2 * arch/alpha/kernel/traps.c
4 * (C) Copyright 1994 Linus Torvalds
8 * This file initializes the trap entry points
11 #include <linux/jiffies.h>
13 #include <linux/sched.h>
14 #include <linux/tty.h>
15 #include <linux/delay.h>
16 #include <linux/module.h>
17 #include <linux/init.h>
18 #include <linux/kallsyms.h>
19 #include <linux/ratelimit.h>
21 #include <asm/gentrap.h>
22 #include <asm/uaccess.h>
23 #include <asm/unaligned.h>
24 #include <asm/sysinfo.h>
25 #include <asm/hwrpb.h>
26 #include <asm/mmu_context.h>
27 #include <asm/special_insns.h>
31 /* Work-around for some SRMs which mishandle opDEC faults. */
38 __asm__
__volatile__ (
39 /* Load the address of... */
41 /* A stub instruction fault handler. Just add 4 to the
47 /* Install the instruction fault handler. */
49 " call_pal %[wrent]\n"
50 /* With that in place, the fault from the round-to-minf fp
51 insn will arrive either at the "lda 4" insn (bad) or one
52 past that (good). This places the correct fixup in %0. */
54 " cvttq/svm $f31,$f31\n"
56 : [fix
] "=r" (opDEC_fix
)
57 : [rti
] "n" (PAL_rti
), [wrent
] "n" (PAL_wrent
)
58 : "$0", "$1", "$16", "$17", "$22", "$23", "$24", "$25");
61 printk("opDEC fixup enabled.\n");
65 dik_show_regs(struct pt_regs
*regs
, unsigned long *r9_15
)
67 printk("pc = [<%016lx>] ra = [<%016lx>] ps = %04lx %s\n",
68 regs
->pc
, regs
->r26
, regs
->ps
, print_tainted());
69 print_symbol("pc is at %s\n", regs
->pc
);
70 print_symbol("ra is at %s\n", regs
->r26
);
71 printk("v0 = %016lx t0 = %016lx t1 = %016lx\n",
72 regs
->r0
, regs
->r1
, regs
->r2
);
73 printk("t2 = %016lx t3 = %016lx t4 = %016lx\n",
74 regs
->r3
, regs
->r4
, regs
->r5
);
75 printk("t5 = %016lx t6 = %016lx t7 = %016lx\n",
76 regs
->r6
, regs
->r7
, regs
->r8
);
79 printk("s0 = %016lx s1 = %016lx s2 = %016lx\n",
80 r9_15
[9], r9_15
[10], r9_15
[11]);
81 printk("s3 = %016lx s4 = %016lx s5 = %016lx\n",
82 r9_15
[12], r9_15
[13], r9_15
[14]);
83 printk("s6 = %016lx\n", r9_15
[15]);
86 printk("a0 = %016lx a1 = %016lx a2 = %016lx\n",
87 regs
->r16
, regs
->r17
, regs
->r18
);
88 printk("a3 = %016lx a4 = %016lx a5 = %016lx\n",
89 regs
->r19
, regs
->r20
, regs
->r21
);
90 printk("t8 = %016lx t9 = %016lx t10= %016lx\n",
91 regs
->r22
, regs
->r23
, regs
->r24
);
92 printk("t11= %016lx pv = %016lx at = %016lx\n",
93 regs
->r25
, regs
->r27
, regs
->r28
);
94 printk("gp = %016lx sp = %p\n", regs
->gp
, regs
+1);
101 static char * ireg_name
[] = {"v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
102 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "s6",
103 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
104 "t10", "t11", "ra", "pv", "at", "gp", "sp", "zero"};
108 dik_show_code(unsigned int *pc
)
113 for (i
= -6; i
< 2; i
++) {
115 if (__get_user(insn
, (unsigned int __user
*)pc
+ i
))
117 printk("%c%08x%c", i
? ' ' : '<', insn
, i
? ' ' : '>');
123 dik_show_trace(unsigned long *sp
)
127 while (0x1ff8 & (unsigned long) sp
) {
128 extern char _stext
[], _etext
[];
129 unsigned long tmp
= *sp
;
131 if (tmp
< (unsigned long) &_stext
)
133 if (tmp
>= (unsigned long) &_etext
)
135 printk("[<%lx>]", tmp
);
136 print_symbol(" %s", tmp
);
146 static int kstack_depth_to_print
= 24;
148 void show_stack(struct task_struct
*task
, unsigned long *sp
)
150 unsigned long *stack
;
154 * debugging aid: "show_stack(NULL);" prints the
155 * back trace for this cpu.
158 sp
=(unsigned long*)&sp
;
161 for(i
=0; i
< kstack_depth_to_print
; i
++) {
162 if (((long) stack
& (THREAD_SIZE
-1)) == 0)
164 if (i
&& ((i
% 4) == 0))
166 printk("%016lx ", *stack
++);
172 void dump_stack(void)
174 show_stack(NULL
, NULL
);
177 EXPORT_SYMBOL(dump_stack
);
180 die_if_kernel(char * str
, struct pt_regs
*regs
, long err
, unsigned long *r9_15
)
185 printk("CPU %d ", hard_smp_processor_id());
187 printk("%s(%d): %s %ld\n", current
->comm
, task_pid_nr(current
), str
, err
);
188 dik_show_regs(regs
, r9_15
);
189 add_taint(TAINT_DIE
);
190 dik_show_trace((unsigned long *)(regs
+1));
191 dik_show_code((unsigned int *)regs
->pc
);
193 if (test_and_set_thread_flag (TIF_DIE_IF_KERNEL
)) {
194 printk("die_if_kernel recursion detected.\n");
201 #ifndef CONFIG_MATHEMU
202 static long dummy_emul(void) { return 0; }
203 long (*alpha_fp_emul_imprecise
)(struct pt_regs
*regs
, unsigned long writemask
)
204 = (void *)dummy_emul
;
205 long (*alpha_fp_emul
) (unsigned long pc
)
206 = (void *)dummy_emul
;
208 long alpha_fp_emul_imprecise(struct pt_regs
*regs
, unsigned long writemask
);
209 long alpha_fp_emul (unsigned long pc
);
213 do_entArith(unsigned long summary
, unsigned long write_mask
,
214 struct pt_regs
*regs
)
216 long si_code
= FPE_FLTINV
;
220 /* Software-completion summary bit is set, so try to
221 emulate the instruction. If the processor supports
222 precise exceptions, we don't have to search. */
223 if (!amask(AMASK_PRECISE_TRAP
))
224 si_code
= alpha_fp_emul(regs
->pc
- 4);
226 si_code
= alpha_fp_emul_imprecise(regs
, write_mask
);
230 die_if_kernel("Arithmetic fault", regs
, 0, NULL
);
232 info
.si_signo
= SIGFPE
;
234 info
.si_code
= si_code
;
235 info
.si_addr
= (void __user
*) regs
->pc
;
236 send_sig_info(SIGFPE
, &info
, current
);
240 do_entIF(unsigned long type
, struct pt_regs
*regs
)
245 if ((regs
->ps
& ~IPL_MAX
) == 0) {
247 const unsigned int *data
248 = (const unsigned int *) regs
->pc
;
249 printk("Kernel bug at %s:%d\n",
250 (const char *)(data
[1] | (long)data
[2] << 32),
253 die_if_kernel((type
== 1 ? "Kernel Bug" : "Instruction fault"),
258 case 0: /* breakpoint */
259 info
.si_signo
= SIGTRAP
;
261 info
.si_code
= TRAP_BRKPT
;
263 info
.si_addr
= (void __user
*) regs
->pc
;
265 if (ptrace_cancel_bpt(current
)) {
266 regs
->pc
-= 4; /* make pc point to former bpt */
269 send_sig_info(SIGTRAP
, &info
, current
);
272 case 1: /* bugcheck */
273 info
.si_signo
= SIGTRAP
;
275 info
.si_code
= __SI_FAULT
;
276 info
.si_addr
= (void __user
*) regs
->pc
;
278 send_sig_info(SIGTRAP
, &info
, current
);
281 case 2: /* gentrap */
282 info
.si_addr
= (void __user
*) regs
->pc
;
283 info
.si_trapno
= regs
->r16
;
284 switch ((long) regs
->r16
) {
341 info
.si_signo
= signo
;
344 info
.si_addr
= (void __user
*) regs
->pc
;
345 send_sig_info(signo
, &info
, current
);
349 if (implver() == IMPLVER_EV4
) {
352 /* The some versions of SRM do not handle
353 the opDEC properly - they return the PC of the
354 opDEC fault, not the instruction after as the
355 Alpha architecture requires. Here we fix it up.
356 We do this by intentionally causing an opDEC
357 fault during the boot sequence and testing if
358 we get the correct PC. If not, we set a flag
359 to correct it every time through. */
360 regs
->pc
+= opDEC_fix
;
362 /* EV4 does not implement anything except normal
363 rounding. Everything else will come here as
364 an illegal instruction. Emulate them. */
365 si_code
= alpha_fp_emul(regs
->pc
- 4);
369 info
.si_signo
= SIGFPE
;
371 info
.si_code
= si_code
;
372 info
.si_addr
= (void __user
*) regs
->pc
;
373 send_sig_info(SIGFPE
, &info
, current
);
379 case 3: /* FEN fault */
380 /* Irritating users can call PAL_clrfen to disable the
381 FPU for the process. The kernel will then trap in
382 do_switch_stack and undo_switch_stack when we try
383 to save and restore the FP registers.
385 Given that GCC by default generates code that uses the
386 FP registers, PAL_clrfen is not useful except for DoS
387 attacks. So turn the bleeding FPU back on and be done
389 current_thread_info()->pcb
.flags
|= 1;
390 __reload_thread(¤t_thread_info()->pcb
);
394 default: /* unexpected instruction-fault type */
398 info
.si_signo
= SIGILL
;
400 info
.si_code
= ILL_ILLOPC
;
401 info
.si_addr
= (void __user
*) regs
->pc
;
402 send_sig_info(SIGILL
, &info
, current
);
405 /* There is an ifdef in the PALcode in MILO that enables a
406 "kernel debugging entry point" as an unprivileged call_pal.
408 We don't want to have anything to do with it, but unfortunately
409 several versions of MILO included in distributions have it enabled,
410 and if we don't put something on the entry point we'll oops. */
413 do_entDbg(struct pt_regs
*regs
)
417 die_if_kernel("Instruction fault", regs
, 0, NULL
);
419 info
.si_signo
= SIGILL
;
421 info
.si_code
= ILL_ILLOPC
;
422 info
.si_addr
= (void __user
*) regs
->pc
;
423 force_sig_info(SIGILL
, &info
, current
);
428 * entUna has a different register layout to be reasonably simple. It
429 * needs access to all the integer registers (the kernel doesn't use
430 * fp-regs), and it needs to have them in order for simpler access.
432 * Due to the non-standard register layout (and because we don't want
433 * to handle floating-point regs), user-mode unaligned accesses are
434 * handled separately by do_entUnaUser below.
436 * Oh, btw, we don't handle the "gp" register correctly, but if we fault
437 * on a gp-register unaligned load/store, something is _very_ wrong
438 * in the kernel anyway..
441 unsigned long regs
[32];
442 unsigned long ps
, pc
, gp
, a0
, a1
, a2
;
445 struct unaligned_stat
{
446 unsigned long count
, va
, pc
;
450 /* Macro for exception fixup code to access integer registers. */
451 #define una_reg(r) (_regs[(r) >= 16 && (r) <= 18 ? (r)+19 : (r)])
455 do_entUna(void * va
, unsigned long opcode
, unsigned long reg
,
456 struct allregs
*regs
)
458 long error
, tmp1
, tmp2
, tmp3
, tmp4
;
459 unsigned long pc
= regs
->pc
- 4;
460 unsigned long *_regs
= regs
->regs
;
461 const struct exception_table_entry
*fixup
;
463 unaligned
[0].count
++;
464 unaligned
[0].va
= (unsigned long) va
;
465 unaligned
[0].pc
= pc
;
467 /* We don't want to use the generic get/put unaligned macros as
468 we want to trap exceptions. Only if we actually get an
469 exception will we decide whether we should have caught it. */
472 case 0x0c: /* ldwu */
473 __asm__
__volatile__(
474 "1: ldq_u %1,0(%3)\n"
475 "2: ldq_u %2,1(%3)\n"
479 ".section __ex_table,\"a\"\n"
481 " lda %1,3b-1b(%0)\n"
483 " lda %2,3b-2b(%0)\n"
485 : "=r"(error
), "=&r"(tmp1
), "=&r"(tmp2
)
489 una_reg(reg
) = tmp1
|tmp2
;
493 __asm__
__volatile__(
494 "1: ldq_u %1,0(%3)\n"
495 "2: ldq_u %2,3(%3)\n"
499 ".section __ex_table,\"a\"\n"
501 " lda %1,3b-1b(%0)\n"
503 " lda %2,3b-2b(%0)\n"
505 : "=r"(error
), "=&r"(tmp1
), "=&r"(tmp2
)
509 una_reg(reg
) = (int)(tmp1
|tmp2
);
513 __asm__
__volatile__(
514 "1: ldq_u %1,0(%3)\n"
515 "2: ldq_u %2,7(%3)\n"
519 ".section __ex_table,\"a\"\n"
521 " lda %1,3b-1b(%0)\n"
523 " lda %2,3b-2b(%0)\n"
525 : "=r"(error
), "=&r"(tmp1
), "=&r"(tmp2
)
529 una_reg(reg
) = tmp1
|tmp2
;
532 /* Note that the store sequences do not indicate that they change
533 memory because it _should_ be affecting nothing in this context.
534 (Otherwise we have other, much larger, problems.) */
536 __asm__
__volatile__(
537 "1: ldq_u %2,1(%5)\n"
538 "2: ldq_u %1,0(%5)\n"
545 "3: stq_u %2,1(%5)\n"
546 "4: stq_u %1,0(%5)\n"
548 ".section __ex_table,\"a\"\n"
550 " lda %2,5b-1b(%0)\n"
552 " lda %1,5b-2b(%0)\n"
554 " lda $31,5b-3b(%0)\n"
556 " lda $31,5b-4b(%0)\n"
558 : "=r"(error
), "=&r"(tmp1
), "=&r"(tmp2
),
559 "=&r"(tmp3
), "=&r"(tmp4
)
560 : "r"(va
), "r"(una_reg(reg
)), "0"(0));
566 __asm__
__volatile__(
567 "1: ldq_u %2,3(%5)\n"
568 "2: ldq_u %1,0(%5)\n"
575 "3: stq_u %2,3(%5)\n"
576 "4: stq_u %1,0(%5)\n"
578 ".section __ex_table,\"a\"\n"
580 " lda %2,5b-1b(%0)\n"
582 " lda %1,5b-2b(%0)\n"
584 " lda $31,5b-3b(%0)\n"
586 " lda $31,5b-4b(%0)\n"
588 : "=r"(error
), "=&r"(tmp1
), "=&r"(tmp2
),
589 "=&r"(tmp3
), "=&r"(tmp4
)
590 : "r"(va
), "r"(una_reg(reg
)), "0"(0));
596 __asm__
__volatile__(
597 "1: ldq_u %2,7(%5)\n"
598 "2: ldq_u %1,0(%5)\n"
605 "3: stq_u %2,7(%5)\n"
606 "4: stq_u %1,0(%5)\n"
608 ".section __ex_table,\"a\"\n\t"
610 " lda %2,5b-1b(%0)\n"
612 " lda %1,5b-2b(%0)\n"
614 " lda $31,5b-3b(%0)\n"
616 " lda $31,5b-4b(%0)\n"
618 : "=r"(error
), "=&r"(tmp1
), "=&r"(tmp2
),
619 "=&r"(tmp3
), "=&r"(tmp4
)
620 : "r"(va
), "r"(una_reg(reg
)), "0"(0));
626 printk("Bad unaligned kernel access at %016lx: %p %lx %lu\n",
627 pc
, va
, opcode
, reg
);
631 /* Ok, we caught the exception, but we don't want it. Is there
632 someone to pass it along to? */
633 if ((fixup
= search_exception_tables(pc
)) != 0) {
635 newpc
= fixup_exception(una_reg
, fixup
, pc
);
637 printk("Forwarding unaligned exception at %lx (%lx)\n",
645 * Yikes! No one to forward the exception to.
646 * Since the registers are in a weird format, dump them ourselves.
649 printk("%s(%d): unhandled unaligned exception\n",
650 current
->comm
, task_pid_nr(current
));
652 printk("pc = [<%016lx>] ra = [<%016lx>] ps = %04lx\n",
653 pc
, una_reg(26), regs
->ps
);
654 printk("r0 = %016lx r1 = %016lx r2 = %016lx\n",
655 una_reg(0), una_reg(1), una_reg(2));
656 printk("r3 = %016lx r4 = %016lx r5 = %016lx\n",
657 una_reg(3), una_reg(4), una_reg(5));
658 printk("r6 = %016lx r7 = %016lx r8 = %016lx\n",
659 una_reg(6), una_reg(7), una_reg(8));
660 printk("r9 = %016lx r10= %016lx r11= %016lx\n",
661 una_reg(9), una_reg(10), una_reg(11));
662 printk("r12= %016lx r13= %016lx r14= %016lx\n",
663 una_reg(12), una_reg(13), una_reg(14));
664 printk("r15= %016lx\n", una_reg(15));
665 printk("r16= %016lx r17= %016lx r18= %016lx\n",
666 una_reg(16), una_reg(17), una_reg(18));
667 printk("r19= %016lx r20= %016lx r21= %016lx\n",
668 una_reg(19), una_reg(20), una_reg(21));
669 printk("r22= %016lx r23= %016lx r24= %016lx\n",
670 una_reg(22), una_reg(23), una_reg(24));
671 printk("r25= %016lx r27= %016lx r28= %016lx\n",
672 una_reg(25), una_reg(27), una_reg(28));
673 printk("gp = %016lx sp = %p\n", regs
->gp
, regs
+1);
675 dik_show_code((unsigned int *)pc
);
676 dik_show_trace((unsigned long *)(regs
+1));
678 if (test_and_set_thread_flag (TIF_DIE_IF_KERNEL
)) {
679 printk("die_if_kernel recursion detected.\n");
687 * Convert an s-floating point value in memory format to the
688 * corresponding value in register format. The exponent
689 * needs to be remapped to preserve non-finite values
690 * (infinities, not-a-numbers, denormals).
692 static inline unsigned long
693 s_mem_to_reg (unsigned long s_mem
)
695 unsigned long frac
= (s_mem
>> 0) & 0x7fffff;
696 unsigned long sign
= (s_mem
>> 31) & 0x1;
697 unsigned long exp_msb
= (s_mem
>> 30) & 0x1;
698 unsigned long exp_low
= (s_mem
>> 23) & 0x7f;
701 exp
= (exp_msb
<< 10) | exp_low
; /* common case */
703 if (exp_low
== 0x7f) {
707 if (exp_low
== 0x00) {
713 return (sign
<< 63) | (exp
<< 52) | (frac
<< 29);
717 * Convert an s-floating point value in register format to the
718 * corresponding value in memory format.
720 static inline unsigned long
721 s_reg_to_mem (unsigned long s_reg
)
723 return ((s_reg
>> 62) << 30) | ((s_reg
<< 5) >> 34);
727 * Handle user-level unaligned fault. Handling user-level unaligned
728 * faults is *extremely* slow and produces nasty messages. A user
729 * program *should* fix unaligned faults ASAP.
731 * Notice that we have (almost) the regular kernel stack layout here,
732 * so finding the appropriate registers is a little more difficult
733 * than in the kernel case.
735 * Finally, we handle regular integer load/stores only. In
736 * particular, load-linked/store-conditionally and floating point
737 * load/stores are not supported. The former make no sense with
738 * unaligned faults (they are guaranteed to fail) and I don't think
739 * the latter will occur in any decent program.
741 * Sigh. We *do* have to handle some FP operations, because GCC will
742 * uses them as temporary storage for integer memory to memory copies.
743 * However, we need to deal with stt/ldt and sts/lds only.
746 #define OP_INT_MASK ( 1L << 0x28 | 1L << 0x2c /* ldl stl */ \
747 | 1L << 0x29 | 1L << 0x2d /* ldq stq */ \
748 | 1L << 0x0c | 1L << 0x0d /* ldwu stw */ \
749 | 1L << 0x0a | 1L << 0x0e ) /* ldbu stb */
751 #define OP_WRITE_MASK ( 1L << 0x26 | 1L << 0x27 /* sts stt */ \
752 | 1L << 0x2c | 1L << 0x2d /* stl stq */ \
753 | 1L << 0x0d | 1L << 0x0e ) /* stw stb */
755 #define R(x) ((size_t) &((struct pt_regs *)0)->x)
757 static int unauser_reg_offsets
[32] = {
758 R(r0
), R(r1
), R(r2
), R(r3
), R(r4
), R(r5
), R(r6
), R(r7
), R(r8
),
759 /* r9 ... r15 are stored in front of regs. */
760 -56, -48, -40, -32, -24, -16, -8,
761 R(r16
), R(r17
), R(r18
),
762 R(r19
), R(r20
), R(r21
), R(r22
), R(r23
), R(r24
), R(r25
), R(r26
),
763 R(r27
), R(r28
), R(gp
),
770 do_entUnaUser(void __user
* va
, unsigned long opcode
,
771 unsigned long reg
, struct pt_regs
*regs
)
773 static DEFINE_RATELIMIT_STATE(ratelimit
, 5 * HZ
, 5);
775 unsigned long tmp1
, tmp2
, tmp3
, tmp4
;
776 unsigned long fake_reg
, *reg_addr
= &fake_reg
;
780 /* Check the UAC bits to decide what the user wants us to do
781 with the unaliged access. */
783 if (!(current_thread_info()->status
& TS_UAC_NOPRINT
)) {
784 if (__ratelimit(&ratelimit
)) {
785 printk("%s(%d): unaligned trap at %016lx: %p %lx %ld\n",
786 current
->comm
, task_pid_nr(current
),
787 regs
->pc
- 4, va
, opcode
, reg
);
790 if ((current_thread_info()->status
& TS_UAC_SIGBUS
))
792 /* Not sure why you'd want to use this, but... */
793 if ((current_thread_info()->status
& TS_UAC_NOFIX
))
796 /* Don't bother reading ds in the access check since we already
797 know that this came from the user. Also rely on the fact that
798 the page at TASK_SIZE is unmapped and so can't be touched anyway. */
799 if (!__access_ok((unsigned long)va
, 0, USER_DS
))
802 ++unaligned
[1].count
;
803 unaligned
[1].va
= (unsigned long)va
;
804 unaligned
[1].pc
= regs
->pc
- 4;
806 if ((1L << opcode
) & OP_INT_MASK
) {
807 /* it's an integer load/store */
809 reg_addr
= (unsigned long *)
810 ((char *)regs
+ unauser_reg_offsets
[reg
]);
811 } else if (reg
== 30) {
812 /* usp in PAL regs */
815 /* zero "register" */
820 /* We don't want to use the generic get/put unaligned macros as
821 we want to trap exceptions. Only if we actually get an
822 exception will we decide whether we should have caught it. */
825 case 0x0c: /* ldwu */
826 __asm__
__volatile__(
827 "1: ldq_u %1,0(%3)\n"
828 "2: ldq_u %2,1(%3)\n"
832 ".section __ex_table,\"a\"\n"
834 " lda %1,3b-1b(%0)\n"
836 " lda %2,3b-2b(%0)\n"
838 : "=r"(error
), "=&r"(tmp1
), "=&r"(tmp2
)
842 *reg_addr
= tmp1
|tmp2
;
846 __asm__
__volatile__(
847 "1: ldq_u %1,0(%3)\n"
848 "2: ldq_u %2,3(%3)\n"
852 ".section __ex_table,\"a\"\n"
854 " lda %1,3b-1b(%0)\n"
856 " lda %2,3b-2b(%0)\n"
858 : "=r"(error
), "=&r"(tmp1
), "=&r"(tmp2
)
862 alpha_write_fp_reg(reg
, s_mem_to_reg((int)(tmp1
|tmp2
)));
866 __asm__
__volatile__(
867 "1: ldq_u %1,0(%3)\n"
868 "2: ldq_u %2,7(%3)\n"
872 ".section __ex_table,\"a\"\n"
874 " lda %1,3b-1b(%0)\n"
876 " lda %2,3b-2b(%0)\n"
878 : "=r"(error
), "=&r"(tmp1
), "=&r"(tmp2
)
882 alpha_write_fp_reg(reg
, tmp1
|tmp2
);
886 __asm__
__volatile__(
887 "1: ldq_u %1,0(%3)\n"
888 "2: ldq_u %2,3(%3)\n"
892 ".section __ex_table,\"a\"\n"
894 " lda %1,3b-1b(%0)\n"
896 " lda %2,3b-2b(%0)\n"
898 : "=r"(error
), "=&r"(tmp1
), "=&r"(tmp2
)
902 *reg_addr
= (int)(tmp1
|tmp2
);
906 __asm__
__volatile__(
907 "1: ldq_u %1,0(%3)\n"
908 "2: ldq_u %2,7(%3)\n"
912 ".section __ex_table,\"a\"\n"
914 " lda %1,3b-1b(%0)\n"
916 " lda %2,3b-2b(%0)\n"
918 : "=r"(error
), "=&r"(tmp1
), "=&r"(tmp2
)
922 *reg_addr
= tmp1
|tmp2
;
925 /* Note that the store sequences do not indicate that they change
926 memory because it _should_ be affecting nothing in this context.
927 (Otherwise we have other, much larger, problems.) */
929 __asm__
__volatile__(
930 "1: ldq_u %2,1(%5)\n"
931 "2: ldq_u %1,0(%5)\n"
938 "3: stq_u %2,1(%5)\n"
939 "4: stq_u %1,0(%5)\n"
941 ".section __ex_table,\"a\"\n"
943 " lda %2,5b-1b(%0)\n"
945 " lda %1,5b-2b(%0)\n"
947 " lda $31,5b-3b(%0)\n"
949 " lda $31,5b-4b(%0)\n"
951 : "=r"(error
), "=&r"(tmp1
), "=&r"(tmp2
),
952 "=&r"(tmp3
), "=&r"(tmp4
)
953 : "r"(va
), "r"(*reg_addr
), "0"(0));
959 fake_reg
= s_reg_to_mem(alpha_read_fp_reg(reg
));
963 __asm__
__volatile__(
964 "1: ldq_u %2,3(%5)\n"
965 "2: ldq_u %1,0(%5)\n"
972 "3: stq_u %2,3(%5)\n"
973 "4: stq_u %1,0(%5)\n"
975 ".section __ex_table,\"a\"\n"
977 " lda %2,5b-1b(%0)\n"
979 " lda %1,5b-2b(%0)\n"
981 " lda $31,5b-3b(%0)\n"
983 " lda $31,5b-4b(%0)\n"
985 : "=r"(error
), "=&r"(tmp1
), "=&r"(tmp2
),
986 "=&r"(tmp3
), "=&r"(tmp4
)
987 : "r"(va
), "r"(*reg_addr
), "0"(0));
993 fake_reg
= alpha_read_fp_reg(reg
);
997 __asm__
__volatile__(
998 "1: ldq_u %2,7(%5)\n"
999 "2: ldq_u %1,0(%5)\n"
1006 "3: stq_u %2,7(%5)\n"
1007 "4: stq_u %1,0(%5)\n"
1009 ".section __ex_table,\"a\"\n\t"
1011 " lda %2,5b-1b(%0)\n"
1013 " lda %1,5b-2b(%0)\n"
1015 " lda $31,5b-3b(%0)\n"
1017 " lda $31,5b-4b(%0)\n"
1019 : "=r"(error
), "=&r"(tmp1
), "=&r"(tmp2
),
1020 "=&r"(tmp3
), "=&r"(tmp4
)
1021 : "r"(va
), "r"(*reg_addr
), "0"(0));
1027 /* What instruction were you trying to use, exactly? */
1031 /* Only integer loads should get here; everyone else returns early. */
1037 regs
->pc
-= 4; /* make pc point to faulting insn */
1038 info
.si_signo
= SIGSEGV
;
1041 /* We need to replicate some of the logic in mm/fault.c,
1042 since we don't have access to the fault code in the
1043 exception handling return path. */
1044 if (!__access_ok((unsigned long)va
, 0, USER_DS
))
1045 info
.si_code
= SEGV_ACCERR
;
1047 struct mm_struct
*mm
= current
->mm
;
1048 down_read(&mm
->mmap_sem
);
1049 if (find_vma(mm
, (unsigned long)va
))
1050 info
.si_code
= SEGV_ACCERR
;
1052 info
.si_code
= SEGV_MAPERR
;
1053 up_read(&mm
->mmap_sem
);
1056 send_sig_info(SIGSEGV
, &info
, current
);
1061 info
.si_signo
= SIGBUS
;
1063 info
.si_code
= BUS_ADRALN
;
1065 send_sig_info(SIGBUS
, &info
, current
);
1072 /* Tell PAL-code what global pointer we want in the kernel. */
1073 register unsigned long gptr
__asm__("$29");
1076 /* Hack for Multia (UDB) and JENSEN: some of their SRMs have
1077 a bug in the handling of the opDEC fault. Fix it up if so. */
1078 if (implver() == IMPLVER_EV4
)