1 // SPDX-License-Identifier: GPL-2.0
2 // Copyright (C) 2005-2017 Andes Technology Corporation
4 #ifndef __ASMNDS32_ELF_H
5 #define __ASMNDS32_ELF_H
8 * ELF register definitions..
11 #include <asm/ptrace.h>
13 typedef unsigned long elf_greg_t
;
14 typedef unsigned long elf_freg_t
[3];
16 extern unsigned int elf_hwcap
;
20 #define R_NDS32_NONE 0
21 #define R_NDS32_16_RELA 19
22 #define R_NDS32_32_RELA 20
23 #define R_NDS32_9_PCREL_RELA 22
24 #define R_NDS32_15_PCREL_RELA 23
25 #define R_NDS32_17_PCREL_RELA 24
26 #define R_NDS32_25_PCREL_RELA 25
27 #define R_NDS32_HI20_RELA 26
28 #define R_NDS32_LO12S3_RELA 27
29 #define R_NDS32_LO12S2_RELA 28
30 #define R_NDS32_LO12S1_RELA 29
31 #define R_NDS32_LO12S0_RELA 30
32 #define R_NDS32_SDA15S3_RELA 31
33 #define R_NDS32_SDA15S2_RELA 32
34 #define R_NDS32_SDA15S1_RELA 33
35 #define R_NDS32_SDA15S0_RELA 34
36 #define R_NDS32_GOT20 37
37 #define R_NDS32_25_PLTREL 38
38 #define R_NDS32_COPY 39
39 #define R_NDS32_GLOB_DAT 40
40 #define R_NDS32_JMP_SLOT 41
41 #define R_NDS32_RELATIVE 42
42 #define R_NDS32_GOTOFF 43
43 #define R_NDS32_GOTPC20 44
44 #define R_NDS32_GOT_HI20 45
45 #define R_NDS32_GOT_LO12 46
46 #define R_NDS32_GOTPC_HI20 47
47 #define R_NDS32_GOTPC_LO12 48
48 #define R_NDS32_GOTOFF_HI20 49
49 #define R_NDS32_GOTOFF_LO12 50
50 #define R_NDS32_INSN16 51
51 #define R_NDS32_LABEL 52
52 #define R_NDS32_LONGCALL1 53
53 #define R_NDS32_LONGCALL2 54
54 #define R_NDS32_LONGCALL3 55
55 #define R_NDS32_LONGJUMP1 56
56 #define R_NDS32_LONGJUMP2 57
57 #define R_NDS32_LONGJUMP3 58
58 #define R_NDS32_LOADSTORE 59
59 #define R_NDS32_9_FIXED_RELA 60
60 #define R_NDS32_15_FIXED_RELA 61
61 #define R_NDS32_17_FIXED_RELA 62
62 #define R_NDS32_25_FIXED_RELA 63
63 #define R_NDS32_PLTREL_HI20 64
64 #define R_NDS32_PLTREL_LO12 65
65 #define R_NDS32_PLT_GOTREL_HI20 66
66 #define R_NDS32_PLT_GOTREL_LO12 67
67 #define R_NDS32_LO12S0_ORI_RELA 72
68 #define R_NDS32_DWARF2_OP1_RELA 77
69 #define R_NDS32_DWARF2_OP2_RELA 78
70 #define R_NDS32_DWARF2_LEB_RELA 79
71 #define R_NDS32_WORD_9_PCREL_RELA 94
72 #define R_NDS32_LONGCALL4 107
73 #define R_NDS32_RELA_NOP_MIX 192
74 #define R_NDS32_RELA_NOP_MAX 255
76 #define ELF_NGREG (sizeof (struct user_pt_regs) / sizeof(elf_greg_t))
77 #define ELF_CORE_COPY_REGS(dest, regs) \
78 *(struct user_pt_regs *)&(dest) = (regs)->user_regs;
80 typedef elf_greg_t elf_gregset_t
[ELF_NGREG
];
82 /* Core file format: The core file is written in such a way that gdb
83 can understand it and provide useful information to the user (under
84 linux we use the 'trad-core' bfd). There are quite a number of
85 obstacles to being able to view the contents of the floating point
86 registers, and until these are solved you will not be able to view the
87 contents of them. Actually, you can read in the core file and look at
88 the contents of the user struct to find out what the floating point
90 The actual file contents are as follows:
91 UPAGE: 1 page consisting of a user struct that tells gdb what is present
92 in the file. Directly after this is a copy of the task_struct, which
93 is currently not used by gdb, but it may come in useful at some point.
94 All of the registers are stored as part of the upage. The upage should
95 always be only one page.
96 DATA: The data area is stored. We use current->end_text to
97 current->brk to pick up all of the user variables, plus any memory
98 that may have been malloced. No attempt is made to determine if a page
99 is demand-zero or if a page is totally unused, we just cover the entire
100 range. All of the addresses are rounded in such a way that an integral
101 number of pages is written.
102 STACK: We need the stack information in order to get a meaningful
103 backtrace. We need to write the data from (esp) to
104 current->start_stack, so we round each of these off in order to be able
105 to write an integer number of pages.
106 The minimum core file size is 3 pages, or 12288 bytes.
110 unsigned long long fd_regs
[32];
114 typedef struct user_fp elf_fpregset_t
;
117 #define elf_check_arch(x) ((x)->e_machine == EM_NDS32)
120 * These are used to set parameters in the core dumps.
122 #define ELF_CLASS ELFCLASS32
124 #define ELF_DATA ELFDATA2MSB
126 #define ELF_DATA ELFDATA2LSB
128 #define ELF_ARCH EM_NDS32
129 #define USE_ELF_CORE_DUMP
130 #define ELF_EXEC_PAGESIZE PAGE_SIZE
132 /* This is the location that an ET_DYN program is loaded if exec'ed. Typical
133 use of this is to invoke "./ld.so someprog" to test out a new version of
134 the loader. We need to make sure that it is out of the way of the program
135 that it will "exec", and that there is sufficient room for the brk. */
137 #define ELF_ET_DYN_BASE (2 * TASK_SIZE / 3)
139 /* When the program starts, a1 contains a pointer to a function to be
140 registered with atexit, as per the SVR4 ABI. A value of 0 means we
141 have no such handler. */
142 #define ELF_PLAT_INIT(_r, load_addr) (_r)->uregs[0] = 0
144 /* This yields a mask that user programs can use to figure out what
145 instruction set this cpu supports. */
147 #define ELF_HWCAP (elf_hwcap)
151 #define ELF_PLATFORM (NULL)
153 /* Old NetWinder binaries were compiled in such a way that the iBCS
154 heuristic always trips on them. Until these binaries become uncommon
155 enough not to care, don't trust the `ibcs' flag here. In any case
156 there is no other ELF system currently supported by iBCS.
157 @@ Could print a warning message to encourage users to upgrade. */
158 #define SET_PERSONALITY(ex) set_personality(PER_LINUX)
162 #define ARCH_DLINFO \
164 NEW_AUX_ENT(AT_SYSINFO_EHDR, \
165 (elf_addr_t)current->mm->context.vdso); \
167 #define ARCH_HAS_SETUP_ADDITIONAL_PAGES 1
169 int arch_setup_additional_pages(struct linux_binprm
*, int);