Merge branch 'for-3.9' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
[linux/fpc-iii.git] / arch / alpha / kernel / core_t2.c
blob3ada4f7b085d42987dbb14bd0d78af2311935d9a
1 /*
2 * linux/arch/alpha/kernel/core_t2.c
4 * Written by Jay A Estabrook (jestabro@amt.tay1.dec.com).
5 * December 1996.
7 * based on CIA code by David A Rusling (david.rusling@reo.mts.dec.com)
9 * Code common to all T2 core logic chips.
12 #define __EXTERN_INLINE
13 #include <asm/io.h>
14 #include <asm/core_t2.h>
15 #undef __EXTERN_INLINE
17 #include <linux/types.h>
18 #include <linux/pci.h>
19 #include <linux/sched.h>
20 #include <linux/init.h>
22 #include <asm/ptrace.h>
23 #include <asm/delay.h>
24 #include <asm/mce.h>
26 #include "proto.h"
27 #include "pci_impl.h"
29 /* For dumping initial DMA window settings. */
30 #define DEBUG_PRINT_INITIAL_SETTINGS 0
32 /* For dumping final DMA window settings. */
33 #define DEBUG_PRINT_FINAL_SETTINGS 0
36 * By default, we direct-map starting at 2GB, in order to allow the
37 * maximum size direct-map window (2GB) to match the maximum amount of
38 * memory (2GB) that can be present on SABLEs. But that limits the
39 * floppy to DMA only via the scatter/gather window set up for 8MB
40 * ISA DMA, since the maximum ISA DMA address is 2GB-1.
42 * For now, this seems a reasonable trade-off: even though most SABLEs
43 * have less than 1GB of memory, floppy usage/performance will not
44 * really be affected by forcing it to go via scatter/gather...
46 #define T2_DIRECTMAP_2G 1
48 #if T2_DIRECTMAP_2G
49 # define T2_DIRECTMAP_START 0x80000000UL
50 # define T2_DIRECTMAP_LENGTH 0x80000000UL
51 #else
52 # define T2_DIRECTMAP_START 0x40000000UL
53 # define T2_DIRECTMAP_LENGTH 0x40000000UL
54 #endif
56 /* The ISA scatter/gather window settings. */
57 #define T2_ISA_SG_START 0x00800000UL
58 #define T2_ISA_SG_LENGTH 0x00800000UL
61 * NOTE: Herein lie back-to-back mb instructions. They are magic.
62 * One plausible explanation is that the i/o controller does not properly
63 * handle the system transaction. Another involves timing. Ho hum.
67 * BIOS32-style PCI interface:
70 #define DEBUG_CONFIG 0
72 #if DEBUG_CONFIG
73 # define DBG(args) printk args
74 #else
75 # define DBG(args)
76 #endif
78 static volatile unsigned int t2_mcheck_any_expected;
79 static volatile unsigned int t2_mcheck_last_taken;
81 /* Place to save the DMA Window registers as set up by SRM
82 for restoration during shutdown. */
83 static struct
85 struct {
86 unsigned long wbase;
87 unsigned long wmask;
88 unsigned long tbase;
89 } window[2];
90 unsigned long hae_1;
91 unsigned long hae_2;
92 unsigned long hae_3;
93 unsigned long hae_4;
94 unsigned long hbase;
95 } t2_saved_config __attribute((common));
98 * Given a bus, device, and function number, compute resulting
99 * configuration space address and setup the T2_HAXR2 register
100 * accordingly. It is therefore not safe to have concurrent
101 * invocations to configuration space access routines, but there
102 * really shouldn't be any need for this.
104 * Type 0:
106 * 3 3|3 3 2 2|2 2 2 2|2 2 2 2|1 1 1 1|1 1 1 1|1 1
107 * 3 2|1 0 9 8|7 6 5 4|3 2 1 0|9 8 7 6|5 4 3 2|1 0 9 8|7 6 5 4|3 2 1 0
108 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
109 * | | |D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|F|F|F|R|R|R|R|R|R|0|0|
110 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
112 * 31:11 Device select bit.
113 * 10:8 Function number
114 * 7:2 Register number
116 * Type 1:
118 * 3 3|3 3 2 2|2 2 2 2|2 2 2 2|1 1 1 1|1 1 1 1|1 1
119 * 3 2|1 0 9 8|7 6 5 4|3 2 1 0|9 8 7 6|5 4 3 2|1 0 9 8|7 6 5 4|3 2 1 0
120 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
121 * | | | | | | | | | | |B|B|B|B|B|B|B|B|D|D|D|D|D|F|F|F|R|R|R|R|R|R|0|1|
122 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
124 * 31:24 reserved
125 * 23:16 bus number (8 bits = 128 possible buses)
126 * 15:11 Device number (5 bits)
127 * 10:8 function number
128 * 7:2 register number
130 * Notes:
131 * The function number selects which function of a multi-function device
132 * (e.g., SCSI and Ethernet).
134 * The register selects a DWORD (32 bit) register offset. Hence it
135 * doesn't get shifted by 2 bits as we want to "drop" the bottom two
136 * bits.
139 static int
140 mk_conf_addr(struct pci_bus *pbus, unsigned int device_fn, int where,
141 unsigned long *pci_addr, unsigned char *type1)
143 unsigned long addr;
144 u8 bus = pbus->number;
146 DBG(("mk_conf_addr(bus=%d, dfn=0x%x, where=0x%x,"
147 " addr=0x%lx, type1=0x%x)\n",
148 bus, device_fn, where, pci_addr, type1));
150 if (bus == 0) {
151 int device = device_fn >> 3;
153 /* Type 0 configuration cycle. */
155 if (device > 8) {
156 DBG(("mk_conf_addr: device (%d)>20, returning -1\n",
157 device));
158 return -1;
161 *type1 = 0;
162 addr = (0x0800L << device) | ((device_fn & 7) << 8) | (where);
163 } else {
164 /* Type 1 configuration cycle. */
165 *type1 = 1;
166 addr = (bus << 16) | (device_fn << 8) | (where);
168 *pci_addr = addr;
169 DBG(("mk_conf_addr: returning pci_addr 0x%lx\n", addr));
170 return 0;
174 * NOTE: both conf_read() and conf_write() may set HAE_3 when needing
175 * to do type1 access. This is protected by the use of spinlock IRQ
176 * primitives in the wrapper functions pci_{read,write}_config_*()
177 * defined in drivers/pci/pci.c.
179 static unsigned int
180 conf_read(unsigned long addr, unsigned char type1)
182 unsigned int value, cpu, taken;
183 unsigned long t2_cfg = 0;
185 cpu = smp_processor_id();
187 DBG(("conf_read(addr=0x%lx, type1=%d)\n", addr, type1));
189 /* If Type1 access, must set T2 CFG. */
190 if (type1) {
191 t2_cfg = *(vulp)T2_HAE_3 & ~0xc0000000UL;
192 *(vulp)T2_HAE_3 = 0x40000000UL | t2_cfg;
193 mb();
195 mb();
196 draina();
198 mcheck_expected(cpu) = 1;
199 mcheck_taken(cpu) = 0;
200 t2_mcheck_any_expected |= (1 << cpu);
201 mb();
203 /* Access configuration space. */
204 value = *(vuip)addr;
205 mb();
206 mb(); /* magic */
208 /* Wait for possible mcheck. Also, this lets other CPUs clear
209 their mchecks as well, as they can reliably tell when
210 another CPU is in the midst of handling a real mcheck via
211 the "taken" function. */
212 udelay(100);
214 if ((taken = mcheck_taken(cpu))) {
215 mcheck_taken(cpu) = 0;
216 t2_mcheck_last_taken |= (1 << cpu);
217 value = 0xffffffffU;
218 mb();
220 mcheck_expected(cpu) = 0;
221 t2_mcheck_any_expected = 0;
222 mb();
224 /* If Type1 access, must reset T2 CFG so normal IO space ops work. */
225 if (type1) {
226 *(vulp)T2_HAE_3 = t2_cfg;
227 mb();
230 return value;
233 static void
234 conf_write(unsigned long addr, unsigned int value, unsigned char type1)
236 unsigned int cpu, taken;
237 unsigned long t2_cfg = 0;
239 cpu = smp_processor_id();
241 /* If Type1 access, must set T2 CFG. */
242 if (type1) {
243 t2_cfg = *(vulp)T2_HAE_3 & ~0xc0000000UL;
244 *(vulp)T2_HAE_3 = t2_cfg | 0x40000000UL;
245 mb();
247 mb();
248 draina();
250 mcheck_expected(cpu) = 1;
251 mcheck_taken(cpu) = 0;
252 t2_mcheck_any_expected |= (1 << cpu);
253 mb();
255 /* Access configuration space. */
256 *(vuip)addr = value;
257 mb();
258 mb(); /* magic */
260 /* Wait for possible mcheck. Also, this lets other CPUs clear
261 their mchecks as well, as they can reliably tell when
262 this CPU is in the midst of handling a real mcheck via
263 the "taken" function. */
264 udelay(100);
266 if ((taken = mcheck_taken(cpu))) {
267 mcheck_taken(cpu) = 0;
268 t2_mcheck_last_taken |= (1 << cpu);
269 mb();
271 mcheck_expected(cpu) = 0;
272 t2_mcheck_any_expected = 0;
273 mb();
275 /* If Type1 access, must reset T2 CFG so normal IO space ops work. */
276 if (type1) {
277 *(vulp)T2_HAE_3 = t2_cfg;
278 mb();
282 static int
283 t2_read_config(struct pci_bus *bus, unsigned int devfn, int where,
284 int size, u32 *value)
286 unsigned long addr, pci_addr;
287 unsigned char type1;
288 int shift;
289 long mask;
291 if (mk_conf_addr(bus, devfn, where, &pci_addr, &type1))
292 return PCIBIOS_DEVICE_NOT_FOUND;
294 mask = (size - 1) * 8;
295 shift = (where & 3) * 8;
296 addr = (pci_addr << 5) + mask + T2_CONF;
297 *value = conf_read(addr, type1) >> (shift);
298 return PCIBIOS_SUCCESSFUL;
301 static int
302 t2_write_config(struct pci_bus *bus, unsigned int devfn, int where, int size,
303 u32 value)
305 unsigned long addr, pci_addr;
306 unsigned char type1;
307 long mask;
309 if (mk_conf_addr(bus, devfn, where, &pci_addr, &type1))
310 return PCIBIOS_DEVICE_NOT_FOUND;
312 mask = (size - 1) * 8;
313 addr = (pci_addr << 5) + mask + T2_CONF;
314 conf_write(addr, value << ((where & 3) * 8), type1);
315 return PCIBIOS_SUCCESSFUL;
318 struct pci_ops t2_pci_ops =
320 .read = t2_read_config,
321 .write = t2_write_config,
324 static void __init
325 t2_direct_map_window1(unsigned long base, unsigned long length)
327 unsigned long temp;
329 __direct_map_base = base;
330 __direct_map_size = length;
332 temp = (base & 0xfff00000UL) | ((base + length - 1) >> 20);
333 *(vulp)T2_WBASE1 = temp | 0x80000UL; /* OR in ENABLE bit */
334 temp = (length - 1) & 0xfff00000UL;
335 *(vulp)T2_WMASK1 = temp;
336 *(vulp)T2_TBASE1 = 0;
338 #if DEBUG_PRINT_FINAL_SETTINGS
339 printk("%s: setting WBASE1=0x%lx WMASK1=0x%lx TBASE1=0x%lx\n",
340 __func__, *(vulp)T2_WBASE1, *(vulp)T2_WMASK1, *(vulp)T2_TBASE1);
341 #endif
344 static void __init
345 t2_sg_map_window2(struct pci_controller *hose,
346 unsigned long base,
347 unsigned long length)
349 unsigned long temp;
351 /* Note we can only do 1 SG window, as the other is for direct, so
352 do an ISA SG area, especially for the floppy. */
353 hose->sg_isa = iommu_arena_new(hose, base, length, 0);
354 hose->sg_pci = NULL;
356 temp = (base & 0xfff00000UL) | ((base + length - 1) >> 20);
357 *(vulp)T2_WBASE2 = temp | 0xc0000UL; /* OR in ENABLE/SG bits */
358 temp = (length - 1) & 0xfff00000UL;
359 *(vulp)T2_WMASK2 = temp;
360 *(vulp)T2_TBASE2 = virt_to_phys(hose->sg_isa->ptes) >> 1;
361 mb();
363 t2_pci_tbi(hose, 0, -1); /* flush TLB all */
365 #if DEBUG_PRINT_FINAL_SETTINGS
366 printk("%s: setting WBASE2=0x%lx WMASK2=0x%lx TBASE2=0x%lx\n",
367 __func__, *(vulp)T2_WBASE2, *(vulp)T2_WMASK2, *(vulp)T2_TBASE2);
368 #endif
371 static void __init
372 t2_save_configuration(void)
374 #if DEBUG_PRINT_INITIAL_SETTINGS
375 printk("%s: HAE_1 was 0x%lx\n", __func__, srm_hae); /* HW is 0 */
376 printk("%s: HAE_2 was 0x%lx\n", __func__, *(vulp)T2_HAE_2);
377 printk("%s: HAE_3 was 0x%lx\n", __func__, *(vulp)T2_HAE_3);
378 printk("%s: HAE_4 was 0x%lx\n", __func__, *(vulp)T2_HAE_4);
379 printk("%s: HBASE was 0x%lx\n", __func__, *(vulp)T2_HBASE);
381 printk("%s: WBASE1=0x%lx WMASK1=0x%lx TBASE1=0x%lx\n", __func__,
382 *(vulp)T2_WBASE1, *(vulp)T2_WMASK1, *(vulp)T2_TBASE1);
383 printk("%s: WBASE2=0x%lx WMASK2=0x%lx TBASE2=0x%lx\n", __func__,
384 *(vulp)T2_WBASE2, *(vulp)T2_WMASK2, *(vulp)T2_TBASE2);
385 #endif
388 * Save the DMA Window registers.
390 t2_saved_config.window[0].wbase = *(vulp)T2_WBASE1;
391 t2_saved_config.window[0].wmask = *(vulp)T2_WMASK1;
392 t2_saved_config.window[0].tbase = *(vulp)T2_TBASE1;
393 t2_saved_config.window[1].wbase = *(vulp)T2_WBASE2;
394 t2_saved_config.window[1].wmask = *(vulp)T2_WMASK2;
395 t2_saved_config.window[1].tbase = *(vulp)T2_TBASE2;
397 t2_saved_config.hae_1 = srm_hae; /* HW is already set to 0 */
398 t2_saved_config.hae_2 = *(vulp)T2_HAE_2;
399 t2_saved_config.hae_3 = *(vulp)T2_HAE_3;
400 t2_saved_config.hae_4 = *(vulp)T2_HAE_4;
401 t2_saved_config.hbase = *(vulp)T2_HBASE;
404 void __init
405 t2_init_arch(void)
407 struct pci_controller *hose;
408 struct resource *hae_mem;
409 unsigned long temp;
410 unsigned int i;
412 for (i = 0; i < NR_CPUS; i++) {
413 mcheck_expected(i) = 0;
414 mcheck_taken(i) = 0;
416 t2_mcheck_any_expected = 0;
417 t2_mcheck_last_taken = 0;
419 /* Enable scatter/gather TLB use. */
420 temp = *(vulp)T2_IOCSR;
421 if (!(temp & (0x1UL << 26))) {
422 printk("t2_init_arch: enabling SG TLB, IOCSR was 0x%lx\n",
423 temp);
424 *(vulp)T2_IOCSR = temp | (0x1UL << 26);
425 mb();
426 *(vulp)T2_IOCSR; /* read it back to make sure */
429 t2_save_configuration();
432 * Create our single hose.
434 pci_isa_hose = hose = alloc_pci_controller();
435 hose->io_space = &ioport_resource;
436 hae_mem = alloc_resource();
437 hae_mem->start = 0;
438 hae_mem->end = T2_MEM_R1_MASK;
439 hae_mem->name = pci_hae0_name;
440 if (request_resource(&iomem_resource, hae_mem) < 0)
441 printk(KERN_ERR "Failed to request HAE_MEM\n");
442 hose->mem_space = hae_mem;
443 hose->index = 0;
445 hose->sparse_mem_base = T2_SPARSE_MEM - IDENT_ADDR;
446 hose->dense_mem_base = T2_DENSE_MEM - IDENT_ADDR;
447 hose->sparse_io_base = T2_IO - IDENT_ADDR;
448 hose->dense_io_base = 0;
451 * Set up the PCI->physical memory translation windows.
453 * Window 1 is direct mapped.
454 * Window 2 is scatter/gather (for ISA).
457 t2_direct_map_window1(T2_DIRECTMAP_START, T2_DIRECTMAP_LENGTH);
459 /* Always make an ISA DMA window. */
460 t2_sg_map_window2(hose, T2_ISA_SG_START, T2_ISA_SG_LENGTH);
462 *(vulp)T2_HBASE = 0x0; /* Disable HOLES. */
464 /* Zero HAE. */
465 *(vulp)T2_HAE_1 = 0; mb(); /* Sparse MEM HAE */
466 *(vulp)T2_HAE_2 = 0; mb(); /* Sparse I/O HAE */
467 *(vulp)T2_HAE_3 = 0; mb(); /* Config Space HAE */
470 * We also now zero out HAE_4, the dense memory HAE, so that
471 * we need not account for its "offset" when accessing dense
472 * memory resources which we allocated in our normal way. This
473 * HAE would need to stay untouched were we to keep the SRM
474 * resource settings.
476 * Thus we can now run standard X servers on SABLE/LYNX. :-)
478 *(vulp)T2_HAE_4 = 0; mb();
481 void
482 t2_kill_arch(int mode)
485 * Restore the DMA Window registers.
487 *(vulp)T2_WBASE1 = t2_saved_config.window[0].wbase;
488 *(vulp)T2_WMASK1 = t2_saved_config.window[0].wmask;
489 *(vulp)T2_TBASE1 = t2_saved_config.window[0].tbase;
490 *(vulp)T2_WBASE2 = t2_saved_config.window[1].wbase;
491 *(vulp)T2_WMASK2 = t2_saved_config.window[1].wmask;
492 *(vulp)T2_TBASE2 = t2_saved_config.window[1].tbase;
493 mb();
495 *(vulp)T2_HAE_1 = srm_hae;
496 *(vulp)T2_HAE_2 = t2_saved_config.hae_2;
497 *(vulp)T2_HAE_3 = t2_saved_config.hae_3;
498 *(vulp)T2_HAE_4 = t2_saved_config.hae_4;
499 *(vulp)T2_HBASE = t2_saved_config.hbase;
500 mb();
501 *(vulp)T2_HBASE; /* READ it back to ensure WRITE occurred. */
504 void
505 t2_pci_tbi(struct pci_controller *hose, dma_addr_t start, dma_addr_t end)
507 unsigned long t2_iocsr;
509 t2_iocsr = *(vulp)T2_IOCSR;
511 /* set the TLB Clear bit */
512 *(vulp)T2_IOCSR = t2_iocsr | (0x1UL << 28);
513 mb();
514 *(vulp)T2_IOCSR; /* read it back to make sure */
516 /* clear the TLB Clear bit */
517 *(vulp)T2_IOCSR = t2_iocsr & ~(0x1UL << 28);
518 mb();
519 *(vulp)T2_IOCSR; /* read it back to make sure */
522 #define SIC_SEIC (1UL << 33) /* System Event Clear */
524 static void
525 t2_clear_errors(int cpu)
527 struct sable_cpu_csr *cpu_regs;
529 cpu_regs = (struct sable_cpu_csr *)T2_CPUn_BASE(cpu);
531 cpu_regs->sic &= ~SIC_SEIC;
533 /* Clear CPU errors. */
534 cpu_regs->bcce |= cpu_regs->bcce;
535 cpu_regs->cbe |= cpu_regs->cbe;
536 cpu_regs->bcue |= cpu_regs->bcue;
537 cpu_regs->dter |= cpu_regs->dter;
539 *(vulp)T2_CERR1 |= *(vulp)T2_CERR1;
540 *(vulp)T2_PERR1 |= *(vulp)T2_PERR1;
542 mb();
543 mb(); /* magic */
547 * SABLE seems to have a "broadcast" style machine check, in that all
548 * CPUs receive it. And, the issuing CPU, in the case of PCI Config
549 * space read/write faults, will also receive a second mcheck, upon
550 * lowering IPL during completion processing in pci_read_config_byte()
551 * et al.
553 * Hence all the taken/expected/any_expected/last_taken stuff...
555 void
556 t2_machine_check(unsigned long vector, unsigned long la_ptr)
558 int cpu = smp_processor_id();
559 #ifdef CONFIG_VERBOSE_MCHECK
560 struct el_common *mchk_header = (struct el_common *)la_ptr;
561 #endif
563 /* Clear the error before any reporting. */
564 mb();
565 mb(); /* magic */
566 draina();
567 t2_clear_errors(cpu);
569 /* This should not actually be done until the logout frame is
570 examined, but, since we don't do that, go on and do this... */
571 wrmces(0x7);
572 mb();
574 /* Now, do testing for the anomalous conditions. */
575 if (!mcheck_expected(cpu) && t2_mcheck_any_expected) {
577 * FUNKY: Received mcheck on a CPU and not
578 * expecting it, but another CPU is expecting one.
580 * Just dismiss it for now on this CPU...
582 #ifdef CONFIG_VERBOSE_MCHECK
583 if (alpha_verbose_mcheck > 1) {
584 printk("t2_machine_check(cpu%d): any_expected 0x%x -"
585 " (assumed) spurious -"
586 " code 0x%x\n", cpu, t2_mcheck_any_expected,
587 (unsigned int)mchk_header->code);
589 #endif
590 return;
593 if (!mcheck_expected(cpu) && !t2_mcheck_any_expected) {
594 if (t2_mcheck_last_taken & (1 << cpu)) {
595 #ifdef CONFIG_VERBOSE_MCHECK
596 if (alpha_verbose_mcheck > 1) {
597 printk("t2_machine_check(cpu%d): last_taken 0x%x - "
598 "unexpected mcheck - code 0x%x\n",
599 cpu, t2_mcheck_last_taken,
600 (unsigned int)mchk_header->code);
602 #endif
603 t2_mcheck_last_taken = 0;
604 mb();
605 return;
606 } else {
607 t2_mcheck_last_taken = 0;
608 mb();
612 #ifdef CONFIG_VERBOSE_MCHECK
613 if (alpha_verbose_mcheck > 1) {
614 printk("%s t2_mcheck(cpu%d): last_taken 0x%x - "
615 "any_expected 0x%x - code 0x%x\n",
616 (mcheck_expected(cpu) ? "EX" : "UN"), cpu,
617 t2_mcheck_last_taken, t2_mcheck_any_expected,
618 (unsigned int)mchk_header->code);
620 #endif
622 process_mcheck_info(vector, la_ptr, "T2", mcheck_expected(cpu));