ixgbe: fix signed-integer-overflow warning
[linux/fpc-iii.git] / kernel / rcu / update.c
blob28a8bdc5072f1f3ab676f5a84bc743924b091cb4
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Read-Copy Update mechanism for mutual exclusion
5 * Copyright IBM Corporation, 2001
7 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8 * Manfred Spraul <manfred@colorfullife.com>
10 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
11 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
12 * Papers:
13 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
14 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
16 * For detailed explanation of Read-Copy Update mechanism see -
17 * http://lse.sourceforge.net/locking/rcupdate.html
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/smp.h>
25 #include <linux/interrupt.h>
26 #include <linux/sched/signal.h>
27 #include <linux/sched/debug.h>
28 #include <linux/atomic.h>
29 #include <linux/bitops.h>
30 #include <linux/percpu.h>
31 #include <linux/notifier.h>
32 #include <linux/cpu.h>
33 #include <linux/mutex.h>
34 #include <linux/export.h>
35 #include <linux/hardirq.h>
36 #include <linux/delay.h>
37 #include <linux/moduleparam.h>
38 #include <linux/kthread.h>
39 #include <linux/tick.h>
40 #include <linux/rcupdate_wait.h>
41 #include <linux/sched/isolation.h>
42 #include <linux/kprobes.h>
43 #include <linux/slab.h>
45 #define CREATE_TRACE_POINTS
47 #include "rcu.h"
49 #ifdef MODULE_PARAM_PREFIX
50 #undef MODULE_PARAM_PREFIX
51 #endif
52 #define MODULE_PARAM_PREFIX "rcupdate."
54 #ifndef CONFIG_TINY_RCU
55 module_param(rcu_expedited, int, 0);
56 module_param(rcu_normal, int, 0);
57 static int rcu_normal_after_boot;
58 module_param(rcu_normal_after_boot, int, 0);
59 #endif /* #ifndef CONFIG_TINY_RCU */
61 #ifdef CONFIG_DEBUG_LOCK_ALLOC
62 /**
63 * rcu_read_lock_held_common() - might we be in RCU-sched read-side critical section?
64 * @ret: Best guess answer if lockdep cannot be relied on
66 * Returns true if lockdep must be ignored, in which case *ret contains
67 * the best guess described below. Otherwise returns false, in which
68 * case *ret tells the caller nothing and the caller should instead
69 * consult lockdep.
71 * If CONFIG_DEBUG_LOCK_ALLOC is selected, set *ret to nonzero iff in an
72 * RCU-sched read-side critical section. In absence of
73 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
74 * critical section unless it can prove otherwise. Note that disabling
75 * of preemption (including disabling irqs) counts as an RCU-sched
76 * read-side critical section. This is useful for debug checks in functions
77 * that required that they be called within an RCU-sched read-side
78 * critical section.
80 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
81 * and while lockdep is disabled.
83 * Note that if the CPU is in the idle loop from an RCU point of view (ie:
84 * that we are in the section between rcu_idle_enter() and rcu_idle_exit())
85 * then rcu_read_lock_held() sets *ret to false even if the CPU did an
86 * rcu_read_lock(). The reason for this is that RCU ignores CPUs that are
87 * in such a section, considering these as in extended quiescent state,
88 * so such a CPU is effectively never in an RCU read-side critical section
89 * regardless of what RCU primitives it invokes. This state of affairs is
90 * required --- we need to keep an RCU-free window in idle where the CPU may
91 * possibly enter into low power mode. This way we can notice an extended
92 * quiescent state to other CPUs that started a grace period. Otherwise
93 * we would delay any grace period as long as we run in the idle task.
95 * Similarly, we avoid claiming an RCU read lock held if the current
96 * CPU is offline.
98 static bool rcu_read_lock_held_common(bool *ret)
100 if (!debug_lockdep_rcu_enabled()) {
101 *ret = 1;
102 return true;
104 if (!rcu_is_watching()) {
105 *ret = 0;
106 return true;
108 if (!rcu_lockdep_current_cpu_online()) {
109 *ret = 0;
110 return true;
112 return false;
115 int rcu_read_lock_sched_held(void)
117 bool ret;
119 if (rcu_read_lock_held_common(&ret))
120 return ret;
121 return lock_is_held(&rcu_sched_lock_map) || !preemptible();
123 EXPORT_SYMBOL(rcu_read_lock_sched_held);
124 #endif
126 #ifndef CONFIG_TINY_RCU
129 * Should expedited grace-period primitives always fall back to their
130 * non-expedited counterparts? Intended for use within RCU. Note
131 * that if the user specifies both rcu_expedited and rcu_normal, then
132 * rcu_normal wins. (Except during the time period during boot from
133 * when the first task is spawned until the rcu_set_runtime_mode()
134 * core_initcall() is invoked, at which point everything is expedited.)
136 bool rcu_gp_is_normal(void)
138 return READ_ONCE(rcu_normal) &&
139 rcu_scheduler_active != RCU_SCHEDULER_INIT;
141 EXPORT_SYMBOL_GPL(rcu_gp_is_normal);
143 static atomic_t rcu_expedited_nesting = ATOMIC_INIT(1);
146 * Should normal grace-period primitives be expedited? Intended for
147 * use within RCU. Note that this function takes the rcu_expedited
148 * sysfs/boot variable and rcu_scheduler_active into account as well
149 * as the rcu_expedite_gp() nesting. So looping on rcu_unexpedite_gp()
150 * until rcu_gp_is_expedited() returns false is a -really- bad idea.
152 bool rcu_gp_is_expedited(void)
154 return rcu_expedited || atomic_read(&rcu_expedited_nesting);
156 EXPORT_SYMBOL_GPL(rcu_gp_is_expedited);
159 * rcu_expedite_gp - Expedite future RCU grace periods
161 * After a call to this function, future calls to synchronize_rcu() and
162 * friends act as the corresponding synchronize_rcu_expedited() function
163 * had instead been called.
165 void rcu_expedite_gp(void)
167 atomic_inc(&rcu_expedited_nesting);
169 EXPORT_SYMBOL_GPL(rcu_expedite_gp);
172 * rcu_unexpedite_gp - Cancel prior rcu_expedite_gp() invocation
174 * Undo a prior call to rcu_expedite_gp(). If all prior calls to
175 * rcu_expedite_gp() are undone by a subsequent call to rcu_unexpedite_gp(),
176 * and if the rcu_expedited sysfs/boot parameter is not set, then all
177 * subsequent calls to synchronize_rcu() and friends will return to
178 * their normal non-expedited behavior.
180 void rcu_unexpedite_gp(void)
182 atomic_dec(&rcu_expedited_nesting);
184 EXPORT_SYMBOL_GPL(rcu_unexpedite_gp);
186 static bool rcu_boot_ended __read_mostly;
189 * Inform RCU of the end of the in-kernel boot sequence.
191 void rcu_end_inkernel_boot(void)
193 rcu_unexpedite_gp();
194 if (rcu_normal_after_boot)
195 WRITE_ONCE(rcu_normal, 1);
196 rcu_boot_ended = 1;
200 * Let rcutorture know when it is OK to turn it up to eleven.
202 bool rcu_inkernel_boot_has_ended(void)
204 return rcu_boot_ended;
206 EXPORT_SYMBOL_GPL(rcu_inkernel_boot_has_ended);
208 #endif /* #ifndef CONFIG_TINY_RCU */
211 * Test each non-SRCU synchronous grace-period wait API. This is
212 * useful just after a change in mode for these primitives, and
213 * during early boot.
215 void rcu_test_sync_prims(void)
217 if (!IS_ENABLED(CONFIG_PROVE_RCU))
218 return;
219 synchronize_rcu();
220 synchronize_rcu_expedited();
223 #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU)
226 * Switch to run-time mode once RCU has fully initialized.
228 static int __init rcu_set_runtime_mode(void)
230 rcu_test_sync_prims();
231 rcu_scheduler_active = RCU_SCHEDULER_RUNNING;
232 kfree_rcu_scheduler_running();
233 rcu_test_sync_prims();
234 return 0;
236 core_initcall(rcu_set_runtime_mode);
238 #endif /* #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU) */
240 #ifdef CONFIG_DEBUG_LOCK_ALLOC
241 static struct lock_class_key rcu_lock_key;
242 struct lockdep_map rcu_lock_map = {
243 .name = "rcu_read_lock",
244 .key = &rcu_lock_key,
245 .wait_type_outer = LD_WAIT_FREE,
246 .wait_type_inner = LD_WAIT_CONFIG, /* XXX PREEMPT_RCU ? */
248 EXPORT_SYMBOL_GPL(rcu_lock_map);
250 static struct lock_class_key rcu_bh_lock_key;
251 struct lockdep_map rcu_bh_lock_map = {
252 .name = "rcu_read_lock_bh",
253 .key = &rcu_bh_lock_key,
254 .wait_type_outer = LD_WAIT_FREE,
255 .wait_type_inner = LD_WAIT_CONFIG, /* PREEMPT_LOCK also makes BH preemptible */
257 EXPORT_SYMBOL_GPL(rcu_bh_lock_map);
259 static struct lock_class_key rcu_sched_lock_key;
260 struct lockdep_map rcu_sched_lock_map = {
261 .name = "rcu_read_lock_sched",
262 .key = &rcu_sched_lock_key,
263 .wait_type_outer = LD_WAIT_FREE,
264 .wait_type_inner = LD_WAIT_SPIN,
266 EXPORT_SYMBOL_GPL(rcu_sched_lock_map);
268 static struct lock_class_key rcu_callback_key;
269 struct lockdep_map rcu_callback_map =
270 STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key);
271 EXPORT_SYMBOL_GPL(rcu_callback_map);
273 int notrace debug_lockdep_rcu_enabled(void)
275 return rcu_scheduler_active != RCU_SCHEDULER_INACTIVE && debug_locks &&
276 current->lockdep_recursion == 0;
278 EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled);
279 NOKPROBE_SYMBOL(debug_lockdep_rcu_enabled);
282 * rcu_read_lock_held() - might we be in RCU read-side critical section?
284 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
285 * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC,
286 * this assumes we are in an RCU read-side critical section unless it can
287 * prove otherwise. This is useful for debug checks in functions that
288 * require that they be called within an RCU read-side critical section.
290 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
291 * and while lockdep is disabled.
293 * Note that rcu_read_lock() and the matching rcu_read_unlock() must
294 * occur in the same context, for example, it is illegal to invoke
295 * rcu_read_unlock() in process context if the matching rcu_read_lock()
296 * was invoked from within an irq handler.
298 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
299 * offline from an RCU perspective, so check for those as well.
301 int rcu_read_lock_held(void)
303 bool ret;
305 if (rcu_read_lock_held_common(&ret))
306 return ret;
307 return lock_is_held(&rcu_lock_map);
309 EXPORT_SYMBOL_GPL(rcu_read_lock_held);
312 * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section?
314 * Check for bottom half being disabled, which covers both the
315 * CONFIG_PROVE_RCU and not cases. Note that if someone uses
316 * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled)
317 * will show the situation. This is useful for debug checks in functions
318 * that require that they be called within an RCU read-side critical
319 * section.
321 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot.
323 * Note that rcu_read_lock_bh() is disallowed if the CPU is either idle or
324 * offline from an RCU perspective, so check for those as well.
326 int rcu_read_lock_bh_held(void)
328 bool ret;
330 if (rcu_read_lock_held_common(&ret))
331 return ret;
332 return in_softirq() || irqs_disabled();
334 EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held);
336 int rcu_read_lock_any_held(void)
338 bool ret;
340 if (rcu_read_lock_held_common(&ret))
341 return ret;
342 if (lock_is_held(&rcu_lock_map) ||
343 lock_is_held(&rcu_bh_lock_map) ||
344 lock_is_held(&rcu_sched_lock_map))
345 return 1;
346 return !preemptible();
348 EXPORT_SYMBOL_GPL(rcu_read_lock_any_held);
350 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
353 * wakeme_after_rcu() - Callback function to awaken a task after grace period
354 * @head: Pointer to rcu_head member within rcu_synchronize structure
356 * Awaken the corresponding task now that a grace period has elapsed.
358 void wakeme_after_rcu(struct rcu_head *head)
360 struct rcu_synchronize *rcu;
362 rcu = container_of(head, struct rcu_synchronize, head);
363 complete(&rcu->completion);
365 EXPORT_SYMBOL_GPL(wakeme_after_rcu);
367 void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array,
368 struct rcu_synchronize *rs_array)
370 int i;
371 int j;
373 /* Initialize and register callbacks for each crcu_array element. */
374 for (i = 0; i < n; i++) {
375 if (checktiny &&
376 (crcu_array[i] == call_rcu)) {
377 might_sleep();
378 continue;
380 init_rcu_head_on_stack(&rs_array[i].head);
381 init_completion(&rs_array[i].completion);
382 for (j = 0; j < i; j++)
383 if (crcu_array[j] == crcu_array[i])
384 break;
385 if (j == i)
386 (crcu_array[i])(&rs_array[i].head, wakeme_after_rcu);
389 /* Wait for all callbacks to be invoked. */
390 for (i = 0; i < n; i++) {
391 if (checktiny &&
392 (crcu_array[i] == call_rcu))
393 continue;
394 for (j = 0; j < i; j++)
395 if (crcu_array[j] == crcu_array[i])
396 break;
397 if (j == i)
398 wait_for_completion(&rs_array[i].completion);
399 destroy_rcu_head_on_stack(&rs_array[i].head);
402 EXPORT_SYMBOL_GPL(__wait_rcu_gp);
404 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
405 void init_rcu_head(struct rcu_head *head)
407 debug_object_init(head, &rcuhead_debug_descr);
409 EXPORT_SYMBOL_GPL(init_rcu_head);
411 void destroy_rcu_head(struct rcu_head *head)
413 debug_object_free(head, &rcuhead_debug_descr);
415 EXPORT_SYMBOL_GPL(destroy_rcu_head);
417 static bool rcuhead_is_static_object(void *addr)
419 return true;
423 * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects
424 * @head: pointer to rcu_head structure to be initialized
426 * This function informs debugobjects of a new rcu_head structure that
427 * has been allocated as an auto variable on the stack. This function
428 * is not required for rcu_head structures that are statically defined or
429 * that are dynamically allocated on the heap. This function has no
430 * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
432 void init_rcu_head_on_stack(struct rcu_head *head)
434 debug_object_init_on_stack(head, &rcuhead_debug_descr);
436 EXPORT_SYMBOL_GPL(init_rcu_head_on_stack);
439 * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects
440 * @head: pointer to rcu_head structure to be initialized
442 * This function informs debugobjects that an on-stack rcu_head structure
443 * is about to go out of scope. As with init_rcu_head_on_stack(), this
444 * function is not required for rcu_head structures that are statically
445 * defined or that are dynamically allocated on the heap. Also as with
446 * init_rcu_head_on_stack(), this function has no effect for
447 * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
449 void destroy_rcu_head_on_stack(struct rcu_head *head)
451 debug_object_free(head, &rcuhead_debug_descr);
453 EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack);
455 struct debug_obj_descr rcuhead_debug_descr = {
456 .name = "rcu_head",
457 .is_static_object = rcuhead_is_static_object,
459 EXPORT_SYMBOL_GPL(rcuhead_debug_descr);
460 #endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */
462 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_RCU_TRACE)
463 void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp,
464 unsigned long secs,
465 unsigned long c_old, unsigned long c)
467 trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c);
469 EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read);
470 #else
471 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
472 do { } while (0)
473 #endif
475 #if IS_ENABLED(CONFIG_RCU_TORTURE_TEST) || IS_MODULE(CONFIG_RCU_TORTURE_TEST)
476 /* Get rcutorture access to sched_setaffinity(). */
477 long rcutorture_sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
479 int ret;
481 ret = sched_setaffinity(pid, in_mask);
482 WARN_ONCE(ret, "%s: sched_setaffinity() returned %d\n", __func__, ret);
483 return ret;
485 EXPORT_SYMBOL_GPL(rcutorture_sched_setaffinity);
486 #endif
488 #ifdef CONFIG_RCU_STALL_COMMON
489 int rcu_cpu_stall_ftrace_dump __read_mostly;
490 module_param(rcu_cpu_stall_ftrace_dump, int, 0644);
491 int rcu_cpu_stall_suppress __read_mostly; // !0 = suppress stall warnings.
492 EXPORT_SYMBOL_GPL(rcu_cpu_stall_suppress);
493 module_param(rcu_cpu_stall_suppress, int, 0644);
494 int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
495 module_param(rcu_cpu_stall_timeout, int, 0644);
496 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */
498 // Suppress boot-time RCU CPU stall warnings and rcutorture writer stall
499 // warnings. Also used by rcutorture even if stall warnings are excluded.
500 int rcu_cpu_stall_suppress_at_boot __read_mostly; // !0 = suppress boot stalls.
501 EXPORT_SYMBOL_GPL(rcu_cpu_stall_suppress_at_boot);
502 module_param(rcu_cpu_stall_suppress_at_boot, int, 0444);
504 #ifdef CONFIG_TASKS_RCU
507 * Simple variant of RCU whose quiescent states are voluntary context
508 * switch, cond_resched_rcu_qs(), user-space execution, and idle.
509 * As such, grace periods can take one good long time. There are no
510 * read-side primitives similar to rcu_read_lock() and rcu_read_unlock()
511 * because this implementation is intended to get the system into a safe
512 * state for some of the manipulations involved in tracing and the like.
513 * Finally, this implementation does not support high call_rcu_tasks()
514 * rates from multiple CPUs. If this is required, per-CPU callback lists
515 * will be needed.
518 /* Global list of callbacks and associated lock. */
519 static struct rcu_head *rcu_tasks_cbs_head;
520 static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
521 static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq);
522 static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock);
524 /* Track exiting tasks in order to allow them to be waited for. */
525 DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu);
527 /* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */
528 #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10)
529 static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT;
530 module_param(rcu_task_stall_timeout, int, 0644);
532 static struct task_struct *rcu_tasks_kthread_ptr;
535 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
536 * @rhp: structure to be used for queueing the RCU updates.
537 * @func: actual callback function to be invoked after the grace period
539 * The callback function will be invoked some time after a full grace
540 * period elapses, in other words after all currently executing RCU
541 * read-side critical sections have completed. call_rcu_tasks() assumes
542 * that the read-side critical sections end at a voluntary context
543 * switch (not a preemption!), cond_resched_rcu_qs(), entry into idle,
544 * or transition to usermode execution. As such, there are no read-side
545 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
546 * this primitive is intended to determine that all tasks have passed
547 * through a safe state, not so much for data-strcuture synchronization.
549 * See the description of call_rcu() for more detailed information on
550 * memory ordering guarantees.
552 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
554 unsigned long flags;
555 bool needwake;
557 rhp->next = NULL;
558 rhp->func = func;
559 raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
560 needwake = !rcu_tasks_cbs_head;
561 WRITE_ONCE(*rcu_tasks_cbs_tail, rhp);
562 rcu_tasks_cbs_tail = &rhp->next;
563 raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
564 /* We can't create the thread unless interrupts are enabled. */
565 if (needwake && READ_ONCE(rcu_tasks_kthread_ptr))
566 wake_up(&rcu_tasks_cbs_wq);
568 EXPORT_SYMBOL_GPL(call_rcu_tasks);
571 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
573 * Control will return to the caller some time after a full rcu-tasks
574 * grace period has elapsed, in other words after all currently
575 * executing rcu-tasks read-side critical sections have elapsed. These
576 * read-side critical sections are delimited by calls to schedule(),
577 * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls
578 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
580 * This is a very specialized primitive, intended only for a few uses in
581 * tracing and other situations requiring manipulation of function
582 * preambles and profiling hooks. The synchronize_rcu_tasks() function
583 * is not (yet) intended for heavy use from multiple CPUs.
585 * Note that this guarantee implies further memory-ordering guarantees.
586 * On systems with more than one CPU, when synchronize_rcu_tasks() returns,
587 * each CPU is guaranteed to have executed a full memory barrier since the
588 * end of its last RCU-tasks read-side critical section whose beginning
589 * preceded the call to synchronize_rcu_tasks(). In addition, each CPU
590 * having an RCU-tasks read-side critical section that extends beyond
591 * the return from synchronize_rcu_tasks() is guaranteed to have executed
592 * a full memory barrier after the beginning of synchronize_rcu_tasks()
593 * and before the beginning of that RCU-tasks read-side critical section.
594 * Note that these guarantees include CPUs that are offline, idle, or
595 * executing in user mode, as well as CPUs that are executing in the kernel.
597 * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned
598 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
599 * to have executed a full memory barrier during the execution of
600 * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU
601 * (but again only if the system has more than one CPU).
603 void synchronize_rcu_tasks(void)
605 /* Complain if the scheduler has not started. */
606 RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
607 "synchronize_rcu_tasks called too soon");
609 /* Wait for the grace period. */
610 wait_rcu_gp(call_rcu_tasks);
612 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
615 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
617 * Although the current implementation is guaranteed to wait, it is not
618 * obligated to, for example, if there are no pending callbacks.
620 void rcu_barrier_tasks(void)
622 /* There is only one callback queue, so this is easy. ;-) */
623 synchronize_rcu_tasks();
625 EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
627 /* See if tasks are still holding out, complain if so. */
628 static void check_holdout_task(struct task_struct *t,
629 bool needreport, bool *firstreport)
631 int cpu;
633 if (!READ_ONCE(t->rcu_tasks_holdout) ||
634 t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
635 !READ_ONCE(t->on_rq) ||
636 (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
637 !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
638 WRITE_ONCE(t->rcu_tasks_holdout, false);
639 list_del_init(&t->rcu_tasks_holdout_list);
640 put_task_struct(t);
641 return;
643 rcu_request_urgent_qs_task(t);
644 if (!needreport)
645 return;
646 if (*firstreport) {
647 pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
648 *firstreport = false;
650 cpu = task_cpu(t);
651 pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
652 t, ".I"[is_idle_task(t)],
653 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
654 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
655 t->rcu_tasks_idle_cpu, cpu);
656 sched_show_task(t);
659 /* RCU-tasks kthread that detects grace periods and invokes callbacks. */
660 static int __noreturn rcu_tasks_kthread(void *arg)
662 unsigned long flags;
663 struct task_struct *g, *t;
664 unsigned long lastreport;
665 struct rcu_head *list;
666 struct rcu_head *next;
667 LIST_HEAD(rcu_tasks_holdouts);
668 int fract;
670 /* Run on housekeeping CPUs by default. Sysadm can move if desired. */
671 housekeeping_affine(current, HK_FLAG_RCU);
674 * Each pass through the following loop makes one check for
675 * newly arrived callbacks, and, if there are some, waits for
676 * one RCU-tasks grace period and then invokes the callbacks.
677 * This loop is terminated by the system going down. ;-)
679 for (;;) {
681 /* Pick up any new callbacks. */
682 raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
683 list = rcu_tasks_cbs_head;
684 rcu_tasks_cbs_head = NULL;
685 rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
686 raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
688 /* If there were none, wait a bit and start over. */
689 if (!list) {
690 wait_event_interruptible(rcu_tasks_cbs_wq,
691 READ_ONCE(rcu_tasks_cbs_head));
692 if (!rcu_tasks_cbs_head) {
693 WARN_ON(signal_pending(current));
694 schedule_timeout_interruptible(HZ/10);
696 continue;
700 * Wait for all pre-existing t->on_rq and t->nvcsw
701 * transitions to complete. Invoking synchronize_rcu()
702 * suffices because all these transitions occur with
703 * interrupts disabled. Without this synchronize_rcu(),
704 * a read-side critical section that started before the
705 * grace period might be incorrectly seen as having started
706 * after the grace period.
708 * This synchronize_rcu() also dispenses with the
709 * need for a memory barrier on the first store to
710 * ->rcu_tasks_holdout, as it forces the store to happen
711 * after the beginning of the grace period.
713 synchronize_rcu();
716 * There were callbacks, so we need to wait for an
717 * RCU-tasks grace period. Start off by scanning
718 * the task list for tasks that are not already
719 * voluntarily blocked. Mark these tasks and make
720 * a list of them in rcu_tasks_holdouts.
722 rcu_read_lock();
723 for_each_process_thread(g, t) {
724 if (t != current && READ_ONCE(t->on_rq) &&
725 !is_idle_task(t)) {
726 get_task_struct(t);
727 t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
728 WRITE_ONCE(t->rcu_tasks_holdout, true);
729 list_add(&t->rcu_tasks_holdout_list,
730 &rcu_tasks_holdouts);
733 rcu_read_unlock();
736 * Wait for tasks that are in the process of exiting.
737 * This does only part of the job, ensuring that all
738 * tasks that were previously exiting reach the point
739 * where they have disabled preemption, allowing the
740 * later synchronize_rcu() to finish the job.
742 synchronize_srcu(&tasks_rcu_exit_srcu);
745 * Each pass through the following loop scans the list
746 * of holdout tasks, removing any that are no longer
747 * holdouts. When the list is empty, we are done.
749 lastreport = jiffies;
751 /* Start off with HZ/10 wait and slowly back off to 1 HZ wait*/
752 fract = 10;
754 for (;;) {
755 bool firstreport;
756 bool needreport;
757 int rtst;
758 struct task_struct *t1;
760 if (list_empty(&rcu_tasks_holdouts))
761 break;
763 /* Slowly back off waiting for holdouts */
764 schedule_timeout_interruptible(HZ/fract);
766 if (fract > 1)
767 fract--;
769 rtst = READ_ONCE(rcu_task_stall_timeout);
770 needreport = rtst > 0 &&
771 time_after(jiffies, lastreport + rtst);
772 if (needreport)
773 lastreport = jiffies;
774 firstreport = true;
775 WARN_ON(signal_pending(current));
776 list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts,
777 rcu_tasks_holdout_list) {
778 check_holdout_task(t, needreport, &firstreport);
779 cond_resched();
784 * Because ->on_rq and ->nvcsw are not guaranteed
785 * to have a full memory barriers prior to them in the
786 * schedule() path, memory reordering on other CPUs could
787 * cause their RCU-tasks read-side critical sections to
788 * extend past the end of the grace period. However,
789 * because these ->nvcsw updates are carried out with
790 * interrupts disabled, we can use synchronize_rcu()
791 * to force the needed ordering on all such CPUs.
793 * This synchronize_rcu() also confines all
794 * ->rcu_tasks_holdout accesses to be within the grace
795 * period, avoiding the need for memory barriers for
796 * ->rcu_tasks_holdout accesses.
798 * In addition, this synchronize_rcu() waits for exiting
799 * tasks to complete their final preempt_disable() region
800 * of execution, cleaning up after the synchronize_srcu()
801 * above.
803 synchronize_rcu();
805 /* Invoke the callbacks. */
806 while (list) {
807 next = list->next;
808 local_bh_disable();
809 list->func(list);
810 local_bh_enable();
811 list = next;
812 cond_resched();
814 /* Paranoid sleep to keep this from entering a tight loop */
815 schedule_timeout_uninterruptible(HZ/10);
819 /* Spawn rcu_tasks_kthread() at core_initcall() time. */
820 static int __init rcu_spawn_tasks_kthread(void)
822 struct task_struct *t;
824 t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread");
825 if (WARN_ONCE(IS_ERR(t), "%s: Could not start Tasks-RCU grace-period kthread, OOM is now expected behavior\n", __func__))
826 return 0;
827 smp_mb(); /* Ensure others see full kthread. */
828 WRITE_ONCE(rcu_tasks_kthread_ptr, t);
829 return 0;
831 core_initcall(rcu_spawn_tasks_kthread);
833 /* Do the srcu_read_lock() for the above synchronize_srcu(). */
834 void exit_tasks_rcu_start(void) __acquires(&tasks_rcu_exit_srcu)
836 preempt_disable();
837 current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu);
838 preempt_enable();
841 /* Do the srcu_read_unlock() for the above synchronize_srcu(). */
842 void exit_tasks_rcu_finish(void) __releases(&tasks_rcu_exit_srcu)
844 preempt_disable();
845 __srcu_read_unlock(&tasks_rcu_exit_srcu, current->rcu_tasks_idx);
846 preempt_enable();
849 #endif /* #ifdef CONFIG_TASKS_RCU */
851 #ifndef CONFIG_TINY_RCU
854 * Print any non-default Tasks RCU settings.
856 static void __init rcu_tasks_bootup_oddness(void)
858 #ifdef CONFIG_TASKS_RCU
859 if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT)
860 pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout);
861 else
862 pr_info("\tTasks RCU enabled.\n");
863 #endif /* #ifdef CONFIG_TASKS_RCU */
866 #endif /* #ifndef CONFIG_TINY_RCU */
868 #ifdef CONFIG_PROVE_RCU
871 * Early boot self test parameters.
873 static bool rcu_self_test;
874 module_param(rcu_self_test, bool, 0444);
876 static int rcu_self_test_counter;
878 static void test_callback(struct rcu_head *r)
880 rcu_self_test_counter++;
881 pr_info("RCU test callback executed %d\n", rcu_self_test_counter);
884 DEFINE_STATIC_SRCU(early_srcu);
886 struct early_boot_kfree_rcu {
887 struct rcu_head rh;
890 static void early_boot_test_call_rcu(void)
892 static struct rcu_head head;
893 static struct rcu_head shead;
894 struct early_boot_kfree_rcu *rhp;
896 call_rcu(&head, test_callback);
897 if (IS_ENABLED(CONFIG_SRCU))
898 call_srcu(&early_srcu, &shead, test_callback);
899 rhp = kmalloc(sizeof(*rhp), GFP_KERNEL);
900 if (!WARN_ON_ONCE(!rhp))
901 kfree_rcu(rhp, rh);
904 void rcu_early_boot_tests(void)
906 pr_info("Running RCU self tests\n");
908 if (rcu_self_test)
909 early_boot_test_call_rcu();
910 rcu_test_sync_prims();
913 static int rcu_verify_early_boot_tests(void)
915 int ret = 0;
916 int early_boot_test_counter = 0;
918 if (rcu_self_test) {
919 early_boot_test_counter++;
920 rcu_barrier();
921 if (IS_ENABLED(CONFIG_SRCU)) {
922 early_boot_test_counter++;
923 srcu_barrier(&early_srcu);
926 if (rcu_self_test_counter != early_boot_test_counter) {
927 WARN_ON(1);
928 ret = -1;
931 return ret;
933 late_initcall(rcu_verify_early_boot_tests);
934 #else
935 void rcu_early_boot_tests(void) {}
936 #endif /* CONFIG_PROVE_RCU */
938 #ifndef CONFIG_TINY_RCU
941 * Print any significant non-default boot-time settings.
943 void __init rcupdate_announce_bootup_oddness(void)
945 if (rcu_normal)
946 pr_info("\tNo expedited grace period (rcu_normal).\n");
947 else if (rcu_normal_after_boot)
948 pr_info("\tNo expedited grace period (rcu_normal_after_boot).\n");
949 else if (rcu_expedited)
950 pr_info("\tAll grace periods are expedited (rcu_expedited).\n");
951 if (rcu_cpu_stall_suppress)
952 pr_info("\tRCU CPU stall warnings suppressed (rcu_cpu_stall_suppress).\n");
953 if (rcu_cpu_stall_timeout != CONFIG_RCU_CPU_STALL_TIMEOUT)
954 pr_info("\tRCU CPU stall warnings timeout set to %d (rcu_cpu_stall_timeout).\n", rcu_cpu_stall_timeout);
955 rcu_tasks_bootup_oddness();
958 #endif /* #ifndef CONFIG_TINY_RCU */