[PATCH] uml: move libc-dependent utility procedures
[linux/fpc-iii.git] / security / commoncap.c
blob8a6e097f99ea677acf091800f4bd3797975f9f75
1 /* Common capabilities, needed by capability.o and root_plug.o
3 * This program is free software; you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License as published by
5 * the Free Software Foundation; either version 2 of the License, or
6 * (at your option) any later version.
8 */
10 #include <linux/capability.h>
11 #include <linux/config.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/security.h>
16 #include <linux/file.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/smp_lock.h>
22 #include <linux/skbuff.h>
23 #include <linux/netlink.h>
24 #include <linux/ptrace.h>
25 #include <linux/xattr.h>
26 #include <linux/hugetlb.h>
28 int cap_netlink_send(struct sock *sk, struct sk_buff *skb)
30 NETLINK_CB(skb).eff_cap = current->cap_effective;
31 return 0;
34 EXPORT_SYMBOL(cap_netlink_send);
36 int cap_netlink_recv(struct sk_buff *skb)
38 if (!cap_raised(NETLINK_CB(skb).eff_cap, CAP_NET_ADMIN))
39 return -EPERM;
40 return 0;
43 EXPORT_SYMBOL(cap_netlink_recv);
45 int cap_capable (struct task_struct *tsk, int cap)
47 /* Derived from include/linux/sched.h:capable. */
48 if (cap_raised(tsk->cap_effective, cap))
49 return 0;
50 return -EPERM;
53 int cap_settime(struct timespec *ts, struct timezone *tz)
55 if (!capable(CAP_SYS_TIME))
56 return -EPERM;
57 return 0;
60 int cap_ptrace (struct task_struct *parent, struct task_struct *child)
62 /* Derived from arch/i386/kernel/ptrace.c:sys_ptrace. */
63 if (!cap_issubset (child->cap_permitted, current->cap_permitted) &&
64 !capable(CAP_SYS_PTRACE))
65 return -EPERM;
66 return 0;
69 int cap_capget (struct task_struct *target, kernel_cap_t *effective,
70 kernel_cap_t *inheritable, kernel_cap_t *permitted)
72 /* Derived from kernel/capability.c:sys_capget. */
73 *effective = cap_t (target->cap_effective);
74 *inheritable = cap_t (target->cap_inheritable);
75 *permitted = cap_t (target->cap_permitted);
76 return 0;
79 int cap_capset_check (struct task_struct *target, kernel_cap_t *effective,
80 kernel_cap_t *inheritable, kernel_cap_t *permitted)
82 /* Derived from kernel/capability.c:sys_capset. */
83 /* verify restrictions on target's new Inheritable set */
84 if (!cap_issubset (*inheritable,
85 cap_combine (target->cap_inheritable,
86 current->cap_permitted))) {
87 return -EPERM;
90 /* verify restrictions on target's new Permitted set */
91 if (!cap_issubset (*permitted,
92 cap_combine (target->cap_permitted,
93 current->cap_permitted))) {
94 return -EPERM;
97 /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
98 if (!cap_issubset (*effective, *permitted)) {
99 return -EPERM;
102 return 0;
105 void cap_capset_set (struct task_struct *target, kernel_cap_t *effective,
106 kernel_cap_t *inheritable, kernel_cap_t *permitted)
108 target->cap_effective = *effective;
109 target->cap_inheritable = *inheritable;
110 target->cap_permitted = *permitted;
113 int cap_bprm_set_security (struct linux_binprm *bprm)
115 /* Copied from fs/exec.c:prepare_binprm. */
117 /* We don't have VFS support for capabilities yet */
118 cap_clear (bprm->cap_inheritable);
119 cap_clear (bprm->cap_permitted);
120 cap_clear (bprm->cap_effective);
122 /* To support inheritance of root-permissions and suid-root
123 * executables under compatibility mode, we raise all three
124 * capability sets for the file.
126 * If only the real uid is 0, we only raise the inheritable
127 * and permitted sets of the executable file.
130 if (!issecure (SECURE_NOROOT)) {
131 if (bprm->e_uid == 0 || current->uid == 0) {
132 cap_set_full (bprm->cap_inheritable);
133 cap_set_full (bprm->cap_permitted);
135 if (bprm->e_uid == 0)
136 cap_set_full (bprm->cap_effective);
138 return 0;
141 void cap_bprm_apply_creds (struct linux_binprm *bprm, int unsafe)
143 /* Derived from fs/exec.c:compute_creds. */
144 kernel_cap_t new_permitted, working;
146 new_permitted = cap_intersect (bprm->cap_permitted, cap_bset);
147 working = cap_intersect (bprm->cap_inheritable,
148 current->cap_inheritable);
149 new_permitted = cap_combine (new_permitted, working);
151 if (bprm->e_uid != current->uid || bprm->e_gid != current->gid ||
152 !cap_issubset (new_permitted, current->cap_permitted)) {
153 current->mm->dumpable = suid_dumpable;
155 if (unsafe & ~LSM_UNSAFE_PTRACE_CAP) {
156 if (!capable(CAP_SETUID)) {
157 bprm->e_uid = current->uid;
158 bprm->e_gid = current->gid;
160 if (!capable (CAP_SETPCAP)) {
161 new_permitted = cap_intersect (new_permitted,
162 current->cap_permitted);
167 current->suid = current->euid = current->fsuid = bprm->e_uid;
168 current->sgid = current->egid = current->fsgid = bprm->e_gid;
170 /* For init, we want to retain the capabilities set
171 * in the init_task struct. Thus we skip the usual
172 * capability rules */
173 if (current->pid != 1) {
174 current->cap_permitted = new_permitted;
175 current->cap_effective =
176 cap_intersect (new_permitted, bprm->cap_effective);
179 /* AUD: Audit candidate if current->cap_effective is set */
181 current->keep_capabilities = 0;
184 int cap_bprm_secureexec (struct linux_binprm *bprm)
186 /* If/when this module is enhanced to incorporate capability
187 bits on files, the test below should be extended to also perform a
188 test between the old and new capability sets. For now,
189 it simply preserves the legacy decision algorithm used by
190 the old userland. */
191 return (current->euid != current->uid ||
192 current->egid != current->gid);
195 int cap_inode_setxattr(struct dentry *dentry, char *name, void *value,
196 size_t size, int flags)
198 if (!strncmp(name, XATTR_SECURITY_PREFIX,
199 sizeof(XATTR_SECURITY_PREFIX) - 1) &&
200 !capable(CAP_SYS_ADMIN))
201 return -EPERM;
202 return 0;
205 int cap_inode_removexattr(struct dentry *dentry, char *name)
207 if (!strncmp(name, XATTR_SECURITY_PREFIX,
208 sizeof(XATTR_SECURITY_PREFIX) - 1) &&
209 !capable(CAP_SYS_ADMIN))
210 return -EPERM;
211 return 0;
214 /* moved from kernel/sys.c. */
216 * cap_emulate_setxuid() fixes the effective / permitted capabilities of
217 * a process after a call to setuid, setreuid, or setresuid.
219 * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
220 * {r,e,s}uid != 0, the permitted and effective capabilities are
221 * cleared.
223 * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
224 * capabilities of the process are cleared.
226 * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
227 * capabilities are set to the permitted capabilities.
229 * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
230 * never happen.
232 * -astor
234 * cevans - New behaviour, Oct '99
235 * A process may, via prctl(), elect to keep its capabilities when it
236 * calls setuid() and switches away from uid==0. Both permitted and
237 * effective sets will be retained.
238 * Without this change, it was impossible for a daemon to drop only some
239 * of its privilege. The call to setuid(!=0) would drop all privileges!
240 * Keeping uid 0 is not an option because uid 0 owns too many vital
241 * files..
242 * Thanks to Olaf Kirch and Peter Benie for spotting this.
244 static inline void cap_emulate_setxuid (int old_ruid, int old_euid,
245 int old_suid)
247 if ((old_ruid == 0 || old_euid == 0 || old_suid == 0) &&
248 (current->uid != 0 && current->euid != 0 && current->suid != 0) &&
249 !current->keep_capabilities) {
250 cap_clear (current->cap_permitted);
251 cap_clear (current->cap_effective);
253 if (old_euid == 0 && current->euid != 0) {
254 cap_clear (current->cap_effective);
256 if (old_euid != 0 && current->euid == 0) {
257 current->cap_effective = current->cap_permitted;
261 int cap_task_post_setuid (uid_t old_ruid, uid_t old_euid, uid_t old_suid,
262 int flags)
264 switch (flags) {
265 case LSM_SETID_RE:
266 case LSM_SETID_ID:
267 case LSM_SETID_RES:
268 /* Copied from kernel/sys.c:setreuid/setuid/setresuid. */
269 if (!issecure (SECURE_NO_SETUID_FIXUP)) {
270 cap_emulate_setxuid (old_ruid, old_euid, old_suid);
272 break;
273 case LSM_SETID_FS:
275 uid_t old_fsuid = old_ruid;
277 /* Copied from kernel/sys.c:setfsuid. */
280 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
281 * if not, we might be a bit too harsh here.
284 if (!issecure (SECURE_NO_SETUID_FIXUP)) {
285 if (old_fsuid == 0 && current->fsuid != 0) {
286 cap_t (current->cap_effective) &=
287 ~CAP_FS_MASK;
289 if (old_fsuid != 0 && current->fsuid == 0) {
290 cap_t (current->cap_effective) |=
291 (cap_t (current->cap_permitted) &
292 CAP_FS_MASK);
295 break;
297 default:
298 return -EINVAL;
301 return 0;
304 void cap_task_reparent_to_init (struct task_struct *p)
306 p->cap_effective = CAP_INIT_EFF_SET;
307 p->cap_inheritable = CAP_INIT_INH_SET;
308 p->cap_permitted = CAP_FULL_SET;
309 p->keep_capabilities = 0;
310 return;
313 int cap_syslog (int type)
315 if ((type != 3 && type != 10) && !capable(CAP_SYS_ADMIN))
316 return -EPERM;
317 return 0;
320 int cap_vm_enough_memory(long pages)
322 int cap_sys_admin = 0;
324 if (cap_capable(current, CAP_SYS_ADMIN) == 0)
325 cap_sys_admin = 1;
326 return __vm_enough_memory(pages, cap_sys_admin);
329 EXPORT_SYMBOL(cap_capable);
330 EXPORT_SYMBOL(cap_settime);
331 EXPORT_SYMBOL(cap_ptrace);
332 EXPORT_SYMBOL(cap_capget);
333 EXPORT_SYMBOL(cap_capset_check);
334 EXPORT_SYMBOL(cap_capset_set);
335 EXPORT_SYMBOL(cap_bprm_set_security);
336 EXPORT_SYMBOL(cap_bprm_apply_creds);
337 EXPORT_SYMBOL(cap_bprm_secureexec);
338 EXPORT_SYMBOL(cap_inode_setxattr);
339 EXPORT_SYMBOL(cap_inode_removexattr);
340 EXPORT_SYMBOL(cap_task_post_setuid);
341 EXPORT_SYMBOL(cap_task_reparent_to_init);
342 EXPORT_SYMBOL(cap_syslog);
343 EXPORT_SYMBOL(cap_vm_enough_memory);
345 MODULE_DESCRIPTION("Standard Linux Common Capabilities Security Module");
346 MODULE_LICENSE("GPL");