perf tools: Don't clone maps from parent when synthesizing forks
[linux/fpc-iii.git] / drivers / hwmon / ibmpowernv.c
blob0ccca87f527191dc000649d1a0b1eaf44c87d35b
1 /*
2 * IBM PowerNV platform sensors for temperature/fan/voltage/power
3 * Copyright (C) 2014 IBM
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program.
19 #define DRVNAME "ibmpowernv"
20 #define pr_fmt(fmt) DRVNAME ": " fmt
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/hwmon.h>
26 #include <linux/hwmon-sysfs.h>
27 #include <linux/of.h>
28 #include <linux/slab.h>
30 #include <linux/platform_device.h>
31 #include <asm/opal.h>
32 #include <linux/err.h>
33 #include <asm/cputhreads.h>
34 #include <asm/smp.h>
36 #define MAX_ATTR_LEN 32
37 #define MAX_LABEL_LEN 64
39 /* Sensor suffix name from DT */
40 #define DT_FAULT_ATTR_SUFFIX "faulted"
41 #define DT_DATA_ATTR_SUFFIX "data"
42 #define DT_THRESHOLD_ATTR_SUFFIX "thrs"
45 * Enumerates all the types of sensors in the POWERNV platform and does index
46 * into 'struct sensor_group'
48 enum sensors {
49 FAN,
50 TEMP,
51 POWER_SUPPLY,
52 POWER_INPUT,
53 CURRENT,
54 ENERGY,
55 MAX_SENSOR_TYPE,
58 #define INVALID_INDEX (-1U)
61 * 'compatible' string properties for sensor types as defined in old
62 * PowerNV firmware (skiboot). These are ordered as 'enum sensors'.
64 static const char * const legacy_compatibles[] = {
65 "ibm,opal-sensor-cooling-fan",
66 "ibm,opal-sensor-amb-temp",
67 "ibm,opal-sensor-power-supply",
68 "ibm,opal-sensor-power"
71 static struct sensor_group {
72 const char *name; /* matches property 'sensor-type' */
73 struct attribute_group group;
74 u32 attr_count;
75 u32 hwmon_index;
76 } sensor_groups[] = {
77 { "fan" },
78 { "temp" },
79 { "in" },
80 { "power" },
81 { "curr" },
82 { "energy" },
85 struct sensor_data {
86 u32 id; /* An opaque id of the firmware for each sensor */
87 u32 hwmon_index;
88 u32 opal_index;
89 enum sensors type;
90 char label[MAX_LABEL_LEN];
91 char name[MAX_ATTR_LEN];
92 struct device_attribute dev_attr;
93 struct sensor_group_data *sgrp_data;
96 struct sensor_group_data {
97 struct mutex mutex;
98 u32 gid;
99 bool enable;
102 struct platform_data {
103 const struct attribute_group *attr_groups[MAX_SENSOR_TYPE + 1];
104 struct sensor_group_data *sgrp_data;
105 u32 sensors_count; /* Total count of sensors from each group */
106 u32 nr_sensor_groups; /* Total number of sensor groups */
109 static ssize_t show_sensor(struct device *dev, struct device_attribute *devattr,
110 char *buf)
112 struct sensor_data *sdata = container_of(devattr, struct sensor_data,
113 dev_attr);
114 ssize_t ret;
115 u64 x;
117 if (sdata->sgrp_data && !sdata->sgrp_data->enable)
118 return -ENODATA;
120 ret = opal_get_sensor_data_u64(sdata->id, &x);
122 if (ret)
123 return ret;
125 /* Convert temperature to milli-degrees */
126 if (sdata->type == TEMP)
127 x *= 1000;
128 /* Convert power to micro-watts */
129 else if (sdata->type == POWER_INPUT)
130 x *= 1000000;
132 return sprintf(buf, "%llu\n", x);
135 static ssize_t show_enable(struct device *dev,
136 struct device_attribute *devattr, char *buf)
138 struct sensor_data *sdata = container_of(devattr, struct sensor_data,
139 dev_attr);
141 return sprintf(buf, "%u\n", sdata->sgrp_data->enable);
144 static ssize_t store_enable(struct device *dev,
145 struct device_attribute *devattr,
146 const char *buf, size_t count)
148 struct sensor_data *sdata = container_of(devattr, struct sensor_data,
149 dev_attr);
150 struct sensor_group_data *sgrp_data = sdata->sgrp_data;
151 int ret;
152 bool data;
154 ret = kstrtobool(buf, &data);
155 if (ret)
156 return ret;
158 ret = mutex_lock_interruptible(&sgrp_data->mutex);
159 if (ret)
160 return ret;
162 if (data != sgrp_data->enable) {
163 ret = sensor_group_enable(sgrp_data->gid, data);
164 if (!ret)
165 sgrp_data->enable = data;
168 if (!ret)
169 ret = count;
171 mutex_unlock(&sgrp_data->mutex);
172 return ret;
175 static ssize_t show_label(struct device *dev, struct device_attribute *devattr,
176 char *buf)
178 struct sensor_data *sdata = container_of(devattr, struct sensor_data,
179 dev_attr);
181 return sprintf(buf, "%s\n", sdata->label);
184 static int __init get_logical_cpu(int hwcpu)
186 int cpu;
188 for_each_possible_cpu(cpu)
189 if (get_hard_smp_processor_id(cpu) == hwcpu)
190 return cpu;
192 return -ENOENT;
195 static void __init make_sensor_label(struct device_node *np,
196 struct sensor_data *sdata,
197 const char *label)
199 u32 id;
200 size_t n;
202 n = snprintf(sdata->label, sizeof(sdata->label), "%s", label);
205 * Core temp pretty print
207 if (!of_property_read_u32(np, "ibm,pir", &id)) {
208 int cpuid = get_logical_cpu(id);
210 if (cpuid >= 0)
212 * The digital thermal sensors are associated
213 * with a core.
215 n += snprintf(sdata->label + n,
216 sizeof(sdata->label) - n, " %d",
217 cpuid);
218 else
219 n += snprintf(sdata->label + n,
220 sizeof(sdata->label) - n, " phy%d", id);
224 * Membuffer pretty print
226 if (!of_property_read_u32(np, "ibm,chip-id", &id))
227 n += snprintf(sdata->label + n, sizeof(sdata->label) - n,
228 " %d", id & 0xffff);
231 static int get_sensor_index_attr(const char *name, u32 *index, char *attr)
233 char *hash_pos = strchr(name, '#');
234 char buf[8] = { 0 };
235 char *dash_pos;
236 u32 copy_len;
237 int err;
239 if (!hash_pos)
240 return -EINVAL;
242 dash_pos = strchr(hash_pos, '-');
243 if (!dash_pos)
244 return -EINVAL;
246 copy_len = dash_pos - hash_pos - 1;
247 if (copy_len >= sizeof(buf))
248 return -EINVAL;
250 strncpy(buf, hash_pos + 1, copy_len);
252 err = kstrtou32(buf, 10, index);
253 if (err)
254 return err;
256 strncpy(attr, dash_pos + 1, MAX_ATTR_LEN);
258 return 0;
261 static const char *convert_opal_attr_name(enum sensors type,
262 const char *opal_attr)
264 const char *attr_name = NULL;
266 if (!strcmp(opal_attr, DT_FAULT_ATTR_SUFFIX)) {
267 attr_name = "fault";
268 } else if (!strcmp(opal_attr, DT_DATA_ATTR_SUFFIX)) {
269 attr_name = "input";
270 } else if (!strcmp(opal_attr, DT_THRESHOLD_ATTR_SUFFIX)) {
271 if (type == TEMP)
272 attr_name = "max";
273 else if (type == FAN)
274 attr_name = "min";
277 return attr_name;
281 * This function translates the DT node name into the 'hwmon' attribute name.
282 * IBMPOWERNV device node appear like cooling-fan#2-data, amb-temp#1-thrs etc.
283 * which need to be mapped as fan2_input, temp1_max respectively before
284 * populating them inside hwmon device class.
286 static const char *parse_opal_node_name(const char *node_name,
287 enum sensors type, u32 *index)
289 char attr_suffix[MAX_ATTR_LEN];
290 const char *attr_name;
291 int err;
293 err = get_sensor_index_attr(node_name, index, attr_suffix);
294 if (err)
295 return ERR_PTR(err);
297 attr_name = convert_opal_attr_name(type, attr_suffix);
298 if (!attr_name)
299 return ERR_PTR(-ENOENT);
301 return attr_name;
304 static int get_sensor_type(struct device_node *np)
306 enum sensors type;
307 const char *str;
309 for (type = 0; type < ARRAY_SIZE(legacy_compatibles); type++) {
310 if (of_device_is_compatible(np, legacy_compatibles[type]))
311 return type;
315 * Let's check if we have a newer device tree
317 if (!of_device_is_compatible(np, "ibm,opal-sensor"))
318 return MAX_SENSOR_TYPE;
320 if (of_property_read_string(np, "sensor-type", &str))
321 return MAX_SENSOR_TYPE;
323 for (type = 0; type < MAX_SENSOR_TYPE; type++)
324 if (!strcmp(str, sensor_groups[type].name))
325 return type;
327 return MAX_SENSOR_TYPE;
330 static u32 get_sensor_hwmon_index(struct sensor_data *sdata,
331 struct sensor_data *sdata_table, int count)
333 int i;
336 * We don't use the OPAL index on newer device trees
338 if (sdata->opal_index != INVALID_INDEX) {
339 for (i = 0; i < count; i++)
340 if (sdata_table[i].opal_index == sdata->opal_index &&
341 sdata_table[i].type == sdata->type)
342 return sdata_table[i].hwmon_index;
344 return ++sensor_groups[sdata->type].hwmon_index;
347 static int init_sensor_group_data(struct platform_device *pdev,
348 struct platform_data *pdata)
350 struct sensor_group_data *sgrp_data;
351 struct device_node *groups, *sgrp;
352 int count = 0, ret = 0;
353 enum sensors type;
355 groups = of_find_compatible_node(NULL, NULL, "ibm,opal-sensor-group");
356 if (!groups)
357 return ret;
359 for_each_child_of_node(groups, sgrp) {
360 type = get_sensor_type(sgrp);
361 if (type != MAX_SENSOR_TYPE)
362 pdata->nr_sensor_groups++;
365 if (!pdata->nr_sensor_groups)
366 goto out;
368 sgrp_data = devm_kcalloc(&pdev->dev, pdata->nr_sensor_groups,
369 sizeof(*sgrp_data), GFP_KERNEL);
370 if (!sgrp_data) {
371 ret = -ENOMEM;
372 goto out;
375 for_each_child_of_node(groups, sgrp) {
376 u32 gid;
378 type = get_sensor_type(sgrp);
379 if (type == MAX_SENSOR_TYPE)
380 continue;
382 if (of_property_read_u32(sgrp, "sensor-group-id", &gid))
383 continue;
385 if (of_count_phandle_with_args(sgrp, "sensors", NULL) <= 0)
386 continue;
388 sensor_groups[type].attr_count++;
389 sgrp_data[count].gid = gid;
390 mutex_init(&sgrp_data[count].mutex);
391 sgrp_data[count++].enable = false;
394 pdata->sgrp_data = sgrp_data;
395 out:
396 of_node_put(groups);
397 return ret;
400 static struct sensor_group_data *get_sensor_group(struct platform_data *pdata,
401 struct device_node *node,
402 enum sensors gtype)
404 struct sensor_group_data *sgrp_data = pdata->sgrp_data;
405 struct device_node *groups, *sgrp;
407 groups = of_find_compatible_node(NULL, NULL, "ibm,opal-sensor-group");
408 if (!groups)
409 return NULL;
411 for_each_child_of_node(groups, sgrp) {
412 struct of_phandle_iterator it;
413 u32 gid;
414 int rc, i;
415 enum sensors type;
417 type = get_sensor_type(sgrp);
418 if (type != gtype)
419 continue;
421 if (of_property_read_u32(sgrp, "sensor-group-id", &gid))
422 continue;
424 of_for_each_phandle(&it, rc, sgrp, "sensors", NULL, 0)
425 if (it.phandle == node->phandle) {
426 of_node_put(it.node);
427 break;
430 if (rc)
431 continue;
433 for (i = 0; i < pdata->nr_sensor_groups; i++)
434 if (gid == sgrp_data[i].gid) {
435 of_node_put(sgrp);
436 of_node_put(groups);
437 return &sgrp_data[i];
441 of_node_put(groups);
442 return NULL;
445 static int populate_attr_groups(struct platform_device *pdev)
447 struct platform_data *pdata = platform_get_drvdata(pdev);
448 const struct attribute_group **pgroups = pdata->attr_groups;
449 struct device_node *opal, *np;
450 enum sensors type;
451 int ret;
453 ret = init_sensor_group_data(pdev, pdata);
454 if (ret)
455 return ret;
457 opal = of_find_node_by_path("/ibm,opal/sensors");
458 for_each_child_of_node(opal, np) {
459 const char *label;
461 type = get_sensor_type(np);
462 if (type == MAX_SENSOR_TYPE)
463 continue;
465 sensor_groups[type].attr_count++;
468 * add attributes for labels, min and max
470 if (!of_property_read_string(np, "label", &label))
471 sensor_groups[type].attr_count++;
472 if (of_find_property(np, "sensor-data-min", NULL))
473 sensor_groups[type].attr_count++;
474 if (of_find_property(np, "sensor-data-max", NULL))
475 sensor_groups[type].attr_count++;
478 of_node_put(opal);
480 for (type = 0; type < MAX_SENSOR_TYPE; type++) {
481 sensor_groups[type].group.attrs = devm_kcalloc(&pdev->dev,
482 sensor_groups[type].attr_count + 1,
483 sizeof(struct attribute *),
484 GFP_KERNEL);
485 if (!sensor_groups[type].group.attrs)
486 return -ENOMEM;
488 pgroups[type] = &sensor_groups[type].group;
489 pdata->sensors_count += sensor_groups[type].attr_count;
490 sensor_groups[type].attr_count = 0;
493 return 0;
496 static void create_hwmon_attr(struct sensor_data *sdata, const char *attr_name,
497 ssize_t (*show)(struct device *dev,
498 struct device_attribute *attr,
499 char *buf),
500 ssize_t (*store)(struct device *dev,
501 struct device_attribute *attr,
502 const char *buf, size_t count))
504 snprintf(sdata->name, MAX_ATTR_LEN, "%s%d_%s",
505 sensor_groups[sdata->type].name, sdata->hwmon_index,
506 attr_name);
508 sysfs_attr_init(&sdata->dev_attr.attr);
509 sdata->dev_attr.attr.name = sdata->name;
510 sdata->dev_attr.show = show;
511 if (store) {
512 sdata->dev_attr.store = store;
513 sdata->dev_attr.attr.mode = 0664;
514 } else {
515 sdata->dev_attr.attr.mode = 0444;
519 static void populate_sensor(struct sensor_data *sdata, int od, int hd, int sid,
520 const char *attr_name, enum sensors type,
521 const struct attribute_group *pgroup,
522 struct sensor_group_data *sgrp_data,
523 ssize_t (*show)(struct device *dev,
524 struct device_attribute *attr,
525 char *buf),
526 ssize_t (*store)(struct device *dev,
527 struct device_attribute *attr,
528 const char *buf, size_t count))
530 sdata->id = sid;
531 sdata->type = type;
532 sdata->opal_index = od;
533 sdata->hwmon_index = hd;
534 create_hwmon_attr(sdata, attr_name, show, store);
535 pgroup->attrs[sensor_groups[type].attr_count++] = &sdata->dev_attr.attr;
536 sdata->sgrp_data = sgrp_data;
539 static char *get_max_attr(enum sensors type)
541 switch (type) {
542 case POWER_INPUT:
543 return "input_highest";
544 default:
545 return "highest";
549 static char *get_min_attr(enum sensors type)
551 switch (type) {
552 case POWER_INPUT:
553 return "input_lowest";
554 default:
555 return "lowest";
560 * Iterate through the device tree for each child of 'sensors' node, create
561 * a sysfs attribute file, the file is named by translating the DT node name
562 * to the name required by the higher 'hwmon' driver like fan1_input, temp1_max
563 * etc..
565 static int create_device_attrs(struct platform_device *pdev)
567 struct platform_data *pdata = platform_get_drvdata(pdev);
568 const struct attribute_group **pgroups = pdata->attr_groups;
569 struct device_node *opal, *np;
570 struct sensor_data *sdata;
571 u32 count = 0;
572 u32 group_attr_id[MAX_SENSOR_TYPE] = {0};
574 sdata = devm_kcalloc(&pdev->dev,
575 pdata->sensors_count, sizeof(*sdata),
576 GFP_KERNEL);
577 if (!sdata)
578 return -ENOMEM;
580 opal = of_find_node_by_path("/ibm,opal/sensors");
581 for_each_child_of_node(opal, np) {
582 struct sensor_group_data *sgrp_data;
583 const char *attr_name;
584 u32 opal_index, hw_id;
585 u32 sensor_id;
586 const char *label;
587 enum sensors type;
589 type = get_sensor_type(np);
590 if (type == MAX_SENSOR_TYPE)
591 continue;
594 * Newer device trees use a "sensor-data" property
595 * name for input.
597 if (of_property_read_u32(np, "sensor-id", &sensor_id) &&
598 of_property_read_u32(np, "sensor-data", &sensor_id)) {
599 dev_info(&pdev->dev,
600 "'sensor-id' missing in the node '%pOFn'\n",
601 np);
602 continue;
605 sdata[count].id = sensor_id;
606 sdata[count].type = type;
609 * If we can not parse the node name, it means we are
610 * running on a newer device tree. We can just forget
611 * about the OPAL index and use a defaut value for the
612 * hwmon attribute name
614 attr_name = parse_opal_node_name(np->name, type, &opal_index);
615 if (IS_ERR(attr_name)) {
616 attr_name = "input";
617 opal_index = INVALID_INDEX;
620 hw_id = get_sensor_hwmon_index(&sdata[count], sdata, count);
621 sgrp_data = get_sensor_group(pdata, np, type);
622 populate_sensor(&sdata[count], opal_index, hw_id, sensor_id,
623 attr_name, type, pgroups[type], sgrp_data,
624 show_sensor, NULL);
625 count++;
627 if (!of_property_read_string(np, "label", &label)) {
629 * For the label attribute, we can reuse the
630 * "properties" of the previous "input"
631 * attribute. They are related to the same
632 * sensor.
635 make_sensor_label(np, &sdata[count], label);
636 populate_sensor(&sdata[count], opal_index, hw_id,
637 sensor_id, "label", type, pgroups[type],
638 NULL, show_label, NULL);
639 count++;
642 if (!of_property_read_u32(np, "sensor-data-max", &sensor_id)) {
643 attr_name = get_max_attr(type);
644 populate_sensor(&sdata[count], opal_index, hw_id,
645 sensor_id, attr_name, type,
646 pgroups[type], sgrp_data, show_sensor,
647 NULL);
648 count++;
651 if (!of_property_read_u32(np, "sensor-data-min", &sensor_id)) {
652 attr_name = get_min_attr(type);
653 populate_sensor(&sdata[count], opal_index, hw_id,
654 sensor_id, attr_name, type,
655 pgroups[type], sgrp_data, show_sensor,
656 NULL);
657 count++;
660 if (sgrp_data && !sgrp_data->enable) {
661 sgrp_data->enable = true;
662 hw_id = ++group_attr_id[type];
663 populate_sensor(&sdata[count], opal_index, hw_id,
664 sgrp_data->gid, "enable", type,
665 pgroups[type], sgrp_data, show_enable,
666 store_enable);
667 count++;
671 of_node_put(opal);
672 return 0;
675 static int ibmpowernv_probe(struct platform_device *pdev)
677 struct platform_data *pdata;
678 struct device *hwmon_dev;
679 int err;
681 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
682 if (!pdata)
683 return -ENOMEM;
685 platform_set_drvdata(pdev, pdata);
686 pdata->sensors_count = 0;
687 pdata->nr_sensor_groups = 0;
688 err = populate_attr_groups(pdev);
689 if (err)
690 return err;
692 /* Create sysfs attribute data for each sensor found in the DT */
693 err = create_device_attrs(pdev);
694 if (err)
695 return err;
697 /* Finally, register with hwmon */
698 hwmon_dev = devm_hwmon_device_register_with_groups(&pdev->dev, DRVNAME,
699 pdata,
700 pdata->attr_groups);
702 return PTR_ERR_OR_ZERO(hwmon_dev);
705 static const struct platform_device_id opal_sensor_driver_ids[] = {
707 .name = "opal-sensor",
711 MODULE_DEVICE_TABLE(platform, opal_sensor_driver_ids);
713 static const struct of_device_id opal_sensor_match[] = {
714 { .compatible = "ibm,opal-sensor" },
715 { },
717 MODULE_DEVICE_TABLE(of, opal_sensor_match);
719 static struct platform_driver ibmpowernv_driver = {
720 .probe = ibmpowernv_probe,
721 .id_table = opal_sensor_driver_ids,
722 .driver = {
723 .name = DRVNAME,
724 .of_match_table = opal_sensor_match,
728 module_platform_driver(ibmpowernv_driver);
730 MODULE_AUTHOR("Neelesh Gupta <neelegup@linux.vnet.ibm.com>");
731 MODULE_DESCRIPTION("IBM POWERNV platform sensors");
732 MODULE_LICENSE("GPL");