Merge branch 'for-linus' of git://github.com/chrismason/linux
[linux/fpc-iii.git] / fs / splice.c
blobfa2defa8afcf3d18e2fd8fcebcc0a88f1d12fdac
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/buffer_head.h>
29 #include <linux/module.h>
30 #include <linux/syscalls.h>
31 #include <linux/uio.h>
32 #include <linux/security.h>
33 #include <linux/gfp.h>
36 * Attempt to steal a page from a pipe buffer. This should perhaps go into
37 * a vm helper function, it's already simplified quite a bit by the
38 * addition of remove_mapping(). If success is returned, the caller may
39 * attempt to reuse this page for another destination.
41 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
42 struct pipe_buffer *buf)
44 struct page *page = buf->page;
45 struct address_space *mapping;
47 lock_page(page);
49 mapping = page_mapping(page);
50 if (mapping) {
51 WARN_ON(!PageUptodate(page));
54 * At least for ext2 with nobh option, we need to wait on
55 * writeback completing on this page, since we'll remove it
56 * from the pagecache. Otherwise truncate wont wait on the
57 * page, allowing the disk blocks to be reused by someone else
58 * before we actually wrote our data to them. fs corruption
59 * ensues.
61 wait_on_page_writeback(page);
63 if (page_has_private(page) &&
64 !try_to_release_page(page, GFP_KERNEL))
65 goto out_unlock;
68 * If we succeeded in removing the mapping, set LRU flag
69 * and return good.
71 if (remove_mapping(mapping, page)) {
72 buf->flags |= PIPE_BUF_FLAG_LRU;
73 return 0;
78 * Raced with truncate or failed to remove page from current
79 * address space, unlock and return failure.
81 out_unlock:
82 unlock_page(page);
83 return 1;
86 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
87 struct pipe_buffer *buf)
89 page_cache_release(buf->page);
90 buf->flags &= ~PIPE_BUF_FLAG_LRU;
94 * Check whether the contents of buf is OK to access. Since the content
95 * is a page cache page, IO may be in flight.
97 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
98 struct pipe_buffer *buf)
100 struct page *page = buf->page;
101 int err;
103 if (!PageUptodate(page)) {
104 lock_page(page);
107 * Page got truncated/unhashed. This will cause a 0-byte
108 * splice, if this is the first page.
110 if (!page->mapping) {
111 err = -ENODATA;
112 goto error;
116 * Uh oh, read-error from disk.
118 if (!PageUptodate(page)) {
119 err = -EIO;
120 goto error;
124 * Page is ok afterall, we are done.
126 unlock_page(page);
129 return 0;
130 error:
131 unlock_page(page);
132 return err;
135 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
136 .can_merge = 0,
137 .map = generic_pipe_buf_map,
138 .unmap = generic_pipe_buf_unmap,
139 .confirm = page_cache_pipe_buf_confirm,
140 .release = page_cache_pipe_buf_release,
141 .steal = page_cache_pipe_buf_steal,
142 .get = generic_pipe_buf_get,
145 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
146 struct pipe_buffer *buf)
148 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
149 return 1;
151 buf->flags |= PIPE_BUF_FLAG_LRU;
152 return generic_pipe_buf_steal(pipe, buf);
155 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
156 .can_merge = 0,
157 .map = generic_pipe_buf_map,
158 .unmap = generic_pipe_buf_unmap,
159 .confirm = generic_pipe_buf_confirm,
160 .release = page_cache_pipe_buf_release,
161 .steal = user_page_pipe_buf_steal,
162 .get = generic_pipe_buf_get,
165 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
167 smp_mb();
168 if (waitqueue_active(&pipe->wait))
169 wake_up_interruptible(&pipe->wait);
170 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
174 * splice_to_pipe - fill passed data into a pipe
175 * @pipe: pipe to fill
176 * @spd: data to fill
178 * Description:
179 * @spd contains a map of pages and len/offset tuples, along with
180 * the struct pipe_buf_operations associated with these pages. This
181 * function will link that data to the pipe.
184 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
185 struct splice_pipe_desc *spd)
187 unsigned int spd_pages = spd->nr_pages;
188 int ret, do_wakeup, page_nr;
190 ret = 0;
191 do_wakeup = 0;
192 page_nr = 0;
194 pipe_lock(pipe);
196 for (;;) {
197 if (!pipe->readers) {
198 send_sig(SIGPIPE, current, 0);
199 if (!ret)
200 ret = -EPIPE;
201 break;
204 if (pipe->nrbufs < pipe->buffers) {
205 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
206 struct pipe_buffer *buf = pipe->bufs + newbuf;
208 buf->page = spd->pages[page_nr];
209 buf->offset = spd->partial[page_nr].offset;
210 buf->len = spd->partial[page_nr].len;
211 buf->private = spd->partial[page_nr].private;
212 buf->ops = spd->ops;
213 if (spd->flags & SPLICE_F_GIFT)
214 buf->flags |= PIPE_BUF_FLAG_GIFT;
216 pipe->nrbufs++;
217 page_nr++;
218 ret += buf->len;
220 if (pipe->inode)
221 do_wakeup = 1;
223 if (!--spd->nr_pages)
224 break;
225 if (pipe->nrbufs < pipe->buffers)
226 continue;
228 break;
231 if (spd->flags & SPLICE_F_NONBLOCK) {
232 if (!ret)
233 ret = -EAGAIN;
234 break;
237 if (signal_pending(current)) {
238 if (!ret)
239 ret = -ERESTARTSYS;
240 break;
243 if (do_wakeup) {
244 smp_mb();
245 if (waitqueue_active(&pipe->wait))
246 wake_up_interruptible_sync(&pipe->wait);
247 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
248 do_wakeup = 0;
251 pipe->waiting_writers++;
252 pipe_wait(pipe);
253 pipe->waiting_writers--;
256 pipe_unlock(pipe);
258 if (do_wakeup)
259 wakeup_pipe_readers(pipe);
261 while (page_nr < spd_pages)
262 spd->spd_release(spd, page_nr++);
264 return ret;
267 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
269 page_cache_release(spd->pages[i]);
273 * Check if we need to grow the arrays holding pages and partial page
274 * descriptions.
276 int splice_grow_spd(struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
278 if (pipe->buffers <= PIPE_DEF_BUFFERS)
279 return 0;
281 spd->pages = kmalloc(pipe->buffers * sizeof(struct page *), GFP_KERNEL);
282 spd->partial = kmalloc(pipe->buffers * sizeof(struct partial_page), GFP_KERNEL);
284 if (spd->pages && spd->partial)
285 return 0;
287 kfree(spd->pages);
288 kfree(spd->partial);
289 return -ENOMEM;
292 void splice_shrink_spd(struct pipe_inode_info *pipe,
293 struct splice_pipe_desc *spd)
295 if (pipe->buffers <= PIPE_DEF_BUFFERS)
296 return;
298 kfree(spd->pages);
299 kfree(spd->partial);
302 static int
303 __generic_file_splice_read(struct file *in, loff_t *ppos,
304 struct pipe_inode_info *pipe, size_t len,
305 unsigned int flags)
307 struct address_space *mapping = in->f_mapping;
308 unsigned int loff, nr_pages, req_pages;
309 struct page *pages[PIPE_DEF_BUFFERS];
310 struct partial_page partial[PIPE_DEF_BUFFERS];
311 struct page *page;
312 pgoff_t index, end_index;
313 loff_t isize;
314 int error, page_nr;
315 struct splice_pipe_desc spd = {
316 .pages = pages,
317 .partial = partial,
318 .flags = flags,
319 .ops = &page_cache_pipe_buf_ops,
320 .spd_release = spd_release_page,
323 if (splice_grow_spd(pipe, &spd))
324 return -ENOMEM;
326 index = *ppos >> PAGE_CACHE_SHIFT;
327 loff = *ppos & ~PAGE_CACHE_MASK;
328 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
329 nr_pages = min(req_pages, pipe->buffers);
332 * Lookup the (hopefully) full range of pages we need.
334 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
335 index += spd.nr_pages;
338 * If find_get_pages_contig() returned fewer pages than we needed,
339 * readahead/allocate the rest and fill in the holes.
341 if (spd.nr_pages < nr_pages)
342 page_cache_sync_readahead(mapping, &in->f_ra, in,
343 index, req_pages - spd.nr_pages);
345 error = 0;
346 while (spd.nr_pages < nr_pages) {
348 * Page could be there, find_get_pages_contig() breaks on
349 * the first hole.
351 page = find_get_page(mapping, index);
352 if (!page) {
354 * page didn't exist, allocate one.
356 page = page_cache_alloc_cold(mapping);
357 if (!page)
358 break;
360 error = add_to_page_cache_lru(page, mapping, index,
361 GFP_KERNEL);
362 if (unlikely(error)) {
363 page_cache_release(page);
364 if (error == -EEXIST)
365 continue;
366 break;
369 * add_to_page_cache() locks the page, unlock it
370 * to avoid convoluting the logic below even more.
372 unlock_page(page);
375 spd.pages[spd.nr_pages++] = page;
376 index++;
380 * Now loop over the map and see if we need to start IO on any
381 * pages, fill in the partial map, etc.
383 index = *ppos >> PAGE_CACHE_SHIFT;
384 nr_pages = spd.nr_pages;
385 spd.nr_pages = 0;
386 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
387 unsigned int this_len;
389 if (!len)
390 break;
393 * this_len is the max we'll use from this page
395 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
396 page = spd.pages[page_nr];
398 if (PageReadahead(page))
399 page_cache_async_readahead(mapping, &in->f_ra, in,
400 page, index, req_pages - page_nr);
403 * If the page isn't uptodate, we may need to start io on it
405 if (!PageUptodate(page)) {
406 lock_page(page);
409 * Page was truncated, or invalidated by the
410 * filesystem. Redo the find/create, but this time the
411 * page is kept locked, so there's no chance of another
412 * race with truncate/invalidate.
414 if (!page->mapping) {
415 unlock_page(page);
416 page = find_or_create_page(mapping, index,
417 mapping_gfp_mask(mapping));
419 if (!page) {
420 error = -ENOMEM;
421 break;
423 page_cache_release(spd.pages[page_nr]);
424 spd.pages[page_nr] = page;
427 * page was already under io and is now done, great
429 if (PageUptodate(page)) {
430 unlock_page(page);
431 goto fill_it;
435 * need to read in the page
437 error = mapping->a_ops->readpage(in, page);
438 if (unlikely(error)) {
440 * We really should re-lookup the page here,
441 * but it complicates things a lot. Instead
442 * lets just do what we already stored, and
443 * we'll get it the next time we are called.
445 if (error == AOP_TRUNCATED_PAGE)
446 error = 0;
448 break;
451 fill_it:
453 * i_size must be checked after PageUptodate.
455 isize = i_size_read(mapping->host);
456 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
457 if (unlikely(!isize || index > end_index))
458 break;
461 * if this is the last page, see if we need to shrink
462 * the length and stop
464 if (end_index == index) {
465 unsigned int plen;
468 * max good bytes in this page
470 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
471 if (plen <= loff)
472 break;
475 * force quit after adding this page
477 this_len = min(this_len, plen - loff);
478 len = this_len;
481 spd.partial[page_nr].offset = loff;
482 spd.partial[page_nr].len = this_len;
483 len -= this_len;
484 loff = 0;
485 spd.nr_pages++;
486 index++;
490 * Release any pages at the end, if we quit early. 'page_nr' is how far
491 * we got, 'nr_pages' is how many pages are in the map.
493 while (page_nr < nr_pages)
494 page_cache_release(spd.pages[page_nr++]);
495 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
497 if (spd.nr_pages)
498 error = splice_to_pipe(pipe, &spd);
500 splice_shrink_spd(pipe, &spd);
501 return error;
505 * generic_file_splice_read - splice data from file to a pipe
506 * @in: file to splice from
507 * @ppos: position in @in
508 * @pipe: pipe to splice to
509 * @len: number of bytes to splice
510 * @flags: splice modifier flags
512 * Description:
513 * Will read pages from given file and fill them into a pipe. Can be
514 * used as long as the address_space operations for the source implements
515 * a readpage() hook.
518 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
519 struct pipe_inode_info *pipe, size_t len,
520 unsigned int flags)
522 loff_t isize, left;
523 int ret;
525 isize = i_size_read(in->f_mapping->host);
526 if (unlikely(*ppos >= isize))
527 return 0;
529 left = isize - *ppos;
530 if (unlikely(left < len))
531 len = left;
533 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
534 if (ret > 0) {
535 *ppos += ret;
536 file_accessed(in);
539 return ret;
541 EXPORT_SYMBOL(generic_file_splice_read);
543 static const struct pipe_buf_operations default_pipe_buf_ops = {
544 .can_merge = 0,
545 .map = generic_pipe_buf_map,
546 .unmap = generic_pipe_buf_unmap,
547 .confirm = generic_pipe_buf_confirm,
548 .release = generic_pipe_buf_release,
549 .steal = generic_pipe_buf_steal,
550 .get = generic_pipe_buf_get,
553 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
554 unsigned long vlen, loff_t offset)
556 mm_segment_t old_fs;
557 loff_t pos = offset;
558 ssize_t res;
560 old_fs = get_fs();
561 set_fs(get_ds());
562 /* The cast to a user pointer is valid due to the set_fs() */
563 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
564 set_fs(old_fs);
566 return res;
569 static ssize_t kernel_write(struct file *file, const char *buf, size_t count,
570 loff_t pos)
572 mm_segment_t old_fs;
573 ssize_t res;
575 old_fs = get_fs();
576 set_fs(get_ds());
577 /* The cast to a user pointer is valid due to the set_fs() */
578 res = vfs_write(file, (const char __user *)buf, count, &pos);
579 set_fs(old_fs);
581 return res;
584 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
585 struct pipe_inode_info *pipe, size_t len,
586 unsigned int flags)
588 unsigned int nr_pages;
589 unsigned int nr_freed;
590 size_t offset;
591 struct page *pages[PIPE_DEF_BUFFERS];
592 struct partial_page partial[PIPE_DEF_BUFFERS];
593 struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
594 ssize_t res;
595 size_t this_len;
596 int error;
597 int i;
598 struct splice_pipe_desc spd = {
599 .pages = pages,
600 .partial = partial,
601 .flags = flags,
602 .ops = &default_pipe_buf_ops,
603 .spd_release = spd_release_page,
606 if (splice_grow_spd(pipe, &spd))
607 return -ENOMEM;
609 res = -ENOMEM;
610 vec = __vec;
611 if (pipe->buffers > PIPE_DEF_BUFFERS) {
612 vec = kmalloc(pipe->buffers * sizeof(struct iovec), GFP_KERNEL);
613 if (!vec)
614 goto shrink_ret;
617 offset = *ppos & ~PAGE_CACHE_MASK;
618 nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
620 for (i = 0; i < nr_pages && i < pipe->buffers && len; i++) {
621 struct page *page;
623 page = alloc_page(GFP_USER);
624 error = -ENOMEM;
625 if (!page)
626 goto err;
628 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
629 vec[i].iov_base = (void __user *) page_address(page);
630 vec[i].iov_len = this_len;
631 spd.pages[i] = page;
632 spd.nr_pages++;
633 len -= this_len;
634 offset = 0;
637 res = kernel_readv(in, vec, spd.nr_pages, *ppos);
638 if (res < 0) {
639 error = res;
640 goto err;
643 error = 0;
644 if (!res)
645 goto err;
647 nr_freed = 0;
648 for (i = 0; i < spd.nr_pages; i++) {
649 this_len = min_t(size_t, vec[i].iov_len, res);
650 spd.partial[i].offset = 0;
651 spd.partial[i].len = this_len;
652 if (!this_len) {
653 __free_page(spd.pages[i]);
654 spd.pages[i] = NULL;
655 nr_freed++;
657 res -= this_len;
659 spd.nr_pages -= nr_freed;
661 res = splice_to_pipe(pipe, &spd);
662 if (res > 0)
663 *ppos += res;
665 shrink_ret:
666 if (vec != __vec)
667 kfree(vec);
668 splice_shrink_spd(pipe, &spd);
669 return res;
671 err:
672 for (i = 0; i < spd.nr_pages; i++)
673 __free_page(spd.pages[i]);
675 res = error;
676 goto shrink_ret;
678 EXPORT_SYMBOL(default_file_splice_read);
681 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
682 * using sendpage(). Return the number of bytes sent.
684 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
685 struct pipe_buffer *buf, struct splice_desc *sd)
687 struct file *file = sd->u.file;
688 loff_t pos = sd->pos;
689 int more;
691 if (!likely(file->f_op && file->f_op->sendpage))
692 return -EINVAL;
694 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
695 return file->f_op->sendpage(file, buf->page, buf->offset,
696 sd->len, &pos, more);
700 * This is a little more tricky than the file -> pipe splicing. There are
701 * basically three cases:
703 * - Destination page already exists in the address space and there
704 * are users of it. For that case we have no other option that
705 * copying the data. Tough luck.
706 * - Destination page already exists in the address space, but there
707 * are no users of it. Make sure it's uptodate, then drop it. Fall
708 * through to last case.
709 * - Destination page does not exist, we can add the pipe page to
710 * the page cache and avoid the copy.
712 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
713 * sd->flags), we attempt to migrate pages from the pipe to the output
714 * file address space page cache. This is possible if no one else has
715 * the pipe page referenced outside of the pipe and page cache. If
716 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
717 * a new page in the output file page cache and fill/dirty that.
719 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
720 struct splice_desc *sd)
722 struct file *file = sd->u.file;
723 struct address_space *mapping = file->f_mapping;
724 unsigned int offset, this_len;
725 struct page *page;
726 void *fsdata;
727 int ret;
729 offset = sd->pos & ~PAGE_CACHE_MASK;
731 this_len = sd->len;
732 if (this_len + offset > PAGE_CACHE_SIZE)
733 this_len = PAGE_CACHE_SIZE - offset;
735 ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
736 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
737 if (unlikely(ret))
738 goto out;
740 if (buf->page != page) {
742 * Careful, ->map() uses KM_USER0!
744 char *src = buf->ops->map(pipe, buf, 1);
745 char *dst = kmap_atomic(page, KM_USER1);
747 memcpy(dst + offset, src + buf->offset, this_len);
748 flush_dcache_page(page);
749 kunmap_atomic(dst, KM_USER1);
750 buf->ops->unmap(pipe, buf, src);
752 ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
753 page, fsdata);
754 out:
755 return ret;
757 EXPORT_SYMBOL(pipe_to_file);
759 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
761 smp_mb();
762 if (waitqueue_active(&pipe->wait))
763 wake_up_interruptible(&pipe->wait);
764 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
768 * splice_from_pipe_feed - feed available data from a pipe to a file
769 * @pipe: pipe to splice from
770 * @sd: information to @actor
771 * @actor: handler that splices the data
773 * Description:
774 * This function loops over the pipe and calls @actor to do the
775 * actual moving of a single struct pipe_buffer to the desired
776 * destination. It returns when there's no more buffers left in
777 * the pipe or if the requested number of bytes (@sd->total_len)
778 * have been copied. It returns a positive number (one) if the
779 * pipe needs to be filled with more data, zero if the required
780 * number of bytes have been copied and -errno on error.
782 * This, together with splice_from_pipe_{begin,end,next}, may be
783 * used to implement the functionality of __splice_from_pipe() when
784 * locking is required around copying the pipe buffers to the
785 * destination.
787 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
788 splice_actor *actor)
790 int ret;
792 while (pipe->nrbufs) {
793 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
794 const struct pipe_buf_operations *ops = buf->ops;
796 sd->len = buf->len;
797 if (sd->len > sd->total_len)
798 sd->len = sd->total_len;
800 ret = buf->ops->confirm(pipe, buf);
801 if (unlikely(ret)) {
802 if (ret == -ENODATA)
803 ret = 0;
804 return ret;
807 ret = actor(pipe, buf, sd);
808 if (ret <= 0)
809 return ret;
811 buf->offset += ret;
812 buf->len -= ret;
814 sd->num_spliced += ret;
815 sd->len -= ret;
816 sd->pos += ret;
817 sd->total_len -= ret;
819 if (!buf->len) {
820 buf->ops = NULL;
821 ops->release(pipe, buf);
822 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
823 pipe->nrbufs--;
824 if (pipe->inode)
825 sd->need_wakeup = true;
828 if (!sd->total_len)
829 return 0;
832 return 1;
834 EXPORT_SYMBOL(splice_from_pipe_feed);
837 * splice_from_pipe_next - wait for some data to splice from
838 * @pipe: pipe to splice from
839 * @sd: information about the splice operation
841 * Description:
842 * This function will wait for some data and return a positive
843 * value (one) if pipe buffers are available. It will return zero
844 * or -errno if no more data needs to be spliced.
846 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
848 while (!pipe->nrbufs) {
849 if (!pipe->writers)
850 return 0;
852 if (!pipe->waiting_writers && sd->num_spliced)
853 return 0;
855 if (sd->flags & SPLICE_F_NONBLOCK)
856 return -EAGAIN;
858 if (signal_pending(current))
859 return -ERESTARTSYS;
861 if (sd->need_wakeup) {
862 wakeup_pipe_writers(pipe);
863 sd->need_wakeup = false;
866 pipe_wait(pipe);
869 return 1;
871 EXPORT_SYMBOL(splice_from_pipe_next);
874 * splice_from_pipe_begin - start splicing from pipe
875 * @sd: information about the splice operation
877 * Description:
878 * This function should be called before a loop containing
879 * splice_from_pipe_next() and splice_from_pipe_feed() to
880 * initialize the necessary fields of @sd.
882 void splice_from_pipe_begin(struct splice_desc *sd)
884 sd->num_spliced = 0;
885 sd->need_wakeup = false;
887 EXPORT_SYMBOL(splice_from_pipe_begin);
890 * splice_from_pipe_end - finish splicing from pipe
891 * @pipe: pipe to splice from
892 * @sd: information about the splice operation
894 * Description:
895 * This function will wake up pipe writers if necessary. It should
896 * be called after a loop containing splice_from_pipe_next() and
897 * splice_from_pipe_feed().
899 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
901 if (sd->need_wakeup)
902 wakeup_pipe_writers(pipe);
904 EXPORT_SYMBOL(splice_from_pipe_end);
907 * __splice_from_pipe - splice data from a pipe to given actor
908 * @pipe: pipe to splice from
909 * @sd: information to @actor
910 * @actor: handler that splices the data
912 * Description:
913 * This function does little more than loop over the pipe and call
914 * @actor to do the actual moving of a single struct pipe_buffer to
915 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
916 * pipe_to_user.
919 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
920 splice_actor *actor)
922 int ret;
924 splice_from_pipe_begin(sd);
925 do {
926 ret = splice_from_pipe_next(pipe, sd);
927 if (ret > 0)
928 ret = splice_from_pipe_feed(pipe, sd, actor);
929 } while (ret > 0);
930 splice_from_pipe_end(pipe, sd);
932 return sd->num_spliced ? sd->num_spliced : ret;
934 EXPORT_SYMBOL(__splice_from_pipe);
937 * splice_from_pipe - splice data from a pipe to a file
938 * @pipe: pipe to splice from
939 * @out: file to splice to
940 * @ppos: position in @out
941 * @len: how many bytes to splice
942 * @flags: splice modifier flags
943 * @actor: handler that splices the data
945 * Description:
946 * See __splice_from_pipe. This function locks the pipe inode,
947 * otherwise it's identical to __splice_from_pipe().
950 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
951 loff_t *ppos, size_t len, unsigned int flags,
952 splice_actor *actor)
954 ssize_t ret;
955 struct splice_desc sd = {
956 .total_len = len,
957 .flags = flags,
958 .pos = *ppos,
959 .u.file = out,
962 pipe_lock(pipe);
963 ret = __splice_from_pipe(pipe, &sd, actor);
964 pipe_unlock(pipe);
966 return ret;
970 * generic_file_splice_write - splice data from a pipe to a file
971 * @pipe: pipe info
972 * @out: file to write to
973 * @ppos: position in @out
974 * @len: number of bytes to splice
975 * @flags: splice modifier flags
977 * Description:
978 * Will either move or copy pages (determined by @flags options) from
979 * the given pipe inode to the given file.
982 ssize_t
983 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
984 loff_t *ppos, size_t len, unsigned int flags)
986 struct address_space *mapping = out->f_mapping;
987 struct inode *inode = mapping->host;
988 struct splice_desc sd = {
989 .total_len = len,
990 .flags = flags,
991 .pos = *ppos,
992 .u.file = out,
994 ssize_t ret;
996 pipe_lock(pipe);
998 splice_from_pipe_begin(&sd);
999 do {
1000 ret = splice_from_pipe_next(pipe, &sd);
1001 if (ret <= 0)
1002 break;
1004 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1005 ret = file_remove_suid(out);
1006 if (!ret) {
1007 file_update_time(out);
1008 ret = splice_from_pipe_feed(pipe, &sd, pipe_to_file);
1010 mutex_unlock(&inode->i_mutex);
1011 } while (ret > 0);
1012 splice_from_pipe_end(pipe, &sd);
1014 pipe_unlock(pipe);
1016 if (sd.num_spliced)
1017 ret = sd.num_spliced;
1019 if (ret > 0) {
1020 unsigned long nr_pages;
1021 int err;
1023 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1025 err = generic_write_sync(out, *ppos, ret);
1026 if (err)
1027 ret = err;
1028 else
1029 *ppos += ret;
1030 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
1033 return ret;
1036 EXPORT_SYMBOL(generic_file_splice_write);
1038 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1039 struct splice_desc *sd)
1041 int ret;
1042 void *data;
1044 data = buf->ops->map(pipe, buf, 0);
1045 ret = kernel_write(sd->u.file, data + buf->offset, sd->len, sd->pos);
1046 buf->ops->unmap(pipe, buf, data);
1048 return ret;
1051 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1052 struct file *out, loff_t *ppos,
1053 size_t len, unsigned int flags)
1055 ssize_t ret;
1057 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1058 if (ret > 0)
1059 *ppos += ret;
1061 return ret;
1065 * generic_splice_sendpage - splice data from a pipe to a socket
1066 * @pipe: pipe to splice from
1067 * @out: socket to write to
1068 * @ppos: position in @out
1069 * @len: number of bytes to splice
1070 * @flags: splice modifier flags
1072 * Description:
1073 * Will send @len bytes from the pipe to a network socket. No data copying
1074 * is involved.
1077 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1078 loff_t *ppos, size_t len, unsigned int flags)
1080 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1083 EXPORT_SYMBOL(generic_splice_sendpage);
1086 * Attempt to initiate a splice from pipe to file.
1088 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1089 loff_t *ppos, size_t len, unsigned int flags)
1091 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1092 loff_t *, size_t, unsigned int);
1093 int ret;
1095 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1096 return -EBADF;
1098 if (unlikely(out->f_flags & O_APPEND))
1099 return -EINVAL;
1101 ret = rw_verify_area(WRITE, out, ppos, len);
1102 if (unlikely(ret < 0))
1103 return ret;
1105 if (out->f_op && out->f_op->splice_write)
1106 splice_write = out->f_op->splice_write;
1107 else
1108 splice_write = default_file_splice_write;
1110 return splice_write(pipe, out, ppos, len, flags);
1114 * Attempt to initiate a splice from a file to a pipe.
1116 static long do_splice_to(struct file *in, loff_t *ppos,
1117 struct pipe_inode_info *pipe, size_t len,
1118 unsigned int flags)
1120 ssize_t (*splice_read)(struct file *, loff_t *,
1121 struct pipe_inode_info *, size_t, unsigned int);
1122 int ret;
1124 if (unlikely(!(in->f_mode & FMODE_READ)))
1125 return -EBADF;
1127 ret = rw_verify_area(READ, in, ppos, len);
1128 if (unlikely(ret < 0))
1129 return ret;
1131 if (in->f_op && in->f_op->splice_read)
1132 splice_read = in->f_op->splice_read;
1133 else
1134 splice_read = default_file_splice_read;
1136 return splice_read(in, ppos, pipe, len, flags);
1140 * splice_direct_to_actor - splices data directly between two non-pipes
1141 * @in: file to splice from
1142 * @sd: actor information on where to splice to
1143 * @actor: handles the data splicing
1145 * Description:
1146 * This is a special case helper to splice directly between two
1147 * points, without requiring an explicit pipe. Internally an allocated
1148 * pipe is cached in the process, and reused during the lifetime of
1149 * that process.
1152 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1153 splice_direct_actor *actor)
1155 struct pipe_inode_info *pipe;
1156 long ret, bytes;
1157 umode_t i_mode;
1158 size_t len;
1159 int i, flags;
1162 * We require the input being a regular file, as we don't want to
1163 * randomly drop data for eg socket -> socket splicing. Use the
1164 * piped splicing for that!
1166 i_mode = in->f_path.dentry->d_inode->i_mode;
1167 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1168 return -EINVAL;
1171 * neither in nor out is a pipe, setup an internal pipe attached to
1172 * 'out' and transfer the wanted data from 'in' to 'out' through that
1174 pipe = current->splice_pipe;
1175 if (unlikely(!pipe)) {
1176 pipe = alloc_pipe_info(NULL);
1177 if (!pipe)
1178 return -ENOMEM;
1181 * We don't have an immediate reader, but we'll read the stuff
1182 * out of the pipe right after the splice_to_pipe(). So set
1183 * PIPE_READERS appropriately.
1185 pipe->readers = 1;
1187 current->splice_pipe = pipe;
1191 * Do the splice.
1193 ret = 0;
1194 bytes = 0;
1195 len = sd->total_len;
1196 flags = sd->flags;
1199 * Don't block on output, we have to drain the direct pipe.
1201 sd->flags &= ~SPLICE_F_NONBLOCK;
1203 while (len) {
1204 size_t read_len;
1205 loff_t pos = sd->pos, prev_pos = pos;
1207 ret = do_splice_to(in, &pos, pipe, len, flags);
1208 if (unlikely(ret <= 0))
1209 goto out_release;
1211 read_len = ret;
1212 sd->total_len = read_len;
1215 * NOTE: nonblocking mode only applies to the input. We
1216 * must not do the output in nonblocking mode as then we
1217 * could get stuck data in the internal pipe:
1219 ret = actor(pipe, sd);
1220 if (unlikely(ret <= 0)) {
1221 sd->pos = prev_pos;
1222 goto out_release;
1225 bytes += ret;
1226 len -= ret;
1227 sd->pos = pos;
1229 if (ret < read_len) {
1230 sd->pos = prev_pos + ret;
1231 goto out_release;
1235 done:
1236 pipe->nrbufs = pipe->curbuf = 0;
1237 file_accessed(in);
1238 return bytes;
1240 out_release:
1242 * If we did an incomplete transfer we must release
1243 * the pipe buffers in question:
1245 for (i = 0; i < pipe->buffers; i++) {
1246 struct pipe_buffer *buf = pipe->bufs + i;
1248 if (buf->ops) {
1249 buf->ops->release(pipe, buf);
1250 buf->ops = NULL;
1254 if (!bytes)
1255 bytes = ret;
1257 goto done;
1259 EXPORT_SYMBOL(splice_direct_to_actor);
1261 static int direct_splice_actor(struct pipe_inode_info *pipe,
1262 struct splice_desc *sd)
1264 struct file *file = sd->u.file;
1266 return do_splice_from(pipe, file, &file->f_pos, sd->total_len,
1267 sd->flags);
1271 * do_splice_direct - splices data directly between two files
1272 * @in: file to splice from
1273 * @ppos: input file offset
1274 * @out: file to splice to
1275 * @len: number of bytes to splice
1276 * @flags: splice modifier flags
1278 * Description:
1279 * For use by do_sendfile(). splice can easily emulate sendfile, but
1280 * doing it in the application would incur an extra system call
1281 * (splice in + splice out, as compared to just sendfile()). So this helper
1282 * can splice directly through a process-private pipe.
1285 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1286 size_t len, unsigned int flags)
1288 struct splice_desc sd = {
1289 .len = len,
1290 .total_len = len,
1291 .flags = flags,
1292 .pos = *ppos,
1293 .u.file = out,
1295 long ret;
1297 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1298 if (ret > 0)
1299 *ppos = sd.pos;
1301 return ret;
1304 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1305 struct pipe_inode_info *opipe,
1306 size_t len, unsigned int flags);
1309 * Determine where to splice to/from.
1311 static long do_splice(struct file *in, loff_t __user *off_in,
1312 struct file *out, loff_t __user *off_out,
1313 size_t len, unsigned int flags)
1315 struct pipe_inode_info *ipipe;
1316 struct pipe_inode_info *opipe;
1317 loff_t offset, *off;
1318 long ret;
1320 ipipe = get_pipe_info(in);
1321 opipe = get_pipe_info(out);
1323 if (ipipe && opipe) {
1324 if (off_in || off_out)
1325 return -ESPIPE;
1327 if (!(in->f_mode & FMODE_READ))
1328 return -EBADF;
1330 if (!(out->f_mode & FMODE_WRITE))
1331 return -EBADF;
1333 /* Splicing to self would be fun, but... */
1334 if (ipipe == opipe)
1335 return -EINVAL;
1337 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1340 if (ipipe) {
1341 if (off_in)
1342 return -ESPIPE;
1343 if (off_out) {
1344 if (!(out->f_mode & FMODE_PWRITE))
1345 return -EINVAL;
1346 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1347 return -EFAULT;
1348 off = &offset;
1349 } else
1350 off = &out->f_pos;
1352 ret = do_splice_from(ipipe, out, off, len, flags);
1354 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1355 ret = -EFAULT;
1357 return ret;
1360 if (opipe) {
1361 if (off_out)
1362 return -ESPIPE;
1363 if (off_in) {
1364 if (!(in->f_mode & FMODE_PREAD))
1365 return -EINVAL;
1366 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1367 return -EFAULT;
1368 off = &offset;
1369 } else
1370 off = &in->f_pos;
1372 ret = do_splice_to(in, off, opipe, len, flags);
1374 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1375 ret = -EFAULT;
1377 return ret;
1380 return -EINVAL;
1384 * Map an iov into an array of pages and offset/length tupples. With the
1385 * partial_page structure, we can map several non-contiguous ranges into
1386 * our ones pages[] map instead of splitting that operation into pieces.
1387 * Could easily be exported as a generic helper for other users, in which
1388 * case one would probably want to add a 'max_nr_pages' parameter as well.
1390 static int get_iovec_page_array(const struct iovec __user *iov,
1391 unsigned int nr_vecs, struct page **pages,
1392 struct partial_page *partial, int aligned,
1393 unsigned int pipe_buffers)
1395 int buffers = 0, error = 0;
1397 while (nr_vecs) {
1398 unsigned long off, npages;
1399 struct iovec entry;
1400 void __user *base;
1401 size_t len;
1402 int i;
1404 error = -EFAULT;
1405 if (copy_from_user(&entry, iov, sizeof(entry)))
1406 break;
1408 base = entry.iov_base;
1409 len = entry.iov_len;
1412 * Sanity check this iovec. 0 read succeeds.
1414 error = 0;
1415 if (unlikely(!len))
1416 break;
1417 error = -EFAULT;
1418 if (!access_ok(VERIFY_READ, base, len))
1419 break;
1422 * Get this base offset and number of pages, then map
1423 * in the user pages.
1425 off = (unsigned long) base & ~PAGE_MASK;
1428 * If asked for alignment, the offset must be zero and the
1429 * length a multiple of the PAGE_SIZE.
1431 error = -EINVAL;
1432 if (aligned && (off || len & ~PAGE_MASK))
1433 break;
1435 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1436 if (npages > pipe_buffers - buffers)
1437 npages = pipe_buffers - buffers;
1439 error = get_user_pages_fast((unsigned long)base, npages,
1440 0, &pages[buffers]);
1442 if (unlikely(error <= 0))
1443 break;
1446 * Fill this contiguous range into the partial page map.
1448 for (i = 0; i < error; i++) {
1449 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1451 partial[buffers].offset = off;
1452 partial[buffers].len = plen;
1454 off = 0;
1455 len -= plen;
1456 buffers++;
1460 * We didn't complete this iov, stop here since it probably
1461 * means we have to move some of this into a pipe to
1462 * be able to continue.
1464 if (len)
1465 break;
1468 * Don't continue if we mapped fewer pages than we asked for,
1469 * or if we mapped the max number of pages that we have
1470 * room for.
1472 if (error < npages || buffers == pipe_buffers)
1473 break;
1475 nr_vecs--;
1476 iov++;
1479 if (buffers)
1480 return buffers;
1482 return error;
1485 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1486 struct splice_desc *sd)
1488 char *src;
1489 int ret;
1492 * See if we can use the atomic maps, by prefaulting in the
1493 * pages and doing an atomic copy
1495 if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1496 src = buf->ops->map(pipe, buf, 1);
1497 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1498 sd->len);
1499 buf->ops->unmap(pipe, buf, src);
1500 if (!ret) {
1501 ret = sd->len;
1502 goto out;
1507 * No dice, use slow non-atomic map and copy
1509 src = buf->ops->map(pipe, buf, 0);
1511 ret = sd->len;
1512 if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1513 ret = -EFAULT;
1515 buf->ops->unmap(pipe, buf, src);
1516 out:
1517 if (ret > 0)
1518 sd->u.userptr += ret;
1519 return ret;
1523 * For lack of a better implementation, implement vmsplice() to userspace
1524 * as a simple copy of the pipes pages to the user iov.
1526 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1527 unsigned long nr_segs, unsigned int flags)
1529 struct pipe_inode_info *pipe;
1530 struct splice_desc sd;
1531 ssize_t size;
1532 int error;
1533 long ret;
1535 pipe = get_pipe_info(file);
1536 if (!pipe)
1537 return -EBADF;
1539 pipe_lock(pipe);
1541 error = ret = 0;
1542 while (nr_segs) {
1543 void __user *base;
1544 size_t len;
1547 * Get user address base and length for this iovec.
1549 error = get_user(base, &iov->iov_base);
1550 if (unlikely(error))
1551 break;
1552 error = get_user(len, &iov->iov_len);
1553 if (unlikely(error))
1554 break;
1557 * Sanity check this iovec. 0 read succeeds.
1559 if (unlikely(!len))
1560 break;
1561 if (unlikely(!base)) {
1562 error = -EFAULT;
1563 break;
1566 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1567 error = -EFAULT;
1568 break;
1571 sd.len = 0;
1572 sd.total_len = len;
1573 sd.flags = flags;
1574 sd.u.userptr = base;
1575 sd.pos = 0;
1577 size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1578 if (size < 0) {
1579 if (!ret)
1580 ret = size;
1582 break;
1585 ret += size;
1587 if (size < len)
1588 break;
1590 nr_segs--;
1591 iov++;
1594 pipe_unlock(pipe);
1596 if (!ret)
1597 ret = error;
1599 return ret;
1603 * vmsplice splices a user address range into a pipe. It can be thought of
1604 * as splice-from-memory, where the regular splice is splice-from-file (or
1605 * to file). In both cases the output is a pipe, naturally.
1607 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1608 unsigned long nr_segs, unsigned int flags)
1610 struct pipe_inode_info *pipe;
1611 struct page *pages[PIPE_DEF_BUFFERS];
1612 struct partial_page partial[PIPE_DEF_BUFFERS];
1613 struct splice_pipe_desc spd = {
1614 .pages = pages,
1615 .partial = partial,
1616 .flags = flags,
1617 .ops = &user_page_pipe_buf_ops,
1618 .spd_release = spd_release_page,
1620 long ret;
1622 pipe = get_pipe_info(file);
1623 if (!pipe)
1624 return -EBADF;
1626 if (splice_grow_spd(pipe, &spd))
1627 return -ENOMEM;
1629 spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1630 spd.partial, flags & SPLICE_F_GIFT,
1631 pipe->buffers);
1632 if (spd.nr_pages <= 0)
1633 ret = spd.nr_pages;
1634 else
1635 ret = splice_to_pipe(pipe, &spd);
1637 splice_shrink_spd(pipe, &spd);
1638 return ret;
1642 * Note that vmsplice only really supports true splicing _from_ user memory
1643 * to a pipe, not the other way around. Splicing from user memory is a simple
1644 * operation that can be supported without any funky alignment restrictions
1645 * or nasty vm tricks. We simply map in the user memory and fill them into
1646 * a pipe. The reverse isn't quite as easy, though. There are two possible
1647 * solutions for that:
1649 * - memcpy() the data internally, at which point we might as well just
1650 * do a regular read() on the buffer anyway.
1651 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1652 * has restriction limitations on both ends of the pipe).
1654 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1657 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1658 unsigned long, nr_segs, unsigned int, flags)
1660 struct file *file;
1661 long error;
1662 int fput;
1664 if (unlikely(nr_segs > UIO_MAXIOV))
1665 return -EINVAL;
1666 else if (unlikely(!nr_segs))
1667 return 0;
1669 error = -EBADF;
1670 file = fget_light(fd, &fput);
1671 if (file) {
1672 if (file->f_mode & FMODE_WRITE)
1673 error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1674 else if (file->f_mode & FMODE_READ)
1675 error = vmsplice_to_user(file, iov, nr_segs, flags);
1677 fput_light(file, fput);
1680 return error;
1683 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1684 int, fd_out, loff_t __user *, off_out,
1685 size_t, len, unsigned int, flags)
1687 long error;
1688 struct file *in, *out;
1689 int fput_in, fput_out;
1691 if (unlikely(!len))
1692 return 0;
1694 error = -EBADF;
1695 in = fget_light(fd_in, &fput_in);
1696 if (in) {
1697 if (in->f_mode & FMODE_READ) {
1698 out = fget_light(fd_out, &fput_out);
1699 if (out) {
1700 if (out->f_mode & FMODE_WRITE)
1701 error = do_splice(in, off_in,
1702 out, off_out,
1703 len, flags);
1704 fput_light(out, fput_out);
1708 fput_light(in, fput_in);
1711 return error;
1715 * Make sure there's data to read. Wait for input if we can, otherwise
1716 * return an appropriate error.
1718 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1720 int ret;
1723 * Check ->nrbufs without the inode lock first. This function
1724 * is speculative anyways, so missing one is ok.
1726 if (pipe->nrbufs)
1727 return 0;
1729 ret = 0;
1730 pipe_lock(pipe);
1732 while (!pipe->nrbufs) {
1733 if (signal_pending(current)) {
1734 ret = -ERESTARTSYS;
1735 break;
1737 if (!pipe->writers)
1738 break;
1739 if (!pipe->waiting_writers) {
1740 if (flags & SPLICE_F_NONBLOCK) {
1741 ret = -EAGAIN;
1742 break;
1745 pipe_wait(pipe);
1748 pipe_unlock(pipe);
1749 return ret;
1753 * Make sure there's writeable room. Wait for room if we can, otherwise
1754 * return an appropriate error.
1756 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1758 int ret;
1761 * Check ->nrbufs without the inode lock first. This function
1762 * is speculative anyways, so missing one is ok.
1764 if (pipe->nrbufs < pipe->buffers)
1765 return 0;
1767 ret = 0;
1768 pipe_lock(pipe);
1770 while (pipe->nrbufs >= pipe->buffers) {
1771 if (!pipe->readers) {
1772 send_sig(SIGPIPE, current, 0);
1773 ret = -EPIPE;
1774 break;
1776 if (flags & SPLICE_F_NONBLOCK) {
1777 ret = -EAGAIN;
1778 break;
1780 if (signal_pending(current)) {
1781 ret = -ERESTARTSYS;
1782 break;
1784 pipe->waiting_writers++;
1785 pipe_wait(pipe);
1786 pipe->waiting_writers--;
1789 pipe_unlock(pipe);
1790 return ret;
1794 * Splice contents of ipipe to opipe.
1796 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1797 struct pipe_inode_info *opipe,
1798 size_t len, unsigned int flags)
1800 struct pipe_buffer *ibuf, *obuf;
1801 int ret = 0, nbuf;
1802 bool input_wakeup = false;
1805 retry:
1806 ret = ipipe_prep(ipipe, flags);
1807 if (ret)
1808 return ret;
1810 ret = opipe_prep(opipe, flags);
1811 if (ret)
1812 return ret;
1815 * Potential ABBA deadlock, work around it by ordering lock
1816 * grabbing by pipe info address. Otherwise two different processes
1817 * could deadlock (one doing tee from A -> B, the other from B -> A).
1819 pipe_double_lock(ipipe, opipe);
1821 do {
1822 if (!opipe->readers) {
1823 send_sig(SIGPIPE, current, 0);
1824 if (!ret)
1825 ret = -EPIPE;
1826 break;
1829 if (!ipipe->nrbufs && !ipipe->writers)
1830 break;
1833 * Cannot make any progress, because either the input
1834 * pipe is empty or the output pipe is full.
1836 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1837 /* Already processed some buffers, break */
1838 if (ret)
1839 break;
1841 if (flags & SPLICE_F_NONBLOCK) {
1842 ret = -EAGAIN;
1843 break;
1847 * We raced with another reader/writer and haven't
1848 * managed to process any buffers. A zero return
1849 * value means EOF, so retry instead.
1851 pipe_unlock(ipipe);
1852 pipe_unlock(opipe);
1853 goto retry;
1856 ibuf = ipipe->bufs + ipipe->curbuf;
1857 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1858 obuf = opipe->bufs + nbuf;
1860 if (len >= ibuf->len) {
1862 * Simply move the whole buffer from ipipe to opipe
1864 *obuf = *ibuf;
1865 ibuf->ops = NULL;
1866 opipe->nrbufs++;
1867 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1868 ipipe->nrbufs--;
1869 input_wakeup = true;
1870 } else {
1872 * Get a reference to this pipe buffer,
1873 * so we can copy the contents over.
1875 ibuf->ops->get(ipipe, ibuf);
1876 *obuf = *ibuf;
1879 * Don't inherit the gift flag, we need to
1880 * prevent multiple steals of this page.
1882 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1884 obuf->len = len;
1885 opipe->nrbufs++;
1886 ibuf->offset += obuf->len;
1887 ibuf->len -= obuf->len;
1889 ret += obuf->len;
1890 len -= obuf->len;
1891 } while (len);
1893 pipe_unlock(ipipe);
1894 pipe_unlock(opipe);
1897 * If we put data in the output pipe, wakeup any potential readers.
1899 if (ret > 0)
1900 wakeup_pipe_readers(opipe);
1902 if (input_wakeup)
1903 wakeup_pipe_writers(ipipe);
1905 return ret;
1909 * Link contents of ipipe to opipe.
1911 static int link_pipe(struct pipe_inode_info *ipipe,
1912 struct pipe_inode_info *opipe,
1913 size_t len, unsigned int flags)
1915 struct pipe_buffer *ibuf, *obuf;
1916 int ret = 0, i = 0, nbuf;
1919 * Potential ABBA deadlock, work around it by ordering lock
1920 * grabbing by pipe info address. Otherwise two different processes
1921 * could deadlock (one doing tee from A -> B, the other from B -> A).
1923 pipe_double_lock(ipipe, opipe);
1925 do {
1926 if (!opipe->readers) {
1927 send_sig(SIGPIPE, current, 0);
1928 if (!ret)
1929 ret = -EPIPE;
1930 break;
1934 * If we have iterated all input buffers or ran out of
1935 * output room, break.
1937 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1938 break;
1940 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1941 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1944 * Get a reference to this pipe buffer,
1945 * so we can copy the contents over.
1947 ibuf->ops->get(ipipe, ibuf);
1949 obuf = opipe->bufs + nbuf;
1950 *obuf = *ibuf;
1953 * Don't inherit the gift flag, we need to
1954 * prevent multiple steals of this page.
1956 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1958 if (obuf->len > len)
1959 obuf->len = len;
1961 opipe->nrbufs++;
1962 ret += obuf->len;
1963 len -= obuf->len;
1964 i++;
1965 } while (len);
1968 * return EAGAIN if we have the potential of some data in the
1969 * future, otherwise just return 0
1971 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1972 ret = -EAGAIN;
1974 pipe_unlock(ipipe);
1975 pipe_unlock(opipe);
1978 * If we put data in the output pipe, wakeup any potential readers.
1980 if (ret > 0)
1981 wakeup_pipe_readers(opipe);
1983 return ret;
1987 * This is a tee(1) implementation that works on pipes. It doesn't copy
1988 * any data, it simply references the 'in' pages on the 'out' pipe.
1989 * The 'flags' used are the SPLICE_F_* variants, currently the only
1990 * applicable one is SPLICE_F_NONBLOCK.
1992 static long do_tee(struct file *in, struct file *out, size_t len,
1993 unsigned int flags)
1995 struct pipe_inode_info *ipipe = get_pipe_info(in);
1996 struct pipe_inode_info *opipe = get_pipe_info(out);
1997 int ret = -EINVAL;
2000 * Duplicate the contents of ipipe to opipe without actually
2001 * copying the data.
2003 if (ipipe && opipe && ipipe != opipe) {
2005 * Keep going, unless we encounter an error. The ipipe/opipe
2006 * ordering doesn't really matter.
2008 ret = ipipe_prep(ipipe, flags);
2009 if (!ret) {
2010 ret = opipe_prep(opipe, flags);
2011 if (!ret)
2012 ret = link_pipe(ipipe, opipe, len, flags);
2016 return ret;
2019 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2021 struct file *in;
2022 int error, fput_in;
2024 if (unlikely(!len))
2025 return 0;
2027 error = -EBADF;
2028 in = fget_light(fdin, &fput_in);
2029 if (in) {
2030 if (in->f_mode & FMODE_READ) {
2031 int fput_out;
2032 struct file *out = fget_light(fdout, &fput_out);
2034 if (out) {
2035 if (out->f_mode & FMODE_WRITE)
2036 error = do_tee(in, out, len, flags);
2037 fput_light(out, fput_out);
2040 fput_light(in, fput_in);
2043 return error;