of something never mapped */
2741 cp
->Header
.SGList
= 0;
2742 cp
->Header
.SGTotal
= cpu_to_le16(0);
2745 cp
->SG
[0].Addr
= cpu_to_le64(addr64
);
2746 cp
->SG
[0].Len
= cpu_to_le32(buflen
);
2747 cp
->SG
[0].Ext
= cpu_to_le32(HPSA_SG_LAST
); /* we are not chaining */
2748 cp
->Header
.SGList
= 1; /* no. SGs contig in this cmd */
2749 cp
->Header
.SGTotal
= cpu_to_le16(1); /* total sgs in cmd list */
2753 #define NO_TIMEOUT ((unsigned long) -1)
2754 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2755 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info
*h
,
2756 struct CommandList
*c
, int reply_queue
, unsigned long timeout_msecs
)
2758 DECLARE_COMPLETION_ONSTACK(wait
);
2761 __enqueue_cmd_and_start_io(h
, c
, reply_queue
);
2762 if (timeout_msecs
== NO_TIMEOUT
) {
2763 /* TODO: get rid of this no-timeout thing */
2764 wait_for_completion_io(&wait
);
2767 if (!wait_for_completion_io_timeout(&wait
,
2768 msecs_to_jiffies(timeout_msecs
))) {
2769 dev_warn(&h
->pdev
->dev
, "Command timed out.\n");
2775 static int hpsa_scsi_do_simple_cmd(struct ctlr_info
*h
, struct CommandList
*c
,
2776 int reply_queue
, unsigned long timeout_msecs
)
2778 if (unlikely(lockup_detected(h
))) {
2779 c
->err_info
->CommandStatus
= CMD_CTLR_LOCKUP
;
2782 return hpsa_scsi_do_simple_cmd_core(h
, c
, reply_queue
, timeout_msecs
);
2785 static u32
lockup_detected(struct ctlr_info
*h
)
2788 u32 rc
, *lockup_detected
;
2791 lockup_detected
= per_cpu_ptr(h
->lockup_detected
, cpu
);
2792 rc
= *lockup_detected
;
2797 #define MAX_DRIVER_CMD_RETRIES 25
2798 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info
*h
,
2799 struct CommandList
*c
, int data_direction
, unsigned long timeout_msecs
)
2801 int backoff_time
= 10, retry_count
= 0;
2805 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
2806 rc
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
,
2811 if (retry_count
> 3) {
2812 msleep(backoff_time
);
2813 if (backoff_time
< 1000)
2816 } while ((check_for_unit_attention(h
, c
) ||
2817 check_for_busy(h
, c
)) &&
2818 retry_count
<= MAX_DRIVER_CMD_RETRIES
);
2819 hpsa_pci_unmap(h
->pdev
, c
, 1, data_direction
);
2820 if (retry_count
> MAX_DRIVER_CMD_RETRIES
)
2825 static void hpsa_print_cmd(struct ctlr_info
*h
, char *txt
,
2826 struct CommandList
*c
)
2828 const u8
*cdb
= c
->Request
.CDB
;
2829 const u8
*lun
= c
->Header
.LUN
.LunAddrBytes
;
2831 dev_warn(&h
->pdev
->dev
, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2832 " CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2833 txt
, lun
[0], lun
[1], lun
[2], lun
[3],
2834 lun
[4], lun
[5], lun
[6], lun
[7],
2835 cdb
[0], cdb
[1], cdb
[2], cdb
[3],
2836 cdb
[4], cdb
[5], cdb
[6], cdb
[7],
2837 cdb
[8], cdb
[9], cdb
[10], cdb
[11],
2838 cdb
[12], cdb
[13], cdb
[14], cdb
[15]);
2841 static void hpsa_scsi_interpret_error(struct ctlr_info
*h
,
2842 struct CommandList
*cp
)
2844 const struct ErrorInfo
*ei
= cp
->err_info
;
2845 struct device
*d
= &cp
->h
->pdev
->dev
;
2846 u8 sense_key
, asc
, ascq
;
2849 switch (ei
->CommandStatus
) {
2850 case CMD_TARGET_STATUS
:
2851 if (ei
->SenseLen
> sizeof(ei
->SenseInfo
))
2852 sense_len
= sizeof(ei
->SenseInfo
);
2854 sense_len
= ei
->SenseLen
;
2855 decode_sense_data(ei
->SenseInfo
, sense_len
,
2856 &sense_key
, &asc
, &ascq
);
2857 hpsa_print_cmd(h
, "SCSI status", cp
);
2858 if (ei
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
)
2859 dev_warn(d
, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2860 sense_key
, asc
, ascq
);
2862 dev_warn(d
, "SCSI Status = 0x%02x\n", ei
->ScsiStatus
);
2863 if (ei
->ScsiStatus
== 0)
2864 dev_warn(d
, "SCSI status is abnormally zero. "
2865 "(probably indicates selection timeout "
2866 "reported incorrectly due to a known "
2867 "firmware bug, circa July, 2001.)\n");
2869 case CMD_DATA_UNDERRUN
: /* let mid layer handle it. */
2871 case CMD_DATA_OVERRUN
:
2872 hpsa_print_cmd(h
, "overrun condition", cp
);
2875 /* controller unfortunately reports SCSI passthru's
2876 * to non-existent targets as invalid commands.
2878 hpsa_print_cmd(h
, "invalid command", cp
);
2879 dev_warn(d
, "probably means device no longer present\n");
2882 case CMD_PROTOCOL_ERR
:
2883 hpsa_print_cmd(h
, "protocol error", cp
);
2885 case CMD_HARDWARE_ERR
:
2886 hpsa_print_cmd(h
, "hardware error", cp
);
2888 case CMD_CONNECTION_LOST
:
2889 hpsa_print_cmd(h
, "connection lost", cp
);
2892 hpsa_print_cmd(h
, "aborted", cp
);
2894 case CMD_ABORT_FAILED
:
2895 hpsa_print_cmd(h
, "abort failed", cp
);
2897 case CMD_UNSOLICITED_ABORT
:
2898 hpsa_print_cmd(h
, "unsolicited abort", cp
);
2901 hpsa_print_cmd(h
, "timed out", cp
);
2903 case CMD_UNABORTABLE
:
2904 hpsa_print_cmd(h
, "unabortable", cp
);
2906 case CMD_CTLR_LOCKUP
:
2907 hpsa_print_cmd(h
, "controller lockup detected", cp
);
2910 hpsa_print_cmd(h
, "unknown status", cp
);
2911 dev_warn(d
, "Unknown command status %x\n",
2916 static int hpsa_scsi_do_inquiry(struct ctlr_info
*h
, unsigned char *scsi3addr
,
2917 u16 page
, unsigned char *buf
,
2918 unsigned char bufsize
)
2921 struct CommandList
*c
;
2922 struct ErrorInfo
*ei
;
2926 if (fill_cmd(c
, HPSA_INQUIRY
, h
, buf
, bufsize
,
2927 page
, scsi3addr
, TYPE_CMD
)) {
2931 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
2932 PCI_DMA_FROMDEVICE
, DEFAULT_TIMEOUT
);
2936 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
2937 hpsa_scsi_interpret_error(h
, c
);
2945 static int hpsa_send_reset(struct ctlr_info
*h
, unsigned char *scsi3addr
,
2946 u8 reset_type
, int reply_queue
)
2949 struct CommandList
*c
;
2950 struct ErrorInfo
*ei
;
2955 /* fill_cmd can't fail here, no data buffer to map. */
2956 (void) fill_cmd(c
, reset_type
, h
, NULL
, 0, 0,
2957 scsi3addr
, TYPE_MSG
);
2958 rc
= hpsa_scsi_do_simple_cmd(h
, c
, reply_queue
, NO_TIMEOUT
);
2960 dev_warn(&h
->pdev
->dev
, "Failed to send reset command\n");
2963 /* no unmap needed here because no data xfer. */
2966 if (ei
->CommandStatus
!= 0) {
2967 hpsa_scsi_interpret_error(h
, c
);
2975 static bool hpsa_cmd_dev_match(struct ctlr_info
*h
, struct CommandList
*c
,
2976 struct hpsa_scsi_dev_t
*dev
,
2977 unsigned char *scsi3addr
)
2981 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
2982 struct hpsa_tmf_struct
*ac
= (struct hpsa_tmf_struct
*) c2
;
2984 if (hpsa_is_cmd_idle(c
))
2987 switch (c
->cmd_type
) {
2989 case CMD_IOCTL_PEND
:
2990 match
= !memcmp(scsi3addr
, &c
->Header
.LUN
.LunAddrBytes
,
2991 sizeof(c
->Header
.LUN
.LunAddrBytes
));
2996 if (c
->phys_disk
== dev
) {
2997 /* HBA mode match */
3000 /* Possible RAID mode -- check each phys dev. */
3001 /* FIXME: Do we need to take out a lock here? If
3002 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3004 for (i
= 0; i
< dev
->nphysical_disks
&& !match
; i
++) {
3005 /* FIXME: an alternate test might be
3007 * match = dev->phys_disk[i]->ioaccel_handle
3008 * == c2->scsi_nexus; */
3009 match
= dev
->phys_disk
[i
] == c
->phys_disk
;
3015 for (i
= 0; i
< dev
->nphysical_disks
&& !match
; i
++) {
3016 match
= dev
->phys_disk
[i
]->ioaccel_handle
==
3017 le32_to_cpu(ac
->it_nexus
);
3021 case 0: /* The command is in the middle of being initialized. */
3026 dev_err(&h
->pdev
->dev
, "unexpected cmd_type: %d\n",
3034 static int hpsa_do_reset(struct ctlr_info
*h
, struct hpsa_scsi_dev_t
*dev
,
3035 unsigned char *scsi3addr
, u8 reset_type
, int reply_queue
)
3040 /* We can really only handle one reset at a time */
3041 if (mutex_lock_interruptible(&h
->reset_mutex
) == -EINTR
) {
3042 dev_warn(&h
->pdev
->dev
, "concurrent reset wait interrupted.\n");
3046 BUG_ON(atomic_read(&dev
->reset_cmds_out
) != 0);
3048 for (i
= 0; i
< h
->nr_cmds
; i
++) {
3049 struct CommandList
*c
= h
->cmd_pool
+ i
;
3050 int refcount
= atomic_inc_return(&c
->refcount
);
3052 if (refcount
> 1 && hpsa_cmd_dev_match(h
, c
, dev
, scsi3addr
)) {
3053 unsigned long flags
;
3056 * Mark the target command as having a reset pending,
3057 * then lock a lock so that the command cannot complete
3058 * while we're considering it. If the command is not
3059 * idle then count it; otherwise revoke the event.
3061 c
->reset_pending
= dev
;
3062 spin_lock_irqsave(&h
->lock
, flags
); /* Implied MB */
3063 if (!hpsa_is_cmd_idle(c
))
3064 atomic_inc(&dev
->reset_cmds_out
);
3066 c
->reset_pending
= NULL
;
3067 spin_unlock_irqrestore(&h
->lock
, flags
);
3073 rc
= hpsa_send_reset(h
, scsi3addr
, reset_type
, reply_queue
);
3075 wait_event(h
->event_sync_wait_queue
,
3076 atomic_read(&dev
->reset_cmds_out
) == 0 ||
3077 lockup_detected(h
));
3079 if (unlikely(lockup_detected(h
))) {
3080 dev_warn(&h
->pdev
->dev
,
3081 "Controller lockup detected during reset wait\n");
3086 atomic_set(&dev
->reset_cmds_out
, 0);
3088 mutex_unlock(&h
->reset_mutex
);
3092 static void hpsa_get_raid_level(struct ctlr_info
*h
,
3093 unsigned char *scsi3addr
, unsigned char *raid_level
)
3098 *raid_level
= RAID_UNKNOWN
;
3099 buf
= kzalloc(64, GFP_KERNEL
);
3103 if (!hpsa_vpd_page_supported(h
, scsi3addr
,
3104 HPSA_VPD_LV_DEVICE_GEOMETRY
))
3107 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
|
3108 HPSA_VPD_LV_DEVICE_GEOMETRY
, buf
, 64);
3111 *raid_level
= buf
[8];
3112 if (*raid_level
> RAID_UNKNOWN
)
3113 *raid_level
= RAID_UNKNOWN
;
3119 #define HPSA_MAP_DEBUG
3120 #ifdef HPSA_MAP_DEBUG
3121 static void hpsa_debug_map_buff(struct ctlr_info
*h
, int rc
,
3122 struct raid_map_data
*map_buff
)
3124 struct raid_map_disk_data
*dd
= &map_buff
->data
[0];
3126 u16 map_cnt
, row_cnt
, disks_per_row
;
3131 /* Show details only if debugging has been activated. */
3132 if (h
->raid_offload_debug
< 2)
3135 dev_info(&h
->pdev
->dev
, "structure_size = %u\n",
3136 le32_to_cpu(map_buff
->structure_size
));
3137 dev_info(&h
->pdev
->dev
, "volume_blk_size = %u\n",
3138 le32_to_cpu(map_buff
->volume_blk_size
));
3139 dev_info(&h
->pdev
->dev
, "volume_blk_cnt = 0x%llx\n",
3140 le64_to_cpu(map_buff
->volume_blk_cnt
));
3141 dev_info(&h
->pdev
->dev
, "physicalBlockShift = %u\n",
3142 map_buff
->phys_blk_shift
);
3143 dev_info(&h
->pdev
->dev
, "parity_rotation_shift = %u\n",
3144 map_buff
->parity_rotation_shift
);
3145 dev_info(&h
->pdev
->dev
, "strip_size = %u\n",
3146 le16_to_cpu(map_buff
->strip_size
));
3147 dev_info(&h
->pdev
->dev
, "disk_starting_blk = 0x%llx\n",
3148 le64_to_cpu(map_buff
->disk_starting_blk
));
3149 dev_info(&h
->pdev
->dev
, "disk_blk_cnt = 0x%llx\n",
3150 le64_to_cpu(map_buff
->disk_blk_cnt
));
3151 dev_info(&h
->pdev
->dev
, "data_disks_per_row = %u\n",
3152 le16_to_cpu(map_buff
->data_disks_per_row
));
3153 dev_info(&h
->pdev
->dev
, "metadata_disks_per_row = %u\n",
3154 le16_to_cpu(map_buff
->metadata_disks_per_row
));
3155 dev_info(&h
->pdev
->dev
, "row_cnt = %u\n",
3156 le16_to_cpu(map_buff
->row_cnt
));
3157 dev_info(&h
->pdev
->dev
, "layout_map_count = %u\n",
3158 le16_to_cpu(map_buff
->layout_map_count
));
3159 dev_info(&h
->pdev
->dev
, "flags = 0x%x\n",
3160 le16_to_cpu(map_buff
->flags
));
3161 dev_info(&h
->pdev
->dev
, "encrypytion = %s\n",
3162 le16_to_cpu(map_buff
->flags
) &
3163 RAID_MAP_FLAG_ENCRYPT_ON
? "ON" : "OFF");
3164 dev_info(&h
->pdev
->dev
, "dekindex = %u\n",
3165 le16_to_cpu(map_buff
->dekindex
));
3166 map_cnt
= le16_to_cpu(map_buff
->layout_map_count
);
3167 for (map
= 0; map
< map_cnt
; map
++) {
3168 dev_info(&h
->pdev
->dev
, "Map%u:\n", map
);
3169 row_cnt
= le16_to_cpu(map_buff
->row_cnt
);
3170 for (row
= 0; row
< row_cnt
; row
++) {
3171 dev_info(&h
->pdev
->dev
, " Row%u:\n", row
);
3173 le16_to_cpu(map_buff
->data_disks_per_row
);
3174 for (col
= 0; col
< disks_per_row
; col
++, dd
++)
3175 dev_info(&h
->pdev
->dev
,
3176 " D%02u: h=0x%04x xor=%u,%u\n",
3177 col
, dd
->ioaccel_handle
,
3178 dd
->xor_mult
[0], dd
->xor_mult
[1]);
3180 le16_to_cpu(map_buff
->metadata_disks_per_row
);
3181 for (col
= 0; col
< disks_per_row
; col
++, dd
++)
3182 dev_info(&h
->pdev
->dev
,
3183 " M%02u: h=0x%04x xor=%u,%u\n",
3184 col
, dd
->ioaccel_handle
,
3185 dd
->xor_mult
[0], dd
->xor_mult
[1]);
3190 static void hpsa_debug_map_buff(__attribute__((unused
)) struct ctlr_info
*h
,
3191 __attribute__((unused
)) int rc
,
3192 __attribute__((unused
)) struct raid_map_data
*map_buff
)
3197 static int hpsa_get_raid_map(struct ctlr_info
*h
,
3198 unsigned char *scsi3addr
, struct hpsa_scsi_dev_t
*this_device
)
3201 struct CommandList
*c
;
3202 struct ErrorInfo
*ei
;
3206 if (fill_cmd(c
, HPSA_GET_RAID_MAP
, h
, &this_device
->raid_map
,
3207 sizeof(this_device
->raid_map
), 0,
3208 scsi3addr
, TYPE_CMD
)) {
3209 dev_warn(&h
->pdev
->dev
, "hpsa_get_raid_map fill_cmd failed\n");
3213 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
3214 PCI_DMA_FROMDEVICE
, DEFAULT_TIMEOUT
);
3218 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3219 hpsa_scsi_interpret_error(h
, c
);
3225 /* @todo in the future, dynamically allocate RAID map memory */
3226 if (le32_to_cpu(this_device
->raid_map
.structure_size
) >
3227 sizeof(this_device
->raid_map
)) {
3228 dev_warn(&h
->pdev
->dev
, "RAID map size is too large!\n");
3231 hpsa_debug_map_buff(h
, rc
, &this_device
->raid_map
);
3238 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info
*h
,
3239 unsigned char scsi3addr
[], u16 bmic_device_index
,
3240 struct bmic_sense_subsystem_info
*buf
, size_t bufsize
)
3243 struct CommandList
*c
;
3244 struct ErrorInfo
*ei
;
3248 rc
= fill_cmd(c
, BMIC_SENSE_SUBSYSTEM_INFORMATION
, h
, buf
, bufsize
,
3249 0, RAID_CTLR_LUNID
, TYPE_CMD
);
3253 c
->Request
.CDB
[2] = bmic_device_index
& 0xff;
3254 c
->Request
.CDB
[9] = (bmic_device_index
>> 8) & 0xff;
3256 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
3257 PCI_DMA_FROMDEVICE
, DEFAULT_TIMEOUT
);
3261 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3262 hpsa_scsi_interpret_error(h
, c
);
3270 static int hpsa_bmic_id_controller(struct ctlr_info
*h
,
3271 struct bmic_identify_controller
*buf
, size_t bufsize
)
3274 struct CommandList
*c
;
3275 struct ErrorInfo
*ei
;
3279 rc
= fill_cmd(c
, BMIC_IDENTIFY_CONTROLLER
, h
, buf
, bufsize
,
3280 0, RAID_CTLR_LUNID
, TYPE_CMD
);
3284 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
3285 PCI_DMA_FROMDEVICE
, DEFAULT_TIMEOUT
);
3289 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3290 hpsa_scsi_interpret_error(h
, c
);
3298 static int hpsa_bmic_id_physical_device(struct ctlr_info
*h
,
3299 unsigned char scsi3addr
[], u16 bmic_device_index
,
3300 struct bmic_identify_physical_device
*buf
, size_t bufsize
)
3303 struct CommandList
*c
;
3304 struct ErrorInfo
*ei
;
3307 rc
= fill_cmd(c
, BMIC_IDENTIFY_PHYSICAL_DEVICE
, h
, buf
, bufsize
,
3308 0, RAID_CTLR_LUNID
, TYPE_CMD
);
3312 c
->Request
.CDB
[2] = bmic_device_index
& 0xff;
3313 c
->Request
.CDB
[9] = (bmic_device_index
>> 8) & 0xff;
3315 hpsa_scsi_do_simple_cmd_with_retry(h
, c
, PCI_DMA_FROMDEVICE
,
3318 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3319 hpsa_scsi_interpret_error(h
, c
);
3329 * get enclosure information
3330 * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3331 * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3332 * Uses id_physical_device to determine the box_index.
3334 static void hpsa_get_enclosure_info(struct ctlr_info
*h
,
3335 unsigned char *scsi3addr
,
3336 struct ReportExtendedLUNdata
*rlep
, int rle_index
,
3337 struct hpsa_scsi_dev_t
*encl_dev
)
3340 struct CommandList
*c
= NULL
;
3341 struct ErrorInfo
*ei
= NULL
;
3342 struct bmic_sense_storage_box_params
*bssbp
= NULL
;
3343 struct bmic_identify_physical_device
*id_phys
= NULL
;
3344 struct ext_report_lun_entry
*rle
= &rlep
->LUN
[rle_index
];
3345 u16 bmic_device_index
= 0;
3347 bmic_device_index
= GET_BMIC_DRIVE_NUMBER(&rle
->lunid
[0]);
3349 if (bmic_device_index
== 0xFF00 || MASKED_DEVICE(&rle
->lunid
[0])) {
3354 bssbp
= kzalloc(sizeof(*bssbp
), GFP_KERNEL
);
3358 id_phys
= kzalloc(sizeof(*id_phys
), GFP_KERNEL
);
3362 rc
= hpsa_bmic_id_physical_device(h
, scsi3addr
, bmic_device_index
,
3363 id_phys
, sizeof(*id_phys
));
3365 dev_warn(&h
->pdev
->dev
, "%s: id_phys failed %d bdi[0x%x]\n",
3366 __func__
, encl_dev
->external
, bmic_device_index
);
3372 rc
= fill_cmd(c
, BMIC_SENSE_STORAGE_BOX_PARAMS
, h
, bssbp
,
3373 sizeof(*bssbp
), 0, RAID_CTLR_LUNID
, TYPE_CMD
);
3378 if (id_phys
->phys_connector
[1] == 'E')
3379 c
->Request
.CDB
[5] = id_phys
->box_index
;
3381 c
->Request
.CDB
[5] = 0;
3383 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
, PCI_DMA_FROMDEVICE
,
3389 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3394 encl_dev
->box
[id_phys
->active_path_number
] = bssbp
->phys_box_on_port
;
3395 memcpy(&encl_dev
->phys_connector
[id_phys
->active_path_number
],
3396 bssbp
->phys_connector
, sizeof(bssbp
->phys_connector
));
3407 hpsa_show_dev_msg(KERN_INFO
, h
, encl_dev
,
3408 "Error, could not get enclosure information\n");
3411 static u64
hpsa_get_sas_address_from_report_physical(struct ctlr_info
*h
,
3412 unsigned char *scsi3addr
)
3414 struct ReportExtendedLUNdata
*physdev
;
3419 physdev
= kzalloc(sizeof(*physdev
), GFP_KERNEL
);
3423 if (hpsa_scsi_do_report_phys_luns(h
, physdev
, sizeof(*physdev
))) {
3424 dev_err(&h
->pdev
->dev
, "report physical LUNs failed.\n");
3428 nphysicals
= get_unaligned_be32(physdev
->LUNListLength
) / 24;
3430 for (i
= 0; i
< nphysicals
; i
++)
3431 if (!memcmp(&physdev
->LUN
[i
].lunid
[0], scsi3addr
, 8)) {
3432 sa
= get_unaligned_be64(&physdev
->LUN
[i
].wwid
[0]);
3441 static void hpsa_get_sas_address(struct ctlr_info
*h
, unsigned char *scsi3addr
,
3442 struct hpsa_scsi_dev_t
*dev
)
3447 if (is_hba_lunid(scsi3addr
)) {
3448 struct bmic_sense_subsystem_info
*ssi
;
3450 ssi
= kzalloc(sizeof(*ssi
), GFP_KERNEL
);
3452 dev_warn(&h
->pdev
->dev
,
3453 "%s: out of memory\n", __func__
);
3457 rc
= hpsa_bmic_sense_subsystem_information(h
,
3458 scsi3addr
, 0, ssi
, sizeof(*ssi
));
3460 sa
= get_unaligned_be64(ssi
->primary_world_wide_id
);
3461 h
->sas_address
= sa
;
3466 sa
= hpsa_get_sas_address_from_report_physical(h
, scsi3addr
);
3468 dev
->sas_address
= sa
;
3471 /* Get a device id from inquiry page 0x83 */
3472 static bool hpsa_vpd_page_supported(struct ctlr_info
*h
,
3473 unsigned char scsi3addr
[], u8 page
)
3478 unsigned char *buf
, bufsize
;
3480 buf
= kzalloc(256, GFP_KERNEL
);
3484 /* Get the size of the page list first */
3485 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
,
3486 VPD_PAGE
| HPSA_VPD_SUPPORTED_PAGES
,
3487 buf
, HPSA_VPD_HEADER_SZ
);
3489 goto exit_unsupported
;
3491 if ((pages
+ HPSA_VPD_HEADER_SZ
) <= 255)
3492 bufsize
= pages
+ HPSA_VPD_HEADER_SZ
;
3496 /* Get the whole VPD page list */
3497 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
,
3498 VPD_PAGE
| HPSA_VPD_SUPPORTED_PAGES
,
3501 goto exit_unsupported
;
3504 for (i
= 1; i
<= pages
; i
++)
3505 if (buf
[3 + i
] == page
)
3506 goto exit_supported
;
3515 static void hpsa_get_ioaccel_status(struct ctlr_info
*h
,
3516 unsigned char *scsi3addr
, struct hpsa_scsi_dev_t
*this_device
)
3522 this_device
->offload_config
= 0;
3523 this_device
->offload_enabled
= 0;
3524 this_device
->offload_to_be_enabled
= 0;
3526 buf
= kzalloc(64, GFP_KERNEL
);
3529 if (!hpsa_vpd_page_supported(h
, scsi3addr
, HPSA_VPD_LV_IOACCEL_STATUS
))
3531 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
,
3532 VPD_PAGE
| HPSA_VPD_LV_IOACCEL_STATUS
, buf
, 64);
3536 #define IOACCEL_STATUS_BYTE 4
3537 #define OFFLOAD_CONFIGURED_BIT 0x01
3538 #define OFFLOAD_ENABLED_BIT 0x02
3539 ioaccel_status
= buf
[IOACCEL_STATUS_BYTE
];
3540 this_device
->offload_config
=
3541 !!(ioaccel_status
& OFFLOAD_CONFIGURED_BIT
);
3542 if (this_device
->offload_config
) {
3543 this_device
->offload_enabled
=
3544 !!(ioaccel_status
& OFFLOAD_ENABLED_BIT
);
3545 if (hpsa_get_raid_map(h
, scsi3addr
, this_device
))
3546 this_device
->offload_enabled
= 0;
3548 this_device
->offload_to_be_enabled
= this_device
->offload_enabled
;
3554 /* Get the device id from inquiry page 0x83 */
3555 static int hpsa_get_device_id(struct ctlr_info
*h
, unsigned char *scsi3addr
,
3556 unsigned char *device_id
, int index
, int buflen
)
3561 /* Does controller have VPD for device id? */
3562 if (!hpsa_vpd_page_supported(h
, scsi3addr
, HPSA_VPD_LV_DEVICE_ID
))
3563 return 1; /* not supported */
3565 buf
= kzalloc(64, GFP_KERNEL
);
3569 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
|
3570 HPSA_VPD_LV_DEVICE_ID
, buf
, 64);
3574 memcpy(device_id
, &buf
[8], buflen
);
3579 return rc
; /*0 - got id, otherwise, didn't */
3582 static int hpsa_scsi_do_report_luns(struct ctlr_info
*h
, int logical
,
3583 void *buf
, int bufsize
,
3584 int extended_response
)
3587 struct CommandList
*c
;
3588 unsigned char scsi3addr
[8];
3589 struct ErrorInfo
*ei
;
3593 /* address the controller */
3594 memset(scsi3addr
, 0, sizeof(scsi3addr
));
3595 if (fill_cmd(c
, logical
? HPSA_REPORT_LOG
: HPSA_REPORT_PHYS
, h
,
3596 buf
, bufsize
, 0, scsi3addr
, TYPE_CMD
)) {
3600 if (extended_response
)
3601 c
->Request
.CDB
[1] = extended_response
;
3602 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
3603 PCI_DMA_FROMDEVICE
, DEFAULT_TIMEOUT
);
3607 if (ei
->CommandStatus
!= 0 &&
3608 ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3609 hpsa_scsi_interpret_error(h
, c
);
3612 struct ReportLUNdata
*rld
= buf
;
3614 if (rld
->extended_response_flag
!= extended_response
) {
3615 dev_err(&h
->pdev
->dev
,
3616 "report luns requested format %u, got %u\n",
3618 rld
->extended_response_flag
);
3627 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info
*h
,
3628 struct ReportExtendedLUNdata
*buf
, int bufsize
)
3630 return hpsa_scsi_do_report_luns(h
, 0, buf
, bufsize
,
3631 HPSA_REPORT_PHYS_EXTENDED
);
3634 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info
*h
,
3635 struct ReportLUNdata
*buf
, int bufsize
)
3637 return hpsa_scsi_do_report_luns(h
, 1, buf
, bufsize
, 0);
3640 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t
*device
,
3641 int bus
, int target
, int lun
)
3644 device
->target
= target
;
3648 /* Use VPD inquiry to get details of volume status */
3649 static int hpsa_get_volume_status(struct ctlr_info
*h
,
3650 unsigned char scsi3addr
[])
3657 buf
= kzalloc(64, GFP_KERNEL
);
3659 return HPSA_VPD_LV_STATUS_UNSUPPORTED
;
3661 /* Does controller have VPD for logical volume status? */
3662 if (!hpsa_vpd_page_supported(h
, scsi3addr
, HPSA_VPD_LV_STATUS
))
3665 /* Get the size of the VPD return buffer */
3666 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
| HPSA_VPD_LV_STATUS
,
3667 buf
, HPSA_VPD_HEADER_SZ
);
3672 /* Now get the whole VPD buffer */
3673 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
| HPSA_VPD_LV_STATUS
,
3674 buf
, size
+ HPSA_VPD_HEADER_SZ
);
3677 status
= buf
[4]; /* status byte */
3683 return HPSA_VPD_LV_STATUS_UNSUPPORTED
;
3686 /* Determine offline status of a volume.
3689 * 0xff (offline for unknown reasons)
3690 * # (integer code indicating one of several NOT READY states
3691 * describing why a volume is to be kept offline)
3693 static unsigned char hpsa_volume_offline(struct ctlr_info
*h
,
3694 unsigned char scsi3addr
[])
3696 struct CommandList
*c
;
3697 unsigned char *sense
;
3698 u8 sense_key
, asc
, ascq
;
3703 #define ASC_LUN_NOT_READY 0x04
3704 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3705 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3709 (void) fill_cmd(c
, TEST_UNIT_READY
, h
, NULL
, 0, 0, scsi3addr
, TYPE_CMD
);
3710 rc
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
,
3714 return HPSA_VPD_LV_STATUS_UNSUPPORTED
;
3716 sense
= c
->err_info
->SenseInfo
;
3717 if (c
->err_info
->SenseLen
> sizeof(c
->err_info
->SenseInfo
))
3718 sense_len
= sizeof(c
->err_info
->SenseInfo
);
3720 sense_len
= c
->err_info
->SenseLen
;
3721 decode_sense_data(sense
, sense_len
, &sense_key
, &asc
, &ascq
);
3722 cmd_status
= c
->err_info
->CommandStatus
;
3723 scsi_status
= c
->err_info
->ScsiStatus
;
3726 /* Determine the reason for not ready state */
3727 ldstat
= hpsa_get_volume_status(h
, scsi3addr
);
3729 /* Keep volume offline in certain cases: */
3731 case HPSA_LV_FAILED
:
3732 case HPSA_LV_UNDERGOING_ERASE
:
3733 case HPSA_LV_NOT_AVAILABLE
:
3734 case HPSA_LV_UNDERGOING_RPI
:
3735 case HPSA_LV_PENDING_RPI
:
3736 case HPSA_LV_ENCRYPTED_NO_KEY
:
3737 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER
:
3738 case HPSA_LV_UNDERGOING_ENCRYPTION
:
3739 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING
:
3740 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER
:
3742 case HPSA_VPD_LV_STATUS_UNSUPPORTED
:
3743 /* If VPD status page isn't available,
3744 * use ASC/ASCQ to determine state
3746 if ((ascq
== ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS
) ||
3747 (ascq
== ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ
))
3757 * Find out if a logical device supports aborts by simply trying one.
3758 * Smart Array may claim not to support aborts on logical drives, but
3759 * if a MSA2000 * is connected, the drives on that will be presented
3760 * by the Smart Array as logical drives, and aborts may be sent to
3761 * those devices successfully. So the simplest way to find out is
3762 * to simply try an abort and see how the device responds.
3764 static int hpsa_device_supports_aborts(struct ctlr_info
*h
,
3765 unsigned char *scsi3addr
)
3767 struct CommandList
*c
;
3768 struct ErrorInfo
*ei
;
3771 u64 tag
= (u64
) -1; /* bogus tag */
3773 /* Assume that physical devices support aborts */
3774 if (!is_logical_dev_addr_mode(scsi3addr
))
3779 (void) fill_cmd(c
, HPSA_ABORT_MSG
, h
, &tag
, 0, 0, scsi3addr
, TYPE_MSG
);
3780 (void) hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
,
3782 /* no unmap needed here because no data xfer. */
3784 switch (ei
->CommandStatus
) {
3788 case CMD_UNABORTABLE
:
3789 case CMD_ABORT_FAILED
:
3792 case CMD_TMF_STATUS
:
3793 rc
= hpsa_evaluate_tmf_status(h
, c
);
3803 static int hpsa_update_device_info(struct ctlr_info
*h
,
3804 unsigned char scsi3addr
[], struct hpsa_scsi_dev_t
*this_device
,
3805 unsigned char *is_OBDR_device
)
3808 #define OBDR_SIG_OFFSET 43
3809 #define OBDR_TAPE_SIG "$DR-10"
3810 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3811 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3813 unsigned char *inq_buff
;
3814 unsigned char *obdr_sig
;
3817 inq_buff
= kzalloc(OBDR_TAPE_INQ_SIZE
, GFP_KERNEL
);
3823 /* Do an inquiry to the device to see what it is. */
3824 if (hpsa_scsi_do_inquiry(h
, scsi3addr
, 0, inq_buff
,
3825 (unsigned char) OBDR_TAPE_INQ_SIZE
) != 0) {
3826 dev_err(&h
->pdev
->dev
,
3827 "%s: inquiry failed, device will be skipped.\n",
3829 rc
= HPSA_INQUIRY_FAILED
;
3833 scsi_sanitize_inquiry_string(&inq_buff
[8], 8);
3834 scsi_sanitize_inquiry_string(&inq_buff
[16], 16);
3836 this_device
->devtype
= (inq_buff
[0] & 0x1f);
3837 memcpy(this_device
->scsi3addr
, scsi3addr
, 8);
3838 memcpy(this_device
->vendor
, &inq_buff
[8],
3839 sizeof(this_device
->vendor
));
3840 memcpy(this_device
->model
, &inq_buff
[16],
3841 sizeof(this_device
->model
));
3842 this_device
->rev
= inq_buff
[2];
3843 memset(this_device
->device_id
, 0,
3844 sizeof(this_device
->device_id
));
3845 if (hpsa_get_device_id(h
, scsi3addr
, this_device
->device_id
, 8,
3846 sizeof(this_device
->device_id
)))
3847 dev_err(&h
->pdev
->dev
,
3848 "hpsa%d: %s: can't get device id for host %d:C0:T%d:L%d\t%s\t%.16s\n",
3850 h
->scsi_host
->host_no
,
3851 this_device
->target
, this_device
->lun
,
3852 scsi_device_type(this_device
->devtype
),
3853 this_device
->model
);
3855 if ((this_device
->devtype
== TYPE_DISK
||
3856 this_device
->devtype
== TYPE_ZBC
) &&
3857 is_logical_dev_addr_mode(scsi3addr
)) {
3858 unsigned char volume_offline
;
3860 hpsa_get_raid_level(h
, scsi3addr
, &this_device
->raid_level
);
3861 if (h
->fw_support
& MISC_FW_RAID_OFFLOAD_BASIC
)
3862 hpsa_get_ioaccel_status(h
, scsi3addr
, this_device
);
3863 volume_offline
= hpsa_volume_offline(h
, scsi3addr
);
3864 this_device
->volume_offline
= volume_offline
;
3865 if (volume_offline
== HPSA_LV_FAILED
) {
3866 rc
= HPSA_LV_FAILED
;
3867 dev_err(&h
->pdev
->dev
,
3868 "%s: LV failed, device will be skipped.\n",
3873 this_device
->raid_level
= RAID_UNKNOWN
;
3874 this_device
->offload_config
= 0;
3875 this_device
->offload_enabled
= 0;
3876 this_device
->offload_to_be_enabled
= 0;
3877 this_device
->hba_ioaccel_enabled
= 0;
3878 this_device
->volume_offline
= 0;
3879 this_device
->queue_depth
= h
->nr_cmds
;
3882 if (is_OBDR_device
) {
3883 /* See if this is a One-Button-Disaster-Recovery device
3884 * by looking for "$DR-10" at offset 43 in inquiry data.
3886 obdr_sig
= &inq_buff
[OBDR_SIG_OFFSET
];
3887 *is_OBDR_device
= (this_device
->devtype
== TYPE_ROM
&&
3888 strncmp(obdr_sig
, OBDR_TAPE_SIG
,
3889 OBDR_SIG_LEN
) == 0);
3899 static void hpsa_update_device_supports_aborts(struct ctlr_info
*h
,
3900 struct hpsa_scsi_dev_t
*dev
, u8
*scsi3addr
)
3902 unsigned long flags
;
3905 * See if this device supports aborts. If we already know
3906 * the device, we already know if it supports aborts, otherwise
3907 * we have to find out if it supports aborts by trying one.
3909 spin_lock_irqsave(&h
->devlock
, flags
);
3910 rc
= hpsa_scsi_find_entry(dev
, h
->dev
, h
->ndevices
, &entry
);
3911 if ((rc
== DEVICE_SAME
|| rc
== DEVICE_UPDATED
) &&
3912 entry
>= 0 && entry
< h
->ndevices
) {
3913 dev
->supports_aborts
= h
->dev
[entry
]->supports_aborts
;
3914 spin_unlock_irqrestore(&h
->devlock
, flags
);
3916 spin_unlock_irqrestore(&h
->devlock
, flags
);
3917 dev
->supports_aborts
=
3918 hpsa_device_supports_aborts(h
, scsi3addr
);
3919 if (dev
->supports_aborts
< 0)
3920 dev
->supports_aborts
= 0;
3925 * Helper function to assign bus, target, lun mapping of devices.
3926 * Logical drive target and lun are assigned at this time, but
3927 * physical device lun and target assignment are deferred (assigned
3928 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3930 static void figure_bus_target_lun(struct ctlr_info
*h
,
3931 u8
*lunaddrbytes
, struct hpsa_scsi_dev_t
*device
)
3933 u32 lunid
= get_unaligned_le32(lunaddrbytes
);
3935 if (!is_logical_dev_addr_mode(lunaddrbytes
)) {
3936 /* physical device, target and lun filled in later */
3937 if (is_hba_lunid(lunaddrbytes
)) {
3938 int bus
= HPSA_HBA_BUS
;
3941 bus
= HPSA_LEGACY_HBA_BUS
;
3942 hpsa_set_bus_target_lun(device
,
3943 bus
, 0, lunid
& 0x3fff);
3945 /* defer target, lun assignment for physical devices */
3946 hpsa_set_bus_target_lun(device
,
3947 HPSA_PHYSICAL_DEVICE_BUS
, -1, -1);
3950 /* It's a logical device */
3951 if (device
->external
) {
3952 hpsa_set_bus_target_lun(device
,
3953 HPSA_EXTERNAL_RAID_VOLUME_BUS
, (lunid
>> 16) & 0x3fff,
3957 hpsa_set_bus_target_lun(device
, HPSA_RAID_VOLUME_BUS
,
3963 * Get address of physical disk used for an ioaccel2 mode command:
3964 * 1. Extract ioaccel2 handle from the command.
3965 * 2. Find a matching ioaccel2 handle from list of physical disks.
3967 * 1 and set scsi3addr to address of matching physical
3968 * 0 if no matching physical disk was found.
3970 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info
*h
,
3971 struct CommandList
*ioaccel2_cmd_to_abort
, unsigned char *scsi3addr
)
3973 struct io_accel2_cmd
*c2
=
3974 &h
->ioaccel2_cmd_pool
[ioaccel2_cmd_to_abort
->cmdindex
];
3975 unsigned long flags
;
3978 spin_lock_irqsave(&h
->devlock
, flags
);
3979 for (i
= 0; i
< h
->ndevices
; i
++)
3980 if (h
->dev
[i
]->ioaccel_handle
== le32_to_cpu(c2
->scsi_nexus
)) {
3981 memcpy(scsi3addr
, h
->dev
[i
]->scsi3addr
,
3982 sizeof(h
->dev
[i
]->scsi3addr
));
3983 spin_unlock_irqrestore(&h
->devlock
, flags
);
3986 spin_unlock_irqrestore(&h
->devlock
, flags
);
3990 static int figure_external_status(struct ctlr_info
*h
, int raid_ctlr_position
,
3991 int i
, int nphysicals
, int nlocal_logicals
)
3993 /* In report logicals, local logicals are listed first,
3994 * then any externals.
3996 int logicals_start
= nphysicals
+ (raid_ctlr_position
== 0);
3998 if (i
== raid_ctlr_position
)
4001 if (i
< logicals_start
)
4004 /* i is in logicals range, but still within local logicals */
4005 if ((i
- nphysicals
- (raid_ctlr_position
== 0)) < nlocal_logicals
)
4008 return 1; /* it's an external lun */
4012 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
4013 * logdev. The number of luns in physdev and logdev are returned in
4014 * *nphysicals and *nlogicals, respectively.
4015 * Returns 0 on success, -1 otherwise.
4017 static int hpsa_gather_lun_info(struct ctlr_info
*h
,
4018 struct ReportExtendedLUNdata
*physdev
, u32
*nphysicals
,
4019 struct ReportLUNdata
*logdev
, u32
*nlogicals
)
4021 if (hpsa_scsi_do_report_phys_luns(h
, physdev
, sizeof(*physdev
))) {
4022 dev_err(&h
->pdev
->dev
, "report physical LUNs failed.\n");
4025 *nphysicals
= be32_to_cpu(*((__be32
*)physdev
->LUNListLength
)) / 24;
4026 if (*nphysicals
> HPSA_MAX_PHYS_LUN
) {
4027 dev_warn(&h
->pdev
->dev
, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4028 HPSA_MAX_PHYS_LUN
, *nphysicals
- HPSA_MAX_PHYS_LUN
);
4029 *nphysicals
= HPSA_MAX_PHYS_LUN
;
4031 if (hpsa_scsi_do_report_log_luns(h
, logdev
, sizeof(*logdev
))) {
4032 dev_err(&h
->pdev
->dev
, "report logical LUNs failed.\n");
4035 *nlogicals
= be32_to_cpu(*((__be32
*) logdev
->LUNListLength
)) / 8;
4036 /* Reject Logicals in excess of our max capability. */
4037 if (*nlogicals
> HPSA_MAX_LUN
) {
4038 dev_warn(&h
->pdev
->dev
,
4039 "maximum logical LUNs (%d) exceeded. "
4040 "%d LUNs ignored.\n", HPSA_MAX_LUN
,
4041 *nlogicals
- HPSA_MAX_LUN
);
4042 *nlogicals
= HPSA_MAX_LUN
;
4044 if (*nlogicals
+ *nphysicals
> HPSA_MAX_PHYS_LUN
) {
4045 dev_warn(&h
->pdev
->dev
,
4046 "maximum logical + physical LUNs (%d) exceeded. "
4047 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN
,
4048 *nphysicals
+ *nlogicals
- HPSA_MAX_PHYS_LUN
);
4049 *nlogicals
= HPSA_MAX_PHYS_LUN
- *nphysicals
;
4054 static u8
*figure_lunaddrbytes(struct ctlr_info
*h
, int raid_ctlr_position
,
4055 int i
, int nphysicals
, int nlogicals
,
4056 struct ReportExtendedLUNdata
*physdev_list
,
4057 struct ReportLUNdata
*logdev_list
)
4059 /* Helper function, figure out where the LUN ID info is coming from
4060 * given index i, lists of physical and logical devices, where in
4061 * the list the raid controller is supposed to appear (first or last)
4064 int logicals_start
= nphysicals
+ (raid_ctlr_position
== 0);
4065 int last_device
= nphysicals
+ nlogicals
+ (raid_ctlr_position
== 0);
4067 if (i
== raid_ctlr_position
)
4068 return RAID_CTLR_LUNID
;
4070 if (i
< logicals_start
)
4071 return &physdev_list
->LUN
[i
-
4072 (raid_ctlr_position
== 0)].lunid
[0];
4074 if (i
< last_device
)
4075 return &logdev_list
->LUN
[i
- nphysicals
-
4076 (raid_ctlr_position
== 0)][0];
4081 /* get physical drive ioaccel handle and queue depth */
4082 static void hpsa_get_ioaccel_drive_info(struct ctlr_info
*h
,
4083 struct hpsa_scsi_dev_t
*dev
,
4084 struct ReportExtendedLUNdata
*rlep
, int rle_index
,
4085 struct bmic_identify_physical_device
*id_phys
)
4088 struct ext_report_lun_entry
*rle
;
4091 * external targets don't support BMIC
4093 if (dev
->external
) {
4094 dev
->queue_depth
= 7;
4098 rle
= &rlep
->LUN
[rle_index
];
4100 dev
->ioaccel_handle
= rle
->ioaccel_handle
;
4101 if ((rle
->device_flags
& 0x08) && dev
->ioaccel_handle
)
4102 dev
->hba_ioaccel_enabled
= 1;
4103 memset(id_phys
, 0, sizeof(*id_phys
));
4104 rc
= hpsa_bmic_id_physical_device(h
, &rle
->lunid
[0],
4105 GET_BMIC_DRIVE_NUMBER(&rle
->lunid
[0]), id_phys
,
4108 /* Reserve space for FW operations */
4109 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4110 #define DRIVE_QUEUE_DEPTH 7
4112 le16_to_cpu(id_phys
->current_queue_depth_limit
) -
4113 DRIVE_CMDS_RESERVED_FOR_FW
;
4115 dev
->queue_depth
= DRIVE_QUEUE_DEPTH
; /* conservative */
4118 static void hpsa_get_path_info(struct hpsa_scsi_dev_t
*this_device
,
4119 struct ReportExtendedLUNdata
*rlep
, int rle_index
,
4120 struct bmic_identify_physical_device
*id_phys
)
4122 struct ext_report_lun_entry
*rle
= &rlep
->LUN
[rle_index
];
4124 if ((rle
->device_flags
& 0x08) && this_device
->ioaccel_handle
)
4125 this_device
->hba_ioaccel_enabled
= 1;
4127 memcpy(&this_device
->active_path_index
,
4128 &id_phys
->active_path_number
,
4129 sizeof(this_device
->active_path_index
));
4130 memcpy(&this_device
->path_map
,
4131 &id_phys
->redundant_path_present_map
,
4132 sizeof(this_device
->path_map
));
4133 memcpy(&this_device
->box
,
4134 &id_phys
->alternate_paths_phys_box_on_port
,
4135 sizeof(this_device
->box
));
4136 memcpy(&this_device
->phys_connector
,
4137 &id_phys
->alternate_paths_phys_connector
,
4138 sizeof(this_device
->phys_connector
));
4139 memcpy(&this_device
->bay
,
4140 &id_phys
->phys_bay_in_box
,
4141 sizeof(this_device
->bay
));
4144 /* get number of local logical disks. */
4145 static int hpsa_set_local_logical_count(struct ctlr_info
*h
,
4146 struct bmic_identify_controller
*id_ctlr
,
4152 dev_warn(&h
->pdev
->dev
, "%s: id_ctlr buffer is NULL.\n",
4156 memset(id_ctlr
, 0, sizeof(*id_ctlr
));
4157 rc
= hpsa_bmic_id_controller(h
, id_ctlr
, sizeof(*id_ctlr
));
4159 if (id_ctlr
->configured_logical_drive_count
< 256)
4160 *nlocals
= id_ctlr
->configured_logical_drive_count
;
4162 *nlocals
= le16_to_cpu(
4163 id_ctlr
->extended_logical_unit_count
);
4169 static bool hpsa_is_disk_spare(struct ctlr_info
*h
, u8
*lunaddrbytes
)
4171 struct bmic_identify_physical_device
*id_phys
;
4172 bool is_spare
= false;
4175 id_phys
= kzalloc(sizeof(*id_phys
), GFP_KERNEL
);
4179 rc
= hpsa_bmic_id_physical_device(h
,
4181 GET_BMIC_DRIVE_NUMBER(lunaddrbytes
),
4182 id_phys
, sizeof(*id_phys
));
4184 is_spare
= (id_phys
->more_flags
>> 6) & 0x01;
4190 #define RPL_DEV_FLAG_NON_DISK 0x1
4191 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED 0x2
4192 #define RPL_DEV_FLAG_UNCONFIG_DISK 0x4
4194 #define BMIC_DEVICE_TYPE_ENCLOSURE 6
4196 static bool hpsa_skip_device(struct ctlr_info
*h
, u8
*lunaddrbytes
,
4197 struct ext_report_lun_entry
*rle
)
4202 if (!MASKED_DEVICE(lunaddrbytes
))
4205 device_flags
= rle
->device_flags
;
4206 device_type
= rle
->device_type
;
4208 if (device_flags
& RPL_DEV_FLAG_NON_DISK
) {
4209 if (device_type
== BMIC_DEVICE_TYPE_ENCLOSURE
)
4214 if (!(device_flags
& RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED
))
4217 if (device_flags
& RPL_DEV_FLAG_UNCONFIG_DISK
)
4221 * Spares may be spun down, we do not want to
4222 * do an Inquiry to a RAID set spare drive as
4223 * that would have them spun up, that is a
4224 * performance hit because I/O to the RAID device
4225 * stops while the spin up occurs which can take
4228 if (hpsa_is_disk_spare(h
, lunaddrbytes
))
4234 static void hpsa_update_scsi_devices(struct ctlr_info
*h
)
4236 /* the idea here is we could get notified
4237 * that some devices have changed, so we do a report
4238 * physical luns and report logical luns cmd, and adjust
4239 * our list of devices accordingly.
4241 * The scsi3addr's of devices won't change so long as the
4242 * adapter is not reset. That means we can rescan and
4243 * tell which devices we already know about, vs. new
4244 * devices, vs. disappearing devices.
4246 struct ReportExtendedLUNdata
*physdev_list
= NULL
;
4247 struct ReportLUNdata
*logdev_list
= NULL
;
4248 struct bmic_identify_physical_device
*id_phys
= NULL
;
4249 struct bmic_identify_controller
*id_ctlr
= NULL
;
4252 u32 nlocal_logicals
= 0;
4253 u32 ndev_allocated
= 0;
4254 struct hpsa_scsi_dev_t
**currentsd
, *this_device
, *tmpdevice
;
4256 int i
, n_ext_target_devs
, ndevs_to_allocate
;
4257 int raid_ctlr_position
;
4258 bool physical_device
;
4259 DECLARE_BITMAP(lunzerobits
, MAX_EXT_TARGETS
);
4261 currentsd
= kzalloc(sizeof(*currentsd
) * HPSA_MAX_DEVICES
, GFP_KERNEL
);
4262 physdev_list
= kzalloc(sizeof(*physdev_list
), GFP_KERNEL
);
4263 logdev_list
= kzalloc(sizeof(*logdev_list
), GFP_KERNEL
);
4264 tmpdevice
= kzalloc(sizeof(*tmpdevice
), GFP_KERNEL
);
4265 id_phys
= kzalloc(sizeof(*id_phys
), GFP_KERNEL
);
4266 id_ctlr
= kzalloc(sizeof(*id_ctlr
), GFP_KERNEL
);
4268 if (!currentsd
|| !physdev_list
|| !logdev_list
||
4269 !tmpdevice
|| !id_phys
|| !id_ctlr
) {
4270 dev_err(&h
->pdev
->dev
, "out of memory\n");
4273 memset(lunzerobits
, 0, sizeof(lunzerobits
));
4275 h
->drv_req_rescan
= 0; /* cancel scheduled rescan - we're doing it. */
4277 if (hpsa_gather_lun_info(h
, physdev_list
, &nphysicals
,
4278 logdev_list
, &nlogicals
)) {
4279 h
->drv_req_rescan
= 1;
4283 /* Set number of local logicals (non PTRAID) */
4284 if (hpsa_set_local_logical_count(h
, id_ctlr
, &nlocal_logicals
)) {
4285 dev_warn(&h
->pdev
->dev
,
4286 "%s: Can't determine number of local logical devices.\n",
4290 /* We might see up to the maximum number of logical and physical disks
4291 * plus external target devices, and a device for the local RAID
4294 ndevs_to_allocate
= nphysicals
+ nlogicals
+ MAX_EXT_TARGETS
+ 1;
4296 /* Allocate the per device structures */
4297 for (i
= 0; i
< ndevs_to_allocate
; i
++) {
4298 if (i
>= HPSA_MAX_DEVICES
) {
4299 dev_warn(&h
->pdev
->dev
, "maximum devices (%d) exceeded."
4300 " %d devices ignored.\n", HPSA_MAX_DEVICES
,
4301 ndevs_to_allocate
- HPSA_MAX_DEVICES
);
4305 currentsd
[i
] = kzalloc(sizeof(*currentsd
[i
]), GFP_KERNEL
);
4306 if (!currentsd
[i
]) {
4307 dev_warn(&h
->pdev
->dev
, "out of memory at %s:%d\n",
4308 __FILE__
, __LINE__
);
4309 h
->drv_req_rescan
= 1;
4315 if (is_scsi_rev_5(h
))
4316 raid_ctlr_position
= 0;
4318 raid_ctlr_position
= nphysicals
+ nlogicals
;
4320 /* adjust our table of devices */
4321 n_ext_target_devs
= 0;
4322 for (i
= 0; i
< nphysicals
+ nlogicals
+ 1; i
++) {
4323 u8
*lunaddrbytes
, is_OBDR
= 0;
4325 int phys_dev_index
= i
- (raid_ctlr_position
== 0);
4326 bool skip_device
= false;
4328 physical_device
= i
< nphysicals
+ (raid_ctlr_position
== 0);
4330 /* Figure out where the LUN ID info is coming from */
4331 lunaddrbytes
= figure_lunaddrbytes(h
, raid_ctlr_position
,
4332 i
, nphysicals
, nlogicals
, physdev_list
, logdev_list
);
4334 /* Determine if this is a lun from an external target array */
4335 tmpdevice
->external
=
4336 figure_external_status(h
, raid_ctlr_position
, i
,
4337 nphysicals
, nlocal_logicals
);
4340 * Skip over some devices such as a spare.
4342 if (!tmpdevice
->external
&& physical_device
) {
4343 skip_device
= hpsa_skip_device(h
, lunaddrbytes
,
4344 &physdev_list
->LUN
[phys_dev_index
]);
4349 /* Get device type, vendor, model, device id */
4350 rc
= hpsa_update_device_info(h
, lunaddrbytes
, tmpdevice
,
4352 if (rc
== -ENOMEM
) {
4353 dev_warn(&h
->pdev
->dev
,
4354 "Out of memory, rescan deferred.\n");
4355 h
->drv_req_rescan
= 1;
4359 h
->drv_req_rescan
= 1;
4363 figure_bus_target_lun(h
, lunaddrbytes
, tmpdevice
);
4364 hpsa_update_device_supports_aborts(h
, tmpdevice
, lunaddrbytes
);
4365 this_device
= currentsd
[ncurrent
];
4367 /* Turn on discovery_polling if there are ext target devices.
4368 * Event-based change notification is unreliable for those.
4370 if (!h
->discovery_polling
) {
4371 if (tmpdevice
->external
) {
4372 h
->discovery_polling
= 1;
4373 dev_info(&h
->pdev
->dev
,
4374 "External target, activate discovery polling.\n");
4379 *this_device
= *tmpdevice
;
4380 this_device
->physical_device
= physical_device
;
4383 * Expose all devices except for physical devices that
4386 if (MASKED_DEVICE(lunaddrbytes
) && this_device
->physical_device
)
4387 this_device
->expose_device
= 0;
4389 this_device
->expose_device
= 1;
4393 * Get the SAS address for physical devices that are exposed.
4395 if (this_device
->physical_device
&& this_device
->expose_device
)
4396 hpsa_get_sas_address(h
, lunaddrbytes
, this_device
);
4398 switch (this_device
->devtype
) {
4400 /* We don't *really* support actual CD-ROM devices,
4401 * just "One Button Disaster Recovery" tape drive
4402 * which temporarily pretends to be a CD-ROM drive.
4403 * So we check that the device is really an OBDR tape
4404 * device by checking for "$DR-10" in bytes 43-48 of
4412 if (this_device
->physical_device
) {
4413 /* The disk is in HBA mode. */
4414 /* Never use RAID mapper in HBA mode. */
4415 this_device
->offload_enabled
= 0;
4416 hpsa_get_ioaccel_drive_info(h
, this_device
,
4417 physdev_list
, phys_dev_index
, id_phys
);
4418 hpsa_get_path_info(this_device
,
4419 physdev_list
, phys_dev_index
, id_phys
);
4424 case TYPE_MEDIUM_CHANGER
:
4427 case TYPE_ENCLOSURE
:
4428 if (!this_device
->external
)
4429 hpsa_get_enclosure_info(h
, lunaddrbytes
,
4430 physdev_list
, phys_dev_index
,
4435 /* Only present the Smartarray HBA as a RAID controller.
4436 * If it's a RAID controller other than the HBA itself
4437 * (an external RAID controller, MSA500 or similar)
4440 if (!is_hba_lunid(lunaddrbytes
))
4447 if (ncurrent
>= HPSA_MAX_DEVICES
)
4451 if (h
->sas_host
== NULL
) {
4454 rc
= hpsa_add_sas_host(h
);
4456 dev_warn(&h
->pdev
->dev
,
4457 "Could not add sas host %d\n", rc
);
4462 adjust_hpsa_scsi_table(h
, currentsd
, ncurrent
);
4465 for (i
= 0; i
< ndev_allocated
; i
++)
4466 kfree(currentsd
[i
]);
4468 kfree(physdev_list
);
4474 static void hpsa_set_sg_descriptor(struct SGDescriptor
*desc
,
4475 struct scatterlist
*sg
)
4477 u64 addr64
= (u64
) sg_dma_address(sg
);
4478 unsigned int len
= sg_dma_len(sg
);
4480 desc
->Addr
= cpu_to_le64(addr64
);
4481 desc
->Len
= cpu_to_le32(len
);
4486 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4487 * dma mapping and fills in the scatter gather entries of the
4490 static int hpsa_scatter_gather(struct ctlr_info
*h
,
4491 struct CommandList
*cp
,
4492 struct scsi_cmnd
*cmd
)
4494 struct scatterlist
*sg
;
4495 int use_sg
, i
, sg_limit
, chained
, last_sg
;
4496 struct SGDescriptor
*curr_sg
;
4498 BUG_ON(scsi_sg_count(cmd
) > h
->maxsgentries
);
4500 use_sg
= scsi_dma_map(cmd
);
4505 goto sglist_finished
;
4508 * If the number of entries is greater than the max for a single list,
4509 * then we have a chained list; we will set up all but one entry in the
4510 * first list (the last entry is saved for link information);
4511 * otherwise, we don't have a chained list and we'll set up at each of
4512 * the entries in the one list.
4515 chained
= use_sg
> h
->max_cmd_sg_entries
;
4516 sg_limit
= chained
? h
->max_cmd_sg_entries
- 1 : use_sg
;
4517 last_sg
= scsi_sg_count(cmd
) - 1;
4518 scsi_for_each_sg(cmd
, sg
, sg_limit
, i
) {
4519 hpsa_set_sg_descriptor(curr_sg
, sg
);
4525 * Continue with the chained list. Set curr_sg to the chained
4526 * list. Modify the limit to the total count less the entries
4527 * we've already set up. Resume the scan at the list entry
4528 * where the previous loop left off.
4530 curr_sg
= h
->cmd_sg_list
[cp
->cmdindex
];
4531 sg_limit
= use_sg
- sg_limit
;
4532 for_each_sg(sg
, sg
, sg_limit
, i
) {
4533 hpsa_set_sg_descriptor(curr_sg
, sg
);
4538 /* Back the pointer up to the last entry and mark it as "last". */
4539 (curr_sg
- 1)->Ext
= cpu_to_le32(HPSA_SG_LAST
);
4541 if (use_sg
+ chained
> h
->maxSG
)
4542 h
->maxSG
= use_sg
+ chained
;
4545 cp
->Header
.SGList
= h
->max_cmd_sg_entries
;
4546 cp
->Header
.SGTotal
= cpu_to_le16(use_sg
+ 1);
4547 if (hpsa_map_sg_chain_block(h
, cp
)) {
4548 scsi_dma_unmap(cmd
);
4556 cp
->Header
.SGList
= (u8
) use_sg
; /* no. SGs contig in this cmd */
4557 cp
->Header
.SGTotal
= cpu_to_le16(use_sg
); /* total sgs in cmd list */
4561 #define IO_ACCEL_INELIGIBLE (1)
4562 static int fixup_ioaccel_cdb(u8
*cdb
, int *cdb_len
)
4568 /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4575 if (*cdb_len
== 6) {
4576 block
= (((cdb
[1] & 0x1F) << 16) |
4583 BUG_ON(*cdb_len
!= 12);
4584 block
= get_unaligned_be32(&cdb
[2]);
4585 block_cnt
= get_unaligned_be32(&cdb
[6]);
4587 if (block_cnt
> 0xffff)
4588 return IO_ACCEL_INELIGIBLE
;
4590 cdb
[0] = is_write
? WRITE_10
: READ_10
;
4592 cdb
[2] = (u8
) (block
>> 24);
4593 cdb
[3] = (u8
) (block
>> 16);
4594 cdb
[4] = (u8
) (block
>> 8);
4595 cdb
[5] = (u8
) (block
);
4597 cdb
[7] = (u8
) (block_cnt
>> 8);
4598 cdb
[8] = (u8
) (block_cnt
);
4606 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info
*h
,
4607 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
4608 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
)
4610 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4611 struct io_accel1_cmd
*cp
= &h
->ioaccel_cmd_pool
[c
->cmdindex
];
4613 unsigned int total_len
= 0;
4614 struct scatterlist
*sg
;
4617 struct SGDescriptor
*curr_sg
;
4618 u32 control
= IOACCEL1_CONTROL_SIMPLEQUEUE
;
4620 /* TODO: implement chaining support */
4621 if (scsi_sg_count(cmd
) > h
->ioaccel_maxsg
) {
4622 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4623 return IO_ACCEL_INELIGIBLE
;
4626 BUG_ON(cmd
->cmd_len
> IOACCEL1_IOFLAGS_CDBLEN_MAX
);
4628 if (fixup_ioaccel_cdb(cdb
, &cdb_len
)) {
4629 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4630 return IO_ACCEL_INELIGIBLE
;
4633 c
->cmd_type
= CMD_IOACCEL1
;
4635 /* Adjust the DMA address to point to the accelerated command buffer */
4636 c
->busaddr
= (u32
) h
->ioaccel_cmd_pool_dhandle
+
4637 (c
->cmdindex
* sizeof(*cp
));
4638 BUG_ON(c
->busaddr
& 0x0000007F);
4640 use_sg
= scsi_dma_map(cmd
);
4642 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4648 scsi_for_each_sg(cmd
, sg
, use_sg
, i
) {
4649 addr64
= (u64
) sg_dma_address(sg
);
4650 len
= sg_dma_len(sg
);
4652 curr_sg
->Addr
= cpu_to_le64(addr64
);
4653 curr_sg
->Len
= cpu_to_le32(len
);
4654 curr_sg
->Ext
= cpu_to_le32(0);
4657 (--curr_sg
)->Ext
= cpu_to_le32(HPSA_SG_LAST
);
4659 switch (cmd
->sc_data_direction
) {
4661 control
|= IOACCEL1_CONTROL_DATA_OUT
;
4663 case DMA_FROM_DEVICE
:
4664 control
|= IOACCEL1_CONTROL_DATA_IN
;
4667 control
|= IOACCEL1_CONTROL_NODATAXFER
;
4670 dev_err(&h
->pdev
->dev
, "unknown data direction: %d\n",
4671 cmd
->sc_data_direction
);
4676 control
|= IOACCEL1_CONTROL_NODATAXFER
;
4679 c
->Header
.SGList
= use_sg
;
4680 /* Fill out the command structure to submit */
4681 cp
->dev_handle
= cpu_to_le16(ioaccel_handle
& 0xFFFF);
4682 cp
->transfer_len
= cpu_to_le32(total_len
);
4683 cp
->io_flags
= cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ
|
4684 (cdb_len
& IOACCEL1_IOFLAGS_CDBLEN_MASK
));
4685 cp
->control
= cpu_to_le32(control
);
4686 memcpy(cp
->CDB
, cdb
, cdb_len
);
4687 memcpy(cp
->CISS_LUN
, scsi3addr
, 8);
4688 /* Tag was already set at init time. */
4689 enqueue_cmd_and_start_io(h
, c
);
4694 * Queue a command directly to a device behind the controller using the
4695 * I/O accelerator path.
4697 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info
*h
,
4698 struct CommandList
*c
)
4700 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4701 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
4708 return hpsa_scsi_ioaccel_queue_command(h
, c
, dev
->ioaccel_handle
,
4709 cmd
->cmnd
, cmd
->cmd_len
, dev
->scsi3addr
, dev
);
4713 * Set encryption parameters for the ioaccel2 request
4715 static void set_encrypt_ioaccel2(struct ctlr_info
*h
,
4716 struct CommandList
*c
, struct io_accel2_cmd
*cp
)
4718 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4719 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
4720 struct raid_map_data
*map
= &dev
->raid_map
;
4723 /* Are we doing encryption on this device */
4724 if (!(le16_to_cpu(map
->flags
) & RAID_MAP_FLAG_ENCRYPT_ON
))
4726 /* Set the data encryption key index. */
4727 cp
->dekindex
= map
->dekindex
;
4729 /* Set the encryption enable flag, encoded into direction field. */
4730 cp
->direction
|= IOACCEL2_DIRECTION_ENCRYPT_MASK
;
4732 /* Set encryption tweak values based on logical block address
4733 * If block size is 512, tweak value is LBA.
4734 * For other block sizes, tweak is (LBA * block size)/ 512)
4736 switch (cmd
->cmnd
[0]) {
4737 /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4740 first_block
= (((cmd
->cmnd
[1] & 0x1F) << 16) |
4741 (cmd
->cmnd
[2] << 8) |
4746 /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4749 first_block
= get_unaligned_be32(&cmd
->cmnd
[2]);
4753 first_block
= get_unaligned_be64(&cmd
->cmnd
[2]);
4756 dev_err(&h
->pdev
->dev
,
4757 "ERROR: %s: size (0x%x) not supported for encryption\n",
4758 __func__
, cmd
->cmnd
[0]);
4763 if (le32_to_cpu(map
->volume_blk_size
) != 512)
4764 first_block
= first_block
*
4765 le32_to_cpu(map
->volume_blk_size
)/512;
4767 cp
->tweak_lower
= cpu_to_le32(first_block
);
4768 cp
->tweak_upper
= cpu_to_le32(first_block
>> 32);
4771 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info
*h
,
4772 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
4773 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
)
4775 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4776 struct io_accel2_cmd
*cp
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
4777 struct ioaccel2_sg_element
*curr_sg
;
4779 struct scatterlist
*sg
;
4787 if (!cmd
->device
->hostdata
)
4790 BUG_ON(scsi_sg_count(cmd
) > h
->maxsgentries
);
4792 if (fixup_ioaccel_cdb(cdb
, &cdb_len
)) {
4793 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4794 return IO_ACCEL_INELIGIBLE
;
4797 c
->cmd_type
= CMD_IOACCEL2
;
4798 /* Adjust the DMA address to point to the accelerated command buffer */
4799 c
->busaddr
= (u32
) h
->ioaccel2_cmd_pool_dhandle
+
4800 (c
->cmdindex
* sizeof(*cp
));
4801 BUG_ON(c
->busaddr
& 0x0000007F);
4803 memset(cp
, 0, sizeof(*cp
));
4804 cp
->IU_type
= IOACCEL2_IU_TYPE
;
4806 use_sg
= scsi_dma_map(cmd
);
4808 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4814 if (use_sg
> h
->ioaccel_maxsg
) {
4815 addr64
= le64_to_cpu(
4816 h
->ioaccel2_cmd_sg_list
[c
->cmdindex
]->address
);
4817 curr_sg
->address
= cpu_to_le64(addr64
);
4818 curr_sg
->length
= 0;
4819 curr_sg
->reserved
[0] = 0;
4820 curr_sg
->reserved
[1] = 0;
4821 curr_sg
->reserved
[2] = 0;
4822 curr_sg
->chain_indicator
= IOACCEL2_CHAIN
;
4824 curr_sg
= h
->ioaccel2_cmd_sg_list
[c
->cmdindex
];
4826 scsi_for_each_sg(cmd
, sg
, use_sg
, i
) {
4827 addr64
= (u64
) sg_dma_address(sg
);
4828 len
= sg_dma_len(sg
);
4830 curr_sg
->address
= cpu_to_le64(addr64
);
4831 curr_sg
->length
= cpu_to_le32(len
);
4832 curr_sg
->reserved
[0] = 0;
4833 curr_sg
->reserved
[1] = 0;
4834 curr_sg
->reserved
[2] = 0;
4835 curr_sg
->chain_indicator
= 0;
4840 * Set the last s/g element bit
4842 (curr_sg
- 1)->chain_indicator
= IOACCEL2_LAST_SG
;
4844 switch (cmd
->sc_data_direction
) {
4846 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4847 cp
->direction
|= IOACCEL2_DIR_DATA_OUT
;
4849 case DMA_FROM_DEVICE
:
4850 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4851 cp
->direction
|= IOACCEL2_DIR_DATA_IN
;
4854 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4855 cp
->direction
|= IOACCEL2_DIR_NO_DATA
;
4858 dev_err(&h
->pdev
->dev
, "unknown data direction: %d\n",
4859 cmd
->sc_data_direction
);
4864 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4865 cp
->direction
|= IOACCEL2_DIR_NO_DATA
;
4868 /* Set encryption parameters, if necessary */
4869 set_encrypt_ioaccel2(h
, c
, cp
);
4871 cp
->scsi_nexus
= cpu_to_le32(ioaccel_handle
);
4872 cp
->Tag
= cpu_to_le32(c
->cmdindex
<< DIRECT_LOOKUP_SHIFT
);
4873 memcpy(cp
->cdb
, cdb
, sizeof(cp
->cdb
));
4875 cp
->data_len
= cpu_to_le32(total_len
);
4876 cp
->err_ptr
= cpu_to_le64(c
->busaddr
+
4877 offsetof(struct io_accel2_cmd
, error_data
));
4878 cp
->err_len
= cpu_to_le32(sizeof(cp
->error_data
));
4880 /* fill in sg elements */
4881 if (use_sg
> h
->ioaccel_maxsg
) {
4883 cp
->sg
[0].length
= cpu_to_le32(use_sg
* sizeof(cp
->sg
[0]));
4884 if (hpsa_map_ioaccel2_sg_chain_block(h
, cp
, c
)) {
4885 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4886 scsi_dma_unmap(cmd
);
4890 cp
->sg_count
= (u8
) use_sg
;
4892 enqueue_cmd_and_start_io(h
, c
);
4897 * Queue a command to the correct I/O accelerator path.
4899 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info
*h
,
4900 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
4901 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
)
4903 if (!c
->scsi_cmd
->device
)
4906 if (!c
->scsi_cmd
->device
->hostdata
)
4909 /* Try to honor the device's queue depth */
4910 if (atomic_inc_return(&phys_disk
->ioaccel_cmds_out
) >
4911 phys_disk
->queue_depth
) {
4912 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4913 return IO_ACCEL_INELIGIBLE
;
4915 if (h
->transMethod
& CFGTBL_Trans_io_accel1
)
4916 return hpsa_scsi_ioaccel1_queue_command(h
, c
, ioaccel_handle
,
4917 cdb
, cdb_len
, scsi3addr
,
4920 return hpsa_scsi_ioaccel2_queue_command(h
, c
, ioaccel_handle
,
4921 cdb
, cdb_len
, scsi3addr
,
4925 static void raid_map_helper(struct raid_map_data
*map
,
4926 int offload_to_mirror
, u32
*map_index
, u32
*current_group
)
4928 if (offload_to_mirror
== 0) {
4929 /* use physical disk in the first mirrored group. */
4930 *map_index
%= le16_to_cpu(map
->data_disks_per_row
);
4934 /* determine mirror group that *map_index indicates */
4935 *current_group
= *map_index
/
4936 le16_to_cpu(map
->data_disks_per_row
);
4937 if (offload_to_mirror
== *current_group
)
4939 if (*current_group
< le16_to_cpu(map
->layout_map_count
) - 1) {
4940 /* select map index from next group */
4941 *map_index
+= le16_to_cpu(map
->data_disks_per_row
);
4944 /* select map index from first group */
4945 *map_index
%= le16_to_cpu(map
->data_disks_per_row
);
4948 } while (offload_to_mirror
!= *current_group
);
4952 * Attempt to perform offload RAID mapping for a logical volume I/O.
4954 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info
*h
,
4955 struct CommandList
*c
)
4957 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4958 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
4959 struct raid_map_data
*map
= &dev
->raid_map
;
4960 struct raid_map_disk_data
*dd
= &map
->data
[0];
4963 u64 first_block
, last_block
;
4966 u64 first_row
, last_row
;
4967 u32 first_row_offset
, last_row_offset
;
4968 u32 first_column
, last_column
;
4969 u64 r0_first_row
, r0_last_row
;
4970 u32 r5or6_blocks_per_row
;
4971 u64 r5or6_first_row
, r5or6_last_row
;
4972 u32 r5or6_first_row_offset
, r5or6_last_row_offset
;
4973 u32 r5or6_first_column
, r5or6_last_column
;
4974 u32 total_disks_per_row
;
4976 u32 first_group
, last_group
, current_group
;
4984 #if BITS_PER_LONG == 32
4987 int offload_to_mirror
;
4992 /* check for valid opcode, get LBA and block count */
4993 switch (cmd
->cmnd
[0]) {
4997 first_block
= (((cmd
->cmnd
[1] & 0x1F) << 16) |
4998 (cmd
->cmnd
[2] << 8) |
5000 block_cnt
= cmd
->cmnd
[4];
5008 (((u64
) cmd
->cmnd
[2]) << 24) |
5009 (((u64
) cmd
->cmnd
[3]) << 16) |
5010 (((u64
) cmd
->cmnd
[4]) << 8) |
5013 (((u32
) cmd
->cmnd
[7]) << 8) |
5020 (((u64
) cmd
->cmnd
[2]) << 24) |
5021 (((u64
) cmd
->cmnd
[3]) << 16) |
5022 (((u64
) cmd
->cmnd
[4]) << 8) |
5025 (((u32
) cmd
->cmnd
[6]) << 24) |
5026 (((u32
) cmd
->cmnd
[7]) << 16) |
5027 (((u32
) cmd
->cmnd
[8]) << 8) |
5034 (((u64
) cmd
->cmnd
[2]) << 56) |
5035 (((u64
) cmd
->cmnd
[3]) << 48) |
5036 (((u64
) cmd
->cmnd
[4]) << 40) |
5037 (((u64
) cmd
->cmnd
[5]) << 32) |
5038 (((u64
) cmd
->cmnd
[6]) << 24) |
5039 (((u64
) cmd
->cmnd
[7]) << 16) |
5040 (((u64
) cmd
->cmnd
[8]) << 8) |
5043 (((u32
) cmd
->cmnd
[10]) << 24) |
5044 (((u32
) cmd
->cmnd
[11]) << 16) |
5045 (((u32
) cmd
->cmnd
[12]) << 8) |
5049 return IO_ACCEL_INELIGIBLE
; /* process via normal I/O path */
5051 last_block
= first_block
+ block_cnt
- 1;
5053 /* check for write to non-RAID-0 */
5054 if (is_write
&& dev
->raid_level
!= 0)
5055 return IO_ACCEL_INELIGIBLE
;
5057 /* check for invalid block or wraparound */
5058 if (last_block
>= le64_to_cpu(map
->volume_blk_cnt
) ||
5059 last_block
< first_block
)
5060 return IO_ACCEL_INELIGIBLE
;
5062 /* calculate stripe information for the request */
5063 blocks_per_row
= le16_to_cpu(map
->data_disks_per_row
) *
5064 le16_to_cpu(map
->strip_size
);
5065 strip_size
= le16_to_cpu(map
->strip_size
);
5066 #if BITS_PER_LONG == 32
5067 tmpdiv
= first_block
;
5068 (void) do_div(tmpdiv
, blocks_per_row
);
5070 tmpdiv
= last_block
;
5071 (void) do_div(tmpdiv
, blocks_per_row
);
5073 first_row_offset
= (u32
) (first_block
- (first_row
* blocks_per_row
));
5074 last_row_offset
= (u32
) (last_block
- (last_row
* blocks_per_row
));
5075 tmpdiv
= first_row_offset
;
5076 (void) do_div(tmpdiv
, strip_size
);
5077 first_column
= tmpdiv
;
5078 tmpdiv
= last_row_offset
;
5079 (void) do_div(tmpdiv
, strip_size
);
5080 last_column
= tmpdiv
;
5082 first_row
= first_block
/ blocks_per_row
;
5083 last_row
= last_block
/ blocks_per_row
;
5084 first_row_offset
= (u32
) (first_block
- (first_row
* blocks_per_row
));
5085 last_row_offset
= (u32
) (last_block
- (last_row
* blocks_per_row
));
5086 first_column
= first_row_offset
/ strip_size
;
5087 last_column
= last_row_offset
/ strip_size
;
5090 /* if this isn't a single row/column then give to the controller */
5091 if ((first_row
!= last_row
) || (first_column
!= last_column
))
5092 return IO_ACCEL_INELIGIBLE
;
5094 /* proceeding with driver mapping */
5095 total_disks_per_row
= le16_to_cpu(map
->data_disks_per_row
) +
5096 le16_to_cpu(map
->metadata_disks_per_row
);
5097 map_row
= ((u32
)(first_row
>> map
->parity_rotation_shift
)) %
5098 le16_to_cpu(map
->row_cnt
);
5099 map_index
= (map_row
* total_disks_per_row
) + first_column
;
5101 switch (dev
->raid_level
) {
5103 break; /* nothing special to do */
5105 /* Handles load balance across RAID 1 members.
5106 * (2-drive R1 and R10 with even # of drives.)
5107 * Appropriate for SSDs, not optimal for HDDs
5109 BUG_ON(le16_to_cpu(map
->layout_map_count
) != 2);
5110 if (dev
->offload_to_mirror
)
5111 map_index
+= le16_to_cpu(map
->data_disks_per_row
);
5112 dev
->offload_to_mirror
= !dev
->offload_to_mirror
;
5115 /* Handles N-way mirrors (R1-ADM)
5116 * and R10 with # of drives divisible by 3.)
5118 BUG_ON(le16_to_cpu(map
->layout_map_count
) != 3);
5120 offload_to_mirror
= dev
->offload_to_mirror
;
5121 raid_map_helper(map
, offload_to_mirror
,
5122 &map_index
, ¤t_group
);
5123 /* set mirror group to use next time */
5125 (offload_to_mirror
>=
5126 le16_to_cpu(map
->layout_map_count
) - 1)
5127 ? 0 : offload_to_mirror
+ 1;
5128 dev
->offload_to_mirror
= offload_to_mirror
;
5129 /* Avoid direct use of dev->offload_to_mirror within this
5130 * function since multiple threads might simultaneously
5131 * increment it beyond the range of dev->layout_map_count -1.
5136 if (le16_to_cpu(map
->layout_map_count
) <= 1)
5139 /* Verify first and last block are in same RAID group */
5140 r5or6_blocks_per_row
=
5141 le16_to_cpu(map
->strip_size
) *
5142 le16_to_cpu(map
->data_disks_per_row
);
5143 BUG_ON(r5or6_blocks_per_row
== 0);
5144 stripesize
= r5or6_blocks_per_row
*
5145 le16_to_cpu(map
->layout_map_count
);
5146 #if BITS_PER_LONG == 32
5147 tmpdiv
= first_block
;
5148 first_group
= do_div(tmpdiv
, stripesize
);
5149 tmpdiv
= first_group
;
5150 (void) do_div(tmpdiv
, r5or6_blocks_per_row
);
5151 first_group
= tmpdiv
;
5152 tmpdiv
= last_block
;
5153 last_group
= do_div(tmpdiv
, stripesize
);
5154 tmpdiv
= last_group
;
5155 (void) do_div(tmpdiv
, r5or6_blocks_per_row
);
5156 last_group
= tmpdiv
;
5158 first_group
= (first_block
% stripesize
) / r5or6_blocks_per_row
;
5159 last_group
= (last_block
% stripesize
) / r5or6_blocks_per_row
;
5161 if (first_group
!= last_group
)
5162 return IO_ACCEL_INELIGIBLE
;
5164 /* Verify request is in a single row of RAID 5/6 */
5165 #if BITS_PER_LONG == 32
5166 tmpdiv
= first_block
;
5167 (void) do_div(tmpdiv
, stripesize
);
5168 first_row
= r5or6_first_row
= r0_first_row
= tmpdiv
;
5169 tmpdiv
= last_block
;
5170 (void) do_div(tmpdiv
, stripesize
);
5171 r5or6_last_row
= r0_last_row
= tmpdiv
;
5173 first_row
= r5or6_first_row
= r0_first_row
=
5174 first_block
/ stripesize
;
5175 r5or6_last_row
= r0_last_row
= last_block
/ stripesize
;
5177 if (r5or6_first_row
!= r5or6_last_row
)
5178 return IO_ACCEL_INELIGIBLE
;
5181 /* Verify request is in a single column */
5182 #if BITS_PER_LONG == 32
5183 tmpdiv
= first_block
;
5184 first_row_offset
= do_div(tmpdiv
, stripesize
);
5185 tmpdiv
= first_row_offset
;
5186 first_row_offset
= (u32
) do_div(tmpdiv
, r5or6_blocks_per_row
);
5187 r5or6_first_row_offset
= first_row_offset
;
5188 tmpdiv
= last_block
;
5189 r5or6_last_row_offset
= do_div(tmpdiv
, stripesize
);
5190 tmpdiv
= r5or6_last_row_offset
;
5191 r5or6_last_row_offset
= do_div(tmpdiv
, r5or6_blocks_per_row
);
5192 tmpdiv
= r5or6_first_row_offset
;
5193 (void) do_div(tmpdiv
, map
->strip_size
);
5194 first_column
= r5or6_first_column
= tmpdiv
;
5195 tmpdiv
= r5or6_last_row_offset
;
5196 (void) do_div(tmpdiv
, map
->strip_size
);
5197 r5or6_last_column
= tmpdiv
;
5199 first_row_offset
= r5or6_first_row_offset
=
5200 (u32
)((first_block
% stripesize
) %
5201 r5or6_blocks_per_row
);
5203 r5or6_last_row_offset
=
5204 (u32
)((last_block
% stripesize
) %
5205 r5or6_blocks_per_row
);
5207 first_column
= r5or6_first_column
=
5208 r5or6_first_row_offset
/ le16_to_cpu(map
->strip_size
);
5210 r5or6_last_row_offset
/ le16_to_cpu(map
->strip_size
);
5212 if (r5or6_first_column
!= r5or6_last_column
)
5213 return IO_ACCEL_INELIGIBLE
;
5215 /* Request is eligible */
5216 map_row
= ((u32
)(first_row
>> map
->parity_rotation_shift
)) %
5217 le16_to_cpu(map
->row_cnt
);
5219 map_index
= (first_group
*
5220 (le16_to_cpu(map
->row_cnt
) * total_disks_per_row
)) +
5221 (map_row
* total_disks_per_row
) + first_column
;
5224 return IO_ACCEL_INELIGIBLE
;
5227 if (unlikely(map_index
>= RAID_MAP_MAX_ENTRIES
))
5228 return IO_ACCEL_INELIGIBLE
;
5230 c
->phys_disk
= dev
->phys_disk
[map_index
];
5232 return IO_ACCEL_INELIGIBLE
;
5234 disk_handle
= dd
[map_index
].ioaccel_handle
;
5235 disk_block
= le64_to_cpu(map
->disk_starting_blk
) +
5236 first_row
* le16_to_cpu(map
->strip_size
) +
5237 (first_row_offset
- first_column
*
5238 le16_to_cpu(map
->strip_size
));
5239 disk_block_cnt
= block_cnt
;
5241 /* handle differing logical/physical block sizes */
5242 if (map
->phys_blk_shift
) {
5243 disk_block
<<= map
->phys_blk_shift
;
5244 disk_block_cnt
<<= map
->phys_blk_shift
;
5246 BUG_ON(disk_block_cnt
> 0xffff);
5248 /* build the new CDB for the physical disk I/O */
5249 if (disk_block
> 0xffffffff) {
5250 cdb
[0] = is_write
? WRITE_16
: READ_16
;
5252 cdb
[2] = (u8
) (disk_block
>> 56);
5253 cdb
[3] = (u8
) (disk_block
>> 48);
5254 cdb
[4] = (u8
) (disk_block
>> 40);
5255 cdb
[5] = (u8
) (disk_block
>> 32);
5256 cdb
[6] = (u8
) (disk_block
>> 24);
5257 cdb
[7] = (u8
) (disk_block
>> 16);
5258 cdb
[8] = (u8
) (disk_block
>> 8);
5259 cdb
[9] = (u8
) (disk_block
);
5260 cdb
[10] = (u8
) (disk_block_cnt
>> 24);
5261 cdb
[11] = (u8
) (disk_block_cnt
>> 16);
5262 cdb
[12] = (u8
) (disk_block_cnt
>> 8);
5263 cdb
[13] = (u8
) (disk_block_cnt
);
5268 cdb
[0] = is_write
? WRITE_10
: READ_10
;
5270 cdb
[2] = (u8
) (disk_block
>> 24);
5271 cdb
[3] = (u8
) (disk_block
>> 16);
5272 cdb
[4] = (u8
) (disk_block
>> 8);
5273 cdb
[5] = (u8
) (disk_block
);
5275 cdb
[7] = (u8
) (disk_block_cnt
>> 8);
5276 cdb
[8] = (u8
) (disk_block_cnt
);
5280 return hpsa_scsi_ioaccel_queue_command(h
, c
, disk_handle
, cdb
, cdb_len
,
5282 dev
->phys_disk
[map_index
]);
5286 * Submit commands down the "normal" RAID stack path
5287 * All callers to hpsa_ciss_submit must check lockup_detected
5288 * beforehand, before (opt.) and after calling cmd_alloc
5290 static int hpsa_ciss_submit(struct ctlr_info
*h
,
5291 struct CommandList
*c
, struct scsi_cmnd
*cmd
,
5292 unsigned char scsi3addr
[])
5294 cmd
->host_scribble
= (unsigned char *) c
;
5295 c
->cmd_type
= CMD_SCSI
;
5297 c
->Header
.ReplyQueue
= 0; /* unused in simple mode */
5298 memcpy(&c
->Header
.LUN
.LunAddrBytes
[0], &scsi3addr
[0], 8);
5299 c
->Header
.tag
= cpu_to_le64((c
->cmdindex
<< DIRECT_LOOKUP_SHIFT
));
5301 /* Fill in the request block... */
5303 c
->Request
.Timeout
= 0;
5304 BUG_ON(cmd
->cmd_len
> sizeof(c
->Request
.CDB
));
5305 c
->Request
.CDBLen
= cmd
->cmd_len
;
5306 memcpy(c
->Request
.CDB
, cmd
->cmnd
, cmd
->cmd_len
);
5307 switch (cmd
->sc_data_direction
) {
5309 c
->Request
.type_attr_dir
=
5310 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_WRITE
);
5312 case DMA_FROM_DEVICE
:
5313 c
->Request
.type_attr_dir
=
5314 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_READ
);
5317 c
->Request
.type_attr_dir
=
5318 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_NONE
);
5320 case DMA_BIDIRECTIONAL
:
5321 /* This can happen if a buggy application does a scsi passthru
5322 * and sets both inlen and outlen to non-zero. ( see
5323 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5326 c
->Request
.type_attr_dir
=
5327 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_RSVD
);
5328 /* This is technically wrong, and hpsa controllers should
5329 * reject it with CMD_INVALID, which is the most correct
5330 * response, but non-fibre backends appear to let it
5331 * slide by, and give the same results as if this field
5332 * were set correctly. Either way is acceptable for
5333 * our purposes here.
5339 dev_err(&h
->pdev
->dev
, "unknown data direction: %d\n",
5340 cmd
->sc_data_direction
);
5345 if (hpsa_scatter_gather(h
, c
, cmd
) < 0) { /* Fill SG list */
5346 hpsa_cmd_resolve_and_free(h
, c
);
5347 return SCSI_MLQUEUE_HOST_BUSY
;
5349 enqueue_cmd_and_start_io(h
, c
);
5350 /* the cmd'll come back via intr handler in complete_scsi_command() */
5354 static void hpsa_cmd_init(struct ctlr_info
*h
, int index
,
5355 struct CommandList
*c
)
5357 dma_addr_t cmd_dma_handle
, err_dma_handle
;
5359 /* Zero out all of commandlist except the last field, refcount */
5360 memset(c
, 0, offsetof(struct CommandList
, refcount
));
5361 c
->Header
.tag
= cpu_to_le64((u64
) (index
<< DIRECT_LOOKUP_SHIFT
));
5362 cmd_dma_handle
= h
->cmd_pool_dhandle
+ index
* sizeof(*c
);
5363 c
->err_info
= h
->errinfo_pool
+ index
;
5364 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
5365 err_dma_handle
= h
->errinfo_pool_dhandle
5366 + index
* sizeof(*c
->err_info
);
5367 c
->cmdindex
= index
;
5368 c
->busaddr
= (u32
) cmd_dma_handle
;
5369 c
->ErrDesc
.Addr
= cpu_to_le64((u64
) err_dma_handle
);
5370 c
->ErrDesc
.Len
= cpu_to_le32((u32
) sizeof(*c
->err_info
));
5372 c
->scsi_cmd
= SCSI_CMD_IDLE
;
5375 static void hpsa_preinitialize_commands(struct ctlr_info
*h
)
5379 for (i
= 0; i
< h
->nr_cmds
; i
++) {
5380 struct CommandList
*c
= h
->cmd_pool
+ i
;
5382 hpsa_cmd_init(h
, i
, c
);
5383 atomic_set(&c
->refcount
, 0);
5387 static inline void hpsa_cmd_partial_init(struct ctlr_info
*h
, int index
,
5388 struct CommandList
*c
)
5390 dma_addr_t cmd_dma_handle
= h
->cmd_pool_dhandle
+ index
* sizeof(*c
);
5392 BUG_ON(c
->cmdindex
!= index
);
5394 memset(c
->Request
.CDB
, 0, sizeof(c
->Request
.CDB
));
5395 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
5396 c
->busaddr
= (u32
) cmd_dma_handle
;
5399 static int hpsa_ioaccel_submit(struct ctlr_info
*h
,
5400 struct CommandList
*c
, struct scsi_cmnd
*cmd
,
5401 unsigned char *scsi3addr
)
5403 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
5404 int rc
= IO_ACCEL_INELIGIBLE
;
5407 return SCSI_MLQUEUE_HOST_BUSY
;
5409 cmd
->host_scribble
= (unsigned char *) c
;
5411 if (dev
->offload_enabled
) {
5412 hpsa_cmd_init(h
, c
->cmdindex
, c
);
5413 c
->cmd_type
= CMD_SCSI
;
5415 rc
= hpsa_scsi_ioaccel_raid_map(h
, c
);
5416 if (rc
< 0) /* scsi_dma_map failed. */
5417 rc
= SCSI_MLQUEUE_HOST_BUSY
;
5418 } else if (dev
->hba_ioaccel_enabled
) {
5419 hpsa_cmd_init(h
, c
->cmdindex
, c
);
5420 c
->cmd_type
= CMD_SCSI
;
5422 rc
= hpsa_scsi_ioaccel_direct_map(h
, c
);
5423 if (rc
< 0) /* scsi_dma_map failed. */
5424 rc
= SCSI_MLQUEUE_HOST_BUSY
;
5429 static void hpsa_command_resubmit_worker(struct work_struct
*work
)
5431 struct scsi_cmnd
*cmd
;
5432 struct hpsa_scsi_dev_t
*dev
;
5433 struct CommandList
*c
= container_of(work
, struct CommandList
, work
);
5436 dev
= cmd
->device
->hostdata
;
5438 cmd
->result
= DID_NO_CONNECT
<< 16;
5439 return hpsa_cmd_free_and_done(c
->h
, c
, cmd
);
5441 if (c
->reset_pending
)
5442 return hpsa_cmd_resolve_and_free(c
->h
, c
);
5443 if (c
->abort_pending
)
5444 return hpsa_cmd_abort_and_free(c
->h
, c
, cmd
);
5445 if (c
->cmd_type
== CMD_IOACCEL2
) {
5446 struct ctlr_info
*h
= c
->h
;
5447 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
5450 if (c2
->error_data
.serv_response
==
5451 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL
) {
5452 rc
= hpsa_ioaccel_submit(h
, c
, cmd
, dev
->scsi3addr
);
5455 if (rc
== SCSI_MLQUEUE_HOST_BUSY
) {
5457 * If we get here, it means dma mapping failed.
5458 * Try again via scsi mid layer, which will
5459 * then get SCSI_MLQUEUE_HOST_BUSY.
5461 cmd
->result
= DID_IMM_RETRY
<< 16;
5462 return hpsa_cmd_free_and_done(h
, c
, cmd
);
5464 /* else, fall thru and resubmit down CISS path */
5467 hpsa_cmd_partial_init(c
->h
, c
->cmdindex
, c
);
5468 if (hpsa_ciss_submit(c
->h
, c
, cmd
, dev
->scsi3addr
)) {
5470 * If we get here, it means dma mapping failed. Try
5471 * again via scsi mid layer, which will then get
5472 * SCSI_MLQUEUE_HOST_BUSY.
5474 * hpsa_ciss_submit will have already freed c
5475 * if it encountered a dma mapping failure.
5477 cmd
->result
= DID_IMM_RETRY
<< 16;
5478 cmd
->scsi_done(cmd
);
5482 /* Running in struct Scsi_Host->host_lock less mode */
5483 static int hpsa_scsi_queue_command(struct Scsi_Host
*sh
, struct scsi_cmnd
*cmd
)
5485 struct ctlr_info
*h
;
5486 struct hpsa_scsi_dev_t
*dev
;
5487 unsigned char scsi3addr
[8];
5488 struct CommandList
*c
;
5491 /* Get the ptr to our adapter structure out of cmd->host. */
5492 h
= sdev_to_hba(cmd
->device
);
5494 BUG_ON(cmd
->request
->tag
< 0);
5496 dev
= cmd
->device
->hostdata
;
5498 cmd
->result
= NOT_READY
<< 16; /* host byte */
5499 cmd
->scsi_done(cmd
);
5504 cmd
->result
= DID_NO_CONNECT
<< 16;
5505 cmd
->scsi_done(cmd
);
5509 memcpy(scsi3addr
, dev
->scsi3addr
, sizeof(scsi3addr
));
5511 if (unlikely(lockup_detected(h
))) {
5512 cmd
->result
= DID_NO_CONNECT
<< 16;
5513 cmd
->scsi_done(cmd
);
5516 c
= cmd_tagged_alloc(h
, cmd
);
5519 * This is necessary because the SML doesn't zero out this field during
5525 * Call alternate submit routine for I/O accelerated commands.
5526 * Retries always go down the normal I/O path.
5528 if (likely(cmd
->retries
== 0 &&
5529 cmd
->request
->cmd_type
== REQ_TYPE_FS
&&
5530 h
->acciopath_status
)) {
5531 rc
= hpsa_ioaccel_submit(h
, c
, cmd
, scsi3addr
);
5534 if (rc
== SCSI_MLQUEUE_HOST_BUSY
) {
5535 hpsa_cmd_resolve_and_free(h
, c
);
5536 return SCSI_MLQUEUE_HOST_BUSY
;
5539 return hpsa_ciss_submit(h
, c
, cmd
, scsi3addr
);
5542 static void hpsa_scan_complete(struct ctlr_info
*h
)
5544 unsigned long flags
;
5546 spin_lock_irqsave(&h
->scan_lock
, flags
);
5547 h
->scan_finished
= 1;
5548 wake_up(&h
->scan_wait_queue
);
5549 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5552 static void hpsa_scan_start(struct Scsi_Host
*sh
)
5554 struct ctlr_info
*h
= shost_to_hba(sh
);
5555 unsigned long flags
;
5558 * Don't let rescans be initiated on a controller known to be locked
5559 * up. If the controller locks up *during* a rescan, that thread is
5560 * probably hosed, but at least we can prevent new rescan threads from
5561 * piling up on a locked up controller.
5563 if (unlikely(lockup_detected(h
)))
5564 return hpsa_scan_complete(h
);
5567 * If a scan is already waiting to run, no need to add another
5569 spin_lock_irqsave(&h
->scan_lock
, flags
);
5570 if (h
->scan_waiting
) {
5571 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5575 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5577 /* wait until any scan already in progress is finished. */
5579 spin_lock_irqsave(&h
->scan_lock
, flags
);
5580 if (h
->scan_finished
)
5582 h
->scan_waiting
= 1;
5583 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5584 wait_event(h
->scan_wait_queue
, h
->scan_finished
);
5585 /* Note: We don't need to worry about a race between this
5586 * thread and driver unload because the midlayer will
5587 * have incremented the reference count, so unload won't
5588 * happen if we're in here.
5591 h
->scan_finished
= 0; /* mark scan as in progress */
5592 h
->scan_waiting
= 0;
5593 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5595 if (unlikely(lockup_detected(h
)))
5596 return hpsa_scan_complete(h
);
5598 hpsa_update_scsi_devices(h
);
5600 hpsa_scan_complete(h
);
5603 static int hpsa_change_queue_depth(struct scsi_device
*sdev
, int qdepth
)
5605 struct hpsa_scsi_dev_t
*logical_drive
= sdev
->hostdata
;
5612 else if (qdepth
> logical_drive
->queue_depth
)
5613 qdepth
= logical_drive
->queue_depth
;
5615 return scsi_change_queue_depth(sdev
, qdepth
);
5618 static int hpsa_scan_finished(struct Scsi_Host
*sh
,
5619 unsigned long elapsed_time
)
5621 struct ctlr_info
*h
= shost_to_hba(sh
);
5622 unsigned long flags
;
5625 spin_lock_irqsave(&h
->scan_lock
, flags
);
5626 finished
= h
->scan_finished
;
5627 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5631 static int hpsa_scsi_host_alloc(struct ctlr_info
*h
)
5633 struct Scsi_Host
*sh
;
5635 sh
= scsi_host_alloc(&hpsa_driver_template
, sizeof(h
));
5637 dev_err(&h
->pdev
->dev
, "scsi_host_alloc failed\n");
5644 sh
->max_channel
= 3;
5645 sh
->max_cmd_len
= MAX_COMMAND_SIZE
;
5646 sh
->max_lun
= HPSA_MAX_LUN
;
5647 sh
->max_id
= HPSA_MAX_LUN
;
5648 sh
->can_queue
= h
->nr_cmds
- HPSA_NRESERVED_CMDS
;
5649 sh
->cmd_per_lun
= sh
->can_queue
;
5650 sh
->sg_tablesize
= h
->maxsgentries
;
5651 sh
->transportt
= hpsa_sas_transport_template
;
5652 sh
->hostdata
[0] = (unsigned long) h
;
5653 sh
->irq
= h
->intr
[h
->intr_mode
];
5654 sh
->unique_id
= sh
->irq
;
5660 static int hpsa_scsi_add_host(struct ctlr_info
*h
)
5664 rv
= scsi_add_host(h
->scsi_host
, &h
->pdev
->dev
);
5666 dev_err(&h
->pdev
->dev
, "scsi_add_host failed\n");
5669 scsi_scan_host(h
->scsi_host
);
5674 * The block layer has already gone to the trouble of picking out a unique,
5675 * small-integer tag for this request. We use an offset from that value as
5676 * an index to select our command block. (The offset allows us to reserve the
5677 * low-numbered entries for our own uses.)
5679 static int hpsa_get_cmd_index(struct scsi_cmnd
*scmd
)
5681 int idx
= scmd
->request
->tag
;
5686 /* Offset to leave space for internal cmds. */
5687 return idx
+= HPSA_NRESERVED_CMDS
;
5691 * Send a TEST_UNIT_READY command to the specified LUN using the specified
5692 * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5694 static int hpsa_send_test_unit_ready(struct ctlr_info
*h
,
5695 struct CommandList
*c
, unsigned char lunaddr
[],
5700 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5701 (void) fill_cmd(c
, TEST_UNIT_READY
, h
,
5702 NULL
, 0, 0, lunaddr
, TYPE_CMD
);
5703 rc
= hpsa_scsi_do_simple_cmd(h
, c
, reply_queue
, DEFAULT_TIMEOUT
);
5706 /* no unmap needed here because no data xfer. */
5708 /* Check if the unit is already ready. */
5709 if (c
->err_info
->CommandStatus
== CMD_SUCCESS
)
5713 * The first command sent after reset will receive "unit attention" to
5714 * indicate that the LUN has been reset...this is actually what we're
5715 * looking for (but, success is good too).
5717 if (c
->err_info
->CommandStatus
== CMD_TARGET_STATUS
&&
5718 c
->err_info
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
&&
5719 (c
->err_info
->SenseInfo
[2] == NO_SENSE
||
5720 c
->err_info
->SenseInfo
[2] == UNIT_ATTENTION
))
5727 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5728 * returns zero when the unit is ready, and non-zero when giving up.
5730 static int hpsa_wait_for_test_unit_ready(struct ctlr_info
*h
,
5731 struct CommandList
*c
,
5732 unsigned char lunaddr
[], int reply_queue
)
5736 int waittime
= 1; /* seconds */
5738 /* Send test unit ready until device ready, or give up. */
5739 for (count
= 0; count
< HPSA_TUR_RETRY_LIMIT
; count
++) {
5742 * Wait for a bit. do this first, because if we send
5743 * the TUR right away, the reset will just abort it.
5745 msleep(1000 * waittime
);
5747 rc
= hpsa_send_test_unit_ready(h
, c
, lunaddr
, reply_queue
);
5751 /* Increase wait time with each try, up to a point. */
5752 if (waittime
< HPSA_MAX_WAIT_INTERVAL_SECS
)
5755 dev_warn(&h
->pdev
->dev
,
5756 "waiting %d secs for device to become ready.\n",
5763 static int wait_for_device_to_become_ready(struct ctlr_info
*h
,
5764 unsigned char lunaddr
[],
5771 struct CommandList
*c
;
5776 * If no specific reply queue was requested, then send the TUR
5777 * repeatedly, requesting a reply on each reply queue; otherwise execute
5778 * the loop exactly once using only the specified queue.
5780 if (reply_queue
== DEFAULT_REPLY_QUEUE
) {
5782 last_queue
= h
->nreply_queues
- 1;
5784 first_queue
= reply_queue
;
5785 last_queue
= reply_queue
;
5788 for (rq
= first_queue
; rq
<= last_queue
; rq
++) {
5789 rc
= hpsa_wait_for_test_unit_ready(h
, c
, lunaddr
, rq
);
5795 dev_warn(&h
->pdev
->dev
, "giving up on device.\n");
5797 dev_warn(&h
->pdev
->dev
, "device is ready.\n");
5803 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5804 * complaining. Doing a host- or bus-reset can't do anything good here.
5806 static int hpsa_eh_device_reset_handler(struct scsi_cmnd
*scsicmd
)
5809 struct ctlr_info
*h
;
5810 struct hpsa_scsi_dev_t
*dev
;
5814 /* find the controller to which the command to be aborted was sent */
5815 h
= sdev_to_hba(scsicmd
->device
);
5816 if (h
== NULL
) /* paranoia */
5819 if (lockup_detected(h
))
5822 dev
= scsicmd
->device
->hostdata
;
5824 dev_err(&h
->pdev
->dev
, "%s: device lookup failed\n", __func__
);
5828 /* if controller locked up, we can guarantee command won't complete */
5829 if (lockup_detected(h
)) {
5830 snprintf(msg
, sizeof(msg
),
5831 "cmd %d RESET FAILED, lockup detected",
5832 hpsa_get_cmd_index(scsicmd
));
5833 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
5837 /* this reset request might be the result of a lockup; check */
5838 if (detect_controller_lockup(h
)) {
5839 snprintf(msg
, sizeof(msg
),
5840 "cmd %d RESET FAILED, new lockup detected",
5841 hpsa_get_cmd_index(scsicmd
));
5842 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
5846 /* Do not attempt on controller */
5847 if (is_hba_lunid(dev
->scsi3addr
))
5850 if (is_logical_dev_addr_mode(dev
->scsi3addr
))
5851 reset_type
= HPSA_DEVICE_RESET_MSG
;
5853 reset_type
= HPSA_PHYS_TARGET_RESET
;
5855 sprintf(msg
, "resetting %s",
5856 reset_type
== HPSA_DEVICE_RESET_MSG
? "logical " : "physical ");
5857 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
5859 h
->reset_in_progress
= 1;
5861 /* send a reset to the SCSI LUN which the command was sent to */
5862 rc
= hpsa_do_reset(h
, dev
, dev
->scsi3addr
, reset_type
,
5863 DEFAULT_REPLY_QUEUE
);
5864 sprintf(msg
, "reset %s %s",
5865 reset_type
== HPSA_DEVICE_RESET_MSG
? "logical " : "physical ",
5866 rc
== 0 ? "completed successfully" : "failed");
5867 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
5868 h
->reset_in_progress
= 0;
5869 return rc
== 0 ? SUCCESS
: FAILED
;
5872 static void swizzle_abort_tag(u8
*tag
)
5876 memcpy(original_tag
, tag
, 8);
5877 tag
[0] = original_tag
[3];
5878 tag
[1] = original_tag
[2];
5879 tag
[2] = original_tag
[1];
5880 tag
[3] = original_tag
[0];
5881 tag
[4] = original_tag
[7];
5882 tag
[5] = original_tag
[6];
5883 tag
[6] = original_tag
[5];
5884 tag
[7] = original_tag
[4];
5887 static void hpsa_get_tag(struct ctlr_info
*h
,
5888 struct CommandList
*c
, __le32
*taglower
, __le32
*tagupper
)
5891 if (c
->cmd_type
== CMD_IOACCEL1
) {
5892 struct io_accel1_cmd
*cm1
= (struct io_accel1_cmd
*)
5893 &h
->ioaccel_cmd_pool
[c
->cmdindex
];
5894 tag
= le64_to_cpu(cm1
->tag
);
5895 *tagupper
= cpu_to_le32(tag
>> 32);
5896 *taglower
= cpu_to_le32(tag
);
5899 if (c
->cmd_type
== CMD_IOACCEL2
) {
5900 struct io_accel2_cmd
*cm2
= (struct io_accel2_cmd
*)
5901 &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
5902 /* upper tag not used in ioaccel2 mode */
5903 memset(tagupper
, 0, sizeof(*tagupper
));
5904 *taglower
= cm2
->Tag
;
5907 tag
= le64_to_cpu(c
->Header
.tag
);
5908 *tagupper
= cpu_to_le32(tag
>> 32);
5909 *taglower
= cpu_to_le32(tag
);
5912 static int hpsa_send_abort(struct ctlr_info
*h
, unsigned char *scsi3addr
,
5913 struct CommandList
*abort
, int reply_queue
)
5916 struct CommandList
*c
;
5917 struct ErrorInfo
*ei
;
5918 __le32 tagupper
, taglower
;
5922 /* fill_cmd can't fail here, no buffer to map */
5923 (void) fill_cmd(c
, HPSA_ABORT_MSG
, h
, &abort
->Header
.tag
,
5924 0, 0, scsi3addr
, TYPE_MSG
);
5925 if (h
->needs_abort_tags_swizzled
)
5926 swizzle_abort_tag(&c
->Request
.CDB
[4]);
5927 (void) hpsa_scsi_do_simple_cmd(h
, c
, reply_queue
, DEFAULT_TIMEOUT
);
5928 hpsa_get_tag(h
, abort
, &taglower
, &tagupper
);
5929 dev_dbg(&h
->pdev
->dev
, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
5930 __func__
, tagupper
, taglower
);
5931 /* no unmap needed here because no data xfer. */
5934 switch (ei
->CommandStatus
) {
5937 case CMD_TMF_STATUS
:
5938 rc
= hpsa_evaluate_tmf_status(h
, c
);
5940 case CMD_UNABORTABLE
: /* Very common, don't make noise. */
5944 dev_dbg(&h
->pdev
->dev
, "%s: Tag:0x%08x:%08x: interpreting error.\n",
5945 __func__
, tagupper
, taglower
);
5946 hpsa_scsi_interpret_error(h
, c
);
5951 dev_dbg(&h
->pdev
->dev
, "%s: Tag:0x%08x:%08x: Finished.\n",
5952 __func__
, tagupper
, taglower
);
5956 static void setup_ioaccel2_abort_cmd(struct CommandList
*c
, struct ctlr_info
*h
,
5957 struct CommandList
*command_to_abort
, int reply_queue
)
5959 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
5960 struct hpsa_tmf_struct
*ac
= (struct hpsa_tmf_struct
*) c2
;
5961 struct io_accel2_cmd
*c2a
=
5962 &h
->ioaccel2_cmd_pool
[command_to_abort
->cmdindex
];
5963 struct scsi_cmnd
*scmd
= command_to_abort
->scsi_cmd
;
5964 struct hpsa_scsi_dev_t
*dev
= scmd
->device
->hostdata
;
5970 * We're overlaying struct hpsa_tmf_struct on top of something which
5971 * was allocated as a struct io_accel2_cmd, so we better be sure it
5972 * actually fits, and doesn't overrun the error info space.
5974 BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct
) >
5975 sizeof(struct io_accel2_cmd
));
5976 BUG_ON(offsetof(struct io_accel2_cmd
, error_data
) <
5977 offsetof(struct hpsa_tmf_struct
, error_len
) +
5978 sizeof(ac
->error_len
));
5980 c
->cmd_type
= IOACCEL2_TMF
;
5981 c
->scsi_cmd
= SCSI_CMD_BUSY
;
5983 /* Adjust the DMA address to point to the accelerated command buffer */
5984 c
->busaddr
= (u32
) h
->ioaccel2_cmd_pool_dhandle
+
5985 (c
->cmdindex
* sizeof(struct io_accel2_cmd
));
5986 BUG_ON(c
->busaddr
& 0x0000007F);
5988 memset(ac
, 0, sizeof(*c2
)); /* yes this is correct */
5989 ac
->iu_type
= IOACCEL2_IU_TMF_TYPE
;
5990 ac
->reply_queue
= reply_queue
;
5991 ac
->tmf
= IOACCEL2_TMF_ABORT
;
5992 ac
->it_nexus
= cpu_to_le32(dev
->ioaccel_handle
);
5993 memset(ac
->lun_id
, 0, sizeof(ac
->lun_id
));
5994 ac
->tag
= cpu_to_le64(c
->cmdindex
<< DIRECT_LOOKUP_SHIFT
);
5995 ac
->abort_tag
= cpu_to_le64(le32_to_cpu(c2a
->Tag
));
5996 ac
->error_ptr
= cpu_to_le64(c
->busaddr
+
5997 offsetof(struct io_accel2_cmd
, error_data
));
5998 ac
->error_len
= cpu_to_le32(sizeof(c2
->error_data
));
6001 /* ioaccel2 path firmware cannot handle abort task requests.
6002 * Change abort requests to physical target reset, and send to the
6003 * address of the physical disk used for the ioaccel 2 command.
6004 * Return 0 on success (IO_OK)
6008 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info
*h
,
6009 unsigned char *scsi3addr
, struct CommandList
*abort
, int reply_queue
)
6012 struct scsi_cmnd
*scmd
; /* scsi command within request being aborted */
6013 struct hpsa_scsi_dev_t
*dev
; /* device to which scsi cmd was sent */
6014 unsigned char phys_scsi3addr
[8]; /* addr of phys disk with volume */
6015 unsigned char *psa
= &phys_scsi3addr
[0];
6017 /* Get a pointer to the hpsa logical device. */
6018 scmd
= abort
->scsi_cmd
;
6019 dev
= (struct hpsa_scsi_dev_t
*)(scmd
->device
->hostdata
);
6021 dev_warn(&h
->pdev
->dev
,
6022 "Cannot abort: no device pointer for command.\n");
6023 return -1; /* not abortable */
6026 if (h
->raid_offload_debug
> 0)
6027 dev_info(&h
->pdev
->dev
,
6028 "scsi %d:%d:%d:%d %s scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
6029 h
->scsi_host
->host_no
, dev
->bus
, dev
->target
, dev
->lun
,
6031 scsi3addr
[0], scsi3addr
[1], scsi3addr
[2], scsi3addr
[3],
6032 scsi3addr
[4], scsi3addr
[5], scsi3addr
[6], scsi3addr
[7]);
6034 if (!dev
->offload_enabled
) {
6035 dev_warn(&h
->pdev
->dev
,
6036 "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
6037 return -1; /* not abortable */
6040 /* Incoming scsi3addr is logical addr. We need physical disk addr. */
6041 if (!hpsa_get_pdisk_of_ioaccel2(h
, abort
, psa
)) {
6042 dev_warn(&h
->pdev
->dev
, "Can't abort: Failed lookup of physical address.\n");
6043 return -1; /* not abortable */
6046 /* send the reset */
6047 if (h
->raid_offload_debug
> 0)
6048 dev_info(&h
->pdev
->dev
,
6049 "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
6050 psa
[0], psa
[1], psa
[2], psa
[3],
6051 psa
[4], psa
[5], psa
[6], psa
[7]);
6052 rc
= hpsa_do_reset(h
, dev
, psa
, HPSA_PHYS_TARGET_RESET
, reply_queue
);
6054 dev_warn(&h
->pdev
->dev
,
6055 "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
6056 psa
[0], psa
[1], psa
[2], psa
[3],
6057 psa
[4], psa
[5], psa
[6], psa
[7]);
6058 return rc
; /* failed to reset */
6061 /* wait for device to recover */
6062 if (wait_for_device_to_become_ready(h
, psa
, reply_queue
) != 0) {
6063 dev_warn(&h
->pdev
->dev
,
6064 "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
6065 psa
[0], psa
[1], psa
[2], psa
[3],
6066 psa
[4], psa
[5], psa
[6], psa
[7]);
6067 return -1; /* failed to recover */
6070 /* device recovered */
6071 dev_info(&h
->pdev
->dev
,
6072 "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
6073 psa
[0], psa
[1], psa
[2], psa
[3],
6074 psa
[4], psa
[5], psa
[6], psa
[7]);
6076 return rc
; /* success */
6079 static int hpsa_send_abort_ioaccel2(struct ctlr_info
*h
,
6080 struct CommandList
*abort
, int reply_queue
)
6083 struct CommandList
*c
;
6084 __le32 taglower
, tagupper
;
6085 struct hpsa_scsi_dev_t
*dev
;
6086 struct io_accel2_cmd
*c2
;
6088 dev
= abort
->scsi_cmd
->device
->hostdata
;
6092 if (!dev
->offload_enabled
&& !dev
->hba_ioaccel_enabled
)
6096 setup_ioaccel2_abort_cmd(c
, h
, abort
, reply_queue
);
6097 c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
6098 (void) hpsa_scsi_do_simple_cmd(h
, c
, reply_queue
, DEFAULT_TIMEOUT
);
6099 hpsa_get_tag(h
, abort
, &taglower
, &tagupper
);
6100 dev_dbg(&h
->pdev
->dev
,
6101 "%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
6102 __func__
, tagupper
, taglower
);
6103 /* no unmap needed here because no data xfer. */
6105 dev_dbg(&h
->pdev
->dev
,
6106 "%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
6107 __func__
, tagupper
, taglower
, c2
->error_data
.serv_response
);
6108 switch (c2
->error_data
.serv_response
) {
6109 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE
:
6110 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS
:
6113 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED
:
6114 case IOACCEL2_SERV_RESPONSE_FAILURE
:
6115 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN
:
6119 dev_warn(&h
->pdev
->dev
,
6120 "%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
6121 __func__
, tagupper
, taglower
,
6122 c2
->error_data
.serv_response
);
6126 dev_dbg(&h
->pdev
->dev
, "%s: Tag:0x%08x:%08x: Finished.\n", __func__
,
6127 tagupper
, taglower
);
6131 static int hpsa_send_abort_both_ways(struct ctlr_info
*h
,
6132 struct hpsa_scsi_dev_t
*dev
, struct CommandList
*abort
, int reply_queue
)
6135 * ioccelerator mode 2 commands should be aborted via the
6136 * accelerated path, since RAID path is unaware of these commands,
6137 * but not all underlying firmware can handle abort TMF.
6138 * Change abort to physical device reset when abort TMF is unsupported.
6140 if (abort
->cmd_type
== CMD_IOACCEL2
) {
6141 if ((HPSATMF_IOACCEL_ENABLED
& h
->TMFSupportFlags
) ||
6142 dev
->physical_device
)
6143 return hpsa_send_abort_ioaccel2(h
, abort
,
6146 return hpsa_send_reset_as_abort_ioaccel2(h
,
6148 abort
, reply_queue
);
6150 return hpsa_send_abort(h
, dev
->scsi3addr
, abort
, reply_queue
);
6153 /* Find out which reply queue a command was meant to return on */
6154 static int hpsa_extract_reply_queue(struct ctlr_info
*h
,
6155 struct CommandList
*c
)
6157 if (c
->cmd_type
== CMD_IOACCEL2
)
6158 return h
->ioaccel2_cmd_pool
[c
->cmdindex
].reply_queue
;
6159 return c
->Header
.ReplyQueue
;
6163 * Limit concurrency of abort commands to prevent
6164 * over-subscription of commands
6166 static inline int wait_for_available_abort_cmd(struct ctlr_info
*h
)
6168 #define ABORT_CMD_WAIT_MSECS 5000
6169 return !wait_event_timeout(h
->abort_cmd_wait_queue
,
6170 atomic_dec_if_positive(&h
->abort_cmds_available
) >= 0,
6171 msecs_to_jiffies(ABORT_CMD_WAIT_MSECS
));
6174 /* Send an abort for the specified command.
6175 * If the device and controller support it,
6176 * send a task abort request.
6178 static int hpsa_eh_abort_handler(struct scsi_cmnd
*sc
)
6182 struct ctlr_info
*h
;
6183 struct hpsa_scsi_dev_t
*dev
;
6184 struct CommandList
*abort
; /* pointer to command to be aborted */
6185 struct scsi_cmnd
*as
; /* ptr to scsi cmd inside aborted command. */
6186 char msg
[256]; /* For debug messaging. */
6188 __le32 tagupper
, taglower
;
6189 int refcount
, reply_queue
;
6194 if (sc
->device
== NULL
)
6197 /* Find the controller of the command to be aborted */
6198 h
= sdev_to_hba(sc
->device
);
6202 /* Find the device of the command to be aborted */
6203 dev
= sc
->device
->hostdata
;
6205 dev_err(&h
->pdev
->dev
, "%s FAILED, Device lookup failed.\n",
6210 /* If controller locked up, we can guarantee command won't complete */
6211 if (lockup_detected(h
)) {
6212 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
,
6213 "ABORT FAILED, lockup detected");
6217 /* This is a good time to check if controller lockup has occurred */
6218 if (detect_controller_lockup(h
)) {
6219 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
,
6220 "ABORT FAILED, new lockup detected");
6224 /* Check that controller supports some kind of task abort */
6225 if (!(HPSATMF_PHYS_TASK_ABORT
& h
->TMFSupportFlags
) &&
6226 !(HPSATMF_LOG_TASK_ABORT
& h
->TMFSupportFlags
))
6229 memset(msg
, 0, sizeof(msg
));
6230 ml
+= sprintf(msg
+ml
, "scsi %d:%d:%d:%llu %s %p",
6231 h
->scsi_host
->host_no
, sc
->device
->channel
,
6232 sc
->device
->id
, sc
->device
->lun
,
6233 "Aborting command", sc
);
6235 /* Get SCSI command to be aborted */
6236 abort
= (struct CommandList
*) sc
->host_scribble
;
6237 if (abort
== NULL
) {
6238 /* This can happen if the command already completed. */
6241 refcount
= atomic_inc_return(&abort
->refcount
);
6242 if (refcount
== 1) { /* Command is done already. */
6247 /* Don't bother trying the abort if we know it won't work. */
6248 if (abort
->cmd_type
!= CMD_IOACCEL2
&&
6249 abort
->cmd_type
!= CMD_IOACCEL1
&& !dev
->supports_aborts
) {
6255 * Check that we're aborting the right command.
6256 * It's possible the CommandList already completed and got re-used.
6258 if (abort
->scsi_cmd
!= sc
) {
6263 abort
->abort_pending
= true;
6264 hpsa_get_tag(h
, abort
, &taglower
, &tagupper
);
6265 reply_queue
= hpsa_extract_reply_queue(h
, abort
);
6266 ml
+= sprintf(msg
+ml
, "Tag:0x%08x:%08x ", tagupper
, taglower
);
6267 as
= abort
->scsi_cmd
;
6269 ml
+= sprintf(msg
+ml
,
6270 "CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
6271 as
->cmd_len
, as
->cmnd
[0], as
->cmnd
[1],
6273 dev_warn(&h
->pdev
->dev
, "%s BEING SENT\n", msg
);
6274 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, "Aborting command");
6277 * Command is in flight, or possibly already completed
6278 * by the firmware (but not to the scsi mid layer) but we can't
6279 * distinguish which. Send the abort down.
6281 if (wait_for_available_abort_cmd(h
)) {
6282 dev_warn(&h
->pdev
->dev
,
6283 "%s FAILED, timeout waiting for an abort command to become available.\n",
6288 rc
= hpsa_send_abort_both_ways(h
, dev
, abort
, reply_queue
);
6289 atomic_inc(&h
->abort_cmds_available
);
6290 wake_up_all(&h
->abort_cmd_wait_queue
);
6292 dev_warn(&h
->pdev
->dev
, "%s SENT, FAILED\n", msg
);
6293 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
,
6294 "FAILED to abort command");
6298 dev_info(&h
->pdev
->dev
, "%s SENT, SUCCESS\n", msg
);
6299 wait_event(h
->event_sync_wait_queue
,
6300 abort
->scsi_cmd
!= sc
|| lockup_detected(h
));
6302 return !lockup_detected(h
) ? SUCCESS
: FAILED
;
6306 * For operations with an associated SCSI command, a command block is allocated
6307 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6308 * block request tag as an index into a table of entries. cmd_tagged_free() is
6309 * the complement, although cmd_free() may be called instead.
6311 static struct CommandList
*cmd_tagged_alloc(struct ctlr_info
*h
,
6312 struct scsi_cmnd
*scmd
)
6314 int idx
= hpsa_get_cmd_index(scmd
);
6315 struct CommandList
*c
= h
->cmd_pool
+ idx
;
6317 if (idx
< HPSA_NRESERVED_CMDS
|| idx
>= h
->nr_cmds
) {
6318 dev_err(&h
->pdev
->dev
, "Bad block tag: %d not in [%d..%d]\n",
6319 idx
, HPSA_NRESERVED_CMDS
, h
->nr_cmds
- 1);
6320 /* The index value comes from the block layer, so if it's out of
6321 * bounds, it's probably not our bug.
6326 atomic_inc(&c
->refcount
);
6327 if (unlikely(!hpsa_is_cmd_idle(c
))) {
6329 * We expect that the SCSI layer will hand us a unique tag
6330 * value. Thus, there should never be a collision here between
6331 * two requests...because if the selected command isn't idle
6332 * then someone is going to be very disappointed.
6334 dev_err(&h
->pdev
->dev
,
6335 "tag collision (tag=%d) in cmd_tagged_alloc().\n",
6337 if (c
->scsi_cmd
!= NULL
)
6338 scsi_print_command(c
->scsi_cmd
);
6339 scsi_print_command(scmd
);
6342 hpsa_cmd_partial_init(h
, idx
, c
);
6346 static void cmd_tagged_free(struct ctlr_info
*h
, struct CommandList
*c
)
6349 * Release our reference to the block. We don't need to do anything
6350 * else to free it, because it is accessed by index. (There's no point
6351 * in checking the result of the decrement, since we cannot guarantee
6352 * that there isn't a concurrent abort which is also accessing it.)
6354 (void)atomic_dec(&c
->refcount
);
6358 * For operations that cannot sleep, a command block is allocated at init,
6359 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6360 * which ones are free or in use. Lock must be held when calling this.
6361 * cmd_free() is the complement.
6362 * This function never gives up and returns NULL. If it hangs,
6363 * another thread must call cmd_free() to free some tags.
6366 static struct CommandList
*cmd_alloc(struct ctlr_info
*h
)
6368 struct CommandList
*c
;
6373 * There is some *extremely* small but non-zero chance that that
6374 * multiple threads could get in here, and one thread could
6375 * be scanning through the list of bits looking for a free
6376 * one, but the free ones are always behind him, and other
6377 * threads sneak in behind him and eat them before he can
6378 * get to them, so that while there is always a free one, a
6379 * very unlucky thread might be starved anyway, never able to
6380 * beat the other threads. In reality, this happens so
6381 * infrequently as to be indistinguishable from never.
6383 * Note that we start allocating commands before the SCSI host structure
6384 * is initialized. Since the search starts at bit zero, this
6385 * all works, since we have at least one command structure available;
6386 * however, it means that the structures with the low indexes have to be
6387 * reserved for driver-initiated requests, while requests from the block
6388 * layer will use the higher indexes.
6392 i
= find_next_zero_bit(h
->cmd_pool_bits
,
6393 HPSA_NRESERVED_CMDS
,
6395 if (unlikely(i
>= HPSA_NRESERVED_CMDS
)) {
6399 c
= h
->cmd_pool
+ i
;
6400 refcount
= atomic_inc_return(&c
->refcount
);
6401 if (unlikely(refcount
> 1)) {
6402 cmd_free(h
, c
); /* already in use */
6403 offset
= (i
+ 1) % HPSA_NRESERVED_CMDS
;
6406 set_bit(i
& (BITS_PER_LONG
- 1),
6407 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
));
6408 break; /* it's ours now. */
6410 hpsa_cmd_partial_init(h
, i
, c
);
6415 * This is the complementary operation to cmd_alloc(). Note, however, in some
6416 * corner cases it may also be used to free blocks allocated by
6417 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6418 * the clear-bit is harmless.
6420 static void cmd_free(struct ctlr_info
*h
, struct CommandList
*c
)
6422 if (atomic_dec_and_test(&c
->refcount
)) {
6425 i
= c
- h
->cmd_pool
;
6426 clear_bit(i
& (BITS_PER_LONG
- 1),
6427 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
));
6431 #ifdef CONFIG_COMPAT
6433 static int hpsa_ioctl32_passthru(struct scsi_device
*dev
, int cmd
,
6436 IOCTL32_Command_struct __user
*arg32
=
6437 (IOCTL32_Command_struct __user
*) arg
;
6438 IOCTL_Command_struct arg64
;
6439 IOCTL_Command_struct __user
*p
= compat_alloc_user_space(sizeof(arg64
));
6443 memset(&arg64
, 0, sizeof(arg64
));
6445 err
|= copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
6446 sizeof(arg64
.LUN_info
));
6447 err
|= copy_from_user(&arg64
.Request
, &arg32
->Request
,
6448 sizeof(arg64
.Request
));
6449 err
|= copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
6450 sizeof(arg64
.error_info
));
6451 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
6452 err
|= get_user(cp
, &arg32
->buf
);
6453 arg64
.buf
= compat_ptr(cp
);
6454 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
6459 err
= hpsa_ioctl(dev
, CCISS_PASSTHRU
, p
);
6462 err
|= copy_in_user(&arg32
->error_info
, &p
->error_info
,
6463 sizeof(arg32
->error_info
));
6469 static int hpsa_ioctl32_big_passthru(struct scsi_device
*dev
,
6470 int cmd
, void __user
*arg
)
6472 BIG_IOCTL32_Command_struct __user
*arg32
=
6473 (BIG_IOCTL32_Command_struct __user
*) arg
;
6474 BIG_IOCTL_Command_struct arg64
;
6475 BIG_IOCTL_Command_struct __user
*p
=
6476 compat_alloc_user_space(sizeof(arg64
));
6480 memset(&arg64
, 0, sizeof(arg64
));
6482 err
|= copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
6483 sizeof(arg64
.LUN_info
));
6484 err
|= copy_from_user(&arg64
.Request
, &arg32
->Request
,
6485 sizeof(arg64
.Request
));
6486 err
|= copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
6487 sizeof(arg64
.error_info
));
6488 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
6489 err
|= get_user(arg64
.malloc_size
, &arg32
->malloc_size
);
6490 err
|= get_user(cp
, &arg32
->buf
);
6491 arg64
.buf
= compat_ptr(cp
);
6492 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
6497 err
= hpsa_ioctl(dev
, CCISS_BIG_PASSTHRU
, p
);
6500 err
|= copy_in_user(&arg32
->error_info
, &p
->error_info
,
6501 sizeof(arg32
->error_info
));
6507 static int hpsa_compat_ioctl(struct scsi_device
*dev
, int cmd
, void __user
*arg
)
6510 case CCISS_GETPCIINFO
:
6511 case CCISS_GETINTINFO
:
6512 case CCISS_SETINTINFO
:
6513 case CCISS_GETNODENAME
:
6514 case CCISS_SETNODENAME
:
6515 case CCISS_GETHEARTBEAT
:
6516 case CCISS_GETBUSTYPES
:
6517 case CCISS_GETFIRMVER
:
6518 case CCISS_GETDRIVVER
:
6519 case CCISS_REVALIDVOLS
:
6520 case CCISS_DEREGDISK
:
6521 case CCISS_REGNEWDISK
:
6523 case CCISS_RESCANDISK
:
6524 case CCISS_GETLUNINFO
:
6525 return hpsa_ioctl(dev
, cmd
, arg
);
6527 case CCISS_PASSTHRU32
:
6528 return hpsa_ioctl32_passthru(dev
, cmd
, arg
);
6529 case CCISS_BIG_PASSTHRU32
:
6530 return hpsa_ioctl32_big_passthru(dev
, cmd
, arg
);
6533 return -ENOIOCTLCMD
;
6538 static int hpsa_getpciinfo_ioctl(struct ctlr_info
*h
, void __user
*argp
)
6540 struct hpsa_pci_info pciinfo
;
6544 pciinfo
.domain
= pci_domain_nr(h
->pdev
->bus
);
6545 pciinfo
.bus
= h
->pdev
->bus
->number
;
6546 pciinfo
.dev_fn
= h
->pdev
->devfn
;
6547 pciinfo
.board_id
= h
->board_id
;
6548 if (copy_to_user(argp
, &pciinfo
, sizeof(pciinfo
)))
6553 static int hpsa_getdrivver_ioctl(struct ctlr_info
*h
, void __user
*argp
)
6555 DriverVer_type DriverVer
;
6556 unsigned char vmaj
, vmin
, vsubmin
;
6559 rc
= sscanf(HPSA_DRIVER_VERSION
, "%hhu.%hhu.%hhu",
6560 &vmaj
, &vmin
, &vsubmin
);
6562 dev_info(&h
->pdev
->dev
, "driver version string '%s' "
6563 "unrecognized.", HPSA_DRIVER_VERSION
);
6568 DriverVer
= (vmaj
<< 16) | (vmin
<< 8) | vsubmin
;
6571 if (copy_to_user(argp
, &DriverVer
, sizeof(DriverVer_type
)))
6576 static int hpsa_passthru_ioctl(struct ctlr_info
*h
, void __user
*argp
)
6578 IOCTL_Command_struct iocommand
;
6579 struct CommandList
*c
;
6586 if (!capable(CAP_SYS_RAWIO
))
6588 if (copy_from_user(&iocommand
, argp
, sizeof(iocommand
)))
6590 if ((iocommand
.buf_size
< 1) &&
6591 (iocommand
.Request
.Type
.Direction
!= XFER_NONE
)) {
6594 if (iocommand
.buf_size
> 0) {
6595 buff
= kmalloc(iocommand
.buf_size
, GFP_KERNEL
);
6598 if (iocommand
.Request
.Type
.Direction
& XFER_WRITE
) {
6599 /* Copy the data into the buffer we created */
6600 if (copy_from_user(buff
, iocommand
.buf
,
6601 iocommand
.buf_size
)) {
6606 memset(buff
, 0, iocommand
.buf_size
);
6611 /* Fill in the command type */
6612 c
->cmd_type
= CMD_IOCTL_PEND
;
6613 c
->scsi_cmd
= SCSI_CMD_BUSY
;
6614 /* Fill in Command Header */
6615 c
->Header
.ReplyQueue
= 0; /* unused in simple mode */
6616 if (iocommand
.buf_size
> 0) { /* buffer to fill */
6617 c
->Header
.SGList
= 1;
6618 c
->Header
.SGTotal
= cpu_to_le16(1);
6619 } else { /* no buffers to fill */
6620 c
->Header
.SGList
= 0;
6621 c
->Header
.SGTotal
= cpu_to_le16(0);
6623 memcpy(&c
->Header
.LUN
, &iocommand
.LUN_info
, sizeof(c
->Header
.LUN
));
6625 /* Fill in Request block */
6626 memcpy(&c
->Request
, &iocommand
.Request
,
6627 sizeof(c
->Request
));
6629 /* Fill in the scatter gather information */
6630 if (iocommand
.buf_size
> 0) {
6631 temp64
= pci_map_single(h
->pdev
, buff
,
6632 iocommand
.buf_size
, PCI_DMA_BIDIRECTIONAL
);
6633 if (dma_mapping_error(&h
->pdev
->dev
, (dma_addr_t
) temp64
)) {
6634 c
->SG
[0].Addr
= cpu_to_le64(0);
6635 c
->SG
[0].Len
= cpu_to_le32(0);
6639 c
->SG
[0].Addr
= cpu_to_le64(temp64
);
6640 c
->SG
[0].Len
= cpu_to_le32(iocommand
.buf_size
);
6641 c
->SG
[0].Ext
= cpu_to_le32(HPSA_SG_LAST
); /* not chaining */
6643 rc
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
,
6645 if (iocommand
.buf_size
> 0)
6646 hpsa_pci_unmap(h
->pdev
, c
, 1, PCI_DMA_BIDIRECTIONAL
);
6647 check_ioctl_unit_attention(h
, c
);
6653 /* Copy the error information out */
6654 memcpy(&iocommand
.error_info
, c
->err_info
,
6655 sizeof(iocommand
.error_info
));
6656 if (copy_to_user(argp
, &iocommand
, sizeof(iocommand
))) {
6660 if ((iocommand
.Request
.Type
.Direction
& XFER_READ
) &&
6661 iocommand
.buf_size
> 0) {
6662 /* Copy the data out of the buffer we created */
6663 if (copy_to_user(iocommand
.buf
, buff
, iocommand
.buf_size
)) {
6675 static int hpsa_big_passthru_ioctl(struct ctlr_info
*h
, void __user
*argp
)
6677 BIG_IOCTL_Command_struct
*ioc
;
6678 struct CommandList
*c
;
6679 unsigned char **buff
= NULL
;
6680 int *buff_size
= NULL
;
6686 BYTE __user
*data_ptr
;
6690 if (!capable(CAP_SYS_RAWIO
))
6692 ioc
= (BIG_IOCTL_Command_struct
*)
6693 kmalloc(sizeof(*ioc
), GFP_KERNEL
);
6698 if (copy_from_user(ioc
, argp
, sizeof(*ioc
))) {
6702 if ((ioc
->buf_size
< 1) &&
6703 (ioc
->Request
.Type
.Direction
!= XFER_NONE
)) {
6707 /* Check kmalloc limits using all SGs */
6708 if (ioc
->malloc_size
> MAX_KMALLOC_SIZE
) {
6712 if (ioc
->buf_size
> ioc
->malloc_size
* SG_ENTRIES_IN_CMD
) {
6716 buff
= kzalloc(SG_ENTRIES_IN_CMD
* sizeof(char *), GFP_KERNEL
);
6721 buff_size
= kmalloc(SG_ENTRIES_IN_CMD
* sizeof(int), GFP_KERNEL
);
6726 left
= ioc
->buf_size
;
6727 data_ptr
= ioc
->buf
;
6729 sz
= (left
> ioc
->malloc_size
) ? ioc
->malloc_size
: left
;
6730 buff_size
[sg_used
] = sz
;
6731 buff
[sg_used
] = kmalloc(sz
, GFP_KERNEL
);
6732 if (buff
[sg_used
] == NULL
) {
6736 if (ioc
->Request
.Type
.Direction
& XFER_WRITE
) {
6737 if (copy_from_user(buff
[sg_used
], data_ptr
, sz
)) {
6742 memset(buff
[sg_used
], 0, sz
);
6749 c
->cmd_type
= CMD_IOCTL_PEND
;
6750 c
->scsi_cmd
= SCSI_CMD_BUSY
;
6751 c
->Header
.ReplyQueue
= 0;
6752 c
->Header
.SGList
= (u8
) sg_used
;
6753 c
->Header
.SGTotal
= cpu_to_le16(sg_used
);
6754 memcpy(&c
->Header
.LUN
, &ioc
->LUN_info
, sizeof(c
->Header
.LUN
));
6755 memcpy(&c
->Request
, &ioc
->Request
, sizeof(c
->Request
));
6756 if (ioc
->buf_size
> 0) {
6758 for (i
= 0; i
< sg_used
; i
++) {
6759 temp64
= pci_map_single(h
->pdev
, buff
[i
],
6760 buff_size
[i
], PCI_DMA_BIDIRECTIONAL
);
6761 if (dma_mapping_error(&h
->pdev
->dev
,
6762 (dma_addr_t
) temp64
)) {
6763 c
->SG
[i
].Addr
= cpu_to_le64(0);
6764 c
->SG
[i
].Len
= cpu_to_le32(0);
6765 hpsa_pci_unmap(h
->pdev
, c
, i
,
6766 PCI_DMA_BIDIRECTIONAL
);
6770 c
->SG
[i
].Addr
= cpu_to_le64(temp64
);
6771 c
->SG
[i
].Len
= cpu_to_le32(buff_size
[i
]);
6772 c
->SG
[i
].Ext
= cpu_to_le32(0);
6774 c
->SG
[--i
].Ext
= cpu_to_le32(HPSA_SG_LAST
);
6776 status
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
,
6779 hpsa_pci_unmap(h
->pdev
, c
, sg_used
, PCI_DMA_BIDIRECTIONAL
);
6780 check_ioctl_unit_attention(h
, c
);
6786 /* Copy the error information out */
6787 memcpy(&ioc
->error_info
, c
->err_info
, sizeof(ioc
->error_info
));
6788 if (copy_to_user(argp
, ioc
, sizeof(*ioc
))) {
6792 if ((ioc
->Request
.Type
.Direction
& XFER_READ
) && ioc
->buf_size
> 0) {
6795 /* Copy the data out of the buffer we created */
6796 BYTE __user
*ptr
= ioc
->buf
;
6797 for (i
= 0; i
< sg_used
; i
++) {
6798 if (copy_to_user(ptr
, buff
[i
], buff_size
[i
])) {
6802 ptr
+= buff_size
[i
];
6812 for (i
= 0; i
< sg_used
; i
++)
6821 static void check_ioctl_unit_attention(struct ctlr_info
*h
,
6822 struct CommandList
*c
)
6824 if (c
->err_info
->CommandStatus
== CMD_TARGET_STATUS
&&
6825 c
->err_info
->ScsiStatus
!= SAM_STAT_CHECK_CONDITION
)
6826 (void) check_for_unit_attention(h
, c
);
6832 static int hpsa_ioctl(struct scsi_device
*dev
, int cmd
, void __user
*arg
)
6834 struct ctlr_info
*h
;
6835 void __user
*argp
= (void __user
*)arg
;
6838 h
= sdev_to_hba(dev
);
6841 case CCISS_DEREGDISK
:
6842 case CCISS_REGNEWDISK
:
6844 hpsa_scan_start(h
->scsi_host
);
6846 case CCISS_GETPCIINFO
:
6847 return hpsa_getpciinfo_ioctl(h
, argp
);
6848 case CCISS_GETDRIVVER
:
6849 return hpsa_getdrivver_ioctl(h
, argp
);
6850 case CCISS_PASSTHRU
:
6851 if (atomic_dec_if_positive(&h
->passthru_cmds_avail
) < 0)
6853 rc
= hpsa_passthru_ioctl(h
, argp
);
6854 atomic_inc(&h
->passthru_cmds_avail
);
6856 case CCISS_BIG_PASSTHRU
:
6857 if (atomic_dec_if_positive(&h
->passthru_cmds_avail
) < 0)
6859 rc
= hpsa_big_passthru_ioctl(h
, argp
);
6860 atomic_inc(&h
->passthru_cmds_avail
);
6867 static void hpsa_send_host_reset(struct ctlr_info
*h
, unsigned char *scsi3addr
,
6870 struct CommandList
*c
;
6874 /* fill_cmd can't fail here, no data buffer to map */
6875 (void) fill_cmd(c
, HPSA_DEVICE_RESET_MSG
, h
, NULL
, 0, 0,
6876 RAID_CTLR_LUNID
, TYPE_MSG
);
6877 c
->Request
.CDB
[1] = reset_type
; /* fill_cmd defaults to target reset */
6879 enqueue_cmd_and_start_io(h
, c
);
6880 /* Don't wait for completion, the reset won't complete. Don't free
6881 * the command either. This is the last command we will send before
6882 * re-initializing everything, so it doesn't matter and won't leak.
6887 static int fill_cmd(struct CommandList
*c
, u8 cmd
, struct ctlr_info
*h
,
6888 void *buff
, size_t size
, u16 page_code
, unsigned char *scsi3addr
,
6891 int pci_dir
= XFER_NONE
;
6892 u64 tag
; /* for commands to be aborted */
6894 c
->cmd_type
= CMD_IOCTL_PEND
;
6895 c
->scsi_cmd
= SCSI_CMD_BUSY
;
6896 c
->Header
.ReplyQueue
= 0;
6897 if (buff
!= NULL
&& size
> 0) {
6898 c
->Header
.SGList
= 1;
6899 c
->Header
.SGTotal
= cpu_to_le16(1);
6901 c
->Header
.SGList
= 0;
6902 c
->Header
.SGTotal
= cpu_to_le16(0);
6904 memcpy(c
->Header
.LUN
.LunAddrBytes
, scsi3addr
, 8);
6906 if (cmd_type
== TYPE_CMD
) {
6909 /* are we trying to read a vital product page */
6910 if (page_code
& VPD_PAGE
) {
6911 c
->Request
.CDB
[1] = 0x01;
6912 c
->Request
.CDB
[2] = (page_code
& 0xff);
6914 c
->Request
.CDBLen
= 6;
6915 c
->Request
.type_attr_dir
=
6916 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6917 c
->Request
.Timeout
= 0;
6918 c
->Request
.CDB
[0] = HPSA_INQUIRY
;
6919 c
->Request
.CDB
[4] = size
& 0xFF;
6921 case HPSA_REPORT_LOG
:
6922 case HPSA_REPORT_PHYS
:
6923 /* Talking to controller so It's a physical command
6924 mode = 00 target = 0. Nothing to write.
6926 c
->Request
.CDBLen
= 12;
6927 c
->Request
.type_attr_dir
=
6928 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6929 c
->Request
.Timeout
= 0;
6930 c
->Request
.CDB
[0] = cmd
;
6931 c
->Request
.CDB
[6] = (size
>> 24) & 0xFF; /* MSB */
6932 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6933 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
6934 c
->Request
.CDB
[9] = size
& 0xFF;
6936 case BMIC_SENSE_DIAG_OPTIONS
:
6937 c
->Request
.CDBLen
= 16;
6938 c
->Request
.type_attr_dir
=
6939 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6940 c
->Request
.Timeout
= 0;
6941 /* Spec says this should be BMIC_WRITE */
6942 c
->Request
.CDB
[0] = BMIC_READ
;
6943 c
->Request
.CDB
[6] = BMIC_SENSE_DIAG_OPTIONS
;
6945 case BMIC_SET_DIAG_OPTIONS
:
6946 c
->Request
.CDBLen
= 16;
6947 c
->Request
.type_attr_dir
=
6948 TYPE_ATTR_DIR(cmd_type
,
6949 ATTR_SIMPLE
, XFER_WRITE
);
6950 c
->Request
.Timeout
= 0;
6951 c
->Request
.CDB
[0] = BMIC_WRITE
;
6952 c
->Request
.CDB
[6] = BMIC_SET_DIAG_OPTIONS
;
6954 case HPSA_CACHE_FLUSH
:
6955 c
->Request
.CDBLen
= 12;
6956 c
->Request
.type_attr_dir
=
6957 TYPE_ATTR_DIR(cmd_type
,
6958 ATTR_SIMPLE
, XFER_WRITE
);
6959 c
->Request
.Timeout
= 0;
6960 c
->Request
.CDB
[0] = BMIC_WRITE
;
6961 c
->Request
.CDB
[6] = BMIC_CACHE_FLUSH
;
6962 c
->Request
.CDB
[7] = (size
>> 8) & 0xFF;
6963 c
->Request
.CDB
[8] = size
& 0xFF;
6965 case TEST_UNIT_READY
:
6966 c
->Request
.CDBLen
= 6;
6967 c
->Request
.type_attr_dir
=
6968 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_NONE
);
6969 c
->Request
.Timeout
= 0;
6971 case HPSA_GET_RAID_MAP
:
6972 c
->Request
.CDBLen
= 12;
6973 c
->Request
.type_attr_dir
=
6974 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6975 c
->Request
.Timeout
= 0;
6976 c
->Request
.CDB
[0] = HPSA_CISS_READ
;
6977 c
->Request
.CDB
[1] = cmd
;
6978 c
->Request
.CDB
[6] = (size
>> 24) & 0xFF; /* MSB */
6979 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6980 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
6981 c
->Request
.CDB
[9] = size
& 0xFF;
6983 case BMIC_SENSE_CONTROLLER_PARAMETERS
:
6984 c
->Request
.CDBLen
= 10;
6985 c
->Request
.type_attr_dir
=
6986 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6987 c
->Request
.Timeout
= 0;
6988 c
->Request
.CDB
[0] = BMIC_READ
;
6989 c
->Request
.CDB
[6] = BMIC_SENSE_CONTROLLER_PARAMETERS
;
6990 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6991 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
6993 case BMIC_IDENTIFY_PHYSICAL_DEVICE
:
6994 c
->Request
.CDBLen
= 10;
6995 c
->Request
.type_attr_dir
=
6996 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6997 c
->Request
.Timeout
= 0;
6998 c
->Request
.CDB
[0] = BMIC_READ
;
6999 c
->Request
.CDB
[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE
;
7000 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
7001 c
->Request
.CDB
[8] = (size
>> 8) & 0XFF;
7003 case BMIC_SENSE_SUBSYSTEM_INFORMATION
:
7004 c
->Request
.CDBLen
= 10;
7005 c
->Request
.type_attr_dir
=
7006 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
7007 c
->Request
.Timeout
= 0;
7008 c
->Request
.CDB
[0] = BMIC_READ
;
7009 c
->Request
.CDB
[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION
;
7010 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
7011 c
->Request
.CDB
[8] = (size
>> 8) & 0XFF;
7013 case BMIC_SENSE_STORAGE_BOX_PARAMS
:
7014 c
->Request
.CDBLen
= 10;
7015 c
->Request
.type_attr_dir
=
7016 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
7017 c
->Request
.Timeout
= 0;
7018 c
->Request
.CDB
[0] = BMIC_READ
;
7019 c
->Request
.CDB
[6] = BMIC_SENSE_STORAGE_BOX_PARAMS
;
7020 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
7021 c
->Request
.CDB
[8] = (size
>> 8) & 0XFF;
7023 case BMIC_IDENTIFY_CONTROLLER
:
7024 c
->Request
.CDBLen
= 10;
7025 c
->Request
.type_attr_dir
=
7026 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
7027 c
->Request
.Timeout
= 0;
7028 c
->Request
.CDB
[0] = BMIC_READ
;
7029 c
->Request
.CDB
[1] = 0;
7030 c
->Request
.CDB
[2] = 0;
7031 c
->Request
.CDB
[3] = 0;
7032 c
->Request
.CDB
[4] = 0;
7033 c
->Request
.CDB
[5] = 0;
7034 c
->Request
.CDB
[6] = BMIC_IDENTIFY_CONTROLLER
;
7035 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
7036 c
->Request
.CDB
[8] = (size
>> 8) & 0XFF;
7037 c
->Request
.CDB
[9] = 0;
7040 dev_warn(&h
->pdev
->dev
, "unknown command 0x%c\n", cmd
);
7044 } else if (cmd_type
== TYPE_MSG
) {
7047 case HPSA_PHYS_TARGET_RESET
:
7048 c
->Request
.CDBLen
= 16;
7049 c
->Request
.type_attr_dir
=
7050 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_NONE
);
7051 c
->Request
.Timeout
= 0; /* Don't time out */
7052 memset(&c
->Request
.CDB
[0], 0, sizeof(c
->Request
.CDB
));
7053 c
->Request
.CDB
[0] = HPSA_RESET
;
7054 c
->Request
.CDB
[1] = HPSA_TARGET_RESET_TYPE
;
7055 /* Physical target reset needs no control bytes 4-7*/
7056 c
->Request
.CDB
[4] = 0x00;
7057 c
->Request
.CDB
[5] = 0x00;
7058 c
->Request
.CDB
[6] = 0x00;
7059 c
->Request
.CDB
[7] = 0x00;
7061 case HPSA_DEVICE_RESET_MSG
:
7062 c
->Request
.CDBLen
= 16;
7063 c
->Request
.type_attr_dir
=
7064 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_NONE
);
7065 c
->Request
.Timeout
= 0; /* Don't time out */
7066 memset(&c
->Request
.CDB
[0], 0, sizeof(c
->Request
.CDB
));
7067 c
->Request
.CDB
[0] = cmd
;
7068 c
->Request
.CDB
[1] = HPSA_RESET_TYPE_LUN
;
7069 /* If bytes 4-7 are zero, it means reset the */
7071 c
->Request
.CDB
[4] = 0x00;
7072 c
->Request
.CDB
[5] = 0x00;
7073 c
->Request
.CDB
[6] = 0x00;
7074 c
->Request
.CDB
[7] = 0x00;
7076 case HPSA_ABORT_MSG
:
7077 memcpy(&tag
, buff
, sizeof(tag
));
7078 dev_dbg(&h
->pdev
->dev
,
7079 "Abort Tag:0x%016llx using rqst Tag:0x%016llx",
7080 tag
, c
->Header
.tag
);
7081 c
->Request
.CDBLen
= 16;
7082 c
->Request
.type_attr_dir
=
7083 TYPE_ATTR_DIR(cmd_type
,
7084 ATTR_SIMPLE
, XFER_WRITE
);
7085 c
->Request
.Timeout
= 0; /* Don't time out */
7086 c
->Request
.CDB
[0] = HPSA_TASK_MANAGEMENT
;
7087 c
->Request
.CDB
[1] = HPSA_TMF_ABORT_TASK
;
7088 c
->Request
.CDB
[2] = 0x00; /* reserved */
7089 c
->Request
.CDB
[3] = 0x00; /* reserved */
7090 /* Tag to abort goes in CDB[4]-CDB[11] */
7091 memcpy(&c
->Request
.CDB
[4], &tag
, sizeof(tag
));
7092 c
->Request
.CDB
[12] = 0x00; /* reserved */
7093 c
->Request
.CDB
[13] = 0x00; /* reserved */
7094 c
->Request
.CDB
[14] = 0x00; /* reserved */
7095 c
->Request
.CDB
[15] = 0x00; /* reserved */
7098 dev_warn(&h
->pdev
->dev
, "unknown message type %d\n",
7103 dev_warn(&h
->pdev
->dev
, "unknown command type %d\n", cmd_type
);
7107 switch (GET_DIR(c
->Request
.type_attr_dir
)) {
7109 pci_dir
= PCI_DMA_FROMDEVICE
;
7112 pci_dir
= PCI_DMA_TODEVICE
;
7115 pci_dir
= PCI_DMA_NONE
;
7118 pci_dir
= PCI_DMA_BIDIRECTIONAL
;
7120 if (hpsa_map_one(h
->pdev
, c
, buff
, size
, pci_dir
))
7126 * Map (physical) PCI mem into (virtual) kernel space
7128 static void __iomem
*remap_pci_mem(ulong base
, ulong size
)
7130 ulong page_base
= ((ulong
) base
) & PAGE_MASK
;
7131 ulong page_offs
= ((ulong
) base
) - page_base
;
7132 void __iomem
*page_remapped
= ioremap_nocache(page_base
,
7135 return page_remapped
? (page_remapped
+ page_offs
) : NULL
;
7138 static inline unsigned long get_next_completion(struct ctlr_info
*h
, u8 q
)
7140 return h
->access
.command_completed(h
, q
);
7143 static inline bool interrupt_pending(struct ctlr_info
*h
)
7145 return h
->access
.intr_pending(h
);
7148 static inline long interrupt_not_for_us(struct ctlr_info
*h
)
7150 return (h
->access
.intr_pending(h
) == 0) ||
7151 (h
->interrupts_enabled
== 0);
7154 static inline int bad_tag(struct ctlr_info
*h
, u32 tag_index
,
7157 if (unlikely(tag_index
>= h
->nr_cmds
)) {
7158 dev_warn(&h
->pdev
->dev
, "bad tag 0x%08x ignored.\n", raw_tag
);
7164 static inline void finish_cmd(struct CommandList
*c
)
7166 dial_up_lockup_detection_on_fw_flash_complete(c
->h
, c
);
7167 if (likely(c
->cmd_type
== CMD_IOACCEL1
|| c
->cmd_type
== CMD_SCSI
7168 || c
->cmd_type
== CMD_IOACCEL2
))
7169 complete_scsi_command(c
);
7170 else if (c
->cmd_type
== CMD_IOCTL_PEND
|| c
->cmd_type
== IOACCEL2_TMF
)
7171 complete(c
->waiting
);
7174 /* process completion of an indexed ("direct lookup") command */
7175 static inline void process_indexed_cmd(struct ctlr_info
*h
,
7179 struct CommandList
*c
;
7181 tag_index
= raw_tag
>> DIRECT_LOOKUP_SHIFT
;
7182 if (!bad_tag(h
, tag_index
, raw_tag
)) {
7183 c
= h
->cmd_pool
+ tag_index
;
7188 /* Some controllers, like p400, will give us one interrupt
7189 * after a soft reset, even if we turned interrupts off.
7190 * Only need to check for this in the hpsa_xxx_discard_completions
7193 static int ignore_bogus_interrupt(struct ctlr_info
*h
)
7195 if (likely(!reset_devices
))
7198 if (likely(h
->interrupts_enabled
))
7201 dev_info(&h
->pdev
->dev
, "Received interrupt while interrupts disabled "
7202 "(known firmware bug.) Ignoring.\n");
7208 * Convert &h->q[x] (passed to interrupt handlers) back to h.
7209 * Relies on (h-q[x] == x) being true for x such that
7210 * 0 <= x < MAX_REPLY_QUEUES.
7212 static struct ctlr_info
*queue_to_hba(u8
*queue
)
7214 return container_of((queue
- *queue
), struct ctlr_info
, q
[0]);
7217 static irqreturn_t
hpsa_intx_discard_completions(int irq
, void *queue
)
7219 struct ctlr_info
*h
= queue_to_hba(queue
);
7220 u8 q
= *(u8
*) queue
;
7223 if (ignore_bogus_interrupt(h
))
7226 if (interrupt_not_for_us(h
))
7228 h
->last_intr_timestamp
= get_jiffies_64();
7229 while (interrupt_pending(h
)) {
7230 raw_tag
= get_next_completion(h
, q
);
7231 while (raw_tag
!= FIFO_EMPTY
)
7232 raw_tag
= next_command(h
, q
);
7237 static irqreturn_t
hpsa_msix_discard_completions(int irq
, void *queue
)
7239 struct ctlr_info
*h
= queue_to_hba(queue
);
7241 u8 q
= *(u8
*) queue
;
7243 if (ignore_bogus_interrupt(h
))
7246 h
->last_intr_timestamp
= get_jiffies_64();
7247 raw_tag
= get_next_completion(h
, q
);
7248 while (raw_tag
!= FIFO_EMPTY
)
7249 raw_tag
= next_command(h
, q
);
7253 static irqreturn_t
do_hpsa_intr_intx(int irq
, void *queue
)
7255 struct ctlr_info
*h
= queue_to_hba((u8
*) queue
);
7257 u8 q
= *(u8
*) queue
;
7259 if (interrupt_not_for_us(h
))
7261 h
->last_intr_timestamp
= get_jiffies_64();
7262 while (interrupt_pending(h
)) {
7263 raw_tag
= get_next_completion(h
, q
);
7264 while (raw_tag
!= FIFO_EMPTY
) {
7265 process_indexed_cmd(h
, raw_tag
);
7266 raw_tag
= next_command(h
, q
);
7272 static irqreturn_t
do_hpsa_intr_msi(int irq
, void *queue
)
7274 struct ctlr_info
*h
= queue_to_hba(queue
);
7276 u8 q
= *(u8
*) queue
;
7278 h
->last_intr_timestamp
= get_jiffies_64();
7279 raw_tag
= get_next_completion(h
, q
);
7280 while (raw_tag
!= FIFO_EMPTY
) {
7281 process_indexed_cmd(h
, raw_tag
);
7282 raw_tag
= next_command(h
, q
);
7287 /* Send a message CDB to the firmware. Careful, this only works
7288 * in simple mode, not performant mode due to the tag lookup.
7289 * We only ever use this immediately after a controller reset.
7291 static int hpsa_message(struct pci_dev
*pdev
, unsigned char opcode
,
7295 struct CommandListHeader CommandHeader
;
7296 struct RequestBlock Request
;
7297 struct ErrDescriptor ErrorDescriptor
;
7299 struct Command
*cmd
;
7300 static const size_t cmd_sz
= sizeof(*cmd
) +
7301 sizeof(cmd
->ErrorDescriptor
);
7305 void __iomem
*vaddr
;
7308 vaddr
= pci_ioremap_bar(pdev
, 0);
7312 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
7313 * CCISS commands, so they must be allocated from the lower 4GiB of
7316 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
7322 cmd
= pci_alloc_consistent(pdev
, cmd_sz
, &paddr64
);
7328 /* This must fit, because of the 32-bit consistent DMA mask. Also,
7329 * although there's no guarantee, we assume that the address is at
7330 * least 4-byte aligned (most likely, it's page-aligned).
7332 paddr32
= cpu_to_le32(paddr64
);
7334 cmd
->CommandHeader
.ReplyQueue
= 0;
7335 cmd
->CommandHeader
.SGList
= 0;
7336 cmd
->CommandHeader
.SGTotal
= cpu_to_le16(0);
7337 cmd
->CommandHeader
.tag
= cpu_to_le64(paddr64
);
7338 memset(&cmd
->CommandHeader
.LUN
.LunAddrBytes
, 0, 8);
7340 cmd
->Request
.CDBLen
= 16;
7341 cmd
->Request
.type_attr_dir
=
7342 TYPE_ATTR_DIR(TYPE_MSG
, ATTR_HEADOFQUEUE
, XFER_NONE
);
7343 cmd
->Request
.Timeout
= 0; /* Don't time out */
7344 cmd
->Request
.CDB
[0] = opcode
;
7345 cmd
->Request
.CDB
[1] = type
;
7346 memset(&cmd
->Request
.CDB
[2], 0, 14); /* rest of the CDB is reserved */
7347 cmd
->ErrorDescriptor
.Addr
=
7348 cpu_to_le64((le32_to_cpu(paddr32
) + sizeof(*cmd
)));
7349 cmd
->ErrorDescriptor
.Len
= cpu_to_le32(sizeof(struct ErrorInfo
));
7351 writel(le32_to_cpu(paddr32
), vaddr
+ SA5_REQUEST_PORT_OFFSET
);
7353 for (i
= 0; i
< HPSA_MSG_SEND_RETRY_LIMIT
; i
++) {
7354 tag
= readl(vaddr
+ SA5_REPLY_PORT_OFFSET
);
7355 if ((tag
& ~HPSA_SIMPLE_ERROR_BITS
) == paddr64
)
7357 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS
);
7362 /* we leak the DMA buffer here ... no choice since the controller could
7363 * still complete the command.
7365 if (i
== HPSA_MSG_SEND_RETRY_LIMIT
) {
7366 dev_err(&pdev
->dev
, "controller message %02x:%02x timed out\n",
7371 pci_free_consistent(pdev
, cmd_sz
, cmd
, paddr64
);
7373 if (tag
& HPSA_ERROR_BIT
) {
7374 dev_err(&pdev
->dev
, "controller message %02x:%02x failed\n",
7379 dev_info(&pdev
->dev
, "controller message %02x:%02x succeeded\n",
7384 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7386 static int hpsa_controller_hard_reset(struct pci_dev
*pdev
,
7387 void __iomem
*vaddr
, u32 use_doorbell
)
7391 /* For everything after the P600, the PCI power state method
7392 * of resetting the controller doesn't work, so we have this
7393 * other way using the doorbell register.
7395 dev_info(&pdev
->dev
, "using doorbell to reset controller\n");
7396 writel(use_doorbell
, vaddr
+ SA5_DOORBELL
);
7398 /* PMC hardware guys tell us we need a 10 second delay after
7399 * doorbell reset and before any attempt to talk to the board
7400 * at all to ensure that this actually works and doesn't fall
7401 * over in some weird corner cases.
7404 } else { /* Try to do it the PCI power state way */
7406 /* Quoting from the Open CISS Specification: "The Power
7407 * Management Control/Status Register (CSR) controls the power
7408 * state of the device. The normal operating state is D0,
7409 * CSR=00h. The software off state is D3, CSR=03h. To reset
7410 * the controller, place the interface device in D3 then to D0,
7411 * this causes a secondary PCI reset which will reset the
7416 dev_info(&pdev
->dev
, "using PCI PM to reset controller\n");
7418 /* enter the D3hot power management state */
7419 rc
= pci_set_power_state(pdev
, PCI_D3hot
);
7425 /* enter the D0 power management state */
7426 rc
= pci_set_power_state(pdev
, PCI_D0
);
7431 * The P600 requires a small delay when changing states.
7432 * Otherwise we may think the board did not reset and we bail.
7433 * This for kdump only and is particular to the P600.
7440 static void init_driver_version(char *driver_version
, int len
)
7442 memset(driver_version
, 0, len
);
7443 strncpy(driver_version
, HPSA
" " HPSA_DRIVER_VERSION
, len
- 1);
7446 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem
*cfgtable
)
7448 char *driver_version
;
7449 int i
, size
= sizeof(cfgtable
->driver_version
);
7451 driver_version
= kmalloc(size
, GFP_KERNEL
);
7452 if (!driver_version
)
7455 init_driver_version(driver_version
, size
);
7456 for (i
= 0; i
< size
; i
++)
7457 writeb(driver_version
[i
], &cfgtable
->driver_version
[i
]);
7458 kfree(driver_version
);
7462 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem
*cfgtable
,
7463 unsigned char *driver_ver
)
7467 for (i
= 0; i
< sizeof(cfgtable
->driver_version
); i
++)
7468 driver_ver
[i
] = readb(&cfgtable
->driver_version
[i
]);
7471 static int controller_reset_failed(struct CfgTable __iomem
*cfgtable
)
7474 char *driver_ver
, *old_driver_ver
;
7475 int rc
, size
= sizeof(cfgtable
->driver_version
);
7477 old_driver_ver
= kmalloc(2 * size
, GFP_KERNEL
);
7478 if (!old_driver_ver
)
7480 driver_ver
= old_driver_ver
+ size
;
7482 /* After a reset, the 32 bytes of "driver version" in the cfgtable
7483 * should have been changed, otherwise we know the reset failed.
7485 init_driver_version(old_driver_ver
, size
);
7486 read_driver_ver_from_cfgtable(cfgtable
, driver_ver
);
7487 rc
= !memcmp(driver_ver
, old_driver_ver
, size
);
7488 kfree(old_driver_ver
);
7491 /* This does a hard reset of the controller using PCI power management
7492 * states or the using the doorbell register.
7494 static int hpsa_kdump_hard_reset_controller(struct pci_dev
*pdev
, u32 board_id
)
7498 u64 cfg_base_addr_index
;
7499 void __iomem
*vaddr
;
7500 unsigned long paddr
;
7501 u32 misc_fw_support
;
7503 struct CfgTable __iomem
*cfgtable
;
7505 u16 command_register
;
7507 /* For controllers as old as the P600, this is very nearly
7510 * pci_save_state(pci_dev);
7511 * pci_set_power_state(pci_dev, PCI_D3hot);
7512 * pci_set_power_state(pci_dev, PCI_D0);
7513 * pci_restore_state(pci_dev);
7515 * For controllers newer than the P600, the pci power state
7516 * method of resetting doesn't work so we have another way
7517 * using the doorbell register.
7520 if (!ctlr_is_resettable(board_id
)) {
7521 dev_warn(&pdev
->dev
, "Controller not resettable\n");
7525 /* if controller is soft- but not hard resettable... */
7526 if (!ctlr_is_hard_resettable(board_id
))
7527 return -ENOTSUPP
; /* try soft reset later. */
7529 /* Save the PCI command register */
7530 pci_read_config_word(pdev
, 4, &command_register
);
7531 pci_save_state(pdev
);
7533 /* find the first memory BAR, so we can find the cfg table */
7534 rc
= hpsa_pci_find_memory_BAR(pdev
, &paddr
);
7537 vaddr
= remap_pci_mem(paddr
, 0x250);
7541 /* find cfgtable in order to check if reset via doorbell is supported */
7542 rc
= hpsa_find_cfg_addrs(pdev
, vaddr
, &cfg_base_addr
,
7543 &cfg_base_addr_index
, &cfg_offset
);
7546 cfgtable
= remap_pci_mem(pci_resource_start(pdev
,
7547 cfg_base_addr_index
) + cfg_offset
, sizeof(*cfgtable
));
7552 rc
= write_driver_ver_to_cfgtable(cfgtable
);
7554 goto unmap_cfgtable
;
7556 /* If reset via doorbell register is supported, use that.
7557 * There are two such methods. Favor the newest method.
7559 misc_fw_support
= readl(&cfgtable
->misc_fw_support
);
7560 use_doorbell
= misc_fw_support
& MISC_FW_DOORBELL_RESET2
;
7562 use_doorbell
= DOORBELL_CTLR_RESET2
;
7564 use_doorbell
= misc_fw_support
& MISC_FW_DOORBELL_RESET
;
7566 dev_warn(&pdev
->dev
,
7567 "Soft reset not supported. Firmware update is required.\n");
7568 rc
= -ENOTSUPP
; /* try soft reset */
7569 goto unmap_cfgtable
;
7573 rc
= hpsa_controller_hard_reset(pdev
, vaddr
, use_doorbell
);
7575 goto unmap_cfgtable
;
7577 pci_restore_state(pdev
);
7578 pci_write_config_word(pdev
, 4, command_register
);
7580 /* Some devices (notably the HP Smart Array 5i Controller)
7581 need a little pause here */
7582 msleep(HPSA_POST_RESET_PAUSE_MSECS
);
7584 rc
= hpsa_wait_for_board_state(pdev
, vaddr
, BOARD_READY
);
7586 dev_warn(&pdev
->dev
,
7587 "Failed waiting for board to become ready after hard reset\n");
7588 goto unmap_cfgtable
;
7591 rc
= controller_reset_failed(vaddr
);
7593 goto unmap_cfgtable
;
7595 dev_warn(&pdev
->dev
, "Unable to successfully reset "
7596 "controller. Will try soft reset.\n");
7599 dev_info(&pdev
->dev
, "board ready after hard reset.\n");
7611 * We cannot read the structure directly, for portability we must use
7613 * This is for debug only.
7615 static void print_cfg_table(struct device
*dev
, struct CfgTable __iomem
*tb
)
7621 dev_info(dev
, "Controller Configuration information\n");
7622 dev_info(dev
, "------------------------------------\n");
7623 for (i
= 0; i
< 4; i
++)
7624 temp_name
[i
] = readb(&(tb
->Signature
[i
]));
7625 temp_name
[4] = '\0';
7626 dev_info(dev
, " Signature = %s\n", temp_name
);
7627 dev_info(dev
, " Spec Number = %d\n", readl(&(tb
->SpecValence
)));
7628 dev_info(dev
, " Transport methods supported = 0x%x\n",
7629 readl(&(tb
->TransportSupport
)));
7630 dev_info(dev
, " Transport methods active = 0x%x\n",
7631 readl(&(tb
->TransportActive
)));
7632 dev_info(dev
, " Requested transport Method = 0x%x\n",
7633 readl(&(tb
->HostWrite
.TransportRequest
)));
7634 dev_info(dev
, " Coalesce Interrupt Delay = 0x%x\n",
7635 readl(&(tb
->HostWrite
.CoalIntDelay
)));
7636 dev_info(dev
, " Coalesce Interrupt Count = 0x%x\n",
7637 readl(&(tb
->HostWrite
.CoalIntCount
)));
7638 dev_info(dev
, " Max outstanding commands = %d\n",
7639 readl(&(tb
->CmdsOutMax
)));
7640 dev_info(dev
, " Bus Types = 0x%x\n", readl(&(tb
->BusTypes
)));
7641 for (i
= 0; i
< 16; i
++)
7642 temp_name
[i
] = readb(&(tb
->ServerName
[i
]));
7643 temp_name
[16] = '\0';
7644 dev_info(dev
, " Server Name = %s\n", temp_name
);
7645 dev_info(dev
, " Heartbeat Counter = 0x%x\n\n\n",
7646 readl(&(tb
->HeartBeat
)));
7647 #endif /* HPSA_DEBUG */
7650 static int find_PCI_BAR_index(struct pci_dev
*pdev
, unsigned long pci_bar_addr
)
7652 int i
, offset
, mem_type
, bar_type
;
7654 if (pci_bar_addr
== PCI_BASE_ADDRESS_0
) /* looking for BAR zero? */
7657 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++) {
7658 bar_type
= pci_resource_flags(pdev
, i
) & PCI_BASE_ADDRESS_SPACE
;
7659 if (bar_type
== PCI_BASE_ADDRESS_SPACE_IO
)
7662 mem_type
= pci_resource_flags(pdev
, i
) &
7663 PCI_BASE_ADDRESS_MEM_TYPE_MASK
;
7665 case PCI_BASE_ADDRESS_MEM_TYPE_32
:
7666 case PCI_BASE_ADDRESS_MEM_TYPE_1M
:
7667 offset
+= 4; /* 32 bit */
7669 case PCI_BASE_ADDRESS_MEM_TYPE_64
:
7672 default: /* reserved in PCI 2.2 */
7673 dev_warn(&pdev
->dev
,
7674 "base address is invalid\n");
7679 if (offset
== pci_bar_addr
- PCI_BASE_ADDRESS_0
)
7685 static void hpsa_disable_interrupt_mode(struct ctlr_info
*h
)
7687 if (h
->msix_vector
) {
7688 if (h
->pdev
->msix_enabled
)
7689 pci_disable_msix(h
->pdev
);
7691 } else if (h
->msi_vector
) {
7692 if (h
->pdev
->msi_enabled
)
7693 pci_disable_msi(h
->pdev
);
7698 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7699 * controllers that are capable. If not, we use legacy INTx mode.
7701 static void hpsa_interrupt_mode(struct ctlr_info
*h
)
7703 #ifdef CONFIG_PCI_MSI
7705 struct msix_entry hpsa_msix_entries
[MAX_REPLY_QUEUES
];
7707 for (i
= 0; i
< MAX_REPLY_QUEUES
; i
++) {
7708 hpsa_msix_entries
[i
].vector
= 0;
7709 hpsa_msix_entries
[i
].entry
= i
;
7712 /* Some boards advertise MSI but don't really support it */
7713 if ((h
->board_id
== 0x40700E11) || (h
->board_id
== 0x40800E11) ||
7714 (h
->board_id
== 0x40820E11) || (h
->board_id
== 0x40830E11))
7715 goto default_int_mode
;
7716 if (pci_find_capability(h
->pdev
, PCI_CAP_ID_MSIX
)) {
7717 dev_info(&h
->pdev
->dev
, "MSI-X capable controller\n");
7718 h
->msix_vector
= MAX_REPLY_QUEUES
;
7719 if (h
->msix_vector
> num_online_cpus())
7720 h
->msix_vector
= num_online_cpus();
7721 err
= pci_enable_msix_range(h
->pdev
, hpsa_msix_entries
,
7724 dev_warn(&h
->pdev
->dev
, "MSI-X init failed %d\n", err
);
7726 goto single_msi_mode
;
7727 } else if (err
< h
->msix_vector
) {
7728 dev_warn(&h
->pdev
->dev
, "only %d MSI-X vectors "
7729 "available\n", err
);
7731 h
->msix_vector
= err
;
7732 for (i
= 0; i
< h
->msix_vector
; i
++)
7733 h
->intr
[i
] = hpsa_msix_entries
[i
].vector
;
7737 if (pci_find_capability(h
->pdev
, PCI_CAP_ID_MSI
)) {
7738 dev_info(&h
->pdev
->dev
, "MSI capable controller\n");
7739 if (!pci_enable_msi(h
->pdev
))
7742 dev_warn(&h
->pdev
->dev
, "MSI init failed\n");
7745 #endif /* CONFIG_PCI_MSI */
7746 /* if we get here we're going to use the default interrupt mode */
7747 h
->intr
[h
->intr_mode
] = h
->pdev
->irq
;
7750 static int hpsa_lookup_board_id(struct pci_dev
*pdev
, u32
*board_id
)
7753 u32 subsystem_vendor_id
, subsystem_device_id
;
7755 subsystem_vendor_id
= pdev
->subsystem_vendor
;
7756 subsystem_device_id
= pdev
->subsystem_device
;
7757 *board_id
= ((subsystem_device_id
<< 16) & 0xffff0000) |
7758 subsystem_vendor_id
;
7760 for (i
= 0; i
< ARRAY_SIZE(products
); i
++)
7761 if (*board_id
== products
[i
].board_id
)
7764 if ((subsystem_vendor_id
!= PCI_VENDOR_ID_HP
&&
7765 subsystem_vendor_id
!= PCI_VENDOR_ID_COMPAQ
) ||
7767 dev_warn(&pdev
->dev
, "unrecognized board ID: "
7768 "0x%08x, ignoring.\n", *board_id
);
7771 return ARRAY_SIZE(products
) - 1; /* generic unknown smart array */
7774 static int hpsa_pci_find_memory_BAR(struct pci_dev
*pdev
,
7775 unsigned long *memory_bar
)
7779 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++)
7780 if (pci_resource_flags(pdev
, i
) & IORESOURCE_MEM
) {
7781 /* addressing mode bits already removed */
7782 *memory_bar
= pci_resource_start(pdev
, i
);
7783 dev_dbg(&pdev
->dev
, "memory BAR = %lx\n",
7787 dev_warn(&pdev
->dev
, "no memory BAR found\n");
7791 static int hpsa_wait_for_board_state(struct pci_dev
*pdev
, void __iomem
*vaddr
,
7797 iterations
= HPSA_BOARD_READY_ITERATIONS
;
7799 iterations
= HPSA_BOARD_NOT_READY_ITERATIONS
;
7801 for (i
= 0; i
< iterations
; i
++) {
7802 scratchpad
= readl(vaddr
+ SA5_SCRATCHPAD_OFFSET
);
7803 if (wait_for_ready
) {
7804 if (scratchpad
== HPSA_FIRMWARE_READY
)
7807 if (scratchpad
!= HPSA_FIRMWARE_READY
)
7810 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS
);
7812 dev_warn(&pdev
->dev
, "board not ready, timed out.\n");
7816 static int hpsa_find_cfg_addrs(struct pci_dev
*pdev
, void __iomem
*vaddr
,
7817 u32
*cfg_base_addr
, u64
*cfg_base_addr_index
,
7820 *cfg_base_addr
= readl(vaddr
+ SA5_CTCFG_OFFSET
);
7821 *cfg_offset
= readl(vaddr
+ SA5_CTMEM_OFFSET
);
7822 *cfg_base_addr
&= (u32
) 0x0000ffff;
7823 *cfg_base_addr_index
= find_PCI_BAR_index(pdev
, *cfg_base_addr
);
7824 if (*cfg_base_addr_index
== -1) {
7825 dev_warn(&pdev
->dev
, "cannot find cfg_base_addr_index\n");
7831 static void hpsa_free_cfgtables(struct ctlr_info
*h
)
7833 if (h
->transtable
) {
7834 iounmap(h
->transtable
);
7835 h
->transtable
= NULL
;
7838 iounmap(h
->cfgtable
);
7843 /* Find and map CISS config table and transfer table
7844 + * several items must be unmapped (freed) later
7846 static int hpsa_find_cfgtables(struct ctlr_info
*h
)
7850 u64 cfg_base_addr_index
;
7854 rc
= hpsa_find_cfg_addrs(h
->pdev
, h
->vaddr
, &cfg_base_addr
,
7855 &cfg_base_addr_index
, &cfg_offset
);
7858 h
->cfgtable
= remap_pci_mem(pci_resource_start(h
->pdev
,
7859 cfg_base_addr_index
) + cfg_offset
, sizeof(*h
->cfgtable
));
7861 dev_err(&h
->pdev
->dev
, "Failed mapping cfgtable\n");
7864 rc
= write_driver_ver_to_cfgtable(h
->cfgtable
);
7867 /* Find performant mode table. */
7868 trans_offset
= readl(&h
->cfgtable
->TransMethodOffset
);
7869 h
->transtable
= remap_pci_mem(pci_resource_start(h
->pdev
,
7870 cfg_base_addr_index
)+cfg_offset
+trans_offset
,
7871 sizeof(*h
->transtable
));
7872 if (!h
->transtable
) {
7873 dev_err(&h
->pdev
->dev
, "Failed mapping transfer table\n");
7874 hpsa_free_cfgtables(h
);
7880 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info
*h
)
7882 #define MIN_MAX_COMMANDS 16
7883 BUILD_BUG_ON(MIN_MAX_COMMANDS
<= HPSA_NRESERVED_CMDS
);
7885 h
->max_commands
= readl(&h
->cfgtable
->MaxPerformantModeCommands
);
7887 /* Limit commands in memory limited kdump scenario. */
7888 if (reset_devices
&& h
->max_commands
> 32)
7889 h
->max_commands
= 32;
7891 if (h
->max_commands
< MIN_MAX_COMMANDS
) {
7892 dev_warn(&h
->pdev
->dev
,
7893 "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7896 h
->max_commands
= MIN_MAX_COMMANDS
;
7900 /* If the controller reports that the total max sg entries is greater than 512,
7901 * then we know that chained SG blocks work. (Original smart arrays did not
7902 * support chained SG blocks and would return zero for max sg entries.)
7904 static int hpsa_supports_chained_sg_blocks(struct ctlr_info
*h
)
7906 return h
->maxsgentries
> 512;
7909 /* Interrogate the hardware for some limits:
7910 * max commands, max SG elements without chaining, and with chaining,
7911 * SG chain block size, etc.
7913 static void hpsa_find_board_params(struct ctlr_info
*h
)
7915 hpsa_get_max_perf_mode_cmds(h
);
7916 h
->nr_cmds
= h
->max_commands
;
7917 h
->maxsgentries
= readl(&(h
->cfgtable
->MaxScatterGatherElements
));
7918 h
->fw_support
= readl(&(h
->cfgtable
->misc_fw_support
));
7919 if (hpsa_supports_chained_sg_blocks(h
)) {
7920 /* Limit in-command s/g elements to 32 save dma'able memory. */
7921 h
->max_cmd_sg_entries
= 32;
7922 h
->chainsize
= h
->maxsgentries
- h
->max_cmd_sg_entries
;
7923 h
->maxsgentries
--; /* save one for chain pointer */
7926 * Original smart arrays supported at most 31 s/g entries
7927 * embedded inline in the command (trying to use more
7928 * would lock up the controller)
7930 h
->max_cmd_sg_entries
= 31;
7931 h
->maxsgentries
= 31; /* default to traditional values */
7935 /* Find out what task management functions are supported and cache */
7936 h
->TMFSupportFlags
= readl(&(h
->cfgtable
->TMFSupportFlags
));
7937 if (!(HPSATMF_PHYS_TASK_ABORT
& h
->TMFSupportFlags
))
7938 dev_warn(&h
->pdev
->dev
, "Physical aborts not supported\n");
7939 if (!(HPSATMF_LOG_TASK_ABORT
& h
->TMFSupportFlags
))
7940 dev_warn(&h
->pdev
->dev
, "Logical aborts not supported\n");
7941 if (!(HPSATMF_IOACCEL_ENABLED
& h
->TMFSupportFlags
))
7942 dev_warn(&h
->pdev
->dev
, "HP SSD Smart Path aborts not supported\n");
7945 static inline bool hpsa_CISS_signature_present(struct ctlr_info
*h
)
7947 if (!check_signature(h
->cfgtable
->Signature
, "CISS", 4)) {
7948 dev_err(&h
->pdev
->dev
, "not a valid CISS config table\n");
7954 static inline void hpsa_set_driver_support_bits(struct ctlr_info
*h
)
7958 driver_support
= readl(&(h
->cfgtable
->driver_support
));
7959 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7961 driver_support
|= ENABLE_SCSI_PREFETCH
;
7963 driver_support
|= ENABLE_UNIT_ATTN
;
7964 writel(driver_support
, &(h
->cfgtable
->driver_support
));
7967 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
7968 * in a prefetch beyond physical memory.
7970 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info
*h
)
7974 if (h
->board_id
!= 0x3225103C)
7976 dma_prefetch
= readl(h
->vaddr
+ I2O_DMA1_CFG
);
7977 dma_prefetch
|= 0x8000;
7978 writel(dma_prefetch
, h
->vaddr
+ I2O_DMA1_CFG
);
7981 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info
*h
)
7985 unsigned long flags
;
7986 /* wait until the clear_event_notify bit 6 is cleared by controller. */
7987 for (i
= 0; i
< MAX_CLEAR_EVENT_WAIT
; i
++) {
7988 spin_lock_irqsave(&h
->lock
, flags
);
7989 doorbell_value
= readl(h
->vaddr
+ SA5_DOORBELL
);
7990 spin_unlock_irqrestore(&h
->lock
, flags
);
7991 if (!(doorbell_value
& DOORBELL_CLEAR_EVENTS
))
7993 /* delay and try again */
7994 msleep(CLEAR_EVENT_WAIT_INTERVAL
);
8001 static int hpsa_wait_for_mode_change_ack(struct ctlr_info
*h
)
8005 unsigned long flags
;
8007 /* under certain very rare conditions, this can take awhile.
8008 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
8009 * as we enter this code.)
8011 for (i
= 0; i
< MAX_MODE_CHANGE_WAIT
; i
++) {
8012 if (h
->remove_in_progress
)
8014 spin_lock_irqsave(&h
->lock
, flags
);
8015 doorbell_value
= readl(h
->vaddr
+ SA5_DOORBELL
);
8016 spin_unlock_irqrestore(&h
->lock
, flags
);
8017 if (!(doorbell_value
& CFGTBL_ChangeReq
))
8019 /* delay and try again */
8020 msleep(MODE_CHANGE_WAIT_INTERVAL
);
8027 /* return -ENODEV or other reason on error, 0 on success */
8028 static int hpsa_enter_simple_mode(struct ctlr_info
*h
)
8032 trans_support
= readl(&(h
->cfgtable
->TransportSupport
));
8033 if (!(trans_support
& SIMPLE_MODE
))
8036 h
->max_commands
= readl(&(h
->cfgtable
->CmdsOutMax
));
8038 /* Update the field, and then ring the doorbell */
8039 writel(CFGTBL_Trans_Simple
, &(h
->cfgtable
->HostWrite
.TransportRequest
));
8040 writel(0, &h
->cfgtable
->HostWrite
.command_pool_addr_hi
);
8041 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
8042 if (hpsa_wait_for_mode_change_ack(h
))
8044 print_cfg_table(&h
->pdev
->dev
, h
->cfgtable
);
8045 if (!(readl(&(h
->cfgtable
->TransportActive
)) & CFGTBL_Trans_Simple
))
8047 h
->transMethod
= CFGTBL_Trans_Simple
;
8050 dev_err(&h
->pdev
->dev
, "failed to enter simple mode\n");
8054 /* free items allocated or mapped by hpsa_pci_init */
8055 static void hpsa_free_pci_init(struct ctlr_info
*h
)
8057 hpsa_free_cfgtables(h
); /* pci_init 4 */
8058 iounmap(h
->vaddr
); /* pci_init 3 */
8060 hpsa_disable_interrupt_mode(h
); /* pci_init 2 */
8062 * call pci_disable_device before pci_release_regions per
8063 * Documentation/PCI/pci.txt
8065 pci_disable_device(h
->pdev
); /* pci_init 1 */
8066 pci_release_regions(h
->pdev
); /* pci_init 2 */
8069 /* several items must be freed later */
8070 static int hpsa_pci_init(struct ctlr_info
*h
)
8072 int prod_index
, err
;
8074 prod_index
= hpsa_lookup_board_id(h
->pdev
, &h
->board_id
);
8077 h
->product_name
= products
[prod_index
].product_name
;
8078 h
->access
= *(products
[prod_index
].access
);
8080 h
->needs_abort_tags_swizzled
=
8081 ctlr_needs_abort_tags_swizzled(h
->board_id
);
8083 pci_disable_link_state(h
->pdev
, PCIE_LINK_STATE_L0S
|
8084 PCIE_LINK_STATE_L1
| PCIE_LINK_STATE_CLKPM
);
8086 err
= pci_enable_device(h
->pdev
);
8088 dev_err(&h
->pdev
->dev
, "failed to enable PCI device\n");
8089 pci_disable_device(h
->pdev
);
8093 err
= pci_request_regions(h
->pdev
, HPSA
);
8095 dev_err(&h
->pdev
->dev
,
8096 "failed to obtain PCI resources\n");
8097 pci_disable_device(h
->pdev
);
8101 pci_set_master(h
->pdev
);
8103 hpsa_interrupt_mode(h
);
8104 err
= hpsa_pci_find_memory_BAR(h
->pdev
, &h
->paddr
);
8106 goto clean2
; /* intmode+region, pci */
8107 h
->vaddr
= remap_pci_mem(h
->paddr
, 0x250);
8109 dev_err(&h
->pdev
->dev
, "failed to remap PCI mem\n");
8111 goto clean2
; /* intmode+region, pci */
8113 err
= hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_READY
);
8115 goto clean3
; /* vaddr, intmode+region, pci */
8116 err
= hpsa_find_cfgtables(h
);
8118 goto clean3
; /* vaddr, intmode+region, pci */
8119 hpsa_find_board_params(h
);
8121 if (!hpsa_CISS_signature_present(h
)) {
8123 goto clean4
; /* cfgtables, vaddr, intmode+region, pci */
8125 hpsa_set_driver_support_bits(h
);
8126 hpsa_p600_dma_prefetch_quirk(h
);
8127 err
= hpsa_enter_simple_mode(h
);
8129 goto clean4
; /* cfgtables, vaddr, intmode+region, pci */
8132 clean4
: /* cfgtables, vaddr, intmode+region, pci */
8133 hpsa_free_cfgtables(h
);
8134 clean3
: /* vaddr, intmode+region, pci */
8137 clean2
: /* intmode+region, pci */
8138 hpsa_disable_interrupt_mode(h
);
8140 * call pci_disable_device before pci_release_regions per
8141 * Documentation/PCI/pci.txt
8143 pci_disable_device(h
->pdev
);
8144 pci_release_regions(h
->pdev
);
8148 static void hpsa_hba_inquiry(struct ctlr_info
*h
)
8152 #define HBA_INQUIRY_BYTE_COUNT 64
8153 h
->hba_inquiry_data
= kmalloc(HBA_INQUIRY_BYTE_COUNT
, GFP_KERNEL
);
8154 if (!h
->hba_inquiry_data
)
8156 rc
= hpsa_scsi_do_inquiry(h
, RAID_CTLR_LUNID
, 0,
8157 h
->hba_inquiry_data
, HBA_INQUIRY_BYTE_COUNT
);
8159 kfree(h
->hba_inquiry_data
);
8160 h
->hba_inquiry_data
= NULL
;
8164 static int hpsa_init_reset_devices(struct pci_dev
*pdev
, u32 board_id
)
8167 void __iomem
*vaddr
;
8172 /* kdump kernel is loading, we don't know in which state is
8173 * the pci interface. The dev->enable_cnt is equal zero
8174 * so we call enable+disable, wait a while and switch it on.
8176 rc
= pci_enable_device(pdev
);
8178 dev_warn(&pdev
->dev
, "Failed to enable PCI device\n");
8181 pci_disable_device(pdev
);
8182 msleep(260); /* a randomly chosen number */
8183 rc
= pci_enable_device(pdev
);
8185 dev_warn(&pdev
->dev
, "failed to enable device.\n");
8189 pci_set_master(pdev
);
8191 vaddr
= pci_ioremap_bar(pdev
, 0);
8192 if (vaddr
== NULL
) {
8196 writel(SA5_INTR_OFF
, vaddr
+ SA5_REPLY_INTR_MASK_OFFSET
);
8199 /* Reset the controller with a PCI power-cycle or via doorbell */
8200 rc
= hpsa_kdump_hard_reset_controller(pdev
, board_id
);
8202 /* -ENOTSUPP here means we cannot reset the controller
8203 * but it's already (and still) up and running in
8204 * "performant mode". Or, it might be 640x, which can't reset
8205 * due to concerns about shared bbwc between 6402/6404 pair.
8210 /* Now try to get the controller to respond to a no-op */
8211 dev_info(&pdev
->dev
, "Waiting for controller to respond to no-op\n");
8212 for (i
= 0; i
< HPSA_POST_RESET_NOOP_RETRIES
; i
++) {
8213 if (hpsa_noop(pdev
) == 0)
8216 dev_warn(&pdev
->dev
, "no-op failed%s\n",
8217 (i
< 11 ? "; re-trying" : ""));
8222 pci_disable_device(pdev
);
8226 static void hpsa_free_cmd_pool(struct ctlr_info
*h
)
8228 kfree(h
->cmd_pool_bits
);
8229 h
->cmd_pool_bits
= NULL
;
8231 pci_free_consistent(h
->pdev
,
8232 h
->nr_cmds
* sizeof(struct CommandList
),
8234 h
->cmd_pool_dhandle
);
8236 h
->cmd_pool_dhandle
= 0;
8238 if (h
->errinfo_pool
) {
8239 pci_free_consistent(h
->pdev
,
8240 h
->nr_cmds
* sizeof(struct ErrorInfo
),
8242 h
->errinfo_pool_dhandle
);
8243 h
->errinfo_pool
= NULL
;
8244 h
->errinfo_pool_dhandle
= 0;
8248 static int hpsa_alloc_cmd_pool(struct ctlr_info
*h
)
8250 h
->cmd_pool_bits
= kzalloc(
8251 DIV_ROUND_UP(h
->nr_cmds
, BITS_PER_LONG
) *
8252 sizeof(unsigned long), GFP_KERNEL
);
8253 h
->cmd_pool
= pci_alloc_consistent(h
->pdev
,
8254 h
->nr_cmds
* sizeof(*h
->cmd_pool
),
8255 &(h
->cmd_pool_dhandle
));
8256 h
->errinfo_pool
= pci_alloc_consistent(h
->pdev
,
8257 h
->nr_cmds
* sizeof(*h
->errinfo_pool
),
8258 &(h
->errinfo_pool_dhandle
));
8259 if ((h
->cmd_pool_bits
== NULL
)
8260 || (h
->cmd_pool
== NULL
)
8261 || (h
->errinfo_pool
== NULL
)) {
8262 dev_err(&h
->pdev
->dev
, "out of memory in %s", __func__
);
8265 hpsa_preinitialize_commands(h
);
8268 hpsa_free_cmd_pool(h
);
8272 static void hpsa_irq_affinity_hints(struct ctlr_info
*h
)
8276 cpu
= cpumask_first(cpu_online_mask
);
8277 for (i
= 0; i
< h
->msix_vector
; i
++) {
8278 irq_set_affinity_hint(h
->intr
[i
], get_cpu_mask(cpu
));
8279 cpu
= cpumask_next(cpu
, cpu_online_mask
);
8283 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8284 static void hpsa_free_irqs(struct ctlr_info
*h
)
8288 if (!h
->msix_vector
|| h
->intr_mode
!= PERF_MODE_INT
) {
8289 /* Single reply queue, only one irq to free */
8291 irq_set_affinity_hint(h
->intr
[i
], NULL
);
8292 free_irq(h
->intr
[i
], &h
->q
[i
]);
8297 for (i
= 0; i
< h
->msix_vector
; i
++) {
8298 irq_set_affinity_hint(h
->intr
[i
], NULL
);
8299 free_irq(h
->intr
[i
], &h
->q
[i
]);
8302 for (; i
< MAX_REPLY_QUEUES
; i
++)
8306 /* returns 0 on success; cleans up and returns -Enn on error */
8307 static int hpsa_request_irqs(struct ctlr_info
*h
,
8308 irqreturn_t (*msixhandler
)(int, void *),
8309 irqreturn_t (*intxhandler
)(int, void *))
8314 * initialize h->q[x] = x so that interrupt handlers know which
8317 for (i
= 0; i
< MAX_REPLY_QUEUES
; i
++)
8320 if (h
->intr_mode
== PERF_MODE_INT
&& h
->msix_vector
> 0) {
8321 /* If performant mode and MSI-X, use multiple reply queues */
8322 for (i
= 0; i
< h
->msix_vector
; i
++) {
8323 sprintf(h
->intrname
[i
], "%s-msix%d", h
->devname
, i
);
8324 rc
= request_irq(h
->intr
[i
], msixhandler
,
8330 dev_err(&h
->pdev
->dev
,
8331 "failed to get irq %d for %s\n",
8332 h
->intr
[i
], h
->devname
);
8333 for (j
= 0; j
< i
; j
++) {
8334 free_irq(h
->intr
[j
], &h
->q
[j
]);
8337 for (; j
< MAX_REPLY_QUEUES
; j
++)
8342 hpsa_irq_affinity_hints(h
);
8344 /* Use single reply pool */
8345 if (h
->msix_vector
> 0 || h
->msi_vector
) {
8347 sprintf(h
->intrname
[h
->intr_mode
],
8348 "%s-msix", h
->devname
);
8350 sprintf(h
->intrname
[h
->intr_mode
],
8351 "%s-msi", h
->devname
);
8352 rc
= request_irq(h
->intr
[h
->intr_mode
],
8354 h
->intrname
[h
->intr_mode
],
8355 &h
->q
[h
->intr_mode
]);
8357 sprintf(h
->intrname
[h
->intr_mode
],
8358 "%s-intx", h
->devname
);
8359 rc
= request_irq(h
->intr
[h
->intr_mode
],
8360 intxhandler
, IRQF_SHARED
,
8361 h
->intrname
[h
->intr_mode
],
8362 &h
->q
[h
->intr_mode
]);
8364 irq_set_affinity_hint(h
->intr
[h
->intr_mode
], NULL
);
8367 dev_err(&h
->pdev
->dev
, "failed to get irq %d for %s\n",
8368 h
->intr
[h
->intr_mode
], h
->devname
);
8375 static int hpsa_kdump_soft_reset(struct ctlr_info
*h
)
8378 hpsa_send_host_reset(h
, RAID_CTLR_LUNID
, HPSA_RESET_TYPE_CONTROLLER
);
8380 dev_info(&h
->pdev
->dev
, "Waiting for board to soft reset.\n");
8381 rc
= hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_NOT_READY
);
8383 dev_warn(&h
->pdev
->dev
, "Soft reset had no effect.\n");
8387 dev_info(&h
->pdev
->dev
, "Board reset, awaiting READY status.\n");
8388 rc
= hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_READY
);
8390 dev_warn(&h
->pdev
->dev
, "Board failed to become ready "
8391 "after soft reset.\n");
8398 static void hpsa_free_reply_queues(struct ctlr_info
*h
)
8402 for (i
= 0; i
< h
->nreply_queues
; i
++) {
8403 if (!h
->reply_queue
[i
].head
)
8405 pci_free_consistent(h
->pdev
,
8406 h
->reply_queue_size
,
8407 h
->reply_queue
[i
].head
,
8408 h
->reply_queue
[i
].busaddr
);
8409 h
->reply_queue
[i
].head
= NULL
;
8410 h
->reply_queue
[i
].busaddr
= 0;
8412 h
->reply_queue_size
= 0;
8415 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info
*h
)
8417 hpsa_free_performant_mode(h
); /* init_one 7 */
8418 hpsa_free_sg_chain_blocks(h
); /* init_one 6 */
8419 hpsa_free_cmd_pool(h
); /* init_one 5 */
8420 hpsa_free_irqs(h
); /* init_one 4 */
8421 scsi_host_put(h
->scsi_host
); /* init_one 3 */
8422 h
->scsi_host
= NULL
; /* init_one 3 */
8423 hpsa_free_pci_init(h
); /* init_one 2_5 */
8424 free_percpu(h
->lockup_detected
); /* init_one 2 */
8425 h
->lockup_detected
= NULL
; /* init_one 2 */
8426 if (h
->resubmit_wq
) {
8427 destroy_workqueue(h
->resubmit_wq
); /* init_one 1 */
8428 h
->resubmit_wq
= NULL
;
8430 if (h
->rescan_ctlr_wq
) {
8431 destroy_workqueue(h
->rescan_ctlr_wq
);
8432 h
->rescan_ctlr_wq
= NULL
;
8434 kfree(h
); /* init_one 1 */
8437 /* Called when controller lockup detected. */
8438 static void fail_all_outstanding_cmds(struct ctlr_info
*h
)
8441 struct CommandList
*c
;
8444 flush_workqueue(h
->resubmit_wq
); /* ensure all cmds are fully built */
8445 for (i
= 0; i
< h
->nr_cmds
; i
++) {
8446 c
= h
->cmd_pool
+ i
;
8447 refcount
= atomic_inc_return(&c
->refcount
);
8449 c
->err_info
->CommandStatus
= CMD_CTLR_LOCKUP
;
8451 atomic_dec(&h
->commands_outstanding
);
8456 dev_warn(&h
->pdev
->dev
,
8457 "failed %d commands in fail_all\n", failcount
);
8460 static void set_lockup_detected_for_all_cpus(struct ctlr_info
*h
, u32 value
)
8464 for_each_online_cpu(cpu
) {
8465 u32
*lockup_detected
;
8466 lockup_detected
= per_cpu_ptr(h
->lockup_detected
, cpu
);
8467 *lockup_detected
= value
;
8469 wmb(); /* be sure the per-cpu variables are out to memory */
8472 static void controller_lockup_detected(struct ctlr_info
*h
)
8474 unsigned long flags
;
8475 u32 lockup_detected
;
8477 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8478 spin_lock_irqsave(&h
->lock
, flags
);
8479 lockup_detected
= readl(h
->vaddr
+ SA5_SCRATCHPAD_OFFSET
);
8480 if (!lockup_detected
) {
8481 /* no heartbeat, but controller gave us a zero. */
8482 dev_warn(&h
->pdev
->dev
,
8483 "lockup detected after %d but scratchpad register is zero\n",
8484 h
->heartbeat_sample_interval
/ HZ
);
8485 lockup_detected
= 0xffffffff;
8487 set_lockup_detected_for_all_cpus(h
, lockup_detected
);
8488 spin_unlock_irqrestore(&h
->lock
, flags
);
8489 dev_warn(&h
->pdev
->dev
, "Controller lockup detected: 0x%08x after %d\n",
8490 lockup_detected
, h
->heartbeat_sample_interval
/ HZ
);
8491 pci_disable_device(h
->pdev
);
8492 fail_all_outstanding_cmds(h
);
8495 static int detect_controller_lockup(struct ctlr_info
*h
)
8499 unsigned long flags
;
8501 now
= get_jiffies_64();
8502 /* If we've received an interrupt recently, we're ok. */
8503 if (time_after64(h
->last_intr_timestamp
+
8504 (h
->heartbeat_sample_interval
), now
))
8508 * If we've already checked the heartbeat recently, we're ok.
8509 * This could happen if someone sends us a signal. We
8510 * otherwise don't care about signals in this thread.
8512 if (time_after64(h
->last_heartbeat_timestamp
+
8513 (h
->heartbeat_sample_interval
), now
))
8516 /* If heartbeat has not changed since we last looked, we're not ok. */
8517 spin_lock_irqsave(&h
->lock
, flags
);
8518 heartbeat
= readl(&h
->cfgtable
->HeartBeat
);
8519 spin_unlock_irqrestore(&h
->lock
, flags
);
8520 if (h
->last_heartbeat
== heartbeat
) {
8521 controller_lockup_detected(h
);
8526 h
->last_heartbeat
= heartbeat
;
8527 h
->last_heartbeat_timestamp
= now
;
8531 static void hpsa_ack_ctlr_events(struct ctlr_info
*h
)
8536 if (!(h
->fw_support
& MISC_FW_EVENT_NOTIFY
))
8539 /* Ask the controller to clear the events we're handling. */
8540 if ((h
->transMethod
& (CFGTBL_Trans_io_accel1
8541 | CFGTBL_Trans_io_accel2
)) &&
8542 (h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE
||
8543 h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE
)) {
8545 if (h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE
)
8546 event_type
= "state change";
8547 if (h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE
)
8548 event_type
= "configuration change";
8549 /* Stop sending new RAID offload reqs via the IO accelerator */
8550 scsi_block_requests(h
->scsi_host
);
8551 for (i
= 0; i
< h
->ndevices
; i
++) {
8552 h
->dev
[i
]->offload_enabled
= 0;
8553 h
->dev
[i
]->offload_to_be_enabled
= 0;
8555 hpsa_drain_accel_commands(h
);
8556 /* Set 'accelerator path config change' bit */
8557 dev_warn(&h
->pdev
->dev
,
8558 "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8559 h
->events
, event_type
);
8560 writel(h
->events
, &(h
->cfgtable
->clear_event_notify
));
8561 /* Set the "clear event notify field update" bit 6 */
8562 writel(DOORBELL_CLEAR_EVENTS
, h
->vaddr
+ SA5_DOORBELL
);
8563 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8564 hpsa_wait_for_clear_event_notify_ack(h
);
8565 scsi_unblock_requests(h
->scsi_host
);
8567 /* Acknowledge controller notification events. */
8568 writel(h
->events
, &(h
->cfgtable
->clear_event_notify
));
8569 writel(DOORBELL_CLEAR_EVENTS
, h
->vaddr
+ SA5_DOORBELL
);
8570 hpsa_wait_for_clear_event_notify_ack(h
);
8572 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
8573 hpsa_wait_for_mode_change_ack(h
);
8579 /* Check a register on the controller to see if there are configuration
8580 * changes (added/changed/removed logical drives, etc.) which mean that
8581 * we should rescan the controller for devices.
8582 * Also check flag for driver-initiated rescan.
8584 static int hpsa_ctlr_needs_rescan(struct ctlr_info
*h
)
8586 if (h
->drv_req_rescan
) {
8587 h
->drv_req_rescan
= 0;
8591 if (!(h
->fw_support
& MISC_FW_EVENT_NOTIFY
))
8594 h
->events
= readl(&(h
->cfgtable
->event_notify
));
8595 return h
->events
& RESCAN_REQUIRED_EVENT_BITS
;
8599 * Check if any of the offline devices have become ready
8601 static int hpsa_offline_devices_ready(struct ctlr_info
*h
)
8603 unsigned long flags
;
8604 struct offline_device_entry
*d
;
8605 struct list_head
*this, *tmp
;
8607 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
8608 list_for_each_safe(this, tmp
, &h
->offline_device_list
) {
8609 d
= list_entry(this, struct offline_device_entry
,
8611 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
8612 if (!hpsa_volume_offline(h
, d
->scsi3addr
)) {
8613 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
8614 list_del(&d
->offline_list
);
8615 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
8618 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
8620 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
8624 static int hpsa_luns_changed(struct ctlr_info
*h
)
8626 int rc
= 1; /* assume there are changes */
8627 struct ReportLUNdata
*logdev
= NULL
;
8629 /* if we can't find out if lun data has changed,
8630 * assume that it has.
8633 if (!h
->lastlogicals
)
8636 logdev
= kzalloc(sizeof(*logdev
), GFP_KERNEL
);
8638 dev_warn(&h
->pdev
->dev
,
8639 "Out of memory, can't track lun changes.\n");
8642 if (hpsa_scsi_do_report_luns(h
, 1, logdev
, sizeof(*logdev
), 0)) {
8643 dev_warn(&h
->pdev
->dev
,
8644 "report luns failed, can't track lun changes.\n");
8647 if (memcmp(logdev
, h
->lastlogicals
, sizeof(*logdev
))) {
8648 dev_info(&h
->pdev
->dev
,
8649 "Lun changes detected.\n");
8650 memcpy(h
->lastlogicals
, logdev
, sizeof(*logdev
));
8653 rc
= 0; /* no changes detected. */
8659 static void hpsa_rescan_ctlr_worker(struct work_struct
*work
)
8661 unsigned long flags
;
8662 struct ctlr_info
*h
= container_of(to_delayed_work(work
),
8663 struct ctlr_info
, rescan_ctlr_work
);
8666 if (h
->remove_in_progress
)
8669 if (hpsa_ctlr_needs_rescan(h
) || hpsa_offline_devices_ready(h
)) {
8670 scsi_host_get(h
->scsi_host
);
8671 hpsa_ack_ctlr_events(h
);
8672 hpsa_scan_start(h
->scsi_host
);
8673 scsi_host_put(h
->scsi_host
);
8674 } else if (h
->discovery_polling
) {
8675 hpsa_disable_rld_caching(h
);
8676 if (hpsa_luns_changed(h
)) {
8677 struct Scsi_Host
*sh
= NULL
;
8679 dev_info(&h
->pdev
->dev
,
8680 "driver discovery polling rescan.\n");
8681 sh
= scsi_host_get(h
->scsi_host
);
8683 hpsa_scan_start(sh
);
8688 spin_lock_irqsave(&h
->lock
, flags
);
8689 if (!h
->remove_in_progress
)
8690 queue_delayed_work(h
->rescan_ctlr_wq
, &h
->rescan_ctlr_work
,
8691 h
->heartbeat_sample_interval
);
8692 spin_unlock_irqrestore(&h
->lock
, flags
);
8695 static void hpsa_monitor_ctlr_worker(struct work_struct
*work
)
8697 unsigned long flags
;
8698 struct ctlr_info
*h
= container_of(to_delayed_work(work
),
8699 struct ctlr_info
, monitor_ctlr_work
);
8701 detect_controller_lockup(h
);
8702 if (lockup_detected(h
))
8705 spin_lock_irqsave(&h
->lock
, flags
);
8706 if (!h
->remove_in_progress
)
8707 schedule_delayed_work(&h
->monitor_ctlr_work
,
8708 h
->heartbeat_sample_interval
);
8709 spin_unlock_irqrestore(&h
->lock
, flags
);
8712 static struct workqueue_struct
*hpsa_create_controller_wq(struct ctlr_info
*h
,
8715 struct workqueue_struct
*wq
= NULL
;
8717 wq
= alloc_ordered_workqueue("%s_%d_hpsa", 0, name
, h
->ctlr
);
8719 dev_err(&h
->pdev
->dev
, "failed to create %s workqueue\n", name
);
8724 static int hpsa_init_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
8727 struct ctlr_info
*h
;
8728 int try_soft_reset
= 0;
8729 unsigned long flags
;
8732 if (number_of_controllers
== 0)
8733 printk(KERN_INFO DRIVER_NAME
"\n");
8735 rc
= hpsa_lookup_board_id(pdev
, &board_id
);
8737 dev_warn(&pdev
->dev
, "Board ID not found\n");
8741 rc
= hpsa_init_reset_devices(pdev
, board_id
);
8743 if (rc
!= -ENOTSUPP
)
8745 /* If the reset fails in a particular way (it has no way to do
8746 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8747 * a soft reset once we get the controller configured up to the
8748 * point that it can accept a command.
8754 reinit_after_soft_reset
:
8756 /* Command structures must be aligned on a 32-byte boundary because
8757 * the 5 lower bits of the address are used by the hardware. and by
8758 * the driver. See comments in hpsa.h for more info.
8760 BUILD_BUG_ON(sizeof(struct CommandList
) % COMMANDLIST_ALIGNMENT
);
8761 h
= kzalloc(sizeof(*h
), GFP_KERNEL
);
8763 dev_err(&pdev
->dev
, "Failed to allocate controller head\n");
8769 h
->intr_mode
= hpsa_simple_mode
? SIMPLE_MODE_INT
: PERF_MODE_INT
;
8770 INIT_LIST_HEAD(&h
->offline_device_list
);
8771 spin_lock_init(&h
->lock
);
8772 spin_lock_init(&h
->offline_device_lock
);
8773 spin_lock_init(&h
->scan_lock
);
8774 atomic_set(&h
->passthru_cmds_avail
, HPSA_MAX_CONCURRENT_PASSTHRUS
);
8775 atomic_set(&h
->abort_cmds_available
, HPSA_CMDS_RESERVED_FOR_ABORTS
);
8777 /* Allocate and clear per-cpu variable lockup_detected */
8778 h
->lockup_detected
= alloc_percpu(u32
);
8779 if (!h
->lockup_detected
) {
8780 dev_err(&h
->pdev
->dev
, "Failed to allocate lockup detector\n");
8782 goto clean1
; /* aer/h */
8784 set_lockup_detected_for_all_cpus(h
, 0);
8786 rc
= hpsa_pci_init(h
);
8788 goto clean2
; /* lu, aer/h */
8790 /* relies on h-> settings made by hpsa_pci_init, including
8791 * interrupt_mode h->intr */
8792 rc
= hpsa_scsi_host_alloc(h
);
8794 goto clean2_5
; /* pci, lu, aer/h */
8796 sprintf(h
->devname
, HPSA
"%d", h
->scsi_host
->host_no
);
8797 h
->ctlr
= number_of_controllers
;
8798 number_of_controllers
++;
8800 /* configure PCI DMA stuff */
8801 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(64));
8805 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
8809 dev_err(&pdev
->dev
, "no suitable DMA available\n");
8810 goto clean3
; /* shost, pci, lu, aer/h */
8814 /* make sure the board interrupts are off */
8815 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8817 rc
= hpsa_request_irqs(h
, do_hpsa_intr_msi
, do_hpsa_intr_intx
);
8819 goto clean3
; /* shost, pci, lu, aer/h */
8820 rc
= hpsa_alloc_cmd_pool(h
);
8822 goto clean4
; /* irq, shost, pci, lu, aer/h */
8823 rc
= hpsa_alloc_sg_chain_blocks(h
);
8825 goto clean5
; /* cmd, irq, shost, pci, lu, aer/h */
8826 init_waitqueue_head(&h
->scan_wait_queue
);
8827 init_waitqueue_head(&h
->abort_cmd_wait_queue
);
8828 init_waitqueue_head(&h
->event_sync_wait_queue
);
8829 mutex_init(&h
->reset_mutex
);
8830 h
->scan_finished
= 1; /* no scan currently in progress */
8831 h
->scan_waiting
= 0;
8833 pci_set_drvdata(pdev
, h
);
8836 spin_lock_init(&h
->devlock
);
8837 rc
= hpsa_put_ctlr_into_performant_mode(h
);
8839 goto clean6
; /* sg, cmd, irq, shost, pci, lu, aer/h */
8841 /* create the resubmit workqueue */
8842 h
->rescan_ctlr_wq
= hpsa_create_controller_wq(h
, "rescan");
8843 if (!h
->rescan_ctlr_wq
) {
8848 h
->resubmit_wq
= hpsa_create_controller_wq(h
, "resubmit");
8849 if (!h
->resubmit_wq
) {
8851 goto clean7
; /* aer/h */
8855 * At this point, the controller is ready to take commands.
8856 * Now, if reset_devices and the hard reset didn't work, try
8857 * the soft reset and see if that works.
8859 if (try_soft_reset
) {
8861 /* This is kind of gross. We may or may not get a completion
8862 * from the soft reset command, and if we do, then the value
8863 * from the fifo may or may not be valid. So, we wait 10 secs
8864 * after the reset throwing away any completions we get during
8865 * that time. Unregister the interrupt handler and register
8866 * fake ones to scoop up any residual completions.
8868 spin_lock_irqsave(&h
->lock
, flags
);
8869 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8870 spin_unlock_irqrestore(&h
->lock
, flags
);
8872 rc
= hpsa_request_irqs(h
, hpsa_msix_discard_completions
,
8873 hpsa_intx_discard_completions
);
8875 dev_warn(&h
->pdev
->dev
,
8876 "Failed to request_irq after soft reset.\n");
8878 * cannot goto clean7 or free_irqs will be called
8879 * again. Instead, do its work
8881 hpsa_free_performant_mode(h
); /* clean7 */
8882 hpsa_free_sg_chain_blocks(h
); /* clean6 */
8883 hpsa_free_cmd_pool(h
); /* clean5 */
8885 * skip hpsa_free_irqs(h) clean4 since that
8886 * was just called before request_irqs failed
8891 rc
= hpsa_kdump_soft_reset(h
);
8893 /* Neither hard nor soft reset worked, we're hosed. */
8896 dev_info(&h
->pdev
->dev
, "Board READY.\n");
8897 dev_info(&h
->pdev
->dev
,
8898 "Waiting for stale completions to drain.\n");
8899 h
->access
.set_intr_mask(h
, HPSA_INTR_ON
);
8901 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8903 rc
= controller_reset_failed(h
->cfgtable
);
8905 dev_info(&h
->pdev
->dev
,
8906 "Soft reset appears to have failed.\n");
8908 /* since the controller's reset, we have to go back and re-init
8909 * everything. Easiest to just forget what we've done and do it
8912 hpsa_undo_allocations_after_kdump_soft_reset(h
);
8915 /* don't goto clean, we already unallocated */
8918 goto reinit_after_soft_reset
;
8921 /* Enable Accelerated IO path at driver layer */
8922 h
->acciopath_status
= 1;
8923 /* Disable discovery polling.*/
8924 h
->discovery_polling
= 0;
8927 /* Turn the interrupts on so we can service requests */
8928 h
->access
.set_intr_mask(h
, HPSA_INTR_ON
);
8930 hpsa_hba_inquiry(h
);
8932 h
->lastlogicals
= kzalloc(sizeof(*(h
->lastlogicals
)), GFP_KERNEL
);
8933 if (!h
->lastlogicals
)
8934 dev_info(&h
->pdev
->dev
,
8935 "Can't track change to report lun data\n");
8937 /* hook into SCSI subsystem */
8938 rc
= hpsa_scsi_add_host(h
);
8940 goto clean7
; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8942 /* Monitor the controller for firmware lockups */
8943 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL
;
8944 INIT_DELAYED_WORK(&h
->monitor_ctlr_work
, hpsa_monitor_ctlr_worker
);
8945 schedule_delayed_work(&h
->monitor_ctlr_work
,
8946 h
->heartbeat_sample_interval
);
8947 INIT_DELAYED_WORK(&h
->rescan_ctlr_work
, hpsa_rescan_ctlr_worker
);
8948 queue_delayed_work(h
->rescan_ctlr_wq
, &h
->rescan_ctlr_work
,
8949 h
->heartbeat_sample_interval
);
8952 clean7
: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8953 hpsa_free_performant_mode(h
);
8954 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8955 clean6
: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8956 hpsa_free_sg_chain_blocks(h
);
8957 clean5
: /* cmd, irq, shost, pci, lu, aer/h */
8958 hpsa_free_cmd_pool(h
);
8959 clean4
: /* irq, shost, pci, lu, aer/h */
8961 clean3
: /* shost, pci, lu, aer/h */
8962 scsi_host_put(h
->scsi_host
);
8963 h
->scsi_host
= NULL
;
8964 clean2_5
: /* pci, lu, aer/h */
8965 hpsa_free_pci_init(h
);
8966 clean2
: /* lu, aer/h */
8967 if (h
->lockup_detected
) {
8968 free_percpu(h
->lockup_detected
);
8969 h
->lockup_detected
= NULL
;
8971 clean1
: /* wq/aer/h */
8972 if (h
->resubmit_wq
) {
8973 destroy_workqueue(h
->resubmit_wq
);
8974 h
->resubmit_wq
= NULL
;
8976 if (h
->rescan_ctlr_wq
) {
8977 destroy_workqueue(h
->rescan_ctlr_wq
);
8978 h
->rescan_ctlr_wq
= NULL
;
8984 static void hpsa_flush_cache(struct ctlr_info
*h
)
8987 struct CommandList
*c
;
8990 if (unlikely(lockup_detected(h
)))
8992 flush_buf
= kzalloc(4, GFP_KERNEL
);
8998 if (fill_cmd(c
, HPSA_CACHE_FLUSH
, h
, flush_buf
, 4, 0,
8999 RAID_CTLR_LUNID
, TYPE_CMD
)) {
9002 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
9003 PCI_DMA_TODEVICE
, DEFAULT_TIMEOUT
);
9006 if (c
->err_info
->CommandStatus
!= 0)
9008 dev_warn(&h
->pdev
->dev
,
9009 "error flushing cache on controller\n");
9014 /* Make controller gather fresh report lun data each time we
9015 * send down a report luns request
9017 static void hpsa_disable_rld_caching(struct ctlr_info
*h
)
9020 struct CommandList
*c
;
9023 /* Don't bother trying to set diag options if locked up */
9024 if (unlikely(h
->lockup_detected
))
9027 options
= kzalloc(sizeof(*options
), GFP_KERNEL
);
9029 dev_err(&h
->pdev
->dev
,
9030 "Error: failed to disable rld caching, during alloc.\n");
9036 /* first, get the current diag options settings */
9037 if (fill_cmd(c
, BMIC_SENSE_DIAG_OPTIONS
, h
, options
, 4, 0,
9038 RAID_CTLR_LUNID
, TYPE_CMD
))
9041 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
9042 PCI_DMA_FROMDEVICE
, DEFAULT_TIMEOUT
);
9043 if ((rc
!= 0) || (c
->err_info
->CommandStatus
!= 0))
9046 /* Now, set the bit for disabling the RLD caching */
9047 *options
|= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING
;
9049 if (fill_cmd(c
, BMIC_SET_DIAG_OPTIONS
, h
, options
, 4, 0,
9050 RAID_CTLR_LUNID
, TYPE_CMD
))
9053 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
9054 PCI_DMA_TODEVICE
, DEFAULT_TIMEOUT
);
9055 if ((rc
!= 0) || (c
->err_info
->CommandStatus
!= 0))
9058 /* Now verify that it got set: */
9059 if (fill_cmd(c
, BMIC_SENSE_DIAG_OPTIONS
, h
, options
, 4, 0,
9060 RAID_CTLR_LUNID
, TYPE_CMD
))
9063 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
9064 PCI_DMA_FROMDEVICE
, DEFAULT_TIMEOUT
);
9065 if ((rc
!= 0) || (c
->err_info
->CommandStatus
!= 0))
9068 if (*options
& HPSA_DIAG_OPTS_DISABLE_RLD_CACHING
)
9072 dev_err(&h
->pdev
->dev
,
9073 "Error: failed to disable report lun data caching.\n");
9079 static void hpsa_shutdown(struct pci_dev
*pdev
)
9081 struct ctlr_info
*h
;
9083 h
= pci_get_drvdata(pdev
);
9084 /* Turn board interrupts off and send the flush cache command
9085 * sendcmd will turn off interrupt, and send the flush...
9086 * To write all data in the battery backed cache to disks
9088 hpsa_flush_cache(h
);
9089 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
9090 hpsa_free_irqs(h
); /* init_one 4 */
9091 hpsa_disable_interrupt_mode(h
); /* pci_init 2 */
9094 static void hpsa_free_device_info(struct ctlr_info
*h
)
9098 for (i
= 0; i
< h
->ndevices
; i
++) {
9104 static void hpsa_remove_one(struct pci_dev
*pdev
)
9106 struct ctlr_info
*h
;
9107 unsigned long flags
;
9109 if (pci_get_drvdata(pdev
) == NULL
) {
9110 dev_err(&pdev
->dev
, "unable to remove device\n");
9113 h
= pci_get_drvdata(pdev
);
9115 /* Get rid of any controller monitoring work items */
9116 spin_lock_irqsave(&h
->lock
, flags
);
9117 h
->remove_in_progress
= 1;
9118 spin_unlock_irqrestore(&h
->lock
, flags
);
9119 cancel_delayed_work_sync(&h
->monitor_ctlr_work
);
9120 cancel_delayed_work_sync(&h
->rescan_ctlr_work
);
9121 destroy_workqueue(h
->rescan_ctlr_wq
);
9122 destroy_workqueue(h
->resubmit_wq
);
9124 hpsa_delete_sas_host(h
);
9127 * Call before disabling interrupts.
9128 * scsi_remove_host can trigger I/O operations especially
9129 * when multipath is enabled. There can be SYNCHRONIZE CACHE
9130 * operations which cannot complete and will hang the system.
9133 scsi_remove_host(h
->scsi_host
); /* init_one 8 */
9134 /* includes hpsa_free_irqs - init_one 4 */
9135 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9136 hpsa_shutdown(pdev
);
9138 hpsa_free_device_info(h
); /* scan */
9140 kfree(h
->hba_inquiry_data
); /* init_one 10 */
9141 h
->hba_inquiry_data
= NULL
; /* init_one 10 */
9142 hpsa_free_ioaccel2_sg_chain_blocks(h
);
9143 hpsa_free_performant_mode(h
); /* init_one 7 */
9144 hpsa_free_sg_chain_blocks(h
); /* init_one 6 */
9145 hpsa_free_cmd_pool(h
); /* init_one 5 */
9146 kfree(h
->lastlogicals
);
9148 /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
9150 scsi_host_put(h
->scsi_host
); /* init_one 3 */
9151 h
->scsi_host
= NULL
; /* init_one 3 */
9153 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9154 hpsa_free_pci_init(h
); /* init_one 2.5 */
9156 free_percpu(h
->lockup_detected
); /* init_one 2 */
9157 h
->lockup_detected
= NULL
; /* init_one 2 */
9158 /* (void) pci_disable_pcie_error_reporting(pdev); */ /* init_one 1 */
9160 kfree(h
); /* init_one 1 */
9163 static int hpsa_suspend(__attribute__((unused
)) struct pci_dev
*pdev
,
9164 __attribute__((unused
)) pm_message_t state
)
9169 static int hpsa_resume(__attribute__((unused
)) struct pci_dev
*pdev
)
9174 static struct pci_driver hpsa_pci_driver
= {
9176 .probe
= hpsa_init_one
,
9177 .remove
= hpsa_remove_one
,
9178 .id_table
= hpsa_pci_device_id
, /* id_table */
9179 .shutdown
= hpsa_shutdown
,
9180 .suspend
= hpsa_suspend
,
9181 .resume
= hpsa_resume
,
9184 /* Fill in bucket_map[], given nsgs (the max number of
9185 * scatter gather elements supported) and bucket[],
9186 * which is an array of 8 integers. The bucket[] array
9187 * contains 8 different DMA transfer sizes (in 16
9188 * byte increments) which the controller uses to fetch
9189 * commands. This function fills in bucket_map[], which
9190 * maps a given number of scatter gather elements to one of
9191 * the 8 DMA transfer sizes. The point of it is to allow the
9192 * controller to only do as much DMA as needed to fetch the
9193 * command, with the DMA transfer size encoded in the lower
9194 * bits of the command address.
9196 static void calc_bucket_map(int bucket
[], int num_buckets
,
9197 int nsgs
, int min_blocks
, u32
*bucket_map
)
9201 /* Note, bucket_map must have nsgs+1 entries. */
9202 for (i
= 0; i
<= nsgs
; i
++) {
9203 /* Compute size of a command with i SG entries */
9204 size
= i
+ min_blocks
;
9205 b
= num_buckets
; /* Assume the biggest bucket */
9206 /* Find the bucket that is just big enough */
9207 for (j
= 0; j
< num_buckets
; j
++) {
9208 if (bucket
[j
] >= size
) {
9213 /* for a command with i SG entries, use bucket b. */
9219 * return -ENODEV on err, 0 on success (or no action)
9220 * allocates numerous items that must be freed later
9222 static int hpsa_enter_performant_mode(struct ctlr_info
*h
, u32 trans_support
)
9225 unsigned long register_value
;
9226 unsigned long transMethod
= CFGTBL_Trans_Performant
|
9227 (trans_support
& CFGTBL_Trans_use_short_tags
) |
9228 CFGTBL_Trans_enable_directed_msix
|
9229 (trans_support
& (CFGTBL_Trans_io_accel1
|
9230 CFGTBL_Trans_io_accel2
));
9231 struct access_method access
= SA5_performant_access
;
9233 /* This is a bit complicated. There are 8 registers on
9234 * the controller which we write to to tell it 8 different
9235 * sizes of commands which there may be. It's a way of
9236 * reducing the DMA done to fetch each command. Encoded into
9237 * each command's tag are 3 bits which communicate to the controller
9238 * which of the eight sizes that command fits within. The size of
9239 * each command depends on how many scatter gather entries there are.
9240 * Each SG entry requires 16 bytes. The eight registers are programmed
9241 * with the number of 16-byte blocks a command of that size requires.
9242 * The smallest command possible requires 5 such 16 byte blocks.
9243 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9244 * blocks. Note, this only extends to the SG entries contained
9245 * within the command block, and does not extend to chained blocks
9246 * of SG elements. bft[] contains the eight values we write to
9247 * the registers. They are not evenly distributed, but have more
9248 * sizes for small commands, and fewer sizes for larger commands.
9250 int bft
[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD
+ 4};
9251 #define MIN_IOACCEL2_BFT_ENTRY 5
9252 #define HPSA_IOACCEL2_HEADER_SZ 4
9253 int bft2
[16] = {MIN_IOACCEL2_BFT_ENTRY
, 6, 7, 8, 9, 10, 11, 12,
9254 13, 14, 15, 16, 17, 18, 19,
9255 HPSA_IOACCEL2_HEADER_SZ
+ IOACCEL2_MAXSGENTRIES
};
9256 BUILD_BUG_ON(ARRAY_SIZE(bft2
) != 16);
9257 BUILD_BUG_ON(ARRAY_SIZE(bft
) != 8);
9258 BUILD_BUG_ON(offsetof(struct io_accel2_cmd
, sg
) >
9259 16 * MIN_IOACCEL2_BFT_ENTRY
);
9260 BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element
) != 16);
9261 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD
+ 4);
9262 /* 5 = 1 s/g entry or 4k
9263 * 6 = 2 s/g entry or 8k
9264 * 8 = 4 s/g entry or 16k
9265 * 10 = 6 s/g entry or 24k
9268 /* If the controller supports either ioaccel method then
9269 * we can also use the RAID stack submit path that does not
9270 * perform the superfluous readl() after each command submission.
9272 if (trans_support
& (CFGTBL_Trans_io_accel1
| CFGTBL_Trans_io_accel2
))
9273 access
= SA5_performant_access_no_read
;
9275 /* Controller spec: zero out this buffer. */
9276 for (i
= 0; i
< h
->nreply_queues
; i
++)
9277 memset(h
->reply_queue
[i
].head
, 0, h
->reply_queue_size
);
9279 bft
[7] = SG_ENTRIES_IN_CMD
+ 4;
9280 calc_bucket_map(bft
, ARRAY_SIZE(bft
),
9281 SG_ENTRIES_IN_CMD
, 4, h
->blockFetchTable
);
9282 for (i
= 0; i
< 8; i
++)
9283 writel(bft
[i
], &h
->transtable
->BlockFetch
[i
]);
9285 /* size of controller ring buffer */
9286 writel(h
->max_commands
, &h
->transtable
->RepQSize
);
9287 writel(h
->nreply_queues
, &h
->transtable
->RepQCount
);
9288 writel(0, &h
->transtable
->RepQCtrAddrLow32
);
9289 writel(0, &h
->transtable
->RepQCtrAddrHigh32
);
9291 for (i
= 0; i
< h
->nreply_queues
; i
++) {
9292 writel(0, &h
->transtable
->RepQAddr
[i
].upper
);
9293 writel(h
->reply_queue
[i
].busaddr
,
9294 &h
->transtable
->RepQAddr
[i
].lower
);
9297 writel(0, &h
->cfgtable
->HostWrite
.command_pool_addr_hi
);
9298 writel(transMethod
, &(h
->cfgtable
->HostWrite
.TransportRequest
));
9300 * enable outbound interrupt coalescing in accelerator mode;
9302 if (trans_support
& CFGTBL_Trans_io_accel1
) {
9303 access
= SA5_ioaccel_mode1_access
;
9304 writel(10, &h
->cfgtable
->HostWrite
.CoalIntDelay
);
9305 writel(4, &h
->cfgtable
->HostWrite
.CoalIntCount
);
9307 if (trans_support
& CFGTBL_Trans_io_accel2
) {
9308 access
= SA5_ioaccel_mode2_access
;
9309 writel(10, &h
->cfgtable
->HostWrite
.CoalIntDelay
);
9310 writel(4, &h
->cfgtable
->HostWrite
.CoalIntCount
);
9313 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
9314 if (hpsa_wait_for_mode_change_ack(h
)) {
9315 dev_err(&h
->pdev
->dev
,
9316 "performant mode problem - doorbell timeout\n");
9319 register_value
= readl(&(h
->cfgtable
->TransportActive
));
9320 if (!(register_value
& CFGTBL_Trans_Performant
)) {
9321 dev_err(&h
->pdev
->dev
,
9322 "performant mode problem - transport not active\n");
9325 /* Change the access methods to the performant access methods */
9327 h
->transMethod
= transMethod
;
9329 if (!((trans_support
& CFGTBL_Trans_io_accel1
) ||
9330 (trans_support
& CFGTBL_Trans_io_accel2
)))
9333 if (trans_support
& CFGTBL_Trans_io_accel1
) {
9334 /* Set up I/O accelerator mode */
9335 for (i
= 0; i
< h
->nreply_queues
; i
++) {
9336 writel(i
, h
->vaddr
+ IOACCEL_MODE1_REPLY_QUEUE_INDEX
);
9337 h
->reply_queue
[i
].current_entry
=
9338 readl(h
->vaddr
+ IOACCEL_MODE1_PRODUCER_INDEX
);
9340 bft
[7] = h
->ioaccel_maxsg
+ 8;
9341 calc_bucket_map(bft
, ARRAY_SIZE(bft
), h
->ioaccel_maxsg
, 8,
9342 h
->ioaccel1_blockFetchTable
);
9344 /* initialize all reply queue entries to unused */
9345 for (i
= 0; i
< h
->nreply_queues
; i
++)
9346 memset(h
->reply_queue
[i
].head
,
9347 (u8
) IOACCEL_MODE1_REPLY_UNUSED
,
9348 h
->reply_queue_size
);
9350 /* set all the constant fields in the accelerator command
9351 * frames once at init time to save CPU cycles later.
9353 for (i
= 0; i
< h
->nr_cmds
; i
++) {
9354 struct io_accel1_cmd
*cp
= &h
->ioaccel_cmd_pool
[i
];
9356 cp
->function
= IOACCEL1_FUNCTION_SCSIIO
;
9357 cp
->err_info
= (u32
) (h
->errinfo_pool_dhandle
+
9358 (i
* sizeof(struct ErrorInfo
)));
9359 cp
->err_info_len
= sizeof(struct ErrorInfo
);
9360 cp
->sgl_offset
= IOACCEL1_SGLOFFSET
;
9361 cp
->host_context_flags
=
9362 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT
);
9363 cp
->timeout_sec
= 0;
9366 cpu_to_le64((i
<< DIRECT_LOOKUP_SHIFT
));
9368 cpu_to_le64(h
->ioaccel_cmd_pool_dhandle
+
9369 (i
* sizeof(struct io_accel1_cmd
)));
9371 } else if (trans_support
& CFGTBL_Trans_io_accel2
) {
9372 u64 cfg_offset
, cfg_base_addr_index
;
9373 u32 bft2_offset
, cfg_base_addr
;
9376 rc
= hpsa_find_cfg_addrs(h
->pdev
, h
->vaddr
, &cfg_base_addr
,
9377 &cfg_base_addr_index
, &cfg_offset
);
9378 BUILD_BUG_ON(offsetof(struct io_accel2_cmd
, sg
) != 64);
9379 bft2
[15] = h
->ioaccel_maxsg
+ HPSA_IOACCEL2_HEADER_SZ
;
9380 calc_bucket_map(bft2
, ARRAY_SIZE(bft2
), h
->ioaccel_maxsg
,
9381 4, h
->ioaccel2_blockFetchTable
);
9382 bft2_offset
= readl(&h
->cfgtable
->io_accel_request_size_offset
);
9383 BUILD_BUG_ON(offsetof(struct CfgTable
,
9384 io_accel_request_size_offset
) != 0xb8);
9385 h
->ioaccel2_bft2_regs
=
9386 remap_pci_mem(pci_resource_start(h
->pdev
,
9387 cfg_base_addr_index
) +
9388 cfg_offset
+ bft2_offset
,
9390 sizeof(*h
->ioaccel2_bft2_regs
));
9391 for (i
= 0; i
< ARRAY_SIZE(bft2
); i
++)
9392 writel(bft2
[i
], &h
->ioaccel2_bft2_regs
[i
]);
9394 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
9395 if (hpsa_wait_for_mode_change_ack(h
)) {
9396 dev_err(&h
->pdev
->dev
,
9397 "performant mode problem - enabling ioaccel mode\n");
9403 /* Free ioaccel1 mode command blocks and block fetch table */
9404 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info
*h
)
9406 if (h
->ioaccel_cmd_pool
) {
9407 pci_free_consistent(h
->pdev
,
9408 h
->nr_cmds
* sizeof(*h
->ioaccel_cmd_pool
),
9409 h
->ioaccel_cmd_pool
,
9410 h
->ioaccel_cmd_pool_dhandle
);
9411 h
->ioaccel_cmd_pool
= NULL
;
9412 h
->ioaccel_cmd_pool_dhandle
= 0;
9414 kfree(h
->ioaccel1_blockFetchTable
);
9415 h
->ioaccel1_blockFetchTable
= NULL
;
9418 /* Allocate ioaccel1 mode command blocks and block fetch table */
9419 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info
*h
)
9422 readl(&(h
->cfgtable
->io_accel_max_embedded_sg_count
));
9423 if (h
->ioaccel_maxsg
> IOACCEL1_MAXSGENTRIES
)
9424 h
->ioaccel_maxsg
= IOACCEL1_MAXSGENTRIES
;
9426 /* Command structures must be aligned on a 128-byte boundary
9427 * because the 7 lower bits of the address are used by the
9430 BUILD_BUG_ON(sizeof(struct io_accel1_cmd
) %
9431 IOACCEL1_COMMANDLIST_ALIGNMENT
);
9432 h
->ioaccel_cmd_pool
=
9433 pci_alloc_consistent(h
->pdev
,
9434 h
->nr_cmds
* sizeof(*h
->ioaccel_cmd_pool
),
9435 &(h
->ioaccel_cmd_pool_dhandle
));
9437 h
->ioaccel1_blockFetchTable
=
9438 kmalloc(((h
->ioaccel_maxsg
+ 1) *
9439 sizeof(u32
)), GFP_KERNEL
);
9441 if ((h
->ioaccel_cmd_pool
== NULL
) ||
9442 (h
->ioaccel1_blockFetchTable
== NULL
))
9445 memset(h
->ioaccel_cmd_pool
, 0,
9446 h
->nr_cmds
* sizeof(*h
->ioaccel_cmd_pool
));
9450 hpsa_free_ioaccel1_cmd_and_bft(h
);
9454 /* Free ioaccel2 mode command blocks and block fetch table */
9455 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info
*h
)
9457 hpsa_free_ioaccel2_sg_chain_blocks(h
);
9459 if (h
->ioaccel2_cmd_pool
) {
9460 pci_free_consistent(h
->pdev
,
9461 h
->nr_cmds
* sizeof(*h
->ioaccel2_cmd_pool
),
9462 h
->ioaccel2_cmd_pool
,
9463 h
->ioaccel2_cmd_pool_dhandle
);
9464 h
->ioaccel2_cmd_pool
= NULL
;
9465 h
->ioaccel2_cmd_pool_dhandle
= 0;
9467 kfree(h
->ioaccel2_blockFetchTable
);
9468 h
->ioaccel2_blockFetchTable
= NULL
;
9471 /* Allocate ioaccel2 mode command blocks and block fetch table */
9472 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info
*h
)
9476 /* Allocate ioaccel2 mode command blocks and block fetch table */
9479 readl(&(h
->cfgtable
->io_accel_max_embedded_sg_count
));
9480 if (h
->ioaccel_maxsg
> IOACCEL2_MAXSGENTRIES
)
9481 h
->ioaccel_maxsg
= IOACCEL2_MAXSGENTRIES
;
9483 BUILD_BUG_ON(sizeof(struct io_accel2_cmd
) %
9484 IOACCEL2_COMMANDLIST_ALIGNMENT
);
9485 h
->ioaccel2_cmd_pool
=
9486 pci_alloc_consistent(h
->pdev
,
9487 h
->nr_cmds
* sizeof(*h
->ioaccel2_cmd_pool
),
9488 &(h
->ioaccel2_cmd_pool_dhandle
));
9490 h
->ioaccel2_blockFetchTable
=
9491 kmalloc(((h
->ioaccel_maxsg
+ 1) *
9492 sizeof(u32
)), GFP_KERNEL
);
9494 if ((h
->ioaccel2_cmd_pool
== NULL
) ||
9495 (h
->ioaccel2_blockFetchTable
== NULL
)) {
9500 rc
= hpsa_allocate_ioaccel2_sg_chain_blocks(h
);
9504 memset(h
->ioaccel2_cmd_pool
, 0,
9505 h
->nr_cmds
* sizeof(*h
->ioaccel2_cmd_pool
));
9509 hpsa_free_ioaccel2_cmd_and_bft(h
);
9513 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9514 static void hpsa_free_performant_mode(struct ctlr_info
*h
)
9516 kfree(h
->blockFetchTable
);
9517 h
->blockFetchTable
= NULL
;
9518 hpsa_free_reply_queues(h
);
9519 hpsa_free_ioaccel1_cmd_and_bft(h
);
9520 hpsa_free_ioaccel2_cmd_and_bft(h
);
9523 /* return -ENODEV on error, 0 on success (or no action)
9524 * allocates numerous items that must be freed later
9526 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info
*h
)
9529 unsigned long transMethod
= CFGTBL_Trans_Performant
|
9530 CFGTBL_Trans_use_short_tags
;
9533 if (hpsa_simple_mode
)
9536 trans_support
= readl(&(h
->cfgtable
->TransportSupport
));
9537 if (!(trans_support
& PERFORMANT_MODE
))
9540 /* Check for I/O accelerator mode support */
9541 if (trans_support
& CFGTBL_Trans_io_accel1
) {
9542 transMethod
|= CFGTBL_Trans_io_accel1
|
9543 CFGTBL_Trans_enable_directed_msix
;
9544 rc
= hpsa_alloc_ioaccel1_cmd_and_bft(h
);
9547 } else if (trans_support
& CFGTBL_Trans_io_accel2
) {
9548 transMethod
|= CFGTBL_Trans_io_accel2
|
9549 CFGTBL_Trans_enable_directed_msix
;
9550 rc
= hpsa_alloc_ioaccel2_cmd_and_bft(h
);
9555 h
->nreply_queues
= h
->msix_vector
> 0 ? h
->msix_vector
: 1;
9556 hpsa_get_max_perf_mode_cmds(h
);
9557 /* Performant mode ring buffer and supporting data structures */
9558 h
->reply_queue_size
= h
->max_commands
* sizeof(u64
);
9560 for (i
= 0; i
< h
->nreply_queues
; i
++) {
9561 h
->reply_queue
[i
].head
= pci_alloc_consistent(h
->pdev
,
9562 h
->reply_queue_size
,
9563 &(h
->reply_queue
[i
].busaddr
));
9564 if (!h
->reply_queue
[i
].head
) {
9566 goto clean1
; /* rq, ioaccel */
9568 h
->reply_queue
[i
].size
= h
->max_commands
;
9569 h
->reply_queue
[i
].wraparound
= 1; /* spec: init to 1 */
9570 h
->reply_queue
[i
].current_entry
= 0;
9573 /* Need a block fetch table for performant mode */
9574 h
->blockFetchTable
= kmalloc(((SG_ENTRIES_IN_CMD
+ 1) *
9575 sizeof(u32
)), GFP_KERNEL
);
9576 if (!h
->blockFetchTable
) {
9578 goto clean1
; /* rq, ioaccel */
9581 rc
= hpsa_enter_performant_mode(h
, trans_support
);
9583 goto clean2
; /* bft, rq, ioaccel */
9586 clean2
: /* bft, rq, ioaccel */
9587 kfree(h
->blockFetchTable
);
9588 h
->blockFetchTable
= NULL
;
9589 clean1
: /* rq, ioaccel */
9590 hpsa_free_reply_queues(h
);
9591 hpsa_free_ioaccel1_cmd_and_bft(h
);
9592 hpsa_free_ioaccel2_cmd_and_bft(h
);
9596 static int is_accelerated_cmd(struct CommandList
*c
)
9598 return c
->cmd_type
== CMD_IOACCEL1
|| c
->cmd_type
== CMD_IOACCEL2
;
9601 static void hpsa_drain_accel_commands(struct ctlr_info
*h
)
9603 struct CommandList
*c
= NULL
;
9604 int i
, accel_cmds_out
;
9607 do { /* wait for all outstanding ioaccel commands to drain out */
9609 for (i
= 0; i
< h
->nr_cmds
; i
++) {
9610 c
= h
->cmd_pool
+ i
;
9611 refcount
= atomic_inc_return(&c
->refcount
);
9612 if (refcount
> 1) /* Command is allocated */
9613 accel_cmds_out
+= is_accelerated_cmd(c
);
9616 if (accel_cmds_out
<= 0)
9622 static struct hpsa_sas_phy
*hpsa_alloc_sas_phy(
9623 struct hpsa_sas_port
*hpsa_sas_port
)
9625 struct hpsa_sas_phy
*hpsa_sas_phy
;
9626 struct sas_phy
*phy
;
9628 hpsa_sas_phy
= kzalloc(sizeof(*hpsa_sas_phy
), GFP_KERNEL
);
9632 phy
= sas_phy_alloc(hpsa_sas_port
->parent_node
->parent_dev
,
9633 hpsa_sas_port
->next_phy_index
);
9635 kfree(hpsa_sas_phy
);
9639 hpsa_sas_port
->next_phy_index
++;
9640 hpsa_sas_phy
->phy
= phy
;
9641 hpsa_sas_phy
->parent_port
= hpsa_sas_port
;
9643 return hpsa_sas_phy
;
9646 static void hpsa_free_sas_phy(struct hpsa_sas_phy
*hpsa_sas_phy
)
9648 struct sas_phy
*phy
= hpsa_sas_phy
->phy
;
9650 sas_port_delete_phy(hpsa_sas_phy
->parent_port
->port
, phy
);
9651 if (hpsa_sas_phy
->added_to_port
)
9652 list_del(&hpsa_sas_phy
->phy_list_entry
);
9653 sas_phy_delete(phy
);
9654 kfree(hpsa_sas_phy
);
9657 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy
*hpsa_sas_phy
)
9660 struct hpsa_sas_port
*hpsa_sas_port
;
9661 struct sas_phy
*phy
;
9662 struct sas_identify
*identify
;
9664 hpsa_sas_port
= hpsa_sas_phy
->parent_port
;
9665 phy
= hpsa_sas_phy
->phy
;
9667 identify
= &phy
->identify
;
9668 memset(identify
, 0, sizeof(*identify
));
9669 identify
->sas_address
= hpsa_sas_port
->sas_address
;
9670 identify
->device_type
= SAS_END_DEVICE
;
9671 identify
->initiator_port_protocols
= SAS_PROTOCOL_STP
;
9672 identify
->target_port_protocols
= SAS_PROTOCOL_STP
;
9673 phy
->minimum_linkrate_hw
= SAS_LINK_RATE_UNKNOWN
;
9674 phy
->maximum_linkrate_hw
= SAS_LINK_RATE_UNKNOWN
;
9675 phy
->minimum_linkrate
= SAS_LINK_RATE_UNKNOWN
;
9676 phy
->maximum_linkrate
= SAS_LINK_RATE_UNKNOWN
;
9677 phy
->negotiated_linkrate
= SAS_LINK_RATE_UNKNOWN
;
9679 rc
= sas_phy_add(hpsa_sas_phy
->phy
);
9683 sas_port_add_phy(hpsa_sas_port
->port
, hpsa_sas_phy
->phy
);
9684 list_add_tail(&hpsa_sas_phy
->phy_list_entry
,
9685 &hpsa_sas_port
->phy_list_head
);
9686 hpsa_sas_phy
->added_to_port
= true;
9692 hpsa_sas_port_add_rphy(struct hpsa_sas_port
*hpsa_sas_port
,
9693 struct sas_rphy
*rphy
)
9695 struct sas_identify
*identify
;
9697 identify
= &rphy
->identify
;
9698 identify
->sas_address
= hpsa_sas_port
->sas_address
;
9699 identify
->initiator_port_protocols
= SAS_PROTOCOL_STP
;
9700 identify
->target_port_protocols
= SAS_PROTOCOL_STP
;
9702 return sas_rphy_add(rphy
);
9705 static struct hpsa_sas_port
9706 *hpsa_alloc_sas_port(struct hpsa_sas_node
*hpsa_sas_node
,
9710 struct hpsa_sas_port
*hpsa_sas_port
;
9711 struct sas_port
*port
;
9713 hpsa_sas_port
= kzalloc(sizeof(*hpsa_sas_port
), GFP_KERNEL
);
9717 INIT_LIST_HEAD(&hpsa_sas_port
->phy_list_head
);
9718 hpsa_sas_port
->parent_node
= hpsa_sas_node
;
9720 port
= sas_port_alloc_num(hpsa_sas_node
->parent_dev
);
9722 goto free_hpsa_port
;
9724 rc
= sas_port_add(port
);
9728 hpsa_sas_port
->port
= port
;
9729 hpsa_sas_port
->sas_address
= sas_address
;
9730 list_add_tail(&hpsa_sas_port
->port_list_entry
,
9731 &hpsa_sas_node
->port_list_head
);
9733 return hpsa_sas_port
;
9736 sas_port_free(port
);
9738 kfree(hpsa_sas_port
);
9743 static void hpsa_free_sas_port(struct hpsa_sas_port
*hpsa_sas_port
)
9745 struct hpsa_sas_phy
*hpsa_sas_phy
;
9746 struct hpsa_sas_phy
*next
;
9748 list_for_each_entry_safe(hpsa_sas_phy
, next
,
9749 &hpsa_sas_port
->phy_list_head
, phy_list_entry
)
9750 hpsa_free_sas_phy(hpsa_sas_phy
);
9752 sas_port_delete(hpsa_sas_port
->port
);
9753 list_del(&hpsa_sas_port
->port_list_entry
);
9754 kfree(hpsa_sas_port
);
9757 static struct hpsa_sas_node
*hpsa_alloc_sas_node(struct device
*parent_dev
)
9759 struct hpsa_sas_node
*hpsa_sas_node
;
9761 hpsa_sas_node
= kzalloc(sizeof(*hpsa_sas_node
), GFP_KERNEL
);
9762 if (hpsa_sas_node
) {
9763 hpsa_sas_node
->parent_dev
= parent_dev
;
9764 INIT_LIST_HEAD(&hpsa_sas_node
->port_list_head
);
9767 return hpsa_sas_node
;
9770 static void hpsa_free_sas_node(struct hpsa_sas_node
*hpsa_sas_node
)
9772 struct hpsa_sas_port
*hpsa_sas_port
;
9773 struct hpsa_sas_port
*next
;
9778 list_for_each_entry_safe(hpsa_sas_port
, next
,
9779 &hpsa_sas_node
->port_list_head
, port_list_entry
)
9780 hpsa_free_sas_port(hpsa_sas_port
);
9782 kfree(hpsa_sas_node
);
9785 static struct hpsa_scsi_dev_t
9786 *hpsa_find_device_by_sas_rphy(struct ctlr_info
*h
,
9787 struct sas_rphy
*rphy
)
9790 struct hpsa_scsi_dev_t
*device
;
9792 for (i
= 0; i
< h
->ndevices
; i
++) {
9794 if (!device
->sas_port
)
9796 if (device
->sas_port
->rphy
== rphy
)
9803 static int hpsa_add_sas_host(struct ctlr_info
*h
)
9806 struct device
*parent_dev
;
9807 struct hpsa_sas_node
*hpsa_sas_node
;
9808 struct hpsa_sas_port
*hpsa_sas_port
;
9809 struct hpsa_sas_phy
*hpsa_sas_phy
;
9811 parent_dev
= &h
->scsi_host
->shost_gendev
;
9813 hpsa_sas_node
= hpsa_alloc_sas_node(parent_dev
);
9817 hpsa_sas_port
= hpsa_alloc_sas_port(hpsa_sas_node
, h
->sas_address
);
9818 if (!hpsa_sas_port
) {
9823 hpsa_sas_phy
= hpsa_alloc_sas_phy(hpsa_sas_port
);
9824 if (!hpsa_sas_phy
) {
9829 rc
= hpsa_sas_port_add_phy(hpsa_sas_phy
);
9833 h
->sas_host
= hpsa_sas_node
;
9838 hpsa_free_sas_phy(hpsa_sas_phy
);
9840 hpsa_free_sas_port(hpsa_sas_port
);
9842 hpsa_free_sas_node(hpsa_sas_node
);
9847 static void hpsa_delete_sas_host(struct ctlr_info
*h
)
9849 hpsa_free_sas_node(h
->sas_host
);
9852 static int hpsa_add_sas_device(struct hpsa_sas_node
*hpsa_sas_node
,
9853 struct hpsa_scsi_dev_t
*device
)
9856 struct hpsa_sas_port
*hpsa_sas_port
;
9857 struct sas_rphy
*rphy
;
9859 hpsa_sas_port
= hpsa_alloc_sas_port(hpsa_sas_node
, device
->sas_address
);
9863 rphy
= sas_end_device_alloc(hpsa_sas_port
->port
);
9869 hpsa_sas_port
->rphy
= rphy
;
9870 device
->sas_port
= hpsa_sas_port
;
9872 rc
= hpsa_sas_port_add_rphy(hpsa_sas_port
, rphy
);
9879 hpsa_free_sas_port(hpsa_sas_port
);
9880 device
->sas_port
= NULL
;
9885 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t
*device
)
9887 if (device
->sas_port
) {
9888 hpsa_free_sas_port(device
->sas_port
);
9889 device
->sas_port
= NULL
;
9894 hpsa_sas_get_linkerrors(struct sas_phy
*phy
)
9900 hpsa_sas_get_enclosure_identifier(struct sas_rphy
*rphy
, u64
*identifier
)
9907 hpsa_sas_get_bay_identifier(struct sas_rphy
*rphy
)
9913 hpsa_sas_phy_reset(struct sas_phy
*phy
, int hard_reset
)
9919 hpsa_sas_phy_enable(struct sas_phy
*phy
, int enable
)
9925 hpsa_sas_phy_setup(struct sas_phy
*phy
)
9931 hpsa_sas_phy_release(struct sas_phy
*phy
)
9936 hpsa_sas_phy_speed(struct sas_phy
*phy
, struct sas_phy_linkrates
*rates
)
9941 /* SMP = Serial Management Protocol */
9943 hpsa_sas_smp_handler(struct Scsi_Host
*shost
, struct sas_rphy
*rphy
,
9944 struct request
*req
)
9949 static struct sas_function_template hpsa_sas_transport_functions
= {
9950 .get_linkerrors
= hpsa_sas_get_linkerrors
,
9951 .get_enclosure_identifier
= hpsa_sas_get_enclosure_identifier
,
9952 .get_bay_identifier
= hpsa_sas_get_bay_identifier
,
9953 .phy_reset
= hpsa_sas_phy_reset
,
9954 .phy_enable
= hpsa_sas_phy_enable
,
9955 .phy_setup
= hpsa_sas_phy_setup
,
9956 .phy_release
= hpsa_sas_phy_release
,
9957 .set_phy_speed
= hpsa_sas_phy_speed
,
9958 .smp_handler
= hpsa_sas_smp_handler
,
9962 * This is it. Register the PCI driver information for the cards we control
9963 * the OS will call our registered routines when it finds one of our cards.
9965 static int __init
hpsa_init(void)
9969 hpsa_sas_transport_template
=
9970 sas_attach_transport(&hpsa_sas_transport_functions
);
9971 if (!hpsa_sas_transport_template
)
9974 rc
= pci_register_driver(&hpsa_pci_driver
);
9977 sas_release_transport(hpsa_sas_transport_template
);
9982 static void __exit
hpsa_cleanup(void)
9984 pci_unregister_driver(&hpsa_pci_driver
);
9985 sas_release_transport(hpsa_sas_transport_template
);
9988 static void __attribute__((unused
)) verify_offsets(void)
9990 #define VERIFY_OFFSET(member, offset) \
9991 BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9993 VERIFY_OFFSET(structure_size
, 0);
9994 VERIFY_OFFSET(volume_blk_size
, 4);
9995 VERIFY_OFFSET(volume_blk_cnt
, 8);
9996 VERIFY_OFFSET(phys_blk_shift
, 16);
9997 VERIFY_OFFSET(parity_rotation_shift
, 17);
9998 VERIFY_OFFSET(strip_size
, 18);
9999 VERIFY_OFFSET(disk_starting_blk
, 20);
10000 VERIFY_OFFSET(disk_blk_cnt
, 28);
10001 VERIFY_OFFSET(data_disks_per_row
, 36);
10002 VERIFY_OFFSET(metadata_disks_per_row
, 38);
10003 VERIFY_OFFSET(row_cnt
, 40);
10004 VERIFY_OFFSET(layout_map_count
, 42);
10005 VERIFY_OFFSET(flags
, 44);
10006 VERIFY_OFFSET(dekindex
, 46);
10007 /* VERIFY_OFFSET(reserved, 48 */
10008 VERIFY_OFFSET(data
, 64);
10010 #undef VERIFY_OFFSET
10012 #define VERIFY_OFFSET(member, offset) \
10013 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
10015 VERIFY_OFFSET(IU_type
, 0);
10016 VERIFY_OFFSET(direction
, 1);
10017 VERIFY_OFFSET(reply_queue
, 2);
10018 /* VERIFY_OFFSET(reserved1, 3); */
10019 VERIFY_OFFSET(scsi_nexus
, 4);
10020 VERIFY_OFFSET(Tag
, 8);
10021 VERIFY_OFFSET(cdb
, 16);
10022 VERIFY_OFFSET(cciss_lun
, 32);
10023 VERIFY_OFFSET(data_len
, 40);
10024 VERIFY_OFFSET(cmd_priority_task_attr
, 44);
10025 VERIFY_OFFSET(sg_count
, 45);
10026 /* VERIFY_OFFSET(reserved3 */
10027 VERIFY_OFFSET(err_ptr
, 48);
10028 VERIFY_OFFSET(err_len
, 56);
10029 /* VERIFY_OFFSET(reserved4 */
10030 VERIFY_OFFSET(sg
, 64);
10032 #undef VERIFY_OFFSET
10034 #define VERIFY_OFFSET(member, offset) \
10035 BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
10037 VERIFY_OFFSET(dev_handle
, 0x00);
10038 VERIFY_OFFSET(reserved1
, 0x02);
10039 VERIFY_OFFSET(function
, 0x03);
10040 VERIFY_OFFSET(reserved2
, 0x04);
10041 VERIFY_OFFSET(err_info
, 0x0C);
10042 VERIFY_OFFSET(reserved3
, 0x10);
10043 VERIFY_OFFSET(err_info_len
, 0x12);
10044 VERIFY_OFFSET(reserved4
, 0x13);
10045 VERIFY_OFFSET(sgl_offset
, 0x14);
10046 VERIFY_OFFSET(reserved5
, 0x15);
10047 VERIFY_OFFSET(transfer_len
, 0x1C);
10048 VERIFY_OFFSET(reserved6
, 0x20);
10049 VERIFY_OFFSET(io_flags
, 0x24);
10050 VERIFY_OFFSET(reserved7
, 0x26);
10051 VERIFY_OFFSET(LUN
, 0x34);
10052 VERIFY_OFFSET(control
, 0x3C);
10053 VERIFY_OFFSET(CDB
, 0x40);
10054 VERIFY_OFFSET(reserved8
, 0x50);
10055 VERIFY_OFFSET(host_context_flags
, 0x60);
10056 VERIFY_OFFSET(timeout_sec
, 0x62);
10057 VERIFY_OFFSET(ReplyQueue
, 0x64);
10058 VERIFY_OFFSET(reserved9
, 0x65);
10059 VERIFY_OFFSET(tag
, 0x68);
10060 VERIFY_OFFSET(host_addr
, 0x70);
10061 VERIFY_OFFSET(CISS_LUN
, 0x78);
10062 VERIFY_OFFSET(SG
, 0x78 + 8);
10063 #undef VERIFY_OFFSET
10066 module_init(hpsa_init
);
10067 module_exit(hpsa_cleanup
);