1 // SPDX-License-Identifier: GPL-2.0-only
5 * Core kernel scheduler code and related syscalls
7 * Copyright (C) 1991-2002 Linus Torvalds
9 #define CREATE_TRACE_POINTS
10 #include <trace/events/sched.h>
11 #undef CREATE_TRACE_POINTS
15 #include <linux/nospec.h>
17 #include <linux/kcov.h>
18 #include <linux/scs.h>
20 #include <asm/switch_to.h>
23 #include "../workqueue_internal.h"
24 #include "../../fs/io-wq.h"
25 #include "../smpboot.h"
31 * Export tracepoints that act as a bare tracehook (ie: have no trace event
32 * associated with them) to allow external modules to probe them.
34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp
);
35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp
);
36 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp
);
37 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp
);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp
);
39 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp
);
40 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp
);
41 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp
);
42 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp
);
44 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
46 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
48 * Debugging: various feature bits
50 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
51 * sysctl_sched_features, defined in sched.h, to allow constants propagation
52 * at compile time and compiler optimization based on features default.
54 #define SCHED_FEAT(name, enabled) \
55 (1UL << __SCHED_FEAT_##name) * enabled |
56 const_debug
unsigned int sysctl_sched_features
=
63 * Number of tasks to iterate in a single balance run.
64 * Limited because this is done with IRQs disabled.
66 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
69 * period over which we measure -rt task CPU usage in us.
72 unsigned int sysctl_sched_rt_period
= 1000000;
74 __read_mostly
int scheduler_running
;
77 * part of the period that we allow rt tasks to run in us.
80 int sysctl_sched_rt_runtime
= 950000;
84 * Serialization rules:
90 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
93 * rq2->lock where: rq1 < rq2
97 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
98 * local CPU's rq->lock, it optionally removes the task from the runqueue and
99 * always looks at the local rq data structures to find the most elegible task
102 * Task enqueue is also under rq->lock, possibly taken from another CPU.
103 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
104 * the local CPU to avoid bouncing the runqueue state around [ see
105 * ttwu_queue_wakelist() ]
107 * Task wakeup, specifically wakeups that involve migration, are horribly
108 * complicated to avoid having to take two rq->locks.
112 * System-calls and anything external will use task_rq_lock() which acquires
113 * both p->pi_lock and rq->lock. As a consequence the state they change is
114 * stable while holding either lock:
116 * - sched_setaffinity()/
117 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed
118 * - set_user_nice(): p->se.load, p->*prio
119 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio,
120 * p->se.load, p->rt_priority,
121 * p->dl.dl_{runtime, deadline, period, flags, bw, density}
122 * - sched_setnuma(): p->numa_preferred_nid
123 * - sched_move_task()/
124 * cpu_cgroup_fork(): p->sched_task_group
125 * - uclamp_update_active() p->uclamp*
127 * p->state <- TASK_*:
129 * is changed locklessly using set_current_state(), __set_current_state() or
130 * set_special_state(), see their respective comments, or by
131 * try_to_wake_up(). This latter uses p->pi_lock to serialize against
134 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
136 * is set by activate_task() and cleared by deactivate_task(), under
137 * rq->lock. Non-zero indicates the task is runnable, the special
138 * ON_RQ_MIGRATING state is used for migration without holding both
139 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
141 * p->on_cpu <- { 0, 1 }:
143 * is set by prepare_task() and cleared by finish_task() such that it will be
144 * set before p is scheduled-in and cleared after p is scheduled-out, both
145 * under rq->lock. Non-zero indicates the task is running on its CPU.
147 * [ The astute reader will observe that it is possible for two tasks on one
148 * CPU to have ->on_cpu = 1 at the same time. ]
150 * task_cpu(p): is changed by set_task_cpu(), the rules are:
152 * - Don't call set_task_cpu() on a blocked task:
154 * We don't care what CPU we're not running on, this simplifies hotplug,
155 * the CPU assignment of blocked tasks isn't required to be valid.
157 * - for try_to_wake_up(), called under p->pi_lock:
159 * This allows try_to_wake_up() to only take one rq->lock, see its comment.
161 * - for migration called under rq->lock:
162 * [ see task_on_rq_migrating() in task_rq_lock() ]
164 * o move_queued_task()
167 * - for migration called under double_rq_lock():
169 * o __migrate_swap_task()
170 * o push_rt_task() / pull_rt_task()
171 * o push_dl_task() / pull_dl_task()
172 * o dl_task_offline_migration()
177 * __task_rq_lock - lock the rq @p resides on.
179 struct rq
*__task_rq_lock(struct task_struct
*p
, struct rq_flags
*rf
)
184 lockdep_assert_held(&p
->pi_lock
);
188 raw_spin_lock(&rq
->lock
);
189 if (likely(rq
== task_rq(p
) && !task_on_rq_migrating(p
))) {
193 raw_spin_unlock(&rq
->lock
);
195 while (unlikely(task_on_rq_migrating(p
)))
201 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
203 struct rq
*task_rq_lock(struct task_struct
*p
, struct rq_flags
*rf
)
204 __acquires(p
->pi_lock
)
210 raw_spin_lock_irqsave(&p
->pi_lock
, rf
->flags
);
212 raw_spin_lock(&rq
->lock
);
214 * move_queued_task() task_rq_lock()
217 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
218 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
219 * [S] ->cpu = new_cpu [L] task_rq()
223 * If we observe the old CPU in task_rq_lock(), the acquire of
224 * the old rq->lock will fully serialize against the stores.
226 * If we observe the new CPU in task_rq_lock(), the address
227 * dependency headed by '[L] rq = task_rq()' and the acquire
228 * will pair with the WMB to ensure we then also see migrating.
230 if (likely(rq
== task_rq(p
) && !task_on_rq_migrating(p
))) {
234 raw_spin_unlock(&rq
->lock
);
235 raw_spin_unlock_irqrestore(&p
->pi_lock
, rf
->flags
);
237 while (unlikely(task_on_rq_migrating(p
)))
243 * RQ-clock updating methods:
246 static void update_rq_clock_task(struct rq
*rq
, s64 delta
)
249 * In theory, the compile should just see 0 here, and optimize out the call
250 * to sched_rt_avg_update. But I don't trust it...
252 s64 __maybe_unused steal
= 0, irq_delta
= 0;
254 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
255 irq_delta
= irq_time_read(cpu_of(rq
)) - rq
->prev_irq_time
;
258 * Since irq_time is only updated on {soft,}irq_exit, we might run into
259 * this case when a previous update_rq_clock() happened inside a
262 * When this happens, we stop ->clock_task and only update the
263 * prev_irq_time stamp to account for the part that fit, so that a next
264 * update will consume the rest. This ensures ->clock_task is
267 * It does however cause some slight miss-attribution of {soft,}irq
268 * time, a more accurate solution would be to update the irq_time using
269 * the current rq->clock timestamp, except that would require using
272 if (irq_delta
> delta
)
275 rq
->prev_irq_time
+= irq_delta
;
278 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
279 if (static_key_false((¶virt_steal_rq_enabled
))) {
280 steal
= paravirt_steal_clock(cpu_of(rq
));
281 steal
-= rq
->prev_steal_time_rq
;
283 if (unlikely(steal
> delta
))
286 rq
->prev_steal_time_rq
+= steal
;
291 rq
->clock_task
+= delta
;
293 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
294 if ((irq_delta
+ steal
) && sched_feat(NONTASK_CAPACITY
))
295 update_irq_load_avg(rq
, irq_delta
+ steal
);
297 update_rq_clock_pelt(rq
, delta
);
300 void update_rq_clock(struct rq
*rq
)
304 lockdep_assert_held(&rq
->lock
);
306 if (rq
->clock_update_flags
& RQCF_ACT_SKIP
)
309 #ifdef CONFIG_SCHED_DEBUG
310 if (sched_feat(WARN_DOUBLE_CLOCK
))
311 SCHED_WARN_ON(rq
->clock_update_flags
& RQCF_UPDATED
);
312 rq
->clock_update_flags
|= RQCF_UPDATED
;
315 delta
= sched_clock_cpu(cpu_of(rq
)) - rq
->clock
;
319 update_rq_clock_task(rq
, delta
);
323 rq_csd_init(struct rq
*rq
, call_single_data_t
*csd
, smp_call_func_t func
)
330 #ifdef CONFIG_SCHED_HRTICK
332 * Use HR-timers to deliver accurate preemption points.
335 static void hrtick_clear(struct rq
*rq
)
337 if (hrtimer_active(&rq
->hrtick_timer
))
338 hrtimer_cancel(&rq
->hrtick_timer
);
342 * High-resolution timer tick.
343 * Runs from hardirq context with interrupts disabled.
345 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
347 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
350 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
354 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
357 return HRTIMER_NORESTART
;
362 static void __hrtick_restart(struct rq
*rq
)
364 struct hrtimer
*timer
= &rq
->hrtick_timer
;
366 hrtimer_start_expires(timer
, HRTIMER_MODE_ABS_PINNED_HARD
);
370 * called from hardirq (IPI) context
372 static void __hrtick_start(void *arg
)
378 __hrtick_restart(rq
);
383 * Called to set the hrtick timer state.
385 * called with rq->lock held and irqs disabled
387 void hrtick_start(struct rq
*rq
, u64 delay
)
389 struct hrtimer
*timer
= &rq
->hrtick_timer
;
394 * Don't schedule slices shorter than 10000ns, that just
395 * doesn't make sense and can cause timer DoS.
397 delta
= max_t(s64
, delay
, 10000LL);
398 time
= ktime_add_ns(timer
->base
->get_time(), delta
);
400 hrtimer_set_expires(timer
, time
);
403 __hrtick_restart(rq
);
405 smp_call_function_single_async(cpu_of(rq
), &rq
->hrtick_csd
);
410 * Called to set the hrtick timer state.
412 * called with rq->lock held and irqs disabled
414 void hrtick_start(struct rq
*rq
, u64 delay
)
417 * Don't schedule slices shorter than 10000ns, that just
418 * doesn't make sense. Rely on vruntime for fairness.
420 delay
= max_t(u64
, delay
, 10000LL);
421 hrtimer_start(&rq
->hrtick_timer
, ns_to_ktime(delay
),
422 HRTIMER_MODE_REL_PINNED_HARD
);
425 #endif /* CONFIG_SMP */
427 static void hrtick_rq_init(struct rq
*rq
)
430 rq_csd_init(rq
, &rq
->hrtick_csd
, __hrtick_start
);
432 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL_HARD
);
433 rq
->hrtick_timer
.function
= hrtick
;
435 #else /* CONFIG_SCHED_HRTICK */
436 static inline void hrtick_clear(struct rq
*rq
)
440 static inline void hrtick_rq_init(struct rq
*rq
)
443 #endif /* CONFIG_SCHED_HRTICK */
446 * cmpxchg based fetch_or, macro so it works for different integer types
448 #define fetch_or(ptr, mask) \
450 typeof(ptr) _ptr = (ptr); \
451 typeof(mask) _mask = (mask); \
452 typeof(*_ptr) _old, _val = *_ptr; \
455 _old = cmpxchg(_ptr, _val, _val | _mask); \
463 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
465 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
466 * this avoids any races wrt polling state changes and thereby avoids
469 static bool set_nr_and_not_polling(struct task_struct
*p
)
471 struct thread_info
*ti
= task_thread_info(p
);
472 return !(fetch_or(&ti
->flags
, _TIF_NEED_RESCHED
) & _TIF_POLLING_NRFLAG
);
476 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
478 * If this returns true, then the idle task promises to call
479 * sched_ttwu_pending() and reschedule soon.
481 static bool set_nr_if_polling(struct task_struct
*p
)
483 struct thread_info
*ti
= task_thread_info(p
);
484 typeof(ti
->flags
) old
, val
= READ_ONCE(ti
->flags
);
487 if (!(val
& _TIF_POLLING_NRFLAG
))
489 if (val
& _TIF_NEED_RESCHED
)
491 old
= cmpxchg(&ti
->flags
, val
, val
| _TIF_NEED_RESCHED
);
500 static bool set_nr_and_not_polling(struct task_struct
*p
)
502 set_tsk_need_resched(p
);
507 static bool set_nr_if_polling(struct task_struct
*p
)
514 static bool __wake_q_add(struct wake_q_head
*head
, struct task_struct
*task
)
516 struct wake_q_node
*node
= &task
->wake_q
;
519 * Atomically grab the task, if ->wake_q is !nil already it means
520 * its already queued (either by us or someone else) and will get the
521 * wakeup due to that.
523 * In order to ensure that a pending wakeup will observe our pending
524 * state, even in the failed case, an explicit smp_mb() must be used.
526 smp_mb__before_atomic();
527 if (unlikely(cmpxchg_relaxed(&node
->next
, NULL
, WAKE_Q_TAIL
)))
531 * The head is context local, there can be no concurrency.
534 head
->lastp
= &node
->next
;
539 * wake_q_add() - queue a wakeup for 'later' waking.
540 * @head: the wake_q_head to add @task to
541 * @task: the task to queue for 'later' wakeup
543 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
544 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
547 * This function must be used as-if it were wake_up_process(); IOW the task
548 * must be ready to be woken at this location.
550 void wake_q_add(struct wake_q_head
*head
, struct task_struct
*task
)
552 if (__wake_q_add(head
, task
))
553 get_task_struct(task
);
557 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
558 * @head: the wake_q_head to add @task to
559 * @task: the task to queue for 'later' wakeup
561 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
562 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
565 * This function must be used as-if it were wake_up_process(); IOW the task
566 * must be ready to be woken at this location.
568 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
569 * that already hold reference to @task can call the 'safe' version and trust
570 * wake_q to do the right thing depending whether or not the @task is already
573 void wake_q_add_safe(struct wake_q_head
*head
, struct task_struct
*task
)
575 if (!__wake_q_add(head
, task
))
576 put_task_struct(task
);
579 void wake_up_q(struct wake_q_head
*head
)
581 struct wake_q_node
*node
= head
->first
;
583 while (node
!= WAKE_Q_TAIL
) {
584 struct task_struct
*task
;
586 task
= container_of(node
, struct task_struct
, wake_q
);
588 /* Task can safely be re-inserted now: */
590 task
->wake_q
.next
= NULL
;
593 * wake_up_process() executes a full barrier, which pairs with
594 * the queueing in wake_q_add() so as not to miss wakeups.
596 wake_up_process(task
);
597 put_task_struct(task
);
602 * resched_curr - mark rq's current task 'to be rescheduled now'.
604 * On UP this means the setting of the need_resched flag, on SMP it
605 * might also involve a cross-CPU call to trigger the scheduler on
608 void resched_curr(struct rq
*rq
)
610 struct task_struct
*curr
= rq
->curr
;
613 lockdep_assert_held(&rq
->lock
);
615 if (test_tsk_need_resched(curr
))
620 if (cpu
== smp_processor_id()) {
621 set_tsk_need_resched(curr
);
622 set_preempt_need_resched();
626 if (set_nr_and_not_polling(curr
))
627 smp_send_reschedule(cpu
);
629 trace_sched_wake_idle_without_ipi(cpu
);
632 void resched_cpu(int cpu
)
634 struct rq
*rq
= cpu_rq(cpu
);
637 raw_spin_lock_irqsave(&rq
->lock
, flags
);
638 if (cpu_online(cpu
) || cpu
== smp_processor_id())
640 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
644 #ifdef CONFIG_NO_HZ_COMMON
646 * In the semi idle case, use the nearest busy CPU for migrating timers
647 * from an idle CPU. This is good for power-savings.
649 * We don't do similar optimization for completely idle system, as
650 * selecting an idle CPU will add more delays to the timers than intended
651 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
653 int get_nohz_timer_target(void)
655 int i
, cpu
= smp_processor_id(), default_cpu
= -1;
656 struct sched_domain
*sd
;
658 if (housekeeping_cpu(cpu
, HK_FLAG_TIMER
)) {
665 for_each_domain(cpu
, sd
) {
666 for_each_cpu_and(i
, sched_domain_span(sd
),
667 housekeeping_cpumask(HK_FLAG_TIMER
)) {
678 if (default_cpu
== -1)
679 default_cpu
= housekeeping_any_cpu(HK_FLAG_TIMER
);
687 * When add_timer_on() enqueues a timer into the timer wheel of an
688 * idle CPU then this timer might expire before the next timer event
689 * which is scheduled to wake up that CPU. In case of a completely
690 * idle system the next event might even be infinite time into the
691 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
692 * leaves the inner idle loop so the newly added timer is taken into
693 * account when the CPU goes back to idle and evaluates the timer
694 * wheel for the next timer event.
696 static void wake_up_idle_cpu(int cpu
)
698 struct rq
*rq
= cpu_rq(cpu
);
700 if (cpu
== smp_processor_id())
703 if (set_nr_and_not_polling(rq
->idle
))
704 smp_send_reschedule(cpu
);
706 trace_sched_wake_idle_without_ipi(cpu
);
709 static bool wake_up_full_nohz_cpu(int cpu
)
712 * We just need the target to call irq_exit() and re-evaluate
713 * the next tick. The nohz full kick at least implies that.
714 * If needed we can still optimize that later with an
717 if (cpu_is_offline(cpu
))
718 return true; /* Don't try to wake offline CPUs. */
719 if (tick_nohz_full_cpu(cpu
)) {
720 if (cpu
!= smp_processor_id() ||
721 tick_nohz_tick_stopped())
722 tick_nohz_full_kick_cpu(cpu
);
730 * Wake up the specified CPU. If the CPU is going offline, it is the
731 * caller's responsibility to deal with the lost wakeup, for example,
732 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
734 void wake_up_nohz_cpu(int cpu
)
736 if (!wake_up_full_nohz_cpu(cpu
))
737 wake_up_idle_cpu(cpu
);
740 static void nohz_csd_func(void *info
)
742 struct rq
*rq
= info
;
743 int cpu
= cpu_of(rq
);
747 * Release the rq::nohz_csd.
749 flags
= atomic_fetch_andnot(NOHZ_KICK_MASK
, nohz_flags(cpu
));
750 WARN_ON(!(flags
& NOHZ_KICK_MASK
));
752 rq
->idle_balance
= idle_cpu(cpu
);
753 if (rq
->idle_balance
&& !need_resched()) {
754 rq
->nohz_idle_balance
= flags
;
755 raise_softirq_irqoff(SCHED_SOFTIRQ
);
759 #endif /* CONFIG_NO_HZ_COMMON */
761 #ifdef CONFIG_NO_HZ_FULL
762 bool sched_can_stop_tick(struct rq
*rq
)
766 /* Deadline tasks, even if single, need the tick */
767 if (rq
->dl
.dl_nr_running
)
771 * If there are more than one RR tasks, we need the tick to effect the
772 * actual RR behaviour.
774 if (rq
->rt
.rr_nr_running
) {
775 if (rq
->rt
.rr_nr_running
== 1)
782 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
783 * forced preemption between FIFO tasks.
785 fifo_nr_running
= rq
->rt
.rt_nr_running
- rq
->rt
.rr_nr_running
;
790 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
791 * if there's more than one we need the tick for involuntary
794 if (rq
->nr_running
> 1)
799 #endif /* CONFIG_NO_HZ_FULL */
800 #endif /* CONFIG_SMP */
802 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
803 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
805 * Iterate task_group tree rooted at *from, calling @down when first entering a
806 * node and @up when leaving it for the final time.
808 * Caller must hold rcu_lock or sufficient equivalent.
810 int walk_tg_tree_from(struct task_group
*from
,
811 tg_visitor down
, tg_visitor up
, void *data
)
813 struct task_group
*parent
, *child
;
819 ret
= (*down
)(parent
, data
);
822 list_for_each_entry_rcu(child
, &parent
->children
, siblings
) {
829 ret
= (*up
)(parent
, data
);
830 if (ret
|| parent
== from
)
834 parent
= parent
->parent
;
841 int tg_nop(struct task_group
*tg
, void *data
)
847 static void set_load_weight(struct task_struct
*p
, bool update_load
)
849 int prio
= p
->static_prio
- MAX_RT_PRIO
;
850 struct load_weight
*load
= &p
->se
.load
;
853 * SCHED_IDLE tasks get minimal weight:
855 if (task_has_idle_policy(p
)) {
856 load
->weight
= scale_load(WEIGHT_IDLEPRIO
);
857 load
->inv_weight
= WMULT_IDLEPRIO
;
862 * SCHED_OTHER tasks have to update their load when changing their
865 if (update_load
&& p
->sched_class
== &fair_sched_class
) {
866 reweight_task(p
, prio
);
868 load
->weight
= scale_load(sched_prio_to_weight
[prio
]);
869 load
->inv_weight
= sched_prio_to_wmult
[prio
];
873 #ifdef CONFIG_UCLAMP_TASK
875 * Serializes updates of utilization clamp values
877 * The (slow-path) user-space triggers utilization clamp value updates which
878 * can require updates on (fast-path) scheduler's data structures used to
879 * support enqueue/dequeue operations.
880 * While the per-CPU rq lock protects fast-path update operations, user-space
881 * requests are serialized using a mutex to reduce the risk of conflicting
882 * updates or API abuses.
884 static DEFINE_MUTEX(uclamp_mutex
);
886 /* Max allowed minimum utilization */
887 unsigned int sysctl_sched_uclamp_util_min
= SCHED_CAPACITY_SCALE
;
889 /* Max allowed maximum utilization */
890 unsigned int sysctl_sched_uclamp_util_max
= SCHED_CAPACITY_SCALE
;
893 * By default RT tasks run at the maximum performance point/capacity of the
894 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
895 * SCHED_CAPACITY_SCALE.
897 * This knob allows admins to change the default behavior when uclamp is being
898 * used. In battery powered devices, particularly, running at the maximum
899 * capacity and frequency will increase energy consumption and shorten the
902 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
904 * This knob will not override the system default sched_util_clamp_min defined
907 unsigned int sysctl_sched_uclamp_util_min_rt_default
= SCHED_CAPACITY_SCALE
;
909 /* All clamps are required to be less or equal than these values */
910 static struct uclamp_se uclamp_default
[UCLAMP_CNT
];
913 * This static key is used to reduce the uclamp overhead in the fast path. It
914 * primarily disables the call to uclamp_rq_{inc, dec}() in
915 * enqueue/dequeue_task().
917 * This allows users to continue to enable uclamp in their kernel config with
918 * minimum uclamp overhead in the fast path.
920 * As soon as userspace modifies any of the uclamp knobs, the static key is
921 * enabled, since we have an actual users that make use of uclamp
924 * The knobs that would enable this static key are:
926 * * A task modifying its uclamp value with sched_setattr().
927 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
928 * * An admin modifying the cgroup cpu.uclamp.{min, max}
930 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used
);
932 /* Integer rounded range for each bucket */
933 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
935 #define for_each_clamp_id(clamp_id) \
936 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
938 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value
)
940 return clamp_value
/ UCLAMP_BUCKET_DELTA
;
943 static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value
)
945 return UCLAMP_BUCKET_DELTA
* uclamp_bucket_id(clamp_value
);
948 static inline unsigned int uclamp_none(enum uclamp_id clamp_id
)
950 if (clamp_id
== UCLAMP_MIN
)
952 return SCHED_CAPACITY_SCALE
;
955 static inline void uclamp_se_set(struct uclamp_se
*uc_se
,
956 unsigned int value
, bool user_defined
)
958 uc_se
->value
= value
;
959 uc_se
->bucket_id
= uclamp_bucket_id(value
);
960 uc_se
->user_defined
= user_defined
;
963 static inline unsigned int
964 uclamp_idle_value(struct rq
*rq
, enum uclamp_id clamp_id
,
965 unsigned int clamp_value
)
968 * Avoid blocked utilization pushing up the frequency when we go
969 * idle (which drops the max-clamp) by retaining the last known
972 if (clamp_id
== UCLAMP_MAX
) {
973 rq
->uclamp_flags
|= UCLAMP_FLAG_IDLE
;
977 return uclamp_none(UCLAMP_MIN
);
980 static inline void uclamp_idle_reset(struct rq
*rq
, enum uclamp_id clamp_id
,
981 unsigned int clamp_value
)
983 /* Reset max-clamp retention only on idle exit */
984 if (!(rq
->uclamp_flags
& UCLAMP_FLAG_IDLE
))
987 WRITE_ONCE(rq
->uclamp
[clamp_id
].value
, clamp_value
);
991 unsigned int uclamp_rq_max_value(struct rq
*rq
, enum uclamp_id clamp_id
,
992 unsigned int clamp_value
)
994 struct uclamp_bucket
*bucket
= rq
->uclamp
[clamp_id
].bucket
;
995 int bucket_id
= UCLAMP_BUCKETS
- 1;
998 * Since both min and max clamps are max aggregated, find the
999 * top most bucket with tasks in.
1001 for ( ; bucket_id
>= 0; bucket_id
--) {
1002 if (!bucket
[bucket_id
].tasks
)
1004 return bucket
[bucket_id
].value
;
1007 /* No tasks -- default clamp values */
1008 return uclamp_idle_value(rq
, clamp_id
, clamp_value
);
1011 static void __uclamp_update_util_min_rt_default(struct task_struct
*p
)
1013 unsigned int default_util_min
;
1014 struct uclamp_se
*uc_se
;
1016 lockdep_assert_held(&p
->pi_lock
);
1018 uc_se
= &p
->uclamp_req
[UCLAMP_MIN
];
1020 /* Only sync if user didn't override the default */
1021 if (uc_se
->user_defined
)
1024 default_util_min
= sysctl_sched_uclamp_util_min_rt_default
;
1025 uclamp_se_set(uc_se
, default_util_min
, false);
1028 static void uclamp_update_util_min_rt_default(struct task_struct
*p
)
1036 /* Protect updates to p->uclamp_* */
1037 rq
= task_rq_lock(p
, &rf
);
1038 __uclamp_update_util_min_rt_default(p
);
1039 task_rq_unlock(rq
, p
, &rf
);
1042 static void uclamp_sync_util_min_rt_default(void)
1044 struct task_struct
*g
, *p
;
1047 * copy_process() sysctl_uclamp
1048 * uclamp_min_rt = X;
1049 * write_lock(&tasklist_lock) read_lock(&tasklist_lock)
1050 * // link thread smp_mb__after_spinlock()
1051 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock);
1052 * sched_post_fork() for_each_process_thread()
1053 * __uclamp_sync_rt() __uclamp_sync_rt()
1055 * Ensures that either sched_post_fork() will observe the new
1056 * uclamp_min_rt or for_each_process_thread() will observe the new
1059 read_lock(&tasklist_lock
);
1060 smp_mb__after_spinlock();
1061 read_unlock(&tasklist_lock
);
1064 for_each_process_thread(g
, p
)
1065 uclamp_update_util_min_rt_default(p
);
1069 static inline struct uclamp_se
1070 uclamp_tg_restrict(struct task_struct
*p
, enum uclamp_id clamp_id
)
1072 struct uclamp_se uc_req
= p
->uclamp_req
[clamp_id
];
1073 #ifdef CONFIG_UCLAMP_TASK_GROUP
1074 struct uclamp_se uc_max
;
1077 * Tasks in autogroups or root task group will be
1078 * restricted by system defaults.
1080 if (task_group_is_autogroup(task_group(p
)))
1082 if (task_group(p
) == &root_task_group
)
1085 uc_max
= task_group(p
)->uclamp
[clamp_id
];
1086 if (uc_req
.value
> uc_max
.value
|| !uc_req
.user_defined
)
1094 * The effective clamp bucket index of a task depends on, by increasing
1096 * - the task specific clamp value, when explicitly requested from userspace
1097 * - the task group effective clamp value, for tasks not either in the root
1098 * group or in an autogroup
1099 * - the system default clamp value, defined by the sysadmin
1101 static inline struct uclamp_se
1102 uclamp_eff_get(struct task_struct
*p
, enum uclamp_id clamp_id
)
1104 struct uclamp_se uc_req
= uclamp_tg_restrict(p
, clamp_id
);
1105 struct uclamp_se uc_max
= uclamp_default
[clamp_id
];
1107 /* System default restrictions always apply */
1108 if (unlikely(uc_req
.value
> uc_max
.value
))
1114 unsigned long uclamp_eff_value(struct task_struct
*p
, enum uclamp_id clamp_id
)
1116 struct uclamp_se uc_eff
;
1118 /* Task currently refcounted: use back-annotated (effective) value */
1119 if (p
->uclamp
[clamp_id
].active
)
1120 return (unsigned long)p
->uclamp
[clamp_id
].value
;
1122 uc_eff
= uclamp_eff_get(p
, clamp_id
);
1124 return (unsigned long)uc_eff
.value
;
1128 * When a task is enqueued on a rq, the clamp bucket currently defined by the
1129 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1130 * updates the rq's clamp value if required.
1132 * Tasks can have a task-specific value requested from user-space, track
1133 * within each bucket the maximum value for tasks refcounted in it.
1134 * This "local max aggregation" allows to track the exact "requested" value
1135 * for each bucket when all its RUNNABLE tasks require the same clamp.
1137 static inline void uclamp_rq_inc_id(struct rq
*rq
, struct task_struct
*p
,
1138 enum uclamp_id clamp_id
)
1140 struct uclamp_rq
*uc_rq
= &rq
->uclamp
[clamp_id
];
1141 struct uclamp_se
*uc_se
= &p
->uclamp
[clamp_id
];
1142 struct uclamp_bucket
*bucket
;
1144 lockdep_assert_held(&rq
->lock
);
1146 /* Update task effective clamp */
1147 p
->uclamp
[clamp_id
] = uclamp_eff_get(p
, clamp_id
);
1149 bucket
= &uc_rq
->bucket
[uc_se
->bucket_id
];
1151 uc_se
->active
= true;
1153 uclamp_idle_reset(rq
, clamp_id
, uc_se
->value
);
1156 * Local max aggregation: rq buckets always track the max
1157 * "requested" clamp value of its RUNNABLE tasks.
1159 if (bucket
->tasks
== 1 || uc_se
->value
> bucket
->value
)
1160 bucket
->value
= uc_se
->value
;
1162 if (uc_se
->value
> READ_ONCE(uc_rq
->value
))
1163 WRITE_ONCE(uc_rq
->value
, uc_se
->value
);
1167 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1168 * is released. If this is the last task reference counting the rq's max
1169 * active clamp value, then the rq's clamp value is updated.
1171 * Both refcounted tasks and rq's cached clamp values are expected to be
1172 * always valid. If it's detected they are not, as defensive programming,
1173 * enforce the expected state and warn.
1175 static inline void uclamp_rq_dec_id(struct rq
*rq
, struct task_struct
*p
,
1176 enum uclamp_id clamp_id
)
1178 struct uclamp_rq
*uc_rq
= &rq
->uclamp
[clamp_id
];
1179 struct uclamp_se
*uc_se
= &p
->uclamp
[clamp_id
];
1180 struct uclamp_bucket
*bucket
;
1181 unsigned int bkt_clamp
;
1182 unsigned int rq_clamp
;
1184 lockdep_assert_held(&rq
->lock
);
1187 * If sched_uclamp_used was enabled after task @p was enqueued,
1188 * we could end up with unbalanced call to uclamp_rq_dec_id().
1190 * In this case the uc_se->active flag should be false since no uclamp
1191 * accounting was performed at enqueue time and we can just return
1194 * Need to be careful of the following enqeueue/dequeue ordering
1198 * // sched_uclamp_used gets enabled
1201 * // Must not decrement bukcet->tasks here
1204 * where we could end up with stale data in uc_se and
1205 * bucket[uc_se->bucket_id].
1207 * The following check here eliminates the possibility of such race.
1209 if (unlikely(!uc_se
->active
))
1212 bucket
= &uc_rq
->bucket
[uc_se
->bucket_id
];
1214 SCHED_WARN_ON(!bucket
->tasks
);
1215 if (likely(bucket
->tasks
))
1218 uc_se
->active
= false;
1221 * Keep "local max aggregation" simple and accept to (possibly)
1222 * overboost some RUNNABLE tasks in the same bucket.
1223 * The rq clamp bucket value is reset to its base value whenever
1224 * there are no more RUNNABLE tasks refcounting it.
1226 if (likely(bucket
->tasks
))
1229 rq_clamp
= READ_ONCE(uc_rq
->value
);
1231 * Defensive programming: this should never happen. If it happens,
1232 * e.g. due to future modification, warn and fixup the expected value.
1234 SCHED_WARN_ON(bucket
->value
> rq_clamp
);
1235 if (bucket
->value
>= rq_clamp
) {
1236 bkt_clamp
= uclamp_rq_max_value(rq
, clamp_id
, uc_se
->value
);
1237 WRITE_ONCE(uc_rq
->value
, bkt_clamp
);
1241 static inline void uclamp_rq_inc(struct rq
*rq
, struct task_struct
*p
)
1243 enum uclamp_id clamp_id
;
1246 * Avoid any overhead until uclamp is actually used by the userspace.
1248 * The condition is constructed such that a NOP is generated when
1249 * sched_uclamp_used is disabled.
1251 if (!static_branch_unlikely(&sched_uclamp_used
))
1254 if (unlikely(!p
->sched_class
->uclamp_enabled
))
1257 for_each_clamp_id(clamp_id
)
1258 uclamp_rq_inc_id(rq
, p
, clamp_id
);
1260 /* Reset clamp idle holding when there is one RUNNABLE task */
1261 if (rq
->uclamp_flags
& UCLAMP_FLAG_IDLE
)
1262 rq
->uclamp_flags
&= ~UCLAMP_FLAG_IDLE
;
1265 static inline void uclamp_rq_dec(struct rq
*rq
, struct task_struct
*p
)
1267 enum uclamp_id clamp_id
;
1270 * Avoid any overhead until uclamp is actually used by the userspace.
1272 * The condition is constructed such that a NOP is generated when
1273 * sched_uclamp_used is disabled.
1275 if (!static_branch_unlikely(&sched_uclamp_used
))
1278 if (unlikely(!p
->sched_class
->uclamp_enabled
))
1281 for_each_clamp_id(clamp_id
)
1282 uclamp_rq_dec_id(rq
, p
, clamp_id
);
1286 uclamp_update_active(struct task_struct
*p
, enum uclamp_id clamp_id
)
1292 * Lock the task and the rq where the task is (or was) queued.
1294 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1295 * price to pay to safely serialize util_{min,max} updates with
1296 * enqueues, dequeues and migration operations.
1297 * This is the same locking schema used by __set_cpus_allowed_ptr().
1299 rq
= task_rq_lock(p
, &rf
);
1302 * Setting the clamp bucket is serialized by task_rq_lock().
1303 * If the task is not yet RUNNABLE and its task_struct is not
1304 * affecting a valid clamp bucket, the next time it's enqueued,
1305 * it will already see the updated clamp bucket value.
1307 if (p
->uclamp
[clamp_id
].active
) {
1308 uclamp_rq_dec_id(rq
, p
, clamp_id
);
1309 uclamp_rq_inc_id(rq
, p
, clamp_id
);
1312 task_rq_unlock(rq
, p
, &rf
);
1315 #ifdef CONFIG_UCLAMP_TASK_GROUP
1317 uclamp_update_active_tasks(struct cgroup_subsys_state
*css
,
1318 unsigned int clamps
)
1320 enum uclamp_id clamp_id
;
1321 struct css_task_iter it
;
1322 struct task_struct
*p
;
1324 css_task_iter_start(css
, 0, &it
);
1325 while ((p
= css_task_iter_next(&it
))) {
1326 for_each_clamp_id(clamp_id
) {
1327 if ((0x1 << clamp_id
) & clamps
)
1328 uclamp_update_active(p
, clamp_id
);
1331 css_task_iter_end(&it
);
1334 static void cpu_util_update_eff(struct cgroup_subsys_state
*css
);
1335 static void uclamp_update_root_tg(void)
1337 struct task_group
*tg
= &root_task_group
;
1339 uclamp_se_set(&tg
->uclamp_req
[UCLAMP_MIN
],
1340 sysctl_sched_uclamp_util_min
, false);
1341 uclamp_se_set(&tg
->uclamp_req
[UCLAMP_MAX
],
1342 sysctl_sched_uclamp_util_max
, false);
1345 cpu_util_update_eff(&root_task_group
.css
);
1349 static void uclamp_update_root_tg(void) { }
1352 int sysctl_sched_uclamp_handler(struct ctl_table
*table
, int write
,
1353 void *buffer
, size_t *lenp
, loff_t
*ppos
)
1355 bool update_root_tg
= false;
1356 int old_min
, old_max
, old_min_rt
;
1359 mutex_lock(&uclamp_mutex
);
1360 old_min
= sysctl_sched_uclamp_util_min
;
1361 old_max
= sysctl_sched_uclamp_util_max
;
1362 old_min_rt
= sysctl_sched_uclamp_util_min_rt_default
;
1364 result
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
1370 if (sysctl_sched_uclamp_util_min
> sysctl_sched_uclamp_util_max
||
1371 sysctl_sched_uclamp_util_max
> SCHED_CAPACITY_SCALE
||
1372 sysctl_sched_uclamp_util_min_rt_default
> SCHED_CAPACITY_SCALE
) {
1378 if (old_min
!= sysctl_sched_uclamp_util_min
) {
1379 uclamp_se_set(&uclamp_default
[UCLAMP_MIN
],
1380 sysctl_sched_uclamp_util_min
, false);
1381 update_root_tg
= true;
1383 if (old_max
!= sysctl_sched_uclamp_util_max
) {
1384 uclamp_se_set(&uclamp_default
[UCLAMP_MAX
],
1385 sysctl_sched_uclamp_util_max
, false);
1386 update_root_tg
= true;
1389 if (update_root_tg
) {
1390 static_branch_enable(&sched_uclamp_used
);
1391 uclamp_update_root_tg();
1394 if (old_min_rt
!= sysctl_sched_uclamp_util_min_rt_default
) {
1395 static_branch_enable(&sched_uclamp_used
);
1396 uclamp_sync_util_min_rt_default();
1400 * We update all RUNNABLE tasks only when task groups are in use.
1401 * Otherwise, keep it simple and do just a lazy update at each next
1402 * task enqueue time.
1408 sysctl_sched_uclamp_util_min
= old_min
;
1409 sysctl_sched_uclamp_util_max
= old_max
;
1410 sysctl_sched_uclamp_util_min_rt_default
= old_min_rt
;
1412 mutex_unlock(&uclamp_mutex
);
1417 static int uclamp_validate(struct task_struct
*p
,
1418 const struct sched_attr
*attr
)
1420 unsigned int lower_bound
= p
->uclamp_req
[UCLAMP_MIN
].value
;
1421 unsigned int upper_bound
= p
->uclamp_req
[UCLAMP_MAX
].value
;
1423 if (attr
->sched_flags
& SCHED_FLAG_UTIL_CLAMP_MIN
)
1424 lower_bound
= attr
->sched_util_min
;
1425 if (attr
->sched_flags
& SCHED_FLAG_UTIL_CLAMP_MAX
)
1426 upper_bound
= attr
->sched_util_max
;
1428 if (lower_bound
> upper_bound
)
1430 if (upper_bound
> SCHED_CAPACITY_SCALE
)
1434 * We have valid uclamp attributes; make sure uclamp is enabled.
1436 * We need to do that here, because enabling static branches is a
1437 * blocking operation which obviously cannot be done while holding
1440 static_branch_enable(&sched_uclamp_used
);
1445 static void __setscheduler_uclamp(struct task_struct
*p
,
1446 const struct sched_attr
*attr
)
1448 enum uclamp_id clamp_id
;
1451 * On scheduling class change, reset to default clamps for tasks
1452 * without a task-specific value.
1454 for_each_clamp_id(clamp_id
) {
1455 struct uclamp_se
*uc_se
= &p
->uclamp_req
[clamp_id
];
1457 /* Keep using defined clamps across class changes */
1458 if (uc_se
->user_defined
)
1462 * RT by default have a 100% boost value that could be modified
1465 if (unlikely(rt_task(p
) && clamp_id
== UCLAMP_MIN
))
1466 __uclamp_update_util_min_rt_default(p
);
1468 uclamp_se_set(uc_se
, uclamp_none(clamp_id
), false);
1472 if (likely(!(attr
->sched_flags
& SCHED_FLAG_UTIL_CLAMP
)))
1475 if (attr
->sched_flags
& SCHED_FLAG_UTIL_CLAMP_MIN
) {
1476 uclamp_se_set(&p
->uclamp_req
[UCLAMP_MIN
],
1477 attr
->sched_util_min
, true);
1480 if (attr
->sched_flags
& SCHED_FLAG_UTIL_CLAMP_MAX
) {
1481 uclamp_se_set(&p
->uclamp_req
[UCLAMP_MAX
],
1482 attr
->sched_util_max
, true);
1486 static void uclamp_fork(struct task_struct
*p
)
1488 enum uclamp_id clamp_id
;
1491 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1492 * as the task is still at its early fork stages.
1494 for_each_clamp_id(clamp_id
)
1495 p
->uclamp
[clamp_id
].active
= false;
1497 if (likely(!p
->sched_reset_on_fork
))
1500 for_each_clamp_id(clamp_id
) {
1501 uclamp_se_set(&p
->uclamp_req
[clamp_id
],
1502 uclamp_none(clamp_id
), false);
1506 static void uclamp_post_fork(struct task_struct
*p
)
1508 uclamp_update_util_min_rt_default(p
);
1511 static void __init
init_uclamp_rq(struct rq
*rq
)
1513 enum uclamp_id clamp_id
;
1514 struct uclamp_rq
*uc_rq
= rq
->uclamp
;
1516 for_each_clamp_id(clamp_id
) {
1517 uc_rq
[clamp_id
] = (struct uclamp_rq
) {
1518 .value
= uclamp_none(clamp_id
)
1522 rq
->uclamp_flags
= 0;
1525 static void __init
init_uclamp(void)
1527 struct uclamp_se uc_max
= {};
1528 enum uclamp_id clamp_id
;
1531 for_each_possible_cpu(cpu
)
1532 init_uclamp_rq(cpu_rq(cpu
));
1534 for_each_clamp_id(clamp_id
) {
1535 uclamp_se_set(&init_task
.uclamp_req
[clamp_id
],
1536 uclamp_none(clamp_id
), false);
1539 /* System defaults allow max clamp values for both indexes */
1540 uclamp_se_set(&uc_max
, uclamp_none(UCLAMP_MAX
), false);
1541 for_each_clamp_id(clamp_id
) {
1542 uclamp_default
[clamp_id
] = uc_max
;
1543 #ifdef CONFIG_UCLAMP_TASK_GROUP
1544 root_task_group
.uclamp_req
[clamp_id
] = uc_max
;
1545 root_task_group
.uclamp
[clamp_id
] = uc_max
;
1550 #else /* CONFIG_UCLAMP_TASK */
1551 static inline void uclamp_rq_inc(struct rq
*rq
, struct task_struct
*p
) { }
1552 static inline void uclamp_rq_dec(struct rq
*rq
, struct task_struct
*p
) { }
1553 static inline int uclamp_validate(struct task_struct
*p
,
1554 const struct sched_attr
*attr
)
1558 static void __setscheduler_uclamp(struct task_struct
*p
,
1559 const struct sched_attr
*attr
) { }
1560 static inline void uclamp_fork(struct task_struct
*p
) { }
1561 static inline void uclamp_post_fork(struct task_struct
*p
) { }
1562 static inline void init_uclamp(void) { }
1563 #endif /* CONFIG_UCLAMP_TASK */
1565 static inline void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1567 if (!(flags
& ENQUEUE_NOCLOCK
))
1568 update_rq_clock(rq
);
1570 if (!(flags
& ENQUEUE_RESTORE
)) {
1571 sched_info_queued(rq
, p
);
1572 psi_enqueue(p
, flags
& ENQUEUE_WAKEUP
);
1575 uclamp_rq_inc(rq
, p
);
1576 p
->sched_class
->enqueue_task(rq
, p
, flags
);
1579 static inline void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1581 if (!(flags
& DEQUEUE_NOCLOCK
))
1582 update_rq_clock(rq
);
1584 if (!(flags
& DEQUEUE_SAVE
)) {
1585 sched_info_dequeued(rq
, p
);
1586 psi_dequeue(p
, flags
& DEQUEUE_SLEEP
);
1589 uclamp_rq_dec(rq
, p
);
1590 p
->sched_class
->dequeue_task(rq
, p
, flags
);
1593 void activate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1595 enqueue_task(rq
, p
, flags
);
1597 p
->on_rq
= TASK_ON_RQ_QUEUED
;
1600 void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1602 p
->on_rq
= (flags
& DEQUEUE_SLEEP
) ? 0 : TASK_ON_RQ_MIGRATING
;
1604 dequeue_task(rq
, p
, flags
);
1608 * __normal_prio - return the priority that is based on the static prio
1610 static inline int __normal_prio(struct task_struct
*p
)
1612 return p
->static_prio
;
1616 * Calculate the expected normal priority: i.e. priority
1617 * without taking RT-inheritance into account. Might be
1618 * boosted by interactivity modifiers. Changes upon fork,
1619 * setprio syscalls, and whenever the interactivity
1620 * estimator recalculates.
1622 static inline int normal_prio(struct task_struct
*p
)
1626 if (task_has_dl_policy(p
))
1627 prio
= MAX_DL_PRIO
-1;
1628 else if (task_has_rt_policy(p
))
1629 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
1631 prio
= __normal_prio(p
);
1636 * Calculate the current priority, i.e. the priority
1637 * taken into account by the scheduler. This value might
1638 * be boosted by RT tasks, or might be boosted by
1639 * interactivity modifiers. Will be RT if the task got
1640 * RT-boosted. If not then it returns p->normal_prio.
1642 static int effective_prio(struct task_struct
*p
)
1644 p
->normal_prio
= normal_prio(p
);
1646 * If we are RT tasks or we were boosted to RT priority,
1647 * keep the priority unchanged. Otherwise, update priority
1648 * to the normal priority:
1650 if (!rt_prio(p
->prio
))
1651 return p
->normal_prio
;
1656 * task_curr - is this task currently executing on a CPU?
1657 * @p: the task in question.
1659 * Return: 1 if the task is currently executing. 0 otherwise.
1661 inline int task_curr(const struct task_struct
*p
)
1663 return cpu_curr(task_cpu(p
)) == p
;
1667 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1668 * use the balance_callback list if you want balancing.
1670 * this means any call to check_class_changed() must be followed by a call to
1671 * balance_callback().
1673 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
1674 const struct sched_class
*prev_class
,
1677 if (prev_class
!= p
->sched_class
) {
1678 if (prev_class
->switched_from
)
1679 prev_class
->switched_from(rq
, p
);
1681 p
->sched_class
->switched_to(rq
, p
);
1682 } else if (oldprio
!= p
->prio
|| dl_task(p
))
1683 p
->sched_class
->prio_changed(rq
, p
, oldprio
);
1686 void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
)
1688 if (p
->sched_class
== rq
->curr
->sched_class
)
1689 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
, flags
);
1690 else if (p
->sched_class
> rq
->curr
->sched_class
)
1694 * A queue event has occurred, and we're going to schedule. In
1695 * this case, we can save a useless back to back clock update.
1697 if (task_on_rq_queued(rq
->curr
) && test_tsk_need_resched(rq
->curr
))
1698 rq_clock_skip_update(rq
);
1704 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1705 * __set_cpus_allowed_ptr() and select_fallback_rq().
1707 static inline bool is_cpu_allowed(struct task_struct
*p
, int cpu
)
1709 if (!cpumask_test_cpu(cpu
, p
->cpus_ptr
))
1712 if (is_per_cpu_kthread(p
))
1713 return cpu_online(cpu
);
1715 return cpu_active(cpu
);
1719 * This is how migration works:
1721 * 1) we invoke migration_cpu_stop() on the target CPU using
1723 * 2) stopper starts to run (implicitly forcing the migrated thread
1725 * 3) it checks whether the migrated task is still in the wrong runqueue.
1726 * 4) if it's in the wrong runqueue then the migration thread removes
1727 * it and puts it into the right queue.
1728 * 5) stopper completes and stop_one_cpu() returns and the migration
1733 * move_queued_task - move a queued task to new rq.
1735 * Returns (locked) new rq. Old rq's lock is released.
1737 static struct rq
*move_queued_task(struct rq
*rq
, struct rq_flags
*rf
,
1738 struct task_struct
*p
, int new_cpu
)
1740 lockdep_assert_held(&rq
->lock
);
1742 deactivate_task(rq
, p
, DEQUEUE_NOCLOCK
);
1743 set_task_cpu(p
, new_cpu
);
1746 rq
= cpu_rq(new_cpu
);
1749 BUG_ON(task_cpu(p
) != new_cpu
);
1750 activate_task(rq
, p
, 0);
1751 check_preempt_curr(rq
, p
, 0);
1756 struct migration_arg
{
1757 struct task_struct
*task
;
1762 * Move (not current) task off this CPU, onto the destination CPU. We're doing
1763 * this because either it can't run here any more (set_cpus_allowed()
1764 * away from this CPU, or CPU going down), or because we're
1765 * attempting to rebalance this task on exec (sched_exec).
1767 * So we race with normal scheduler movements, but that's OK, as long
1768 * as the task is no longer on this CPU.
1770 static struct rq
*__migrate_task(struct rq
*rq
, struct rq_flags
*rf
,
1771 struct task_struct
*p
, int dest_cpu
)
1773 /* Affinity changed (again). */
1774 if (!is_cpu_allowed(p
, dest_cpu
))
1777 update_rq_clock(rq
);
1778 rq
= move_queued_task(rq
, rf
, p
, dest_cpu
);
1784 * migration_cpu_stop - this will be executed by a highprio stopper thread
1785 * and performs thread migration by bumping thread off CPU then
1786 * 'pushing' onto another runqueue.
1788 static int migration_cpu_stop(void *data
)
1790 struct migration_arg
*arg
= data
;
1791 struct task_struct
*p
= arg
->task
;
1792 struct rq
*rq
= this_rq();
1796 * The original target CPU might have gone down and we might
1797 * be on another CPU but it doesn't matter.
1799 local_irq_disable();
1801 * We need to explicitly wake pending tasks before running
1802 * __migrate_task() such that we will not miss enforcing cpus_ptr
1803 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1805 flush_smp_call_function_from_idle();
1807 raw_spin_lock(&p
->pi_lock
);
1810 * If task_rq(p) != rq, it cannot be migrated here, because we're
1811 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1812 * we're holding p->pi_lock.
1814 if (task_rq(p
) == rq
) {
1815 if (task_on_rq_queued(p
))
1816 rq
= __migrate_task(rq
, &rf
, p
, arg
->dest_cpu
);
1818 p
->wake_cpu
= arg
->dest_cpu
;
1821 raw_spin_unlock(&p
->pi_lock
);
1828 * sched_class::set_cpus_allowed must do the below, but is not required to
1829 * actually call this function.
1831 void set_cpus_allowed_common(struct task_struct
*p
, const struct cpumask
*new_mask
)
1833 cpumask_copy(&p
->cpus_mask
, new_mask
);
1834 p
->nr_cpus_allowed
= cpumask_weight(new_mask
);
1837 void do_set_cpus_allowed(struct task_struct
*p
, const struct cpumask
*new_mask
)
1839 struct rq
*rq
= task_rq(p
);
1840 bool queued
, running
;
1842 lockdep_assert_held(&p
->pi_lock
);
1844 queued
= task_on_rq_queued(p
);
1845 running
= task_current(rq
, p
);
1849 * Because __kthread_bind() calls this on blocked tasks without
1852 lockdep_assert_held(&rq
->lock
);
1853 dequeue_task(rq
, p
, DEQUEUE_SAVE
| DEQUEUE_NOCLOCK
);
1856 put_prev_task(rq
, p
);
1858 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
1861 enqueue_task(rq
, p
, ENQUEUE_RESTORE
| ENQUEUE_NOCLOCK
);
1863 set_next_task(rq
, p
);
1867 * Change a given task's CPU affinity. Migrate the thread to a
1868 * proper CPU and schedule it away if the CPU it's executing on
1869 * is removed from the allowed bitmask.
1871 * NOTE: the caller must have a valid reference to the task, the
1872 * task must not exit() & deallocate itself prematurely. The
1873 * call is not atomic; no spinlocks may be held.
1875 static int __set_cpus_allowed_ptr(struct task_struct
*p
,
1876 const struct cpumask
*new_mask
, bool check
)
1878 const struct cpumask
*cpu_valid_mask
= cpu_active_mask
;
1879 unsigned int dest_cpu
;
1884 rq
= task_rq_lock(p
, &rf
);
1885 update_rq_clock(rq
);
1887 if (p
->flags
& PF_KTHREAD
) {
1889 * Kernel threads are allowed on online && !active CPUs
1891 cpu_valid_mask
= cpu_online_mask
;
1895 * Must re-check here, to close a race against __kthread_bind(),
1896 * sched_setaffinity() is not guaranteed to observe the flag.
1898 if (check
&& (p
->flags
& PF_NO_SETAFFINITY
)) {
1903 if (cpumask_equal(&p
->cpus_mask
, new_mask
))
1907 * Picking a ~random cpu helps in cases where we are changing affinity
1908 * for groups of tasks (ie. cpuset), so that load balancing is not
1909 * immediately required to distribute the tasks within their new mask.
1911 dest_cpu
= cpumask_any_and_distribute(cpu_valid_mask
, new_mask
);
1912 if (dest_cpu
>= nr_cpu_ids
) {
1917 do_set_cpus_allowed(p
, new_mask
);
1919 if (p
->flags
& PF_KTHREAD
) {
1921 * For kernel threads that do indeed end up on online &&
1922 * !active we want to ensure they are strict per-CPU threads.
1924 WARN_ON(cpumask_intersects(new_mask
, cpu_online_mask
) &&
1925 !cpumask_intersects(new_mask
, cpu_active_mask
) &&
1926 p
->nr_cpus_allowed
!= 1);
1929 /* Can the task run on the task's current CPU? If so, we're done */
1930 if (cpumask_test_cpu(task_cpu(p
), new_mask
))
1933 if (task_running(rq
, p
) || p
->state
== TASK_WAKING
) {
1934 struct migration_arg arg
= { p
, dest_cpu
};
1935 /* Need help from migration thread: drop lock and wait. */
1936 task_rq_unlock(rq
, p
, &rf
);
1937 stop_one_cpu(cpu_of(rq
), migration_cpu_stop
, &arg
);
1939 } else if (task_on_rq_queued(p
)) {
1941 * OK, since we're going to drop the lock immediately
1942 * afterwards anyway.
1944 rq
= move_queued_task(rq
, &rf
, p
, dest_cpu
);
1947 task_rq_unlock(rq
, p
, &rf
);
1952 int set_cpus_allowed_ptr(struct task_struct
*p
, const struct cpumask
*new_mask
)
1954 return __set_cpus_allowed_ptr(p
, new_mask
, false);
1956 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
1958 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
1960 #ifdef CONFIG_SCHED_DEBUG
1962 * We should never call set_task_cpu() on a blocked task,
1963 * ttwu() will sort out the placement.
1965 WARN_ON_ONCE(p
->state
!= TASK_RUNNING
&& p
->state
!= TASK_WAKING
&&
1969 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1970 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1971 * time relying on p->on_rq.
1973 WARN_ON_ONCE(p
->state
== TASK_RUNNING
&&
1974 p
->sched_class
== &fair_sched_class
&&
1975 (p
->on_rq
&& !task_on_rq_migrating(p
)));
1977 #ifdef CONFIG_LOCKDEP
1979 * The caller should hold either p->pi_lock or rq->lock, when changing
1980 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1982 * sched_move_task() holds both and thus holding either pins the cgroup,
1985 * Furthermore, all task_rq users should acquire both locks, see
1988 WARN_ON_ONCE(debug_locks
&& !(lockdep_is_held(&p
->pi_lock
) ||
1989 lockdep_is_held(&task_rq(p
)->lock
)));
1992 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1994 WARN_ON_ONCE(!cpu_online(new_cpu
));
1997 trace_sched_migrate_task(p
, new_cpu
);
1999 if (task_cpu(p
) != new_cpu
) {
2000 if (p
->sched_class
->migrate_task_rq
)
2001 p
->sched_class
->migrate_task_rq(p
, new_cpu
);
2002 p
->se
.nr_migrations
++;
2004 perf_event_task_migrate(p
);
2007 __set_task_cpu(p
, new_cpu
);
2010 #ifdef CONFIG_NUMA_BALANCING
2011 static void __migrate_swap_task(struct task_struct
*p
, int cpu
)
2013 if (task_on_rq_queued(p
)) {
2014 struct rq
*src_rq
, *dst_rq
;
2015 struct rq_flags srf
, drf
;
2017 src_rq
= task_rq(p
);
2018 dst_rq
= cpu_rq(cpu
);
2020 rq_pin_lock(src_rq
, &srf
);
2021 rq_pin_lock(dst_rq
, &drf
);
2023 deactivate_task(src_rq
, p
, 0);
2024 set_task_cpu(p
, cpu
);
2025 activate_task(dst_rq
, p
, 0);
2026 check_preempt_curr(dst_rq
, p
, 0);
2028 rq_unpin_lock(dst_rq
, &drf
);
2029 rq_unpin_lock(src_rq
, &srf
);
2033 * Task isn't running anymore; make it appear like we migrated
2034 * it before it went to sleep. This means on wakeup we make the
2035 * previous CPU our target instead of where it really is.
2041 struct migration_swap_arg
{
2042 struct task_struct
*src_task
, *dst_task
;
2043 int src_cpu
, dst_cpu
;
2046 static int migrate_swap_stop(void *data
)
2048 struct migration_swap_arg
*arg
= data
;
2049 struct rq
*src_rq
, *dst_rq
;
2052 if (!cpu_active(arg
->src_cpu
) || !cpu_active(arg
->dst_cpu
))
2055 src_rq
= cpu_rq(arg
->src_cpu
);
2056 dst_rq
= cpu_rq(arg
->dst_cpu
);
2058 double_raw_lock(&arg
->src_task
->pi_lock
,
2059 &arg
->dst_task
->pi_lock
);
2060 double_rq_lock(src_rq
, dst_rq
);
2062 if (task_cpu(arg
->dst_task
) != arg
->dst_cpu
)
2065 if (task_cpu(arg
->src_task
) != arg
->src_cpu
)
2068 if (!cpumask_test_cpu(arg
->dst_cpu
, arg
->src_task
->cpus_ptr
))
2071 if (!cpumask_test_cpu(arg
->src_cpu
, arg
->dst_task
->cpus_ptr
))
2074 __migrate_swap_task(arg
->src_task
, arg
->dst_cpu
);
2075 __migrate_swap_task(arg
->dst_task
, arg
->src_cpu
);
2080 double_rq_unlock(src_rq
, dst_rq
);
2081 raw_spin_unlock(&arg
->dst_task
->pi_lock
);
2082 raw_spin_unlock(&arg
->src_task
->pi_lock
);
2088 * Cross migrate two tasks
2090 int migrate_swap(struct task_struct
*cur
, struct task_struct
*p
,
2091 int target_cpu
, int curr_cpu
)
2093 struct migration_swap_arg arg
;
2096 arg
= (struct migration_swap_arg
){
2098 .src_cpu
= curr_cpu
,
2100 .dst_cpu
= target_cpu
,
2103 if (arg
.src_cpu
== arg
.dst_cpu
)
2107 * These three tests are all lockless; this is OK since all of them
2108 * will be re-checked with proper locks held further down the line.
2110 if (!cpu_active(arg
.src_cpu
) || !cpu_active(arg
.dst_cpu
))
2113 if (!cpumask_test_cpu(arg
.dst_cpu
, arg
.src_task
->cpus_ptr
))
2116 if (!cpumask_test_cpu(arg
.src_cpu
, arg
.dst_task
->cpus_ptr
))
2119 trace_sched_swap_numa(cur
, arg
.src_cpu
, p
, arg
.dst_cpu
);
2120 ret
= stop_two_cpus(arg
.dst_cpu
, arg
.src_cpu
, migrate_swap_stop
, &arg
);
2125 #endif /* CONFIG_NUMA_BALANCING */
2128 * wait_task_inactive - wait for a thread to unschedule.
2130 * If @match_state is nonzero, it's the @p->state value just checked and
2131 * not expected to change. If it changes, i.e. @p might have woken up,
2132 * then return zero. When we succeed in waiting for @p to be off its CPU,
2133 * we return a positive number (its total switch count). If a second call
2134 * a short while later returns the same number, the caller can be sure that
2135 * @p has remained unscheduled the whole time.
2137 * The caller must ensure that the task *will* unschedule sometime soon,
2138 * else this function might spin for a *long* time. This function can't
2139 * be called with interrupts off, or it may introduce deadlock with
2140 * smp_call_function() if an IPI is sent by the same process we are
2141 * waiting to become inactive.
2143 unsigned long wait_task_inactive(struct task_struct
*p
, long match_state
)
2145 int running
, queued
;
2152 * We do the initial early heuristics without holding
2153 * any task-queue locks at all. We'll only try to get
2154 * the runqueue lock when things look like they will
2160 * If the task is actively running on another CPU
2161 * still, just relax and busy-wait without holding
2164 * NOTE! Since we don't hold any locks, it's not
2165 * even sure that "rq" stays as the right runqueue!
2166 * But we don't care, since "task_running()" will
2167 * return false if the runqueue has changed and p
2168 * is actually now running somewhere else!
2170 while (task_running(rq
, p
)) {
2171 if (match_state
&& unlikely(p
->state
!= match_state
))
2177 * Ok, time to look more closely! We need the rq
2178 * lock now, to be *sure*. If we're wrong, we'll
2179 * just go back and repeat.
2181 rq
= task_rq_lock(p
, &rf
);
2182 trace_sched_wait_task(p
);
2183 running
= task_running(rq
, p
);
2184 queued
= task_on_rq_queued(p
);
2186 if (!match_state
|| p
->state
== match_state
)
2187 ncsw
= p
->nvcsw
| LONG_MIN
; /* sets MSB */
2188 task_rq_unlock(rq
, p
, &rf
);
2191 * If it changed from the expected state, bail out now.
2193 if (unlikely(!ncsw
))
2197 * Was it really running after all now that we
2198 * checked with the proper locks actually held?
2200 * Oops. Go back and try again..
2202 if (unlikely(running
)) {
2208 * It's not enough that it's not actively running,
2209 * it must be off the runqueue _entirely_, and not
2212 * So if it was still runnable (but just not actively
2213 * running right now), it's preempted, and we should
2214 * yield - it could be a while.
2216 if (unlikely(queued
)) {
2217 ktime_t to
= NSEC_PER_SEC
/ HZ
;
2219 set_current_state(TASK_UNINTERRUPTIBLE
);
2220 schedule_hrtimeout(&to
, HRTIMER_MODE_REL
);
2225 * Ahh, all good. It wasn't running, and it wasn't
2226 * runnable, which means that it will never become
2227 * running in the future either. We're all done!
2236 * kick_process - kick a running thread to enter/exit the kernel
2237 * @p: the to-be-kicked thread
2239 * Cause a process which is running on another CPU to enter
2240 * kernel-mode, without any delay. (to get signals handled.)
2242 * NOTE: this function doesn't have to take the runqueue lock,
2243 * because all it wants to ensure is that the remote task enters
2244 * the kernel. If the IPI races and the task has been migrated
2245 * to another CPU then no harm is done and the purpose has been
2248 void kick_process(struct task_struct
*p
)
2254 if ((cpu
!= smp_processor_id()) && task_curr(p
))
2255 smp_send_reschedule(cpu
);
2258 EXPORT_SYMBOL_GPL(kick_process
);
2261 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
2263 * A few notes on cpu_active vs cpu_online:
2265 * - cpu_active must be a subset of cpu_online
2267 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
2268 * see __set_cpus_allowed_ptr(). At this point the newly online
2269 * CPU isn't yet part of the sched domains, and balancing will not
2272 * - on CPU-down we clear cpu_active() to mask the sched domains and
2273 * avoid the load balancer to place new tasks on the to be removed
2274 * CPU. Existing tasks will remain running there and will be taken
2277 * This means that fallback selection must not select !active CPUs.
2278 * And can assume that any active CPU must be online. Conversely
2279 * select_task_rq() below may allow selection of !active CPUs in order
2280 * to satisfy the above rules.
2282 static int select_fallback_rq(int cpu
, struct task_struct
*p
)
2284 int nid
= cpu_to_node(cpu
);
2285 const struct cpumask
*nodemask
= NULL
;
2286 enum { cpuset
, possible
, fail
} state
= cpuset
;
2290 * If the node that the CPU is on has been offlined, cpu_to_node()
2291 * will return -1. There is no CPU on the node, and we should
2292 * select the CPU on the other node.
2295 nodemask
= cpumask_of_node(nid
);
2297 /* Look for allowed, online CPU in same node. */
2298 for_each_cpu(dest_cpu
, nodemask
) {
2299 if (!cpu_active(dest_cpu
))
2301 if (cpumask_test_cpu(dest_cpu
, p
->cpus_ptr
))
2307 /* Any allowed, online CPU? */
2308 for_each_cpu(dest_cpu
, p
->cpus_ptr
) {
2309 if (!is_cpu_allowed(p
, dest_cpu
))
2315 /* No more Mr. Nice Guy. */
2318 if (IS_ENABLED(CONFIG_CPUSETS
)) {
2319 cpuset_cpus_allowed_fallback(p
);
2325 do_set_cpus_allowed(p
, cpu_possible_mask
);
2336 if (state
!= cpuset
) {
2338 * Don't tell them about moving exiting tasks or
2339 * kernel threads (both mm NULL), since they never
2342 if (p
->mm
&& printk_ratelimit()) {
2343 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2344 task_pid_nr(p
), p
->comm
, cpu
);
2352 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
2355 int select_task_rq(struct task_struct
*p
, int cpu
, int sd_flags
, int wake_flags
)
2357 lockdep_assert_held(&p
->pi_lock
);
2359 if (p
->nr_cpus_allowed
> 1)
2360 cpu
= p
->sched_class
->select_task_rq(p
, cpu
, sd_flags
, wake_flags
);
2362 cpu
= cpumask_any(p
->cpus_ptr
);
2365 * In order not to call set_task_cpu() on a blocking task we need
2366 * to rely on ttwu() to place the task on a valid ->cpus_ptr
2369 * Since this is common to all placement strategies, this lives here.
2371 * [ this allows ->select_task() to simply return task_cpu(p) and
2372 * not worry about this generic constraint ]
2374 if (unlikely(!is_cpu_allowed(p
, cpu
)))
2375 cpu
= select_fallback_rq(task_cpu(p
), p
);
2380 void sched_set_stop_task(int cpu
, struct task_struct
*stop
)
2382 struct sched_param param
= { .sched_priority
= MAX_RT_PRIO
- 1 };
2383 struct task_struct
*old_stop
= cpu_rq(cpu
)->stop
;
2387 * Make it appear like a SCHED_FIFO task, its something
2388 * userspace knows about and won't get confused about.
2390 * Also, it will make PI more or less work without too
2391 * much confusion -- but then, stop work should not
2392 * rely on PI working anyway.
2394 sched_setscheduler_nocheck(stop
, SCHED_FIFO
, ¶m
);
2396 stop
->sched_class
= &stop_sched_class
;
2399 cpu_rq(cpu
)->stop
= stop
;
2403 * Reset it back to a normal scheduling class so that
2404 * it can die in pieces.
2406 old_stop
->sched_class
= &rt_sched_class
;
2412 static inline int __set_cpus_allowed_ptr(struct task_struct
*p
,
2413 const struct cpumask
*new_mask
, bool check
)
2415 return set_cpus_allowed_ptr(p
, new_mask
);
2418 #endif /* CONFIG_SMP */
2421 ttwu_stat(struct task_struct
*p
, int cpu
, int wake_flags
)
2425 if (!schedstat_enabled())
2431 if (cpu
== rq
->cpu
) {
2432 __schedstat_inc(rq
->ttwu_local
);
2433 __schedstat_inc(p
->se
.statistics
.nr_wakeups_local
);
2435 struct sched_domain
*sd
;
2437 __schedstat_inc(p
->se
.statistics
.nr_wakeups_remote
);
2439 for_each_domain(rq
->cpu
, sd
) {
2440 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
2441 __schedstat_inc(sd
->ttwu_wake_remote
);
2448 if (wake_flags
& WF_MIGRATED
)
2449 __schedstat_inc(p
->se
.statistics
.nr_wakeups_migrate
);
2450 #endif /* CONFIG_SMP */
2452 __schedstat_inc(rq
->ttwu_count
);
2453 __schedstat_inc(p
->se
.statistics
.nr_wakeups
);
2455 if (wake_flags
& WF_SYNC
)
2456 __schedstat_inc(p
->se
.statistics
.nr_wakeups_sync
);
2460 * Mark the task runnable and perform wakeup-preemption.
2462 static void ttwu_do_wakeup(struct rq
*rq
, struct task_struct
*p
, int wake_flags
,
2463 struct rq_flags
*rf
)
2465 check_preempt_curr(rq
, p
, wake_flags
);
2466 p
->state
= TASK_RUNNING
;
2467 trace_sched_wakeup(p
);
2470 if (p
->sched_class
->task_woken
) {
2472 * Our task @p is fully woken up and running; so its safe to
2473 * drop the rq->lock, hereafter rq is only used for statistics.
2475 rq_unpin_lock(rq
, rf
);
2476 p
->sched_class
->task_woken(rq
, p
);
2477 rq_repin_lock(rq
, rf
);
2480 if (rq
->idle_stamp
) {
2481 u64 delta
= rq_clock(rq
) - rq
->idle_stamp
;
2482 u64 max
= 2*rq
->max_idle_balance_cost
;
2484 update_avg(&rq
->avg_idle
, delta
);
2486 if (rq
->avg_idle
> max
)
2495 ttwu_do_activate(struct rq
*rq
, struct task_struct
*p
, int wake_flags
,
2496 struct rq_flags
*rf
)
2498 int en_flags
= ENQUEUE_WAKEUP
| ENQUEUE_NOCLOCK
;
2500 lockdep_assert_held(&rq
->lock
);
2502 if (p
->sched_contributes_to_load
)
2503 rq
->nr_uninterruptible
--;
2506 if (wake_flags
& WF_MIGRATED
)
2507 en_flags
|= ENQUEUE_MIGRATED
;
2510 activate_task(rq
, p
, en_flags
);
2511 ttwu_do_wakeup(rq
, p
, wake_flags
, rf
);
2515 * Consider @p being inside a wait loop:
2518 * set_current_state(TASK_UNINTERRUPTIBLE);
2525 * __set_current_state(TASK_RUNNING);
2527 * between set_current_state() and schedule(). In this case @p is still
2528 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
2531 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
2532 * then schedule() must still happen and p->state can be changed to
2533 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
2534 * need to do a full wakeup with enqueue.
2536 * Returns: %true when the wakeup is done,
2539 static int ttwu_runnable(struct task_struct
*p
, int wake_flags
)
2545 rq
= __task_rq_lock(p
, &rf
);
2546 if (task_on_rq_queued(p
)) {
2547 /* check_preempt_curr() may use rq clock */
2548 update_rq_clock(rq
);
2549 ttwu_do_wakeup(rq
, p
, wake_flags
, &rf
);
2552 __task_rq_unlock(rq
, &rf
);
2558 void sched_ttwu_pending(void *arg
)
2560 struct llist_node
*llist
= arg
;
2561 struct rq
*rq
= this_rq();
2562 struct task_struct
*p
, *t
;
2569 * rq::ttwu_pending racy indication of out-standing wakeups.
2570 * Races such that false-negatives are possible, since they
2571 * are shorter lived that false-positives would be.
2573 WRITE_ONCE(rq
->ttwu_pending
, 0);
2575 rq_lock_irqsave(rq
, &rf
);
2576 update_rq_clock(rq
);
2578 llist_for_each_entry_safe(p
, t
, llist
, wake_entry
.llist
) {
2579 if (WARN_ON_ONCE(p
->on_cpu
))
2580 smp_cond_load_acquire(&p
->on_cpu
, !VAL
);
2582 if (WARN_ON_ONCE(task_cpu(p
) != cpu_of(rq
)))
2583 set_task_cpu(p
, cpu_of(rq
));
2585 ttwu_do_activate(rq
, p
, p
->sched_remote_wakeup
? WF_MIGRATED
: 0, &rf
);
2588 rq_unlock_irqrestore(rq
, &rf
);
2591 void send_call_function_single_ipi(int cpu
)
2593 struct rq
*rq
= cpu_rq(cpu
);
2595 if (!set_nr_if_polling(rq
->idle
))
2596 arch_send_call_function_single_ipi(cpu
);
2598 trace_sched_wake_idle_without_ipi(cpu
);
2602 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
2603 * necessary. The wakee CPU on receipt of the IPI will queue the task
2604 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
2605 * of the wakeup instead of the waker.
2607 static void __ttwu_queue_wakelist(struct task_struct
*p
, int cpu
, int wake_flags
)
2609 struct rq
*rq
= cpu_rq(cpu
);
2611 p
->sched_remote_wakeup
= !!(wake_flags
& WF_MIGRATED
);
2613 WRITE_ONCE(rq
->ttwu_pending
, 1);
2614 __smp_call_single_queue(cpu
, &p
->wake_entry
.llist
);
2617 void wake_up_if_idle(int cpu
)
2619 struct rq
*rq
= cpu_rq(cpu
);
2624 if (!is_idle_task(rcu_dereference(rq
->curr
)))
2627 if (set_nr_if_polling(rq
->idle
)) {
2628 trace_sched_wake_idle_without_ipi(cpu
);
2630 rq_lock_irqsave(rq
, &rf
);
2631 if (is_idle_task(rq
->curr
))
2632 smp_send_reschedule(cpu
);
2633 /* Else CPU is not idle, do nothing here: */
2634 rq_unlock_irqrestore(rq
, &rf
);
2641 bool cpus_share_cache(int this_cpu
, int that_cpu
)
2643 return per_cpu(sd_llc_id
, this_cpu
) == per_cpu(sd_llc_id
, that_cpu
);
2646 static inline bool ttwu_queue_cond(int cpu
, int wake_flags
)
2649 * If the CPU does not share cache, then queue the task on the
2650 * remote rqs wakelist to avoid accessing remote data.
2652 if (!cpus_share_cache(smp_processor_id(), cpu
))
2656 * If the task is descheduling and the only running task on the
2657 * CPU then use the wakelist to offload the task activation to
2658 * the soon-to-be-idle CPU as the current CPU is likely busy.
2659 * nr_running is checked to avoid unnecessary task stacking.
2661 if ((wake_flags
& WF_ON_CPU
) && cpu_rq(cpu
)->nr_running
<= 1)
2667 static bool ttwu_queue_wakelist(struct task_struct
*p
, int cpu
, int wake_flags
)
2669 if (sched_feat(TTWU_QUEUE
) && ttwu_queue_cond(cpu
, wake_flags
)) {
2670 if (WARN_ON_ONCE(cpu
== smp_processor_id()))
2673 sched_clock_cpu(cpu
); /* Sync clocks across CPUs */
2674 __ttwu_queue_wakelist(p
, cpu
, wake_flags
);
2681 #else /* !CONFIG_SMP */
2683 static inline bool ttwu_queue_wakelist(struct task_struct
*p
, int cpu
, int wake_flags
)
2688 #endif /* CONFIG_SMP */
2690 static void ttwu_queue(struct task_struct
*p
, int cpu
, int wake_flags
)
2692 struct rq
*rq
= cpu_rq(cpu
);
2695 if (ttwu_queue_wakelist(p
, cpu
, wake_flags
))
2699 update_rq_clock(rq
);
2700 ttwu_do_activate(rq
, p
, wake_flags
, &rf
);
2705 * Notes on Program-Order guarantees on SMP systems.
2709 * The basic program-order guarantee on SMP systems is that when a task [t]
2710 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
2711 * execution on its new CPU [c1].
2713 * For migration (of runnable tasks) this is provided by the following means:
2715 * A) UNLOCK of the rq(c0)->lock scheduling out task t
2716 * B) migration for t is required to synchronize *both* rq(c0)->lock and
2717 * rq(c1)->lock (if not at the same time, then in that order).
2718 * C) LOCK of the rq(c1)->lock scheduling in task
2720 * Release/acquire chaining guarantees that B happens after A and C after B.
2721 * Note: the CPU doing B need not be c0 or c1
2730 * UNLOCK rq(0)->lock
2732 * LOCK rq(0)->lock // orders against CPU0
2734 * UNLOCK rq(0)->lock
2738 * UNLOCK rq(1)->lock
2740 * LOCK rq(1)->lock // orders against CPU2
2743 * UNLOCK rq(1)->lock
2746 * BLOCKING -- aka. SLEEP + WAKEUP
2748 * For blocking we (obviously) need to provide the same guarantee as for
2749 * migration. However the means are completely different as there is no lock
2750 * chain to provide order. Instead we do:
2752 * 1) smp_store_release(X->on_cpu, 0) -- finish_task()
2753 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
2757 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
2759 * LOCK rq(0)->lock LOCK X->pi_lock
2762 * smp_store_release(X->on_cpu, 0);
2764 * smp_cond_load_acquire(&X->on_cpu, !VAL);
2770 * X->state = RUNNING
2771 * UNLOCK rq(2)->lock
2773 * LOCK rq(2)->lock // orders against CPU1
2776 * UNLOCK rq(2)->lock
2779 * UNLOCK rq(0)->lock
2782 * However, for wakeups there is a second guarantee we must provide, namely we
2783 * must ensure that CONDITION=1 done by the caller can not be reordered with
2784 * accesses to the task state; see try_to_wake_up() and set_current_state().
2788 * try_to_wake_up - wake up a thread
2789 * @p: the thread to be awakened
2790 * @state: the mask of task states that can be woken
2791 * @wake_flags: wake modifier flags (WF_*)
2793 * Conceptually does:
2795 * If (@state & @p->state) @p->state = TASK_RUNNING.
2797 * If the task was not queued/runnable, also place it back on a runqueue.
2799 * This function is atomic against schedule() which would dequeue the task.
2801 * It issues a full memory barrier before accessing @p->state, see the comment
2802 * with set_current_state().
2804 * Uses p->pi_lock to serialize against concurrent wake-ups.
2806 * Relies on p->pi_lock stabilizing:
2809 * - p->sched_task_group
2810 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
2812 * Tries really hard to only take one task_rq(p)->lock for performance.
2813 * Takes rq->lock in:
2814 * - ttwu_runnable() -- old rq, unavoidable, see comment there;
2815 * - ttwu_queue() -- new rq, for enqueue of the task;
2816 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
2818 * As a consequence we race really badly with just about everything. See the
2819 * many memory barriers and their comments for details.
2821 * Return: %true if @p->state changes (an actual wakeup was done),
2825 try_to_wake_up(struct task_struct
*p
, unsigned int state
, int wake_flags
)
2827 unsigned long flags
;
2828 int cpu
, success
= 0;
2833 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
2834 * == smp_processor_id()'. Together this means we can special
2835 * case the whole 'p->on_rq && ttwu_runnable()' case below
2836 * without taking any locks.
2839 * - we rely on Program-Order guarantees for all the ordering,
2840 * - we're serialized against set_special_state() by virtue of
2841 * it disabling IRQs (this allows not taking ->pi_lock).
2843 if (!(p
->state
& state
))
2847 trace_sched_waking(p
);
2848 p
->state
= TASK_RUNNING
;
2849 trace_sched_wakeup(p
);
2854 * If we are going to wake up a thread waiting for CONDITION we
2855 * need to ensure that CONDITION=1 done by the caller can not be
2856 * reordered with p->state check below. This pairs with smp_store_mb()
2857 * in set_current_state() that the waiting thread does.
2859 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
2860 smp_mb__after_spinlock();
2861 if (!(p
->state
& state
))
2864 trace_sched_waking(p
);
2866 /* We're going to change ->state: */
2870 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2871 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2872 * in smp_cond_load_acquire() below.
2874 * sched_ttwu_pending() try_to_wake_up()
2875 * STORE p->on_rq = 1 LOAD p->state
2878 * __schedule() (switch to task 'p')
2879 * LOCK rq->lock smp_rmb();
2880 * smp_mb__after_spinlock();
2884 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
2886 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2887 * __schedule(). See the comment for smp_mb__after_spinlock().
2889 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
2892 if (READ_ONCE(p
->on_rq
) && ttwu_runnable(p
, wake_flags
))
2896 delayacct_blkio_end(p
);
2897 atomic_dec(&task_rq(p
)->nr_iowait
);
2902 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2903 * possible to, falsely, observe p->on_cpu == 0.
2905 * One must be running (->on_cpu == 1) in order to remove oneself
2906 * from the runqueue.
2908 * __schedule() (switch to task 'p') try_to_wake_up()
2909 * STORE p->on_cpu = 1 LOAD p->on_rq
2912 * __schedule() (put 'p' to sleep)
2913 * LOCK rq->lock smp_rmb();
2914 * smp_mb__after_spinlock();
2915 * STORE p->on_rq = 0 LOAD p->on_cpu
2917 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2918 * __schedule(). See the comment for smp_mb__after_spinlock().
2920 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
2921 * schedule()'s deactivate_task() has 'happened' and p will no longer
2922 * care about it's own p->state. See the comment in __schedule().
2924 smp_acquire__after_ctrl_dep();
2927 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
2928 * == 0), which means we need to do an enqueue, change p->state to
2929 * TASK_WAKING such that we can unlock p->pi_lock before doing the
2930 * enqueue, such as ttwu_queue_wakelist().
2932 p
->state
= TASK_WAKING
;
2935 * If the owning (remote) CPU is still in the middle of schedule() with
2936 * this task as prev, considering queueing p on the remote CPUs wake_list
2937 * which potentially sends an IPI instead of spinning on p->on_cpu to
2938 * let the waker make forward progress. This is safe because IRQs are
2939 * disabled and the IPI will deliver after on_cpu is cleared.
2941 * Ensure we load task_cpu(p) after p->on_cpu:
2943 * set_task_cpu(p, cpu);
2944 * STORE p->cpu = @cpu
2945 * __schedule() (switch to task 'p')
2947 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu)
2948 * STORE p->on_cpu = 1 LOAD p->cpu
2950 * to ensure we observe the correct CPU on which the task is currently
2953 if (smp_load_acquire(&p
->on_cpu
) &&
2954 ttwu_queue_wakelist(p
, task_cpu(p
), wake_flags
| WF_ON_CPU
))
2958 * If the owning (remote) CPU is still in the middle of schedule() with
2959 * this task as prev, wait until its done referencing the task.
2961 * Pairs with the smp_store_release() in finish_task().
2963 * This ensures that tasks getting woken will be fully ordered against
2964 * their previous state and preserve Program Order.
2966 smp_cond_load_acquire(&p
->on_cpu
, !VAL
);
2968 cpu
= select_task_rq(p
, p
->wake_cpu
, SD_BALANCE_WAKE
, wake_flags
);
2969 if (task_cpu(p
) != cpu
) {
2970 wake_flags
|= WF_MIGRATED
;
2971 psi_ttwu_dequeue(p
);
2972 set_task_cpu(p
, cpu
);
2976 #endif /* CONFIG_SMP */
2978 ttwu_queue(p
, cpu
, wake_flags
);
2980 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
2983 ttwu_stat(p
, task_cpu(p
), wake_flags
);
2990 * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
2991 * @p: Process for which the function is to be invoked.
2992 * @func: Function to invoke.
2993 * @arg: Argument to function.
2995 * If the specified task can be quickly locked into a definite state
2996 * (either sleeping or on a given runqueue), arrange to keep it in that
2997 * state while invoking @func(@arg). This function can use ->on_rq and
2998 * task_curr() to work out what the state is, if required. Given that
2999 * @func can be invoked with a runqueue lock held, it had better be quite
3003 * @false if the task slipped out from under the locks.
3004 * @true if the task was locked onto a runqueue or is sleeping.
3005 * However, @func can override this by returning @false.
3007 bool try_invoke_on_locked_down_task(struct task_struct
*p
, bool (*func
)(struct task_struct
*t
, void *arg
), void *arg
)
3013 lockdep_assert_irqs_enabled();
3014 raw_spin_lock_irq(&p
->pi_lock
);
3016 rq
= __task_rq_lock(p
, &rf
);
3017 if (task_rq(p
) == rq
)
3026 smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
3031 raw_spin_unlock_irq(&p
->pi_lock
);
3036 * wake_up_process - Wake up a specific process
3037 * @p: The process to be woken up.
3039 * Attempt to wake up the nominated process and move it to the set of runnable
3042 * Return: 1 if the process was woken up, 0 if it was already running.
3044 * This function executes a full memory barrier before accessing the task state.
3046 int wake_up_process(struct task_struct
*p
)
3048 return try_to_wake_up(p
, TASK_NORMAL
, 0);
3050 EXPORT_SYMBOL(wake_up_process
);
3052 int wake_up_state(struct task_struct
*p
, unsigned int state
)
3054 return try_to_wake_up(p
, state
, 0);
3058 * Perform scheduler related setup for a newly forked process p.
3059 * p is forked by current.
3061 * __sched_fork() is basic setup used by init_idle() too:
3063 static void __sched_fork(unsigned long clone_flags
, struct task_struct
*p
)
3068 p
->se
.exec_start
= 0;
3069 p
->se
.sum_exec_runtime
= 0;
3070 p
->se
.prev_sum_exec_runtime
= 0;
3071 p
->se
.nr_migrations
= 0;
3073 INIT_LIST_HEAD(&p
->se
.group_node
);
3075 #ifdef CONFIG_FAIR_GROUP_SCHED
3076 p
->se
.cfs_rq
= NULL
;
3079 #ifdef CONFIG_SCHEDSTATS
3080 /* Even if schedstat is disabled, there should not be garbage */
3081 memset(&p
->se
.statistics
, 0, sizeof(p
->se
.statistics
));
3084 RB_CLEAR_NODE(&p
->dl
.rb_node
);
3085 init_dl_task_timer(&p
->dl
);
3086 init_dl_inactive_task_timer(&p
->dl
);
3087 __dl_clear_params(p
);
3089 INIT_LIST_HEAD(&p
->rt
.run_list
);
3091 p
->rt
.time_slice
= sched_rr_timeslice
;
3095 #ifdef CONFIG_PREEMPT_NOTIFIERS
3096 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
3099 #ifdef CONFIG_COMPACTION
3100 p
->capture_control
= NULL
;
3102 init_numa_balancing(clone_flags
, p
);
3104 p
->wake_entry
.u_flags
= CSD_TYPE_TTWU
;
3108 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing
);
3110 #ifdef CONFIG_NUMA_BALANCING
3112 void set_numabalancing_state(bool enabled
)
3115 static_branch_enable(&sched_numa_balancing
);
3117 static_branch_disable(&sched_numa_balancing
);
3120 #ifdef CONFIG_PROC_SYSCTL
3121 int sysctl_numa_balancing(struct ctl_table
*table
, int write
,
3122 void *buffer
, size_t *lenp
, loff_t
*ppos
)
3126 int state
= static_branch_likely(&sched_numa_balancing
);
3128 if (write
&& !capable(CAP_SYS_ADMIN
))
3133 err
= proc_dointvec_minmax(&t
, write
, buffer
, lenp
, ppos
);
3137 set_numabalancing_state(state
);
3143 #ifdef CONFIG_SCHEDSTATS
3145 DEFINE_STATIC_KEY_FALSE(sched_schedstats
);
3146 static bool __initdata __sched_schedstats
= false;
3148 static void set_schedstats(bool enabled
)
3151 static_branch_enable(&sched_schedstats
);
3153 static_branch_disable(&sched_schedstats
);
3156 void force_schedstat_enabled(void)
3158 if (!schedstat_enabled()) {
3159 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
3160 static_branch_enable(&sched_schedstats
);
3164 static int __init
setup_schedstats(char *str
)
3171 * This code is called before jump labels have been set up, so we can't
3172 * change the static branch directly just yet. Instead set a temporary
3173 * variable so init_schedstats() can do it later.
3175 if (!strcmp(str
, "enable")) {
3176 __sched_schedstats
= true;
3178 } else if (!strcmp(str
, "disable")) {
3179 __sched_schedstats
= false;
3184 pr_warn("Unable to parse schedstats=\n");
3188 __setup("schedstats=", setup_schedstats
);
3190 static void __init
init_schedstats(void)
3192 set_schedstats(__sched_schedstats
);
3195 #ifdef CONFIG_PROC_SYSCTL
3196 int sysctl_schedstats(struct ctl_table
*table
, int write
, void *buffer
,
3197 size_t *lenp
, loff_t
*ppos
)
3201 int state
= static_branch_likely(&sched_schedstats
);
3203 if (write
&& !capable(CAP_SYS_ADMIN
))
3208 err
= proc_dointvec_minmax(&t
, write
, buffer
, lenp
, ppos
);
3212 set_schedstats(state
);
3215 #endif /* CONFIG_PROC_SYSCTL */
3216 #else /* !CONFIG_SCHEDSTATS */
3217 static inline void init_schedstats(void) {}
3218 #endif /* CONFIG_SCHEDSTATS */
3221 * fork()/clone()-time setup:
3223 int sched_fork(unsigned long clone_flags
, struct task_struct
*p
)
3225 unsigned long flags
;
3227 __sched_fork(clone_flags
, p
);
3229 * We mark the process as NEW here. This guarantees that
3230 * nobody will actually run it, and a signal or other external
3231 * event cannot wake it up and insert it on the runqueue either.
3233 p
->state
= TASK_NEW
;
3236 * Make sure we do not leak PI boosting priority to the child.
3238 p
->prio
= current
->normal_prio
;
3243 * Revert to default priority/policy on fork if requested.
3245 if (unlikely(p
->sched_reset_on_fork
)) {
3246 if (task_has_dl_policy(p
) || task_has_rt_policy(p
)) {
3247 p
->policy
= SCHED_NORMAL
;
3248 p
->static_prio
= NICE_TO_PRIO(0);
3250 } else if (PRIO_TO_NICE(p
->static_prio
) < 0)
3251 p
->static_prio
= NICE_TO_PRIO(0);
3253 p
->prio
= p
->normal_prio
= __normal_prio(p
);
3254 set_load_weight(p
, false);
3257 * We don't need the reset flag anymore after the fork. It has
3258 * fulfilled its duty:
3260 p
->sched_reset_on_fork
= 0;
3263 if (dl_prio(p
->prio
))
3265 else if (rt_prio(p
->prio
))
3266 p
->sched_class
= &rt_sched_class
;
3268 p
->sched_class
= &fair_sched_class
;
3270 init_entity_runnable_average(&p
->se
);
3273 * The child is not yet in the pid-hash so no cgroup attach races,
3274 * and the cgroup is pinned to this child due to cgroup_fork()
3275 * is ran before sched_fork().
3277 * Silence PROVE_RCU.
3279 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
3282 * We're setting the CPU for the first time, we don't migrate,
3283 * so use __set_task_cpu().
3285 __set_task_cpu(p
, smp_processor_id());
3286 if (p
->sched_class
->task_fork
)
3287 p
->sched_class
->task_fork(p
);
3288 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
3290 #ifdef CONFIG_SCHED_INFO
3291 if (likely(sched_info_on()))
3292 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
3294 #if defined(CONFIG_SMP)
3297 init_task_preempt_count(p
);
3299 plist_node_init(&p
->pushable_tasks
, MAX_PRIO
);
3300 RB_CLEAR_NODE(&p
->pushable_dl_tasks
);
3305 void sched_post_fork(struct task_struct
*p
)
3307 uclamp_post_fork(p
);
3310 unsigned long to_ratio(u64 period
, u64 runtime
)
3312 if (runtime
== RUNTIME_INF
)
3316 * Doing this here saves a lot of checks in all
3317 * the calling paths, and returning zero seems
3318 * safe for them anyway.
3323 return div64_u64(runtime
<< BW_SHIFT
, period
);
3327 * wake_up_new_task - wake up a newly created task for the first time.
3329 * This function will do some initial scheduler statistics housekeeping
3330 * that must be done for every newly created context, then puts the task
3331 * on the runqueue and wakes it.
3333 void wake_up_new_task(struct task_struct
*p
)
3338 raw_spin_lock_irqsave(&p
->pi_lock
, rf
.flags
);
3339 p
->state
= TASK_RUNNING
;
3342 * Fork balancing, do it here and not earlier because:
3343 * - cpus_ptr can change in the fork path
3344 * - any previously selected CPU might disappear through hotplug
3346 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
3347 * as we're not fully set-up yet.
3349 p
->recent_used_cpu
= task_cpu(p
);
3351 __set_task_cpu(p
, select_task_rq(p
, task_cpu(p
), SD_BALANCE_FORK
, 0));
3353 rq
= __task_rq_lock(p
, &rf
);
3354 update_rq_clock(rq
);
3355 post_init_entity_util_avg(p
);
3357 activate_task(rq
, p
, ENQUEUE_NOCLOCK
);
3358 trace_sched_wakeup_new(p
);
3359 check_preempt_curr(rq
, p
, WF_FORK
);
3361 if (p
->sched_class
->task_woken
) {
3363 * Nothing relies on rq->lock after this, so its fine to
3366 rq_unpin_lock(rq
, &rf
);
3367 p
->sched_class
->task_woken(rq
, p
);
3368 rq_repin_lock(rq
, &rf
);
3371 task_rq_unlock(rq
, p
, &rf
);
3374 #ifdef CONFIG_PREEMPT_NOTIFIERS
3376 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key
);
3378 void preempt_notifier_inc(void)
3380 static_branch_inc(&preempt_notifier_key
);
3382 EXPORT_SYMBOL_GPL(preempt_notifier_inc
);
3384 void preempt_notifier_dec(void)
3386 static_branch_dec(&preempt_notifier_key
);
3388 EXPORT_SYMBOL_GPL(preempt_notifier_dec
);
3391 * preempt_notifier_register - tell me when current is being preempted & rescheduled
3392 * @notifier: notifier struct to register
3394 void preempt_notifier_register(struct preempt_notifier
*notifier
)
3396 if (!static_branch_unlikely(&preempt_notifier_key
))
3397 WARN(1, "registering preempt_notifier while notifiers disabled\n");
3399 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
3401 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
3404 * preempt_notifier_unregister - no longer interested in preemption notifications
3405 * @notifier: notifier struct to unregister
3407 * This is *not* safe to call from within a preemption notifier.
3409 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
3411 hlist_del(¬ifier
->link
);
3413 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
3415 static void __fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
3417 struct preempt_notifier
*notifier
;
3419 hlist_for_each_entry(notifier
, &curr
->preempt_notifiers
, link
)
3420 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
3423 static __always_inline
void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
3425 if (static_branch_unlikely(&preempt_notifier_key
))
3426 __fire_sched_in_preempt_notifiers(curr
);
3430 __fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
3431 struct task_struct
*next
)
3433 struct preempt_notifier
*notifier
;
3435 hlist_for_each_entry(notifier
, &curr
->preempt_notifiers
, link
)
3436 notifier
->ops
->sched_out(notifier
, next
);
3439 static __always_inline
void
3440 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
3441 struct task_struct
*next
)
3443 if (static_branch_unlikely(&preempt_notifier_key
))
3444 __fire_sched_out_preempt_notifiers(curr
, next
);
3447 #else /* !CONFIG_PREEMPT_NOTIFIERS */
3449 static inline void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
3454 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
3455 struct task_struct
*next
)
3459 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3461 static inline void prepare_task(struct task_struct
*next
)
3465 * Claim the task as running, we do this before switching to it
3466 * such that any running task will have this set.
3468 * See the ttwu() WF_ON_CPU case and its ordering comment.
3470 WRITE_ONCE(next
->on_cpu
, 1);
3474 static inline void finish_task(struct task_struct
*prev
)
3478 * This must be the very last reference to @prev from this CPU. After
3479 * p->on_cpu is cleared, the task can be moved to a different CPU. We
3480 * must ensure this doesn't happen until the switch is completely
3483 * In particular, the load of prev->state in finish_task_switch() must
3484 * happen before this.
3486 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3488 smp_store_release(&prev
->on_cpu
, 0);
3493 prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
, struct rq_flags
*rf
)
3496 * Since the runqueue lock will be released by the next
3497 * task (which is an invalid locking op but in the case
3498 * of the scheduler it's an obvious special-case), so we
3499 * do an early lockdep release here:
3501 rq_unpin_lock(rq
, rf
);
3502 spin_release(&rq
->lock
.dep_map
, _THIS_IP_
);
3503 #ifdef CONFIG_DEBUG_SPINLOCK
3504 /* this is a valid case when another task releases the spinlock */
3505 rq
->lock
.owner
= next
;
3509 static inline void finish_lock_switch(struct rq
*rq
)
3512 * If we are tracking spinlock dependencies then we have to
3513 * fix up the runqueue lock - which gets 'carried over' from
3514 * prev into current:
3516 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
3517 raw_spin_unlock_irq(&rq
->lock
);
3521 * NOP if the arch has not defined these:
3524 #ifndef prepare_arch_switch
3525 # define prepare_arch_switch(next) do { } while (0)
3528 #ifndef finish_arch_post_lock_switch
3529 # define finish_arch_post_lock_switch() do { } while (0)
3533 * prepare_task_switch - prepare to switch tasks
3534 * @rq: the runqueue preparing to switch
3535 * @prev: the current task that is being switched out
3536 * @next: the task we are going to switch to.
3538 * This is called with the rq lock held and interrupts off. It must
3539 * be paired with a subsequent finish_task_switch after the context
3542 * prepare_task_switch sets up locking and calls architecture specific
3546 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
3547 struct task_struct
*next
)
3549 kcov_prepare_switch(prev
);
3550 sched_info_switch(rq
, prev
, next
);
3551 perf_event_task_sched_out(prev
, next
);
3553 fire_sched_out_preempt_notifiers(prev
, next
);
3555 prepare_arch_switch(next
);
3559 * finish_task_switch - clean up after a task-switch
3560 * @prev: the thread we just switched away from.
3562 * finish_task_switch must be called after the context switch, paired
3563 * with a prepare_task_switch call before the context switch.
3564 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3565 * and do any other architecture-specific cleanup actions.
3567 * Note that we may have delayed dropping an mm in context_switch(). If
3568 * so, we finish that here outside of the runqueue lock. (Doing it
3569 * with the lock held can cause deadlocks; see schedule() for
3572 * The context switch have flipped the stack from under us and restored the
3573 * local variables which were saved when this task called schedule() in the
3574 * past. prev == current is still correct but we need to recalculate this_rq
3575 * because prev may have moved to another CPU.
3577 static struct rq
*finish_task_switch(struct task_struct
*prev
)
3578 __releases(rq
->lock
)
3580 struct rq
*rq
= this_rq();
3581 struct mm_struct
*mm
= rq
->prev_mm
;
3585 * The previous task will have left us with a preempt_count of 2
3586 * because it left us after:
3589 * preempt_disable(); // 1
3591 * raw_spin_lock_irq(&rq->lock) // 2
3593 * Also, see FORK_PREEMPT_COUNT.
3595 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET
,
3596 "corrupted preempt_count: %s/%d/0x%x\n",
3597 current
->comm
, current
->pid
, preempt_count()))
3598 preempt_count_set(FORK_PREEMPT_COUNT
);
3603 * A task struct has one reference for the use as "current".
3604 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3605 * schedule one last time. The schedule call will never return, and
3606 * the scheduled task must drop that reference.
3608 * We must observe prev->state before clearing prev->on_cpu (in
3609 * finish_task), otherwise a concurrent wakeup can get prev
3610 * running on another CPU and we could rave with its RUNNING -> DEAD
3611 * transition, resulting in a double drop.
3613 prev_state
= prev
->state
;
3614 vtime_task_switch(prev
);
3615 perf_event_task_sched_in(prev
, current
);
3617 finish_lock_switch(rq
);
3618 finish_arch_post_lock_switch();
3619 kcov_finish_switch(current
);
3621 fire_sched_in_preempt_notifiers(current
);
3623 * When switching through a kernel thread, the loop in
3624 * membarrier_{private,global}_expedited() may have observed that
3625 * kernel thread and not issued an IPI. It is therefore possible to
3626 * schedule between user->kernel->user threads without passing though
3627 * switch_mm(). Membarrier requires a barrier after storing to
3628 * rq->curr, before returning to userspace, so provide them here:
3630 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
3631 * provided by mmdrop(),
3632 * - a sync_core for SYNC_CORE.
3635 membarrier_mm_sync_core_before_usermode(mm
);
3638 if (unlikely(prev_state
== TASK_DEAD
)) {
3639 if (prev
->sched_class
->task_dead
)
3640 prev
->sched_class
->task_dead(prev
);
3643 * Remove function-return probe instances associated with this
3644 * task and put them back on the free list.
3646 kprobe_flush_task(prev
);
3648 /* Task is done with its stack. */
3649 put_task_stack(prev
);
3651 put_task_struct_rcu_user(prev
);
3654 tick_nohz_task_switch();
3660 /* rq->lock is NOT held, but preemption is disabled */
3661 static void __balance_callback(struct rq
*rq
)
3663 struct callback_head
*head
, *next
;
3664 void (*func
)(struct rq
*rq
);
3665 unsigned long flags
;
3667 raw_spin_lock_irqsave(&rq
->lock
, flags
);
3668 head
= rq
->balance_callback
;
3669 rq
->balance_callback
= NULL
;
3671 func
= (void (*)(struct rq
*))head
->func
;
3678 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
3681 static inline void balance_callback(struct rq
*rq
)
3683 if (unlikely(rq
->balance_callback
))
3684 __balance_callback(rq
);
3689 static inline void balance_callback(struct rq
*rq
)
3696 * schedule_tail - first thing a freshly forked thread must call.
3697 * @prev: the thread we just switched away from.
3699 asmlinkage __visible
void schedule_tail(struct task_struct
*prev
)
3700 __releases(rq
->lock
)
3705 * New tasks start with FORK_PREEMPT_COUNT, see there and
3706 * finish_task_switch() for details.
3708 * finish_task_switch() will drop rq->lock() and lower preempt_count
3709 * and the preempt_enable() will end up enabling preemption (on
3710 * PREEMPT_COUNT kernels).
3713 rq
= finish_task_switch(prev
);
3714 balance_callback(rq
);
3717 if (current
->set_child_tid
)
3718 put_user(task_pid_vnr(current
), current
->set_child_tid
);
3720 calculate_sigpending();
3724 * context_switch - switch to the new MM and the new thread's register state.
3726 static __always_inline
struct rq
*
3727 context_switch(struct rq
*rq
, struct task_struct
*prev
,
3728 struct task_struct
*next
, struct rq_flags
*rf
)
3730 prepare_task_switch(rq
, prev
, next
);
3733 * For paravirt, this is coupled with an exit in switch_to to
3734 * combine the page table reload and the switch backend into
3737 arch_start_context_switch(prev
);
3740 * kernel -> kernel lazy + transfer active
3741 * user -> kernel lazy + mmgrab() active
3743 * kernel -> user switch + mmdrop() active
3744 * user -> user switch
3746 if (!next
->mm
) { // to kernel
3747 enter_lazy_tlb(prev
->active_mm
, next
);
3749 next
->active_mm
= prev
->active_mm
;
3750 if (prev
->mm
) // from user
3751 mmgrab(prev
->active_mm
);
3753 prev
->active_mm
= NULL
;
3755 membarrier_switch_mm(rq
, prev
->active_mm
, next
->mm
);
3757 * sys_membarrier() requires an smp_mb() between setting
3758 * rq->curr / membarrier_switch_mm() and returning to userspace.
3760 * The below provides this either through switch_mm(), or in
3761 * case 'prev->active_mm == next->mm' through
3762 * finish_task_switch()'s mmdrop().
3764 switch_mm_irqs_off(prev
->active_mm
, next
->mm
, next
);
3766 if (!prev
->mm
) { // from kernel
3767 /* will mmdrop() in finish_task_switch(). */
3768 rq
->prev_mm
= prev
->active_mm
;
3769 prev
->active_mm
= NULL
;
3773 rq
->clock_update_flags
&= ~(RQCF_ACT_SKIP
|RQCF_REQ_SKIP
);
3775 prepare_lock_switch(rq
, next
, rf
);
3777 /* Here we just switch the register state and the stack. */
3778 switch_to(prev
, next
, prev
);
3781 return finish_task_switch(prev
);
3785 * nr_running and nr_context_switches:
3787 * externally visible scheduler statistics: current number of runnable
3788 * threads, total number of context switches performed since bootup.
3790 unsigned long nr_running(void)
3792 unsigned long i
, sum
= 0;
3794 for_each_online_cpu(i
)
3795 sum
+= cpu_rq(i
)->nr_running
;
3801 * Check if only the current task is running on the CPU.
3803 * Caution: this function does not check that the caller has disabled
3804 * preemption, thus the result might have a time-of-check-to-time-of-use
3805 * race. The caller is responsible to use it correctly, for example:
3807 * - from a non-preemptible section (of course)
3809 * - from a thread that is bound to a single CPU
3811 * - in a loop with very short iterations (e.g. a polling loop)
3813 bool single_task_running(void)
3815 return raw_rq()->nr_running
== 1;
3817 EXPORT_SYMBOL(single_task_running
);
3819 unsigned long long nr_context_switches(void)
3822 unsigned long long sum
= 0;
3824 for_each_possible_cpu(i
)
3825 sum
+= cpu_rq(i
)->nr_switches
;
3831 * Consumers of these two interfaces, like for example the cpuidle menu
3832 * governor, are using nonsensical data. Preferring shallow idle state selection
3833 * for a CPU that has IO-wait which might not even end up running the task when
3834 * it does become runnable.
3837 unsigned long nr_iowait_cpu(int cpu
)
3839 return atomic_read(&cpu_rq(cpu
)->nr_iowait
);
3843 * IO-wait accounting, and how its mostly bollocks (on SMP).
3845 * The idea behind IO-wait account is to account the idle time that we could
3846 * have spend running if it were not for IO. That is, if we were to improve the
3847 * storage performance, we'd have a proportional reduction in IO-wait time.
3849 * This all works nicely on UP, where, when a task blocks on IO, we account
3850 * idle time as IO-wait, because if the storage were faster, it could've been
3851 * running and we'd not be idle.
3853 * This has been extended to SMP, by doing the same for each CPU. This however
3856 * Imagine for instance the case where two tasks block on one CPU, only the one
3857 * CPU will have IO-wait accounted, while the other has regular idle. Even
3858 * though, if the storage were faster, both could've ran at the same time,
3859 * utilising both CPUs.
3861 * This means, that when looking globally, the current IO-wait accounting on
3862 * SMP is a lower bound, by reason of under accounting.
3864 * Worse, since the numbers are provided per CPU, they are sometimes
3865 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
3866 * associated with any one particular CPU, it can wake to another CPU than it
3867 * blocked on. This means the per CPU IO-wait number is meaningless.
3869 * Task CPU affinities can make all that even more 'interesting'.
3872 unsigned long nr_iowait(void)
3874 unsigned long i
, sum
= 0;
3876 for_each_possible_cpu(i
)
3877 sum
+= nr_iowait_cpu(i
);
3885 * sched_exec - execve() is a valuable balancing opportunity, because at
3886 * this point the task has the smallest effective memory and cache footprint.
3888 void sched_exec(void)
3890 struct task_struct
*p
= current
;
3891 unsigned long flags
;
3894 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
3895 dest_cpu
= p
->sched_class
->select_task_rq(p
, task_cpu(p
), SD_BALANCE_EXEC
, 0);
3896 if (dest_cpu
== smp_processor_id())
3899 if (likely(cpu_active(dest_cpu
))) {
3900 struct migration_arg arg
= { p
, dest_cpu
};
3902 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
3903 stop_one_cpu(task_cpu(p
), migration_cpu_stop
, &arg
);
3907 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
3912 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
3913 DEFINE_PER_CPU(struct kernel_cpustat
, kernel_cpustat
);
3915 EXPORT_PER_CPU_SYMBOL(kstat
);
3916 EXPORT_PER_CPU_SYMBOL(kernel_cpustat
);
3919 * The function fair_sched_class.update_curr accesses the struct curr
3920 * and its field curr->exec_start; when called from task_sched_runtime(),
3921 * we observe a high rate of cache misses in practice.
3922 * Prefetching this data results in improved performance.
3924 static inline void prefetch_curr_exec_start(struct task_struct
*p
)
3926 #ifdef CONFIG_FAIR_GROUP_SCHED
3927 struct sched_entity
*curr
= (&p
->se
)->cfs_rq
->curr
;
3929 struct sched_entity
*curr
= (&task_rq(p
)->cfs
)->curr
;
3932 prefetch(&curr
->exec_start
);
3936 * Return accounted runtime for the task.
3937 * In case the task is currently running, return the runtime plus current's
3938 * pending runtime that have not been accounted yet.
3940 unsigned long long task_sched_runtime(struct task_struct
*p
)
3946 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3948 * 64-bit doesn't need locks to atomically read a 64-bit value.
3949 * So we have a optimization chance when the task's delta_exec is 0.
3950 * Reading ->on_cpu is racy, but this is ok.
3952 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3953 * If we race with it entering CPU, unaccounted time is 0. This is
3954 * indistinguishable from the read occurring a few cycles earlier.
3955 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3956 * been accounted, so we're correct here as well.
3958 if (!p
->on_cpu
|| !task_on_rq_queued(p
))
3959 return p
->se
.sum_exec_runtime
;
3962 rq
= task_rq_lock(p
, &rf
);
3964 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3965 * project cycles that may never be accounted to this
3966 * thread, breaking clock_gettime().
3968 if (task_current(rq
, p
) && task_on_rq_queued(p
)) {
3969 prefetch_curr_exec_start(p
);
3970 update_rq_clock(rq
);
3971 p
->sched_class
->update_curr(rq
);
3973 ns
= p
->se
.sum_exec_runtime
;
3974 task_rq_unlock(rq
, p
, &rf
);
3980 * This function gets called by the timer code, with HZ frequency.
3981 * We call it with interrupts disabled.
3983 void scheduler_tick(void)
3985 int cpu
= smp_processor_id();
3986 struct rq
*rq
= cpu_rq(cpu
);
3987 struct task_struct
*curr
= rq
->curr
;
3989 unsigned long thermal_pressure
;
3991 arch_scale_freq_tick();
3996 update_rq_clock(rq
);
3997 thermal_pressure
= arch_scale_thermal_pressure(cpu_of(rq
));
3998 update_thermal_load_avg(rq_clock_thermal(rq
), rq
, thermal_pressure
);
3999 curr
->sched_class
->task_tick(rq
, curr
, 0);
4000 calc_global_load_tick(rq
);
4005 perf_event_task_tick();
4008 rq
->idle_balance
= idle_cpu(cpu
);
4009 trigger_load_balance(rq
);
4013 #ifdef CONFIG_NO_HZ_FULL
4018 struct delayed_work work
;
4020 /* Values for ->state, see diagram below. */
4021 #define TICK_SCHED_REMOTE_OFFLINE 0
4022 #define TICK_SCHED_REMOTE_OFFLINING 1
4023 #define TICK_SCHED_REMOTE_RUNNING 2
4026 * State diagram for ->state:
4029 * TICK_SCHED_REMOTE_OFFLINE
4032 * | | sched_tick_remote()
4035 * +--TICK_SCHED_REMOTE_OFFLINING
4038 * sched_tick_start() | | sched_tick_stop()
4041 * TICK_SCHED_REMOTE_RUNNING
4044 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
4045 * and sched_tick_start() are happy to leave the state in RUNNING.
4048 static struct tick_work __percpu
*tick_work_cpu
;
4050 static void sched_tick_remote(struct work_struct
*work
)
4052 struct delayed_work
*dwork
= to_delayed_work(work
);
4053 struct tick_work
*twork
= container_of(dwork
, struct tick_work
, work
);
4054 int cpu
= twork
->cpu
;
4055 struct rq
*rq
= cpu_rq(cpu
);
4056 struct task_struct
*curr
;
4062 * Handle the tick only if it appears the remote CPU is running in full
4063 * dynticks mode. The check is racy by nature, but missing a tick or
4064 * having one too much is no big deal because the scheduler tick updates
4065 * statistics and checks timeslices in a time-independent way, regardless
4066 * of when exactly it is running.
4068 if (!tick_nohz_tick_stopped_cpu(cpu
))
4071 rq_lock_irq(rq
, &rf
);
4073 if (cpu_is_offline(cpu
))
4076 update_rq_clock(rq
);
4078 if (!is_idle_task(curr
)) {
4080 * Make sure the next tick runs within a reasonable
4083 delta
= rq_clock_task(rq
) - curr
->se
.exec_start
;
4084 WARN_ON_ONCE(delta
> (u64
)NSEC_PER_SEC
* 3);
4086 curr
->sched_class
->task_tick(rq
, curr
, 0);
4088 calc_load_nohz_remote(rq
);
4090 rq_unlock_irq(rq
, &rf
);
4094 * Run the remote tick once per second (1Hz). This arbitrary
4095 * frequency is large enough to avoid overload but short enough
4096 * to keep scheduler internal stats reasonably up to date. But
4097 * first update state to reflect hotplug activity if required.
4099 os
= atomic_fetch_add_unless(&twork
->state
, -1, TICK_SCHED_REMOTE_RUNNING
);
4100 WARN_ON_ONCE(os
== TICK_SCHED_REMOTE_OFFLINE
);
4101 if (os
== TICK_SCHED_REMOTE_RUNNING
)
4102 queue_delayed_work(system_unbound_wq
, dwork
, HZ
);
4105 static void sched_tick_start(int cpu
)
4108 struct tick_work
*twork
;
4110 if (housekeeping_cpu(cpu
, HK_FLAG_TICK
))
4113 WARN_ON_ONCE(!tick_work_cpu
);
4115 twork
= per_cpu_ptr(tick_work_cpu
, cpu
);
4116 os
= atomic_xchg(&twork
->state
, TICK_SCHED_REMOTE_RUNNING
);
4117 WARN_ON_ONCE(os
== TICK_SCHED_REMOTE_RUNNING
);
4118 if (os
== TICK_SCHED_REMOTE_OFFLINE
) {
4120 INIT_DELAYED_WORK(&twork
->work
, sched_tick_remote
);
4121 queue_delayed_work(system_unbound_wq
, &twork
->work
, HZ
);
4125 #ifdef CONFIG_HOTPLUG_CPU
4126 static void sched_tick_stop(int cpu
)
4128 struct tick_work
*twork
;
4131 if (housekeeping_cpu(cpu
, HK_FLAG_TICK
))
4134 WARN_ON_ONCE(!tick_work_cpu
);
4136 twork
= per_cpu_ptr(tick_work_cpu
, cpu
);
4137 /* There cannot be competing actions, but don't rely on stop-machine. */
4138 os
= atomic_xchg(&twork
->state
, TICK_SCHED_REMOTE_OFFLINING
);
4139 WARN_ON_ONCE(os
!= TICK_SCHED_REMOTE_RUNNING
);
4140 /* Don't cancel, as this would mess up the state machine. */
4142 #endif /* CONFIG_HOTPLUG_CPU */
4144 int __init
sched_tick_offload_init(void)
4146 tick_work_cpu
= alloc_percpu(struct tick_work
);
4147 BUG_ON(!tick_work_cpu
);
4151 #else /* !CONFIG_NO_HZ_FULL */
4152 static inline void sched_tick_start(int cpu
) { }
4153 static inline void sched_tick_stop(int cpu
) { }
4156 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
4157 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
4159 * If the value passed in is equal to the current preempt count
4160 * then we just disabled preemption. Start timing the latency.
4162 static inline void preempt_latency_start(int val
)
4164 if (preempt_count() == val
) {
4165 unsigned long ip
= get_lock_parent_ip();
4166 #ifdef CONFIG_DEBUG_PREEMPT
4167 current
->preempt_disable_ip
= ip
;
4169 trace_preempt_off(CALLER_ADDR0
, ip
);
4173 void preempt_count_add(int val
)
4175 #ifdef CONFIG_DEBUG_PREEMPT
4179 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4182 __preempt_count_add(val
);
4183 #ifdef CONFIG_DEBUG_PREEMPT
4185 * Spinlock count overflowing soon?
4187 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
4190 preempt_latency_start(val
);
4192 EXPORT_SYMBOL(preempt_count_add
);
4193 NOKPROBE_SYMBOL(preempt_count_add
);
4196 * If the value passed in equals to the current preempt count
4197 * then we just enabled preemption. Stop timing the latency.
4199 static inline void preempt_latency_stop(int val
)
4201 if (preempt_count() == val
)
4202 trace_preempt_on(CALLER_ADDR0
, get_lock_parent_ip());
4205 void preempt_count_sub(int val
)
4207 #ifdef CONFIG_DEBUG_PREEMPT
4211 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
4214 * Is the spinlock portion underflowing?
4216 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
4217 !(preempt_count() & PREEMPT_MASK
)))
4221 preempt_latency_stop(val
);
4222 __preempt_count_sub(val
);
4224 EXPORT_SYMBOL(preempt_count_sub
);
4225 NOKPROBE_SYMBOL(preempt_count_sub
);
4228 static inline void preempt_latency_start(int val
) { }
4229 static inline void preempt_latency_stop(int val
) { }
4232 static inline unsigned long get_preempt_disable_ip(struct task_struct
*p
)
4234 #ifdef CONFIG_DEBUG_PREEMPT
4235 return p
->preempt_disable_ip
;
4242 * Print scheduling while atomic bug:
4244 static noinline
void __schedule_bug(struct task_struct
*prev
)
4246 /* Save this before calling printk(), since that will clobber it */
4247 unsigned long preempt_disable_ip
= get_preempt_disable_ip(current
);
4249 if (oops_in_progress
)
4252 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
4253 prev
->comm
, prev
->pid
, preempt_count());
4255 debug_show_held_locks(prev
);
4257 if (irqs_disabled())
4258 print_irqtrace_events(prev
);
4259 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT
)
4260 && in_atomic_preempt_off()) {
4261 pr_err("Preemption disabled at:");
4262 print_ip_sym(KERN_ERR
, preempt_disable_ip
);
4265 panic("scheduling while atomic\n");
4268 add_taint(TAINT_WARN
, LOCKDEP_STILL_OK
);
4272 * Various schedule()-time debugging checks and statistics:
4274 static inline void schedule_debug(struct task_struct
*prev
, bool preempt
)
4276 #ifdef CONFIG_SCHED_STACK_END_CHECK
4277 if (task_stack_end_corrupted(prev
))
4278 panic("corrupted stack end detected inside scheduler\n");
4280 if (task_scs_end_corrupted(prev
))
4281 panic("corrupted shadow stack detected inside scheduler\n");
4284 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
4285 if (!preempt
&& prev
->state
&& prev
->non_block_count
) {
4286 printk(KERN_ERR
"BUG: scheduling in a non-blocking section: %s/%d/%i\n",
4287 prev
->comm
, prev
->pid
, prev
->non_block_count
);
4289 add_taint(TAINT_WARN
, LOCKDEP_STILL_OK
);
4293 if (unlikely(in_atomic_preempt_off())) {
4294 __schedule_bug(prev
);
4295 preempt_count_set(PREEMPT_DISABLED
);
4299 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
4301 schedstat_inc(this_rq()->sched_count
);
4304 static void put_prev_task_balance(struct rq
*rq
, struct task_struct
*prev
,
4305 struct rq_flags
*rf
)
4308 const struct sched_class
*class;
4310 * We must do the balancing pass before put_prev_task(), such
4311 * that when we release the rq->lock the task is in the same
4312 * state as before we took rq->lock.
4314 * We can terminate the balance pass as soon as we know there is
4315 * a runnable task of @class priority or higher.
4317 for_class_range(class, prev
->sched_class
, &idle_sched_class
) {
4318 if (class->balance(rq
, prev
, rf
))
4323 put_prev_task(rq
, prev
);
4327 * Pick up the highest-prio task:
4329 static inline struct task_struct
*
4330 pick_next_task(struct rq
*rq
, struct task_struct
*prev
, struct rq_flags
*rf
)
4332 const struct sched_class
*class;
4333 struct task_struct
*p
;
4336 * Optimization: we know that if all tasks are in the fair class we can
4337 * call that function directly, but only if the @prev task wasn't of a
4338 * higher scheduling class, because otherwise those loose the
4339 * opportunity to pull in more work from other CPUs.
4341 if (likely(prev
->sched_class
<= &fair_sched_class
&&
4342 rq
->nr_running
== rq
->cfs
.h_nr_running
)) {
4344 p
= pick_next_task_fair(rq
, prev
, rf
);
4345 if (unlikely(p
== RETRY_TASK
))
4348 /* Assumes fair_sched_class->next == idle_sched_class */
4350 put_prev_task(rq
, prev
);
4351 p
= pick_next_task_idle(rq
);
4358 put_prev_task_balance(rq
, prev
, rf
);
4360 for_each_class(class) {
4361 p
= class->pick_next_task(rq
);
4366 /* The idle class should always have a runnable task: */
4371 * __schedule() is the main scheduler function.
4373 * The main means of driving the scheduler and thus entering this function are:
4375 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
4377 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
4378 * paths. For example, see arch/x86/entry_64.S.
4380 * To drive preemption between tasks, the scheduler sets the flag in timer
4381 * interrupt handler scheduler_tick().
4383 * 3. Wakeups don't really cause entry into schedule(). They add a
4384 * task to the run-queue and that's it.
4386 * Now, if the new task added to the run-queue preempts the current
4387 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
4388 * called on the nearest possible occasion:
4390 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
4392 * - in syscall or exception context, at the next outmost
4393 * preempt_enable(). (this might be as soon as the wake_up()'s
4396 * - in IRQ context, return from interrupt-handler to
4397 * preemptible context
4399 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
4402 * - cond_resched() call
4403 * - explicit schedule() call
4404 * - return from syscall or exception to user-space
4405 * - return from interrupt-handler to user-space
4407 * WARNING: must be called with preemption disabled!
4409 static void __sched notrace
__schedule(bool preempt
)
4411 struct task_struct
*prev
, *next
;
4412 unsigned long *switch_count
;
4413 unsigned long prev_state
;
4418 cpu
= smp_processor_id();
4422 schedule_debug(prev
, preempt
);
4424 if (sched_feat(HRTICK
))
4427 local_irq_disable();
4428 rcu_note_context_switch(preempt
);
4431 * Make sure that signal_pending_state()->signal_pending() below
4432 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
4433 * done by the caller to avoid the race with signal_wake_up():
4435 * __set_current_state(@state) signal_wake_up()
4436 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING)
4437 * wake_up_state(p, state)
4438 * LOCK rq->lock LOCK p->pi_state
4439 * smp_mb__after_spinlock() smp_mb__after_spinlock()
4440 * if (signal_pending_state()) if (p->state & @state)
4442 * Also, the membarrier system call requires a full memory barrier
4443 * after coming from user-space, before storing to rq->curr.
4446 smp_mb__after_spinlock();
4448 /* Promote REQ to ACT */
4449 rq
->clock_update_flags
<<= 1;
4450 update_rq_clock(rq
);
4452 switch_count
= &prev
->nivcsw
;
4455 * We must load prev->state once (task_struct::state is volatile), such
4458 * - we form a control dependency vs deactivate_task() below.
4459 * - ptrace_{,un}freeze_traced() can change ->state underneath us.
4461 prev_state
= prev
->state
;
4462 if (!preempt
&& prev_state
) {
4463 if (signal_pending_state(prev_state
, prev
)) {
4464 prev
->state
= TASK_RUNNING
;
4466 prev
->sched_contributes_to_load
=
4467 (prev_state
& TASK_UNINTERRUPTIBLE
) &&
4468 !(prev_state
& TASK_NOLOAD
) &&
4469 !(prev
->flags
& PF_FROZEN
);
4471 if (prev
->sched_contributes_to_load
)
4472 rq
->nr_uninterruptible
++;
4475 * __schedule() ttwu()
4476 * prev_state = prev->state; if (p->on_rq && ...)
4477 * if (prev_state) goto out;
4478 * p->on_rq = 0; smp_acquire__after_ctrl_dep();
4479 * p->state = TASK_WAKING
4481 * Where __schedule() and ttwu() have matching control dependencies.
4483 * After this, schedule() must not care about p->state any more.
4485 deactivate_task(rq
, prev
, DEQUEUE_SLEEP
| DEQUEUE_NOCLOCK
);
4487 if (prev
->in_iowait
) {
4488 atomic_inc(&rq
->nr_iowait
);
4489 delayacct_blkio_start();
4492 switch_count
= &prev
->nvcsw
;
4495 next
= pick_next_task(rq
, prev
, &rf
);
4496 clear_tsk_need_resched(prev
);
4497 clear_preempt_need_resched();
4499 if (likely(prev
!= next
)) {
4502 * RCU users of rcu_dereference(rq->curr) may not see
4503 * changes to task_struct made by pick_next_task().
4505 RCU_INIT_POINTER(rq
->curr
, next
);
4507 * The membarrier system call requires each architecture
4508 * to have a full memory barrier after updating
4509 * rq->curr, before returning to user-space.
4511 * Here are the schemes providing that barrier on the
4512 * various architectures:
4513 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
4514 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
4515 * - finish_lock_switch() for weakly-ordered
4516 * architectures where spin_unlock is a full barrier,
4517 * - switch_to() for arm64 (weakly-ordered, spin_unlock
4518 * is a RELEASE barrier),
4522 psi_sched_switch(prev
, next
, !task_on_rq_queued(prev
));
4524 trace_sched_switch(preempt
, prev
, next
);
4526 /* Also unlocks the rq: */
4527 rq
= context_switch(rq
, prev
, next
, &rf
);
4529 rq
->clock_update_flags
&= ~(RQCF_ACT_SKIP
|RQCF_REQ_SKIP
);
4530 rq_unlock_irq(rq
, &rf
);
4533 balance_callback(rq
);
4536 void __noreturn
do_task_dead(void)
4538 /* Causes final put_task_struct in finish_task_switch(): */
4539 set_special_state(TASK_DEAD
);
4541 /* Tell freezer to ignore us: */
4542 current
->flags
|= PF_NOFREEZE
;
4547 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
4552 static inline void sched_submit_work(struct task_struct
*tsk
)
4558 * If a worker went to sleep, notify and ask workqueue whether
4559 * it wants to wake up a task to maintain concurrency.
4560 * As this function is called inside the schedule() context,
4561 * we disable preemption to avoid it calling schedule() again
4562 * in the possible wakeup of a kworker and because wq_worker_sleeping()
4565 if (tsk
->flags
& (PF_WQ_WORKER
| PF_IO_WORKER
)) {
4567 if (tsk
->flags
& PF_WQ_WORKER
)
4568 wq_worker_sleeping(tsk
);
4570 io_wq_worker_sleeping(tsk
);
4571 preempt_enable_no_resched();
4574 if (tsk_is_pi_blocked(tsk
))
4578 * If we are going to sleep and we have plugged IO queued,
4579 * make sure to submit it to avoid deadlocks.
4581 if (blk_needs_flush_plug(tsk
))
4582 blk_schedule_flush_plug(tsk
);
4585 static void sched_update_worker(struct task_struct
*tsk
)
4587 if (tsk
->flags
& (PF_WQ_WORKER
| PF_IO_WORKER
)) {
4588 if (tsk
->flags
& PF_WQ_WORKER
)
4589 wq_worker_running(tsk
);
4591 io_wq_worker_running(tsk
);
4595 asmlinkage __visible
void __sched
schedule(void)
4597 struct task_struct
*tsk
= current
;
4599 sched_submit_work(tsk
);
4603 sched_preempt_enable_no_resched();
4604 } while (need_resched());
4605 sched_update_worker(tsk
);
4607 EXPORT_SYMBOL(schedule
);
4610 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
4611 * state (have scheduled out non-voluntarily) by making sure that all
4612 * tasks have either left the run queue or have gone into user space.
4613 * As idle tasks do not do either, they must not ever be preempted
4614 * (schedule out non-voluntarily).
4616 * schedule_idle() is similar to schedule_preempt_disable() except that it
4617 * never enables preemption because it does not call sched_submit_work().
4619 void __sched
schedule_idle(void)
4622 * As this skips calling sched_submit_work(), which the idle task does
4623 * regardless because that function is a nop when the task is in a
4624 * TASK_RUNNING state, make sure this isn't used someplace that the
4625 * current task can be in any other state. Note, idle is always in the
4626 * TASK_RUNNING state.
4628 WARN_ON_ONCE(current
->state
);
4631 } while (need_resched());
4634 #ifdef CONFIG_CONTEXT_TRACKING
4635 asmlinkage __visible
void __sched
schedule_user(void)
4638 * If we come here after a random call to set_need_resched(),
4639 * or we have been woken up remotely but the IPI has not yet arrived,
4640 * we haven't yet exited the RCU idle mode. Do it here manually until
4641 * we find a better solution.
4643 * NB: There are buggy callers of this function. Ideally we
4644 * should warn if prev_state != CONTEXT_USER, but that will trigger
4645 * too frequently to make sense yet.
4647 enum ctx_state prev_state
= exception_enter();
4649 exception_exit(prev_state
);
4654 * schedule_preempt_disabled - called with preemption disabled
4656 * Returns with preemption disabled. Note: preempt_count must be 1
4658 void __sched
schedule_preempt_disabled(void)
4660 sched_preempt_enable_no_resched();
4665 static void __sched notrace
preempt_schedule_common(void)
4669 * Because the function tracer can trace preempt_count_sub()
4670 * and it also uses preempt_enable/disable_notrace(), if
4671 * NEED_RESCHED is set, the preempt_enable_notrace() called
4672 * by the function tracer will call this function again and
4673 * cause infinite recursion.
4675 * Preemption must be disabled here before the function
4676 * tracer can trace. Break up preempt_disable() into two
4677 * calls. One to disable preemption without fear of being
4678 * traced. The other to still record the preemption latency,
4679 * which can also be traced by the function tracer.
4681 preempt_disable_notrace();
4682 preempt_latency_start(1);
4684 preempt_latency_stop(1);
4685 preempt_enable_no_resched_notrace();
4688 * Check again in case we missed a preemption opportunity
4689 * between schedule and now.
4691 } while (need_resched());
4694 #ifdef CONFIG_PREEMPTION
4696 * This is the entry point to schedule() from in-kernel preemption
4697 * off of preempt_enable.
4699 asmlinkage __visible
void __sched notrace
preempt_schedule(void)
4702 * If there is a non-zero preempt_count or interrupts are disabled,
4703 * we do not want to preempt the current task. Just return..
4705 if (likely(!preemptible()))
4708 preempt_schedule_common();
4710 NOKPROBE_SYMBOL(preempt_schedule
);
4711 EXPORT_SYMBOL(preempt_schedule
);
4714 * preempt_schedule_notrace - preempt_schedule called by tracing
4716 * The tracing infrastructure uses preempt_enable_notrace to prevent
4717 * recursion and tracing preempt enabling caused by the tracing
4718 * infrastructure itself. But as tracing can happen in areas coming
4719 * from userspace or just about to enter userspace, a preempt enable
4720 * can occur before user_exit() is called. This will cause the scheduler
4721 * to be called when the system is still in usermode.
4723 * To prevent this, the preempt_enable_notrace will use this function
4724 * instead of preempt_schedule() to exit user context if needed before
4725 * calling the scheduler.
4727 asmlinkage __visible
void __sched notrace
preempt_schedule_notrace(void)
4729 enum ctx_state prev_ctx
;
4731 if (likely(!preemptible()))
4736 * Because the function tracer can trace preempt_count_sub()
4737 * and it also uses preempt_enable/disable_notrace(), if
4738 * NEED_RESCHED is set, the preempt_enable_notrace() called
4739 * by the function tracer will call this function again and
4740 * cause infinite recursion.
4742 * Preemption must be disabled here before the function
4743 * tracer can trace. Break up preempt_disable() into two
4744 * calls. One to disable preemption without fear of being
4745 * traced. The other to still record the preemption latency,
4746 * which can also be traced by the function tracer.
4748 preempt_disable_notrace();
4749 preempt_latency_start(1);
4751 * Needs preempt disabled in case user_exit() is traced
4752 * and the tracer calls preempt_enable_notrace() causing
4753 * an infinite recursion.
4755 prev_ctx
= exception_enter();
4757 exception_exit(prev_ctx
);
4759 preempt_latency_stop(1);
4760 preempt_enable_no_resched_notrace();
4761 } while (need_resched());
4763 EXPORT_SYMBOL_GPL(preempt_schedule_notrace
);
4765 #endif /* CONFIG_PREEMPTION */
4768 * This is the entry point to schedule() from kernel preemption
4769 * off of irq context.
4770 * Note, that this is called and return with irqs disabled. This will
4771 * protect us against recursive calling from irq.
4773 asmlinkage __visible
void __sched
preempt_schedule_irq(void)
4775 enum ctx_state prev_state
;
4777 /* Catch callers which need to be fixed */
4778 BUG_ON(preempt_count() || !irqs_disabled());
4780 prev_state
= exception_enter();
4786 local_irq_disable();
4787 sched_preempt_enable_no_resched();
4788 } while (need_resched());
4790 exception_exit(prev_state
);
4793 int default_wake_function(wait_queue_entry_t
*curr
, unsigned mode
, int wake_flags
,
4796 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG
) && wake_flags
& ~WF_SYNC
);
4797 return try_to_wake_up(curr
->private, mode
, wake_flags
);
4799 EXPORT_SYMBOL(default_wake_function
);
4801 #ifdef CONFIG_RT_MUTEXES
4803 static inline int __rt_effective_prio(struct task_struct
*pi_task
, int prio
)
4806 prio
= min(prio
, pi_task
->prio
);
4811 static inline int rt_effective_prio(struct task_struct
*p
, int prio
)
4813 struct task_struct
*pi_task
= rt_mutex_get_top_task(p
);
4815 return __rt_effective_prio(pi_task
, prio
);
4819 * rt_mutex_setprio - set the current priority of a task
4821 * @pi_task: donor task
4823 * This function changes the 'effective' priority of a task. It does
4824 * not touch ->normal_prio like __setscheduler().
4826 * Used by the rt_mutex code to implement priority inheritance
4827 * logic. Call site only calls if the priority of the task changed.
4829 void rt_mutex_setprio(struct task_struct
*p
, struct task_struct
*pi_task
)
4831 int prio
, oldprio
, queued
, running
, queue_flag
=
4832 DEQUEUE_SAVE
| DEQUEUE_MOVE
| DEQUEUE_NOCLOCK
;
4833 const struct sched_class
*prev_class
;
4837 /* XXX used to be waiter->prio, not waiter->task->prio */
4838 prio
= __rt_effective_prio(pi_task
, p
->normal_prio
);
4841 * If nothing changed; bail early.
4843 if (p
->pi_top_task
== pi_task
&& prio
== p
->prio
&& !dl_prio(prio
))
4846 rq
= __task_rq_lock(p
, &rf
);
4847 update_rq_clock(rq
);
4849 * Set under pi_lock && rq->lock, such that the value can be used under
4852 * Note that there is loads of tricky to make this pointer cache work
4853 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
4854 * ensure a task is de-boosted (pi_task is set to NULL) before the
4855 * task is allowed to run again (and can exit). This ensures the pointer
4856 * points to a blocked task -- which guaratees the task is present.
4858 p
->pi_top_task
= pi_task
;
4861 * For FIFO/RR we only need to set prio, if that matches we're done.
4863 if (prio
== p
->prio
&& !dl_prio(prio
))
4867 * Idle task boosting is a nono in general. There is one
4868 * exception, when PREEMPT_RT and NOHZ is active:
4870 * The idle task calls get_next_timer_interrupt() and holds
4871 * the timer wheel base->lock on the CPU and another CPU wants
4872 * to access the timer (probably to cancel it). We can safely
4873 * ignore the boosting request, as the idle CPU runs this code
4874 * with interrupts disabled and will complete the lock
4875 * protected section without being interrupted. So there is no
4876 * real need to boost.
4878 if (unlikely(p
== rq
->idle
)) {
4879 WARN_ON(p
!= rq
->curr
);
4880 WARN_ON(p
->pi_blocked_on
);
4884 trace_sched_pi_setprio(p
, pi_task
);
4887 if (oldprio
== prio
)
4888 queue_flag
&= ~DEQUEUE_MOVE
;
4890 prev_class
= p
->sched_class
;
4891 queued
= task_on_rq_queued(p
);
4892 running
= task_current(rq
, p
);
4894 dequeue_task(rq
, p
, queue_flag
);
4896 put_prev_task(rq
, p
);
4899 * Boosting condition are:
4900 * 1. -rt task is running and holds mutex A
4901 * --> -dl task blocks on mutex A
4903 * 2. -dl task is running and holds mutex A
4904 * --> -dl task blocks on mutex A and could preempt the
4907 if (dl_prio(prio
)) {
4908 if (!dl_prio(p
->normal_prio
) ||
4909 (pi_task
&& dl_prio(pi_task
->prio
) &&
4910 dl_entity_preempt(&pi_task
->dl
, &p
->dl
))) {
4911 p
->dl
.dl_boosted
= 1;
4912 queue_flag
|= ENQUEUE_REPLENISH
;
4914 p
->dl
.dl_boosted
= 0;
4915 p
->sched_class
= &dl_sched_class
;
4916 } else if (rt_prio(prio
)) {
4917 if (dl_prio(oldprio
))
4918 p
->dl
.dl_boosted
= 0;
4920 queue_flag
|= ENQUEUE_HEAD
;
4921 p
->sched_class
= &rt_sched_class
;
4923 if (dl_prio(oldprio
))
4924 p
->dl
.dl_boosted
= 0;
4925 if (rt_prio(oldprio
))
4927 p
->sched_class
= &fair_sched_class
;
4933 enqueue_task(rq
, p
, queue_flag
);
4935 set_next_task(rq
, p
);
4937 check_class_changed(rq
, p
, prev_class
, oldprio
);
4939 /* Avoid rq from going away on us: */
4941 __task_rq_unlock(rq
, &rf
);
4943 balance_callback(rq
);
4947 static inline int rt_effective_prio(struct task_struct
*p
, int prio
)
4953 void set_user_nice(struct task_struct
*p
, long nice
)
4955 bool queued
, running
;
4960 if (task_nice(p
) == nice
|| nice
< MIN_NICE
|| nice
> MAX_NICE
)
4963 * We have to be careful, if called from sys_setpriority(),
4964 * the task might be in the middle of scheduling on another CPU.
4966 rq
= task_rq_lock(p
, &rf
);
4967 update_rq_clock(rq
);
4970 * The RT priorities are set via sched_setscheduler(), but we still
4971 * allow the 'normal' nice value to be set - but as expected
4972 * it wont have any effect on scheduling until the task is
4973 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
4975 if (task_has_dl_policy(p
) || task_has_rt_policy(p
)) {
4976 p
->static_prio
= NICE_TO_PRIO(nice
);
4979 queued
= task_on_rq_queued(p
);
4980 running
= task_current(rq
, p
);
4982 dequeue_task(rq
, p
, DEQUEUE_SAVE
| DEQUEUE_NOCLOCK
);
4984 put_prev_task(rq
, p
);
4986 p
->static_prio
= NICE_TO_PRIO(nice
);
4987 set_load_weight(p
, true);
4989 p
->prio
= effective_prio(p
);
4992 enqueue_task(rq
, p
, ENQUEUE_RESTORE
| ENQUEUE_NOCLOCK
);
4994 set_next_task(rq
, p
);
4997 * If the task increased its priority or is running and
4998 * lowered its priority, then reschedule its CPU:
5000 p
->sched_class
->prio_changed(rq
, p
, old_prio
);
5003 task_rq_unlock(rq
, p
, &rf
);
5005 EXPORT_SYMBOL(set_user_nice
);
5008 * can_nice - check if a task can reduce its nice value
5012 int can_nice(const struct task_struct
*p
, const int nice
)
5014 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
5015 int nice_rlim
= nice_to_rlimit(nice
);
5017 return (nice_rlim
<= task_rlimit(p
, RLIMIT_NICE
) ||
5018 capable(CAP_SYS_NICE
));
5021 #ifdef __ARCH_WANT_SYS_NICE
5024 * sys_nice - change the priority of the current process.
5025 * @increment: priority increment
5027 * sys_setpriority is a more generic, but much slower function that
5028 * does similar things.
5030 SYSCALL_DEFINE1(nice
, int, increment
)
5035 * Setpriority might change our priority at the same moment.
5036 * We don't have to worry. Conceptually one call occurs first
5037 * and we have a single winner.
5039 increment
= clamp(increment
, -NICE_WIDTH
, NICE_WIDTH
);
5040 nice
= task_nice(current
) + increment
;
5042 nice
= clamp_val(nice
, MIN_NICE
, MAX_NICE
);
5043 if (increment
< 0 && !can_nice(current
, nice
))
5046 retval
= security_task_setnice(current
, nice
);
5050 set_user_nice(current
, nice
);
5057 * task_prio - return the priority value of a given task.
5058 * @p: the task in question.
5060 * Return: The priority value as seen by users in /proc.
5061 * RT tasks are offset by -200. Normal tasks are centered
5062 * around 0, value goes from -16 to +15.
5064 int task_prio(const struct task_struct
*p
)
5066 return p
->prio
- MAX_RT_PRIO
;
5070 * idle_cpu - is a given CPU idle currently?
5071 * @cpu: the processor in question.
5073 * Return: 1 if the CPU is currently idle. 0 otherwise.
5075 int idle_cpu(int cpu
)
5077 struct rq
*rq
= cpu_rq(cpu
);
5079 if (rq
->curr
!= rq
->idle
)
5086 if (rq
->ttwu_pending
)
5094 * available_idle_cpu - is a given CPU idle for enqueuing work.
5095 * @cpu: the CPU in question.
5097 * Return: 1 if the CPU is currently idle. 0 otherwise.
5099 int available_idle_cpu(int cpu
)
5104 if (vcpu_is_preempted(cpu
))
5111 * idle_task - return the idle task for a given CPU.
5112 * @cpu: the processor in question.
5114 * Return: The idle task for the CPU @cpu.
5116 struct task_struct
*idle_task(int cpu
)
5118 return cpu_rq(cpu
)->idle
;
5122 * find_process_by_pid - find a process with a matching PID value.
5123 * @pid: the pid in question.
5125 * The task of @pid, if found. %NULL otherwise.
5127 static struct task_struct
*find_process_by_pid(pid_t pid
)
5129 return pid
? find_task_by_vpid(pid
) : current
;
5133 * sched_setparam() passes in -1 for its policy, to let the functions
5134 * it calls know not to change it.
5136 #define SETPARAM_POLICY -1
5138 static void __setscheduler_params(struct task_struct
*p
,
5139 const struct sched_attr
*attr
)
5141 int policy
= attr
->sched_policy
;
5143 if (policy
== SETPARAM_POLICY
)
5148 if (dl_policy(policy
))
5149 __setparam_dl(p
, attr
);
5150 else if (fair_policy(policy
))
5151 p
->static_prio
= NICE_TO_PRIO(attr
->sched_nice
);
5154 * __sched_setscheduler() ensures attr->sched_priority == 0 when
5155 * !rt_policy. Always setting this ensures that things like
5156 * getparam()/getattr() don't report silly values for !rt tasks.
5158 p
->rt_priority
= attr
->sched_priority
;
5159 p
->normal_prio
= normal_prio(p
);
5160 set_load_weight(p
, true);
5163 /* Actually do priority change: must hold pi & rq lock. */
5164 static void __setscheduler(struct rq
*rq
, struct task_struct
*p
,
5165 const struct sched_attr
*attr
, bool keep_boost
)
5168 * If params can't change scheduling class changes aren't allowed
5171 if (attr
->sched_flags
& SCHED_FLAG_KEEP_PARAMS
)
5174 __setscheduler_params(p
, attr
);
5177 * Keep a potential priority boosting if called from
5178 * sched_setscheduler().
5180 p
->prio
= normal_prio(p
);
5182 p
->prio
= rt_effective_prio(p
, p
->prio
);
5184 if (dl_prio(p
->prio
))
5185 p
->sched_class
= &dl_sched_class
;
5186 else if (rt_prio(p
->prio
))
5187 p
->sched_class
= &rt_sched_class
;
5189 p
->sched_class
= &fair_sched_class
;
5193 * Check the target process has a UID that matches the current process's:
5195 static bool check_same_owner(struct task_struct
*p
)
5197 const struct cred
*cred
= current_cred(), *pcred
;
5201 pcred
= __task_cred(p
);
5202 match
= (uid_eq(cred
->euid
, pcred
->euid
) ||
5203 uid_eq(cred
->euid
, pcred
->uid
));
5208 static int __sched_setscheduler(struct task_struct
*p
,
5209 const struct sched_attr
*attr
,
5212 int newprio
= dl_policy(attr
->sched_policy
) ? MAX_DL_PRIO
- 1 :
5213 MAX_RT_PRIO
- 1 - attr
->sched_priority
;
5214 int retval
, oldprio
, oldpolicy
= -1, queued
, running
;
5215 int new_effective_prio
, policy
= attr
->sched_policy
;
5216 const struct sched_class
*prev_class
;
5219 int queue_flags
= DEQUEUE_SAVE
| DEQUEUE_MOVE
| DEQUEUE_NOCLOCK
;
5222 /* The pi code expects interrupts enabled */
5223 BUG_ON(pi
&& in_interrupt());
5225 /* Double check policy once rq lock held: */
5227 reset_on_fork
= p
->sched_reset_on_fork
;
5228 policy
= oldpolicy
= p
->policy
;
5230 reset_on_fork
= !!(attr
->sched_flags
& SCHED_FLAG_RESET_ON_FORK
);
5232 if (!valid_policy(policy
))
5236 if (attr
->sched_flags
& ~(SCHED_FLAG_ALL
| SCHED_FLAG_SUGOV
))
5240 * Valid priorities for SCHED_FIFO and SCHED_RR are
5241 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5242 * SCHED_BATCH and SCHED_IDLE is 0.
5244 if ((p
->mm
&& attr
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
5245 (!p
->mm
&& attr
->sched_priority
> MAX_RT_PRIO
-1))
5247 if ((dl_policy(policy
) && !__checkparam_dl(attr
)) ||
5248 (rt_policy(policy
) != (attr
->sched_priority
!= 0)))
5252 * Allow unprivileged RT tasks to decrease priority:
5254 if (user
&& !capable(CAP_SYS_NICE
)) {
5255 if (fair_policy(policy
)) {
5256 if (attr
->sched_nice
< task_nice(p
) &&
5257 !can_nice(p
, attr
->sched_nice
))
5261 if (rt_policy(policy
)) {
5262 unsigned long rlim_rtprio
=
5263 task_rlimit(p
, RLIMIT_RTPRIO
);
5265 /* Can't set/change the rt policy: */
5266 if (policy
!= p
->policy
&& !rlim_rtprio
)
5269 /* Can't increase priority: */
5270 if (attr
->sched_priority
> p
->rt_priority
&&
5271 attr
->sched_priority
> rlim_rtprio
)
5276 * Can't set/change SCHED_DEADLINE policy at all for now
5277 * (safest behavior); in the future we would like to allow
5278 * unprivileged DL tasks to increase their relative deadline
5279 * or reduce their runtime (both ways reducing utilization)
5281 if (dl_policy(policy
))
5285 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5286 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
5288 if (task_has_idle_policy(p
) && !idle_policy(policy
)) {
5289 if (!can_nice(p
, task_nice(p
)))
5293 /* Can't change other user's priorities: */
5294 if (!check_same_owner(p
))
5297 /* Normal users shall not reset the sched_reset_on_fork flag: */
5298 if (p
->sched_reset_on_fork
&& !reset_on_fork
)
5303 if (attr
->sched_flags
& SCHED_FLAG_SUGOV
)
5306 retval
= security_task_setscheduler(p
);
5311 /* Update task specific "requested" clamps */
5312 if (attr
->sched_flags
& SCHED_FLAG_UTIL_CLAMP
) {
5313 retval
= uclamp_validate(p
, attr
);
5322 * Make sure no PI-waiters arrive (or leave) while we are
5323 * changing the priority of the task:
5325 * To be able to change p->policy safely, the appropriate
5326 * runqueue lock must be held.
5328 rq
= task_rq_lock(p
, &rf
);
5329 update_rq_clock(rq
);
5332 * Changing the policy of the stop threads its a very bad idea:
5334 if (p
== rq
->stop
) {
5340 * If not changing anything there's no need to proceed further,
5341 * but store a possible modification of reset_on_fork.
5343 if (unlikely(policy
== p
->policy
)) {
5344 if (fair_policy(policy
) && attr
->sched_nice
!= task_nice(p
))
5346 if (rt_policy(policy
) && attr
->sched_priority
!= p
->rt_priority
)
5348 if (dl_policy(policy
) && dl_param_changed(p
, attr
))
5350 if (attr
->sched_flags
& SCHED_FLAG_UTIL_CLAMP
)
5353 p
->sched_reset_on_fork
= reset_on_fork
;
5360 #ifdef CONFIG_RT_GROUP_SCHED
5362 * Do not allow realtime tasks into groups that have no runtime
5365 if (rt_bandwidth_enabled() && rt_policy(policy
) &&
5366 task_group(p
)->rt_bandwidth
.rt_runtime
== 0 &&
5367 !task_group_is_autogroup(task_group(p
))) {
5373 if (dl_bandwidth_enabled() && dl_policy(policy
) &&
5374 !(attr
->sched_flags
& SCHED_FLAG_SUGOV
)) {
5375 cpumask_t
*span
= rq
->rd
->span
;
5378 * Don't allow tasks with an affinity mask smaller than
5379 * the entire root_domain to become SCHED_DEADLINE. We
5380 * will also fail if there's no bandwidth available.
5382 if (!cpumask_subset(span
, p
->cpus_ptr
) ||
5383 rq
->rd
->dl_bw
.bw
== 0) {
5391 /* Re-check policy now with rq lock held: */
5392 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
5393 policy
= oldpolicy
= -1;
5394 task_rq_unlock(rq
, p
, &rf
);
5396 cpuset_read_unlock();
5401 * If setscheduling to SCHED_DEADLINE (or changing the parameters
5402 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
5405 if ((dl_policy(policy
) || dl_task(p
)) && sched_dl_overflow(p
, policy
, attr
)) {
5410 p
->sched_reset_on_fork
= reset_on_fork
;
5415 * Take priority boosted tasks into account. If the new
5416 * effective priority is unchanged, we just store the new
5417 * normal parameters and do not touch the scheduler class and
5418 * the runqueue. This will be done when the task deboost
5421 new_effective_prio
= rt_effective_prio(p
, newprio
);
5422 if (new_effective_prio
== oldprio
)
5423 queue_flags
&= ~DEQUEUE_MOVE
;
5426 queued
= task_on_rq_queued(p
);
5427 running
= task_current(rq
, p
);
5429 dequeue_task(rq
, p
, queue_flags
);
5431 put_prev_task(rq
, p
);
5433 prev_class
= p
->sched_class
;
5435 __setscheduler(rq
, p
, attr
, pi
);
5436 __setscheduler_uclamp(p
, attr
);
5440 * We enqueue to tail when the priority of a task is
5441 * increased (user space view).
5443 if (oldprio
< p
->prio
)
5444 queue_flags
|= ENQUEUE_HEAD
;
5446 enqueue_task(rq
, p
, queue_flags
);
5449 set_next_task(rq
, p
);
5451 check_class_changed(rq
, p
, prev_class
, oldprio
);
5453 /* Avoid rq from going away on us: */
5455 task_rq_unlock(rq
, p
, &rf
);
5458 cpuset_read_unlock();
5459 rt_mutex_adjust_pi(p
);
5462 /* Run balance callbacks after we've adjusted the PI chain: */
5463 balance_callback(rq
);
5469 task_rq_unlock(rq
, p
, &rf
);
5471 cpuset_read_unlock();
5475 static int _sched_setscheduler(struct task_struct
*p
, int policy
,
5476 const struct sched_param
*param
, bool check
)
5478 struct sched_attr attr
= {
5479 .sched_policy
= policy
,
5480 .sched_priority
= param
->sched_priority
,
5481 .sched_nice
= PRIO_TO_NICE(p
->static_prio
),
5484 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
5485 if ((policy
!= SETPARAM_POLICY
) && (policy
& SCHED_RESET_ON_FORK
)) {
5486 attr
.sched_flags
|= SCHED_FLAG_RESET_ON_FORK
;
5487 policy
&= ~SCHED_RESET_ON_FORK
;
5488 attr
.sched_policy
= policy
;
5491 return __sched_setscheduler(p
, &attr
, check
, true);
5494 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5495 * @p: the task in question.
5496 * @policy: new policy.
5497 * @param: structure containing the new RT priority.
5499 * Use sched_set_fifo(), read its comment.
5501 * Return: 0 on success. An error code otherwise.
5503 * NOTE that the task may be already dead.
5505 int sched_setscheduler(struct task_struct
*p
, int policy
,
5506 const struct sched_param
*param
)
5508 return _sched_setscheduler(p
, policy
, param
, true);
5511 int sched_setattr(struct task_struct
*p
, const struct sched_attr
*attr
)
5513 return __sched_setscheduler(p
, attr
, true, true);
5516 int sched_setattr_nocheck(struct task_struct
*p
, const struct sched_attr
*attr
)
5518 return __sched_setscheduler(p
, attr
, false, true);
5522 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5523 * @p: the task in question.
5524 * @policy: new policy.
5525 * @param: structure containing the new RT priority.
5527 * Just like sched_setscheduler, only don't bother checking if the
5528 * current context has permission. For example, this is needed in
5529 * stop_machine(): we create temporary high priority worker threads,
5530 * but our caller might not have that capability.
5532 * Return: 0 on success. An error code otherwise.
5534 int sched_setscheduler_nocheck(struct task_struct
*p
, int policy
,
5535 const struct sched_param
*param
)
5537 return _sched_setscheduler(p
, policy
, param
, false);
5541 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
5542 * incapable of resource management, which is the one thing an OS really should
5545 * This is of course the reason it is limited to privileged users only.
5547 * Worse still; it is fundamentally impossible to compose static priority
5548 * workloads. You cannot take two correctly working static prio workloads
5549 * and smash them together and still expect them to work.
5551 * For this reason 'all' FIFO tasks the kernel creates are basically at:
5555 * The administrator _MUST_ configure the system, the kernel simply doesn't
5556 * know enough information to make a sensible choice.
5558 void sched_set_fifo(struct task_struct
*p
)
5560 struct sched_param sp
= { .sched_priority
= MAX_RT_PRIO
/ 2 };
5561 WARN_ON_ONCE(sched_setscheduler_nocheck(p
, SCHED_FIFO
, &sp
) != 0);
5563 EXPORT_SYMBOL_GPL(sched_set_fifo
);
5566 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
5568 void sched_set_fifo_low(struct task_struct
*p
)
5570 struct sched_param sp
= { .sched_priority
= 1 };
5571 WARN_ON_ONCE(sched_setscheduler_nocheck(p
, SCHED_FIFO
, &sp
) != 0);
5573 EXPORT_SYMBOL_GPL(sched_set_fifo_low
);
5575 void sched_set_normal(struct task_struct
*p
, int nice
)
5577 struct sched_attr attr
= {
5578 .sched_policy
= SCHED_NORMAL
,
5581 WARN_ON_ONCE(sched_setattr_nocheck(p
, &attr
) != 0);
5583 EXPORT_SYMBOL_GPL(sched_set_normal
);
5586 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
5588 struct sched_param lparam
;
5589 struct task_struct
*p
;
5592 if (!param
|| pid
< 0)
5594 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
5599 p
= find_process_by_pid(pid
);
5605 retval
= sched_setscheduler(p
, policy
, &lparam
);
5613 * Mimics kernel/events/core.c perf_copy_attr().
5615 static int sched_copy_attr(struct sched_attr __user
*uattr
, struct sched_attr
*attr
)
5620 /* Zero the full structure, so that a short copy will be nice: */
5621 memset(attr
, 0, sizeof(*attr
));
5623 ret
= get_user(size
, &uattr
->size
);
5627 /* ABI compatibility quirk: */
5629 size
= SCHED_ATTR_SIZE_VER0
;
5630 if (size
< SCHED_ATTR_SIZE_VER0
|| size
> PAGE_SIZE
)
5633 ret
= copy_struct_from_user(attr
, sizeof(*attr
), uattr
, size
);
5640 if ((attr
->sched_flags
& SCHED_FLAG_UTIL_CLAMP
) &&
5641 size
< SCHED_ATTR_SIZE_VER1
)
5645 * XXX: Do we want to be lenient like existing syscalls; or do we want
5646 * to be strict and return an error on out-of-bounds values?
5648 attr
->sched_nice
= clamp(attr
->sched_nice
, MIN_NICE
, MAX_NICE
);
5653 put_user(sizeof(*attr
), &uattr
->size
);
5658 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5659 * @pid: the pid in question.
5660 * @policy: new policy.
5661 * @param: structure containing the new RT priority.
5663 * Return: 0 on success. An error code otherwise.
5665 SYSCALL_DEFINE3(sched_setscheduler
, pid_t
, pid
, int, policy
, struct sched_param __user
*, param
)
5670 return do_sched_setscheduler(pid
, policy
, param
);
5674 * sys_sched_setparam - set/change the RT priority of a thread
5675 * @pid: the pid in question.
5676 * @param: structure containing the new RT priority.
5678 * Return: 0 on success. An error code otherwise.
5680 SYSCALL_DEFINE2(sched_setparam
, pid_t
, pid
, struct sched_param __user
*, param
)
5682 return do_sched_setscheduler(pid
, SETPARAM_POLICY
, param
);
5686 * sys_sched_setattr - same as above, but with extended sched_attr
5687 * @pid: the pid in question.
5688 * @uattr: structure containing the extended parameters.
5689 * @flags: for future extension.
5691 SYSCALL_DEFINE3(sched_setattr
, pid_t
, pid
, struct sched_attr __user
*, uattr
,
5692 unsigned int, flags
)
5694 struct sched_attr attr
;
5695 struct task_struct
*p
;
5698 if (!uattr
|| pid
< 0 || flags
)
5701 retval
= sched_copy_attr(uattr
, &attr
);
5705 if ((int)attr
.sched_policy
< 0)
5707 if (attr
.sched_flags
& SCHED_FLAG_KEEP_POLICY
)
5708 attr
.sched_policy
= SETPARAM_POLICY
;
5712 p
= find_process_by_pid(pid
);
5718 retval
= sched_setattr(p
, &attr
);
5726 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5727 * @pid: the pid in question.
5729 * Return: On success, the policy of the thread. Otherwise, a negative error
5732 SYSCALL_DEFINE1(sched_getscheduler
, pid_t
, pid
)
5734 struct task_struct
*p
;
5742 p
= find_process_by_pid(pid
);
5744 retval
= security_task_getscheduler(p
);
5747 | (p
->sched_reset_on_fork
? SCHED_RESET_ON_FORK
: 0);
5754 * sys_sched_getparam - get the RT priority of a thread
5755 * @pid: the pid in question.
5756 * @param: structure containing the RT priority.
5758 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
5761 SYSCALL_DEFINE2(sched_getparam
, pid_t
, pid
, struct sched_param __user
*, param
)
5763 struct sched_param lp
= { .sched_priority
= 0 };
5764 struct task_struct
*p
;
5767 if (!param
|| pid
< 0)
5771 p
= find_process_by_pid(pid
);
5776 retval
= security_task_getscheduler(p
);
5780 if (task_has_rt_policy(p
))
5781 lp
.sched_priority
= p
->rt_priority
;
5785 * This one might sleep, we cannot do it with a spinlock held ...
5787 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
5797 * Copy the kernel size attribute structure (which might be larger
5798 * than what user-space knows about) to user-space.
5800 * Note that all cases are valid: user-space buffer can be larger or
5801 * smaller than the kernel-space buffer. The usual case is that both
5802 * have the same size.
5805 sched_attr_copy_to_user(struct sched_attr __user
*uattr
,
5806 struct sched_attr
*kattr
,
5809 unsigned int ksize
= sizeof(*kattr
);
5811 if (!access_ok(uattr
, usize
))
5815 * sched_getattr() ABI forwards and backwards compatibility:
5817 * If usize == ksize then we just copy everything to user-space and all is good.
5819 * If usize < ksize then we only copy as much as user-space has space for,
5820 * this keeps ABI compatibility as well. We skip the rest.
5822 * If usize > ksize then user-space is using a newer version of the ABI,
5823 * which part the kernel doesn't know about. Just ignore it - tooling can
5824 * detect the kernel's knowledge of attributes from the attr->size value
5825 * which is set to ksize in this case.
5827 kattr
->size
= min(usize
, ksize
);
5829 if (copy_to_user(uattr
, kattr
, kattr
->size
))
5836 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
5837 * @pid: the pid in question.
5838 * @uattr: structure containing the extended parameters.
5839 * @usize: sizeof(attr) for fwd/bwd comp.
5840 * @flags: for future extension.
5842 SYSCALL_DEFINE4(sched_getattr
, pid_t
, pid
, struct sched_attr __user
*, uattr
,
5843 unsigned int, usize
, unsigned int, flags
)
5845 struct sched_attr kattr
= { };
5846 struct task_struct
*p
;
5849 if (!uattr
|| pid
< 0 || usize
> PAGE_SIZE
||
5850 usize
< SCHED_ATTR_SIZE_VER0
|| flags
)
5854 p
= find_process_by_pid(pid
);
5859 retval
= security_task_getscheduler(p
);
5863 kattr
.sched_policy
= p
->policy
;
5864 if (p
->sched_reset_on_fork
)
5865 kattr
.sched_flags
|= SCHED_FLAG_RESET_ON_FORK
;
5866 if (task_has_dl_policy(p
))
5867 __getparam_dl(p
, &kattr
);
5868 else if (task_has_rt_policy(p
))
5869 kattr
.sched_priority
= p
->rt_priority
;
5871 kattr
.sched_nice
= task_nice(p
);
5873 #ifdef CONFIG_UCLAMP_TASK
5875 * This could race with another potential updater, but this is fine
5876 * because it'll correctly read the old or the new value. We don't need
5877 * to guarantee who wins the race as long as it doesn't return garbage.
5879 kattr
.sched_util_min
= p
->uclamp_req
[UCLAMP_MIN
].value
;
5880 kattr
.sched_util_max
= p
->uclamp_req
[UCLAMP_MAX
].value
;
5885 return sched_attr_copy_to_user(uattr
, &kattr
, usize
);
5892 long sched_setaffinity(pid_t pid
, const struct cpumask
*in_mask
)
5894 cpumask_var_t cpus_allowed
, new_mask
;
5895 struct task_struct
*p
;
5900 p
= find_process_by_pid(pid
);
5906 /* Prevent p going away */
5910 if (p
->flags
& PF_NO_SETAFFINITY
) {
5914 if (!alloc_cpumask_var(&cpus_allowed
, GFP_KERNEL
)) {
5918 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
)) {
5920 goto out_free_cpus_allowed
;
5923 if (!check_same_owner(p
)) {
5925 if (!ns_capable(__task_cred(p
)->user_ns
, CAP_SYS_NICE
)) {
5927 goto out_free_new_mask
;
5932 retval
= security_task_setscheduler(p
);
5934 goto out_free_new_mask
;
5937 cpuset_cpus_allowed(p
, cpus_allowed
);
5938 cpumask_and(new_mask
, in_mask
, cpus_allowed
);
5941 * Since bandwidth control happens on root_domain basis,
5942 * if admission test is enabled, we only admit -deadline
5943 * tasks allowed to run on all the CPUs in the task's
5947 if (task_has_dl_policy(p
) && dl_bandwidth_enabled()) {
5949 if (!cpumask_subset(task_rq(p
)->rd
->span
, new_mask
)) {
5952 goto out_free_new_mask
;
5958 retval
= __set_cpus_allowed_ptr(p
, new_mask
, true);
5961 cpuset_cpus_allowed(p
, cpus_allowed
);
5962 if (!cpumask_subset(new_mask
, cpus_allowed
)) {
5964 * We must have raced with a concurrent cpuset
5965 * update. Just reset the cpus_allowed to the
5966 * cpuset's cpus_allowed
5968 cpumask_copy(new_mask
, cpus_allowed
);
5973 free_cpumask_var(new_mask
);
5974 out_free_cpus_allowed
:
5975 free_cpumask_var(cpus_allowed
);
5981 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
5982 struct cpumask
*new_mask
)
5984 if (len
< cpumask_size())
5985 cpumask_clear(new_mask
);
5986 else if (len
> cpumask_size())
5987 len
= cpumask_size();
5989 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
5993 * sys_sched_setaffinity - set the CPU affinity of a process
5994 * @pid: pid of the process
5995 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5996 * @user_mask_ptr: user-space pointer to the new CPU mask
5998 * Return: 0 on success. An error code otherwise.
6000 SYSCALL_DEFINE3(sched_setaffinity
, pid_t
, pid
, unsigned int, len
,
6001 unsigned long __user
*, user_mask_ptr
)
6003 cpumask_var_t new_mask
;
6006 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
))
6009 retval
= get_user_cpu_mask(user_mask_ptr
, len
, new_mask
);
6011 retval
= sched_setaffinity(pid
, new_mask
);
6012 free_cpumask_var(new_mask
);
6016 long sched_getaffinity(pid_t pid
, struct cpumask
*mask
)
6018 struct task_struct
*p
;
6019 unsigned long flags
;
6025 p
= find_process_by_pid(pid
);
6029 retval
= security_task_getscheduler(p
);
6033 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
6034 cpumask_and(mask
, &p
->cpus_mask
, cpu_active_mask
);
6035 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
6044 * sys_sched_getaffinity - get the CPU affinity of a process
6045 * @pid: pid of the process
6046 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6047 * @user_mask_ptr: user-space pointer to hold the current CPU mask
6049 * Return: size of CPU mask copied to user_mask_ptr on success. An
6050 * error code otherwise.
6052 SYSCALL_DEFINE3(sched_getaffinity
, pid_t
, pid
, unsigned int, len
,
6053 unsigned long __user
*, user_mask_ptr
)
6058 if ((len
* BITS_PER_BYTE
) < nr_cpu_ids
)
6060 if (len
& (sizeof(unsigned long)-1))
6063 if (!alloc_cpumask_var(&mask
, GFP_KERNEL
))
6066 ret
= sched_getaffinity(pid
, mask
);
6068 unsigned int retlen
= min(len
, cpumask_size());
6070 if (copy_to_user(user_mask_ptr
, mask
, retlen
))
6075 free_cpumask_var(mask
);
6081 * sys_sched_yield - yield the current processor to other threads.
6083 * This function yields the current CPU to other tasks. If there are no
6084 * other threads running on this CPU then this function will return.
6088 static void do_sched_yield(void)
6093 rq
= this_rq_lock_irq(&rf
);
6095 schedstat_inc(rq
->yld_count
);
6096 current
->sched_class
->yield_task(rq
);
6099 * Since we are going to call schedule() anyway, there's
6100 * no need to preempt or enable interrupts:
6104 sched_preempt_enable_no_resched();
6109 SYSCALL_DEFINE0(sched_yield
)
6115 #ifndef CONFIG_PREEMPTION
6116 int __sched
_cond_resched(void)
6118 if (should_resched(0)) {
6119 preempt_schedule_common();
6125 EXPORT_SYMBOL(_cond_resched
);
6129 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6130 * call schedule, and on return reacquire the lock.
6132 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
6133 * operations here to prevent schedule() from being called twice (once via
6134 * spin_unlock(), once by hand).
6136 int __cond_resched_lock(spinlock_t
*lock
)
6138 int resched
= should_resched(PREEMPT_LOCK_OFFSET
);
6141 lockdep_assert_held(lock
);
6143 if (spin_needbreak(lock
) || resched
) {
6146 preempt_schedule_common();
6154 EXPORT_SYMBOL(__cond_resched_lock
);
6157 * yield - yield the current processor to other threads.
6159 * Do not ever use this function, there's a 99% chance you're doing it wrong.
6161 * The scheduler is at all times free to pick the calling task as the most
6162 * eligible task to run, if removing the yield() call from your code breaks
6163 * it, its already broken.
6165 * Typical broken usage is:
6170 * where one assumes that yield() will let 'the other' process run that will
6171 * make event true. If the current task is a SCHED_FIFO task that will never
6172 * happen. Never use yield() as a progress guarantee!!
6174 * If you want to use yield() to wait for something, use wait_event().
6175 * If you want to use yield() to be 'nice' for others, use cond_resched().
6176 * If you still want to use yield(), do not!
6178 void __sched
yield(void)
6180 set_current_state(TASK_RUNNING
);
6183 EXPORT_SYMBOL(yield
);
6186 * yield_to - yield the current processor to another thread in
6187 * your thread group, or accelerate that thread toward the
6188 * processor it's on.
6190 * @preempt: whether task preemption is allowed or not
6192 * It's the caller's job to ensure that the target task struct
6193 * can't go away on us before we can do any checks.
6196 * true (>0) if we indeed boosted the target task.
6197 * false (0) if we failed to boost the target.
6198 * -ESRCH if there's no task to yield to.
6200 int __sched
yield_to(struct task_struct
*p
, bool preempt
)
6202 struct task_struct
*curr
= current
;
6203 struct rq
*rq
, *p_rq
;
6204 unsigned long flags
;
6207 local_irq_save(flags
);
6213 * If we're the only runnable task on the rq and target rq also
6214 * has only one task, there's absolutely no point in yielding.
6216 if (rq
->nr_running
== 1 && p_rq
->nr_running
== 1) {
6221 double_rq_lock(rq
, p_rq
);
6222 if (task_rq(p
) != p_rq
) {
6223 double_rq_unlock(rq
, p_rq
);
6227 if (!curr
->sched_class
->yield_to_task
)
6230 if (curr
->sched_class
!= p
->sched_class
)
6233 if (task_running(p_rq
, p
) || p
->state
)
6236 yielded
= curr
->sched_class
->yield_to_task(rq
, p
);
6238 schedstat_inc(rq
->yld_count
);
6240 * Make p's CPU reschedule; pick_next_entity takes care of
6243 if (preempt
&& rq
!= p_rq
)
6248 double_rq_unlock(rq
, p_rq
);
6250 local_irq_restore(flags
);
6257 EXPORT_SYMBOL_GPL(yield_to
);
6259 int io_schedule_prepare(void)
6261 int old_iowait
= current
->in_iowait
;
6263 current
->in_iowait
= 1;
6264 blk_schedule_flush_plug(current
);
6269 void io_schedule_finish(int token
)
6271 current
->in_iowait
= token
;
6275 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6276 * that process accounting knows that this is a task in IO wait state.
6278 long __sched
io_schedule_timeout(long timeout
)
6283 token
= io_schedule_prepare();
6284 ret
= schedule_timeout(timeout
);
6285 io_schedule_finish(token
);
6289 EXPORT_SYMBOL(io_schedule_timeout
);
6291 void __sched
io_schedule(void)
6295 token
= io_schedule_prepare();
6297 io_schedule_finish(token
);
6299 EXPORT_SYMBOL(io_schedule
);
6302 * sys_sched_get_priority_max - return maximum RT priority.
6303 * @policy: scheduling class.
6305 * Return: On success, this syscall returns the maximum
6306 * rt_priority that can be used by a given scheduling class.
6307 * On failure, a negative error code is returned.
6309 SYSCALL_DEFINE1(sched_get_priority_max
, int, policy
)
6316 ret
= MAX_USER_RT_PRIO
-1;
6318 case SCHED_DEADLINE
:
6329 * sys_sched_get_priority_min - return minimum RT priority.
6330 * @policy: scheduling class.
6332 * Return: On success, this syscall returns the minimum
6333 * rt_priority that can be used by a given scheduling class.
6334 * On failure, a negative error code is returned.
6336 SYSCALL_DEFINE1(sched_get_priority_min
, int, policy
)
6345 case SCHED_DEADLINE
:
6354 static int sched_rr_get_interval(pid_t pid
, struct timespec64
*t
)
6356 struct task_struct
*p
;
6357 unsigned int time_slice
;
6367 p
= find_process_by_pid(pid
);
6371 retval
= security_task_getscheduler(p
);
6375 rq
= task_rq_lock(p
, &rf
);
6377 if (p
->sched_class
->get_rr_interval
)
6378 time_slice
= p
->sched_class
->get_rr_interval(rq
, p
);
6379 task_rq_unlock(rq
, p
, &rf
);
6382 jiffies_to_timespec64(time_slice
, t
);
6391 * sys_sched_rr_get_interval - return the default timeslice of a process.
6392 * @pid: pid of the process.
6393 * @interval: userspace pointer to the timeslice value.
6395 * this syscall writes the default timeslice value of a given process
6396 * into the user-space timespec buffer. A value of '0' means infinity.
6398 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
6401 SYSCALL_DEFINE2(sched_rr_get_interval
, pid_t
, pid
,
6402 struct __kernel_timespec __user
*, interval
)
6404 struct timespec64 t
;
6405 int retval
= sched_rr_get_interval(pid
, &t
);
6408 retval
= put_timespec64(&t
, interval
);
6413 #ifdef CONFIG_COMPAT_32BIT_TIME
6414 SYSCALL_DEFINE2(sched_rr_get_interval_time32
, pid_t
, pid
,
6415 struct old_timespec32 __user
*, interval
)
6417 struct timespec64 t
;
6418 int retval
= sched_rr_get_interval(pid
, &t
);
6421 retval
= put_old_timespec32(&t
, interval
);
6426 void sched_show_task(struct task_struct
*p
)
6428 unsigned long free
= 0;
6431 if (!try_get_task_stack(p
))
6434 pr_info("task:%-15.15s state:%c", p
->comm
, task_state_to_char(p
));
6436 if (p
->state
== TASK_RUNNING
)
6437 pr_cont(" running task ");
6438 #ifdef CONFIG_DEBUG_STACK_USAGE
6439 free
= stack_not_used(p
);
6444 ppid
= task_pid_nr(rcu_dereference(p
->real_parent
));
6446 pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
6447 free
, task_pid_nr(p
), ppid
,
6448 (unsigned long)task_thread_info(p
)->flags
);
6450 print_worker_info(KERN_INFO
, p
);
6451 show_stack(p
, NULL
, KERN_INFO
);
6454 EXPORT_SYMBOL_GPL(sched_show_task
);
6457 state_filter_match(unsigned long state_filter
, struct task_struct
*p
)
6459 /* no filter, everything matches */
6463 /* filter, but doesn't match */
6464 if (!(p
->state
& state_filter
))
6468 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
6471 if (state_filter
== TASK_UNINTERRUPTIBLE
&& p
->state
== TASK_IDLE
)
6478 void show_state_filter(unsigned long state_filter
)
6480 struct task_struct
*g
, *p
;
6483 for_each_process_thread(g
, p
) {
6485 * reset the NMI-timeout, listing all files on a slow
6486 * console might take a lot of time:
6487 * Also, reset softlockup watchdogs on all CPUs, because
6488 * another CPU might be blocked waiting for us to process
6491 touch_nmi_watchdog();
6492 touch_all_softlockup_watchdogs();
6493 if (state_filter_match(state_filter
, p
))
6497 #ifdef CONFIG_SCHED_DEBUG
6499 sysrq_sched_debug_show();
6503 * Only show locks if all tasks are dumped:
6506 debug_show_all_locks();
6510 * init_idle - set up an idle thread for a given CPU
6511 * @idle: task in question
6512 * @cpu: CPU the idle task belongs to
6514 * NOTE: this function does not set the idle thread's NEED_RESCHED
6515 * flag, to make booting more robust.
6517 void init_idle(struct task_struct
*idle
, int cpu
)
6519 struct rq
*rq
= cpu_rq(cpu
);
6520 unsigned long flags
;
6522 __sched_fork(0, idle
);
6524 raw_spin_lock_irqsave(&idle
->pi_lock
, flags
);
6525 raw_spin_lock(&rq
->lock
);
6527 idle
->state
= TASK_RUNNING
;
6528 idle
->se
.exec_start
= sched_clock();
6529 idle
->flags
|= PF_IDLE
;
6531 scs_task_reset(idle
);
6532 kasan_unpoison_task_stack(idle
);
6536 * Its possible that init_idle() gets called multiple times on a task,
6537 * in that case do_set_cpus_allowed() will not do the right thing.
6539 * And since this is boot we can forgo the serialization.
6541 set_cpus_allowed_common(idle
, cpumask_of(cpu
));
6544 * We're having a chicken and egg problem, even though we are
6545 * holding rq->lock, the CPU isn't yet set to this CPU so the
6546 * lockdep check in task_group() will fail.
6548 * Similar case to sched_fork(). / Alternatively we could
6549 * use task_rq_lock() here and obtain the other rq->lock.
6554 __set_task_cpu(idle
, cpu
);
6558 rcu_assign_pointer(rq
->curr
, idle
);
6559 idle
->on_rq
= TASK_ON_RQ_QUEUED
;
6563 raw_spin_unlock(&rq
->lock
);
6564 raw_spin_unlock_irqrestore(&idle
->pi_lock
, flags
);
6566 /* Set the preempt count _outside_ the spinlocks! */
6567 init_idle_preempt_count(idle
, cpu
);
6570 * The idle tasks have their own, simple scheduling class:
6572 idle
->sched_class
= &idle_sched_class
;
6573 ftrace_graph_init_idle_task(idle
, cpu
);
6574 vtime_init_idle(idle
, cpu
);
6576 sprintf(idle
->comm
, "%s/%d", INIT_TASK_COMM
, cpu
);
6582 int cpuset_cpumask_can_shrink(const struct cpumask
*cur
,
6583 const struct cpumask
*trial
)
6587 if (!cpumask_weight(cur
))
6590 ret
= dl_cpuset_cpumask_can_shrink(cur
, trial
);
6595 int task_can_attach(struct task_struct
*p
,
6596 const struct cpumask
*cs_cpus_allowed
)
6601 * Kthreads which disallow setaffinity shouldn't be moved
6602 * to a new cpuset; we don't want to change their CPU
6603 * affinity and isolating such threads by their set of
6604 * allowed nodes is unnecessary. Thus, cpusets are not
6605 * applicable for such threads. This prevents checking for
6606 * success of set_cpus_allowed_ptr() on all attached tasks
6607 * before cpus_mask may be changed.
6609 if (p
->flags
& PF_NO_SETAFFINITY
) {
6614 if (dl_task(p
) && !cpumask_intersects(task_rq(p
)->rd
->span
,
6616 ret
= dl_task_can_attach(p
, cs_cpus_allowed
);
6622 bool sched_smp_initialized __read_mostly
;
6624 #ifdef CONFIG_NUMA_BALANCING
6625 /* Migrate current task p to target_cpu */
6626 int migrate_task_to(struct task_struct
*p
, int target_cpu
)
6628 struct migration_arg arg
= { p
, target_cpu
};
6629 int curr_cpu
= task_cpu(p
);
6631 if (curr_cpu
== target_cpu
)
6634 if (!cpumask_test_cpu(target_cpu
, p
->cpus_ptr
))
6637 /* TODO: This is not properly updating schedstats */
6639 trace_sched_move_numa(p
, curr_cpu
, target_cpu
);
6640 return stop_one_cpu(curr_cpu
, migration_cpu_stop
, &arg
);
6644 * Requeue a task on a given node and accurately track the number of NUMA
6645 * tasks on the runqueues
6647 void sched_setnuma(struct task_struct
*p
, int nid
)
6649 bool queued
, running
;
6653 rq
= task_rq_lock(p
, &rf
);
6654 queued
= task_on_rq_queued(p
);
6655 running
= task_current(rq
, p
);
6658 dequeue_task(rq
, p
, DEQUEUE_SAVE
);
6660 put_prev_task(rq
, p
);
6662 p
->numa_preferred_nid
= nid
;
6665 enqueue_task(rq
, p
, ENQUEUE_RESTORE
| ENQUEUE_NOCLOCK
);
6667 set_next_task(rq
, p
);
6668 task_rq_unlock(rq
, p
, &rf
);
6670 #endif /* CONFIG_NUMA_BALANCING */
6672 #ifdef CONFIG_HOTPLUG_CPU
6674 * Ensure that the idle task is using init_mm right before its CPU goes
6677 void idle_task_exit(void)
6679 struct mm_struct
*mm
= current
->active_mm
;
6681 BUG_ON(cpu_online(smp_processor_id()));
6682 BUG_ON(current
!= this_rq()->idle
);
6684 if (mm
!= &init_mm
) {
6685 switch_mm(mm
, &init_mm
, current
);
6686 finish_arch_post_lock_switch();
6689 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
6693 * Since this CPU is going 'away' for a while, fold any nr_active delta
6694 * we might have. Assumes we're called after migrate_tasks() so that the
6695 * nr_active count is stable. We need to take the teardown thread which
6696 * is calling this into account, so we hand in adjust = 1 to the load
6699 * Also see the comment "Global load-average calculations".
6701 static void calc_load_migrate(struct rq
*rq
)
6703 long delta
= calc_load_fold_active(rq
, 1);
6705 atomic_long_add(delta
, &calc_load_tasks
);
6708 static struct task_struct
*__pick_migrate_task(struct rq
*rq
)
6710 const struct sched_class
*class;
6711 struct task_struct
*next
;
6713 for_each_class(class) {
6714 next
= class->pick_next_task(rq
);
6716 next
->sched_class
->put_prev_task(rq
, next
);
6721 /* The idle class should always have a runnable task */
6726 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6727 * try_to_wake_up()->select_task_rq().
6729 * Called with rq->lock held even though we'er in stop_machine() and
6730 * there's no concurrency possible, we hold the required locks anyway
6731 * because of lock validation efforts.
6733 static void migrate_tasks(struct rq
*dead_rq
, struct rq_flags
*rf
)
6735 struct rq
*rq
= dead_rq
;
6736 struct task_struct
*next
, *stop
= rq
->stop
;
6737 struct rq_flags orf
= *rf
;
6741 * Fudge the rq selection such that the below task selection loop
6742 * doesn't get stuck on the currently eligible stop task.
6744 * We're currently inside stop_machine() and the rq is either stuck
6745 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6746 * either way we should never end up calling schedule() until we're
6752 * put_prev_task() and pick_next_task() sched
6753 * class method both need to have an up-to-date
6754 * value of rq->clock[_task]
6756 update_rq_clock(rq
);
6760 * There's this thread running, bail when that's the only
6763 if (rq
->nr_running
== 1)
6766 next
= __pick_migrate_task(rq
);
6769 * Rules for changing task_struct::cpus_mask are holding
6770 * both pi_lock and rq->lock, such that holding either
6771 * stabilizes the mask.
6773 * Drop rq->lock is not quite as disastrous as it usually is
6774 * because !cpu_active at this point, which means load-balance
6775 * will not interfere. Also, stop-machine.
6778 raw_spin_lock(&next
->pi_lock
);
6782 * Since we're inside stop-machine, _nothing_ should have
6783 * changed the task, WARN if weird stuff happened, because in
6784 * that case the above rq->lock drop is a fail too.
6786 if (WARN_ON(task_rq(next
) != rq
|| !task_on_rq_queued(next
))) {
6787 raw_spin_unlock(&next
->pi_lock
);
6791 /* Find suitable destination for @next, with force if needed. */
6792 dest_cpu
= select_fallback_rq(dead_rq
->cpu
, next
);
6793 rq
= __migrate_task(rq
, rf
, next
, dest_cpu
);
6794 if (rq
!= dead_rq
) {
6800 raw_spin_unlock(&next
->pi_lock
);
6805 #endif /* CONFIG_HOTPLUG_CPU */
6807 void set_rq_online(struct rq
*rq
)
6810 const struct sched_class
*class;
6812 cpumask_set_cpu(rq
->cpu
, rq
->rd
->online
);
6815 for_each_class(class) {
6816 if (class->rq_online
)
6817 class->rq_online(rq
);
6822 void set_rq_offline(struct rq
*rq
)
6825 const struct sched_class
*class;
6827 for_each_class(class) {
6828 if (class->rq_offline
)
6829 class->rq_offline(rq
);
6832 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->online
);
6838 * used to mark begin/end of suspend/resume:
6840 static int num_cpus_frozen
;
6843 * Update cpusets according to cpu_active mask. If cpusets are
6844 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6845 * around partition_sched_domains().
6847 * If we come here as part of a suspend/resume, don't touch cpusets because we
6848 * want to restore it back to its original state upon resume anyway.
6850 static void cpuset_cpu_active(void)
6852 if (cpuhp_tasks_frozen
) {
6854 * num_cpus_frozen tracks how many CPUs are involved in suspend
6855 * resume sequence. As long as this is not the last online
6856 * operation in the resume sequence, just build a single sched
6857 * domain, ignoring cpusets.
6859 partition_sched_domains(1, NULL
, NULL
);
6860 if (--num_cpus_frozen
)
6863 * This is the last CPU online operation. So fall through and
6864 * restore the original sched domains by considering the
6865 * cpuset configurations.
6867 cpuset_force_rebuild();
6869 cpuset_update_active_cpus();
6872 static int cpuset_cpu_inactive(unsigned int cpu
)
6874 if (!cpuhp_tasks_frozen
) {
6875 if (dl_cpu_busy(cpu
))
6877 cpuset_update_active_cpus();
6880 partition_sched_domains(1, NULL
, NULL
);
6885 int sched_cpu_activate(unsigned int cpu
)
6887 struct rq
*rq
= cpu_rq(cpu
);
6890 #ifdef CONFIG_SCHED_SMT
6892 * When going up, increment the number of cores with SMT present.
6894 if (cpumask_weight(cpu_smt_mask(cpu
)) == 2)
6895 static_branch_inc_cpuslocked(&sched_smt_present
);
6897 set_cpu_active(cpu
, true);
6899 if (sched_smp_initialized
) {
6900 sched_domains_numa_masks_set(cpu
);
6901 cpuset_cpu_active();
6905 * Put the rq online, if not already. This happens:
6907 * 1) In the early boot process, because we build the real domains
6908 * after all CPUs have been brought up.
6910 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
6913 rq_lock_irqsave(rq
, &rf
);
6915 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
6918 rq_unlock_irqrestore(rq
, &rf
);
6923 int sched_cpu_deactivate(unsigned int cpu
)
6927 set_cpu_active(cpu
, false);
6929 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
6930 * users of this state to go away such that all new such users will
6933 * Do sync before park smpboot threads to take care the rcu boost case.
6937 #ifdef CONFIG_SCHED_SMT
6939 * When going down, decrement the number of cores with SMT present.
6941 if (cpumask_weight(cpu_smt_mask(cpu
)) == 2)
6942 static_branch_dec_cpuslocked(&sched_smt_present
);
6945 if (!sched_smp_initialized
)
6948 ret
= cpuset_cpu_inactive(cpu
);
6950 set_cpu_active(cpu
, true);
6953 sched_domains_numa_masks_clear(cpu
);
6957 static void sched_rq_cpu_starting(unsigned int cpu
)
6959 struct rq
*rq
= cpu_rq(cpu
);
6961 rq
->calc_load_update
= calc_load_update
;
6962 update_max_interval();
6965 int sched_cpu_starting(unsigned int cpu
)
6967 sched_rq_cpu_starting(cpu
);
6968 sched_tick_start(cpu
);
6972 #ifdef CONFIG_HOTPLUG_CPU
6973 int sched_cpu_dying(unsigned int cpu
)
6975 struct rq
*rq
= cpu_rq(cpu
);
6978 /* Handle pending wakeups and then migrate everything off */
6979 sched_tick_stop(cpu
);
6981 rq_lock_irqsave(rq
, &rf
);
6983 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
6986 migrate_tasks(rq
, &rf
);
6987 BUG_ON(rq
->nr_running
!= 1);
6988 rq_unlock_irqrestore(rq
, &rf
);
6990 calc_load_migrate(rq
);
6991 update_max_interval();
6992 nohz_balance_exit_idle(rq
);
6998 void __init
sched_init_smp(void)
7003 * There's no userspace yet to cause hotplug operations; hence all the
7004 * CPU masks are stable and all blatant races in the below code cannot
7007 mutex_lock(&sched_domains_mutex
);
7008 sched_init_domains(cpu_active_mask
);
7009 mutex_unlock(&sched_domains_mutex
);
7011 /* Move init over to a non-isolated CPU */
7012 if (set_cpus_allowed_ptr(current
, housekeeping_cpumask(HK_FLAG_DOMAIN
)) < 0)
7014 sched_init_granularity();
7016 init_sched_rt_class();
7017 init_sched_dl_class();
7019 sched_smp_initialized
= true;
7022 static int __init
migration_init(void)
7024 sched_cpu_starting(smp_processor_id());
7027 early_initcall(migration_init
);
7030 void __init
sched_init_smp(void)
7032 sched_init_granularity();
7034 #endif /* CONFIG_SMP */
7036 int in_sched_functions(unsigned long addr
)
7038 return in_lock_functions(addr
) ||
7039 (addr
>= (unsigned long)__sched_text_start
7040 && addr
< (unsigned long)__sched_text_end
);
7043 #ifdef CONFIG_CGROUP_SCHED
7045 * Default task group.
7046 * Every task in system belongs to this group at bootup.
7048 struct task_group root_task_group
;
7049 LIST_HEAD(task_groups
);
7051 /* Cacheline aligned slab cache for task_group */
7052 static struct kmem_cache
*task_group_cache __read_mostly
;
7055 DECLARE_PER_CPU(cpumask_var_t
, load_balance_mask
);
7056 DECLARE_PER_CPU(cpumask_var_t
, select_idle_mask
);
7058 void __init
sched_init(void)
7060 unsigned long ptr
= 0;
7063 /* Make sure the linker didn't screw up */
7064 BUG_ON(&idle_sched_class
+ 1 != &fair_sched_class
||
7065 &fair_sched_class
+ 1 != &rt_sched_class
||
7066 &rt_sched_class
+ 1 != &dl_sched_class
);
7068 BUG_ON(&dl_sched_class
+ 1 != &stop_sched_class
);
7073 #ifdef CONFIG_FAIR_GROUP_SCHED
7074 ptr
+= 2 * nr_cpu_ids
* sizeof(void **);
7076 #ifdef CONFIG_RT_GROUP_SCHED
7077 ptr
+= 2 * nr_cpu_ids
* sizeof(void **);
7080 ptr
= (unsigned long)kzalloc(ptr
, GFP_NOWAIT
);
7082 #ifdef CONFIG_FAIR_GROUP_SCHED
7083 root_task_group
.se
= (struct sched_entity
**)ptr
;
7084 ptr
+= nr_cpu_ids
* sizeof(void **);
7086 root_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
7087 ptr
+= nr_cpu_ids
* sizeof(void **);
7089 root_task_group
.shares
= ROOT_TASK_GROUP_LOAD
;
7090 init_cfs_bandwidth(&root_task_group
.cfs_bandwidth
);
7091 #endif /* CONFIG_FAIR_GROUP_SCHED */
7092 #ifdef CONFIG_RT_GROUP_SCHED
7093 root_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
7094 ptr
+= nr_cpu_ids
* sizeof(void **);
7096 root_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
7097 ptr
+= nr_cpu_ids
* sizeof(void **);
7099 #endif /* CONFIG_RT_GROUP_SCHED */
7101 #ifdef CONFIG_CPUMASK_OFFSTACK
7102 for_each_possible_cpu(i
) {
7103 per_cpu(load_balance_mask
, i
) = (cpumask_var_t
)kzalloc_node(
7104 cpumask_size(), GFP_KERNEL
, cpu_to_node(i
));
7105 per_cpu(select_idle_mask
, i
) = (cpumask_var_t
)kzalloc_node(
7106 cpumask_size(), GFP_KERNEL
, cpu_to_node(i
));
7108 #endif /* CONFIG_CPUMASK_OFFSTACK */
7110 init_rt_bandwidth(&def_rt_bandwidth
, global_rt_period(), global_rt_runtime());
7111 init_dl_bandwidth(&def_dl_bandwidth
, global_rt_period(), global_rt_runtime());
7114 init_defrootdomain();
7117 #ifdef CONFIG_RT_GROUP_SCHED
7118 init_rt_bandwidth(&root_task_group
.rt_bandwidth
,
7119 global_rt_period(), global_rt_runtime());
7120 #endif /* CONFIG_RT_GROUP_SCHED */
7122 #ifdef CONFIG_CGROUP_SCHED
7123 task_group_cache
= KMEM_CACHE(task_group
, 0);
7125 list_add(&root_task_group
.list
, &task_groups
);
7126 INIT_LIST_HEAD(&root_task_group
.children
);
7127 INIT_LIST_HEAD(&root_task_group
.siblings
);
7128 autogroup_init(&init_task
);
7129 #endif /* CONFIG_CGROUP_SCHED */
7131 for_each_possible_cpu(i
) {
7135 raw_spin_lock_init(&rq
->lock
);
7137 rq
->calc_load_active
= 0;
7138 rq
->calc_load_update
= jiffies
+ LOAD_FREQ
;
7139 init_cfs_rq(&rq
->cfs
);
7140 init_rt_rq(&rq
->rt
);
7141 init_dl_rq(&rq
->dl
);
7142 #ifdef CONFIG_FAIR_GROUP_SCHED
7143 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
7144 rq
->tmp_alone_branch
= &rq
->leaf_cfs_rq_list
;
7146 * How much CPU bandwidth does root_task_group get?
7148 * In case of task-groups formed thr' the cgroup filesystem, it
7149 * gets 100% of the CPU resources in the system. This overall
7150 * system CPU resource is divided among the tasks of
7151 * root_task_group and its child task-groups in a fair manner,
7152 * based on each entity's (task or task-group's) weight
7153 * (se->load.weight).
7155 * In other words, if root_task_group has 10 tasks of weight
7156 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7157 * then A0's share of the CPU resource is:
7159 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7161 * We achieve this by letting root_task_group's tasks sit
7162 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7164 init_tg_cfs_entry(&root_task_group
, &rq
->cfs
, NULL
, i
, NULL
);
7165 #endif /* CONFIG_FAIR_GROUP_SCHED */
7167 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
7168 #ifdef CONFIG_RT_GROUP_SCHED
7169 init_tg_rt_entry(&root_task_group
, &rq
->rt
, NULL
, i
, NULL
);
7174 rq
->cpu_capacity
= rq
->cpu_capacity_orig
= SCHED_CAPACITY_SCALE
;
7175 rq
->balance_callback
= NULL
;
7176 rq
->active_balance
= 0;
7177 rq
->next_balance
= jiffies
;
7182 rq
->avg_idle
= 2*sysctl_sched_migration_cost
;
7183 rq
->max_idle_balance_cost
= sysctl_sched_migration_cost
;
7185 INIT_LIST_HEAD(&rq
->cfs_tasks
);
7187 rq_attach_root(rq
, &def_root_domain
);
7188 #ifdef CONFIG_NO_HZ_COMMON
7189 rq
->last_blocked_load_update_tick
= jiffies
;
7190 atomic_set(&rq
->nohz_flags
, 0);
7192 rq_csd_init(rq
, &rq
->nohz_csd
, nohz_csd_func
);
7194 #endif /* CONFIG_SMP */
7196 atomic_set(&rq
->nr_iowait
, 0);
7199 set_load_weight(&init_task
, false);
7202 * The boot idle thread does lazy MMU switching as well:
7205 enter_lazy_tlb(&init_mm
, current
);
7208 * Make us the idle thread. Technically, schedule() should not be
7209 * called from this thread, however somewhere below it might be,
7210 * but because we are the idle thread, we just pick up running again
7211 * when this runqueue becomes "idle".
7213 init_idle(current
, smp_processor_id());
7215 calc_load_update
= jiffies
+ LOAD_FREQ
;
7218 idle_thread_set_boot_cpu();
7220 init_sched_fair_class();
7228 scheduler_running
= 1;
7231 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7232 static inline int preempt_count_equals(int preempt_offset
)
7234 int nested
= preempt_count() + rcu_preempt_depth();
7236 return (nested
== preempt_offset
);
7239 void __might_sleep(const char *file
, int line
, int preempt_offset
)
7242 * Blocking primitives will set (and therefore destroy) current->state,
7243 * since we will exit with TASK_RUNNING make sure we enter with it,
7244 * otherwise we will destroy state.
7246 WARN_ONCE(current
->state
!= TASK_RUNNING
&& current
->task_state_change
,
7247 "do not call blocking ops when !TASK_RUNNING; "
7248 "state=%lx set at [<%p>] %pS\n",
7250 (void *)current
->task_state_change
,
7251 (void *)current
->task_state_change
);
7253 ___might_sleep(file
, line
, preempt_offset
);
7255 EXPORT_SYMBOL(__might_sleep
);
7257 void ___might_sleep(const char *file
, int line
, int preempt_offset
)
7259 /* Ratelimiting timestamp: */
7260 static unsigned long prev_jiffy
;
7262 unsigned long preempt_disable_ip
;
7264 /* WARN_ON_ONCE() by default, no rate limit required: */
7267 if ((preempt_count_equals(preempt_offset
) && !irqs_disabled() &&
7268 !is_idle_task(current
) && !current
->non_block_count
) ||
7269 system_state
== SYSTEM_BOOTING
|| system_state
> SYSTEM_RUNNING
||
7273 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
7275 prev_jiffy
= jiffies
;
7277 /* Save this before calling printk(), since that will clobber it: */
7278 preempt_disable_ip
= get_preempt_disable_ip(current
);
7281 "BUG: sleeping function called from invalid context at %s:%d\n",
7284 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
7285 in_atomic(), irqs_disabled(), current
->non_block_count
,
7286 current
->pid
, current
->comm
);
7288 if (task_stack_end_corrupted(current
))
7289 printk(KERN_EMERG
"Thread overran stack, or stack corrupted\n");
7291 debug_show_held_locks(current
);
7292 if (irqs_disabled())
7293 print_irqtrace_events(current
);
7294 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT
)
7295 && !preempt_count_equals(preempt_offset
)) {
7296 pr_err("Preemption disabled at:");
7297 print_ip_sym(KERN_ERR
, preempt_disable_ip
);
7300 add_taint(TAINT_WARN
, LOCKDEP_STILL_OK
);
7302 EXPORT_SYMBOL(___might_sleep
);
7304 void __cant_sleep(const char *file
, int line
, int preempt_offset
)
7306 static unsigned long prev_jiffy
;
7308 if (irqs_disabled())
7311 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT
))
7314 if (preempt_count() > preempt_offset
)
7317 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
7319 prev_jiffy
= jiffies
;
7321 printk(KERN_ERR
"BUG: assuming atomic context at %s:%d\n", file
, line
);
7322 printk(KERN_ERR
"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7323 in_atomic(), irqs_disabled(),
7324 current
->pid
, current
->comm
);
7326 debug_show_held_locks(current
);
7328 add_taint(TAINT_WARN
, LOCKDEP_STILL_OK
);
7330 EXPORT_SYMBOL_GPL(__cant_sleep
);
7333 #ifdef CONFIG_MAGIC_SYSRQ
7334 void normalize_rt_tasks(void)
7336 struct task_struct
*g
, *p
;
7337 struct sched_attr attr
= {
7338 .sched_policy
= SCHED_NORMAL
,
7341 read_lock(&tasklist_lock
);
7342 for_each_process_thread(g
, p
) {
7344 * Only normalize user tasks:
7346 if (p
->flags
& PF_KTHREAD
)
7349 p
->se
.exec_start
= 0;
7350 schedstat_set(p
->se
.statistics
.wait_start
, 0);
7351 schedstat_set(p
->se
.statistics
.sleep_start
, 0);
7352 schedstat_set(p
->se
.statistics
.block_start
, 0);
7354 if (!dl_task(p
) && !rt_task(p
)) {
7356 * Renice negative nice level userspace
7359 if (task_nice(p
) < 0)
7360 set_user_nice(p
, 0);
7364 __sched_setscheduler(p
, &attr
, false, false);
7366 read_unlock(&tasklist_lock
);
7369 #endif /* CONFIG_MAGIC_SYSRQ */
7371 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7373 * These functions are only useful for the IA64 MCA handling, or kdb.
7375 * They can only be called when the whole system has been
7376 * stopped - every CPU needs to be quiescent, and no scheduling
7377 * activity can take place. Using them for anything else would
7378 * be a serious bug, and as a result, they aren't even visible
7379 * under any other configuration.
7383 * curr_task - return the current task for a given CPU.
7384 * @cpu: the processor in question.
7386 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7388 * Return: The current task for @cpu.
7390 struct task_struct
*curr_task(int cpu
)
7392 return cpu_curr(cpu
);
7395 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7399 * ia64_set_curr_task - set the current task for a given CPU.
7400 * @cpu: the processor in question.
7401 * @p: the task pointer to set.
7403 * Description: This function must only be used when non-maskable interrupts
7404 * are serviced on a separate stack. It allows the architecture to switch the
7405 * notion of the current task on a CPU in a non-blocking manner. This function
7406 * must be called with all CPU's synchronized, and interrupts disabled, the
7407 * and caller must save the original value of the current task (see
7408 * curr_task() above) and restore that value before reenabling interrupts and
7409 * re-starting the system.
7411 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7413 void ia64_set_curr_task(int cpu
, struct task_struct
*p
)
7420 #ifdef CONFIG_CGROUP_SCHED
7421 /* task_group_lock serializes the addition/removal of task groups */
7422 static DEFINE_SPINLOCK(task_group_lock
);
7424 static inline void alloc_uclamp_sched_group(struct task_group
*tg
,
7425 struct task_group
*parent
)
7427 #ifdef CONFIG_UCLAMP_TASK_GROUP
7428 enum uclamp_id clamp_id
;
7430 for_each_clamp_id(clamp_id
) {
7431 uclamp_se_set(&tg
->uclamp_req
[clamp_id
],
7432 uclamp_none(clamp_id
), false);
7433 tg
->uclamp
[clamp_id
] = parent
->uclamp
[clamp_id
];
7438 static void sched_free_group(struct task_group
*tg
)
7440 free_fair_sched_group(tg
);
7441 free_rt_sched_group(tg
);
7443 kmem_cache_free(task_group_cache
, tg
);
7446 /* allocate runqueue etc for a new task group */
7447 struct task_group
*sched_create_group(struct task_group
*parent
)
7449 struct task_group
*tg
;
7451 tg
= kmem_cache_alloc(task_group_cache
, GFP_KERNEL
| __GFP_ZERO
);
7453 return ERR_PTR(-ENOMEM
);
7455 if (!alloc_fair_sched_group(tg
, parent
))
7458 if (!alloc_rt_sched_group(tg
, parent
))
7461 alloc_uclamp_sched_group(tg
, parent
);
7466 sched_free_group(tg
);
7467 return ERR_PTR(-ENOMEM
);
7470 void sched_online_group(struct task_group
*tg
, struct task_group
*parent
)
7472 unsigned long flags
;
7474 spin_lock_irqsave(&task_group_lock
, flags
);
7475 list_add_rcu(&tg
->list
, &task_groups
);
7477 /* Root should already exist: */
7480 tg
->parent
= parent
;
7481 INIT_LIST_HEAD(&tg
->children
);
7482 list_add_rcu(&tg
->siblings
, &parent
->children
);
7483 spin_unlock_irqrestore(&task_group_lock
, flags
);
7485 online_fair_sched_group(tg
);
7488 /* rcu callback to free various structures associated with a task group */
7489 static void sched_free_group_rcu(struct rcu_head
*rhp
)
7491 /* Now it should be safe to free those cfs_rqs: */
7492 sched_free_group(container_of(rhp
, struct task_group
, rcu
));
7495 void sched_destroy_group(struct task_group
*tg
)
7497 /* Wait for possible concurrent references to cfs_rqs complete: */
7498 call_rcu(&tg
->rcu
, sched_free_group_rcu
);
7501 void sched_offline_group(struct task_group
*tg
)
7503 unsigned long flags
;
7505 /* End participation in shares distribution: */
7506 unregister_fair_sched_group(tg
);
7508 spin_lock_irqsave(&task_group_lock
, flags
);
7509 list_del_rcu(&tg
->list
);
7510 list_del_rcu(&tg
->siblings
);
7511 spin_unlock_irqrestore(&task_group_lock
, flags
);
7514 static void sched_change_group(struct task_struct
*tsk
, int type
)
7516 struct task_group
*tg
;
7519 * All callers are synchronized by task_rq_lock(); we do not use RCU
7520 * which is pointless here. Thus, we pass "true" to task_css_check()
7521 * to prevent lockdep warnings.
7523 tg
= container_of(task_css_check(tsk
, cpu_cgrp_id
, true),
7524 struct task_group
, css
);
7525 tg
= autogroup_task_group(tsk
, tg
);
7526 tsk
->sched_task_group
= tg
;
7528 #ifdef CONFIG_FAIR_GROUP_SCHED
7529 if (tsk
->sched_class
->task_change_group
)
7530 tsk
->sched_class
->task_change_group(tsk
, type
);
7533 set_task_rq(tsk
, task_cpu(tsk
));
7537 * Change task's runqueue when it moves between groups.
7539 * The caller of this function should have put the task in its new group by
7540 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7543 void sched_move_task(struct task_struct
*tsk
)
7545 int queued
, running
, queue_flags
=
7546 DEQUEUE_SAVE
| DEQUEUE_MOVE
| DEQUEUE_NOCLOCK
;
7550 rq
= task_rq_lock(tsk
, &rf
);
7551 update_rq_clock(rq
);
7553 running
= task_current(rq
, tsk
);
7554 queued
= task_on_rq_queued(tsk
);
7557 dequeue_task(rq
, tsk
, queue_flags
);
7559 put_prev_task(rq
, tsk
);
7561 sched_change_group(tsk
, TASK_MOVE_GROUP
);
7564 enqueue_task(rq
, tsk
, queue_flags
);
7566 set_next_task(rq
, tsk
);
7568 * After changing group, the running task may have joined a
7569 * throttled one but it's still the running task. Trigger a
7570 * resched to make sure that task can still run.
7575 task_rq_unlock(rq
, tsk
, &rf
);
7578 static inline struct task_group
*css_tg(struct cgroup_subsys_state
*css
)
7580 return css
? container_of(css
, struct task_group
, css
) : NULL
;
7583 static struct cgroup_subsys_state
*
7584 cpu_cgroup_css_alloc(struct cgroup_subsys_state
*parent_css
)
7586 struct task_group
*parent
= css_tg(parent_css
);
7587 struct task_group
*tg
;
7590 /* This is early initialization for the top cgroup */
7591 return &root_task_group
.css
;
7594 tg
= sched_create_group(parent
);
7596 return ERR_PTR(-ENOMEM
);
7601 /* Expose task group only after completing cgroup initialization */
7602 static int cpu_cgroup_css_online(struct cgroup_subsys_state
*css
)
7604 struct task_group
*tg
= css_tg(css
);
7605 struct task_group
*parent
= css_tg(css
->parent
);
7608 sched_online_group(tg
, parent
);
7610 #ifdef CONFIG_UCLAMP_TASK_GROUP
7611 /* Propagate the effective uclamp value for the new group */
7612 cpu_util_update_eff(css
);
7618 static void cpu_cgroup_css_released(struct cgroup_subsys_state
*css
)
7620 struct task_group
*tg
= css_tg(css
);
7622 sched_offline_group(tg
);
7625 static void cpu_cgroup_css_free(struct cgroup_subsys_state
*css
)
7627 struct task_group
*tg
= css_tg(css
);
7630 * Relies on the RCU grace period between css_released() and this.
7632 sched_free_group(tg
);
7636 * This is called before wake_up_new_task(), therefore we really only
7637 * have to set its group bits, all the other stuff does not apply.
7639 static void cpu_cgroup_fork(struct task_struct
*task
)
7644 rq
= task_rq_lock(task
, &rf
);
7646 update_rq_clock(rq
);
7647 sched_change_group(task
, TASK_SET_GROUP
);
7649 task_rq_unlock(rq
, task
, &rf
);
7652 static int cpu_cgroup_can_attach(struct cgroup_taskset
*tset
)
7654 struct task_struct
*task
;
7655 struct cgroup_subsys_state
*css
;
7658 cgroup_taskset_for_each(task
, css
, tset
) {
7659 #ifdef CONFIG_RT_GROUP_SCHED
7660 if (!sched_rt_can_attach(css_tg(css
), task
))
7664 * Serialize against wake_up_new_task() such that if its
7665 * running, we're sure to observe its full state.
7667 raw_spin_lock_irq(&task
->pi_lock
);
7669 * Avoid calling sched_move_task() before wake_up_new_task()
7670 * has happened. This would lead to problems with PELT, due to
7671 * move wanting to detach+attach while we're not attached yet.
7673 if (task
->state
== TASK_NEW
)
7675 raw_spin_unlock_irq(&task
->pi_lock
);
7683 static void cpu_cgroup_attach(struct cgroup_taskset
*tset
)
7685 struct task_struct
*task
;
7686 struct cgroup_subsys_state
*css
;
7688 cgroup_taskset_for_each(task
, css
, tset
)
7689 sched_move_task(task
);
7692 #ifdef CONFIG_UCLAMP_TASK_GROUP
7693 static void cpu_util_update_eff(struct cgroup_subsys_state
*css
)
7695 struct cgroup_subsys_state
*top_css
= css
;
7696 struct uclamp_se
*uc_parent
= NULL
;
7697 struct uclamp_se
*uc_se
= NULL
;
7698 unsigned int eff
[UCLAMP_CNT
];
7699 enum uclamp_id clamp_id
;
7700 unsigned int clamps
;
7702 css_for_each_descendant_pre(css
, top_css
) {
7703 uc_parent
= css_tg(css
)->parent
7704 ? css_tg(css
)->parent
->uclamp
: NULL
;
7706 for_each_clamp_id(clamp_id
) {
7707 /* Assume effective clamps matches requested clamps */
7708 eff
[clamp_id
] = css_tg(css
)->uclamp_req
[clamp_id
].value
;
7709 /* Cap effective clamps with parent's effective clamps */
7711 eff
[clamp_id
] > uc_parent
[clamp_id
].value
) {
7712 eff
[clamp_id
] = uc_parent
[clamp_id
].value
;
7715 /* Ensure protection is always capped by limit */
7716 eff
[UCLAMP_MIN
] = min(eff
[UCLAMP_MIN
], eff
[UCLAMP_MAX
]);
7718 /* Propagate most restrictive effective clamps */
7720 uc_se
= css_tg(css
)->uclamp
;
7721 for_each_clamp_id(clamp_id
) {
7722 if (eff
[clamp_id
] == uc_se
[clamp_id
].value
)
7724 uc_se
[clamp_id
].value
= eff
[clamp_id
];
7725 uc_se
[clamp_id
].bucket_id
= uclamp_bucket_id(eff
[clamp_id
]);
7726 clamps
|= (0x1 << clamp_id
);
7729 css
= css_rightmost_descendant(css
);
7733 /* Immediately update descendants RUNNABLE tasks */
7734 uclamp_update_active_tasks(css
, clamps
);
7739 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
7740 * C expression. Since there is no way to convert a macro argument (N) into a
7741 * character constant, use two levels of macros.
7743 #define _POW10(exp) ((unsigned int)1e##exp)
7744 #define POW10(exp) _POW10(exp)
7746 struct uclamp_request
{
7747 #define UCLAMP_PERCENT_SHIFT 2
7748 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
7754 static inline struct uclamp_request
7755 capacity_from_percent(char *buf
)
7757 struct uclamp_request req
= {
7758 .percent
= UCLAMP_PERCENT_SCALE
,
7759 .util
= SCHED_CAPACITY_SCALE
,
7764 if (strcmp(buf
, "max")) {
7765 req
.ret
= cgroup_parse_float(buf
, UCLAMP_PERCENT_SHIFT
,
7769 if ((u64
)req
.percent
> UCLAMP_PERCENT_SCALE
) {
7774 req
.util
= req
.percent
<< SCHED_CAPACITY_SHIFT
;
7775 req
.util
= DIV_ROUND_CLOSEST_ULL(req
.util
, UCLAMP_PERCENT_SCALE
);
7781 static ssize_t
cpu_uclamp_write(struct kernfs_open_file
*of
, char *buf
,
7782 size_t nbytes
, loff_t off
,
7783 enum uclamp_id clamp_id
)
7785 struct uclamp_request req
;
7786 struct task_group
*tg
;
7788 req
= capacity_from_percent(buf
);
7792 static_branch_enable(&sched_uclamp_used
);
7794 mutex_lock(&uclamp_mutex
);
7797 tg
= css_tg(of_css(of
));
7798 if (tg
->uclamp_req
[clamp_id
].value
!= req
.util
)
7799 uclamp_se_set(&tg
->uclamp_req
[clamp_id
], req
.util
, false);
7802 * Because of not recoverable conversion rounding we keep track of the
7803 * exact requested value
7805 tg
->uclamp_pct
[clamp_id
] = req
.percent
;
7807 /* Update effective clamps to track the most restrictive value */
7808 cpu_util_update_eff(of_css(of
));
7811 mutex_unlock(&uclamp_mutex
);
7816 static ssize_t
cpu_uclamp_min_write(struct kernfs_open_file
*of
,
7817 char *buf
, size_t nbytes
,
7820 return cpu_uclamp_write(of
, buf
, nbytes
, off
, UCLAMP_MIN
);
7823 static ssize_t
cpu_uclamp_max_write(struct kernfs_open_file
*of
,
7824 char *buf
, size_t nbytes
,
7827 return cpu_uclamp_write(of
, buf
, nbytes
, off
, UCLAMP_MAX
);
7830 static inline void cpu_uclamp_print(struct seq_file
*sf
,
7831 enum uclamp_id clamp_id
)
7833 struct task_group
*tg
;
7839 tg
= css_tg(seq_css(sf
));
7840 util_clamp
= tg
->uclamp_req
[clamp_id
].value
;
7843 if (util_clamp
== SCHED_CAPACITY_SCALE
) {
7844 seq_puts(sf
, "max\n");
7848 percent
= tg
->uclamp_pct
[clamp_id
];
7849 percent
= div_u64_rem(percent
, POW10(UCLAMP_PERCENT_SHIFT
), &rem
);
7850 seq_printf(sf
, "%llu.%0*u\n", percent
, UCLAMP_PERCENT_SHIFT
, rem
);
7853 static int cpu_uclamp_min_show(struct seq_file
*sf
, void *v
)
7855 cpu_uclamp_print(sf
, UCLAMP_MIN
);
7859 static int cpu_uclamp_max_show(struct seq_file
*sf
, void *v
)
7861 cpu_uclamp_print(sf
, UCLAMP_MAX
);
7864 #endif /* CONFIG_UCLAMP_TASK_GROUP */
7866 #ifdef CONFIG_FAIR_GROUP_SCHED
7867 static int cpu_shares_write_u64(struct cgroup_subsys_state
*css
,
7868 struct cftype
*cftype
, u64 shareval
)
7870 if (shareval
> scale_load_down(ULONG_MAX
))
7871 shareval
= MAX_SHARES
;
7872 return sched_group_set_shares(css_tg(css
), scale_load(shareval
));
7875 static u64
cpu_shares_read_u64(struct cgroup_subsys_state
*css
,
7878 struct task_group
*tg
= css_tg(css
);
7880 return (u64
) scale_load_down(tg
->shares
);
7883 #ifdef CONFIG_CFS_BANDWIDTH
7884 static DEFINE_MUTEX(cfs_constraints_mutex
);
7886 const u64 max_cfs_quota_period
= 1 * NSEC_PER_SEC
; /* 1s */
7887 static const u64 min_cfs_quota_period
= 1 * NSEC_PER_MSEC
; /* 1ms */
7888 /* More than 203 days if BW_SHIFT equals 20. */
7889 static const u64 max_cfs_runtime
= MAX_BW
* NSEC_PER_USEC
;
7891 static int __cfs_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
);
7893 static int tg_set_cfs_bandwidth(struct task_group
*tg
, u64 period
, u64 quota
)
7895 int i
, ret
= 0, runtime_enabled
, runtime_was_enabled
;
7896 struct cfs_bandwidth
*cfs_b
= &tg
->cfs_bandwidth
;
7898 if (tg
== &root_task_group
)
7902 * Ensure we have at some amount of bandwidth every period. This is
7903 * to prevent reaching a state of large arrears when throttled via
7904 * entity_tick() resulting in prolonged exit starvation.
7906 if (quota
< min_cfs_quota_period
|| period
< min_cfs_quota_period
)
7910 * Likewise, bound things on the otherside by preventing insane quota
7911 * periods. This also allows us to normalize in computing quota
7914 if (period
> max_cfs_quota_period
)
7918 * Bound quota to defend quota against overflow during bandwidth shift.
7920 if (quota
!= RUNTIME_INF
&& quota
> max_cfs_runtime
)
7924 * Prevent race between setting of cfs_rq->runtime_enabled and
7925 * unthrottle_offline_cfs_rqs().
7928 mutex_lock(&cfs_constraints_mutex
);
7929 ret
= __cfs_schedulable(tg
, period
, quota
);
7933 runtime_enabled
= quota
!= RUNTIME_INF
;
7934 runtime_was_enabled
= cfs_b
->quota
!= RUNTIME_INF
;
7936 * If we need to toggle cfs_bandwidth_used, off->on must occur
7937 * before making related changes, and on->off must occur afterwards
7939 if (runtime_enabled
&& !runtime_was_enabled
)
7940 cfs_bandwidth_usage_inc();
7941 raw_spin_lock_irq(&cfs_b
->lock
);
7942 cfs_b
->period
= ns_to_ktime(period
);
7943 cfs_b
->quota
= quota
;
7945 __refill_cfs_bandwidth_runtime(cfs_b
);
7947 /* Restart the period timer (if active) to handle new period expiry: */
7948 if (runtime_enabled
)
7949 start_cfs_bandwidth(cfs_b
);
7951 raw_spin_unlock_irq(&cfs_b
->lock
);
7953 for_each_online_cpu(i
) {
7954 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[i
];
7955 struct rq
*rq
= cfs_rq
->rq
;
7958 rq_lock_irq(rq
, &rf
);
7959 cfs_rq
->runtime_enabled
= runtime_enabled
;
7960 cfs_rq
->runtime_remaining
= 0;
7962 if (cfs_rq
->throttled
)
7963 unthrottle_cfs_rq(cfs_rq
);
7964 rq_unlock_irq(rq
, &rf
);
7966 if (runtime_was_enabled
&& !runtime_enabled
)
7967 cfs_bandwidth_usage_dec();
7969 mutex_unlock(&cfs_constraints_mutex
);
7975 static int tg_set_cfs_quota(struct task_group
*tg
, long cfs_quota_us
)
7979 period
= ktime_to_ns(tg
->cfs_bandwidth
.period
);
7980 if (cfs_quota_us
< 0)
7981 quota
= RUNTIME_INF
;
7982 else if ((u64
)cfs_quota_us
<= U64_MAX
/ NSEC_PER_USEC
)
7983 quota
= (u64
)cfs_quota_us
* NSEC_PER_USEC
;
7987 return tg_set_cfs_bandwidth(tg
, period
, quota
);
7990 static long tg_get_cfs_quota(struct task_group
*tg
)
7994 if (tg
->cfs_bandwidth
.quota
== RUNTIME_INF
)
7997 quota_us
= tg
->cfs_bandwidth
.quota
;
7998 do_div(quota_us
, NSEC_PER_USEC
);
8003 static int tg_set_cfs_period(struct task_group
*tg
, long cfs_period_us
)
8007 if ((u64
)cfs_period_us
> U64_MAX
/ NSEC_PER_USEC
)
8010 period
= (u64
)cfs_period_us
* NSEC_PER_USEC
;
8011 quota
= tg
->cfs_bandwidth
.quota
;
8013 return tg_set_cfs_bandwidth(tg
, period
, quota
);
8016 static long tg_get_cfs_period(struct task_group
*tg
)
8020 cfs_period_us
= ktime_to_ns(tg
->cfs_bandwidth
.period
);
8021 do_div(cfs_period_us
, NSEC_PER_USEC
);
8023 return cfs_period_us
;
8026 static s64
cpu_cfs_quota_read_s64(struct cgroup_subsys_state
*css
,
8029 return tg_get_cfs_quota(css_tg(css
));
8032 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state
*css
,
8033 struct cftype
*cftype
, s64 cfs_quota_us
)
8035 return tg_set_cfs_quota(css_tg(css
), cfs_quota_us
);
8038 static u64
cpu_cfs_period_read_u64(struct cgroup_subsys_state
*css
,
8041 return tg_get_cfs_period(css_tg(css
));
8044 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state
*css
,
8045 struct cftype
*cftype
, u64 cfs_period_us
)
8047 return tg_set_cfs_period(css_tg(css
), cfs_period_us
);
8050 struct cfs_schedulable_data
{
8051 struct task_group
*tg
;
8056 * normalize group quota/period to be quota/max_period
8057 * note: units are usecs
8059 static u64
normalize_cfs_quota(struct task_group
*tg
,
8060 struct cfs_schedulable_data
*d
)
8068 period
= tg_get_cfs_period(tg
);
8069 quota
= tg_get_cfs_quota(tg
);
8072 /* note: these should typically be equivalent */
8073 if (quota
== RUNTIME_INF
|| quota
== -1)
8076 return to_ratio(period
, quota
);
8079 static int tg_cfs_schedulable_down(struct task_group
*tg
, void *data
)
8081 struct cfs_schedulable_data
*d
= data
;
8082 struct cfs_bandwidth
*cfs_b
= &tg
->cfs_bandwidth
;
8083 s64 quota
= 0, parent_quota
= -1;
8086 quota
= RUNTIME_INF
;
8088 struct cfs_bandwidth
*parent_b
= &tg
->parent
->cfs_bandwidth
;
8090 quota
= normalize_cfs_quota(tg
, d
);
8091 parent_quota
= parent_b
->hierarchical_quota
;
8094 * Ensure max(child_quota) <= parent_quota. On cgroup2,
8095 * always take the min. On cgroup1, only inherit when no
8098 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys
)) {
8099 quota
= min(quota
, parent_quota
);
8101 if (quota
== RUNTIME_INF
)
8102 quota
= parent_quota
;
8103 else if (parent_quota
!= RUNTIME_INF
&& quota
> parent_quota
)
8107 cfs_b
->hierarchical_quota
= quota
;
8112 static int __cfs_schedulable(struct task_group
*tg
, u64 period
, u64 quota
)
8115 struct cfs_schedulable_data data
= {
8121 if (quota
!= RUNTIME_INF
) {
8122 do_div(data
.period
, NSEC_PER_USEC
);
8123 do_div(data
.quota
, NSEC_PER_USEC
);
8127 ret
= walk_tg_tree(tg_cfs_schedulable_down
, tg_nop
, &data
);
8133 static int cpu_cfs_stat_show(struct seq_file
*sf
, void *v
)
8135 struct task_group
*tg
= css_tg(seq_css(sf
));
8136 struct cfs_bandwidth
*cfs_b
= &tg
->cfs_bandwidth
;
8138 seq_printf(sf
, "nr_periods %d\n", cfs_b
->nr_periods
);
8139 seq_printf(sf
, "nr_throttled %d\n", cfs_b
->nr_throttled
);
8140 seq_printf(sf
, "throttled_time %llu\n", cfs_b
->throttled_time
);
8142 if (schedstat_enabled() && tg
!= &root_task_group
) {
8146 for_each_possible_cpu(i
)
8147 ws
+= schedstat_val(tg
->se
[i
]->statistics
.wait_sum
);
8149 seq_printf(sf
, "wait_sum %llu\n", ws
);
8154 #endif /* CONFIG_CFS_BANDWIDTH */
8155 #endif /* CONFIG_FAIR_GROUP_SCHED */
8157 #ifdef CONFIG_RT_GROUP_SCHED
8158 static int cpu_rt_runtime_write(struct cgroup_subsys_state
*css
,
8159 struct cftype
*cft
, s64 val
)
8161 return sched_group_set_rt_runtime(css_tg(css
), val
);
8164 static s64
cpu_rt_runtime_read(struct cgroup_subsys_state
*css
,
8167 return sched_group_rt_runtime(css_tg(css
));
8170 static int cpu_rt_period_write_uint(struct cgroup_subsys_state
*css
,
8171 struct cftype
*cftype
, u64 rt_period_us
)
8173 return sched_group_set_rt_period(css_tg(css
), rt_period_us
);
8176 static u64
cpu_rt_period_read_uint(struct cgroup_subsys_state
*css
,
8179 return sched_group_rt_period(css_tg(css
));
8181 #endif /* CONFIG_RT_GROUP_SCHED */
8183 static struct cftype cpu_legacy_files
[] = {
8184 #ifdef CONFIG_FAIR_GROUP_SCHED
8187 .read_u64
= cpu_shares_read_u64
,
8188 .write_u64
= cpu_shares_write_u64
,
8191 #ifdef CONFIG_CFS_BANDWIDTH
8193 .name
= "cfs_quota_us",
8194 .read_s64
= cpu_cfs_quota_read_s64
,
8195 .write_s64
= cpu_cfs_quota_write_s64
,
8198 .name
= "cfs_period_us",
8199 .read_u64
= cpu_cfs_period_read_u64
,
8200 .write_u64
= cpu_cfs_period_write_u64
,
8204 .seq_show
= cpu_cfs_stat_show
,
8207 #ifdef CONFIG_RT_GROUP_SCHED
8209 .name
= "rt_runtime_us",
8210 .read_s64
= cpu_rt_runtime_read
,
8211 .write_s64
= cpu_rt_runtime_write
,
8214 .name
= "rt_period_us",
8215 .read_u64
= cpu_rt_period_read_uint
,
8216 .write_u64
= cpu_rt_period_write_uint
,
8219 #ifdef CONFIG_UCLAMP_TASK_GROUP
8221 .name
= "uclamp.min",
8222 .flags
= CFTYPE_NOT_ON_ROOT
,
8223 .seq_show
= cpu_uclamp_min_show
,
8224 .write
= cpu_uclamp_min_write
,
8227 .name
= "uclamp.max",
8228 .flags
= CFTYPE_NOT_ON_ROOT
,
8229 .seq_show
= cpu_uclamp_max_show
,
8230 .write
= cpu_uclamp_max_write
,
8236 static int cpu_extra_stat_show(struct seq_file
*sf
,
8237 struct cgroup_subsys_state
*css
)
8239 #ifdef CONFIG_CFS_BANDWIDTH
8241 struct task_group
*tg
= css_tg(css
);
8242 struct cfs_bandwidth
*cfs_b
= &tg
->cfs_bandwidth
;
8245 throttled_usec
= cfs_b
->throttled_time
;
8246 do_div(throttled_usec
, NSEC_PER_USEC
);
8248 seq_printf(sf
, "nr_periods %d\n"
8250 "throttled_usec %llu\n",
8251 cfs_b
->nr_periods
, cfs_b
->nr_throttled
,
8258 #ifdef CONFIG_FAIR_GROUP_SCHED
8259 static u64
cpu_weight_read_u64(struct cgroup_subsys_state
*css
,
8262 struct task_group
*tg
= css_tg(css
);
8263 u64 weight
= scale_load_down(tg
->shares
);
8265 return DIV_ROUND_CLOSEST_ULL(weight
* CGROUP_WEIGHT_DFL
, 1024);
8268 static int cpu_weight_write_u64(struct cgroup_subsys_state
*css
,
8269 struct cftype
*cft
, u64 weight
)
8272 * cgroup weight knobs should use the common MIN, DFL and MAX
8273 * values which are 1, 100 and 10000 respectively. While it loses
8274 * a bit of range on both ends, it maps pretty well onto the shares
8275 * value used by scheduler and the round-trip conversions preserve
8276 * the original value over the entire range.
8278 if (weight
< CGROUP_WEIGHT_MIN
|| weight
> CGROUP_WEIGHT_MAX
)
8281 weight
= DIV_ROUND_CLOSEST_ULL(weight
* 1024, CGROUP_WEIGHT_DFL
);
8283 return sched_group_set_shares(css_tg(css
), scale_load(weight
));
8286 static s64
cpu_weight_nice_read_s64(struct cgroup_subsys_state
*css
,
8289 unsigned long weight
= scale_load_down(css_tg(css
)->shares
);
8290 int last_delta
= INT_MAX
;
8293 /* find the closest nice value to the current weight */
8294 for (prio
= 0; prio
< ARRAY_SIZE(sched_prio_to_weight
); prio
++) {
8295 delta
= abs(sched_prio_to_weight
[prio
] - weight
);
8296 if (delta
>= last_delta
)
8301 return PRIO_TO_NICE(prio
- 1 + MAX_RT_PRIO
);
8304 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state
*css
,
8305 struct cftype
*cft
, s64 nice
)
8307 unsigned long weight
;
8310 if (nice
< MIN_NICE
|| nice
> MAX_NICE
)
8313 idx
= NICE_TO_PRIO(nice
) - MAX_RT_PRIO
;
8314 idx
= array_index_nospec(idx
, 40);
8315 weight
= sched_prio_to_weight
[idx
];
8317 return sched_group_set_shares(css_tg(css
), scale_load(weight
));
8321 static void __maybe_unused
cpu_period_quota_print(struct seq_file
*sf
,
8322 long period
, long quota
)
8325 seq_puts(sf
, "max");
8327 seq_printf(sf
, "%ld", quota
);
8329 seq_printf(sf
, " %ld\n", period
);
8332 /* caller should put the current value in *@periodp before calling */
8333 static int __maybe_unused
cpu_period_quota_parse(char *buf
,
8334 u64
*periodp
, u64
*quotap
)
8336 char tok
[21]; /* U64_MAX */
8338 if (sscanf(buf
, "%20s %llu", tok
, periodp
) < 1)
8341 *periodp
*= NSEC_PER_USEC
;
8343 if (sscanf(tok
, "%llu", quotap
))
8344 *quotap
*= NSEC_PER_USEC
;
8345 else if (!strcmp(tok
, "max"))
8346 *quotap
= RUNTIME_INF
;
8353 #ifdef CONFIG_CFS_BANDWIDTH
8354 static int cpu_max_show(struct seq_file
*sf
, void *v
)
8356 struct task_group
*tg
= css_tg(seq_css(sf
));
8358 cpu_period_quota_print(sf
, tg_get_cfs_period(tg
), tg_get_cfs_quota(tg
));
8362 static ssize_t
cpu_max_write(struct kernfs_open_file
*of
,
8363 char *buf
, size_t nbytes
, loff_t off
)
8365 struct task_group
*tg
= css_tg(of_css(of
));
8366 u64 period
= tg_get_cfs_period(tg
);
8370 ret
= cpu_period_quota_parse(buf
, &period
, "a
);
8372 ret
= tg_set_cfs_bandwidth(tg
, period
, quota
);
8373 return ret
?: nbytes
;
8377 static struct cftype cpu_files
[] = {
8378 #ifdef CONFIG_FAIR_GROUP_SCHED
8381 .flags
= CFTYPE_NOT_ON_ROOT
,
8382 .read_u64
= cpu_weight_read_u64
,
8383 .write_u64
= cpu_weight_write_u64
,
8386 .name
= "weight.nice",
8387 .flags
= CFTYPE_NOT_ON_ROOT
,
8388 .read_s64
= cpu_weight_nice_read_s64
,
8389 .write_s64
= cpu_weight_nice_write_s64
,
8392 #ifdef CONFIG_CFS_BANDWIDTH
8395 .flags
= CFTYPE_NOT_ON_ROOT
,
8396 .seq_show
= cpu_max_show
,
8397 .write
= cpu_max_write
,
8400 #ifdef CONFIG_UCLAMP_TASK_GROUP
8402 .name
= "uclamp.min",
8403 .flags
= CFTYPE_NOT_ON_ROOT
,
8404 .seq_show
= cpu_uclamp_min_show
,
8405 .write
= cpu_uclamp_min_write
,
8408 .name
= "uclamp.max",
8409 .flags
= CFTYPE_NOT_ON_ROOT
,
8410 .seq_show
= cpu_uclamp_max_show
,
8411 .write
= cpu_uclamp_max_write
,
8417 struct cgroup_subsys cpu_cgrp_subsys
= {
8418 .css_alloc
= cpu_cgroup_css_alloc
,
8419 .css_online
= cpu_cgroup_css_online
,
8420 .css_released
= cpu_cgroup_css_released
,
8421 .css_free
= cpu_cgroup_css_free
,
8422 .css_extra_stat_show
= cpu_extra_stat_show
,
8423 .fork
= cpu_cgroup_fork
,
8424 .can_attach
= cpu_cgroup_can_attach
,
8425 .attach
= cpu_cgroup_attach
,
8426 .legacy_cftypes
= cpu_legacy_files
,
8427 .dfl_cftypes
= cpu_files
,
8432 #endif /* CONFIG_CGROUP_SCHED */
8434 void dump_cpu_task(int cpu
)
8436 pr_info("Task dump for CPU %d:\n", cpu
);
8437 sched_show_task(cpu_curr(cpu
));
8441 * Nice levels are multiplicative, with a gentle 10% change for every
8442 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8443 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8444 * that remained on nice 0.
8446 * The "10% effect" is relative and cumulative: from _any_ nice level,
8447 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8448 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8449 * If a task goes up by ~10% and another task goes down by ~10% then
8450 * the relative distance between them is ~25%.)
8452 const int sched_prio_to_weight
[40] = {
8453 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8454 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8455 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8456 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8457 /* 0 */ 1024, 820, 655, 526, 423,
8458 /* 5 */ 335, 272, 215, 172, 137,
8459 /* 10 */ 110, 87, 70, 56, 45,
8460 /* 15 */ 36, 29, 23, 18, 15,
8464 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8466 * In cases where the weight does not change often, we can use the
8467 * precalculated inverse to speed up arithmetics by turning divisions
8468 * into multiplications:
8470 const u32 sched_prio_to_wmult
[40] = {
8471 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8472 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8473 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8474 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8475 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8476 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8477 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8478 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8481 void call_trace_sched_update_nr_running(struct rq
*rq
, int count
)
8483 trace_sched_update_nr_running_tp(rq
, count
);