2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
9 * See ../COPYING for licensing terms.
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/export.h>
17 #include <linux/syscalls.h>
18 #include <linux/backing-dev.h>
19 #include <linux/uio.h>
23 #include <linux/sched.h>
25 #include <linux/file.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/slab.h>
30 #include <linux/timer.h>
31 #include <linux/aio.h>
32 #include <linux/highmem.h>
33 #include <linux/workqueue.h>
34 #include <linux/security.h>
35 #include <linux/eventfd.h>
36 #include <linux/blkdev.h>
37 #include <linux/compat.h>
39 #include <asm/kmap_types.h>
40 #include <asm/uaccess.h>
43 #define dprintk printk
45 #define dprintk(x...) do { ; } while (0)
48 /*------ sysctl variables----*/
49 static DEFINE_SPINLOCK(aio_nr_lock
);
50 unsigned long aio_nr
; /* current system wide number of aio requests */
51 unsigned long aio_max_nr
= 0x10000; /* system wide maximum number of aio requests */
52 /*----end sysctl variables---*/
54 static struct kmem_cache
*kiocb_cachep
;
55 static struct kmem_cache
*kioctx_cachep
;
57 static struct workqueue_struct
*aio_wq
;
59 /* Used for rare fput completion. */
60 static void aio_fput_routine(struct work_struct
*);
61 static DECLARE_WORK(fput_work
, aio_fput_routine
);
63 static DEFINE_SPINLOCK(fput_lock
);
64 static LIST_HEAD(fput_head
);
66 static void aio_kick_handler(struct work_struct
*);
67 static void aio_queue_work(struct kioctx
*);
70 * Creates the slab caches used by the aio routines, panic on
71 * failure as this is done early during the boot sequence.
73 static int __init
aio_setup(void)
75 kiocb_cachep
= KMEM_CACHE(kiocb
, SLAB_HWCACHE_ALIGN
|SLAB_PANIC
);
76 kioctx_cachep
= KMEM_CACHE(kioctx
,SLAB_HWCACHE_ALIGN
|SLAB_PANIC
);
78 aio_wq
= alloc_workqueue("aio", 0, 1); /* used to limit concurrency */
81 pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page
));
85 __initcall(aio_setup
);
87 static void aio_free_ring(struct kioctx
*ctx
)
89 struct aio_ring_info
*info
= &ctx
->ring_info
;
92 for (i
=0; i
<info
->nr_pages
; i
++)
93 put_page(info
->ring_pages
[i
]);
95 if (info
->mmap_size
) {
96 down_write(&ctx
->mm
->mmap_sem
);
97 do_munmap(ctx
->mm
, info
->mmap_base
, info
->mmap_size
);
98 up_write(&ctx
->mm
->mmap_sem
);
101 if (info
->ring_pages
&& info
->ring_pages
!= info
->internal_pages
)
102 kfree(info
->ring_pages
);
103 info
->ring_pages
= NULL
;
107 static int aio_setup_ring(struct kioctx
*ctx
)
109 struct aio_ring
*ring
;
110 struct aio_ring_info
*info
= &ctx
->ring_info
;
111 unsigned nr_events
= ctx
->max_reqs
;
115 /* Compensate for the ring buffer's head/tail overlap entry */
116 nr_events
+= 2; /* 1 is required, 2 for good luck */
118 size
= sizeof(struct aio_ring
);
119 size
+= sizeof(struct io_event
) * nr_events
;
120 nr_pages
= (size
+ PAGE_SIZE
-1) >> PAGE_SHIFT
;
125 nr_events
= (PAGE_SIZE
* nr_pages
- sizeof(struct aio_ring
)) / sizeof(struct io_event
);
128 info
->ring_pages
= info
->internal_pages
;
129 if (nr_pages
> AIO_RING_PAGES
) {
130 info
->ring_pages
= kcalloc(nr_pages
, sizeof(struct page
*), GFP_KERNEL
);
131 if (!info
->ring_pages
)
135 info
->mmap_size
= nr_pages
* PAGE_SIZE
;
136 dprintk("attempting mmap of %lu bytes\n", info
->mmap_size
);
137 down_write(&ctx
->mm
->mmap_sem
);
138 info
->mmap_base
= do_mmap(NULL
, 0, info
->mmap_size
,
139 PROT_READ
|PROT_WRITE
, MAP_ANONYMOUS
|MAP_PRIVATE
,
141 if (IS_ERR((void *)info
->mmap_base
)) {
142 up_write(&ctx
->mm
->mmap_sem
);
148 dprintk("mmap address: 0x%08lx\n", info
->mmap_base
);
149 info
->nr_pages
= get_user_pages(current
, ctx
->mm
,
150 info
->mmap_base
, nr_pages
,
151 1, 0, info
->ring_pages
, NULL
);
152 up_write(&ctx
->mm
->mmap_sem
);
154 if (unlikely(info
->nr_pages
!= nr_pages
)) {
159 ctx
->user_id
= info
->mmap_base
;
161 info
->nr
= nr_events
; /* trusted copy */
163 ring
= kmap_atomic(info
->ring_pages
[0]);
164 ring
->nr
= nr_events
; /* user copy */
165 ring
->id
= ctx
->user_id
;
166 ring
->head
= ring
->tail
= 0;
167 ring
->magic
= AIO_RING_MAGIC
;
168 ring
->compat_features
= AIO_RING_COMPAT_FEATURES
;
169 ring
->incompat_features
= AIO_RING_INCOMPAT_FEATURES
;
170 ring
->header_length
= sizeof(struct aio_ring
);
177 /* aio_ring_event: returns a pointer to the event at the given index from
178 * kmap_atomic(). Release the pointer with put_aio_ring_event();
180 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
181 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
182 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
184 #define aio_ring_event(info, nr) ({ \
185 unsigned pos = (nr) + AIO_EVENTS_OFFSET; \
186 struct io_event *__event; \
187 __event = kmap_atomic( \
188 (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE]); \
189 __event += pos % AIO_EVENTS_PER_PAGE; \
193 #define put_aio_ring_event(event) do { \
194 struct io_event *__event = (event); \
196 kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK)); \
199 static void ctx_rcu_free(struct rcu_head
*head
)
201 struct kioctx
*ctx
= container_of(head
, struct kioctx
, rcu_head
);
202 kmem_cache_free(kioctx_cachep
, ctx
);
206 * Called when the last user of an aio context has gone away,
207 * and the struct needs to be freed.
209 static void __put_ioctx(struct kioctx
*ctx
)
211 unsigned nr_events
= ctx
->max_reqs
;
212 BUG_ON(ctx
->reqs_active
);
214 cancel_delayed_work_sync(&ctx
->wq
);
219 spin_lock(&aio_nr_lock
);
220 BUG_ON(aio_nr
- nr_events
> aio_nr
);
222 spin_unlock(&aio_nr_lock
);
224 pr_debug("__put_ioctx: freeing %p\n", ctx
);
225 call_rcu(&ctx
->rcu_head
, ctx_rcu_free
);
228 static inline int try_get_ioctx(struct kioctx
*kioctx
)
230 return atomic_inc_not_zero(&kioctx
->users
);
233 static inline void put_ioctx(struct kioctx
*kioctx
)
235 BUG_ON(atomic_read(&kioctx
->users
) <= 0);
236 if (unlikely(atomic_dec_and_test(&kioctx
->users
)))
241 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
243 static struct kioctx
*ioctx_alloc(unsigned nr_events
)
245 struct mm_struct
*mm
;
249 /* Prevent overflows */
250 if ((nr_events
> (0x10000000U
/ sizeof(struct io_event
))) ||
251 (nr_events
> (0x10000000U
/ sizeof(struct kiocb
)))) {
252 pr_debug("ENOMEM: nr_events too high\n");
253 return ERR_PTR(-EINVAL
);
256 if (!nr_events
|| (unsigned long)nr_events
> aio_max_nr
)
257 return ERR_PTR(-EAGAIN
);
259 ctx
= kmem_cache_zalloc(kioctx_cachep
, GFP_KERNEL
);
261 return ERR_PTR(-ENOMEM
);
263 ctx
->max_reqs
= nr_events
;
264 mm
= ctx
->mm
= current
->mm
;
265 atomic_inc(&mm
->mm_count
);
267 atomic_set(&ctx
->users
, 2);
268 spin_lock_init(&ctx
->ctx_lock
);
269 spin_lock_init(&ctx
->ring_info
.ring_lock
);
270 init_waitqueue_head(&ctx
->wait
);
272 INIT_LIST_HEAD(&ctx
->active_reqs
);
273 INIT_LIST_HEAD(&ctx
->run_list
);
274 INIT_DELAYED_WORK(&ctx
->wq
, aio_kick_handler
);
276 if (aio_setup_ring(ctx
) < 0)
279 /* limit the number of system wide aios */
280 spin_lock(&aio_nr_lock
);
281 if (aio_nr
+ nr_events
> aio_max_nr
||
282 aio_nr
+ nr_events
< aio_nr
) {
283 spin_unlock(&aio_nr_lock
);
286 aio_nr
+= ctx
->max_reqs
;
287 spin_unlock(&aio_nr_lock
);
289 /* now link into global list. */
290 spin_lock(&mm
->ioctx_lock
);
291 hlist_add_head_rcu(&ctx
->list
, &mm
->ioctx_list
);
292 spin_unlock(&mm
->ioctx_lock
);
294 dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
295 ctx
, ctx
->user_id
, current
->mm
, ctx
->ring_info
.nr
);
303 kmem_cache_free(kioctx_cachep
, ctx
);
304 dprintk("aio: error allocating ioctx %d\n", err
);
309 * Cancels all outstanding aio requests on an aio context. Used
310 * when the processes owning a context have all exited to encourage
311 * the rapid destruction of the kioctx.
313 static void kill_ctx(struct kioctx
*ctx
)
315 int (*cancel
)(struct kiocb
*, struct io_event
*);
316 struct task_struct
*tsk
= current
;
317 DECLARE_WAITQUEUE(wait
, tsk
);
320 spin_lock_irq(&ctx
->ctx_lock
);
322 while (!list_empty(&ctx
->active_reqs
)) {
323 struct list_head
*pos
= ctx
->active_reqs
.next
;
324 struct kiocb
*iocb
= list_kiocb(pos
);
325 list_del_init(&iocb
->ki_list
);
326 cancel
= iocb
->ki_cancel
;
327 kiocbSetCancelled(iocb
);
330 spin_unlock_irq(&ctx
->ctx_lock
);
332 spin_lock_irq(&ctx
->ctx_lock
);
336 if (!ctx
->reqs_active
)
339 add_wait_queue(&ctx
->wait
, &wait
);
340 set_task_state(tsk
, TASK_UNINTERRUPTIBLE
);
341 while (ctx
->reqs_active
) {
342 spin_unlock_irq(&ctx
->ctx_lock
);
344 set_task_state(tsk
, TASK_UNINTERRUPTIBLE
);
345 spin_lock_irq(&ctx
->ctx_lock
);
347 __set_task_state(tsk
, TASK_RUNNING
);
348 remove_wait_queue(&ctx
->wait
, &wait
);
351 spin_unlock_irq(&ctx
->ctx_lock
);
354 /* wait_on_sync_kiocb:
355 * Waits on the given sync kiocb to complete.
357 ssize_t
wait_on_sync_kiocb(struct kiocb
*iocb
)
359 while (iocb
->ki_users
) {
360 set_current_state(TASK_UNINTERRUPTIBLE
);
365 __set_current_state(TASK_RUNNING
);
366 return iocb
->ki_user_data
;
368 EXPORT_SYMBOL(wait_on_sync_kiocb
);
370 /* exit_aio: called when the last user of mm goes away. At this point,
371 * there is no way for any new requests to be submited or any of the
372 * io_* syscalls to be called on the context. However, there may be
373 * outstanding requests which hold references to the context; as they
374 * go away, they will call put_ioctx and release any pinned memory
375 * associated with the request (held via struct page * references).
377 void exit_aio(struct mm_struct
*mm
)
381 while (!hlist_empty(&mm
->ioctx_list
)) {
382 ctx
= hlist_entry(mm
->ioctx_list
.first
, struct kioctx
, list
);
383 hlist_del_rcu(&ctx
->list
);
387 if (1 != atomic_read(&ctx
->users
))
389 "exit_aio:ioctx still alive: %d %d %d\n",
390 atomic_read(&ctx
->users
), ctx
->dead
,
397 * Allocate a slot for an aio request. Increments the users count
398 * of the kioctx so that the kioctx stays around until all requests are
399 * complete. Returns NULL if no requests are free.
401 * Returns with kiocb->users set to 2. The io submit code path holds
402 * an extra reference while submitting the i/o.
403 * This prevents races between the aio code path referencing the
404 * req (after submitting it) and aio_complete() freeing the req.
406 static struct kiocb
*__aio_get_req(struct kioctx
*ctx
)
408 struct kiocb
*req
= NULL
;
410 req
= kmem_cache_alloc(kiocb_cachep
, GFP_KERNEL
);
418 req
->ki_cancel
= NULL
;
419 req
->ki_retry
= NULL
;
422 req
->ki_iovec
= NULL
;
423 INIT_LIST_HEAD(&req
->ki_run_list
);
424 req
->ki_eventfd
= NULL
;
430 * struct kiocb's are allocated in batches to reduce the number of
431 * times the ctx lock is acquired and released.
433 #define KIOCB_BATCH_SIZE 32L
435 struct list_head head
;
436 long count
; /* number of requests left to allocate */
439 static void kiocb_batch_init(struct kiocb_batch
*batch
, long total
)
441 INIT_LIST_HEAD(&batch
->head
);
442 batch
->count
= total
;
445 static void kiocb_batch_free(struct kioctx
*ctx
, struct kiocb_batch
*batch
)
447 struct kiocb
*req
, *n
;
449 if (list_empty(&batch
->head
))
452 spin_lock_irq(&ctx
->ctx_lock
);
453 list_for_each_entry_safe(req
, n
, &batch
->head
, ki_batch
) {
454 list_del(&req
->ki_batch
);
455 list_del(&req
->ki_list
);
456 kmem_cache_free(kiocb_cachep
, req
);
459 if (unlikely(!ctx
->reqs_active
&& ctx
->dead
))
460 wake_up_all(&ctx
->wait
);
461 spin_unlock_irq(&ctx
->ctx_lock
);
465 * Allocate a batch of kiocbs. This avoids taking and dropping the
466 * context lock a lot during setup.
468 static int kiocb_batch_refill(struct kioctx
*ctx
, struct kiocb_batch
*batch
)
470 unsigned short allocated
, to_alloc
;
472 bool called_fput
= false;
473 struct kiocb
*req
, *n
;
474 struct aio_ring
*ring
;
476 to_alloc
= min(batch
->count
, KIOCB_BATCH_SIZE
);
477 for (allocated
= 0; allocated
< to_alloc
; allocated
++) {
478 req
= __aio_get_req(ctx
);
480 /* allocation failed, go with what we've got */
482 list_add(&req
->ki_batch
, &batch
->head
);
489 spin_lock_irq(&ctx
->ctx_lock
);
490 ring
= kmap_atomic(ctx
->ring_info
.ring_pages
[0]);
492 avail
= aio_ring_avail(&ctx
->ring_info
, ring
) - ctx
->reqs_active
;
494 if (avail
== 0 && !called_fput
) {
496 * Handle a potential starvation case. It is possible that
497 * we hold the last reference on a struct file, causing us
498 * to delay the final fput to non-irq context. In this case,
499 * ctx->reqs_active is artificially high. Calling the fput
500 * routine here may free up a slot in the event completion
501 * ring, allowing this allocation to succeed.
504 spin_unlock_irq(&ctx
->ctx_lock
);
505 aio_fput_routine(NULL
);
510 if (avail
< allocated
) {
511 /* Trim back the number of requests. */
512 list_for_each_entry_safe(req
, n
, &batch
->head
, ki_batch
) {
513 list_del(&req
->ki_batch
);
514 kmem_cache_free(kiocb_cachep
, req
);
515 if (--allocated
<= avail
)
520 batch
->count
-= allocated
;
521 list_for_each_entry(req
, &batch
->head
, ki_batch
) {
522 list_add(&req
->ki_list
, &ctx
->active_reqs
);
527 spin_unlock_irq(&ctx
->ctx_lock
);
533 static inline struct kiocb
*aio_get_req(struct kioctx
*ctx
,
534 struct kiocb_batch
*batch
)
538 if (list_empty(&batch
->head
))
539 if (kiocb_batch_refill(ctx
, batch
) == 0)
541 req
= list_first_entry(&batch
->head
, struct kiocb
, ki_batch
);
542 list_del(&req
->ki_batch
);
546 static inline void really_put_req(struct kioctx
*ctx
, struct kiocb
*req
)
548 assert_spin_locked(&ctx
->ctx_lock
);
550 if (req
->ki_eventfd
!= NULL
)
551 eventfd_ctx_put(req
->ki_eventfd
);
554 if (req
->ki_iovec
!= &req
->ki_inline_vec
)
555 kfree(req
->ki_iovec
);
556 kmem_cache_free(kiocb_cachep
, req
);
559 if (unlikely(!ctx
->reqs_active
&& ctx
->dead
))
560 wake_up_all(&ctx
->wait
);
563 static void aio_fput_routine(struct work_struct
*data
)
565 spin_lock_irq(&fput_lock
);
566 while (likely(!list_empty(&fput_head
))) {
567 struct kiocb
*req
= list_kiocb(fput_head
.next
);
568 struct kioctx
*ctx
= req
->ki_ctx
;
570 list_del(&req
->ki_list
);
571 spin_unlock_irq(&fput_lock
);
573 /* Complete the fput(s) */
574 if (req
->ki_filp
!= NULL
)
577 /* Link the iocb into the context's free list */
579 spin_lock_irq(&ctx
->ctx_lock
);
580 really_put_req(ctx
, req
);
582 * at that point ctx might've been killed, but actual
585 spin_unlock_irq(&ctx
->ctx_lock
);
588 spin_lock_irq(&fput_lock
);
590 spin_unlock_irq(&fput_lock
);
594 * Returns true if this put was the last user of the request.
596 static int __aio_put_req(struct kioctx
*ctx
, struct kiocb
*req
)
598 dprintk(KERN_DEBUG
"aio_put(%p): f_count=%ld\n",
599 req
, atomic_long_read(&req
->ki_filp
->f_count
));
601 assert_spin_locked(&ctx
->ctx_lock
);
604 BUG_ON(req
->ki_users
< 0);
605 if (likely(req
->ki_users
))
607 list_del(&req
->ki_list
); /* remove from active_reqs */
608 req
->ki_cancel
= NULL
;
609 req
->ki_retry
= NULL
;
612 * Try to optimize the aio and eventfd file* puts, by avoiding to
613 * schedule work in case it is not final fput() time. In normal cases,
614 * we would not be holding the last reference to the file*, so
615 * this function will be executed w/out any aio kthread wakeup.
617 if (unlikely(!fput_atomic(req
->ki_filp
))) {
618 spin_lock(&fput_lock
);
619 list_add(&req
->ki_list
, &fput_head
);
620 spin_unlock(&fput_lock
);
621 schedule_work(&fput_work
);
624 really_put_req(ctx
, req
);
630 * Returns true if this put was the last user of the kiocb,
631 * false if the request is still in use.
633 int aio_put_req(struct kiocb
*req
)
635 struct kioctx
*ctx
= req
->ki_ctx
;
637 spin_lock_irq(&ctx
->ctx_lock
);
638 ret
= __aio_put_req(ctx
, req
);
639 spin_unlock_irq(&ctx
->ctx_lock
);
642 EXPORT_SYMBOL(aio_put_req
);
644 static struct kioctx
*lookup_ioctx(unsigned long ctx_id
)
646 struct mm_struct
*mm
= current
->mm
;
647 struct kioctx
*ctx
, *ret
= NULL
;
648 struct hlist_node
*n
;
652 hlist_for_each_entry_rcu(ctx
, n
, &mm
->ioctx_list
, list
) {
654 * RCU protects us against accessing freed memory but
655 * we have to be careful not to get a reference when the
656 * reference count already dropped to 0 (ctx->dead test
657 * is unreliable because of races).
659 if (ctx
->user_id
== ctx_id
&& !ctx
->dead
&& try_get_ioctx(ctx
)){
670 * Queue up a kiocb to be retried. Assumes that the kiocb
671 * has already been marked as kicked, and places it on
672 * the retry run list for the corresponding ioctx, if it
673 * isn't already queued. Returns 1 if it actually queued
674 * the kiocb (to tell the caller to activate the work
675 * queue to process it), or 0, if it found that it was
678 static inline int __queue_kicked_iocb(struct kiocb
*iocb
)
680 struct kioctx
*ctx
= iocb
->ki_ctx
;
682 assert_spin_locked(&ctx
->ctx_lock
);
684 if (list_empty(&iocb
->ki_run_list
)) {
685 list_add_tail(&iocb
->ki_run_list
,
693 * This is the core aio execution routine. It is
694 * invoked both for initial i/o submission and
695 * subsequent retries via the aio_kick_handler.
696 * Expects to be invoked with iocb->ki_ctx->lock
697 * already held. The lock is released and reacquired
698 * as needed during processing.
700 * Calls the iocb retry method (already setup for the
701 * iocb on initial submission) for operation specific
702 * handling, but takes care of most of common retry
703 * execution details for a given iocb. The retry method
704 * needs to be non-blocking as far as possible, to avoid
705 * holding up other iocbs waiting to be serviced by the
706 * retry kernel thread.
708 * The trickier parts in this code have to do with
709 * ensuring that only one retry instance is in progress
710 * for a given iocb at any time. Providing that guarantee
711 * simplifies the coding of individual aio operations as
712 * it avoids various potential races.
714 static ssize_t
aio_run_iocb(struct kiocb
*iocb
)
716 struct kioctx
*ctx
= iocb
->ki_ctx
;
717 ssize_t (*retry
)(struct kiocb
*);
720 if (!(retry
= iocb
->ki_retry
)) {
721 printk("aio_run_iocb: iocb->ki_retry = NULL\n");
726 * We don't want the next retry iteration for this
727 * operation to start until this one has returned and
728 * updated the iocb state. However, wait_queue functions
729 * can trigger a kick_iocb from interrupt context in the
730 * meantime, indicating that data is available for the next
731 * iteration. We want to remember that and enable the
732 * next retry iteration _after_ we are through with
735 * So, in order to be able to register a "kick", but
736 * prevent it from being queued now, we clear the kick
737 * flag, but make the kick code *think* that the iocb is
738 * still on the run list until we are actually done.
739 * When we are done with this iteration, we check if
740 * the iocb was kicked in the meantime and if so, queue
744 kiocbClearKicked(iocb
);
747 * This is so that aio_complete knows it doesn't need to
748 * pull the iocb off the run list (We can't just call
749 * INIT_LIST_HEAD because we don't want a kick_iocb to
750 * queue this on the run list yet)
752 iocb
->ki_run_list
.next
= iocb
->ki_run_list
.prev
= NULL
;
753 spin_unlock_irq(&ctx
->ctx_lock
);
755 /* Quit retrying if the i/o has been cancelled */
756 if (kiocbIsCancelled(iocb
)) {
758 aio_complete(iocb
, ret
, 0);
759 /* must not access the iocb after this */
764 * Now we are all set to call the retry method in async
769 if (ret
!= -EIOCBRETRY
&& ret
!= -EIOCBQUEUED
) {
771 * There's no easy way to restart the syscall since other AIO's
772 * may be already running. Just fail this IO with EINTR.
774 if (unlikely(ret
== -ERESTARTSYS
|| ret
== -ERESTARTNOINTR
||
775 ret
== -ERESTARTNOHAND
|| ret
== -ERESTART_RESTARTBLOCK
))
777 aio_complete(iocb
, ret
, 0);
780 spin_lock_irq(&ctx
->ctx_lock
);
782 if (-EIOCBRETRY
== ret
) {
784 * OK, now that we are done with this iteration
785 * and know that there is more left to go,
786 * this is where we let go so that a subsequent
787 * "kick" can start the next iteration
790 /* will make __queue_kicked_iocb succeed from here on */
791 INIT_LIST_HEAD(&iocb
->ki_run_list
);
792 /* we must queue the next iteration ourselves, if it
793 * has already been kicked */
794 if (kiocbIsKicked(iocb
)) {
795 __queue_kicked_iocb(iocb
);
798 * __queue_kicked_iocb will always return 1 here, because
799 * iocb->ki_run_list is empty at this point so it should
800 * be safe to unconditionally queue the context into the
811 * Process all pending retries queued on the ioctx
813 * Assumes it is operating within the aio issuer's mm
816 static int __aio_run_iocbs(struct kioctx
*ctx
)
819 struct list_head run_list
;
821 assert_spin_locked(&ctx
->ctx_lock
);
823 list_replace_init(&ctx
->run_list
, &run_list
);
824 while (!list_empty(&run_list
)) {
825 iocb
= list_entry(run_list
.next
, struct kiocb
,
827 list_del(&iocb
->ki_run_list
);
829 * Hold an extra reference while retrying i/o.
831 iocb
->ki_users
++; /* grab extra reference */
833 __aio_put_req(ctx
, iocb
);
835 if (!list_empty(&ctx
->run_list
))
840 static void aio_queue_work(struct kioctx
* ctx
)
842 unsigned long timeout
;
844 * if someone is waiting, get the work started right
845 * away, otherwise, use a longer delay
848 if (waitqueue_active(&ctx
->wait
))
852 queue_delayed_work(aio_wq
, &ctx
->wq
, timeout
);
857 * Process all pending retries queued on the ioctx
858 * run list, and keep running them until the list
860 * Assumes it is operating within the aio issuer's mm context.
862 static inline void aio_run_all_iocbs(struct kioctx
*ctx
)
864 spin_lock_irq(&ctx
->ctx_lock
);
865 while (__aio_run_iocbs(ctx
))
867 spin_unlock_irq(&ctx
->ctx_lock
);
872 * Work queue handler triggered to process pending
873 * retries on an ioctx. Takes on the aio issuer's
874 * mm context before running the iocbs, so that
875 * copy_xxx_user operates on the issuer's address
877 * Run on aiod's context.
879 static void aio_kick_handler(struct work_struct
*work
)
881 struct kioctx
*ctx
= container_of(work
, struct kioctx
, wq
.work
);
882 mm_segment_t oldfs
= get_fs();
883 struct mm_struct
*mm
;
888 spin_lock_irq(&ctx
->ctx_lock
);
889 requeue
=__aio_run_iocbs(ctx
);
891 spin_unlock_irq(&ctx
->ctx_lock
);
895 * we're in a worker thread already; no point using non-zero delay
898 queue_delayed_work(aio_wq
, &ctx
->wq
, 0);
903 * Called by kick_iocb to queue the kiocb for retry
904 * and if required activate the aio work queue to process
907 static void try_queue_kicked_iocb(struct kiocb
*iocb
)
909 struct kioctx
*ctx
= iocb
->ki_ctx
;
913 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
914 /* set this inside the lock so that we can't race with aio_run_iocb()
915 * testing it and putting the iocb on the run list under the lock */
916 if (!kiocbTryKick(iocb
))
917 run
= __queue_kicked_iocb(iocb
);
918 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
925 * Called typically from a wait queue callback context
926 * to trigger a retry of the iocb.
927 * The retry is usually executed by aio workqueue
928 * threads (See aio_kick_handler).
930 void kick_iocb(struct kiocb
*iocb
)
932 /* sync iocbs are easy: they can only ever be executing from a
934 if (is_sync_kiocb(iocb
)) {
935 kiocbSetKicked(iocb
);
936 wake_up_process(iocb
->ki_obj
.tsk
);
940 try_queue_kicked_iocb(iocb
);
942 EXPORT_SYMBOL(kick_iocb
);
945 * Called when the io request on the given iocb is complete.
946 * Returns true if this is the last user of the request. The
947 * only other user of the request can be the cancellation code.
949 int aio_complete(struct kiocb
*iocb
, long res
, long res2
)
951 struct kioctx
*ctx
= iocb
->ki_ctx
;
952 struct aio_ring_info
*info
;
953 struct aio_ring
*ring
;
954 struct io_event
*event
;
960 * Special case handling for sync iocbs:
961 * - events go directly into the iocb for fast handling
962 * - the sync task with the iocb in its stack holds the single iocb
963 * ref, no other paths have a way to get another ref
964 * - the sync task helpfully left a reference to itself in the iocb
966 if (is_sync_kiocb(iocb
)) {
967 BUG_ON(iocb
->ki_users
!= 1);
968 iocb
->ki_user_data
= res
;
970 wake_up_process(iocb
->ki_obj
.tsk
);
974 info
= &ctx
->ring_info
;
976 /* add a completion event to the ring buffer.
977 * must be done holding ctx->ctx_lock to prevent
978 * other code from messing with the tail
979 * pointer since we might be called from irq
982 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
984 if (iocb
->ki_run_list
.prev
&& !list_empty(&iocb
->ki_run_list
))
985 list_del_init(&iocb
->ki_run_list
);
988 * cancelled requests don't get events, userland was given one
989 * when the event got cancelled.
991 if (kiocbIsCancelled(iocb
))
994 ring
= kmap_atomic(info
->ring_pages
[0]);
997 event
= aio_ring_event(info
, tail
);
998 if (++tail
>= info
->nr
)
1001 event
->obj
= (u64
)(unsigned long)iocb
->ki_obj
.user
;
1002 event
->data
= iocb
->ki_user_data
;
1006 dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
1007 ctx
, tail
, iocb
, iocb
->ki_obj
.user
, iocb
->ki_user_data
,
1010 /* after flagging the request as done, we
1011 * must never even look at it again
1013 smp_wmb(); /* make event visible before updating tail */
1018 put_aio_ring_event(event
);
1019 kunmap_atomic(ring
);
1021 pr_debug("added to ring %p at [%lu]\n", iocb
, tail
);
1024 * Check if the user asked us to deliver the result through an
1025 * eventfd. The eventfd_signal() function is safe to be called
1028 if (iocb
->ki_eventfd
!= NULL
)
1029 eventfd_signal(iocb
->ki_eventfd
, 1);
1032 /* everything turned out well, dispose of the aiocb. */
1033 ret
= __aio_put_req(ctx
, iocb
);
1036 * We have to order our ring_info tail store above and test
1037 * of the wait list below outside the wait lock. This is
1038 * like in wake_up_bit() where clearing a bit has to be
1039 * ordered with the unlocked test.
1043 if (waitqueue_active(&ctx
->wait
))
1044 wake_up(&ctx
->wait
);
1046 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
1049 EXPORT_SYMBOL(aio_complete
);
1052 * Pull an event off of the ioctx's event ring. Returns the number of
1053 * events fetched (0 or 1 ;-)
1054 * FIXME: make this use cmpxchg.
1055 * TODO: make the ringbuffer user mmap()able (requires FIXME).
1057 static int aio_read_evt(struct kioctx
*ioctx
, struct io_event
*ent
)
1059 struct aio_ring_info
*info
= &ioctx
->ring_info
;
1060 struct aio_ring
*ring
;
1064 ring
= kmap_atomic(info
->ring_pages
[0]);
1065 dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1066 (unsigned long)ring
->head
, (unsigned long)ring
->tail
,
1067 (unsigned long)ring
->nr
);
1069 if (ring
->head
== ring
->tail
)
1072 spin_lock(&info
->ring_lock
);
1074 head
= ring
->head
% info
->nr
;
1075 if (head
!= ring
->tail
) {
1076 struct io_event
*evp
= aio_ring_event(info
, head
);
1078 head
= (head
+ 1) % info
->nr
;
1079 smp_mb(); /* finish reading the event before updatng the head */
1082 put_aio_ring_event(evp
);
1084 spin_unlock(&info
->ring_lock
);
1087 kunmap_atomic(ring
);
1088 dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret
,
1089 (unsigned long)ring
->head
, (unsigned long)ring
->tail
);
1093 struct aio_timeout
{
1094 struct timer_list timer
;
1096 struct task_struct
*p
;
1099 static void timeout_func(unsigned long data
)
1101 struct aio_timeout
*to
= (struct aio_timeout
*)data
;
1104 wake_up_process(to
->p
);
1107 static inline void init_timeout(struct aio_timeout
*to
)
1109 setup_timer_on_stack(&to
->timer
, timeout_func
, (unsigned long) to
);
1114 static inline void set_timeout(long start_jiffies
, struct aio_timeout
*to
,
1115 const struct timespec
*ts
)
1117 to
->timer
.expires
= start_jiffies
+ timespec_to_jiffies(ts
);
1118 if (time_after(to
->timer
.expires
, jiffies
))
1119 add_timer(&to
->timer
);
1124 static inline void clear_timeout(struct aio_timeout
*to
)
1126 del_singleshot_timer_sync(&to
->timer
);
1129 static int read_events(struct kioctx
*ctx
,
1130 long min_nr
, long nr
,
1131 struct io_event __user
*event
,
1132 struct timespec __user
*timeout
)
1134 long start_jiffies
= jiffies
;
1135 struct task_struct
*tsk
= current
;
1136 DECLARE_WAITQUEUE(wait
, tsk
);
1139 struct io_event ent
;
1140 struct aio_timeout to
;
1143 /* needed to zero any padding within an entry (there shouldn't be
1144 * any, but C is fun!
1146 memset(&ent
, 0, sizeof(ent
));
1149 while (likely(i
< nr
)) {
1150 ret
= aio_read_evt(ctx
, &ent
);
1151 if (unlikely(ret
<= 0))
1154 dprintk("read event: %Lx %Lx %Lx %Lx\n",
1155 ent
.data
, ent
.obj
, ent
.res
, ent
.res2
);
1157 /* Could we split the check in two? */
1159 if (unlikely(copy_to_user(event
, &ent
, sizeof(ent
)))) {
1160 dprintk("aio: lost an event due to EFAULT.\n");
1165 /* Good, event copied to userland, update counts. */
1177 /* racey check, but it gets redone */
1178 if (!retry
&& unlikely(!list_empty(&ctx
->run_list
))) {
1180 aio_run_all_iocbs(ctx
);
1188 if (unlikely(copy_from_user(&ts
, timeout
, sizeof(ts
))))
1191 set_timeout(start_jiffies
, &to
, &ts
);
1194 while (likely(i
< nr
)) {
1195 add_wait_queue_exclusive(&ctx
->wait
, &wait
);
1197 set_task_state(tsk
, TASK_INTERRUPTIBLE
);
1198 ret
= aio_read_evt(ctx
, &ent
);
1203 if (unlikely(ctx
->dead
)) {
1207 if (to
.timed_out
) /* Only check after read evt */
1209 /* Try to only show up in io wait if there are ops
1211 if (ctx
->reqs_active
)
1215 if (signal_pending(tsk
)) {
1219 /*ret = aio_read_evt(ctx, &ent);*/
1222 set_task_state(tsk
, TASK_RUNNING
);
1223 remove_wait_queue(&ctx
->wait
, &wait
);
1225 if (unlikely(ret
<= 0))
1229 if (unlikely(copy_to_user(event
, &ent
, sizeof(ent
)))) {
1230 dprintk("aio: lost an event due to EFAULT.\n");
1234 /* Good, event copied to userland, update counts. */
1242 destroy_timer_on_stack(&to
.timer
);
1246 /* Take an ioctx and remove it from the list of ioctx's. Protects
1247 * against races with itself via ->dead.
1249 static void io_destroy(struct kioctx
*ioctx
)
1251 struct mm_struct
*mm
= current
->mm
;
1254 /* delete the entry from the list is someone else hasn't already */
1255 spin_lock(&mm
->ioctx_lock
);
1256 was_dead
= ioctx
->dead
;
1258 hlist_del_rcu(&ioctx
->list
);
1259 spin_unlock(&mm
->ioctx_lock
);
1261 dprintk("aio_release(%p)\n", ioctx
);
1262 if (likely(!was_dead
))
1263 put_ioctx(ioctx
); /* twice for the list */
1268 * Wake up any waiters. The setting of ctx->dead must be seen
1269 * by other CPUs at this point. Right now, we rely on the
1270 * locking done by the above calls to ensure this consistency.
1272 wake_up_all(&ioctx
->wait
);
1276 * Create an aio_context capable of receiving at least nr_events.
1277 * ctxp must not point to an aio_context that already exists, and
1278 * must be initialized to 0 prior to the call. On successful
1279 * creation of the aio_context, *ctxp is filled in with the resulting
1280 * handle. May fail with -EINVAL if *ctxp is not initialized,
1281 * if the specified nr_events exceeds internal limits. May fail
1282 * with -EAGAIN if the specified nr_events exceeds the user's limit
1283 * of available events. May fail with -ENOMEM if insufficient kernel
1284 * resources are available. May fail with -EFAULT if an invalid
1285 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1288 SYSCALL_DEFINE2(io_setup
, unsigned, nr_events
, aio_context_t __user
*, ctxp
)
1290 struct kioctx
*ioctx
= NULL
;
1294 ret
= get_user(ctx
, ctxp
);
1299 if (unlikely(ctx
|| nr_events
== 0)) {
1300 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1305 ioctx
= ioctx_alloc(nr_events
);
1306 ret
= PTR_ERR(ioctx
);
1307 if (!IS_ERR(ioctx
)) {
1308 ret
= put_user(ioctx
->user_id
, ctxp
);
1319 * Destroy the aio_context specified. May cancel any outstanding
1320 * AIOs and block on completion. Will fail with -ENOSYS if not
1321 * implemented. May fail with -EINVAL if the context pointed to
1324 SYSCALL_DEFINE1(io_destroy
, aio_context_t
, ctx
)
1326 struct kioctx
*ioctx
= lookup_ioctx(ctx
);
1327 if (likely(NULL
!= ioctx
)) {
1332 pr_debug("EINVAL: io_destroy: invalid context id\n");
1336 static void aio_advance_iovec(struct kiocb
*iocb
, ssize_t ret
)
1338 struct iovec
*iov
= &iocb
->ki_iovec
[iocb
->ki_cur_seg
];
1342 while (iocb
->ki_cur_seg
< iocb
->ki_nr_segs
&& ret
> 0) {
1343 ssize_t
this = min((ssize_t
)iov
->iov_len
, ret
);
1344 iov
->iov_base
+= this;
1345 iov
->iov_len
-= this;
1346 iocb
->ki_left
-= this;
1348 if (iov
->iov_len
== 0) {
1354 /* the caller should not have done more io than what fit in
1355 * the remaining iovecs */
1356 BUG_ON(ret
> 0 && iocb
->ki_left
== 0);
1359 static ssize_t
aio_rw_vect_retry(struct kiocb
*iocb
)
1361 struct file
*file
= iocb
->ki_filp
;
1362 struct address_space
*mapping
= file
->f_mapping
;
1363 struct inode
*inode
= mapping
->host
;
1364 ssize_t (*rw_op
)(struct kiocb
*, const struct iovec
*,
1365 unsigned long, loff_t
);
1367 unsigned short opcode
;
1369 if ((iocb
->ki_opcode
== IOCB_CMD_PREADV
) ||
1370 (iocb
->ki_opcode
== IOCB_CMD_PREAD
)) {
1371 rw_op
= file
->f_op
->aio_read
;
1372 opcode
= IOCB_CMD_PREADV
;
1374 rw_op
= file
->f_op
->aio_write
;
1375 opcode
= IOCB_CMD_PWRITEV
;
1378 /* This matches the pread()/pwrite() logic */
1379 if (iocb
->ki_pos
< 0)
1383 ret
= rw_op(iocb
, &iocb
->ki_iovec
[iocb
->ki_cur_seg
],
1384 iocb
->ki_nr_segs
- iocb
->ki_cur_seg
,
1387 aio_advance_iovec(iocb
, ret
);
1389 /* retry all partial writes. retry partial reads as long as its a
1391 } while (ret
> 0 && iocb
->ki_left
> 0 &&
1392 (opcode
== IOCB_CMD_PWRITEV
||
1393 (!S_ISFIFO(inode
->i_mode
) && !S_ISSOCK(inode
->i_mode
))));
1395 /* This means we must have transferred all that we could */
1396 /* No need to retry anymore */
1397 if ((ret
== 0) || (iocb
->ki_left
== 0))
1398 ret
= iocb
->ki_nbytes
- iocb
->ki_left
;
1400 /* If we managed to write some out we return that, rather than
1401 * the eventual error. */
1402 if (opcode
== IOCB_CMD_PWRITEV
1403 && ret
< 0 && ret
!= -EIOCBQUEUED
&& ret
!= -EIOCBRETRY
1404 && iocb
->ki_nbytes
- iocb
->ki_left
)
1405 ret
= iocb
->ki_nbytes
- iocb
->ki_left
;
1410 static ssize_t
aio_fdsync(struct kiocb
*iocb
)
1412 struct file
*file
= iocb
->ki_filp
;
1413 ssize_t ret
= -EINVAL
;
1415 if (file
->f_op
->aio_fsync
)
1416 ret
= file
->f_op
->aio_fsync(iocb
, 1);
1420 static ssize_t
aio_fsync(struct kiocb
*iocb
)
1422 struct file
*file
= iocb
->ki_filp
;
1423 ssize_t ret
= -EINVAL
;
1425 if (file
->f_op
->aio_fsync
)
1426 ret
= file
->f_op
->aio_fsync(iocb
, 0);
1430 static ssize_t
aio_setup_vectored_rw(int type
, struct kiocb
*kiocb
, bool compat
)
1434 #ifdef CONFIG_COMPAT
1436 ret
= compat_rw_copy_check_uvector(type
,
1437 (struct compat_iovec __user
*)kiocb
->ki_buf
,
1438 kiocb
->ki_nbytes
, 1, &kiocb
->ki_inline_vec
,
1439 &kiocb
->ki_iovec
, 1);
1442 ret
= rw_copy_check_uvector(type
,
1443 (struct iovec __user
*)kiocb
->ki_buf
,
1444 kiocb
->ki_nbytes
, 1, &kiocb
->ki_inline_vec
,
1445 &kiocb
->ki_iovec
, 1);
1449 kiocb
->ki_nr_segs
= kiocb
->ki_nbytes
;
1450 kiocb
->ki_cur_seg
= 0;
1451 /* ki_nbytes/left now reflect bytes instead of segs */
1452 kiocb
->ki_nbytes
= ret
;
1453 kiocb
->ki_left
= ret
;
1460 static ssize_t
aio_setup_single_vector(struct kiocb
*kiocb
)
1462 kiocb
->ki_iovec
= &kiocb
->ki_inline_vec
;
1463 kiocb
->ki_iovec
->iov_base
= kiocb
->ki_buf
;
1464 kiocb
->ki_iovec
->iov_len
= kiocb
->ki_left
;
1465 kiocb
->ki_nr_segs
= 1;
1466 kiocb
->ki_cur_seg
= 0;
1472 * Performs the initial checks and aio retry method
1473 * setup for the kiocb at the time of io submission.
1475 static ssize_t
aio_setup_iocb(struct kiocb
*kiocb
, bool compat
)
1477 struct file
*file
= kiocb
->ki_filp
;
1480 switch (kiocb
->ki_opcode
) {
1481 case IOCB_CMD_PREAD
:
1483 if (unlikely(!(file
->f_mode
& FMODE_READ
)))
1486 if (unlikely(!access_ok(VERIFY_WRITE
, kiocb
->ki_buf
,
1489 ret
= security_file_permission(file
, MAY_READ
);
1492 ret
= aio_setup_single_vector(kiocb
);
1496 if (file
->f_op
->aio_read
)
1497 kiocb
->ki_retry
= aio_rw_vect_retry
;
1499 case IOCB_CMD_PWRITE
:
1501 if (unlikely(!(file
->f_mode
& FMODE_WRITE
)))
1504 if (unlikely(!access_ok(VERIFY_READ
, kiocb
->ki_buf
,
1507 ret
= security_file_permission(file
, MAY_WRITE
);
1510 ret
= aio_setup_single_vector(kiocb
);
1514 if (file
->f_op
->aio_write
)
1515 kiocb
->ki_retry
= aio_rw_vect_retry
;
1517 case IOCB_CMD_PREADV
:
1519 if (unlikely(!(file
->f_mode
& FMODE_READ
)))
1521 ret
= security_file_permission(file
, MAY_READ
);
1524 ret
= aio_setup_vectored_rw(READ
, kiocb
, compat
);
1528 if (file
->f_op
->aio_read
)
1529 kiocb
->ki_retry
= aio_rw_vect_retry
;
1531 case IOCB_CMD_PWRITEV
:
1533 if (unlikely(!(file
->f_mode
& FMODE_WRITE
)))
1535 ret
= security_file_permission(file
, MAY_WRITE
);
1538 ret
= aio_setup_vectored_rw(WRITE
, kiocb
, compat
);
1542 if (file
->f_op
->aio_write
)
1543 kiocb
->ki_retry
= aio_rw_vect_retry
;
1545 case IOCB_CMD_FDSYNC
:
1547 if (file
->f_op
->aio_fsync
)
1548 kiocb
->ki_retry
= aio_fdsync
;
1550 case IOCB_CMD_FSYNC
:
1552 if (file
->f_op
->aio_fsync
)
1553 kiocb
->ki_retry
= aio_fsync
;
1556 dprintk("EINVAL: io_submit: no operation provided\n");
1560 if (!kiocb
->ki_retry
)
1566 static int io_submit_one(struct kioctx
*ctx
, struct iocb __user
*user_iocb
,
1567 struct iocb
*iocb
, struct kiocb_batch
*batch
,
1574 /* enforce forwards compatibility on users */
1575 if (unlikely(iocb
->aio_reserved1
|| iocb
->aio_reserved2
)) {
1576 pr_debug("EINVAL: io_submit: reserve field set\n");
1580 /* prevent overflows */
1582 (iocb
->aio_buf
!= (unsigned long)iocb
->aio_buf
) ||
1583 (iocb
->aio_nbytes
!= (size_t)iocb
->aio_nbytes
) ||
1584 ((ssize_t
)iocb
->aio_nbytes
< 0)
1586 pr_debug("EINVAL: io_submit: overflow check\n");
1590 file
= fget(iocb
->aio_fildes
);
1591 if (unlikely(!file
))
1594 req
= aio_get_req(ctx
, batch
); /* returns with 2 references to req */
1595 if (unlikely(!req
)) {
1599 req
->ki_filp
= file
;
1600 if (iocb
->aio_flags
& IOCB_FLAG_RESFD
) {
1602 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1603 * instance of the file* now. The file descriptor must be
1604 * an eventfd() fd, and will be signaled for each completed
1605 * event using the eventfd_signal() function.
1607 req
->ki_eventfd
= eventfd_ctx_fdget((int) iocb
->aio_resfd
);
1608 if (IS_ERR(req
->ki_eventfd
)) {
1609 ret
= PTR_ERR(req
->ki_eventfd
);
1610 req
->ki_eventfd
= NULL
;
1615 ret
= put_user(req
->ki_key
, &user_iocb
->aio_key
);
1616 if (unlikely(ret
)) {
1617 dprintk("EFAULT: aio_key\n");
1621 req
->ki_obj
.user
= user_iocb
;
1622 req
->ki_user_data
= iocb
->aio_data
;
1623 req
->ki_pos
= iocb
->aio_offset
;
1625 req
->ki_buf
= (char __user
*)(unsigned long)iocb
->aio_buf
;
1626 req
->ki_left
= req
->ki_nbytes
= iocb
->aio_nbytes
;
1627 req
->ki_opcode
= iocb
->aio_lio_opcode
;
1629 ret
= aio_setup_iocb(req
, compat
);
1634 spin_lock_irq(&ctx
->ctx_lock
);
1636 * We could have raced with io_destroy() and are currently holding a
1637 * reference to ctx which should be destroyed. We cannot submit IO
1638 * since ctx gets freed as soon as io_submit() puts its reference. The
1639 * check here is reliable: io_destroy() sets ctx->dead before waiting
1640 * for outstanding IO and the barrier between these two is realized by
1641 * unlock of mm->ioctx_lock and lock of ctx->ctx_lock. Analogously we
1642 * increment ctx->reqs_active before checking for ctx->dead and the
1643 * barrier is realized by unlock and lock of ctx->ctx_lock. Thus if we
1644 * don't see ctx->dead set here, io_destroy() waits for our IO to
1648 spin_unlock_irq(&ctx
->ctx_lock
);
1653 if (!list_empty(&ctx
->run_list
)) {
1654 /* drain the run list */
1655 while (__aio_run_iocbs(ctx
))
1658 spin_unlock_irq(&ctx
->ctx_lock
);
1660 aio_put_req(req
); /* drop extra ref to req */
1664 aio_put_req(req
); /* drop extra ref to req */
1665 aio_put_req(req
); /* drop i/o ref to req */
1669 long do_io_submit(aio_context_t ctx_id
, long nr
,
1670 struct iocb __user
*__user
*iocbpp
, bool compat
)
1675 struct blk_plug plug
;
1676 struct kiocb_batch batch
;
1678 if (unlikely(nr
< 0))
1681 if (unlikely(nr
> LONG_MAX
/sizeof(*iocbpp
)))
1682 nr
= LONG_MAX
/sizeof(*iocbpp
);
1684 if (unlikely(!access_ok(VERIFY_READ
, iocbpp
, (nr
*sizeof(*iocbpp
)))))
1687 ctx
= lookup_ioctx(ctx_id
);
1688 if (unlikely(!ctx
)) {
1689 pr_debug("EINVAL: io_submit: invalid context id\n");
1693 kiocb_batch_init(&batch
, nr
);
1695 blk_start_plug(&plug
);
1698 * AKPM: should this return a partial result if some of the IOs were
1699 * successfully submitted?
1701 for (i
=0; i
<nr
; i
++) {
1702 struct iocb __user
*user_iocb
;
1705 if (unlikely(__get_user(user_iocb
, iocbpp
+ i
))) {
1710 if (unlikely(copy_from_user(&tmp
, user_iocb
, sizeof(tmp
)))) {
1715 ret
= io_submit_one(ctx
, user_iocb
, &tmp
, &batch
, compat
);
1719 blk_finish_plug(&plug
);
1721 kiocb_batch_free(ctx
, &batch
);
1727 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1728 * the number of iocbs queued. May return -EINVAL if the aio_context
1729 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1730 * *iocbpp[0] is not properly initialized, if the operation specified
1731 * is invalid for the file descriptor in the iocb. May fail with
1732 * -EFAULT if any of the data structures point to invalid data. May
1733 * fail with -EBADF if the file descriptor specified in the first
1734 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1735 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1736 * fail with -ENOSYS if not implemented.
1738 SYSCALL_DEFINE3(io_submit
, aio_context_t
, ctx_id
, long, nr
,
1739 struct iocb __user
* __user
*, iocbpp
)
1741 return do_io_submit(ctx_id
, nr
, iocbpp
, 0);
1745 * Finds a given iocb for cancellation.
1747 static struct kiocb
*lookup_kiocb(struct kioctx
*ctx
, struct iocb __user
*iocb
,
1750 struct list_head
*pos
;
1752 assert_spin_locked(&ctx
->ctx_lock
);
1754 /* TODO: use a hash or array, this sucks. */
1755 list_for_each(pos
, &ctx
->active_reqs
) {
1756 struct kiocb
*kiocb
= list_kiocb(pos
);
1757 if (kiocb
->ki_obj
.user
== iocb
&& kiocb
->ki_key
== key
)
1764 * Attempts to cancel an iocb previously passed to io_submit. If
1765 * the operation is successfully cancelled, the resulting event is
1766 * copied into the memory pointed to by result without being placed
1767 * into the completion queue and 0 is returned. May fail with
1768 * -EFAULT if any of the data structures pointed to are invalid.
1769 * May fail with -EINVAL if aio_context specified by ctx_id is
1770 * invalid. May fail with -EAGAIN if the iocb specified was not
1771 * cancelled. Will fail with -ENOSYS if not implemented.
1773 SYSCALL_DEFINE3(io_cancel
, aio_context_t
, ctx_id
, struct iocb __user
*, iocb
,
1774 struct io_event __user
*, result
)
1776 int (*cancel
)(struct kiocb
*iocb
, struct io_event
*res
);
1778 struct kiocb
*kiocb
;
1782 ret
= get_user(key
, &iocb
->aio_key
);
1786 ctx
= lookup_ioctx(ctx_id
);
1790 spin_lock_irq(&ctx
->ctx_lock
);
1792 kiocb
= lookup_kiocb(ctx
, iocb
, key
);
1793 if (kiocb
&& kiocb
->ki_cancel
) {
1794 cancel
= kiocb
->ki_cancel
;
1796 kiocbSetCancelled(kiocb
);
1799 spin_unlock_irq(&ctx
->ctx_lock
);
1801 if (NULL
!= cancel
) {
1802 struct io_event tmp
;
1803 pr_debug("calling cancel\n");
1804 memset(&tmp
, 0, sizeof(tmp
));
1805 tmp
.obj
= (u64
)(unsigned long)kiocb
->ki_obj
.user
;
1806 tmp
.data
= kiocb
->ki_user_data
;
1807 ret
= cancel(kiocb
, &tmp
);
1809 /* Cancellation succeeded -- copy the result
1810 * into the user's buffer.
1812 if (copy_to_user(result
, &tmp
, sizeof(tmp
)))
1824 * Attempts to read at least min_nr events and up to nr events from
1825 * the completion queue for the aio_context specified by ctx_id. If
1826 * it succeeds, the number of read events is returned. May fail with
1827 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1828 * out of range, if timeout is out of range. May fail with -EFAULT
1829 * if any of the memory specified is invalid. May return 0 or
1830 * < min_nr if the timeout specified by timeout has elapsed
1831 * before sufficient events are available, where timeout == NULL
1832 * specifies an infinite timeout. Note that the timeout pointed to by
1833 * timeout is relative and will be updated if not NULL and the
1834 * operation blocks. Will fail with -ENOSYS if not implemented.
1836 SYSCALL_DEFINE5(io_getevents
, aio_context_t
, ctx_id
,
1839 struct io_event __user
*, events
,
1840 struct timespec __user
*, timeout
)
1842 struct kioctx
*ioctx
= lookup_ioctx(ctx_id
);
1845 if (likely(ioctx
)) {
1846 if (likely(min_nr
<= nr
&& min_nr
>= 0))
1847 ret
= read_events(ioctx
, min_nr
, nr
, events
, timeout
);
1851 asmlinkage_protect(5, ret
, ctx_id
, min_nr
, nr
, events
, timeout
);