md: Avoid OOPS when reshaping raid1 to raid0
[linux/fpc-iii.git] / fs / buffer.c
blob8a530001e968db3e74490bd9e43e59f9809f6d15
1 /*
2 * linux/fs/buffer.c
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
7 /*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
49 inline void
50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
52 bh->b_end_io = handler;
53 bh->b_private = private;
55 EXPORT_SYMBOL(init_buffer);
57 static int sleep_on_buffer(void *word)
59 io_schedule();
60 return 0;
63 void __lock_buffer(struct buffer_head *bh)
65 wait_on_bit_lock(&bh->b_state, BH_Lock, sleep_on_buffer,
66 TASK_UNINTERRUPTIBLE);
68 EXPORT_SYMBOL(__lock_buffer);
70 void unlock_buffer(struct buffer_head *bh)
72 clear_bit_unlock(BH_Lock, &bh->b_state);
73 smp_mb__after_clear_bit();
74 wake_up_bit(&bh->b_state, BH_Lock);
76 EXPORT_SYMBOL(unlock_buffer);
79 * Block until a buffer comes unlocked. This doesn't stop it
80 * from becoming locked again - you have to lock it yourself
81 * if you want to preserve its state.
83 void __wait_on_buffer(struct buffer_head * bh)
85 wait_on_bit(&bh->b_state, BH_Lock, sleep_on_buffer, TASK_UNINTERRUPTIBLE);
87 EXPORT_SYMBOL(__wait_on_buffer);
89 static void
90 __clear_page_buffers(struct page *page)
92 ClearPagePrivate(page);
93 set_page_private(page, 0);
94 page_cache_release(page);
98 static int quiet_error(struct buffer_head *bh)
100 if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
101 return 0;
102 return 1;
106 static void buffer_io_error(struct buffer_head *bh)
108 char b[BDEVNAME_SIZE];
109 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
110 bdevname(bh->b_bdev, b),
111 (unsigned long long)bh->b_blocknr);
115 * End-of-IO handler helper function which does not touch the bh after
116 * unlocking it.
117 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
118 * a race there is benign: unlock_buffer() only use the bh's address for
119 * hashing after unlocking the buffer, so it doesn't actually touch the bh
120 * itself.
122 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
124 if (uptodate) {
125 set_buffer_uptodate(bh);
126 } else {
127 /* This happens, due to failed READA attempts. */
128 clear_buffer_uptodate(bh);
130 unlock_buffer(bh);
134 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
135 * unlock the buffer. This is what ll_rw_block uses too.
137 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
139 __end_buffer_read_notouch(bh, uptodate);
140 put_bh(bh);
142 EXPORT_SYMBOL(end_buffer_read_sync);
144 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
146 char b[BDEVNAME_SIZE];
148 if (uptodate) {
149 set_buffer_uptodate(bh);
150 } else {
151 if (!quiet_error(bh)) {
152 buffer_io_error(bh);
153 printk(KERN_WARNING "lost page write due to "
154 "I/O error on %s\n",
155 bdevname(bh->b_bdev, b));
157 set_buffer_write_io_error(bh);
158 clear_buffer_uptodate(bh);
160 unlock_buffer(bh);
161 put_bh(bh);
163 EXPORT_SYMBOL(end_buffer_write_sync);
166 * Various filesystems appear to want __find_get_block to be non-blocking.
167 * But it's the page lock which protects the buffers. To get around this,
168 * we get exclusion from try_to_free_buffers with the blockdev mapping's
169 * private_lock.
171 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
172 * may be quite high. This code could TryLock the page, and if that
173 * succeeds, there is no need to take private_lock. (But if
174 * private_lock is contended then so is mapping->tree_lock).
176 static struct buffer_head *
177 __find_get_block_slow(struct block_device *bdev, sector_t block)
179 struct inode *bd_inode = bdev->bd_inode;
180 struct address_space *bd_mapping = bd_inode->i_mapping;
181 struct buffer_head *ret = NULL;
182 pgoff_t index;
183 struct buffer_head *bh;
184 struct buffer_head *head;
185 struct page *page;
186 int all_mapped = 1;
188 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
189 page = find_get_page(bd_mapping, index);
190 if (!page)
191 goto out;
193 spin_lock(&bd_mapping->private_lock);
194 if (!page_has_buffers(page))
195 goto out_unlock;
196 head = page_buffers(page);
197 bh = head;
198 do {
199 if (!buffer_mapped(bh))
200 all_mapped = 0;
201 else if (bh->b_blocknr == block) {
202 ret = bh;
203 get_bh(bh);
204 goto out_unlock;
206 bh = bh->b_this_page;
207 } while (bh != head);
209 /* we might be here because some of the buffers on this page are
210 * not mapped. This is due to various races between
211 * file io on the block device and getblk. It gets dealt with
212 * elsewhere, don't buffer_error if we had some unmapped buffers
214 if (all_mapped) {
215 char b[BDEVNAME_SIZE];
217 printk("__find_get_block_slow() failed. "
218 "block=%llu, b_blocknr=%llu\n",
219 (unsigned long long)block,
220 (unsigned long long)bh->b_blocknr);
221 printk("b_state=0x%08lx, b_size=%zu\n",
222 bh->b_state, bh->b_size);
223 printk("device %s blocksize: %d\n", bdevname(bdev, b),
224 1 << bd_inode->i_blkbits);
226 out_unlock:
227 spin_unlock(&bd_mapping->private_lock);
228 page_cache_release(page);
229 out:
230 return ret;
234 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
236 static void free_more_memory(void)
238 struct zone *zone;
239 int nid;
241 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
242 yield();
244 for_each_online_node(nid) {
245 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
246 gfp_zone(GFP_NOFS), NULL,
247 &zone);
248 if (zone)
249 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
250 GFP_NOFS, NULL);
255 * I/O completion handler for block_read_full_page() - pages
256 * which come unlocked at the end of I/O.
258 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
260 unsigned long flags;
261 struct buffer_head *first;
262 struct buffer_head *tmp;
263 struct page *page;
264 int page_uptodate = 1;
266 BUG_ON(!buffer_async_read(bh));
268 page = bh->b_page;
269 if (uptodate) {
270 set_buffer_uptodate(bh);
271 } else {
272 clear_buffer_uptodate(bh);
273 if (!quiet_error(bh))
274 buffer_io_error(bh);
275 SetPageError(page);
279 * Be _very_ careful from here on. Bad things can happen if
280 * two buffer heads end IO at almost the same time and both
281 * decide that the page is now completely done.
283 first = page_buffers(page);
284 local_irq_save(flags);
285 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
286 clear_buffer_async_read(bh);
287 unlock_buffer(bh);
288 tmp = bh;
289 do {
290 if (!buffer_uptodate(tmp))
291 page_uptodate = 0;
292 if (buffer_async_read(tmp)) {
293 BUG_ON(!buffer_locked(tmp));
294 goto still_busy;
296 tmp = tmp->b_this_page;
297 } while (tmp != bh);
298 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
299 local_irq_restore(flags);
302 * If none of the buffers had errors and they are all
303 * uptodate then we can set the page uptodate.
305 if (page_uptodate && !PageError(page))
306 SetPageUptodate(page);
307 unlock_page(page);
308 return;
310 still_busy:
311 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
312 local_irq_restore(flags);
313 return;
317 * Completion handler for block_write_full_page() - pages which are unlocked
318 * during I/O, and which have PageWriteback cleared upon I/O completion.
320 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
322 char b[BDEVNAME_SIZE];
323 unsigned long flags;
324 struct buffer_head *first;
325 struct buffer_head *tmp;
326 struct page *page;
328 BUG_ON(!buffer_async_write(bh));
330 page = bh->b_page;
331 if (uptodate) {
332 set_buffer_uptodate(bh);
333 } else {
334 if (!quiet_error(bh)) {
335 buffer_io_error(bh);
336 printk(KERN_WARNING "lost page write due to "
337 "I/O error on %s\n",
338 bdevname(bh->b_bdev, b));
340 set_bit(AS_EIO, &page->mapping->flags);
341 set_buffer_write_io_error(bh);
342 clear_buffer_uptodate(bh);
343 SetPageError(page);
346 first = page_buffers(page);
347 local_irq_save(flags);
348 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
350 clear_buffer_async_write(bh);
351 unlock_buffer(bh);
352 tmp = bh->b_this_page;
353 while (tmp != bh) {
354 if (buffer_async_write(tmp)) {
355 BUG_ON(!buffer_locked(tmp));
356 goto still_busy;
358 tmp = tmp->b_this_page;
360 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
361 local_irq_restore(flags);
362 end_page_writeback(page);
363 return;
365 still_busy:
366 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
367 local_irq_restore(flags);
368 return;
370 EXPORT_SYMBOL(end_buffer_async_write);
373 * If a page's buffers are under async readin (end_buffer_async_read
374 * completion) then there is a possibility that another thread of
375 * control could lock one of the buffers after it has completed
376 * but while some of the other buffers have not completed. This
377 * locked buffer would confuse end_buffer_async_read() into not unlocking
378 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
379 * that this buffer is not under async I/O.
381 * The page comes unlocked when it has no locked buffer_async buffers
382 * left.
384 * PageLocked prevents anyone starting new async I/O reads any of
385 * the buffers.
387 * PageWriteback is used to prevent simultaneous writeout of the same
388 * page.
390 * PageLocked prevents anyone from starting writeback of a page which is
391 * under read I/O (PageWriteback is only ever set against a locked page).
393 static void mark_buffer_async_read(struct buffer_head *bh)
395 bh->b_end_io = end_buffer_async_read;
396 set_buffer_async_read(bh);
399 static void mark_buffer_async_write_endio(struct buffer_head *bh,
400 bh_end_io_t *handler)
402 bh->b_end_io = handler;
403 set_buffer_async_write(bh);
406 void mark_buffer_async_write(struct buffer_head *bh)
408 mark_buffer_async_write_endio(bh, end_buffer_async_write);
410 EXPORT_SYMBOL(mark_buffer_async_write);
414 * fs/buffer.c contains helper functions for buffer-backed address space's
415 * fsync functions. A common requirement for buffer-based filesystems is
416 * that certain data from the backing blockdev needs to be written out for
417 * a successful fsync(). For example, ext2 indirect blocks need to be
418 * written back and waited upon before fsync() returns.
420 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
421 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
422 * management of a list of dependent buffers at ->i_mapping->private_list.
424 * Locking is a little subtle: try_to_free_buffers() will remove buffers
425 * from their controlling inode's queue when they are being freed. But
426 * try_to_free_buffers() will be operating against the *blockdev* mapping
427 * at the time, not against the S_ISREG file which depends on those buffers.
428 * So the locking for private_list is via the private_lock in the address_space
429 * which backs the buffers. Which is different from the address_space
430 * against which the buffers are listed. So for a particular address_space,
431 * mapping->private_lock does *not* protect mapping->private_list! In fact,
432 * mapping->private_list will always be protected by the backing blockdev's
433 * ->private_lock.
435 * Which introduces a requirement: all buffers on an address_space's
436 * ->private_list must be from the same address_space: the blockdev's.
438 * address_spaces which do not place buffers at ->private_list via these
439 * utility functions are free to use private_lock and private_list for
440 * whatever they want. The only requirement is that list_empty(private_list)
441 * be true at clear_inode() time.
443 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
444 * filesystems should do that. invalidate_inode_buffers() should just go
445 * BUG_ON(!list_empty).
447 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
448 * take an address_space, not an inode. And it should be called
449 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
450 * queued up.
452 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
453 * list if it is already on a list. Because if the buffer is on a list,
454 * it *must* already be on the right one. If not, the filesystem is being
455 * silly. This will save a ton of locking. But first we have to ensure
456 * that buffers are taken *off* the old inode's list when they are freed
457 * (presumably in truncate). That requires careful auditing of all
458 * filesystems (do it inside bforget()). It could also be done by bringing
459 * b_inode back.
463 * The buffer's backing address_space's private_lock must be held
465 static void __remove_assoc_queue(struct buffer_head *bh)
467 list_del_init(&bh->b_assoc_buffers);
468 WARN_ON(!bh->b_assoc_map);
469 if (buffer_write_io_error(bh))
470 set_bit(AS_EIO, &bh->b_assoc_map->flags);
471 bh->b_assoc_map = NULL;
474 int inode_has_buffers(struct inode *inode)
476 return !list_empty(&inode->i_data.private_list);
480 * osync is designed to support O_SYNC io. It waits synchronously for
481 * all already-submitted IO to complete, but does not queue any new
482 * writes to the disk.
484 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
485 * you dirty the buffers, and then use osync_inode_buffers to wait for
486 * completion. Any other dirty buffers which are not yet queued for
487 * write will not be flushed to disk by the osync.
489 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
491 struct buffer_head *bh;
492 struct list_head *p;
493 int err = 0;
495 spin_lock(lock);
496 repeat:
497 list_for_each_prev(p, list) {
498 bh = BH_ENTRY(p);
499 if (buffer_locked(bh)) {
500 get_bh(bh);
501 spin_unlock(lock);
502 wait_on_buffer(bh);
503 if (!buffer_uptodate(bh))
504 err = -EIO;
505 brelse(bh);
506 spin_lock(lock);
507 goto repeat;
510 spin_unlock(lock);
511 return err;
514 static void do_thaw_one(struct super_block *sb, void *unused)
516 char b[BDEVNAME_SIZE];
517 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
518 printk(KERN_WARNING "Emergency Thaw on %s\n",
519 bdevname(sb->s_bdev, b));
522 static void do_thaw_all(struct work_struct *work)
524 iterate_supers(do_thaw_one, NULL);
525 kfree(work);
526 printk(KERN_WARNING "Emergency Thaw complete\n");
530 * emergency_thaw_all -- forcibly thaw every frozen filesystem
532 * Used for emergency unfreeze of all filesystems via SysRq
534 void emergency_thaw_all(void)
536 struct work_struct *work;
538 work = kmalloc(sizeof(*work), GFP_ATOMIC);
539 if (work) {
540 INIT_WORK(work, do_thaw_all);
541 schedule_work(work);
546 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
547 * @mapping: the mapping which wants those buffers written
549 * Starts I/O against the buffers at mapping->private_list, and waits upon
550 * that I/O.
552 * Basically, this is a convenience function for fsync().
553 * @mapping is a file or directory which needs those buffers to be written for
554 * a successful fsync().
556 int sync_mapping_buffers(struct address_space *mapping)
558 struct address_space *buffer_mapping = mapping->assoc_mapping;
560 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
561 return 0;
563 return fsync_buffers_list(&buffer_mapping->private_lock,
564 &mapping->private_list);
566 EXPORT_SYMBOL(sync_mapping_buffers);
569 * Called when we've recently written block `bblock', and it is known that
570 * `bblock' was for a buffer_boundary() buffer. This means that the block at
571 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
572 * dirty, schedule it for IO. So that indirects merge nicely with their data.
574 void write_boundary_block(struct block_device *bdev,
575 sector_t bblock, unsigned blocksize)
577 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
578 if (bh) {
579 if (buffer_dirty(bh))
580 ll_rw_block(WRITE, 1, &bh);
581 put_bh(bh);
585 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
587 struct address_space *mapping = inode->i_mapping;
588 struct address_space *buffer_mapping = bh->b_page->mapping;
590 mark_buffer_dirty(bh);
591 if (!mapping->assoc_mapping) {
592 mapping->assoc_mapping = buffer_mapping;
593 } else {
594 BUG_ON(mapping->assoc_mapping != buffer_mapping);
596 if (!bh->b_assoc_map) {
597 spin_lock(&buffer_mapping->private_lock);
598 list_move_tail(&bh->b_assoc_buffers,
599 &mapping->private_list);
600 bh->b_assoc_map = mapping;
601 spin_unlock(&buffer_mapping->private_lock);
604 EXPORT_SYMBOL(mark_buffer_dirty_inode);
607 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
608 * dirty.
610 * If warn is true, then emit a warning if the page is not uptodate and has
611 * not been truncated.
613 static void __set_page_dirty(struct page *page,
614 struct address_space *mapping, int warn)
616 spin_lock_irq(&mapping->tree_lock);
617 if (page->mapping) { /* Race with truncate? */
618 WARN_ON_ONCE(warn && !PageUptodate(page));
619 account_page_dirtied(page, mapping);
620 radix_tree_tag_set(&mapping->page_tree,
621 page_index(page), PAGECACHE_TAG_DIRTY);
623 spin_unlock_irq(&mapping->tree_lock);
624 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
628 * Add a page to the dirty page list.
630 * It is a sad fact of life that this function is called from several places
631 * deeply under spinlocking. It may not sleep.
633 * If the page has buffers, the uptodate buffers are set dirty, to preserve
634 * dirty-state coherency between the page and the buffers. It the page does
635 * not have buffers then when they are later attached they will all be set
636 * dirty.
638 * The buffers are dirtied before the page is dirtied. There's a small race
639 * window in which a writepage caller may see the page cleanness but not the
640 * buffer dirtiness. That's fine. If this code were to set the page dirty
641 * before the buffers, a concurrent writepage caller could clear the page dirty
642 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
643 * page on the dirty page list.
645 * We use private_lock to lock against try_to_free_buffers while using the
646 * page's buffer list. Also use this to protect against clean buffers being
647 * added to the page after it was set dirty.
649 * FIXME: may need to call ->reservepage here as well. That's rather up to the
650 * address_space though.
652 int __set_page_dirty_buffers(struct page *page)
654 int newly_dirty;
655 struct address_space *mapping = page_mapping(page);
657 if (unlikely(!mapping))
658 return !TestSetPageDirty(page);
660 spin_lock(&mapping->private_lock);
661 if (page_has_buffers(page)) {
662 struct buffer_head *head = page_buffers(page);
663 struct buffer_head *bh = head;
665 do {
666 set_buffer_dirty(bh);
667 bh = bh->b_this_page;
668 } while (bh != head);
670 newly_dirty = !TestSetPageDirty(page);
671 spin_unlock(&mapping->private_lock);
673 if (newly_dirty)
674 __set_page_dirty(page, mapping, 1);
675 return newly_dirty;
677 EXPORT_SYMBOL(__set_page_dirty_buffers);
680 * Write out and wait upon a list of buffers.
682 * We have conflicting pressures: we want to make sure that all
683 * initially dirty buffers get waited on, but that any subsequently
684 * dirtied buffers don't. After all, we don't want fsync to last
685 * forever if somebody is actively writing to the file.
687 * Do this in two main stages: first we copy dirty buffers to a
688 * temporary inode list, queueing the writes as we go. Then we clean
689 * up, waiting for those writes to complete.
691 * During this second stage, any subsequent updates to the file may end
692 * up refiling the buffer on the original inode's dirty list again, so
693 * there is a chance we will end up with a buffer queued for write but
694 * not yet completed on that list. So, as a final cleanup we go through
695 * the osync code to catch these locked, dirty buffers without requeuing
696 * any newly dirty buffers for write.
698 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
700 struct buffer_head *bh;
701 struct list_head tmp;
702 struct address_space *mapping;
703 int err = 0, err2;
704 struct blk_plug plug;
706 INIT_LIST_HEAD(&tmp);
707 blk_start_plug(&plug);
709 spin_lock(lock);
710 while (!list_empty(list)) {
711 bh = BH_ENTRY(list->next);
712 mapping = bh->b_assoc_map;
713 __remove_assoc_queue(bh);
714 /* Avoid race with mark_buffer_dirty_inode() which does
715 * a lockless check and we rely on seeing the dirty bit */
716 smp_mb();
717 if (buffer_dirty(bh) || buffer_locked(bh)) {
718 list_add(&bh->b_assoc_buffers, &tmp);
719 bh->b_assoc_map = mapping;
720 if (buffer_dirty(bh)) {
721 get_bh(bh);
722 spin_unlock(lock);
724 * Ensure any pending I/O completes so that
725 * write_dirty_buffer() actually writes the
726 * current contents - it is a noop if I/O is
727 * still in flight on potentially older
728 * contents.
730 write_dirty_buffer(bh, WRITE_SYNC);
733 * Kick off IO for the previous mapping. Note
734 * that we will not run the very last mapping,
735 * wait_on_buffer() will do that for us
736 * through sync_buffer().
738 brelse(bh);
739 spin_lock(lock);
744 spin_unlock(lock);
745 blk_finish_plug(&plug);
746 spin_lock(lock);
748 while (!list_empty(&tmp)) {
749 bh = BH_ENTRY(tmp.prev);
750 get_bh(bh);
751 mapping = bh->b_assoc_map;
752 __remove_assoc_queue(bh);
753 /* Avoid race with mark_buffer_dirty_inode() which does
754 * a lockless check and we rely on seeing the dirty bit */
755 smp_mb();
756 if (buffer_dirty(bh)) {
757 list_add(&bh->b_assoc_buffers,
758 &mapping->private_list);
759 bh->b_assoc_map = mapping;
761 spin_unlock(lock);
762 wait_on_buffer(bh);
763 if (!buffer_uptodate(bh))
764 err = -EIO;
765 brelse(bh);
766 spin_lock(lock);
769 spin_unlock(lock);
770 err2 = osync_buffers_list(lock, list);
771 if (err)
772 return err;
773 else
774 return err2;
778 * Invalidate any and all dirty buffers on a given inode. We are
779 * probably unmounting the fs, but that doesn't mean we have already
780 * done a sync(). Just drop the buffers from the inode list.
782 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
783 * assumes that all the buffers are against the blockdev. Not true
784 * for reiserfs.
786 void invalidate_inode_buffers(struct inode *inode)
788 if (inode_has_buffers(inode)) {
789 struct address_space *mapping = &inode->i_data;
790 struct list_head *list = &mapping->private_list;
791 struct address_space *buffer_mapping = mapping->assoc_mapping;
793 spin_lock(&buffer_mapping->private_lock);
794 while (!list_empty(list))
795 __remove_assoc_queue(BH_ENTRY(list->next));
796 spin_unlock(&buffer_mapping->private_lock);
799 EXPORT_SYMBOL(invalidate_inode_buffers);
802 * Remove any clean buffers from the inode's buffer list. This is called
803 * when we're trying to free the inode itself. Those buffers can pin it.
805 * Returns true if all buffers were removed.
807 int remove_inode_buffers(struct inode *inode)
809 int ret = 1;
811 if (inode_has_buffers(inode)) {
812 struct address_space *mapping = &inode->i_data;
813 struct list_head *list = &mapping->private_list;
814 struct address_space *buffer_mapping = mapping->assoc_mapping;
816 spin_lock(&buffer_mapping->private_lock);
817 while (!list_empty(list)) {
818 struct buffer_head *bh = BH_ENTRY(list->next);
819 if (buffer_dirty(bh)) {
820 ret = 0;
821 break;
823 __remove_assoc_queue(bh);
825 spin_unlock(&buffer_mapping->private_lock);
827 return ret;
831 * Create the appropriate buffers when given a page for data area and
832 * the size of each buffer.. Use the bh->b_this_page linked list to
833 * follow the buffers created. Return NULL if unable to create more
834 * buffers.
836 * The retry flag is used to differentiate async IO (paging, swapping)
837 * which may not fail from ordinary buffer allocations.
839 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
840 int retry)
842 struct buffer_head *bh, *head;
843 long offset;
845 try_again:
846 head = NULL;
847 offset = PAGE_SIZE;
848 while ((offset -= size) >= 0) {
849 bh = alloc_buffer_head(GFP_NOFS);
850 if (!bh)
851 goto no_grow;
853 bh->b_bdev = NULL;
854 bh->b_this_page = head;
855 bh->b_blocknr = -1;
856 head = bh;
858 bh->b_state = 0;
859 atomic_set(&bh->b_count, 0);
860 bh->b_size = size;
862 /* Link the buffer to its page */
863 set_bh_page(bh, page, offset);
865 init_buffer(bh, NULL, NULL);
867 return head;
869 * In case anything failed, we just free everything we got.
871 no_grow:
872 if (head) {
873 do {
874 bh = head;
875 head = head->b_this_page;
876 free_buffer_head(bh);
877 } while (head);
881 * Return failure for non-async IO requests. Async IO requests
882 * are not allowed to fail, so we have to wait until buffer heads
883 * become available. But we don't want tasks sleeping with
884 * partially complete buffers, so all were released above.
886 if (!retry)
887 return NULL;
889 /* We're _really_ low on memory. Now we just
890 * wait for old buffer heads to become free due to
891 * finishing IO. Since this is an async request and
892 * the reserve list is empty, we're sure there are
893 * async buffer heads in use.
895 free_more_memory();
896 goto try_again;
898 EXPORT_SYMBOL_GPL(alloc_page_buffers);
900 static inline void
901 link_dev_buffers(struct page *page, struct buffer_head *head)
903 struct buffer_head *bh, *tail;
905 bh = head;
906 do {
907 tail = bh;
908 bh = bh->b_this_page;
909 } while (bh);
910 tail->b_this_page = head;
911 attach_page_buffers(page, head);
915 * Initialise the state of a blockdev page's buffers.
917 static void
918 init_page_buffers(struct page *page, struct block_device *bdev,
919 sector_t block, int size)
921 struct buffer_head *head = page_buffers(page);
922 struct buffer_head *bh = head;
923 int uptodate = PageUptodate(page);
924 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode));
926 do {
927 if (!buffer_mapped(bh)) {
928 init_buffer(bh, NULL, NULL);
929 bh->b_bdev = bdev;
930 bh->b_blocknr = block;
931 if (uptodate)
932 set_buffer_uptodate(bh);
933 if (block < end_block)
934 set_buffer_mapped(bh);
936 block++;
937 bh = bh->b_this_page;
938 } while (bh != head);
942 * Create the page-cache page that contains the requested block.
944 * This is user purely for blockdev mappings.
946 static struct page *
947 grow_dev_page(struct block_device *bdev, sector_t block,
948 pgoff_t index, int size)
950 struct inode *inode = bdev->bd_inode;
951 struct page *page;
952 struct buffer_head *bh;
954 page = find_or_create_page(inode->i_mapping, index,
955 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
956 if (!page)
957 return NULL;
959 BUG_ON(!PageLocked(page));
961 if (page_has_buffers(page)) {
962 bh = page_buffers(page);
963 if (bh->b_size == size) {
964 init_page_buffers(page, bdev, block, size);
965 return page;
967 if (!try_to_free_buffers(page))
968 goto failed;
972 * Allocate some buffers for this page
974 bh = alloc_page_buffers(page, size, 0);
975 if (!bh)
976 goto failed;
979 * Link the page to the buffers and initialise them. Take the
980 * lock to be atomic wrt __find_get_block(), which does not
981 * run under the page lock.
983 spin_lock(&inode->i_mapping->private_lock);
984 link_dev_buffers(page, bh);
985 init_page_buffers(page, bdev, block, size);
986 spin_unlock(&inode->i_mapping->private_lock);
987 return page;
989 failed:
990 BUG();
991 unlock_page(page);
992 page_cache_release(page);
993 return NULL;
997 * Create buffers for the specified block device block's page. If
998 * that page was dirty, the buffers are set dirty also.
1000 static int
1001 grow_buffers(struct block_device *bdev, sector_t block, int size)
1003 struct page *page;
1004 pgoff_t index;
1005 int sizebits;
1007 sizebits = -1;
1008 do {
1009 sizebits++;
1010 } while ((size << sizebits) < PAGE_SIZE);
1012 index = block >> sizebits;
1015 * Check for a block which wants to lie outside our maximum possible
1016 * pagecache index. (this comparison is done using sector_t types).
1018 if (unlikely(index != block >> sizebits)) {
1019 char b[BDEVNAME_SIZE];
1021 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1022 "device %s\n",
1023 __func__, (unsigned long long)block,
1024 bdevname(bdev, b));
1025 return -EIO;
1027 block = index << sizebits;
1028 /* Create a page with the proper size buffers.. */
1029 page = grow_dev_page(bdev, block, index, size);
1030 if (!page)
1031 return 0;
1032 unlock_page(page);
1033 page_cache_release(page);
1034 return 1;
1037 static struct buffer_head *
1038 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1040 /* Size must be multiple of hard sectorsize */
1041 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1042 (size < 512 || size > PAGE_SIZE))) {
1043 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1044 size);
1045 printk(KERN_ERR "logical block size: %d\n",
1046 bdev_logical_block_size(bdev));
1048 dump_stack();
1049 return NULL;
1052 for (;;) {
1053 struct buffer_head * bh;
1054 int ret;
1056 bh = __find_get_block(bdev, block, size);
1057 if (bh)
1058 return bh;
1060 ret = grow_buffers(bdev, block, size);
1061 if (ret < 0)
1062 return NULL;
1063 if (ret == 0)
1064 free_more_memory();
1069 * The relationship between dirty buffers and dirty pages:
1071 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1072 * the page is tagged dirty in its radix tree.
1074 * At all times, the dirtiness of the buffers represents the dirtiness of
1075 * subsections of the page. If the page has buffers, the page dirty bit is
1076 * merely a hint about the true dirty state.
1078 * When a page is set dirty in its entirety, all its buffers are marked dirty
1079 * (if the page has buffers).
1081 * When a buffer is marked dirty, its page is dirtied, but the page's other
1082 * buffers are not.
1084 * Also. When blockdev buffers are explicitly read with bread(), they
1085 * individually become uptodate. But their backing page remains not
1086 * uptodate - even if all of its buffers are uptodate. A subsequent
1087 * block_read_full_page() against that page will discover all the uptodate
1088 * buffers, will set the page uptodate and will perform no I/O.
1092 * mark_buffer_dirty - mark a buffer_head as needing writeout
1093 * @bh: the buffer_head to mark dirty
1095 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1096 * backing page dirty, then tag the page as dirty in its address_space's radix
1097 * tree and then attach the address_space's inode to its superblock's dirty
1098 * inode list.
1100 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1101 * mapping->tree_lock and mapping->host->i_lock.
1103 void mark_buffer_dirty(struct buffer_head *bh)
1105 WARN_ON_ONCE(!buffer_uptodate(bh));
1108 * Very *carefully* optimize the it-is-already-dirty case.
1110 * Don't let the final "is it dirty" escape to before we
1111 * perhaps modified the buffer.
1113 if (buffer_dirty(bh)) {
1114 smp_mb();
1115 if (buffer_dirty(bh))
1116 return;
1119 if (!test_set_buffer_dirty(bh)) {
1120 struct page *page = bh->b_page;
1121 if (!TestSetPageDirty(page)) {
1122 struct address_space *mapping = page_mapping(page);
1123 if (mapping)
1124 __set_page_dirty(page, mapping, 0);
1128 EXPORT_SYMBOL(mark_buffer_dirty);
1131 * Decrement a buffer_head's reference count. If all buffers against a page
1132 * have zero reference count, are clean and unlocked, and if the page is clean
1133 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1134 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1135 * a page but it ends up not being freed, and buffers may later be reattached).
1137 void __brelse(struct buffer_head * buf)
1139 if (atomic_read(&buf->b_count)) {
1140 put_bh(buf);
1141 return;
1143 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1145 EXPORT_SYMBOL(__brelse);
1148 * bforget() is like brelse(), except it discards any
1149 * potentially dirty data.
1151 void __bforget(struct buffer_head *bh)
1153 clear_buffer_dirty(bh);
1154 if (bh->b_assoc_map) {
1155 struct address_space *buffer_mapping = bh->b_page->mapping;
1157 spin_lock(&buffer_mapping->private_lock);
1158 list_del_init(&bh->b_assoc_buffers);
1159 bh->b_assoc_map = NULL;
1160 spin_unlock(&buffer_mapping->private_lock);
1162 __brelse(bh);
1164 EXPORT_SYMBOL(__bforget);
1166 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1168 lock_buffer(bh);
1169 if (buffer_uptodate(bh)) {
1170 unlock_buffer(bh);
1171 return bh;
1172 } else {
1173 get_bh(bh);
1174 bh->b_end_io = end_buffer_read_sync;
1175 submit_bh(READ, bh);
1176 wait_on_buffer(bh);
1177 if (buffer_uptodate(bh))
1178 return bh;
1180 brelse(bh);
1181 return NULL;
1185 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1186 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1187 * refcount elevated by one when they're in an LRU. A buffer can only appear
1188 * once in a particular CPU's LRU. A single buffer can be present in multiple
1189 * CPU's LRUs at the same time.
1191 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1192 * sb_find_get_block().
1194 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1195 * a local interrupt disable for that.
1198 #define BH_LRU_SIZE 8
1200 struct bh_lru {
1201 struct buffer_head *bhs[BH_LRU_SIZE];
1204 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1206 #ifdef CONFIG_SMP
1207 #define bh_lru_lock() local_irq_disable()
1208 #define bh_lru_unlock() local_irq_enable()
1209 #else
1210 #define bh_lru_lock() preempt_disable()
1211 #define bh_lru_unlock() preempt_enable()
1212 #endif
1214 static inline void check_irqs_on(void)
1216 #ifdef irqs_disabled
1217 BUG_ON(irqs_disabled());
1218 #endif
1222 * The LRU management algorithm is dopey-but-simple. Sorry.
1224 static void bh_lru_install(struct buffer_head *bh)
1226 struct buffer_head *evictee = NULL;
1228 check_irqs_on();
1229 bh_lru_lock();
1230 if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1231 struct buffer_head *bhs[BH_LRU_SIZE];
1232 int in;
1233 int out = 0;
1235 get_bh(bh);
1236 bhs[out++] = bh;
1237 for (in = 0; in < BH_LRU_SIZE; in++) {
1238 struct buffer_head *bh2 =
1239 __this_cpu_read(bh_lrus.bhs[in]);
1241 if (bh2 == bh) {
1242 __brelse(bh2);
1243 } else {
1244 if (out >= BH_LRU_SIZE) {
1245 BUG_ON(evictee != NULL);
1246 evictee = bh2;
1247 } else {
1248 bhs[out++] = bh2;
1252 while (out < BH_LRU_SIZE)
1253 bhs[out++] = NULL;
1254 memcpy(__this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1256 bh_lru_unlock();
1258 if (evictee)
1259 __brelse(evictee);
1263 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1265 static struct buffer_head *
1266 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1268 struct buffer_head *ret = NULL;
1269 unsigned int i;
1271 check_irqs_on();
1272 bh_lru_lock();
1273 for (i = 0; i < BH_LRU_SIZE; i++) {
1274 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1276 if (bh && bh->b_bdev == bdev &&
1277 bh->b_blocknr == block && bh->b_size == size) {
1278 if (i) {
1279 while (i) {
1280 __this_cpu_write(bh_lrus.bhs[i],
1281 __this_cpu_read(bh_lrus.bhs[i - 1]));
1282 i--;
1284 __this_cpu_write(bh_lrus.bhs[0], bh);
1286 get_bh(bh);
1287 ret = bh;
1288 break;
1291 bh_lru_unlock();
1292 return ret;
1296 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1297 * it in the LRU and mark it as accessed. If it is not present then return
1298 * NULL
1300 struct buffer_head *
1301 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1303 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1305 if (bh == NULL) {
1306 bh = __find_get_block_slow(bdev, block);
1307 if (bh)
1308 bh_lru_install(bh);
1310 if (bh)
1311 touch_buffer(bh);
1312 return bh;
1314 EXPORT_SYMBOL(__find_get_block);
1317 * __getblk will locate (and, if necessary, create) the buffer_head
1318 * which corresponds to the passed block_device, block and size. The
1319 * returned buffer has its reference count incremented.
1321 * __getblk() cannot fail - it just keeps trying. If you pass it an
1322 * illegal block number, __getblk() will happily return a buffer_head
1323 * which represents the non-existent block. Very weird.
1325 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1326 * attempt is failing. FIXME, perhaps?
1328 struct buffer_head *
1329 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1331 struct buffer_head *bh = __find_get_block(bdev, block, size);
1333 might_sleep();
1334 if (bh == NULL)
1335 bh = __getblk_slow(bdev, block, size);
1336 return bh;
1338 EXPORT_SYMBOL(__getblk);
1341 * Do async read-ahead on a buffer..
1343 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1345 struct buffer_head *bh = __getblk(bdev, block, size);
1346 if (likely(bh)) {
1347 ll_rw_block(READA, 1, &bh);
1348 brelse(bh);
1351 EXPORT_SYMBOL(__breadahead);
1354 * __bread() - reads a specified block and returns the bh
1355 * @bdev: the block_device to read from
1356 * @block: number of block
1357 * @size: size (in bytes) to read
1359 * Reads a specified block, and returns buffer head that contains it.
1360 * It returns NULL if the block was unreadable.
1362 struct buffer_head *
1363 __bread(struct block_device *bdev, sector_t block, unsigned size)
1365 struct buffer_head *bh = __getblk(bdev, block, size);
1367 if (likely(bh) && !buffer_uptodate(bh))
1368 bh = __bread_slow(bh);
1369 return bh;
1371 EXPORT_SYMBOL(__bread);
1374 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1375 * This doesn't race because it runs in each cpu either in irq
1376 * or with preempt disabled.
1378 static void invalidate_bh_lru(void *arg)
1380 struct bh_lru *b = &get_cpu_var(bh_lrus);
1381 int i;
1383 for (i = 0; i < BH_LRU_SIZE; i++) {
1384 brelse(b->bhs[i]);
1385 b->bhs[i] = NULL;
1387 put_cpu_var(bh_lrus);
1390 void invalidate_bh_lrus(void)
1392 on_each_cpu(invalidate_bh_lru, NULL, 1);
1394 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1396 void set_bh_page(struct buffer_head *bh,
1397 struct page *page, unsigned long offset)
1399 bh->b_page = page;
1400 BUG_ON(offset >= PAGE_SIZE);
1401 if (PageHighMem(page))
1403 * This catches illegal uses and preserves the offset:
1405 bh->b_data = (char *)(0 + offset);
1406 else
1407 bh->b_data = page_address(page) + offset;
1409 EXPORT_SYMBOL(set_bh_page);
1412 * Called when truncating a buffer on a page completely.
1414 static void discard_buffer(struct buffer_head * bh)
1416 lock_buffer(bh);
1417 clear_buffer_dirty(bh);
1418 bh->b_bdev = NULL;
1419 clear_buffer_mapped(bh);
1420 clear_buffer_req(bh);
1421 clear_buffer_new(bh);
1422 clear_buffer_delay(bh);
1423 clear_buffer_unwritten(bh);
1424 unlock_buffer(bh);
1428 * block_invalidatepage - invalidate part or all of a buffer-backed page
1430 * @page: the page which is affected
1431 * @offset: the index of the truncation point
1433 * block_invalidatepage() is called when all or part of the page has become
1434 * invalidated by a truncate operation.
1436 * block_invalidatepage() does not have to release all buffers, but it must
1437 * ensure that no dirty buffer is left outside @offset and that no I/O
1438 * is underway against any of the blocks which are outside the truncation
1439 * point. Because the caller is about to free (and possibly reuse) those
1440 * blocks on-disk.
1442 void block_invalidatepage(struct page *page, unsigned long offset)
1444 struct buffer_head *head, *bh, *next;
1445 unsigned int curr_off = 0;
1447 BUG_ON(!PageLocked(page));
1448 if (!page_has_buffers(page))
1449 goto out;
1451 head = page_buffers(page);
1452 bh = head;
1453 do {
1454 unsigned int next_off = curr_off + bh->b_size;
1455 next = bh->b_this_page;
1458 * is this block fully invalidated?
1460 if (offset <= curr_off)
1461 discard_buffer(bh);
1462 curr_off = next_off;
1463 bh = next;
1464 } while (bh != head);
1467 * We release buffers only if the entire page is being invalidated.
1468 * The get_block cached value has been unconditionally invalidated,
1469 * so real IO is not possible anymore.
1471 if (offset == 0)
1472 try_to_release_page(page, 0);
1473 out:
1474 return;
1476 EXPORT_SYMBOL(block_invalidatepage);
1479 * We attach and possibly dirty the buffers atomically wrt
1480 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1481 * is already excluded via the page lock.
1483 void create_empty_buffers(struct page *page,
1484 unsigned long blocksize, unsigned long b_state)
1486 struct buffer_head *bh, *head, *tail;
1488 head = alloc_page_buffers(page, blocksize, 1);
1489 bh = head;
1490 do {
1491 bh->b_state |= b_state;
1492 tail = bh;
1493 bh = bh->b_this_page;
1494 } while (bh);
1495 tail->b_this_page = head;
1497 spin_lock(&page->mapping->private_lock);
1498 if (PageUptodate(page) || PageDirty(page)) {
1499 bh = head;
1500 do {
1501 if (PageDirty(page))
1502 set_buffer_dirty(bh);
1503 if (PageUptodate(page))
1504 set_buffer_uptodate(bh);
1505 bh = bh->b_this_page;
1506 } while (bh != head);
1508 attach_page_buffers(page, head);
1509 spin_unlock(&page->mapping->private_lock);
1511 EXPORT_SYMBOL(create_empty_buffers);
1514 * We are taking a block for data and we don't want any output from any
1515 * buffer-cache aliases starting from return from that function and
1516 * until the moment when something will explicitly mark the buffer
1517 * dirty (hopefully that will not happen until we will free that block ;-)
1518 * We don't even need to mark it not-uptodate - nobody can expect
1519 * anything from a newly allocated buffer anyway. We used to used
1520 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1521 * don't want to mark the alias unmapped, for example - it would confuse
1522 * anyone who might pick it with bread() afterwards...
1524 * Also.. Note that bforget() doesn't lock the buffer. So there can
1525 * be writeout I/O going on against recently-freed buffers. We don't
1526 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1527 * only if we really need to. That happens here.
1529 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1531 struct buffer_head *old_bh;
1533 might_sleep();
1535 old_bh = __find_get_block_slow(bdev, block);
1536 if (old_bh) {
1537 clear_buffer_dirty(old_bh);
1538 wait_on_buffer(old_bh);
1539 clear_buffer_req(old_bh);
1540 __brelse(old_bh);
1543 EXPORT_SYMBOL(unmap_underlying_metadata);
1546 * NOTE! All mapped/uptodate combinations are valid:
1548 * Mapped Uptodate Meaning
1550 * No No "unknown" - must do get_block()
1551 * No Yes "hole" - zero-filled
1552 * Yes No "allocated" - allocated on disk, not read in
1553 * Yes Yes "valid" - allocated and up-to-date in memory.
1555 * "Dirty" is valid only with the last case (mapped+uptodate).
1559 * While block_write_full_page is writing back the dirty buffers under
1560 * the page lock, whoever dirtied the buffers may decide to clean them
1561 * again at any time. We handle that by only looking at the buffer
1562 * state inside lock_buffer().
1564 * If block_write_full_page() is called for regular writeback
1565 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1566 * locked buffer. This only can happen if someone has written the buffer
1567 * directly, with submit_bh(). At the address_space level PageWriteback
1568 * prevents this contention from occurring.
1570 * If block_write_full_page() is called with wbc->sync_mode ==
1571 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1572 * causes the writes to be flagged as synchronous writes.
1574 static int __block_write_full_page(struct inode *inode, struct page *page,
1575 get_block_t *get_block, struct writeback_control *wbc,
1576 bh_end_io_t *handler)
1578 int err;
1579 sector_t block;
1580 sector_t last_block;
1581 struct buffer_head *bh, *head;
1582 const unsigned blocksize = 1 << inode->i_blkbits;
1583 int nr_underway = 0;
1584 int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1585 WRITE_SYNC : WRITE);
1587 BUG_ON(!PageLocked(page));
1589 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1591 if (!page_has_buffers(page)) {
1592 create_empty_buffers(page, blocksize,
1593 (1 << BH_Dirty)|(1 << BH_Uptodate));
1597 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1598 * here, and the (potentially unmapped) buffers may become dirty at
1599 * any time. If a buffer becomes dirty here after we've inspected it
1600 * then we just miss that fact, and the page stays dirty.
1602 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1603 * handle that here by just cleaning them.
1606 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1607 head = page_buffers(page);
1608 bh = head;
1611 * Get all the dirty buffers mapped to disk addresses and
1612 * handle any aliases from the underlying blockdev's mapping.
1614 do {
1615 if (block > last_block) {
1617 * mapped buffers outside i_size will occur, because
1618 * this page can be outside i_size when there is a
1619 * truncate in progress.
1622 * The buffer was zeroed by block_write_full_page()
1624 clear_buffer_dirty(bh);
1625 set_buffer_uptodate(bh);
1626 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1627 buffer_dirty(bh)) {
1628 WARN_ON(bh->b_size != blocksize);
1629 err = get_block(inode, block, bh, 1);
1630 if (err)
1631 goto recover;
1632 clear_buffer_delay(bh);
1633 if (buffer_new(bh)) {
1634 /* blockdev mappings never come here */
1635 clear_buffer_new(bh);
1636 unmap_underlying_metadata(bh->b_bdev,
1637 bh->b_blocknr);
1640 bh = bh->b_this_page;
1641 block++;
1642 } while (bh != head);
1644 do {
1645 if (!buffer_mapped(bh))
1646 continue;
1648 * If it's a fully non-blocking write attempt and we cannot
1649 * lock the buffer then redirty the page. Note that this can
1650 * potentially cause a busy-wait loop from writeback threads
1651 * and kswapd activity, but those code paths have their own
1652 * higher-level throttling.
1654 if (wbc->sync_mode != WB_SYNC_NONE) {
1655 lock_buffer(bh);
1656 } else if (!trylock_buffer(bh)) {
1657 redirty_page_for_writepage(wbc, page);
1658 continue;
1660 if (test_clear_buffer_dirty(bh)) {
1661 mark_buffer_async_write_endio(bh, handler);
1662 } else {
1663 unlock_buffer(bh);
1665 } while ((bh = bh->b_this_page) != head);
1668 * The page and its buffers are protected by PageWriteback(), so we can
1669 * drop the bh refcounts early.
1671 BUG_ON(PageWriteback(page));
1672 set_page_writeback(page);
1674 do {
1675 struct buffer_head *next = bh->b_this_page;
1676 if (buffer_async_write(bh)) {
1677 submit_bh(write_op, bh);
1678 nr_underway++;
1680 bh = next;
1681 } while (bh != head);
1682 unlock_page(page);
1684 err = 0;
1685 done:
1686 if (nr_underway == 0) {
1688 * The page was marked dirty, but the buffers were
1689 * clean. Someone wrote them back by hand with
1690 * ll_rw_block/submit_bh. A rare case.
1692 end_page_writeback(page);
1695 * The page and buffer_heads can be released at any time from
1696 * here on.
1699 return err;
1701 recover:
1703 * ENOSPC, or some other error. We may already have added some
1704 * blocks to the file, so we need to write these out to avoid
1705 * exposing stale data.
1706 * The page is currently locked and not marked for writeback
1708 bh = head;
1709 /* Recovery: lock and submit the mapped buffers */
1710 do {
1711 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1712 !buffer_delay(bh)) {
1713 lock_buffer(bh);
1714 mark_buffer_async_write_endio(bh, handler);
1715 } else {
1717 * The buffer may have been set dirty during
1718 * attachment to a dirty page.
1720 clear_buffer_dirty(bh);
1722 } while ((bh = bh->b_this_page) != head);
1723 SetPageError(page);
1724 BUG_ON(PageWriteback(page));
1725 mapping_set_error(page->mapping, err);
1726 set_page_writeback(page);
1727 do {
1728 struct buffer_head *next = bh->b_this_page;
1729 if (buffer_async_write(bh)) {
1730 clear_buffer_dirty(bh);
1731 submit_bh(write_op, bh);
1732 nr_underway++;
1734 bh = next;
1735 } while (bh != head);
1736 unlock_page(page);
1737 goto done;
1741 * If a page has any new buffers, zero them out here, and mark them uptodate
1742 * and dirty so they'll be written out (in order to prevent uninitialised
1743 * block data from leaking). And clear the new bit.
1745 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1747 unsigned int block_start, block_end;
1748 struct buffer_head *head, *bh;
1750 BUG_ON(!PageLocked(page));
1751 if (!page_has_buffers(page))
1752 return;
1754 bh = head = page_buffers(page);
1755 block_start = 0;
1756 do {
1757 block_end = block_start + bh->b_size;
1759 if (buffer_new(bh)) {
1760 if (block_end > from && block_start < to) {
1761 if (!PageUptodate(page)) {
1762 unsigned start, size;
1764 start = max(from, block_start);
1765 size = min(to, block_end) - start;
1767 zero_user(page, start, size);
1768 set_buffer_uptodate(bh);
1771 clear_buffer_new(bh);
1772 mark_buffer_dirty(bh);
1776 block_start = block_end;
1777 bh = bh->b_this_page;
1778 } while (bh != head);
1780 EXPORT_SYMBOL(page_zero_new_buffers);
1782 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1783 get_block_t *get_block)
1785 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1786 unsigned to = from + len;
1787 struct inode *inode = page->mapping->host;
1788 unsigned block_start, block_end;
1789 sector_t block;
1790 int err = 0;
1791 unsigned blocksize, bbits;
1792 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1794 BUG_ON(!PageLocked(page));
1795 BUG_ON(from > PAGE_CACHE_SIZE);
1796 BUG_ON(to > PAGE_CACHE_SIZE);
1797 BUG_ON(from > to);
1799 blocksize = 1 << inode->i_blkbits;
1800 if (!page_has_buffers(page))
1801 create_empty_buffers(page, blocksize, 0);
1802 head = page_buffers(page);
1804 bbits = inode->i_blkbits;
1805 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1807 for(bh = head, block_start = 0; bh != head || !block_start;
1808 block++, block_start=block_end, bh = bh->b_this_page) {
1809 block_end = block_start + blocksize;
1810 if (block_end <= from || block_start >= to) {
1811 if (PageUptodate(page)) {
1812 if (!buffer_uptodate(bh))
1813 set_buffer_uptodate(bh);
1815 continue;
1817 if (buffer_new(bh))
1818 clear_buffer_new(bh);
1819 if (!buffer_mapped(bh)) {
1820 WARN_ON(bh->b_size != blocksize);
1821 err = get_block(inode, block, bh, 1);
1822 if (err)
1823 break;
1824 if (buffer_new(bh)) {
1825 unmap_underlying_metadata(bh->b_bdev,
1826 bh->b_blocknr);
1827 if (PageUptodate(page)) {
1828 clear_buffer_new(bh);
1829 set_buffer_uptodate(bh);
1830 mark_buffer_dirty(bh);
1831 continue;
1833 if (block_end > to || block_start < from)
1834 zero_user_segments(page,
1835 to, block_end,
1836 block_start, from);
1837 continue;
1840 if (PageUptodate(page)) {
1841 if (!buffer_uptodate(bh))
1842 set_buffer_uptodate(bh);
1843 continue;
1845 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1846 !buffer_unwritten(bh) &&
1847 (block_start < from || block_end > to)) {
1848 ll_rw_block(READ, 1, &bh);
1849 *wait_bh++=bh;
1853 * If we issued read requests - let them complete.
1855 while(wait_bh > wait) {
1856 wait_on_buffer(*--wait_bh);
1857 if (!buffer_uptodate(*wait_bh))
1858 err = -EIO;
1860 if (unlikely(err))
1861 page_zero_new_buffers(page, from, to);
1862 return err;
1864 EXPORT_SYMBOL(__block_write_begin);
1866 static int __block_commit_write(struct inode *inode, struct page *page,
1867 unsigned from, unsigned to)
1869 unsigned block_start, block_end;
1870 int partial = 0;
1871 unsigned blocksize;
1872 struct buffer_head *bh, *head;
1874 blocksize = 1 << inode->i_blkbits;
1876 for(bh = head = page_buffers(page), block_start = 0;
1877 bh != head || !block_start;
1878 block_start=block_end, bh = bh->b_this_page) {
1879 block_end = block_start + blocksize;
1880 if (block_end <= from || block_start >= to) {
1881 if (!buffer_uptodate(bh))
1882 partial = 1;
1883 } else {
1884 set_buffer_uptodate(bh);
1885 mark_buffer_dirty(bh);
1887 clear_buffer_new(bh);
1891 * If this is a partial write which happened to make all buffers
1892 * uptodate then we can optimize away a bogus readpage() for
1893 * the next read(). Here we 'discover' whether the page went
1894 * uptodate as a result of this (potentially partial) write.
1896 if (!partial)
1897 SetPageUptodate(page);
1898 return 0;
1902 * block_write_begin takes care of the basic task of block allocation and
1903 * bringing partial write blocks uptodate first.
1905 * The filesystem needs to handle block truncation upon failure.
1907 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
1908 unsigned flags, struct page **pagep, get_block_t *get_block)
1910 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1911 struct page *page;
1912 int status;
1914 page = grab_cache_page_write_begin(mapping, index, flags);
1915 if (!page)
1916 return -ENOMEM;
1918 status = __block_write_begin(page, pos, len, get_block);
1919 if (unlikely(status)) {
1920 unlock_page(page);
1921 page_cache_release(page);
1922 page = NULL;
1925 *pagep = page;
1926 return status;
1928 EXPORT_SYMBOL(block_write_begin);
1930 int block_write_end(struct file *file, struct address_space *mapping,
1931 loff_t pos, unsigned len, unsigned copied,
1932 struct page *page, void *fsdata)
1934 struct inode *inode = mapping->host;
1935 unsigned start;
1937 start = pos & (PAGE_CACHE_SIZE - 1);
1939 if (unlikely(copied < len)) {
1941 * The buffers that were written will now be uptodate, so we
1942 * don't have to worry about a readpage reading them and
1943 * overwriting a partial write. However if we have encountered
1944 * a short write and only partially written into a buffer, it
1945 * will not be marked uptodate, so a readpage might come in and
1946 * destroy our partial write.
1948 * Do the simplest thing, and just treat any short write to a
1949 * non uptodate page as a zero-length write, and force the
1950 * caller to redo the whole thing.
1952 if (!PageUptodate(page))
1953 copied = 0;
1955 page_zero_new_buffers(page, start+copied, start+len);
1957 flush_dcache_page(page);
1959 /* This could be a short (even 0-length) commit */
1960 __block_commit_write(inode, page, start, start+copied);
1962 return copied;
1964 EXPORT_SYMBOL(block_write_end);
1966 int generic_write_end(struct file *file, struct address_space *mapping,
1967 loff_t pos, unsigned len, unsigned copied,
1968 struct page *page, void *fsdata)
1970 struct inode *inode = mapping->host;
1971 int i_size_changed = 0;
1973 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1976 * No need to use i_size_read() here, the i_size
1977 * cannot change under us because we hold i_mutex.
1979 * But it's important to update i_size while still holding page lock:
1980 * page writeout could otherwise come in and zero beyond i_size.
1982 if (pos+copied > inode->i_size) {
1983 i_size_write(inode, pos+copied);
1984 i_size_changed = 1;
1987 unlock_page(page);
1988 page_cache_release(page);
1991 * Don't mark the inode dirty under page lock. First, it unnecessarily
1992 * makes the holding time of page lock longer. Second, it forces lock
1993 * ordering of page lock and transaction start for journaling
1994 * filesystems.
1996 if (i_size_changed)
1997 mark_inode_dirty(inode);
1999 return copied;
2001 EXPORT_SYMBOL(generic_write_end);
2004 * block_is_partially_uptodate checks whether buffers within a page are
2005 * uptodate or not.
2007 * Returns true if all buffers which correspond to a file portion
2008 * we want to read are uptodate.
2010 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2011 unsigned long from)
2013 struct inode *inode = page->mapping->host;
2014 unsigned block_start, block_end, blocksize;
2015 unsigned to;
2016 struct buffer_head *bh, *head;
2017 int ret = 1;
2019 if (!page_has_buffers(page))
2020 return 0;
2022 blocksize = 1 << inode->i_blkbits;
2023 to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2024 to = from + to;
2025 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2026 return 0;
2028 head = page_buffers(page);
2029 bh = head;
2030 block_start = 0;
2031 do {
2032 block_end = block_start + blocksize;
2033 if (block_end > from && block_start < to) {
2034 if (!buffer_uptodate(bh)) {
2035 ret = 0;
2036 break;
2038 if (block_end >= to)
2039 break;
2041 block_start = block_end;
2042 bh = bh->b_this_page;
2043 } while (bh != head);
2045 return ret;
2047 EXPORT_SYMBOL(block_is_partially_uptodate);
2050 * Generic "read page" function for block devices that have the normal
2051 * get_block functionality. This is most of the block device filesystems.
2052 * Reads the page asynchronously --- the unlock_buffer() and
2053 * set/clear_buffer_uptodate() functions propagate buffer state into the
2054 * page struct once IO has completed.
2056 int block_read_full_page(struct page *page, get_block_t *get_block)
2058 struct inode *inode = page->mapping->host;
2059 sector_t iblock, lblock;
2060 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2061 unsigned int blocksize;
2062 int nr, i;
2063 int fully_mapped = 1;
2065 BUG_ON(!PageLocked(page));
2066 blocksize = 1 << inode->i_blkbits;
2067 if (!page_has_buffers(page))
2068 create_empty_buffers(page, blocksize, 0);
2069 head = page_buffers(page);
2071 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2072 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2073 bh = head;
2074 nr = 0;
2075 i = 0;
2077 do {
2078 if (buffer_uptodate(bh))
2079 continue;
2081 if (!buffer_mapped(bh)) {
2082 int err = 0;
2084 fully_mapped = 0;
2085 if (iblock < lblock) {
2086 WARN_ON(bh->b_size != blocksize);
2087 err = get_block(inode, iblock, bh, 0);
2088 if (err)
2089 SetPageError(page);
2091 if (!buffer_mapped(bh)) {
2092 zero_user(page, i * blocksize, blocksize);
2093 if (!err)
2094 set_buffer_uptodate(bh);
2095 continue;
2098 * get_block() might have updated the buffer
2099 * synchronously
2101 if (buffer_uptodate(bh))
2102 continue;
2104 arr[nr++] = bh;
2105 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2107 if (fully_mapped)
2108 SetPageMappedToDisk(page);
2110 if (!nr) {
2112 * All buffers are uptodate - we can set the page uptodate
2113 * as well. But not if get_block() returned an error.
2115 if (!PageError(page))
2116 SetPageUptodate(page);
2117 unlock_page(page);
2118 return 0;
2121 /* Stage two: lock the buffers */
2122 for (i = 0; i < nr; i++) {
2123 bh = arr[i];
2124 lock_buffer(bh);
2125 mark_buffer_async_read(bh);
2129 * Stage 3: start the IO. Check for uptodateness
2130 * inside the buffer lock in case another process reading
2131 * the underlying blockdev brought it uptodate (the sct fix).
2133 for (i = 0; i < nr; i++) {
2134 bh = arr[i];
2135 if (buffer_uptodate(bh))
2136 end_buffer_async_read(bh, 1);
2137 else
2138 submit_bh(READ, bh);
2140 return 0;
2142 EXPORT_SYMBOL(block_read_full_page);
2144 /* utility function for filesystems that need to do work on expanding
2145 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2146 * deal with the hole.
2148 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2150 struct address_space *mapping = inode->i_mapping;
2151 struct page *page;
2152 void *fsdata;
2153 int err;
2155 err = inode_newsize_ok(inode, size);
2156 if (err)
2157 goto out;
2159 err = pagecache_write_begin(NULL, mapping, size, 0,
2160 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2161 &page, &fsdata);
2162 if (err)
2163 goto out;
2165 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2166 BUG_ON(err > 0);
2168 out:
2169 return err;
2171 EXPORT_SYMBOL(generic_cont_expand_simple);
2173 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2174 loff_t pos, loff_t *bytes)
2176 struct inode *inode = mapping->host;
2177 unsigned blocksize = 1 << inode->i_blkbits;
2178 struct page *page;
2179 void *fsdata;
2180 pgoff_t index, curidx;
2181 loff_t curpos;
2182 unsigned zerofrom, offset, len;
2183 int err = 0;
2185 index = pos >> PAGE_CACHE_SHIFT;
2186 offset = pos & ~PAGE_CACHE_MASK;
2188 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2189 zerofrom = curpos & ~PAGE_CACHE_MASK;
2190 if (zerofrom & (blocksize-1)) {
2191 *bytes |= (blocksize-1);
2192 (*bytes)++;
2194 len = PAGE_CACHE_SIZE - zerofrom;
2196 err = pagecache_write_begin(file, mapping, curpos, len,
2197 AOP_FLAG_UNINTERRUPTIBLE,
2198 &page, &fsdata);
2199 if (err)
2200 goto out;
2201 zero_user(page, zerofrom, len);
2202 err = pagecache_write_end(file, mapping, curpos, len, len,
2203 page, fsdata);
2204 if (err < 0)
2205 goto out;
2206 BUG_ON(err != len);
2207 err = 0;
2209 balance_dirty_pages_ratelimited(mapping);
2212 /* page covers the boundary, find the boundary offset */
2213 if (index == curidx) {
2214 zerofrom = curpos & ~PAGE_CACHE_MASK;
2215 /* if we will expand the thing last block will be filled */
2216 if (offset <= zerofrom) {
2217 goto out;
2219 if (zerofrom & (blocksize-1)) {
2220 *bytes |= (blocksize-1);
2221 (*bytes)++;
2223 len = offset - zerofrom;
2225 err = pagecache_write_begin(file, mapping, curpos, len,
2226 AOP_FLAG_UNINTERRUPTIBLE,
2227 &page, &fsdata);
2228 if (err)
2229 goto out;
2230 zero_user(page, zerofrom, len);
2231 err = pagecache_write_end(file, mapping, curpos, len, len,
2232 page, fsdata);
2233 if (err < 0)
2234 goto out;
2235 BUG_ON(err != len);
2236 err = 0;
2238 out:
2239 return err;
2243 * For moronic filesystems that do not allow holes in file.
2244 * We may have to extend the file.
2246 int cont_write_begin(struct file *file, struct address_space *mapping,
2247 loff_t pos, unsigned len, unsigned flags,
2248 struct page **pagep, void **fsdata,
2249 get_block_t *get_block, loff_t *bytes)
2251 struct inode *inode = mapping->host;
2252 unsigned blocksize = 1 << inode->i_blkbits;
2253 unsigned zerofrom;
2254 int err;
2256 err = cont_expand_zero(file, mapping, pos, bytes);
2257 if (err)
2258 return err;
2260 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2261 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2262 *bytes |= (blocksize-1);
2263 (*bytes)++;
2266 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2268 EXPORT_SYMBOL(cont_write_begin);
2270 int block_commit_write(struct page *page, unsigned from, unsigned to)
2272 struct inode *inode = page->mapping->host;
2273 __block_commit_write(inode,page,from,to);
2274 return 0;
2276 EXPORT_SYMBOL(block_commit_write);
2279 * block_page_mkwrite() is not allowed to change the file size as it gets
2280 * called from a page fault handler when a page is first dirtied. Hence we must
2281 * be careful to check for EOF conditions here. We set the page up correctly
2282 * for a written page which means we get ENOSPC checking when writing into
2283 * holes and correct delalloc and unwritten extent mapping on filesystems that
2284 * support these features.
2286 * We are not allowed to take the i_mutex here so we have to play games to
2287 * protect against truncate races as the page could now be beyond EOF. Because
2288 * truncate writes the inode size before removing pages, once we have the
2289 * page lock we can determine safely if the page is beyond EOF. If it is not
2290 * beyond EOF, then the page is guaranteed safe against truncation until we
2291 * unlock the page.
2293 * Direct callers of this function should call vfs_check_frozen() so that page
2294 * fault does not busyloop until the fs is thawed.
2296 int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2297 get_block_t get_block)
2299 struct page *page = vmf->page;
2300 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2301 unsigned long end;
2302 loff_t size;
2303 int ret;
2305 lock_page(page);
2306 size = i_size_read(inode);
2307 if ((page->mapping != inode->i_mapping) ||
2308 (page_offset(page) > size)) {
2309 /* We overload EFAULT to mean page got truncated */
2310 ret = -EFAULT;
2311 goto out_unlock;
2314 /* page is wholly or partially inside EOF */
2315 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2316 end = size & ~PAGE_CACHE_MASK;
2317 else
2318 end = PAGE_CACHE_SIZE;
2320 ret = __block_write_begin(page, 0, end, get_block);
2321 if (!ret)
2322 ret = block_commit_write(page, 0, end);
2324 if (unlikely(ret < 0))
2325 goto out_unlock;
2327 * Freezing in progress? We check after the page is marked dirty and
2328 * with page lock held so if the test here fails, we are sure freezing
2329 * code will wait during syncing until the page fault is done - at that
2330 * point page will be dirty and unlocked so freezing code will write it
2331 * and writeprotect it again.
2333 set_page_dirty(page);
2334 if (inode->i_sb->s_frozen != SB_UNFROZEN) {
2335 ret = -EAGAIN;
2336 goto out_unlock;
2338 wait_on_page_writeback(page);
2339 return 0;
2340 out_unlock:
2341 unlock_page(page);
2342 return ret;
2344 EXPORT_SYMBOL(__block_page_mkwrite);
2346 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2347 get_block_t get_block)
2349 int ret;
2350 struct super_block *sb = vma->vm_file->f_path.dentry->d_inode->i_sb;
2353 * This check is racy but catches the common case. The check in
2354 * __block_page_mkwrite() is reliable.
2356 vfs_check_frozen(sb, SB_FREEZE_WRITE);
2357 ret = __block_page_mkwrite(vma, vmf, get_block);
2358 return block_page_mkwrite_return(ret);
2360 EXPORT_SYMBOL(block_page_mkwrite);
2363 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2364 * immediately, while under the page lock. So it needs a special end_io
2365 * handler which does not touch the bh after unlocking it.
2367 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2369 __end_buffer_read_notouch(bh, uptodate);
2373 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2374 * the page (converting it to circular linked list and taking care of page
2375 * dirty races).
2377 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2379 struct buffer_head *bh;
2381 BUG_ON(!PageLocked(page));
2383 spin_lock(&page->mapping->private_lock);
2384 bh = head;
2385 do {
2386 if (PageDirty(page))
2387 set_buffer_dirty(bh);
2388 if (!bh->b_this_page)
2389 bh->b_this_page = head;
2390 bh = bh->b_this_page;
2391 } while (bh != head);
2392 attach_page_buffers(page, head);
2393 spin_unlock(&page->mapping->private_lock);
2397 * On entry, the page is fully not uptodate.
2398 * On exit the page is fully uptodate in the areas outside (from,to)
2399 * The filesystem needs to handle block truncation upon failure.
2401 int nobh_write_begin(struct address_space *mapping,
2402 loff_t pos, unsigned len, unsigned flags,
2403 struct page **pagep, void **fsdata,
2404 get_block_t *get_block)
2406 struct inode *inode = mapping->host;
2407 const unsigned blkbits = inode->i_blkbits;
2408 const unsigned blocksize = 1 << blkbits;
2409 struct buffer_head *head, *bh;
2410 struct page *page;
2411 pgoff_t index;
2412 unsigned from, to;
2413 unsigned block_in_page;
2414 unsigned block_start, block_end;
2415 sector_t block_in_file;
2416 int nr_reads = 0;
2417 int ret = 0;
2418 int is_mapped_to_disk = 1;
2420 index = pos >> PAGE_CACHE_SHIFT;
2421 from = pos & (PAGE_CACHE_SIZE - 1);
2422 to = from + len;
2424 page = grab_cache_page_write_begin(mapping, index, flags);
2425 if (!page)
2426 return -ENOMEM;
2427 *pagep = page;
2428 *fsdata = NULL;
2430 if (page_has_buffers(page)) {
2431 ret = __block_write_begin(page, pos, len, get_block);
2432 if (unlikely(ret))
2433 goto out_release;
2434 return ret;
2437 if (PageMappedToDisk(page))
2438 return 0;
2441 * Allocate buffers so that we can keep track of state, and potentially
2442 * attach them to the page if an error occurs. In the common case of
2443 * no error, they will just be freed again without ever being attached
2444 * to the page (which is all OK, because we're under the page lock).
2446 * Be careful: the buffer linked list is a NULL terminated one, rather
2447 * than the circular one we're used to.
2449 head = alloc_page_buffers(page, blocksize, 0);
2450 if (!head) {
2451 ret = -ENOMEM;
2452 goto out_release;
2455 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2458 * We loop across all blocks in the page, whether or not they are
2459 * part of the affected region. This is so we can discover if the
2460 * page is fully mapped-to-disk.
2462 for (block_start = 0, block_in_page = 0, bh = head;
2463 block_start < PAGE_CACHE_SIZE;
2464 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2465 int create;
2467 block_end = block_start + blocksize;
2468 bh->b_state = 0;
2469 create = 1;
2470 if (block_start >= to)
2471 create = 0;
2472 ret = get_block(inode, block_in_file + block_in_page,
2473 bh, create);
2474 if (ret)
2475 goto failed;
2476 if (!buffer_mapped(bh))
2477 is_mapped_to_disk = 0;
2478 if (buffer_new(bh))
2479 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2480 if (PageUptodate(page)) {
2481 set_buffer_uptodate(bh);
2482 continue;
2484 if (buffer_new(bh) || !buffer_mapped(bh)) {
2485 zero_user_segments(page, block_start, from,
2486 to, block_end);
2487 continue;
2489 if (buffer_uptodate(bh))
2490 continue; /* reiserfs does this */
2491 if (block_start < from || block_end > to) {
2492 lock_buffer(bh);
2493 bh->b_end_io = end_buffer_read_nobh;
2494 submit_bh(READ, bh);
2495 nr_reads++;
2499 if (nr_reads) {
2501 * The page is locked, so these buffers are protected from
2502 * any VM or truncate activity. Hence we don't need to care
2503 * for the buffer_head refcounts.
2505 for (bh = head; bh; bh = bh->b_this_page) {
2506 wait_on_buffer(bh);
2507 if (!buffer_uptodate(bh))
2508 ret = -EIO;
2510 if (ret)
2511 goto failed;
2514 if (is_mapped_to_disk)
2515 SetPageMappedToDisk(page);
2517 *fsdata = head; /* to be released by nobh_write_end */
2519 return 0;
2521 failed:
2522 BUG_ON(!ret);
2524 * Error recovery is a bit difficult. We need to zero out blocks that
2525 * were newly allocated, and dirty them to ensure they get written out.
2526 * Buffers need to be attached to the page at this point, otherwise
2527 * the handling of potential IO errors during writeout would be hard
2528 * (could try doing synchronous writeout, but what if that fails too?)
2530 attach_nobh_buffers(page, head);
2531 page_zero_new_buffers(page, from, to);
2533 out_release:
2534 unlock_page(page);
2535 page_cache_release(page);
2536 *pagep = NULL;
2538 return ret;
2540 EXPORT_SYMBOL(nobh_write_begin);
2542 int nobh_write_end(struct file *file, struct address_space *mapping,
2543 loff_t pos, unsigned len, unsigned copied,
2544 struct page *page, void *fsdata)
2546 struct inode *inode = page->mapping->host;
2547 struct buffer_head *head = fsdata;
2548 struct buffer_head *bh;
2549 BUG_ON(fsdata != NULL && page_has_buffers(page));
2551 if (unlikely(copied < len) && head)
2552 attach_nobh_buffers(page, head);
2553 if (page_has_buffers(page))
2554 return generic_write_end(file, mapping, pos, len,
2555 copied, page, fsdata);
2557 SetPageUptodate(page);
2558 set_page_dirty(page);
2559 if (pos+copied > inode->i_size) {
2560 i_size_write(inode, pos+copied);
2561 mark_inode_dirty(inode);
2564 unlock_page(page);
2565 page_cache_release(page);
2567 while (head) {
2568 bh = head;
2569 head = head->b_this_page;
2570 free_buffer_head(bh);
2573 return copied;
2575 EXPORT_SYMBOL(nobh_write_end);
2578 * nobh_writepage() - based on block_full_write_page() except
2579 * that it tries to operate without attaching bufferheads to
2580 * the page.
2582 int nobh_writepage(struct page *page, get_block_t *get_block,
2583 struct writeback_control *wbc)
2585 struct inode * const inode = page->mapping->host;
2586 loff_t i_size = i_size_read(inode);
2587 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2588 unsigned offset;
2589 int ret;
2591 /* Is the page fully inside i_size? */
2592 if (page->index < end_index)
2593 goto out;
2595 /* Is the page fully outside i_size? (truncate in progress) */
2596 offset = i_size & (PAGE_CACHE_SIZE-1);
2597 if (page->index >= end_index+1 || !offset) {
2599 * The page may have dirty, unmapped buffers. For example,
2600 * they may have been added in ext3_writepage(). Make them
2601 * freeable here, so the page does not leak.
2603 #if 0
2604 /* Not really sure about this - do we need this ? */
2605 if (page->mapping->a_ops->invalidatepage)
2606 page->mapping->a_ops->invalidatepage(page, offset);
2607 #endif
2608 unlock_page(page);
2609 return 0; /* don't care */
2613 * The page straddles i_size. It must be zeroed out on each and every
2614 * writepage invocation because it may be mmapped. "A file is mapped
2615 * in multiples of the page size. For a file that is not a multiple of
2616 * the page size, the remaining memory is zeroed when mapped, and
2617 * writes to that region are not written out to the file."
2619 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2620 out:
2621 ret = mpage_writepage(page, get_block, wbc);
2622 if (ret == -EAGAIN)
2623 ret = __block_write_full_page(inode, page, get_block, wbc,
2624 end_buffer_async_write);
2625 return ret;
2627 EXPORT_SYMBOL(nobh_writepage);
2629 int nobh_truncate_page(struct address_space *mapping,
2630 loff_t from, get_block_t *get_block)
2632 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2633 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2634 unsigned blocksize;
2635 sector_t iblock;
2636 unsigned length, pos;
2637 struct inode *inode = mapping->host;
2638 struct page *page;
2639 struct buffer_head map_bh;
2640 int err;
2642 blocksize = 1 << inode->i_blkbits;
2643 length = offset & (blocksize - 1);
2645 /* Block boundary? Nothing to do */
2646 if (!length)
2647 return 0;
2649 length = blocksize - length;
2650 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2652 page = grab_cache_page(mapping, index);
2653 err = -ENOMEM;
2654 if (!page)
2655 goto out;
2657 if (page_has_buffers(page)) {
2658 has_buffers:
2659 unlock_page(page);
2660 page_cache_release(page);
2661 return block_truncate_page(mapping, from, get_block);
2664 /* Find the buffer that contains "offset" */
2665 pos = blocksize;
2666 while (offset >= pos) {
2667 iblock++;
2668 pos += blocksize;
2671 map_bh.b_size = blocksize;
2672 map_bh.b_state = 0;
2673 err = get_block(inode, iblock, &map_bh, 0);
2674 if (err)
2675 goto unlock;
2676 /* unmapped? It's a hole - nothing to do */
2677 if (!buffer_mapped(&map_bh))
2678 goto unlock;
2680 /* Ok, it's mapped. Make sure it's up-to-date */
2681 if (!PageUptodate(page)) {
2682 err = mapping->a_ops->readpage(NULL, page);
2683 if (err) {
2684 page_cache_release(page);
2685 goto out;
2687 lock_page(page);
2688 if (!PageUptodate(page)) {
2689 err = -EIO;
2690 goto unlock;
2692 if (page_has_buffers(page))
2693 goto has_buffers;
2695 zero_user(page, offset, length);
2696 set_page_dirty(page);
2697 err = 0;
2699 unlock:
2700 unlock_page(page);
2701 page_cache_release(page);
2702 out:
2703 return err;
2705 EXPORT_SYMBOL(nobh_truncate_page);
2707 int block_truncate_page(struct address_space *mapping,
2708 loff_t from, get_block_t *get_block)
2710 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2711 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2712 unsigned blocksize;
2713 sector_t iblock;
2714 unsigned length, pos;
2715 struct inode *inode = mapping->host;
2716 struct page *page;
2717 struct buffer_head *bh;
2718 int err;
2720 blocksize = 1 << inode->i_blkbits;
2721 length = offset & (blocksize - 1);
2723 /* Block boundary? Nothing to do */
2724 if (!length)
2725 return 0;
2727 length = blocksize - length;
2728 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2730 page = grab_cache_page(mapping, index);
2731 err = -ENOMEM;
2732 if (!page)
2733 goto out;
2735 if (!page_has_buffers(page))
2736 create_empty_buffers(page, blocksize, 0);
2738 /* Find the buffer that contains "offset" */
2739 bh = page_buffers(page);
2740 pos = blocksize;
2741 while (offset >= pos) {
2742 bh = bh->b_this_page;
2743 iblock++;
2744 pos += blocksize;
2747 err = 0;
2748 if (!buffer_mapped(bh)) {
2749 WARN_ON(bh->b_size != blocksize);
2750 err = get_block(inode, iblock, bh, 0);
2751 if (err)
2752 goto unlock;
2753 /* unmapped? It's a hole - nothing to do */
2754 if (!buffer_mapped(bh))
2755 goto unlock;
2758 /* Ok, it's mapped. Make sure it's up-to-date */
2759 if (PageUptodate(page))
2760 set_buffer_uptodate(bh);
2762 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2763 err = -EIO;
2764 ll_rw_block(READ, 1, &bh);
2765 wait_on_buffer(bh);
2766 /* Uhhuh. Read error. Complain and punt. */
2767 if (!buffer_uptodate(bh))
2768 goto unlock;
2771 zero_user(page, offset, length);
2772 mark_buffer_dirty(bh);
2773 err = 0;
2775 unlock:
2776 unlock_page(page);
2777 page_cache_release(page);
2778 out:
2779 return err;
2781 EXPORT_SYMBOL(block_truncate_page);
2784 * The generic ->writepage function for buffer-backed address_spaces
2785 * this form passes in the end_io handler used to finish the IO.
2787 int block_write_full_page_endio(struct page *page, get_block_t *get_block,
2788 struct writeback_control *wbc, bh_end_io_t *handler)
2790 struct inode * const inode = page->mapping->host;
2791 loff_t i_size = i_size_read(inode);
2792 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2793 unsigned offset;
2795 /* Is the page fully inside i_size? */
2796 if (page->index < end_index)
2797 return __block_write_full_page(inode, page, get_block, wbc,
2798 handler);
2800 /* Is the page fully outside i_size? (truncate in progress) */
2801 offset = i_size & (PAGE_CACHE_SIZE-1);
2802 if (page->index >= end_index+1 || !offset) {
2804 * The page may have dirty, unmapped buffers. For example,
2805 * they may have been added in ext3_writepage(). Make them
2806 * freeable here, so the page does not leak.
2808 do_invalidatepage(page, 0);
2809 unlock_page(page);
2810 return 0; /* don't care */
2814 * The page straddles i_size. It must be zeroed out on each and every
2815 * writepage invocation because it may be mmapped. "A file is mapped
2816 * in multiples of the page size. For a file that is not a multiple of
2817 * the page size, the remaining memory is zeroed when mapped, and
2818 * writes to that region are not written out to the file."
2820 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2821 return __block_write_full_page(inode, page, get_block, wbc, handler);
2823 EXPORT_SYMBOL(block_write_full_page_endio);
2826 * The generic ->writepage function for buffer-backed address_spaces
2828 int block_write_full_page(struct page *page, get_block_t *get_block,
2829 struct writeback_control *wbc)
2831 return block_write_full_page_endio(page, get_block, wbc,
2832 end_buffer_async_write);
2834 EXPORT_SYMBOL(block_write_full_page);
2836 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2837 get_block_t *get_block)
2839 struct buffer_head tmp;
2840 struct inode *inode = mapping->host;
2841 tmp.b_state = 0;
2842 tmp.b_blocknr = 0;
2843 tmp.b_size = 1 << inode->i_blkbits;
2844 get_block(inode, block, &tmp, 0);
2845 return tmp.b_blocknr;
2847 EXPORT_SYMBOL(generic_block_bmap);
2849 static void end_bio_bh_io_sync(struct bio *bio, int err)
2851 struct buffer_head *bh = bio->bi_private;
2853 if (err == -EOPNOTSUPP) {
2854 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2857 if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2858 set_bit(BH_Quiet, &bh->b_state);
2860 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2861 bio_put(bio);
2864 int submit_bh(int rw, struct buffer_head * bh)
2866 struct bio *bio;
2867 int ret = 0;
2869 BUG_ON(!buffer_locked(bh));
2870 BUG_ON(!buffer_mapped(bh));
2871 BUG_ON(!bh->b_end_io);
2872 BUG_ON(buffer_delay(bh));
2873 BUG_ON(buffer_unwritten(bh));
2876 * Only clear out a write error when rewriting
2878 if (test_set_buffer_req(bh) && (rw & WRITE))
2879 clear_buffer_write_io_error(bh);
2882 * from here on down, it's all bio -- do the initial mapping,
2883 * submit_bio -> generic_make_request may further map this bio around
2885 bio = bio_alloc(GFP_NOIO, 1);
2887 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2888 bio->bi_bdev = bh->b_bdev;
2889 bio->bi_io_vec[0].bv_page = bh->b_page;
2890 bio->bi_io_vec[0].bv_len = bh->b_size;
2891 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2893 bio->bi_vcnt = 1;
2894 bio->bi_idx = 0;
2895 bio->bi_size = bh->b_size;
2897 bio->bi_end_io = end_bio_bh_io_sync;
2898 bio->bi_private = bh;
2900 bio_get(bio);
2901 submit_bio(rw, bio);
2903 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2904 ret = -EOPNOTSUPP;
2906 bio_put(bio);
2907 return ret;
2909 EXPORT_SYMBOL(submit_bh);
2912 * ll_rw_block: low-level access to block devices (DEPRECATED)
2913 * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
2914 * @nr: number of &struct buffer_heads in the array
2915 * @bhs: array of pointers to &struct buffer_head
2917 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2918 * requests an I/O operation on them, either a %READ or a %WRITE. The third
2919 * %READA option is described in the documentation for generic_make_request()
2920 * which ll_rw_block() calls.
2922 * This function drops any buffer that it cannot get a lock on (with the
2923 * BH_Lock state bit), any buffer that appears to be clean when doing a write
2924 * request, and any buffer that appears to be up-to-date when doing read
2925 * request. Further it marks as clean buffers that are processed for
2926 * writing (the buffer cache won't assume that they are actually clean
2927 * until the buffer gets unlocked).
2929 * ll_rw_block sets b_end_io to simple completion handler that marks
2930 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2931 * any waiters.
2933 * All of the buffers must be for the same device, and must also be a
2934 * multiple of the current approved size for the device.
2936 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2938 int i;
2940 for (i = 0; i < nr; i++) {
2941 struct buffer_head *bh = bhs[i];
2943 if (!trylock_buffer(bh))
2944 continue;
2945 if (rw == WRITE) {
2946 if (test_clear_buffer_dirty(bh)) {
2947 bh->b_end_io = end_buffer_write_sync;
2948 get_bh(bh);
2949 submit_bh(WRITE, bh);
2950 continue;
2952 } else {
2953 if (!buffer_uptodate(bh)) {
2954 bh->b_end_io = end_buffer_read_sync;
2955 get_bh(bh);
2956 submit_bh(rw, bh);
2957 continue;
2960 unlock_buffer(bh);
2963 EXPORT_SYMBOL(ll_rw_block);
2965 void write_dirty_buffer(struct buffer_head *bh, int rw)
2967 lock_buffer(bh);
2968 if (!test_clear_buffer_dirty(bh)) {
2969 unlock_buffer(bh);
2970 return;
2972 bh->b_end_io = end_buffer_write_sync;
2973 get_bh(bh);
2974 submit_bh(rw, bh);
2976 EXPORT_SYMBOL(write_dirty_buffer);
2979 * For a data-integrity writeout, we need to wait upon any in-progress I/O
2980 * and then start new I/O and then wait upon it. The caller must have a ref on
2981 * the buffer_head.
2983 int __sync_dirty_buffer(struct buffer_head *bh, int rw)
2985 int ret = 0;
2987 WARN_ON(atomic_read(&bh->b_count) < 1);
2988 lock_buffer(bh);
2989 if (test_clear_buffer_dirty(bh)) {
2990 get_bh(bh);
2991 bh->b_end_io = end_buffer_write_sync;
2992 ret = submit_bh(rw, bh);
2993 wait_on_buffer(bh);
2994 if (!ret && !buffer_uptodate(bh))
2995 ret = -EIO;
2996 } else {
2997 unlock_buffer(bh);
2999 return ret;
3001 EXPORT_SYMBOL(__sync_dirty_buffer);
3003 int sync_dirty_buffer(struct buffer_head *bh)
3005 return __sync_dirty_buffer(bh, WRITE_SYNC);
3007 EXPORT_SYMBOL(sync_dirty_buffer);
3010 * try_to_free_buffers() checks if all the buffers on this particular page
3011 * are unused, and releases them if so.
3013 * Exclusion against try_to_free_buffers may be obtained by either
3014 * locking the page or by holding its mapping's private_lock.
3016 * If the page is dirty but all the buffers are clean then we need to
3017 * be sure to mark the page clean as well. This is because the page
3018 * may be against a block device, and a later reattachment of buffers
3019 * to a dirty page will set *all* buffers dirty. Which would corrupt
3020 * filesystem data on the same device.
3022 * The same applies to regular filesystem pages: if all the buffers are
3023 * clean then we set the page clean and proceed. To do that, we require
3024 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3025 * private_lock.
3027 * try_to_free_buffers() is non-blocking.
3029 static inline int buffer_busy(struct buffer_head *bh)
3031 return atomic_read(&bh->b_count) |
3032 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3035 static int
3036 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3038 struct buffer_head *head = page_buffers(page);
3039 struct buffer_head *bh;
3041 bh = head;
3042 do {
3043 if (buffer_write_io_error(bh) && page->mapping)
3044 set_bit(AS_EIO, &page->mapping->flags);
3045 if (buffer_busy(bh))
3046 goto failed;
3047 bh = bh->b_this_page;
3048 } while (bh != head);
3050 do {
3051 struct buffer_head *next = bh->b_this_page;
3053 if (bh->b_assoc_map)
3054 __remove_assoc_queue(bh);
3055 bh = next;
3056 } while (bh != head);
3057 *buffers_to_free = head;
3058 __clear_page_buffers(page);
3059 return 1;
3060 failed:
3061 return 0;
3064 int try_to_free_buffers(struct page *page)
3066 struct address_space * const mapping = page->mapping;
3067 struct buffer_head *buffers_to_free = NULL;
3068 int ret = 0;
3070 BUG_ON(!PageLocked(page));
3071 if (PageWriteback(page))
3072 return 0;
3074 if (mapping == NULL) { /* can this still happen? */
3075 ret = drop_buffers(page, &buffers_to_free);
3076 goto out;
3079 spin_lock(&mapping->private_lock);
3080 ret = drop_buffers(page, &buffers_to_free);
3083 * If the filesystem writes its buffers by hand (eg ext3)
3084 * then we can have clean buffers against a dirty page. We
3085 * clean the page here; otherwise the VM will never notice
3086 * that the filesystem did any IO at all.
3088 * Also, during truncate, discard_buffer will have marked all
3089 * the page's buffers clean. We discover that here and clean
3090 * the page also.
3092 * private_lock must be held over this entire operation in order
3093 * to synchronise against __set_page_dirty_buffers and prevent the
3094 * dirty bit from being lost.
3096 if (ret)
3097 cancel_dirty_page(page, PAGE_CACHE_SIZE);
3098 spin_unlock(&mapping->private_lock);
3099 out:
3100 if (buffers_to_free) {
3101 struct buffer_head *bh = buffers_to_free;
3103 do {
3104 struct buffer_head *next = bh->b_this_page;
3105 free_buffer_head(bh);
3106 bh = next;
3107 } while (bh != buffers_to_free);
3109 return ret;
3111 EXPORT_SYMBOL(try_to_free_buffers);
3114 * There are no bdflush tunables left. But distributions are
3115 * still running obsolete flush daemons, so we terminate them here.
3117 * Use of bdflush() is deprecated and will be removed in a future kernel.
3118 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3120 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3122 static int msg_count;
3124 if (!capable(CAP_SYS_ADMIN))
3125 return -EPERM;
3127 if (msg_count < 5) {
3128 msg_count++;
3129 printk(KERN_INFO
3130 "warning: process `%s' used the obsolete bdflush"
3131 " system call\n", current->comm);
3132 printk(KERN_INFO "Fix your initscripts?\n");
3135 if (func == 1)
3136 do_exit(0);
3137 return 0;
3141 * Buffer-head allocation
3143 static struct kmem_cache *bh_cachep;
3146 * Once the number of bh's in the machine exceeds this level, we start
3147 * stripping them in writeback.
3149 static int max_buffer_heads;
3151 int buffer_heads_over_limit;
3153 struct bh_accounting {
3154 int nr; /* Number of live bh's */
3155 int ratelimit; /* Limit cacheline bouncing */
3158 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3160 static void recalc_bh_state(void)
3162 int i;
3163 int tot = 0;
3165 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3166 return;
3167 __this_cpu_write(bh_accounting.ratelimit, 0);
3168 for_each_online_cpu(i)
3169 tot += per_cpu(bh_accounting, i).nr;
3170 buffer_heads_over_limit = (tot > max_buffer_heads);
3173 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3175 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3176 if (ret) {
3177 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3178 preempt_disable();
3179 __this_cpu_inc(bh_accounting.nr);
3180 recalc_bh_state();
3181 preempt_enable();
3183 return ret;
3185 EXPORT_SYMBOL(alloc_buffer_head);
3187 void free_buffer_head(struct buffer_head *bh)
3189 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3190 kmem_cache_free(bh_cachep, bh);
3191 preempt_disable();
3192 __this_cpu_dec(bh_accounting.nr);
3193 recalc_bh_state();
3194 preempt_enable();
3196 EXPORT_SYMBOL(free_buffer_head);
3198 static void buffer_exit_cpu(int cpu)
3200 int i;
3201 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3203 for (i = 0; i < BH_LRU_SIZE; i++) {
3204 brelse(b->bhs[i]);
3205 b->bhs[i] = NULL;
3207 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3208 per_cpu(bh_accounting, cpu).nr = 0;
3211 static int buffer_cpu_notify(struct notifier_block *self,
3212 unsigned long action, void *hcpu)
3214 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3215 buffer_exit_cpu((unsigned long)hcpu);
3216 return NOTIFY_OK;
3220 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3221 * @bh: struct buffer_head
3223 * Return true if the buffer is up-to-date and false,
3224 * with the buffer locked, if not.
3226 int bh_uptodate_or_lock(struct buffer_head *bh)
3228 if (!buffer_uptodate(bh)) {
3229 lock_buffer(bh);
3230 if (!buffer_uptodate(bh))
3231 return 0;
3232 unlock_buffer(bh);
3234 return 1;
3236 EXPORT_SYMBOL(bh_uptodate_or_lock);
3239 * bh_submit_read - Submit a locked buffer for reading
3240 * @bh: struct buffer_head
3242 * Returns zero on success and -EIO on error.
3244 int bh_submit_read(struct buffer_head *bh)
3246 BUG_ON(!buffer_locked(bh));
3248 if (buffer_uptodate(bh)) {
3249 unlock_buffer(bh);
3250 return 0;
3253 get_bh(bh);
3254 bh->b_end_io = end_buffer_read_sync;
3255 submit_bh(READ, bh);
3256 wait_on_buffer(bh);
3257 if (buffer_uptodate(bh))
3258 return 0;
3259 return -EIO;
3261 EXPORT_SYMBOL(bh_submit_read);
3263 void __init buffer_init(void)
3265 int nrpages;
3267 bh_cachep = kmem_cache_create("buffer_head",
3268 sizeof(struct buffer_head), 0,
3269 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3270 SLAB_MEM_SPREAD),
3271 NULL);
3274 * Limit the bh occupancy to 10% of ZONE_NORMAL
3276 nrpages = (nr_free_buffer_pages() * 10) / 100;
3277 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3278 hotcpu_notifier(buffer_cpu_notify, 0);