1 // SPDX-License-Identifier: GPL-2.0+
3 * Read-Copy Update mechanism for mutual exclusion
5 * Copyright IBM Corporation, 2001
7 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8 * Manfred Spraul <manfred@colorfullife.com>
10 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
11 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
13 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
14 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
16 * For detailed explanation of Read-Copy Update mechanism see -
17 * http://lse.sourceforge.net/locking/rcupdate.html
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/smp.h>
25 #include <linux/interrupt.h>
26 #include <linux/sched/signal.h>
27 #include <linux/sched/debug.h>
28 #include <linux/atomic.h>
29 #include <linux/bitops.h>
30 #include <linux/percpu.h>
31 #include <linux/notifier.h>
32 #include <linux/cpu.h>
33 #include <linux/mutex.h>
34 #include <linux/export.h>
35 #include <linux/hardirq.h>
36 #include <linux/delay.h>
37 #include <linux/moduleparam.h>
38 #include <linux/kthread.h>
39 #include <linux/tick.h>
40 #include <linux/rcupdate_wait.h>
41 #include <linux/sched/isolation.h>
42 #include <linux/kprobes.h>
43 #include <linux/slab.h>
45 #define CREATE_TRACE_POINTS
49 #ifdef MODULE_PARAM_PREFIX
50 #undef MODULE_PARAM_PREFIX
52 #define MODULE_PARAM_PREFIX "rcupdate."
54 #ifndef CONFIG_TINY_RCU
55 module_param(rcu_expedited
, int, 0);
56 module_param(rcu_normal
, int, 0);
57 static int rcu_normal_after_boot
;
58 module_param(rcu_normal_after_boot
, int, 0);
59 #endif /* #ifndef CONFIG_TINY_RCU */
61 #ifdef CONFIG_DEBUG_LOCK_ALLOC
63 * rcu_read_lock_held_common() - might we be in RCU-sched read-side critical section?
64 * @ret: Best guess answer if lockdep cannot be relied on
66 * Returns true if lockdep must be ignored, in which case *ret contains
67 * the best guess described below. Otherwise returns false, in which
68 * case *ret tells the caller nothing and the caller should instead
71 * If CONFIG_DEBUG_LOCK_ALLOC is selected, set *ret to nonzero iff in an
72 * RCU-sched read-side critical section. In absence of
73 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
74 * critical section unless it can prove otherwise. Note that disabling
75 * of preemption (including disabling irqs) counts as an RCU-sched
76 * read-side critical section. This is useful for debug checks in functions
77 * that required that they be called within an RCU-sched read-side
80 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
81 * and while lockdep is disabled.
83 * Note that if the CPU is in the idle loop from an RCU point of view (ie:
84 * that we are in the section between rcu_idle_enter() and rcu_idle_exit())
85 * then rcu_read_lock_held() sets *ret to false even if the CPU did an
86 * rcu_read_lock(). The reason for this is that RCU ignores CPUs that are
87 * in such a section, considering these as in extended quiescent state,
88 * so such a CPU is effectively never in an RCU read-side critical section
89 * regardless of what RCU primitives it invokes. This state of affairs is
90 * required --- we need to keep an RCU-free window in idle where the CPU may
91 * possibly enter into low power mode. This way we can notice an extended
92 * quiescent state to other CPUs that started a grace period. Otherwise
93 * we would delay any grace period as long as we run in the idle task.
95 * Similarly, we avoid claiming an RCU read lock held if the current
98 static bool rcu_read_lock_held_common(bool *ret
)
100 if (!debug_lockdep_rcu_enabled()) {
104 if (!rcu_is_watching()) {
108 if (!rcu_lockdep_current_cpu_online()) {
115 int rcu_read_lock_sched_held(void)
119 if (rcu_read_lock_held_common(&ret
))
121 return lock_is_held(&rcu_sched_lock_map
) || !preemptible();
123 EXPORT_SYMBOL(rcu_read_lock_sched_held
);
126 #ifndef CONFIG_TINY_RCU
129 * Should expedited grace-period primitives always fall back to their
130 * non-expedited counterparts? Intended for use within RCU. Note
131 * that if the user specifies both rcu_expedited and rcu_normal, then
132 * rcu_normal wins. (Except during the time period during boot from
133 * when the first task is spawned until the rcu_set_runtime_mode()
134 * core_initcall() is invoked, at which point everything is expedited.)
136 bool rcu_gp_is_normal(void)
138 return READ_ONCE(rcu_normal
) &&
139 rcu_scheduler_active
!= RCU_SCHEDULER_INIT
;
141 EXPORT_SYMBOL_GPL(rcu_gp_is_normal
);
143 static atomic_t rcu_expedited_nesting
= ATOMIC_INIT(1);
146 * Should normal grace-period primitives be expedited? Intended for
147 * use within RCU. Note that this function takes the rcu_expedited
148 * sysfs/boot variable and rcu_scheduler_active into account as well
149 * as the rcu_expedite_gp() nesting. So looping on rcu_unexpedite_gp()
150 * until rcu_gp_is_expedited() returns false is a -really- bad idea.
152 bool rcu_gp_is_expedited(void)
154 return rcu_expedited
|| atomic_read(&rcu_expedited_nesting
);
156 EXPORT_SYMBOL_GPL(rcu_gp_is_expedited
);
159 * rcu_expedite_gp - Expedite future RCU grace periods
161 * After a call to this function, future calls to synchronize_rcu() and
162 * friends act as the corresponding synchronize_rcu_expedited() function
163 * had instead been called.
165 void rcu_expedite_gp(void)
167 atomic_inc(&rcu_expedited_nesting
);
169 EXPORT_SYMBOL_GPL(rcu_expedite_gp
);
172 * rcu_unexpedite_gp - Cancel prior rcu_expedite_gp() invocation
174 * Undo a prior call to rcu_expedite_gp(). If all prior calls to
175 * rcu_expedite_gp() are undone by a subsequent call to rcu_unexpedite_gp(),
176 * and if the rcu_expedited sysfs/boot parameter is not set, then all
177 * subsequent calls to synchronize_rcu() and friends will return to
178 * their normal non-expedited behavior.
180 void rcu_unexpedite_gp(void)
182 atomic_dec(&rcu_expedited_nesting
);
184 EXPORT_SYMBOL_GPL(rcu_unexpedite_gp
);
186 static bool rcu_boot_ended __read_mostly
;
189 * Inform RCU of the end of the in-kernel boot sequence.
191 void rcu_end_inkernel_boot(void)
194 if (rcu_normal_after_boot
)
195 WRITE_ONCE(rcu_normal
, 1);
200 * Let rcutorture know when it is OK to turn it up to eleven.
202 bool rcu_inkernel_boot_has_ended(void)
204 return rcu_boot_ended
;
206 EXPORT_SYMBOL_GPL(rcu_inkernel_boot_has_ended
);
208 #endif /* #ifndef CONFIG_TINY_RCU */
211 * Test each non-SRCU synchronous grace-period wait API. This is
212 * useful just after a change in mode for these primitives, and
215 void rcu_test_sync_prims(void)
217 if (!IS_ENABLED(CONFIG_PROVE_RCU
))
220 synchronize_rcu_expedited();
223 #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU)
226 * Switch to run-time mode once RCU has fully initialized.
228 static int __init
rcu_set_runtime_mode(void)
230 rcu_test_sync_prims();
231 rcu_scheduler_active
= RCU_SCHEDULER_RUNNING
;
232 kfree_rcu_scheduler_running();
233 rcu_test_sync_prims();
236 core_initcall(rcu_set_runtime_mode
);
238 #endif /* #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU) */
240 #ifdef CONFIG_DEBUG_LOCK_ALLOC
241 static struct lock_class_key rcu_lock_key
;
242 struct lockdep_map rcu_lock_map
= {
243 .name
= "rcu_read_lock",
244 .key
= &rcu_lock_key
,
245 .wait_type_outer
= LD_WAIT_FREE
,
246 .wait_type_inner
= LD_WAIT_CONFIG
, /* XXX PREEMPT_RCU ? */
248 EXPORT_SYMBOL_GPL(rcu_lock_map
);
250 static struct lock_class_key rcu_bh_lock_key
;
251 struct lockdep_map rcu_bh_lock_map
= {
252 .name
= "rcu_read_lock_bh",
253 .key
= &rcu_bh_lock_key
,
254 .wait_type_outer
= LD_WAIT_FREE
,
255 .wait_type_inner
= LD_WAIT_CONFIG
, /* PREEMPT_LOCK also makes BH preemptible */
257 EXPORT_SYMBOL_GPL(rcu_bh_lock_map
);
259 static struct lock_class_key rcu_sched_lock_key
;
260 struct lockdep_map rcu_sched_lock_map
= {
261 .name
= "rcu_read_lock_sched",
262 .key
= &rcu_sched_lock_key
,
263 .wait_type_outer
= LD_WAIT_FREE
,
264 .wait_type_inner
= LD_WAIT_SPIN
,
266 EXPORT_SYMBOL_GPL(rcu_sched_lock_map
);
268 static struct lock_class_key rcu_callback_key
;
269 struct lockdep_map rcu_callback_map
=
270 STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key
);
271 EXPORT_SYMBOL_GPL(rcu_callback_map
);
273 int notrace
debug_lockdep_rcu_enabled(void)
275 return rcu_scheduler_active
!= RCU_SCHEDULER_INACTIVE
&& debug_locks
&&
276 current
->lockdep_recursion
== 0;
278 EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled
);
279 NOKPROBE_SYMBOL(debug_lockdep_rcu_enabled
);
282 * rcu_read_lock_held() - might we be in RCU read-side critical section?
284 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
285 * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC,
286 * this assumes we are in an RCU read-side critical section unless it can
287 * prove otherwise. This is useful for debug checks in functions that
288 * require that they be called within an RCU read-side critical section.
290 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
291 * and while lockdep is disabled.
293 * Note that rcu_read_lock() and the matching rcu_read_unlock() must
294 * occur in the same context, for example, it is illegal to invoke
295 * rcu_read_unlock() in process context if the matching rcu_read_lock()
296 * was invoked from within an irq handler.
298 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
299 * offline from an RCU perspective, so check for those as well.
301 int rcu_read_lock_held(void)
305 if (rcu_read_lock_held_common(&ret
))
307 return lock_is_held(&rcu_lock_map
);
309 EXPORT_SYMBOL_GPL(rcu_read_lock_held
);
312 * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section?
314 * Check for bottom half being disabled, which covers both the
315 * CONFIG_PROVE_RCU and not cases. Note that if someone uses
316 * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled)
317 * will show the situation. This is useful for debug checks in functions
318 * that require that they be called within an RCU read-side critical
321 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot.
323 * Note that rcu_read_lock_bh() is disallowed if the CPU is either idle or
324 * offline from an RCU perspective, so check for those as well.
326 int rcu_read_lock_bh_held(void)
330 if (rcu_read_lock_held_common(&ret
))
332 return in_softirq() || irqs_disabled();
334 EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held
);
336 int rcu_read_lock_any_held(void)
340 if (rcu_read_lock_held_common(&ret
))
342 if (lock_is_held(&rcu_lock_map
) ||
343 lock_is_held(&rcu_bh_lock_map
) ||
344 lock_is_held(&rcu_sched_lock_map
))
346 return !preemptible();
348 EXPORT_SYMBOL_GPL(rcu_read_lock_any_held
);
350 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
353 * wakeme_after_rcu() - Callback function to awaken a task after grace period
354 * @head: Pointer to rcu_head member within rcu_synchronize structure
356 * Awaken the corresponding task now that a grace period has elapsed.
358 void wakeme_after_rcu(struct rcu_head
*head
)
360 struct rcu_synchronize
*rcu
;
362 rcu
= container_of(head
, struct rcu_synchronize
, head
);
363 complete(&rcu
->completion
);
365 EXPORT_SYMBOL_GPL(wakeme_after_rcu
);
367 void __wait_rcu_gp(bool checktiny
, int n
, call_rcu_func_t
*crcu_array
,
368 struct rcu_synchronize
*rs_array
)
373 /* Initialize and register callbacks for each crcu_array element. */
374 for (i
= 0; i
< n
; i
++) {
376 (crcu_array
[i
] == call_rcu
)) {
380 init_rcu_head_on_stack(&rs_array
[i
].head
);
381 init_completion(&rs_array
[i
].completion
);
382 for (j
= 0; j
< i
; j
++)
383 if (crcu_array
[j
] == crcu_array
[i
])
386 (crcu_array
[i
])(&rs_array
[i
].head
, wakeme_after_rcu
);
389 /* Wait for all callbacks to be invoked. */
390 for (i
= 0; i
< n
; i
++) {
392 (crcu_array
[i
] == call_rcu
))
394 for (j
= 0; j
< i
; j
++)
395 if (crcu_array
[j
] == crcu_array
[i
])
398 wait_for_completion(&rs_array
[i
].completion
);
399 destroy_rcu_head_on_stack(&rs_array
[i
].head
);
402 EXPORT_SYMBOL_GPL(__wait_rcu_gp
);
404 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
405 void init_rcu_head(struct rcu_head
*head
)
407 debug_object_init(head
, &rcuhead_debug_descr
);
409 EXPORT_SYMBOL_GPL(init_rcu_head
);
411 void destroy_rcu_head(struct rcu_head
*head
)
413 debug_object_free(head
, &rcuhead_debug_descr
);
415 EXPORT_SYMBOL_GPL(destroy_rcu_head
);
417 static bool rcuhead_is_static_object(void *addr
)
423 * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects
424 * @head: pointer to rcu_head structure to be initialized
426 * This function informs debugobjects of a new rcu_head structure that
427 * has been allocated as an auto variable on the stack. This function
428 * is not required for rcu_head structures that are statically defined or
429 * that are dynamically allocated on the heap. This function has no
430 * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
432 void init_rcu_head_on_stack(struct rcu_head
*head
)
434 debug_object_init_on_stack(head
, &rcuhead_debug_descr
);
436 EXPORT_SYMBOL_GPL(init_rcu_head_on_stack
);
439 * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects
440 * @head: pointer to rcu_head structure to be initialized
442 * This function informs debugobjects that an on-stack rcu_head structure
443 * is about to go out of scope. As with init_rcu_head_on_stack(), this
444 * function is not required for rcu_head structures that are statically
445 * defined or that are dynamically allocated on the heap. Also as with
446 * init_rcu_head_on_stack(), this function has no effect for
447 * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
449 void destroy_rcu_head_on_stack(struct rcu_head
*head
)
451 debug_object_free(head
, &rcuhead_debug_descr
);
453 EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack
);
455 struct debug_obj_descr rcuhead_debug_descr
= {
457 .is_static_object
= rcuhead_is_static_object
,
459 EXPORT_SYMBOL_GPL(rcuhead_debug_descr
);
460 #endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */
462 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_RCU_TRACE)
463 void do_trace_rcu_torture_read(const char *rcutorturename
, struct rcu_head
*rhp
,
465 unsigned long c_old
, unsigned long c
)
467 trace_rcu_torture_read(rcutorturename
, rhp
, secs
, c_old
, c
);
469 EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read
);
471 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
475 #if IS_ENABLED(CONFIG_RCU_TORTURE_TEST) || IS_MODULE(CONFIG_RCU_TORTURE_TEST)
476 /* Get rcutorture access to sched_setaffinity(). */
477 long rcutorture_sched_setaffinity(pid_t pid
, const struct cpumask
*in_mask
)
481 ret
= sched_setaffinity(pid
, in_mask
);
482 WARN_ONCE(ret
, "%s: sched_setaffinity() returned %d\n", __func__
, ret
);
485 EXPORT_SYMBOL_GPL(rcutorture_sched_setaffinity
);
488 #ifdef CONFIG_RCU_STALL_COMMON
489 int rcu_cpu_stall_ftrace_dump __read_mostly
;
490 module_param(rcu_cpu_stall_ftrace_dump
, int, 0644);
491 int rcu_cpu_stall_suppress __read_mostly
; // !0 = suppress stall warnings.
492 EXPORT_SYMBOL_GPL(rcu_cpu_stall_suppress
);
493 module_param(rcu_cpu_stall_suppress
, int, 0644);
494 int rcu_cpu_stall_timeout __read_mostly
= CONFIG_RCU_CPU_STALL_TIMEOUT
;
495 module_param(rcu_cpu_stall_timeout
, int, 0644);
496 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */
498 // Suppress boot-time RCU CPU stall warnings and rcutorture writer stall
499 // warnings. Also used by rcutorture even if stall warnings are excluded.
500 int rcu_cpu_stall_suppress_at_boot __read_mostly
; // !0 = suppress boot stalls.
501 EXPORT_SYMBOL_GPL(rcu_cpu_stall_suppress_at_boot
);
502 module_param(rcu_cpu_stall_suppress_at_boot
, int, 0444);
504 #ifdef CONFIG_TASKS_RCU
507 * Simple variant of RCU whose quiescent states are voluntary context
508 * switch, cond_resched_rcu_qs(), user-space execution, and idle.
509 * As such, grace periods can take one good long time. There are no
510 * read-side primitives similar to rcu_read_lock() and rcu_read_unlock()
511 * because this implementation is intended to get the system into a safe
512 * state for some of the manipulations involved in tracing and the like.
513 * Finally, this implementation does not support high call_rcu_tasks()
514 * rates from multiple CPUs. If this is required, per-CPU callback lists
518 /* Global list of callbacks and associated lock. */
519 static struct rcu_head
*rcu_tasks_cbs_head
;
520 static struct rcu_head
**rcu_tasks_cbs_tail
= &rcu_tasks_cbs_head
;
521 static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq
);
522 static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock
);
524 /* Track exiting tasks in order to allow them to be waited for. */
525 DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu
);
527 /* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */
528 #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10)
529 static int rcu_task_stall_timeout __read_mostly
= RCU_TASK_STALL_TIMEOUT
;
530 module_param(rcu_task_stall_timeout
, int, 0644);
532 static struct task_struct
*rcu_tasks_kthread_ptr
;
535 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
536 * @rhp: structure to be used for queueing the RCU updates.
537 * @func: actual callback function to be invoked after the grace period
539 * The callback function will be invoked some time after a full grace
540 * period elapses, in other words after all currently executing RCU
541 * read-side critical sections have completed. call_rcu_tasks() assumes
542 * that the read-side critical sections end at a voluntary context
543 * switch (not a preemption!), cond_resched_rcu_qs(), entry into idle,
544 * or transition to usermode execution. As such, there are no read-side
545 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
546 * this primitive is intended to determine that all tasks have passed
547 * through a safe state, not so much for data-strcuture synchronization.
549 * See the description of call_rcu() for more detailed information on
550 * memory ordering guarantees.
552 void call_rcu_tasks(struct rcu_head
*rhp
, rcu_callback_t func
)
559 raw_spin_lock_irqsave(&rcu_tasks_cbs_lock
, flags
);
560 needwake
= !rcu_tasks_cbs_head
;
561 WRITE_ONCE(*rcu_tasks_cbs_tail
, rhp
);
562 rcu_tasks_cbs_tail
= &rhp
->next
;
563 raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock
, flags
);
564 /* We can't create the thread unless interrupts are enabled. */
565 if (needwake
&& READ_ONCE(rcu_tasks_kthread_ptr
))
566 wake_up(&rcu_tasks_cbs_wq
);
568 EXPORT_SYMBOL_GPL(call_rcu_tasks
);
571 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
573 * Control will return to the caller some time after a full rcu-tasks
574 * grace period has elapsed, in other words after all currently
575 * executing rcu-tasks read-side critical sections have elapsed. These
576 * read-side critical sections are delimited by calls to schedule(),
577 * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls
578 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
580 * This is a very specialized primitive, intended only for a few uses in
581 * tracing and other situations requiring manipulation of function
582 * preambles and profiling hooks. The synchronize_rcu_tasks() function
583 * is not (yet) intended for heavy use from multiple CPUs.
585 * Note that this guarantee implies further memory-ordering guarantees.
586 * On systems with more than one CPU, when synchronize_rcu_tasks() returns,
587 * each CPU is guaranteed to have executed a full memory barrier since the
588 * end of its last RCU-tasks read-side critical section whose beginning
589 * preceded the call to synchronize_rcu_tasks(). In addition, each CPU
590 * having an RCU-tasks read-side critical section that extends beyond
591 * the return from synchronize_rcu_tasks() is guaranteed to have executed
592 * a full memory barrier after the beginning of synchronize_rcu_tasks()
593 * and before the beginning of that RCU-tasks read-side critical section.
594 * Note that these guarantees include CPUs that are offline, idle, or
595 * executing in user mode, as well as CPUs that are executing in the kernel.
597 * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned
598 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
599 * to have executed a full memory barrier during the execution of
600 * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU
601 * (but again only if the system has more than one CPU).
603 void synchronize_rcu_tasks(void)
605 /* Complain if the scheduler has not started. */
606 RCU_LOCKDEP_WARN(rcu_scheduler_active
== RCU_SCHEDULER_INACTIVE
,
607 "synchronize_rcu_tasks called too soon");
609 /* Wait for the grace period. */
610 wait_rcu_gp(call_rcu_tasks
);
612 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks
);
615 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
617 * Although the current implementation is guaranteed to wait, it is not
618 * obligated to, for example, if there are no pending callbacks.
620 void rcu_barrier_tasks(void)
622 /* There is only one callback queue, so this is easy. ;-) */
623 synchronize_rcu_tasks();
625 EXPORT_SYMBOL_GPL(rcu_barrier_tasks
);
627 /* See if tasks are still holding out, complain if so. */
628 static void check_holdout_task(struct task_struct
*t
,
629 bool needreport
, bool *firstreport
)
633 if (!READ_ONCE(t
->rcu_tasks_holdout
) ||
634 t
->rcu_tasks_nvcsw
!= READ_ONCE(t
->nvcsw
) ||
635 !READ_ONCE(t
->on_rq
) ||
636 (IS_ENABLED(CONFIG_NO_HZ_FULL
) &&
637 !is_idle_task(t
) && t
->rcu_tasks_idle_cpu
>= 0)) {
638 WRITE_ONCE(t
->rcu_tasks_holdout
, false);
639 list_del_init(&t
->rcu_tasks_holdout_list
);
643 rcu_request_urgent_qs_task(t
);
647 pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
648 *firstreport
= false;
651 pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
652 t
, ".I"[is_idle_task(t
)],
653 "N."[cpu
< 0 || !tick_nohz_full_cpu(cpu
)],
654 t
->rcu_tasks_nvcsw
, t
->nvcsw
, t
->rcu_tasks_holdout
,
655 t
->rcu_tasks_idle_cpu
, cpu
);
659 /* RCU-tasks kthread that detects grace periods and invokes callbacks. */
660 static int __noreturn
rcu_tasks_kthread(void *arg
)
663 struct task_struct
*g
, *t
;
664 unsigned long lastreport
;
665 struct rcu_head
*list
;
666 struct rcu_head
*next
;
667 LIST_HEAD(rcu_tasks_holdouts
);
670 /* Run on housekeeping CPUs by default. Sysadm can move if desired. */
671 housekeeping_affine(current
, HK_FLAG_RCU
);
674 * Each pass through the following loop makes one check for
675 * newly arrived callbacks, and, if there are some, waits for
676 * one RCU-tasks grace period and then invokes the callbacks.
677 * This loop is terminated by the system going down. ;-)
681 /* Pick up any new callbacks. */
682 raw_spin_lock_irqsave(&rcu_tasks_cbs_lock
, flags
);
683 list
= rcu_tasks_cbs_head
;
684 rcu_tasks_cbs_head
= NULL
;
685 rcu_tasks_cbs_tail
= &rcu_tasks_cbs_head
;
686 raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock
, flags
);
688 /* If there were none, wait a bit and start over. */
690 wait_event_interruptible(rcu_tasks_cbs_wq
,
691 READ_ONCE(rcu_tasks_cbs_head
));
692 if (!rcu_tasks_cbs_head
) {
693 WARN_ON(signal_pending(current
));
694 schedule_timeout_interruptible(HZ
/10);
700 * Wait for all pre-existing t->on_rq and t->nvcsw
701 * transitions to complete. Invoking synchronize_rcu()
702 * suffices because all these transitions occur with
703 * interrupts disabled. Without this synchronize_rcu(),
704 * a read-side critical section that started before the
705 * grace period might be incorrectly seen as having started
706 * after the grace period.
708 * This synchronize_rcu() also dispenses with the
709 * need for a memory barrier on the first store to
710 * ->rcu_tasks_holdout, as it forces the store to happen
711 * after the beginning of the grace period.
716 * There were callbacks, so we need to wait for an
717 * RCU-tasks grace period. Start off by scanning
718 * the task list for tasks that are not already
719 * voluntarily blocked. Mark these tasks and make
720 * a list of them in rcu_tasks_holdouts.
723 for_each_process_thread(g
, t
) {
724 if (t
!= current
&& READ_ONCE(t
->on_rq
) &&
727 t
->rcu_tasks_nvcsw
= READ_ONCE(t
->nvcsw
);
728 WRITE_ONCE(t
->rcu_tasks_holdout
, true);
729 list_add(&t
->rcu_tasks_holdout_list
,
730 &rcu_tasks_holdouts
);
736 * Wait for tasks that are in the process of exiting.
737 * This does only part of the job, ensuring that all
738 * tasks that were previously exiting reach the point
739 * where they have disabled preemption, allowing the
740 * later synchronize_rcu() to finish the job.
742 synchronize_srcu(&tasks_rcu_exit_srcu
);
745 * Each pass through the following loop scans the list
746 * of holdout tasks, removing any that are no longer
747 * holdouts. When the list is empty, we are done.
749 lastreport
= jiffies
;
751 /* Start off with HZ/10 wait and slowly back off to 1 HZ wait*/
758 struct task_struct
*t1
;
760 if (list_empty(&rcu_tasks_holdouts
))
763 /* Slowly back off waiting for holdouts */
764 schedule_timeout_interruptible(HZ
/fract
);
769 rtst
= READ_ONCE(rcu_task_stall_timeout
);
770 needreport
= rtst
> 0 &&
771 time_after(jiffies
, lastreport
+ rtst
);
773 lastreport
= jiffies
;
775 WARN_ON(signal_pending(current
));
776 list_for_each_entry_safe(t
, t1
, &rcu_tasks_holdouts
,
777 rcu_tasks_holdout_list
) {
778 check_holdout_task(t
, needreport
, &firstreport
);
784 * Because ->on_rq and ->nvcsw are not guaranteed
785 * to have a full memory barriers prior to them in the
786 * schedule() path, memory reordering on other CPUs could
787 * cause their RCU-tasks read-side critical sections to
788 * extend past the end of the grace period. However,
789 * because these ->nvcsw updates are carried out with
790 * interrupts disabled, we can use synchronize_rcu()
791 * to force the needed ordering on all such CPUs.
793 * This synchronize_rcu() also confines all
794 * ->rcu_tasks_holdout accesses to be within the grace
795 * period, avoiding the need for memory barriers for
796 * ->rcu_tasks_holdout accesses.
798 * In addition, this synchronize_rcu() waits for exiting
799 * tasks to complete their final preempt_disable() region
800 * of execution, cleaning up after the synchronize_srcu()
805 /* Invoke the callbacks. */
814 /* Paranoid sleep to keep this from entering a tight loop */
815 schedule_timeout_uninterruptible(HZ
/10);
819 /* Spawn rcu_tasks_kthread() at core_initcall() time. */
820 static int __init
rcu_spawn_tasks_kthread(void)
822 struct task_struct
*t
;
824 t
= kthread_run(rcu_tasks_kthread
, NULL
, "rcu_tasks_kthread");
825 if (WARN_ONCE(IS_ERR(t
), "%s: Could not start Tasks-RCU grace-period kthread, OOM is now expected behavior\n", __func__
))
827 smp_mb(); /* Ensure others see full kthread. */
828 WRITE_ONCE(rcu_tasks_kthread_ptr
, t
);
831 core_initcall(rcu_spawn_tasks_kthread
);
833 /* Do the srcu_read_lock() for the above synchronize_srcu(). */
834 void exit_tasks_rcu_start(void) __acquires(&tasks_rcu_exit_srcu
)
837 current
->rcu_tasks_idx
= __srcu_read_lock(&tasks_rcu_exit_srcu
);
841 /* Do the srcu_read_unlock() for the above synchronize_srcu(). */
842 void exit_tasks_rcu_finish(void) __releases(&tasks_rcu_exit_srcu
)
845 __srcu_read_unlock(&tasks_rcu_exit_srcu
, current
->rcu_tasks_idx
);
849 #endif /* #ifdef CONFIG_TASKS_RCU */
851 #ifndef CONFIG_TINY_RCU
854 * Print any non-default Tasks RCU settings.
856 static void __init
rcu_tasks_bootup_oddness(void)
858 #ifdef CONFIG_TASKS_RCU
859 if (rcu_task_stall_timeout
!= RCU_TASK_STALL_TIMEOUT
)
860 pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout
);
862 pr_info("\tTasks RCU enabled.\n");
863 #endif /* #ifdef CONFIG_TASKS_RCU */
866 #endif /* #ifndef CONFIG_TINY_RCU */
868 #ifdef CONFIG_PROVE_RCU
871 * Early boot self test parameters.
873 static bool rcu_self_test
;
874 module_param(rcu_self_test
, bool, 0444);
876 static int rcu_self_test_counter
;
878 static void test_callback(struct rcu_head
*r
)
880 rcu_self_test_counter
++;
881 pr_info("RCU test callback executed %d\n", rcu_self_test_counter
);
884 DEFINE_STATIC_SRCU(early_srcu
);
886 struct early_boot_kfree_rcu
{
890 static void early_boot_test_call_rcu(void)
892 static struct rcu_head head
;
893 static struct rcu_head shead
;
894 struct early_boot_kfree_rcu
*rhp
;
896 call_rcu(&head
, test_callback
);
897 if (IS_ENABLED(CONFIG_SRCU
))
898 call_srcu(&early_srcu
, &shead
, test_callback
);
899 rhp
= kmalloc(sizeof(*rhp
), GFP_KERNEL
);
900 if (!WARN_ON_ONCE(!rhp
))
904 void rcu_early_boot_tests(void)
906 pr_info("Running RCU self tests\n");
909 early_boot_test_call_rcu();
910 rcu_test_sync_prims();
913 static int rcu_verify_early_boot_tests(void)
916 int early_boot_test_counter
= 0;
919 early_boot_test_counter
++;
921 if (IS_ENABLED(CONFIG_SRCU
)) {
922 early_boot_test_counter
++;
923 srcu_barrier(&early_srcu
);
926 if (rcu_self_test_counter
!= early_boot_test_counter
) {
933 late_initcall(rcu_verify_early_boot_tests
);
935 void rcu_early_boot_tests(void) {}
936 #endif /* CONFIG_PROVE_RCU */
938 #ifndef CONFIG_TINY_RCU
941 * Print any significant non-default boot-time settings.
943 void __init
rcupdate_announce_bootup_oddness(void)
946 pr_info("\tNo expedited grace period (rcu_normal).\n");
947 else if (rcu_normal_after_boot
)
948 pr_info("\tNo expedited grace period (rcu_normal_after_boot).\n");
949 else if (rcu_expedited
)
950 pr_info("\tAll grace periods are expedited (rcu_expedited).\n");
951 if (rcu_cpu_stall_suppress
)
952 pr_info("\tRCU CPU stall warnings suppressed (rcu_cpu_stall_suppress).\n");
953 if (rcu_cpu_stall_timeout
!= CONFIG_RCU_CPU_STALL_TIMEOUT
)
954 pr_info("\tRCU CPU stall warnings timeout set to %d (rcu_cpu_stall_timeout).\n", rcu_cpu_stall_timeout
);
955 rcu_tasks_bootup_oddness();
958 #endif /* #ifndef CONFIG_TINY_RCU */