perf tools: Don't clone maps from parent when synthesizing forks
[linux/fpc-iii.git] / arch / x86 / hyperv / hv_init.c
blob7abb09e2eeb819129c6e9bcbbc1a3408e3e59c95
1 /*
2 * X86 specific Hyper-V initialization code.
4 * Copyright (C) 2016, Microsoft, Inc.
6 * Author : K. Y. Srinivasan <kys@microsoft.com>
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License version 2 as published
10 * by the Free Software Foundation.
12 * This program is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
15 * NON INFRINGEMENT. See the GNU General Public License for more
16 * details.
20 #include <linux/efi.h>
21 #include <linux/types.h>
22 #include <asm/apic.h>
23 #include <asm/desc.h>
24 #include <asm/hypervisor.h>
25 #include <asm/hyperv-tlfs.h>
26 #include <asm/mshyperv.h>
27 #include <linux/version.h>
28 #include <linux/vmalloc.h>
29 #include <linux/mm.h>
30 #include <linux/clockchips.h>
31 #include <linux/hyperv.h>
32 #include <linux/slab.h>
33 #include <linux/cpuhotplug.h>
35 #ifdef CONFIG_HYPERV_TSCPAGE
37 static struct ms_hyperv_tsc_page *tsc_pg;
39 struct ms_hyperv_tsc_page *hv_get_tsc_page(void)
41 return tsc_pg;
43 EXPORT_SYMBOL_GPL(hv_get_tsc_page);
45 static u64 read_hv_clock_tsc(struct clocksource *arg)
47 u64 current_tick = hv_read_tsc_page(tsc_pg);
49 if (current_tick == U64_MAX)
50 rdmsrl(HV_X64_MSR_TIME_REF_COUNT, current_tick);
52 return current_tick;
55 static struct clocksource hyperv_cs_tsc = {
56 .name = "hyperv_clocksource_tsc_page",
57 .rating = 400,
58 .read = read_hv_clock_tsc,
59 .mask = CLOCKSOURCE_MASK(64),
60 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
62 #endif
64 static u64 read_hv_clock_msr(struct clocksource *arg)
66 u64 current_tick;
68 * Read the partition counter to get the current tick count. This count
69 * is set to 0 when the partition is created and is incremented in
70 * 100 nanosecond units.
72 rdmsrl(HV_X64_MSR_TIME_REF_COUNT, current_tick);
73 return current_tick;
76 static struct clocksource hyperv_cs_msr = {
77 .name = "hyperv_clocksource_msr",
78 .rating = 400,
79 .read = read_hv_clock_msr,
80 .mask = CLOCKSOURCE_MASK(64),
81 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
84 void *hv_hypercall_pg;
85 EXPORT_SYMBOL_GPL(hv_hypercall_pg);
86 struct clocksource *hyperv_cs;
87 EXPORT_SYMBOL_GPL(hyperv_cs);
89 u32 *hv_vp_index;
90 EXPORT_SYMBOL_GPL(hv_vp_index);
92 struct hv_vp_assist_page **hv_vp_assist_page;
93 EXPORT_SYMBOL_GPL(hv_vp_assist_page);
95 void __percpu **hyperv_pcpu_input_arg;
96 EXPORT_SYMBOL_GPL(hyperv_pcpu_input_arg);
98 u32 hv_max_vp_index;
100 static int hv_cpu_init(unsigned int cpu)
102 u64 msr_vp_index;
103 struct hv_vp_assist_page **hvp = &hv_vp_assist_page[smp_processor_id()];
104 void **input_arg;
106 input_arg = (void **)this_cpu_ptr(hyperv_pcpu_input_arg);
107 *input_arg = page_address(alloc_page(GFP_KERNEL));
109 hv_get_vp_index(msr_vp_index);
111 hv_vp_index[smp_processor_id()] = msr_vp_index;
113 if (msr_vp_index > hv_max_vp_index)
114 hv_max_vp_index = msr_vp_index;
116 if (!hv_vp_assist_page)
117 return 0;
119 if (!*hvp)
120 *hvp = __vmalloc(PAGE_SIZE, GFP_KERNEL, PAGE_KERNEL);
122 if (*hvp) {
123 u64 val;
125 val = vmalloc_to_pfn(*hvp);
126 val = (val << HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT) |
127 HV_X64_MSR_VP_ASSIST_PAGE_ENABLE;
129 wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, val);
132 return 0;
135 static void (*hv_reenlightenment_cb)(void);
137 static void hv_reenlightenment_notify(struct work_struct *dummy)
139 struct hv_tsc_emulation_status emu_status;
141 rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
143 /* Don't issue the callback if TSC accesses are not emulated */
144 if (hv_reenlightenment_cb && emu_status.inprogress)
145 hv_reenlightenment_cb();
147 static DECLARE_DELAYED_WORK(hv_reenlightenment_work, hv_reenlightenment_notify);
149 void hyperv_stop_tsc_emulation(void)
151 u64 freq;
152 struct hv_tsc_emulation_status emu_status;
154 rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
155 emu_status.inprogress = 0;
156 wrmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
158 rdmsrl(HV_X64_MSR_TSC_FREQUENCY, freq);
159 tsc_khz = div64_u64(freq, 1000);
161 EXPORT_SYMBOL_GPL(hyperv_stop_tsc_emulation);
163 static inline bool hv_reenlightenment_available(void)
166 * Check for required features and priviliges to make TSC frequency
167 * change notifications work.
169 return ms_hyperv.features & HV_X64_ACCESS_FREQUENCY_MSRS &&
170 ms_hyperv.misc_features & HV_FEATURE_FREQUENCY_MSRS_AVAILABLE &&
171 ms_hyperv.features & HV_X64_ACCESS_REENLIGHTENMENT;
174 __visible void __irq_entry hyperv_reenlightenment_intr(struct pt_regs *regs)
176 entering_ack_irq();
178 inc_irq_stat(irq_hv_reenlightenment_count);
180 schedule_delayed_work(&hv_reenlightenment_work, HZ/10);
182 exiting_irq();
185 void set_hv_tscchange_cb(void (*cb)(void))
187 struct hv_reenlightenment_control re_ctrl = {
188 .vector = HYPERV_REENLIGHTENMENT_VECTOR,
189 .enabled = 1,
190 .target_vp = hv_vp_index[smp_processor_id()]
192 struct hv_tsc_emulation_control emu_ctrl = {.enabled = 1};
194 if (!hv_reenlightenment_available()) {
195 pr_warn("Hyper-V: reenlightenment support is unavailable\n");
196 return;
199 hv_reenlightenment_cb = cb;
201 /* Make sure callback is registered before we write to MSRs */
202 wmb();
204 wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
205 wrmsrl(HV_X64_MSR_TSC_EMULATION_CONTROL, *((u64 *)&emu_ctrl));
207 EXPORT_SYMBOL_GPL(set_hv_tscchange_cb);
209 void clear_hv_tscchange_cb(void)
211 struct hv_reenlightenment_control re_ctrl;
213 if (!hv_reenlightenment_available())
214 return;
216 rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl);
217 re_ctrl.enabled = 0;
218 wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl);
220 hv_reenlightenment_cb = NULL;
222 EXPORT_SYMBOL_GPL(clear_hv_tscchange_cb);
224 static int hv_cpu_die(unsigned int cpu)
226 struct hv_reenlightenment_control re_ctrl;
227 unsigned int new_cpu;
228 unsigned long flags;
229 void **input_arg;
230 void *input_pg = NULL;
232 local_irq_save(flags);
233 input_arg = (void **)this_cpu_ptr(hyperv_pcpu_input_arg);
234 input_pg = *input_arg;
235 *input_arg = NULL;
236 local_irq_restore(flags);
237 free_page((unsigned long)input_pg);
239 if (hv_vp_assist_page && hv_vp_assist_page[cpu])
240 wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, 0);
242 if (hv_reenlightenment_cb == NULL)
243 return 0;
245 rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
246 if (re_ctrl.target_vp == hv_vp_index[cpu]) {
247 /* Reassign to some other online CPU */
248 new_cpu = cpumask_any_but(cpu_online_mask, cpu);
250 re_ctrl.target_vp = hv_vp_index[new_cpu];
251 wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
254 return 0;
257 static int __init hv_pci_init(void)
259 int gen2vm = efi_enabled(EFI_BOOT);
262 * For Generation-2 VM, we exit from pci_arch_init() by returning 0.
263 * The purpose is to suppress the harmless warning:
264 * "PCI: Fatal: No config space access function found"
266 if (gen2vm)
267 return 0;
269 /* For Generation-1 VM, we'll proceed in pci_arch_init(). */
270 return 1;
274 * This function is to be invoked early in the boot sequence after the
275 * hypervisor has been detected.
277 * 1. Setup the hypercall page.
278 * 2. Register Hyper-V specific clocksource.
279 * 3. Setup Hyper-V specific APIC entry points.
281 void __init hyperv_init(void)
283 u64 guest_id, required_msrs;
284 union hv_x64_msr_hypercall_contents hypercall_msr;
285 int cpuhp, i;
287 if (x86_hyper_type != X86_HYPER_MS_HYPERV)
288 return;
290 /* Absolutely required MSRs */
291 required_msrs = HV_X64_MSR_HYPERCALL_AVAILABLE |
292 HV_X64_MSR_VP_INDEX_AVAILABLE;
294 if ((ms_hyperv.features & required_msrs) != required_msrs)
295 return;
298 * Allocate the per-CPU state for the hypercall input arg.
299 * If this allocation fails, we will not be able to setup
300 * (per-CPU) hypercall input page and thus this failure is
301 * fatal on Hyper-V.
303 hyperv_pcpu_input_arg = alloc_percpu(void *);
305 BUG_ON(hyperv_pcpu_input_arg == NULL);
307 /* Allocate percpu VP index */
308 hv_vp_index = kmalloc_array(num_possible_cpus(), sizeof(*hv_vp_index),
309 GFP_KERNEL);
310 if (!hv_vp_index)
311 return;
313 for (i = 0; i < num_possible_cpus(); i++)
314 hv_vp_index[i] = VP_INVAL;
316 hv_vp_assist_page = kcalloc(num_possible_cpus(),
317 sizeof(*hv_vp_assist_page), GFP_KERNEL);
318 if (!hv_vp_assist_page) {
319 ms_hyperv.hints &= ~HV_X64_ENLIGHTENED_VMCS_RECOMMENDED;
320 goto free_vp_index;
323 cpuhp = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/hyperv_init:online",
324 hv_cpu_init, hv_cpu_die);
325 if (cpuhp < 0)
326 goto free_vp_assist_page;
329 * Setup the hypercall page and enable hypercalls.
330 * 1. Register the guest ID
331 * 2. Enable the hypercall and register the hypercall page
333 guest_id = generate_guest_id(0, LINUX_VERSION_CODE, 0);
334 wrmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id);
336 hv_hypercall_pg = __vmalloc(PAGE_SIZE, GFP_KERNEL, PAGE_KERNEL_RX);
337 if (hv_hypercall_pg == NULL) {
338 wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);
339 goto remove_cpuhp_state;
342 rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
343 hypercall_msr.enable = 1;
344 hypercall_msr.guest_physical_address = vmalloc_to_pfn(hv_hypercall_pg);
345 wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
347 hv_apic_init();
349 x86_init.pci.arch_init = hv_pci_init;
352 * Register Hyper-V specific clocksource.
354 #ifdef CONFIG_HYPERV_TSCPAGE
355 if (ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE) {
356 union hv_x64_msr_hypercall_contents tsc_msr;
358 tsc_pg = __vmalloc(PAGE_SIZE, GFP_KERNEL, PAGE_KERNEL);
359 if (!tsc_pg)
360 goto register_msr_cs;
362 hyperv_cs = &hyperv_cs_tsc;
364 rdmsrl(HV_X64_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
366 tsc_msr.enable = 1;
367 tsc_msr.guest_physical_address = vmalloc_to_pfn(tsc_pg);
369 wrmsrl(HV_X64_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
371 hyperv_cs_tsc.archdata.vclock_mode = VCLOCK_HVCLOCK;
373 clocksource_register_hz(&hyperv_cs_tsc, NSEC_PER_SEC/100);
374 return;
376 register_msr_cs:
377 #endif
379 * For 32 bit guests just use the MSR based mechanism for reading
380 * the partition counter.
383 hyperv_cs = &hyperv_cs_msr;
384 if (ms_hyperv.features & HV_MSR_TIME_REF_COUNT_AVAILABLE)
385 clocksource_register_hz(&hyperv_cs_msr, NSEC_PER_SEC/100);
387 return;
389 remove_cpuhp_state:
390 cpuhp_remove_state(cpuhp);
391 free_vp_assist_page:
392 kfree(hv_vp_assist_page);
393 hv_vp_assist_page = NULL;
394 free_vp_index:
395 kfree(hv_vp_index);
396 hv_vp_index = NULL;
400 * This routine is called before kexec/kdump, it does the required cleanup.
402 void hyperv_cleanup(void)
404 union hv_x64_msr_hypercall_contents hypercall_msr;
406 /* Reset our OS id */
407 wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);
409 /* Reset the hypercall page */
410 hypercall_msr.as_uint64 = 0;
411 wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
413 /* Reset the TSC page */
414 hypercall_msr.as_uint64 = 0;
415 wrmsrl(HV_X64_MSR_REFERENCE_TSC, hypercall_msr.as_uint64);
417 EXPORT_SYMBOL_GPL(hyperv_cleanup);
419 void hyperv_report_panic(struct pt_regs *regs, long err)
421 static bool panic_reported;
422 u64 guest_id;
425 * We prefer to report panic on 'die' chain as we have proper
426 * registers to report, but if we miss it (e.g. on BUG()) we need
427 * to report it on 'panic'.
429 if (panic_reported)
430 return;
431 panic_reported = true;
433 rdmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id);
435 wrmsrl(HV_X64_MSR_CRASH_P0, err);
436 wrmsrl(HV_X64_MSR_CRASH_P1, guest_id);
437 wrmsrl(HV_X64_MSR_CRASH_P2, regs->ip);
438 wrmsrl(HV_X64_MSR_CRASH_P3, regs->ax);
439 wrmsrl(HV_X64_MSR_CRASH_P4, regs->sp);
442 * Let Hyper-V know there is crash data available
444 wrmsrl(HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_CRASH_NOTIFY);
446 EXPORT_SYMBOL_GPL(hyperv_report_panic);
449 * hyperv_report_panic_msg - report panic message to Hyper-V
450 * @pa: physical address of the panic page containing the message
451 * @size: size of the message in the page
453 void hyperv_report_panic_msg(phys_addr_t pa, size_t size)
456 * P3 to contain the physical address of the panic page & P4 to
457 * contain the size of the panic data in that page. Rest of the
458 * registers are no-op when the NOTIFY_MSG flag is set.
460 wrmsrl(HV_X64_MSR_CRASH_P0, 0);
461 wrmsrl(HV_X64_MSR_CRASH_P1, 0);
462 wrmsrl(HV_X64_MSR_CRASH_P2, 0);
463 wrmsrl(HV_X64_MSR_CRASH_P3, pa);
464 wrmsrl(HV_X64_MSR_CRASH_P4, size);
467 * Let Hyper-V know there is crash data available along with
468 * the panic message.
470 wrmsrl(HV_X64_MSR_CRASH_CTL,
471 (HV_CRASH_CTL_CRASH_NOTIFY | HV_CRASH_CTL_CRASH_NOTIFY_MSG));
473 EXPORT_SYMBOL_GPL(hyperv_report_panic_msg);
475 bool hv_is_hyperv_initialized(void)
477 union hv_x64_msr_hypercall_contents hypercall_msr;
480 * Ensure that we're really on Hyper-V, and not a KVM or Xen
481 * emulation of Hyper-V
483 if (x86_hyper_type != X86_HYPER_MS_HYPERV)
484 return false;
487 * Verify that earlier initialization succeeded by checking
488 * that the hypercall page is setup
490 hypercall_msr.as_uint64 = 0;
491 rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
493 return hypercall_msr.enable;
495 EXPORT_SYMBOL_GPL(hv_is_hyperv_initialized);