4 * Replacement code for mm functions to support CPU's that don't
5 * have any form of memory management unit (thus no virtual memory).
7 * See Documentation/nommu-mmap.txt
9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
13 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/export.h>
20 #include <linux/vmacache.h>
21 #include <linux/mman.h>
22 #include <linux/swap.h>
23 #include <linux/file.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <linux/slab.h>
27 #include <linux/vmalloc.h>
28 #include <linux/blkdev.h>
29 #include <linux/backing-dev.h>
30 #include <linux/compiler.h>
31 #include <linux/mount.h>
32 #include <linux/personality.h>
33 #include <linux/security.h>
34 #include <linux/syscalls.h>
35 #include <linux/audit.h>
36 #include <linux/printk.h>
38 #include <asm/uaccess.h>
40 #include <asm/tlbflush.h>
41 #include <asm/mmu_context.h>
45 EXPORT_SYMBOL(high_memory
);
47 unsigned long max_mapnr
;
48 EXPORT_SYMBOL(max_mapnr
);
49 unsigned long highest_memmap_pfn
;
50 int sysctl_nr_trim_pages
= CONFIG_NOMMU_INITIAL_TRIM_EXCESS
;
51 int heap_stack_gap
= 0;
53 atomic_long_t mmap_pages_allocated
;
55 EXPORT_SYMBOL(mem_map
);
57 /* list of mapped, potentially shareable regions */
58 static struct kmem_cache
*vm_region_jar
;
59 struct rb_root nommu_region_tree
= RB_ROOT
;
60 DECLARE_RWSEM(nommu_region_sem
);
62 const struct vm_operations_struct generic_file_vm_ops
= {
66 * Return the total memory allocated for this pointer, not
67 * just what the caller asked for.
69 * Doesn't have to be accurate, i.e. may have races.
71 unsigned int kobjsize(const void *objp
)
76 * If the object we have should not have ksize performed on it,
79 if (!objp
|| !virt_addr_valid(objp
))
82 page
= virt_to_head_page(objp
);
85 * If the allocator sets PageSlab, we know the pointer came from
92 * If it's not a compound page, see if we have a matching VMA
93 * region. This test is intentionally done in reverse order,
94 * so if there's no VMA, we still fall through and hand back
95 * PAGE_SIZE for 0-order pages.
97 if (!PageCompound(page
)) {
98 struct vm_area_struct
*vma
;
100 vma
= find_vma(current
->mm
, (unsigned long)objp
);
102 return vma
->vm_end
- vma
->vm_start
;
106 * The ksize() function is only guaranteed to work for pointers
107 * returned by kmalloc(). So handle arbitrary pointers here.
109 return PAGE_SIZE
<< compound_order(page
);
112 long __get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
113 unsigned long start
, unsigned long nr_pages
,
114 unsigned int foll_flags
, struct page
**pages
,
115 struct vm_area_struct
**vmas
, int *nonblocking
)
117 struct vm_area_struct
*vma
;
118 unsigned long vm_flags
;
121 /* calculate required read or write permissions.
122 * If FOLL_FORCE is set, we only require the "MAY" flags.
124 vm_flags
= (foll_flags
& FOLL_WRITE
) ?
125 (VM_WRITE
| VM_MAYWRITE
) : (VM_READ
| VM_MAYREAD
);
126 vm_flags
&= (foll_flags
& FOLL_FORCE
) ?
127 (VM_MAYREAD
| VM_MAYWRITE
) : (VM_READ
| VM_WRITE
);
129 for (i
= 0; i
< nr_pages
; i
++) {
130 vma
= find_vma(mm
, start
);
132 goto finish_or_fault
;
134 /* protect what we can, including chardevs */
135 if ((vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)) ||
136 !(vm_flags
& vma
->vm_flags
))
137 goto finish_or_fault
;
140 pages
[i
] = virt_to_page(start
);
146 start
= (start
+ PAGE_SIZE
) & PAGE_MASK
;
152 return i
? : -EFAULT
;
156 * get a list of pages in an address range belonging to the specified process
157 * and indicate the VMA that covers each page
158 * - this is potentially dodgy as we may end incrementing the page count of a
159 * slab page or a secondary page from a compound page
160 * - don't permit access to VMAs that don't support it, such as I/O mappings
162 long get_user_pages(unsigned long start
, unsigned long nr_pages
,
163 int write
, int force
, struct page
**pages
,
164 struct vm_area_struct
**vmas
)
173 return __get_user_pages(current
, current
->mm
, start
, nr_pages
, flags
,
176 EXPORT_SYMBOL(get_user_pages
);
178 long get_user_pages_locked(unsigned long start
, unsigned long nr_pages
,
179 int write
, int force
, struct page
**pages
,
182 return get_user_pages(start
, nr_pages
, write
, force
, pages
, NULL
);
184 EXPORT_SYMBOL(get_user_pages_locked
);
186 long __get_user_pages_unlocked(struct task_struct
*tsk
, struct mm_struct
*mm
,
187 unsigned long start
, unsigned long nr_pages
,
188 int write
, int force
, struct page
**pages
,
189 unsigned int gup_flags
)
192 down_read(&mm
->mmap_sem
);
193 ret
= __get_user_pages(tsk
, mm
, start
, nr_pages
, gup_flags
, pages
,
195 up_read(&mm
->mmap_sem
);
198 EXPORT_SYMBOL(__get_user_pages_unlocked
);
200 long get_user_pages_unlocked(unsigned long start
, unsigned long nr_pages
,
201 int write
, int force
, struct page
**pages
)
203 return __get_user_pages_unlocked(current
, current
->mm
, start
, nr_pages
,
204 write
, force
, pages
, 0);
206 EXPORT_SYMBOL(get_user_pages_unlocked
);
209 * follow_pfn - look up PFN at a user virtual address
210 * @vma: memory mapping
211 * @address: user virtual address
212 * @pfn: location to store found PFN
214 * Only IO mappings and raw PFN mappings are allowed.
216 * Returns zero and the pfn at @pfn on success, -ve otherwise.
218 int follow_pfn(struct vm_area_struct
*vma
, unsigned long address
,
221 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
224 *pfn
= address
>> PAGE_SHIFT
;
227 EXPORT_SYMBOL(follow_pfn
);
229 LIST_HEAD(vmap_area_list
);
231 void vfree(const void *addr
)
235 EXPORT_SYMBOL(vfree
);
237 void *__vmalloc(unsigned long size
, gfp_t gfp_mask
, pgprot_t prot
)
240 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
241 * returns only a logical address.
243 return kmalloc(size
, (gfp_mask
| __GFP_COMP
) & ~__GFP_HIGHMEM
);
245 EXPORT_SYMBOL(__vmalloc
);
247 void *vmalloc_user(unsigned long size
)
251 ret
= __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
,
254 struct vm_area_struct
*vma
;
256 down_write(¤t
->mm
->mmap_sem
);
257 vma
= find_vma(current
->mm
, (unsigned long)ret
);
259 vma
->vm_flags
|= VM_USERMAP
;
260 up_write(¤t
->mm
->mmap_sem
);
265 EXPORT_SYMBOL(vmalloc_user
);
267 struct page
*vmalloc_to_page(const void *addr
)
269 return virt_to_page(addr
);
271 EXPORT_SYMBOL(vmalloc_to_page
);
273 unsigned long vmalloc_to_pfn(const void *addr
)
275 return page_to_pfn(virt_to_page(addr
));
277 EXPORT_SYMBOL(vmalloc_to_pfn
);
279 long vread(char *buf
, char *addr
, unsigned long count
)
281 /* Don't allow overflow */
282 if ((unsigned long) buf
+ count
< count
)
283 count
= -(unsigned long) buf
;
285 memcpy(buf
, addr
, count
);
289 long vwrite(char *buf
, char *addr
, unsigned long count
)
291 /* Don't allow overflow */
292 if ((unsigned long) addr
+ count
< count
)
293 count
= -(unsigned long) addr
;
295 memcpy(addr
, buf
, count
);
300 * vmalloc - allocate virtually contiguous memory
302 * @size: allocation size
304 * Allocate enough pages to cover @size from the page level
305 * allocator and map them into contiguous kernel virtual space.
307 * For tight control over page level allocator and protection flags
308 * use __vmalloc() instead.
310 void *vmalloc(unsigned long size
)
312 return __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL
);
314 EXPORT_SYMBOL(vmalloc
);
317 * vzalloc - allocate virtually contiguous memory with zero fill
319 * @size: allocation size
321 * Allocate enough pages to cover @size from the page level
322 * allocator and map them into contiguous kernel virtual space.
323 * The memory allocated is set to zero.
325 * For tight control over page level allocator and protection flags
326 * use __vmalloc() instead.
328 void *vzalloc(unsigned long size
)
330 return __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
,
333 EXPORT_SYMBOL(vzalloc
);
336 * vmalloc_node - allocate memory on a specific node
337 * @size: allocation size
340 * Allocate enough pages to cover @size from the page level
341 * allocator and map them into contiguous kernel virtual space.
343 * For tight control over page level allocator and protection flags
344 * use __vmalloc() instead.
346 void *vmalloc_node(unsigned long size
, int node
)
348 return vmalloc(size
);
350 EXPORT_SYMBOL(vmalloc_node
);
353 * vzalloc_node - allocate memory on a specific node with zero fill
354 * @size: allocation size
357 * Allocate enough pages to cover @size from the page level
358 * allocator and map them into contiguous kernel virtual space.
359 * The memory allocated is set to zero.
361 * For tight control over page level allocator and protection flags
362 * use __vmalloc() instead.
364 void *vzalloc_node(unsigned long size
, int node
)
366 return vzalloc(size
);
368 EXPORT_SYMBOL(vzalloc_node
);
370 #ifndef PAGE_KERNEL_EXEC
371 # define PAGE_KERNEL_EXEC PAGE_KERNEL
375 * vmalloc_exec - allocate virtually contiguous, executable memory
376 * @size: allocation size
378 * Kernel-internal function to allocate enough pages to cover @size
379 * the page level allocator and map them into contiguous and
380 * executable kernel virtual space.
382 * For tight control over page level allocator and protection flags
383 * use __vmalloc() instead.
386 void *vmalloc_exec(unsigned long size
)
388 return __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL_EXEC
);
392 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
393 * @size: allocation size
395 * Allocate enough 32bit PA addressable pages to cover @size from the
396 * page level allocator and map them into contiguous kernel virtual space.
398 void *vmalloc_32(unsigned long size
)
400 return __vmalloc(size
, GFP_KERNEL
, PAGE_KERNEL
);
402 EXPORT_SYMBOL(vmalloc_32
);
405 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
406 * @size: allocation size
408 * The resulting memory area is 32bit addressable and zeroed so it can be
409 * mapped to userspace without leaking data.
411 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
412 * remap_vmalloc_range() are permissible.
414 void *vmalloc_32_user(unsigned long size
)
417 * We'll have to sort out the ZONE_DMA bits for 64-bit,
418 * but for now this can simply use vmalloc_user() directly.
420 return vmalloc_user(size
);
422 EXPORT_SYMBOL(vmalloc_32_user
);
424 void *vmap(struct page
**pages
, unsigned int count
, unsigned long flags
, pgprot_t prot
)
431 void vunmap(const void *addr
)
435 EXPORT_SYMBOL(vunmap
);
437 void *vm_map_ram(struct page
**pages
, unsigned int count
, int node
, pgprot_t prot
)
442 EXPORT_SYMBOL(vm_map_ram
);
444 void vm_unmap_ram(const void *mem
, unsigned int count
)
448 EXPORT_SYMBOL(vm_unmap_ram
);
450 void vm_unmap_aliases(void)
453 EXPORT_SYMBOL_GPL(vm_unmap_aliases
);
456 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
459 void __weak
vmalloc_sync_all(void)
464 * alloc_vm_area - allocate a range of kernel address space
465 * @size: size of the area
467 * Returns: NULL on failure, vm_struct on success
469 * This function reserves a range of kernel address space, and
470 * allocates pagetables to map that range. No actual mappings
471 * are created. If the kernel address space is not shared
472 * between processes, it syncs the pagetable across all
475 struct vm_struct
*alloc_vm_area(size_t size
, pte_t
**ptes
)
480 EXPORT_SYMBOL_GPL(alloc_vm_area
);
482 void free_vm_area(struct vm_struct
*area
)
486 EXPORT_SYMBOL_GPL(free_vm_area
);
488 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
493 EXPORT_SYMBOL(vm_insert_page
);
496 * sys_brk() for the most part doesn't need the global kernel
497 * lock, except when an application is doing something nasty
498 * like trying to un-brk an area that has already been mapped
499 * to a regular file. in this case, the unmapping will need
500 * to invoke file system routines that need the global lock.
502 SYSCALL_DEFINE1(brk
, unsigned long, brk
)
504 struct mm_struct
*mm
= current
->mm
;
506 if (brk
< mm
->start_brk
|| brk
> mm
->context
.end_brk
)
513 * Always allow shrinking brk
515 if (brk
<= mm
->brk
) {
521 * Ok, looks good - let it rip.
523 flush_icache_range(mm
->brk
, brk
);
524 return mm
->brk
= brk
;
528 * initialise the VMA and region record slabs
530 void __init
mmap_init(void)
534 ret
= percpu_counter_init(&vm_committed_as
, 0, GFP_KERNEL
);
536 vm_region_jar
= KMEM_CACHE(vm_region
, SLAB_PANIC
|SLAB_ACCOUNT
);
540 * validate the region tree
541 * - the caller must hold the region lock
543 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
544 static noinline
void validate_nommu_regions(void)
546 struct vm_region
*region
, *last
;
547 struct rb_node
*p
, *lastp
;
549 lastp
= rb_first(&nommu_region_tree
);
553 last
= rb_entry(lastp
, struct vm_region
, vm_rb
);
554 BUG_ON(last
->vm_end
<= last
->vm_start
);
555 BUG_ON(last
->vm_top
< last
->vm_end
);
557 while ((p
= rb_next(lastp
))) {
558 region
= rb_entry(p
, struct vm_region
, vm_rb
);
559 last
= rb_entry(lastp
, struct vm_region
, vm_rb
);
561 BUG_ON(region
->vm_end
<= region
->vm_start
);
562 BUG_ON(region
->vm_top
< region
->vm_end
);
563 BUG_ON(region
->vm_start
< last
->vm_top
);
569 static void validate_nommu_regions(void)
575 * add a region into the global tree
577 static void add_nommu_region(struct vm_region
*region
)
579 struct vm_region
*pregion
;
580 struct rb_node
**p
, *parent
;
582 validate_nommu_regions();
585 p
= &nommu_region_tree
.rb_node
;
588 pregion
= rb_entry(parent
, struct vm_region
, vm_rb
);
589 if (region
->vm_start
< pregion
->vm_start
)
591 else if (region
->vm_start
> pregion
->vm_start
)
593 else if (pregion
== region
)
599 rb_link_node(®ion
->vm_rb
, parent
, p
);
600 rb_insert_color(®ion
->vm_rb
, &nommu_region_tree
);
602 validate_nommu_regions();
606 * delete a region from the global tree
608 static void delete_nommu_region(struct vm_region
*region
)
610 BUG_ON(!nommu_region_tree
.rb_node
);
612 validate_nommu_regions();
613 rb_erase(®ion
->vm_rb
, &nommu_region_tree
);
614 validate_nommu_regions();
618 * free a contiguous series of pages
620 static void free_page_series(unsigned long from
, unsigned long to
)
622 for (; from
< to
; from
+= PAGE_SIZE
) {
623 struct page
*page
= virt_to_page(from
);
625 atomic_long_dec(&mmap_pages_allocated
);
631 * release a reference to a region
632 * - the caller must hold the region semaphore for writing, which this releases
633 * - the region may not have been added to the tree yet, in which case vm_top
634 * will equal vm_start
636 static void __put_nommu_region(struct vm_region
*region
)
637 __releases(nommu_region_sem
)
639 BUG_ON(!nommu_region_tree
.rb_node
);
641 if (--region
->vm_usage
== 0) {
642 if (region
->vm_top
> region
->vm_start
)
643 delete_nommu_region(region
);
644 up_write(&nommu_region_sem
);
647 fput(region
->vm_file
);
649 /* IO memory and memory shared directly out of the pagecache
650 * from ramfs/tmpfs mustn't be released here */
651 if (region
->vm_flags
& VM_MAPPED_COPY
)
652 free_page_series(region
->vm_start
, region
->vm_top
);
653 kmem_cache_free(vm_region_jar
, region
);
655 up_write(&nommu_region_sem
);
660 * release a reference to a region
662 static void put_nommu_region(struct vm_region
*region
)
664 down_write(&nommu_region_sem
);
665 __put_nommu_region(region
);
669 * update protection on a vma
671 static void protect_vma(struct vm_area_struct
*vma
, unsigned long flags
)
674 struct mm_struct
*mm
= vma
->vm_mm
;
675 long start
= vma
->vm_start
& PAGE_MASK
;
676 while (start
< vma
->vm_end
) {
677 protect_page(mm
, start
, flags
);
680 update_protections(mm
);
685 * add a VMA into a process's mm_struct in the appropriate place in the list
686 * and tree and add to the address space's page tree also if not an anonymous
688 * - should be called with mm->mmap_sem held writelocked
690 static void add_vma_to_mm(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
692 struct vm_area_struct
*pvma
, *prev
;
693 struct address_space
*mapping
;
694 struct rb_node
**p
, *parent
, *rb_prev
;
696 BUG_ON(!vma
->vm_region
);
701 protect_vma(vma
, vma
->vm_flags
);
703 /* add the VMA to the mapping */
705 mapping
= vma
->vm_file
->f_mapping
;
707 i_mmap_lock_write(mapping
);
708 flush_dcache_mmap_lock(mapping
);
709 vma_interval_tree_insert(vma
, &mapping
->i_mmap
);
710 flush_dcache_mmap_unlock(mapping
);
711 i_mmap_unlock_write(mapping
);
714 /* add the VMA to the tree */
715 parent
= rb_prev
= NULL
;
716 p
= &mm
->mm_rb
.rb_node
;
719 pvma
= rb_entry(parent
, struct vm_area_struct
, vm_rb
);
721 /* sort by: start addr, end addr, VMA struct addr in that order
722 * (the latter is necessary as we may get identical VMAs) */
723 if (vma
->vm_start
< pvma
->vm_start
)
725 else if (vma
->vm_start
> pvma
->vm_start
) {
728 } else if (vma
->vm_end
< pvma
->vm_end
)
730 else if (vma
->vm_end
> pvma
->vm_end
) {
733 } else if (vma
< pvma
)
735 else if (vma
> pvma
) {
742 rb_link_node(&vma
->vm_rb
, parent
, p
);
743 rb_insert_color(&vma
->vm_rb
, &mm
->mm_rb
);
745 /* add VMA to the VMA list also */
748 prev
= rb_entry(rb_prev
, struct vm_area_struct
, vm_rb
);
750 __vma_link_list(mm
, vma
, prev
, parent
);
754 * delete a VMA from its owning mm_struct and address space
756 static void delete_vma_from_mm(struct vm_area_struct
*vma
)
759 struct address_space
*mapping
;
760 struct mm_struct
*mm
= vma
->vm_mm
;
761 struct task_struct
*curr
= current
;
766 for (i
= 0; i
< VMACACHE_SIZE
; i
++) {
767 /* if the vma is cached, invalidate the entire cache */
768 if (curr
->vmacache
[i
] == vma
) {
769 vmacache_invalidate(mm
);
774 /* remove the VMA from the mapping */
776 mapping
= vma
->vm_file
->f_mapping
;
778 i_mmap_lock_write(mapping
);
779 flush_dcache_mmap_lock(mapping
);
780 vma_interval_tree_remove(vma
, &mapping
->i_mmap
);
781 flush_dcache_mmap_unlock(mapping
);
782 i_mmap_unlock_write(mapping
);
785 /* remove from the MM's tree and list */
786 rb_erase(&vma
->vm_rb
, &mm
->mm_rb
);
789 vma
->vm_prev
->vm_next
= vma
->vm_next
;
791 mm
->mmap
= vma
->vm_next
;
794 vma
->vm_next
->vm_prev
= vma
->vm_prev
;
798 * destroy a VMA record
800 static void delete_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
802 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
803 vma
->vm_ops
->close(vma
);
806 put_nommu_region(vma
->vm_region
);
807 kmem_cache_free(vm_area_cachep
, vma
);
811 * look up the first VMA in which addr resides, NULL if none
812 * - should be called with mm->mmap_sem at least held readlocked
814 struct vm_area_struct
*find_vma(struct mm_struct
*mm
, unsigned long addr
)
816 struct vm_area_struct
*vma
;
818 /* check the cache first */
819 vma
= vmacache_find(mm
, addr
);
823 /* trawl the list (there may be multiple mappings in which addr
825 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
826 if (vma
->vm_start
> addr
)
828 if (vma
->vm_end
> addr
) {
829 vmacache_update(addr
, vma
);
836 EXPORT_SYMBOL(find_vma
);
840 * - we don't extend stack VMAs under NOMMU conditions
842 struct vm_area_struct
*find_extend_vma(struct mm_struct
*mm
, unsigned long addr
)
844 return find_vma(mm
, addr
);
848 * expand a stack to a given address
849 * - not supported under NOMMU conditions
851 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
857 * look up the first VMA exactly that exactly matches addr
858 * - should be called with mm->mmap_sem at least held readlocked
860 static struct vm_area_struct
*find_vma_exact(struct mm_struct
*mm
,
864 struct vm_area_struct
*vma
;
865 unsigned long end
= addr
+ len
;
867 /* check the cache first */
868 vma
= vmacache_find_exact(mm
, addr
, end
);
872 /* trawl the list (there may be multiple mappings in which addr
874 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
875 if (vma
->vm_start
< addr
)
877 if (vma
->vm_start
> addr
)
879 if (vma
->vm_end
== end
) {
880 vmacache_update(addr
, vma
);
889 * determine whether a mapping should be permitted and, if so, what sort of
890 * mapping we're capable of supporting
892 static int validate_mmap_request(struct file
*file
,
898 unsigned long *_capabilities
)
900 unsigned long capabilities
, rlen
;
903 /* do the simple checks first */
904 if (flags
& MAP_FIXED
)
907 if ((flags
& MAP_TYPE
) != MAP_PRIVATE
&&
908 (flags
& MAP_TYPE
) != MAP_SHARED
)
914 /* Careful about overflows.. */
915 rlen
= PAGE_ALIGN(len
);
916 if (!rlen
|| rlen
> TASK_SIZE
)
919 /* offset overflow? */
920 if ((pgoff
+ (rlen
>> PAGE_SHIFT
)) < pgoff
)
924 /* files must support mmap */
925 if (!file
->f_op
->mmap
)
928 /* work out if what we've got could possibly be shared
929 * - we support chardevs that provide their own "memory"
930 * - we support files/blockdevs that are memory backed
932 if (file
->f_op
->mmap_capabilities
) {
933 capabilities
= file
->f_op
->mmap_capabilities(file
);
935 /* no explicit capabilities set, so assume some
937 switch (file_inode(file
)->i_mode
& S_IFMT
) {
940 capabilities
= NOMMU_MAP_COPY
;
955 /* eliminate any capabilities that we can't support on this
957 if (!file
->f_op
->get_unmapped_area
)
958 capabilities
&= ~NOMMU_MAP_DIRECT
;
959 if (!(file
->f_mode
& FMODE_CAN_READ
))
960 capabilities
&= ~NOMMU_MAP_COPY
;
962 /* The file shall have been opened with read permission. */
963 if (!(file
->f_mode
& FMODE_READ
))
966 if (flags
& MAP_SHARED
) {
967 /* do checks for writing, appending and locking */
968 if ((prot
& PROT_WRITE
) &&
969 !(file
->f_mode
& FMODE_WRITE
))
972 if (IS_APPEND(file_inode(file
)) &&
973 (file
->f_mode
& FMODE_WRITE
))
976 if (locks_verify_locked(file
))
979 if (!(capabilities
& NOMMU_MAP_DIRECT
))
982 /* we mustn't privatise shared mappings */
983 capabilities
&= ~NOMMU_MAP_COPY
;
985 /* we're going to read the file into private memory we
987 if (!(capabilities
& NOMMU_MAP_COPY
))
990 /* we don't permit a private writable mapping to be
991 * shared with the backing device */
992 if (prot
& PROT_WRITE
)
993 capabilities
&= ~NOMMU_MAP_DIRECT
;
996 if (capabilities
& NOMMU_MAP_DIRECT
) {
997 if (((prot
& PROT_READ
) && !(capabilities
& NOMMU_MAP_READ
)) ||
998 ((prot
& PROT_WRITE
) && !(capabilities
& NOMMU_MAP_WRITE
)) ||
999 ((prot
& PROT_EXEC
) && !(capabilities
& NOMMU_MAP_EXEC
))
1001 capabilities
&= ~NOMMU_MAP_DIRECT
;
1002 if (flags
& MAP_SHARED
) {
1003 pr_warn("MAP_SHARED not completely supported on !MMU\n");
1009 /* handle executable mappings and implied executable
1011 if (path_noexec(&file
->f_path
)) {
1012 if (prot
& PROT_EXEC
)
1014 } else if ((prot
& PROT_READ
) && !(prot
& PROT_EXEC
)) {
1015 /* handle implication of PROT_EXEC by PROT_READ */
1016 if (current
->personality
& READ_IMPLIES_EXEC
) {
1017 if (capabilities
& NOMMU_MAP_EXEC
)
1020 } else if ((prot
& PROT_READ
) &&
1021 (prot
& PROT_EXEC
) &&
1022 !(capabilities
& NOMMU_MAP_EXEC
)
1024 /* backing file is not executable, try to copy */
1025 capabilities
&= ~NOMMU_MAP_DIRECT
;
1028 /* anonymous mappings are always memory backed and can be
1031 capabilities
= NOMMU_MAP_COPY
;
1033 /* handle PROT_EXEC implication by PROT_READ */
1034 if ((prot
& PROT_READ
) &&
1035 (current
->personality
& READ_IMPLIES_EXEC
))
1039 /* allow the security API to have its say */
1040 ret
= security_mmap_addr(addr
);
1045 *_capabilities
= capabilities
;
1050 * we've determined that we can make the mapping, now translate what we
1051 * now know into VMA flags
1053 static unsigned long determine_vm_flags(struct file
*file
,
1055 unsigned long flags
,
1056 unsigned long capabilities
)
1058 unsigned long vm_flags
;
1060 vm_flags
= calc_vm_prot_bits(prot
, 0) | calc_vm_flag_bits(flags
);
1061 /* vm_flags |= mm->def_flags; */
1063 if (!(capabilities
& NOMMU_MAP_DIRECT
)) {
1064 /* attempt to share read-only copies of mapped file chunks */
1065 vm_flags
|= VM_MAYREAD
| VM_MAYWRITE
| VM_MAYEXEC
;
1066 if (file
&& !(prot
& PROT_WRITE
))
1067 vm_flags
|= VM_MAYSHARE
;
1069 /* overlay a shareable mapping on the backing device or inode
1070 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1072 vm_flags
|= VM_MAYSHARE
| (capabilities
& NOMMU_VMFLAGS
);
1073 if (flags
& MAP_SHARED
)
1074 vm_flags
|= VM_SHARED
;
1077 /* refuse to let anyone share private mappings with this process if
1078 * it's being traced - otherwise breakpoints set in it may interfere
1079 * with another untraced process
1081 if ((flags
& MAP_PRIVATE
) && current
->ptrace
)
1082 vm_flags
&= ~VM_MAYSHARE
;
1088 * set up a shared mapping on a file (the driver or filesystem provides and
1091 static int do_mmap_shared_file(struct vm_area_struct
*vma
)
1095 ret
= vma
->vm_file
->f_op
->mmap(vma
->vm_file
, vma
);
1097 vma
->vm_region
->vm_top
= vma
->vm_region
->vm_end
;
1103 /* getting -ENOSYS indicates that direct mmap isn't possible (as
1104 * opposed to tried but failed) so we can only give a suitable error as
1105 * it's not possible to make a private copy if MAP_SHARED was given */
1110 * set up a private mapping or an anonymous shared mapping
1112 static int do_mmap_private(struct vm_area_struct
*vma
,
1113 struct vm_region
*region
,
1115 unsigned long capabilities
)
1117 unsigned long total
, point
;
1121 /* invoke the file's mapping function so that it can keep track of
1122 * shared mappings on devices or memory
1123 * - VM_MAYSHARE will be set if it may attempt to share
1125 if (capabilities
& NOMMU_MAP_DIRECT
) {
1126 ret
= vma
->vm_file
->f_op
->mmap(vma
->vm_file
, vma
);
1128 /* shouldn't return success if we're not sharing */
1129 BUG_ON(!(vma
->vm_flags
& VM_MAYSHARE
));
1130 vma
->vm_region
->vm_top
= vma
->vm_region
->vm_end
;
1136 /* getting an ENOSYS error indicates that direct mmap isn't
1137 * possible (as opposed to tried but failed) so we'll try to
1138 * make a private copy of the data and map that instead */
1142 /* allocate some memory to hold the mapping
1143 * - note that this may not return a page-aligned address if the object
1144 * we're allocating is smaller than a page
1146 order
= get_order(len
);
1148 point
= len
>> PAGE_SHIFT
;
1150 /* we don't want to allocate a power-of-2 sized page set */
1151 if (sysctl_nr_trim_pages
&& total
- point
>= sysctl_nr_trim_pages
)
1154 base
= alloc_pages_exact(total
<< PAGE_SHIFT
, GFP_KERNEL
);
1158 atomic_long_add(total
, &mmap_pages_allocated
);
1160 region
->vm_flags
= vma
->vm_flags
|= VM_MAPPED_COPY
;
1161 region
->vm_start
= (unsigned long) base
;
1162 region
->vm_end
= region
->vm_start
+ len
;
1163 region
->vm_top
= region
->vm_start
+ (total
<< PAGE_SHIFT
);
1165 vma
->vm_start
= region
->vm_start
;
1166 vma
->vm_end
= region
->vm_start
+ len
;
1169 /* read the contents of a file into the copy */
1170 mm_segment_t old_fs
;
1173 fpos
= vma
->vm_pgoff
;
1174 fpos
<<= PAGE_SHIFT
;
1178 ret
= __vfs_read(vma
->vm_file
, base
, len
, &fpos
);
1184 /* clear the last little bit */
1186 memset(base
+ ret
, 0, len
- ret
);
1193 free_page_series(region
->vm_start
, region
->vm_top
);
1194 region
->vm_start
= vma
->vm_start
= 0;
1195 region
->vm_end
= vma
->vm_end
= 0;
1200 pr_err("Allocation of length %lu from process %d (%s) failed\n",
1201 len
, current
->pid
, current
->comm
);
1207 * handle mapping creation for uClinux
1209 unsigned long do_mmap(struct file
*file
,
1213 unsigned long flags
,
1214 vm_flags_t vm_flags
,
1215 unsigned long pgoff
,
1216 unsigned long *populate
)
1218 struct vm_area_struct
*vma
;
1219 struct vm_region
*region
;
1221 unsigned long capabilities
, result
;
1226 /* decide whether we should attempt the mapping, and if so what sort of
1228 ret
= validate_mmap_request(file
, addr
, len
, prot
, flags
, pgoff
,
1233 /* we ignore the address hint */
1235 len
= PAGE_ALIGN(len
);
1237 /* we've determined that we can make the mapping, now translate what we
1238 * now know into VMA flags */
1239 vm_flags
|= determine_vm_flags(file
, prot
, flags
, capabilities
);
1241 /* we're going to need to record the mapping */
1242 region
= kmem_cache_zalloc(vm_region_jar
, GFP_KERNEL
);
1244 goto error_getting_region
;
1246 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
1248 goto error_getting_vma
;
1250 region
->vm_usage
= 1;
1251 region
->vm_flags
= vm_flags
;
1252 region
->vm_pgoff
= pgoff
;
1254 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
1255 vma
->vm_flags
= vm_flags
;
1256 vma
->vm_pgoff
= pgoff
;
1259 region
->vm_file
= get_file(file
);
1260 vma
->vm_file
= get_file(file
);
1263 down_write(&nommu_region_sem
);
1265 /* if we want to share, we need to check for regions created by other
1266 * mmap() calls that overlap with our proposed mapping
1267 * - we can only share with a superset match on most regular files
1268 * - shared mappings on character devices and memory backed files are
1269 * permitted to overlap inexactly as far as we are concerned for in
1270 * these cases, sharing is handled in the driver or filesystem rather
1273 if (vm_flags
& VM_MAYSHARE
) {
1274 struct vm_region
*pregion
;
1275 unsigned long pglen
, rpglen
, pgend
, rpgend
, start
;
1277 pglen
= (len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1278 pgend
= pgoff
+ pglen
;
1280 for (rb
= rb_first(&nommu_region_tree
); rb
; rb
= rb_next(rb
)) {
1281 pregion
= rb_entry(rb
, struct vm_region
, vm_rb
);
1283 if (!(pregion
->vm_flags
& VM_MAYSHARE
))
1286 /* search for overlapping mappings on the same file */
1287 if (file_inode(pregion
->vm_file
) !=
1291 if (pregion
->vm_pgoff
>= pgend
)
1294 rpglen
= pregion
->vm_end
- pregion
->vm_start
;
1295 rpglen
= (rpglen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1296 rpgend
= pregion
->vm_pgoff
+ rpglen
;
1297 if (pgoff
>= rpgend
)
1300 /* handle inexactly overlapping matches between
1302 if ((pregion
->vm_pgoff
!= pgoff
|| rpglen
!= pglen
) &&
1303 !(pgoff
>= pregion
->vm_pgoff
&& pgend
<= rpgend
)) {
1304 /* new mapping is not a subset of the region */
1305 if (!(capabilities
& NOMMU_MAP_DIRECT
))
1306 goto sharing_violation
;
1310 /* we've found a region we can share */
1311 pregion
->vm_usage
++;
1312 vma
->vm_region
= pregion
;
1313 start
= pregion
->vm_start
;
1314 start
+= (pgoff
- pregion
->vm_pgoff
) << PAGE_SHIFT
;
1315 vma
->vm_start
= start
;
1316 vma
->vm_end
= start
+ len
;
1318 if (pregion
->vm_flags
& VM_MAPPED_COPY
)
1319 vma
->vm_flags
|= VM_MAPPED_COPY
;
1321 ret
= do_mmap_shared_file(vma
);
1323 vma
->vm_region
= NULL
;
1326 pregion
->vm_usage
--;
1328 goto error_just_free
;
1331 fput(region
->vm_file
);
1332 kmem_cache_free(vm_region_jar
, region
);
1338 /* obtain the address at which to make a shared mapping
1339 * - this is the hook for quasi-memory character devices to
1340 * tell us the location of a shared mapping
1342 if (capabilities
& NOMMU_MAP_DIRECT
) {
1343 addr
= file
->f_op
->get_unmapped_area(file
, addr
, len
,
1345 if (IS_ERR_VALUE(addr
)) {
1348 goto error_just_free
;
1350 /* the driver refused to tell us where to site
1351 * the mapping so we'll have to attempt to copy
1354 if (!(capabilities
& NOMMU_MAP_COPY
))
1355 goto error_just_free
;
1357 capabilities
&= ~NOMMU_MAP_DIRECT
;
1359 vma
->vm_start
= region
->vm_start
= addr
;
1360 vma
->vm_end
= region
->vm_end
= addr
+ len
;
1365 vma
->vm_region
= region
;
1367 /* set up the mapping
1368 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1370 if (file
&& vma
->vm_flags
& VM_SHARED
)
1371 ret
= do_mmap_shared_file(vma
);
1373 ret
= do_mmap_private(vma
, region
, len
, capabilities
);
1375 goto error_just_free
;
1376 add_nommu_region(region
);
1378 /* clear anonymous mappings that don't ask for uninitialized data */
1379 if (!vma
->vm_file
&& !(flags
& MAP_UNINITIALIZED
))
1380 memset((void *)region
->vm_start
, 0,
1381 region
->vm_end
- region
->vm_start
);
1383 /* okay... we have a mapping; now we have to register it */
1384 result
= vma
->vm_start
;
1386 current
->mm
->total_vm
+= len
>> PAGE_SHIFT
;
1389 add_vma_to_mm(current
->mm
, vma
);
1391 /* we flush the region from the icache only when the first executable
1392 * mapping of it is made */
1393 if (vma
->vm_flags
& VM_EXEC
&& !region
->vm_icache_flushed
) {
1394 flush_icache_range(region
->vm_start
, region
->vm_end
);
1395 region
->vm_icache_flushed
= true;
1398 up_write(&nommu_region_sem
);
1403 up_write(&nommu_region_sem
);
1405 if (region
->vm_file
)
1406 fput(region
->vm_file
);
1407 kmem_cache_free(vm_region_jar
, region
);
1410 kmem_cache_free(vm_area_cachep
, vma
);
1414 up_write(&nommu_region_sem
);
1415 pr_warn("Attempt to share mismatched mappings\n");
1420 kmem_cache_free(vm_region_jar
, region
);
1421 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1426 error_getting_region
:
1427 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1433 SYSCALL_DEFINE6(mmap_pgoff
, unsigned long, addr
, unsigned long, len
,
1434 unsigned long, prot
, unsigned long, flags
,
1435 unsigned long, fd
, unsigned long, pgoff
)
1437 struct file
*file
= NULL
;
1438 unsigned long retval
= -EBADF
;
1440 audit_mmap_fd(fd
, flags
);
1441 if (!(flags
& MAP_ANONYMOUS
)) {
1447 flags
&= ~(MAP_EXECUTABLE
| MAP_DENYWRITE
);
1449 retval
= vm_mmap_pgoff(file
, addr
, len
, prot
, flags
, pgoff
);
1457 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1458 struct mmap_arg_struct
{
1462 unsigned long flags
;
1464 unsigned long offset
;
1467 SYSCALL_DEFINE1(old_mmap
, struct mmap_arg_struct __user
*, arg
)
1469 struct mmap_arg_struct a
;
1471 if (copy_from_user(&a
, arg
, sizeof(a
)))
1473 if (offset_in_page(a
.offset
))
1476 return sys_mmap_pgoff(a
.addr
, a
.len
, a
.prot
, a
.flags
, a
.fd
,
1477 a
.offset
>> PAGE_SHIFT
);
1479 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1482 * split a vma into two pieces at address 'addr', a new vma is allocated either
1483 * for the first part or the tail.
1485 int split_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1486 unsigned long addr
, int new_below
)
1488 struct vm_area_struct
*new;
1489 struct vm_region
*region
;
1490 unsigned long npages
;
1492 /* we're only permitted to split anonymous regions (these should have
1493 * only a single usage on the region) */
1497 if (mm
->map_count
>= sysctl_max_map_count
)
1500 region
= kmem_cache_alloc(vm_region_jar
, GFP_KERNEL
);
1504 new = kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
1506 kmem_cache_free(vm_region_jar
, region
);
1510 /* most fields are the same, copy all, and then fixup */
1512 *region
= *vma
->vm_region
;
1513 new->vm_region
= region
;
1515 npages
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
1518 region
->vm_top
= region
->vm_end
= new->vm_end
= addr
;
1520 region
->vm_start
= new->vm_start
= addr
;
1521 region
->vm_pgoff
= new->vm_pgoff
+= npages
;
1524 if (new->vm_ops
&& new->vm_ops
->open
)
1525 new->vm_ops
->open(new);
1527 delete_vma_from_mm(vma
);
1528 down_write(&nommu_region_sem
);
1529 delete_nommu_region(vma
->vm_region
);
1531 vma
->vm_region
->vm_start
= vma
->vm_start
= addr
;
1532 vma
->vm_region
->vm_pgoff
= vma
->vm_pgoff
+= npages
;
1534 vma
->vm_region
->vm_end
= vma
->vm_end
= addr
;
1535 vma
->vm_region
->vm_top
= addr
;
1537 add_nommu_region(vma
->vm_region
);
1538 add_nommu_region(new->vm_region
);
1539 up_write(&nommu_region_sem
);
1540 add_vma_to_mm(mm
, vma
);
1541 add_vma_to_mm(mm
, new);
1546 * shrink a VMA by removing the specified chunk from either the beginning or
1549 static int shrink_vma(struct mm_struct
*mm
,
1550 struct vm_area_struct
*vma
,
1551 unsigned long from
, unsigned long to
)
1553 struct vm_region
*region
;
1555 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1557 delete_vma_from_mm(vma
);
1558 if (from
> vma
->vm_start
)
1562 add_vma_to_mm(mm
, vma
);
1564 /* cut the backing region down to size */
1565 region
= vma
->vm_region
;
1566 BUG_ON(region
->vm_usage
!= 1);
1568 down_write(&nommu_region_sem
);
1569 delete_nommu_region(region
);
1570 if (from
> region
->vm_start
) {
1571 to
= region
->vm_top
;
1572 region
->vm_top
= region
->vm_end
= from
;
1574 region
->vm_start
= to
;
1576 add_nommu_region(region
);
1577 up_write(&nommu_region_sem
);
1579 free_page_series(from
, to
);
1585 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1586 * VMA, though it need not cover the whole VMA
1588 int do_munmap(struct mm_struct
*mm
, unsigned long start
, size_t len
)
1590 struct vm_area_struct
*vma
;
1594 len
= PAGE_ALIGN(len
);
1600 /* find the first potentially overlapping VMA */
1601 vma
= find_vma(mm
, start
);
1605 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1606 current
->pid
, current
->comm
,
1607 start
, start
+ len
- 1);
1613 /* we're allowed to split an anonymous VMA but not a file-backed one */
1616 if (start
> vma
->vm_start
)
1618 if (end
== vma
->vm_end
)
1619 goto erase_whole_vma
;
1624 /* the chunk must be a subset of the VMA found */
1625 if (start
== vma
->vm_start
&& end
== vma
->vm_end
)
1626 goto erase_whole_vma
;
1627 if (start
< vma
->vm_start
|| end
> vma
->vm_end
)
1629 if (offset_in_page(start
))
1631 if (end
!= vma
->vm_end
&& offset_in_page(end
))
1633 if (start
!= vma
->vm_start
&& end
!= vma
->vm_end
) {
1634 ret
= split_vma(mm
, vma
, start
, 1);
1638 return shrink_vma(mm
, vma
, start
, end
);
1642 delete_vma_from_mm(vma
);
1643 delete_vma(mm
, vma
);
1646 EXPORT_SYMBOL(do_munmap
);
1648 int vm_munmap(unsigned long addr
, size_t len
)
1650 struct mm_struct
*mm
= current
->mm
;
1653 down_write(&mm
->mmap_sem
);
1654 ret
= do_munmap(mm
, addr
, len
);
1655 up_write(&mm
->mmap_sem
);
1658 EXPORT_SYMBOL(vm_munmap
);
1660 SYSCALL_DEFINE2(munmap
, unsigned long, addr
, size_t, len
)
1662 return vm_munmap(addr
, len
);
1666 * release all the mappings made in a process's VM space
1668 void exit_mmap(struct mm_struct
*mm
)
1670 struct vm_area_struct
*vma
;
1677 while ((vma
= mm
->mmap
)) {
1678 mm
->mmap
= vma
->vm_next
;
1679 delete_vma_from_mm(vma
);
1680 delete_vma(mm
, vma
);
1685 int vm_brk(unsigned long addr
, unsigned long len
)
1691 * expand (or shrink) an existing mapping, potentially moving it at the same
1692 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1694 * under NOMMU conditions, we only permit changing a mapping's size, and only
1695 * as long as it stays within the region allocated by do_mmap_private() and the
1696 * block is not shareable
1698 * MREMAP_FIXED is not supported under NOMMU conditions
1700 static unsigned long do_mremap(unsigned long addr
,
1701 unsigned long old_len
, unsigned long new_len
,
1702 unsigned long flags
, unsigned long new_addr
)
1704 struct vm_area_struct
*vma
;
1706 /* insanity checks first */
1707 old_len
= PAGE_ALIGN(old_len
);
1708 new_len
= PAGE_ALIGN(new_len
);
1709 if (old_len
== 0 || new_len
== 0)
1710 return (unsigned long) -EINVAL
;
1712 if (offset_in_page(addr
))
1715 if (flags
& MREMAP_FIXED
&& new_addr
!= addr
)
1716 return (unsigned long) -EINVAL
;
1718 vma
= find_vma_exact(current
->mm
, addr
, old_len
);
1720 return (unsigned long) -EINVAL
;
1722 if (vma
->vm_end
!= vma
->vm_start
+ old_len
)
1723 return (unsigned long) -EFAULT
;
1725 if (vma
->vm_flags
& VM_MAYSHARE
)
1726 return (unsigned long) -EPERM
;
1728 if (new_len
> vma
->vm_region
->vm_end
- vma
->vm_region
->vm_start
)
1729 return (unsigned long) -ENOMEM
;
1731 /* all checks complete - do it */
1732 vma
->vm_end
= vma
->vm_start
+ new_len
;
1733 return vma
->vm_start
;
1736 SYSCALL_DEFINE5(mremap
, unsigned long, addr
, unsigned long, old_len
,
1737 unsigned long, new_len
, unsigned long, flags
,
1738 unsigned long, new_addr
)
1742 down_write(¤t
->mm
->mmap_sem
);
1743 ret
= do_mremap(addr
, old_len
, new_len
, flags
, new_addr
);
1744 up_write(¤t
->mm
->mmap_sem
);
1748 struct page
*follow_page_mask(struct vm_area_struct
*vma
,
1749 unsigned long address
, unsigned int flags
,
1750 unsigned int *page_mask
)
1756 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
1757 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
1759 if (addr
!= (pfn
<< PAGE_SHIFT
))
1762 vma
->vm_flags
|= VM_IO
| VM_PFNMAP
| VM_DONTEXPAND
| VM_DONTDUMP
;
1765 EXPORT_SYMBOL(remap_pfn_range
);
1767 int vm_iomap_memory(struct vm_area_struct
*vma
, phys_addr_t start
, unsigned long len
)
1769 unsigned long pfn
= start
>> PAGE_SHIFT
;
1770 unsigned long vm_len
= vma
->vm_end
- vma
->vm_start
;
1772 pfn
+= vma
->vm_pgoff
;
1773 return io_remap_pfn_range(vma
, vma
->vm_start
, pfn
, vm_len
, vma
->vm_page_prot
);
1775 EXPORT_SYMBOL(vm_iomap_memory
);
1777 int remap_vmalloc_range(struct vm_area_struct
*vma
, void *addr
,
1778 unsigned long pgoff
)
1780 unsigned int size
= vma
->vm_end
- vma
->vm_start
;
1782 if (!(vma
->vm_flags
& VM_USERMAP
))
1785 vma
->vm_start
= (unsigned long)(addr
+ (pgoff
<< PAGE_SHIFT
));
1786 vma
->vm_end
= vma
->vm_start
+ size
;
1790 EXPORT_SYMBOL(remap_vmalloc_range
);
1792 unsigned long arch_get_unmapped_area(struct file
*file
, unsigned long addr
,
1793 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
1798 void unmap_mapping_range(struct address_space
*mapping
,
1799 loff_t
const holebegin
, loff_t
const holelen
,
1803 EXPORT_SYMBOL(unmap_mapping_range
);
1805 int filemap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1810 EXPORT_SYMBOL(filemap_fault
);
1812 void filemap_map_pages(struct fault_env
*fe
,
1813 pgoff_t start_pgoff
, pgoff_t end_pgoff
)
1817 EXPORT_SYMBOL(filemap_map_pages
);
1819 static int __access_remote_vm(struct task_struct
*tsk
, struct mm_struct
*mm
,
1820 unsigned long addr
, void *buf
, int len
, int write
)
1822 struct vm_area_struct
*vma
;
1824 down_read(&mm
->mmap_sem
);
1826 /* the access must start within one of the target process's mappings */
1827 vma
= find_vma(mm
, addr
);
1829 /* don't overrun this mapping */
1830 if (addr
+ len
>= vma
->vm_end
)
1831 len
= vma
->vm_end
- addr
;
1833 /* only read or write mappings where it is permitted */
1834 if (write
&& vma
->vm_flags
& VM_MAYWRITE
)
1835 copy_to_user_page(vma
, NULL
, addr
,
1836 (void *) addr
, buf
, len
);
1837 else if (!write
&& vma
->vm_flags
& VM_MAYREAD
)
1838 copy_from_user_page(vma
, NULL
, addr
,
1839 buf
, (void *) addr
, len
);
1846 up_read(&mm
->mmap_sem
);
1852 * @access_remote_vm - access another process' address space
1853 * @mm: the mm_struct of the target address space
1854 * @addr: start address to access
1855 * @buf: source or destination buffer
1856 * @len: number of bytes to transfer
1857 * @write: whether the access is a write
1859 * The caller must hold a reference on @mm.
1861 int access_remote_vm(struct mm_struct
*mm
, unsigned long addr
,
1862 void *buf
, int len
, int write
)
1864 return __access_remote_vm(NULL
, mm
, addr
, buf
, len
, write
);
1868 * Access another process' address space.
1869 * - source/target buffer must be kernel space
1871 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
, void *buf
, int len
, int write
)
1873 struct mm_struct
*mm
;
1875 if (addr
+ len
< addr
)
1878 mm
= get_task_mm(tsk
);
1882 len
= __access_remote_vm(tsk
, mm
, addr
, buf
, len
, write
);
1889 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1890 * @inode: The inode to check
1891 * @size: The current filesize of the inode
1892 * @newsize: The proposed filesize of the inode
1894 * Check the shared mappings on an inode on behalf of a shrinking truncate to
1895 * make sure that that any outstanding VMAs aren't broken and then shrink the
1896 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
1897 * automatically grant mappings that are too large.
1899 int nommu_shrink_inode_mappings(struct inode
*inode
, size_t size
,
1902 struct vm_area_struct
*vma
;
1903 struct vm_region
*region
;
1905 size_t r_size
, r_top
;
1907 low
= newsize
>> PAGE_SHIFT
;
1908 high
= (size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1910 down_write(&nommu_region_sem
);
1911 i_mmap_lock_read(inode
->i_mapping
);
1913 /* search for VMAs that fall within the dead zone */
1914 vma_interval_tree_foreach(vma
, &inode
->i_mapping
->i_mmap
, low
, high
) {
1915 /* found one - only interested if it's shared out of the page
1917 if (vma
->vm_flags
& VM_SHARED
) {
1918 i_mmap_unlock_read(inode
->i_mapping
);
1919 up_write(&nommu_region_sem
);
1920 return -ETXTBSY
; /* not quite true, but near enough */
1924 /* reduce any regions that overlap the dead zone - if in existence,
1925 * these will be pointed to by VMAs that don't overlap the dead zone
1927 * we don't check for any regions that start beyond the EOF as there
1930 vma_interval_tree_foreach(vma
, &inode
->i_mapping
->i_mmap
, 0, ULONG_MAX
) {
1931 if (!(vma
->vm_flags
& VM_SHARED
))
1934 region
= vma
->vm_region
;
1935 r_size
= region
->vm_top
- region
->vm_start
;
1936 r_top
= (region
->vm_pgoff
<< PAGE_SHIFT
) + r_size
;
1938 if (r_top
> newsize
) {
1939 region
->vm_top
-= r_top
- newsize
;
1940 if (region
->vm_end
> region
->vm_top
)
1941 region
->vm_end
= region
->vm_top
;
1945 i_mmap_unlock_read(inode
->i_mapping
);
1946 up_write(&nommu_region_sem
);
1951 * Initialise sysctl_user_reserve_kbytes.
1953 * This is intended to prevent a user from starting a single memory hogging
1954 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1957 * The default value is min(3% of free memory, 128MB)
1958 * 128MB is enough to recover with sshd/login, bash, and top/kill.
1960 static int __meminit
init_user_reserve(void)
1962 unsigned long free_kbytes
;
1964 free_kbytes
= global_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
1966 sysctl_user_reserve_kbytes
= min(free_kbytes
/ 32, 1UL << 17);
1969 subsys_initcall(init_user_reserve
);
1972 * Initialise sysctl_admin_reserve_kbytes.
1974 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1975 * to log in and kill a memory hogging process.
1977 * Systems with more than 256MB will reserve 8MB, enough to recover
1978 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1979 * only reserve 3% of free pages by default.
1981 static int __meminit
init_admin_reserve(void)
1983 unsigned long free_kbytes
;
1985 free_kbytes
= global_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
1987 sysctl_admin_reserve_kbytes
= min(free_kbytes
/ 32, 1UL << 13);
1990 subsys_initcall(init_admin_reserve
);