1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
25 #include <linux/page_counter.h>
26 #include <linux/memcontrol.h>
27 #include <linux/cgroup.h>
28 #include <linux/pagewalk.h>
29 #include <linux/sched/mm.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vm_event_item.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include <linux/tracehook.h>
60 #include <linux/psi.h>
61 #include <linux/seq_buf.h>
67 #include <linux/uaccess.h>
69 #include <trace/events/vmscan.h>
71 struct cgroup_subsys memory_cgrp_subsys __read_mostly
;
72 EXPORT_SYMBOL(memory_cgrp_subsys
);
74 struct mem_cgroup
*root_mem_cgroup __read_mostly
;
76 #define MEM_CGROUP_RECLAIM_RETRIES 5
78 /* Socket memory accounting disabled? */
79 static bool cgroup_memory_nosocket
;
81 /* Kernel memory accounting disabled? */
82 static bool cgroup_memory_nokmem
;
84 /* Whether the swap controller is active */
85 #ifdef CONFIG_MEMCG_SWAP
86 int do_swap_account __read_mostly
;
88 #define do_swap_account 0
91 #ifdef CONFIG_CGROUP_WRITEBACK
92 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq
);
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys
) && do_swap_account
;
101 #define THRESHOLDS_EVENTS_TARGET 128
102 #define SOFTLIMIT_EVENTS_TARGET 1024
105 * Cgroups above their limits are maintained in a RB-Tree, independent of
106 * their hierarchy representation
109 struct mem_cgroup_tree_per_node
{
110 struct rb_root rb_root
;
111 struct rb_node
*rb_rightmost
;
115 struct mem_cgroup_tree
{
116 struct mem_cgroup_tree_per_node
*rb_tree_per_node
[MAX_NUMNODES
];
119 static struct mem_cgroup_tree soft_limit_tree __read_mostly
;
122 struct mem_cgroup_eventfd_list
{
123 struct list_head list
;
124 struct eventfd_ctx
*eventfd
;
128 * cgroup_event represents events which userspace want to receive.
130 struct mem_cgroup_event
{
132 * memcg which the event belongs to.
134 struct mem_cgroup
*memcg
;
136 * eventfd to signal userspace about the event.
138 struct eventfd_ctx
*eventfd
;
140 * Each of these stored in a list by the cgroup.
142 struct list_head list
;
144 * register_event() callback will be used to add new userspace
145 * waiter for changes related to this event. Use eventfd_signal()
146 * on eventfd to send notification to userspace.
148 int (*register_event
)(struct mem_cgroup
*memcg
,
149 struct eventfd_ctx
*eventfd
, const char *args
);
151 * unregister_event() callback will be called when userspace closes
152 * the eventfd or on cgroup removing. This callback must be set,
153 * if you want provide notification functionality.
155 void (*unregister_event
)(struct mem_cgroup
*memcg
,
156 struct eventfd_ctx
*eventfd
);
158 * All fields below needed to unregister event when
159 * userspace closes eventfd.
162 wait_queue_head_t
*wqh
;
163 wait_queue_entry_t wait
;
164 struct work_struct remove
;
167 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
);
168 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
);
170 /* Stuffs for move charges at task migration. */
172 * Types of charges to be moved.
174 #define MOVE_ANON 0x1U
175 #define MOVE_FILE 0x2U
176 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
178 /* "mc" and its members are protected by cgroup_mutex */
179 static struct move_charge_struct
{
180 spinlock_t lock
; /* for from, to */
181 struct mm_struct
*mm
;
182 struct mem_cgroup
*from
;
183 struct mem_cgroup
*to
;
185 unsigned long precharge
;
186 unsigned long moved_charge
;
187 unsigned long moved_swap
;
188 struct task_struct
*moving_task
; /* a task moving charges */
189 wait_queue_head_t waitq
; /* a waitq for other context */
191 .lock
= __SPIN_LOCK_UNLOCKED(mc
.lock
),
192 .waitq
= __WAIT_QUEUE_HEAD_INITIALIZER(mc
.waitq
),
196 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
197 * limit reclaim to prevent infinite loops, if they ever occur.
199 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
200 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
203 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
204 MEM_CGROUP_CHARGE_TYPE_ANON
,
205 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
, /* for accounting swapcache */
206 MEM_CGROUP_CHARGE_TYPE_DROP
, /* a page was unused swap cache */
210 /* for encoding cft->private value on file */
219 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
220 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
221 #define MEMFILE_ATTR(val) ((val) & 0xffff)
222 /* Used for OOM nofiier */
223 #define OOM_CONTROL (0)
226 * Iteration constructs for visiting all cgroups (under a tree). If
227 * loops are exited prematurely (break), mem_cgroup_iter_break() must
228 * be used for reference counting.
230 #define for_each_mem_cgroup_tree(iter, root) \
231 for (iter = mem_cgroup_iter(root, NULL, NULL); \
233 iter = mem_cgroup_iter(root, iter, NULL))
235 #define for_each_mem_cgroup(iter) \
236 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
238 iter = mem_cgroup_iter(NULL, iter, NULL))
240 static inline bool should_force_charge(void)
242 return tsk_is_oom_victim(current
) || fatal_signal_pending(current
) ||
243 (current
->flags
& PF_EXITING
);
246 /* Some nice accessors for the vmpressure. */
247 struct vmpressure
*memcg_to_vmpressure(struct mem_cgroup
*memcg
)
250 memcg
= root_mem_cgroup
;
251 return &memcg
->vmpressure
;
254 struct cgroup_subsys_state
*vmpressure_to_css(struct vmpressure
*vmpr
)
256 return &container_of(vmpr
, struct mem_cgroup
, vmpressure
)->css
;
259 #ifdef CONFIG_MEMCG_KMEM
261 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
262 * The main reason for not using cgroup id for this:
263 * this works better in sparse environments, where we have a lot of memcgs,
264 * but only a few kmem-limited. Or also, if we have, for instance, 200
265 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
266 * 200 entry array for that.
268 * The current size of the caches array is stored in memcg_nr_cache_ids. It
269 * will double each time we have to increase it.
271 static DEFINE_IDA(memcg_cache_ida
);
272 int memcg_nr_cache_ids
;
274 /* Protects memcg_nr_cache_ids */
275 static DECLARE_RWSEM(memcg_cache_ids_sem
);
277 void memcg_get_cache_ids(void)
279 down_read(&memcg_cache_ids_sem
);
282 void memcg_put_cache_ids(void)
284 up_read(&memcg_cache_ids_sem
);
288 * MIN_SIZE is different than 1, because we would like to avoid going through
289 * the alloc/free process all the time. In a small machine, 4 kmem-limited
290 * cgroups is a reasonable guess. In the future, it could be a parameter or
291 * tunable, but that is strictly not necessary.
293 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
294 * this constant directly from cgroup, but it is understandable that this is
295 * better kept as an internal representation in cgroup.c. In any case, the
296 * cgrp_id space is not getting any smaller, and we don't have to necessarily
297 * increase ours as well if it increases.
299 #define MEMCG_CACHES_MIN_SIZE 4
300 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
303 * A lot of the calls to the cache allocation functions are expected to be
304 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
305 * conditional to this static branch, we'll have to allow modules that does
306 * kmem_cache_alloc and the such to see this symbol as well
308 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key
);
309 EXPORT_SYMBOL(memcg_kmem_enabled_key
);
311 struct workqueue_struct
*memcg_kmem_cache_wq
;
314 static int memcg_shrinker_map_size
;
315 static DEFINE_MUTEX(memcg_shrinker_map_mutex
);
317 static void memcg_free_shrinker_map_rcu(struct rcu_head
*head
)
319 kvfree(container_of(head
, struct memcg_shrinker_map
, rcu
));
322 static int memcg_expand_one_shrinker_map(struct mem_cgroup
*memcg
,
323 int size
, int old_size
)
325 struct memcg_shrinker_map
*new, *old
;
328 lockdep_assert_held(&memcg_shrinker_map_mutex
);
331 old
= rcu_dereference_protected(
332 mem_cgroup_nodeinfo(memcg
, nid
)->shrinker_map
, true);
333 /* Not yet online memcg */
337 new = kvmalloc(sizeof(*new) + size
, GFP_KERNEL
);
341 /* Set all old bits, clear all new bits */
342 memset(new->map
, (int)0xff, old_size
);
343 memset((void *)new->map
+ old_size
, 0, size
- old_size
);
345 rcu_assign_pointer(memcg
->nodeinfo
[nid
]->shrinker_map
, new);
346 call_rcu(&old
->rcu
, memcg_free_shrinker_map_rcu
);
352 static void memcg_free_shrinker_maps(struct mem_cgroup
*memcg
)
354 struct mem_cgroup_per_node
*pn
;
355 struct memcg_shrinker_map
*map
;
358 if (mem_cgroup_is_root(memcg
))
362 pn
= mem_cgroup_nodeinfo(memcg
, nid
);
363 map
= rcu_dereference_protected(pn
->shrinker_map
, true);
366 rcu_assign_pointer(pn
->shrinker_map
, NULL
);
370 static int memcg_alloc_shrinker_maps(struct mem_cgroup
*memcg
)
372 struct memcg_shrinker_map
*map
;
373 int nid
, size
, ret
= 0;
375 if (mem_cgroup_is_root(memcg
))
378 mutex_lock(&memcg_shrinker_map_mutex
);
379 size
= memcg_shrinker_map_size
;
381 map
= kvzalloc(sizeof(*map
) + size
, GFP_KERNEL
);
383 memcg_free_shrinker_maps(memcg
);
387 rcu_assign_pointer(memcg
->nodeinfo
[nid
]->shrinker_map
, map
);
389 mutex_unlock(&memcg_shrinker_map_mutex
);
394 int memcg_expand_shrinker_maps(int new_id
)
396 int size
, old_size
, ret
= 0;
397 struct mem_cgroup
*memcg
;
399 size
= DIV_ROUND_UP(new_id
+ 1, BITS_PER_LONG
) * sizeof(unsigned long);
400 old_size
= memcg_shrinker_map_size
;
401 if (size
<= old_size
)
404 mutex_lock(&memcg_shrinker_map_mutex
);
405 if (!root_mem_cgroup
)
408 for_each_mem_cgroup(memcg
) {
409 if (mem_cgroup_is_root(memcg
))
411 ret
= memcg_expand_one_shrinker_map(memcg
, size
, old_size
);
417 memcg_shrinker_map_size
= size
;
418 mutex_unlock(&memcg_shrinker_map_mutex
);
422 void memcg_set_shrinker_bit(struct mem_cgroup
*memcg
, int nid
, int shrinker_id
)
424 if (shrinker_id
>= 0 && memcg
&& !mem_cgroup_is_root(memcg
)) {
425 struct memcg_shrinker_map
*map
;
428 map
= rcu_dereference(memcg
->nodeinfo
[nid
]->shrinker_map
);
429 /* Pairs with smp mb in shrink_slab() */
430 smp_mb__before_atomic();
431 set_bit(shrinker_id
, map
->map
);
437 * mem_cgroup_css_from_page - css of the memcg associated with a page
438 * @page: page of interest
440 * If memcg is bound to the default hierarchy, css of the memcg associated
441 * with @page is returned. The returned css remains associated with @page
442 * until it is released.
444 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
447 struct cgroup_subsys_state
*mem_cgroup_css_from_page(struct page
*page
)
449 struct mem_cgroup
*memcg
;
451 memcg
= page
->mem_cgroup
;
453 if (!memcg
|| !cgroup_subsys_on_dfl(memory_cgrp_subsys
))
454 memcg
= root_mem_cgroup
;
460 * page_cgroup_ino - return inode number of the memcg a page is charged to
463 * Look up the closest online ancestor of the memory cgroup @page is charged to
464 * and return its inode number or 0 if @page is not charged to any cgroup. It
465 * is safe to call this function without holding a reference to @page.
467 * Note, this function is inherently racy, because there is nothing to prevent
468 * the cgroup inode from getting torn down and potentially reallocated a moment
469 * after page_cgroup_ino() returns, so it only should be used by callers that
470 * do not care (such as procfs interfaces).
472 ino_t
page_cgroup_ino(struct page
*page
)
474 struct mem_cgroup
*memcg
;
475 unsigned long ino
= 0;
478 if (PageSlab(page
) && !PageTail(page
))
479 memcg
= memcg_from_slab_page(page
);
481 memcg
= READ_ONCE(page
->mem_cgroup
);
482 while (memcg
&& !(memcg
->css
.flags
& CSS_ONLINE
))
483 memcg
= parent_mem_cgroup(memcg
);
485 ino
= cgroup_ino(memcg
->css
.cgroup
);
490 static struct mem_cgroup_per_node
*
491 mem_cgroup_page_nodeinfo(struct mem_cgroup
*memcg
, struct page
*page
)
493 int nid
= page_to_nid(page
);
495 return memcg
->nodeinfo
[nid
];
498 static struct mem_cgroup_tree_per_node
*
499 soft_limit_tree_node(int nid
)
501 return soft_limit_tree
.rb_tree_per_node
[nid
];
504 static struct mem_cgroup_tree_per_node
*
505 soft_limit_tree_from_page(struct page
*page
)
507 int nid
= page_to_nid(page
);
509 return soft_limit_tree
.rb_tree_per_node
[nid
];
512 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node
*mz
,
513 struct mem_cgroup_tree_per_node
*mctz
,
514 unsigned long new_usage_in_excess
)
516 struct rb_node
**p
= &mctz
->rb_root
.rb_node
;
517 struct rb_node
*parent
= NULL
;
518 struct mem_cgroup_per_node
*mz_node
;
519 bool rightmost
= true;
524 mz
->usage_in_excess
= new_usage_in_excess
;
525 if (!mz
->usage_in_excess
)
529 mz_node
= rb_entry(parent
, struct mem_cgroup_per_node
,
531 if (mz
->usage_in_excess
< mz_node
->usage_in_excess
) {
537 * We can't avoid mem cgroups that are over their soft
538 * limit by the same amount
540 else if (mz
->usage_in_excess
>= mz_node
->usage_in_excess
)
545 mctz
->rb_rightmost
= &mz
->tree_node
;
547 rb_link_node(&mz
->tree_node
, parent
, p
);
548 rb_insert_color(&mz
->tree_node
, &mctz
->rb_root
);
552 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node
*mz
,
553 struct mem_cgroup_tree_per_node
*mctz
)
558 if (&mz
->tree_node
== mctz
->rb_rightmost
)
559 mctz
->rb_rightmost
= rb_prev(&mz
->tree_node
);
561 rb_erase(&mz
->tree_node
, &mctz
->rb_root
);
565 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node
*mz
,
566 struct mem_cgroup_tree_per_node
*mctz
)
570 spin_lock_irqsave(&mctz
->lock
, flags
);
571 __mem_cgroup_remove_exceeded(mz
, mctz
);
572 spin_unlock_irqrestore(&mctz
->lock
, flags
);
575 static unsigned long soft_limit_excess(struct mem_cgroup
*memcg
)
577 unsigned long nr_pages
= page_counter_read(&memcg
->memory
);
578 unsigned long soft_limit
= READ_ONCE(memcg
->soft_limit
);
579 unsigned long excess
= 0;
581 if (nr_pages
> soft_limit
)
582 excess
= nr_pages
- soft_limit
;
587 static void mem_cgroup_update_tree(struct mem_cgroup
*memcg
, struct page
*page
)
589 unsigned long excess
;
590 struct mem_cgroup_per_node
*mz
;
591 struct mem_cgroup_tree_per_node
*mctz
;
593 mctz
= soft_limit_tree_from_page(page
);
597 * Necessary to update all ancestors when hierarchy is used.
598 * because their event counter is not touched.
600 for (; memcg
; memcg
= parent_mem_cgroup(memcg
)) {
601 mz
= mem_cgroup_page_nodeinfo(memcg
, page
);
602 excess
= soft_limit_excess(memcg
);
604 * We have to update the tree if mz is on RB-tree or
605 * mem is over its softlimit.
607 if (excess
|| mz
->on_tree
) {
610 spin_lock_irqsave(&mctz
->lock
, flags
);
611 /* if on-tree, remove it */
613 __mem_cgroup_remove_exceeded(mz
, mctz
);
615 * Insert again. mz->usage_in_excess will be updated.
616 * If excess is 0, no tree ops.
618 __mem_cgroup_insert_exceeded(mz
, mctz
, excess
);
619 spin_unlock_irqrestore(&mctz
->lock
, flags
);
624 static void mem_cgroup_remove_from_trees(struct mem_cgroup
*memcg
)
626 struct mem_cgroup_tree_per_node
*mctz
;
627 struct mem_cgroup_per_node
*mz
;
631 mz
= mem_cgroup_nodeinfo(memcg
, nid
);
632 mctz
= soft_limit_tree_node(nid
);
634 mem_cgroup_remove_exceeded(mz
, mctz
);
638 static struct mem_cgroup_per_node
*
639 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node
*mctz
)
641 struct mem_cgroup_per_node
*mz
;
645 if (!mctz
->rb_rightmost
)
646 goto done
; /* Nothing to reclaim from */
648 mz
= rb_entry(mctz
->rb_rightmost
,
649 struct mem_cgroup_per_node
, tree_node
);
651 * Remove the node now but someone else can add it back,
652 * we will to add it back at the end of reclaim to its correct
653 * position in the tree.
655 __mem_cgroup_remove_exceeded(mz
, mctz
);
656 if (!soft_limit_excess(mz
->memcg
) ||
657 !css_tryget_online(&mz
->memcg
->css
))
663 static struct mem_cgroup_per_node
*
664 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node
*mctz
)
666 struct mem_cgroup_per_node
*mz
;
668 spin_lock_irq(&mctz
->lock
);
669 mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
670 spin_unlock_irq(&mctz
->lock
);
675 * __mod_memcg_state - update cgroup memory statistics
676 * @memcg: the memory cgroup
677 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
678 * @val: delta to add to the counter, can be negative
680 void __mod_memcg_state(struct mem_cgroup
*memcg
, int idx
, int val
)
684 if (mem_cgroup_disabled())
687 x
= val
+ __this_cpu_read(memcg
->vmstats_percpu
->stat
[idx
]);
688 if (unlikely(abs(x
) > MEMCG_CHARGE_BATCH
)) {
689 struct mem_cgroup
*mi
;
692 * Batch local counters to keep them in sync with
693 * the hierarchical ones.
695 __this_cpu_add(memcg
->vmstats_local
->stat
[idx
], x
);
696 for (mi
= memcg
; mi
; mi
= parent_mem_cgroup(mi
))
697 atomic_long_add(x
, &mi
->vmstats
[idx
]);
700 __this_cpu_write(memcg
->vmstats_percpu
->stat
[idx
], x
);
703 static struct mem_cgroup_per_node
*
704 parent_nodeinfo(struct mem_cgroup_per_node
*pn
, int nid
)
706 struct mem_cgroup
*parent
;
708 parent
= parent_mem_cgroup(pn
->memcg
);
711 return mem_cgroup_nodeinfo(parent
, nid
);
715 * __mod_lruvec_state - update lruvec memory statistics
716 * @lruvec: the lruvec
717 * @idx: the stat item
718 * @val: delta to add to the counter, can be negative
720 * The lruvec is the intersection of the NUMA node and a cgroup. This
721 * function updates the all three counters that are affected by a
722 * change of state at this level: per-node, per-cgroup, per-lruvec.
724 void __mod_lruvec_state(struct lruvec
*lruvec
, enum node_stat_item idx
,
727 pg_data_t
*pgdat
= lruvec_pgdat(lruvec
);
728 struct mem_cgroup_per_node
*pn
;
729 struct mem_cgroup
*memcg
;
733 __mod_node_page_state(pgdat
, idx
, val
);
735 if (mem_cgroup_disabled())
738 pn
= container_of(lruvec
, struct mem_cgroup_per_node
, lruvec
);
742 __mod_memcg_state(memcg
, idx
, val
);
745 __this_cpu_add(pn
->lruvec_stat_local
->count
[idx
], val
);
747 x
= val
+ __this_cpu_read(pn
->lruvec_stat_cpu
->count
[idx
]);
748 if (unlikely(abs(x
) > MEMCG_CHARGE_BATCH
)) {
749 struct mem_cgroup_per_node
*pi
;
751 for (pi
= pn
; pi
; pi
= parent_nodeinfo(pi
, pgdat
->node_id
))
752 atomic_long_add(x
, &pi
->lruvec_stat
[idx
]);
755 __this_cpu_write(pn
->lruvec_stat_cpu
->count
[idx
], x
);
758 void __mod_lruvec_slab_state(void *p
, enum node_stat_item idx
, int val
)
760 struct page
*page
= virt_to_head_page(p
);
761 pg_data_t
*pgdat
= page_pgdat(page
);
762 struct mem_cgroup
*memcg
;
763 struct lruvec
*lruvec
;
766 memcg
= memcg_from_slab_page(page
);
768 /* Untracked pages have no memcg, no lruvec. Update only the node */
769 if (!memcg
|| memcg
== root_mem_cgroup
) {
770 __mod_node_page_state(pgdat
, idx
, val
);
772 lruvec
= mem_cgroup_lruvec(memcg
, pgdat
);
773 __mod_lruvec_state(lruvec
, idx
, val
);
779 * __count_memcg_events - account VM events in a cgroup
780 * @memcg: the memory cgroup
781 * @idx: the event item
782 * @count: the number of events that occured
784 void __count_memcg_events(struct mem_cgroup
*memcg
, enum vm_event_item idx
,
789 if (mem_cgroup_disabled())
792 x
= count
+ __this_cpu_read(memcg
->vmstats_percpu
->events
[idx
]);
793 if (unlikely(x
> MEMCG_CHARGE_BATCH
)) {
794 struct mem_cgroup
*mi
;
797 * Batch local counters to keep them in sync with
798 * the hierarchical ones.
800 __this_cpu_add(memcg
->vmstats_local
->events
[idx
], x
);
801 for (mi
= memcg
; mi
; mi
= parent_mem_cgroup(mi
))
802 atomic_long_add(x
, &mi
->vmevents
[idx
]);
805 __this_cpu_write(memcg
->vmstats_percpu
->events
[idx
], x
);
808 static unsigned long memcg_events(struct mem_cgroup
*memcg
, int event
)
810 return atomic_long_read(&memcg
->vmevents
[event
]);
813 static unsigned long memcg_events_local(struct mem_cgroup
*memcg
, int event
)
818 for_each_possible_cpu(cpu
)
819 x
+= per_cpu(memcg
->vmstats_local
->events
[event
], cpu
);
823 static void mem_cgroup_charge_statistics(struct mem_cgroup
*memcg
,
825 bool compound
, int nr_pages
)
828 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
829 * counted as CACHE even if it's on ANON LRU.
832 __mod_memcg_state(memcg
, MEMCG_RSS
, nr_pages
);
834 __mod_memcg_state(memcg
, MEMCG_CACHE
, nr_pages
);
835 if (PageSwapBacked(page
))
836 __mod_memcg_state(memcg
, NR_SHMEM
, nr_pages
);
840 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
841 __mod_memcg_state(memcg
, MEMCG_RSS_HUGE
, nr_pages
);
844 /* pagein of a big page is an event. So, ignore page size */
846 __count_memcg_events(memcg
, PGPGIN
, 1);
848 __count_memcg_events(memcg
, PGPGOUT
, 1);
849 nr_pages
= -nr_pages
; /* for event */
852 __this_cpu_add(memcg
->vmstats_percpu
->nr_page_events
, nr_pages
);
855 static bool mem_cgroup_event_ratelimit(struct mem_cgroup
*memcg
,
856 enum mem_cgroup_events_target target
)
858 unsigned long val
, next
;
860 val
= __this_cpu_read(memcg
->vmstats_percpu
->nr_page_events
);
861 next
= __this_cpu_read(memcg
->vmstats_percpu
->targets
[target
]);
862 /* from time_after() in jiffies.h */
863 if ((long)(next
- val
) < 0) {
865 case MEM_CGROUP_TARGET_THRESH
:
866 next
= val
+ THRESHOLDS_EVENTS_TARGET
;
868 case MEM_CGROUP_TARGET_SOFTLIMIT
:
869 next
= val
+ SOFTLIMIT_EVENTS_TARGET
;
874 __this_cpu_write(memcg
->vmstats_percpu
->targets
[target
], next
);
881 * Check events in order.
884 static void memcg_check_events(struct mem_cgroup
*memcg
, struct page
*page
)
886 /* threshold event is triggered in finer grain than soft limit */
887 if (unlikely(mem_cgroup_event_ratelimit(memcg
,
888 MEM_CGROUP_TARGET_THRESH
))) {
891 do_softlimit
= mem_cgroup_event_ratelimit(memcg
,
892 MEM_CGROUP_TARGET_SOFTLIMIT
);
893 mem_cgroup_threshold(memcg
);
894 if (unlikely(do_softlimit
))
895 mem_cgroup_update_tree(memcg
, page
);
899 struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
902 * mm_update_next_owner() may clear mm->owner to NULL
903 * if it races with swapoff, page migration, etc.
904 * So this can be called with p == NULL.
909 return mem_cgroup_from_css(task_css(p
, memory_cgrp_id
));
911 EXPORT_SYMBOL(mem_cgroup_from_task
);
914 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
915 * @mm: mm from which memcg should be extracted. It can be NULL.
917 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
918 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
921 struct mem_cgroup
*get_mem_cgroup_from_mm(struct mm_struct
*mm
)
923 struct mem_cgroup
*memcg
;
925 if (mem_cgroup_disabled())
931 * Page cache insertions can happen withou an
932 * actual mm context, e.g. during disk probing
933 * on boot, loopback IO, acct() writes etc.
936 memcg
= root_mem_cgroup
;
938 memcg
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
939 if (unlikely(!memcg
))
940 memcg
= root_mem_cgroup
;
942 } while (!css_tryget(&memcg
->css
));
946 EXPORT_SYMBOL(get_mem_cgroup_from_mm
);
949 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
950 * @page: page from which memcg should be extracted.
952 * Obtain a reference on page->memcg and returns it if successful. Otherwise
953 * root_mem_cgroup is returned.
955 struct mem_cgroup
*get_mem_cgroup_from_page(struct page
*page
)
957 struct mem_cgroup
*memcg
= page
->mem_cgroup
;
959 if (mem_cgroup_disabled())
963 if (!memcg
|| !css_tryget_online(&memcg
->css
))
964 memcg
= root_mem_cgroup
;
968 EXPORT_SYMBOL(get_mem_cgroup_from_page
);
971 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
973 static __always_inline
struct mem_cgroup
*get_mem_cgroup_from_current(void)
975 if (unlikely(current
->active_memcg
)) {
976 struct mem_cgroup
*memcg
= root_mem_cgroup
;
979 if (css_tryget_online(¤t
->active_memcg
->css
))
980 memcg
= current
->active_memcg
;
984 return get_mem_cgroup_from_mm(current
->mm
);
988 * mem_cgroup_iter - iterate over memory cgroup hierarchy
989 * @root: hierarchy root
990 * @prev: previously returned memcg, NULL on first invocation
991 * @reclaim: cookie for shared reclaim walks, NULL for full walks
993 * Returns references to children of the hierarchy below @root, or
994 * @root itself, or %NULL after a full round-trip.
996 * Caller must pass the return value in @prev on subsequent
997 * invocations for reference counting, or use mem_cgroup_iter_break()
998 * to cancel a hierarchy walk before the round-trip is complete.
1000 * Reclaimers can specify a node and a priority level in @reclaim to
1001 * divide up the memcgs in the hierarchy among all concurrent
1002 * reclaimers operating on the same node and priority.
1004 struct mem_cgroup
*mem_cgroup_iter(struct mem_cgroup
*root
,
1005 struct mem_cgroup
*prev
,
1006 struct mem_cgroup_reclaim_cookie
*reclaim
)
1008 struct mem_cgroup_reclaim_iter
*uninitialized_var(iter
);
1009 struct cgroup_subsys_state
*css
= NULL
;
1010 struct mem_cgroup
*memcg
= NULL
;
1011 struct mem_cgroup
*pos
= NULL
;
1013 if (mem_cgroup_disabled())
1017 root
= root_mem_cgroup
;
1019 if (prev
&& !reclaim
)
1022 if (!root
->use_hierarchy
&& root
!= root_mem_cgroup
) {
1031 struct mem_cgroup_per_node
*mz
;
1033 mz
= mem_cgroup_nodeinfo(root
, reclaim
->pgdat
->node_id
);
1036 if (prev
&& reclaim
->generation
!= iter
->generation
)
1040 pos
= READ_ONCE(iter
->position
);
1041 if (!pos
|| css_tryget(&pos
->css
))
1044 * css reference reached zero, so iter->position will
1045 * be cleared by ->css_released. However, we should not
1046 * rely on this happening soon, because ->css_released
1047 * is called from a work queue, and by busy-waiting we
1048 * might block it. So we clear iter->position right
1051 (void)cmpxchg(&iter
->position
, pos
, NULL
);
1059 css
= css_next_descendant_pre(css
, &root
->css
);
1062 * Reclaimers share the hierarchy walk, and a
1063 * new one might jump in right at the end of
1064 * the hierarchy - make sure they see at least
1065 * one group and restart from the beginning.
1073 * Verify the css and acquire a reference. The root
1074 * is provided by the caller, so we know it's alive
1075 * and kicking, and don't take an extra reference.
1077 memcg
= mem_cgroup_from_css(css
);
1079 if (css
== &root
->css
)
1082 if (css_tryget(css
))
1090 * The position could have already been updated by a competing
1091 * thread, so check that the value hasn't changed since we read
1092 * it to avoid reclaiming from the same cgroup twice.
1094 (void)cmpxchg(&iter
->position
, pos
, memcg
);
1102 reclaim
->generation
= iter
->generation
;
1108 if (prev
&& prev
!= root
)
1109 css_put(&prev
->css
);
1115 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1116 * @root: hierarchy root
1117 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1119 void mem_cgroup_iter_break(struct mem_cgroup
*root
,
1120 struct mem_cgroup
*prev
)
1123 root
= root_mem_cgroup
;
1124 if (prev
&& prev
!= root
)
1125 css_put(&prev
->css
);
1128 static void __invalidate_reclaim_iterators(struct mem_cgroup
*from
,
1129 struct mem_cgroup
*dead_memcg
)
1131 struct mem_cgroup_reclaim_iter
*iter
;
1132 struct mem_cgroup_per_node
*mz
;
1135 for_each_node(nid
) {
1136 mz
= mem_cgroup_nodeinfo(from
, nid
);
1138 cmpxchg(&iter
->position
, dead_memcg
, NULL
);
1142 static void invalidate_reclaim_iterators(struct mem_cgroup
*dead_memcg
)
1144 struct mem_cgroup
*memcg
= dead_memcg
;
1145 struct mem_cgroup
*last
;
1148 __invalidate_reclaim_iterators(memcg
, dead_memcg
);
1150 } while ((memcg
= parent_mem_cgroup(memcg
)));
1153 * When cgruop1 non-hierarchy mode is used,
1154 * parent_mem_cgroup() does not walk all the way up to the
1155 * cgroup root (root_mem_cgroup). So we have to handle
1156 * dead_memcg from cgroup root separately.
1158 if (last
!= root_mem_cgroup
)
1159 __invalidate_reclaim_iterators(root_mem_cgroup
,
1164 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1165 * @memcg: hierarchy root
1166 * @fn: function to call for each task
1167 * @arg: argument passed to @fn
1169 * This function iterates over tasks attached to @memcg or to any of its
1170 * descendants and calls @fn for each task. If @fn returns a non-zero
1171 * value, the function breaks the iteration loop and returns the value.
1172 * Otherwise, it will iterate over all tasks and return 0.
1174 * This function must not be called for the root memory cgroup.
1176 int mem_cgroup_scan_tasks(struct mem_cgroup
*memcg
,
1177 int (*fn
)(struct task_struct
*, void *), void *arg
)
1179 struct mem_cgroup
*iter
;
1182 BUG_ON(memcg
== root_mem_cgroup
);
1184 for_each_mem_cgroup_tree(iter
, memcg
) {
1185 struct css_task_iter it
;
1186 struct task_struct
*task
;
1188 css_task_iter_start(&iter
->css
, CSS_TASK_ITER_PROCS
, &it
);
1189 while (!ret
&& (task
= css_task_iter_next(&it
)))
1190 ret
= fn(task
, arg
);
1191 css_task_iter_end(&it
);
1193 mem_cgroup_iter_break(memcg
, iter
);
1201 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1203 * @pgdat: pgdat of the page
1205 * This function is only safe when following the LRU page isolation
1206 * and putback protocol: the LRU lock must be held, and the page must
1207 * either be PageLRU() or the caller must have isolated/allocated it.
1209 struct lruvec
*mem_cgroup_page_lruvec(struct page
*page
, struct pglist_data
*pgdat
)
1211 struct mem_cgroup_per_node
*mz
;
1212 struct mem_cgroup
*memcg
;
1213 struct lruvec
*lruvec
;
1215 if (mem_cgroup_disabled()) {
1216 lruvec
= &pgdat
->__lruvec
;
1220 memcg
= page
->mem_cgroup
;
1222 * Swapcache readahead pages are added to the LRU - and
1223 * possibly migrated - before they are charged.
1226 memcg
= root_mem_cgroup
;
1228 mz
= mem_cgroup_page_nodeinfo(memcg
, page
);
1229 lruvec
= &mz
->lruvec
;
1232 * Since a node can be onlined after the mem_cgroup was created,
1233 * we have to be prepared to initialize lruvec->zone here;
1234 * and if offlined then reonlined, we need to reinitialize it.
1236 if (unlikely(lruvec
->pgdat
!= pgdat
))
1237 lruvec
->pgdat
= pgdat
;
1242 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1243 * @lruvec: mem_cgroup per zone lru vector
1244 * @lru: index of lru list the page is sitting on
1245 * @zid: zone id of the accounted pages
1246 * @nr_pages: positive when adding or negative when removing
1248 * This function must be called under lru_lock, just before a page is added
1249 * to or just after a page is removed from an lru list (that ordering being
1250 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1252 void mem_cgroup_update_lru_size(struct lruvec
*lruvec
, enum lru_list lru
,
1253 int zid
, int nr_pages
)
1255 struct mem_cgroup_per_node
*mz
;
1256 unsigned long *lru_size
;
1259 if (mem_cgroup_disabled())
1262 mz
= container_of(lruvec
, struct mem_cgroup_per_node
, lruvec
);
1263 lru_size
= &mz
->lru_zone_size
[zid
][lru
];
1266 *lru_size
+= nr_pages
;
1269 if (WARN_ONCE(size
< 0,
1270 "%s(%p, %d, %d): lru_size %ld\n",
1271 __func__
, lruvec
, lru
, nr_pages
, size
)) {
1277 *lru_size
+= nr_pages
;
1281 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1282 * @memcg: the memory cgroup
1284 * Returns the maximum amount of memory @mem can be charged with, in
1287 static unsigned long mem_cgroup_margin(struct mem_cgroup
*memcg
)
1289 unsigned long margin
= 0;
1290 unsigned long count
;
1291 unsigned long limit
;
1293 count
= page_counter_read(&memcg
->memory
);
1294 limit
= READ_ONCE(memcg
->memory
.max
);
1296 margin
= limit
- count
;
1298 if (do_memsw_account()) {
1299 count
= page_counter_read(&memcg
->memsw
);
1300 limit
= READ_ONCE(memcg
->memsw
.max
);
1302 margin
= min(margin
, limit
- count
);
1311 * A routine for checking "mem" is under move_account() or not.
1313 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1314 * moving cgroups. This is for waiting at high-memory pressure
1317 static bool mem_cgroup_under_move(struct mem_cgroup
*memcg
)
1319 struct mem_cgroup
*from
;
1320 struct mem_cgroup
*to
;
1323 * Unlike task_move routines, we access mc.to, mc.from not under
1324 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1326 spin_lock(&mc
.lock
);
1332 ret
= mem_cgroup_is_descendant(from
, memcg
) ||
1333 mem_cgroup_is_descendant(to
, memcg
);
1335 spin_unlock(&mc
.lock
);
1339 static bool mem_cgroup_wait_acct_move(struct mem_cgroup
*memcg
)
1341 if (mc
.moving_task
&& current
!= mc
.moving_task
) {
1342 if (mem_cgroup_under_move(memcg
)) {
1344 prepare_to_wait(&mc
.waitq
, &wait
, TASK_INTERRUPTIBLE
);
1345 /* moving charge context might have finished. */
1348 finish_wait(&mc
.waitq
, &wait
);
1355 static char *memory_stat_format(struct mem_cgroup
*memcg
)
1360 seq_buf_init(&s
, kmalloc(PAGE_SIZE
, GFP_KERNEL
), PAGE_SIZE
);
1365 * Provide statistics on the state of the memory subsystem as
1366 * well as cumulative event counters that show past behavior.
1368 * This list is ordered following a combination of these gradients:
1369 * 1) generic big picture -> specifics and details
1370 * 2) reflecting userspace activity -> reflecting kernel heuristics
1372 * Current memory state:
1375 seq_buf_printf(&s
, "anon %llu\n",
1376 (u64
)memcg_page_state(memcg
, MEMCG_RSS
) *
1378 seq_buf_printf(&s
, "file %llu\n",
1379 (u64
)memcg_page_state(memcg
, MEMCG_CACHE
) *
1381 seq_buf_printf(&s
, "kernel_stack %llu\n",
1382 (u64
)memcg_page_state(memcg
, MEMCG_KERNEL_STACK_KB
) *
1384 seq_buf_printf(&s
, "slab %llu\n",
1385 (u64
)(memcg_page_state(memcg
, NR_SLAB_RECLAIMABLE
) +
1386 memcg_page_state(memcg
, NR_SLAB_UNRECLAIMABLE
)) *
1388 seq_buf_printf(&s
, "sock %llu\n",
1389 (u64
)memcg_page_state(memcg
, MEMCG_SOCK
) *
1392 seq_buf_printf(&s
, "shmem %llu\n",
1393 (u64
)memcg_page_state(memcg
, NR_SHMEM
) *
1395 seq_buf_printf(&s
, "file_mapped %llu\n",
1396 (u64
)memcg_page_state(memcg
, NR_FILE_MAPPED
) *
1398 seq_buf_printf(&s
, "file_dirty %llu\n",
1399 (u64
)memcg_page_state(memcg
, NR_FILE_DIRTY
) *
1401 seq_buf_printf(&s
, "file_writeback %llu\n",
1402 (u64
)memcg_page_state(memcg
, NR_WRITEBACK
) *
1406 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
1407 * with the NR_ANON_THP vm counter, but right now it's a pain in the
1408 * arse because it requires migrating the work out of rmap to a place
1409 * where the page->mem_cgroup is set up and stable.
1411 seq_buf_printf(&s
, "anon_thp %llu\n",
1412 (u64
)memcg_page_state(memcg
, MEMCG_RSS_HUGE
) *
1415 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
1416 seq_buf_printf(&s
, "%s %llu\n", lru_list_name(i
),
1417 (u64
)memcg_page_state(memcg
, NR_LRU_BASE
+ i
) *
1420 seq_buf_printf(&s
, "slab_reclaimable %llu\n",
1421 (u64
)memcg_page_state(memcg
, NR_SLAB_RECLAIMABLE
) *
1423 seq_buf_printf(&s
, "slab_unreclaimable %llu\n",
1424 (u64
)memcg_page_state(memcg
, NR_SLAB_UNRECLAIMABLE
) *
1427 /* Accumulated memory events */
1429 seq_buf_printf(&s
, "%s %lu\n", vm_event_name(PGFAULT
),
1430 memcg_events(memcg
, PGFAULT
));
1431 seq_buf_printf(&s
, "%s %lu\n", vm_event_name(PGMAJFAULT
),
1432 memcg_events(memcg
, PGMAJFAULT
));
1434 seq_buf_printf(&s
, "workingset_refault %lu\n",
1435 memcg_page_state(memcg
, WORKINGSET_REFAULT
));
1436 seq_buf_printf(&s
, "workingset_activate %lu\n",
1437 memcg_page_state(memcg
, WORKINGSET_ACTIVATE
));
1438 seq_buf_printf(&s
, "workingset_nodereclaim %lu\n",
1439 memcg_page_state(memcg
, WORKINGSET_NODERECLAIM
));
1441 seq_buf_printf(&s
, "%s %lu\n", vm_event_name(PGREFILL
),
1442 memcg_events(memcg
, PGREFILL
));
1443 seq_buf_printf(&s
, "pgscan %lu\n",
1444 memcg_events(memcg
, PGSCAN_KSWAPD
) +
1445 memcg_events(memcg
, PGSCAN_DIRECT
));
1446 seq_buf_printf(&s
, "pgsteal %lu\n",
1447 memcg_events(memcg
, PGSTEAL_KSWAPD
) +
1448 memcg_events(memcg
, PGSTEAL_DIRECT
));
1449 seq_buf_printf(&s
, "%s %lu\n", vm_event_name(PGACTIVATE
),
1450 memcg_events(memcg
, PGACTIVATE
));
1451 seq_buf_printf(&s
, "%s %lu\n", vm_event_name(PGDEACTIVATE
),
1452 memcg_events(memcg
, PGDEACTIVATE
));
1453 seq_buf_printf(&s
, "%s %lu\n", vm_event_name(PGLAZYFREE
),
1454 memcg_events(memcg
, PGLAZYFREE
));
1455 seq_buf_printf(&s
, "%s %lu\n", vm_event_name(PGLAZYFREED
),
1456 memcg_events(memcg
, PGLAZYFREED
));
1458 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1459 seq_buf_printf(&s
, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC
),
1460 memcg_events(memcg
, THP_FAULT_ALLOC
));
1461 seq_buf_printf(&s
, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC
),
1462 memcg_events(memcg
, THP_COLLAPSE_ALLOC
));
1463 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1465 /* The above should easily fit into one page */
1466 WARN_ON_ONCE(seq_buf_has_overflowed(&s
));
1471 #define K(x) ((x) << (PAGE_SHIFT-10))
1473 * mem_cgroup_print_oom_context: Print OOM information relevant to
1474 * memory controller.
1475 * @memcg: The memory cgroup that went over limit
1476 * @p: Task that is going to be killed
1478 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1481 void mem_cgroup_print_oom_context(struct mem_cgroup
*memcg
, struct task_struct
*p
)
1486 pr_cont(",oom_memcg=");
1487 pr_cont_cgroup_path(memcg
->css
.cgroup
);
1489 pr_cont(",global_oom");
1491 pr_cont(",task_memcg=");
1492 pr_cont_cgroup_path(task_cgroup(p
, memory_cgrp_id
));
1498 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1499 * memory controller.
1500 * @memcg: The memory cgroup that went over limit
1502 void mem_cgroup_print_oom_meminfo(struct mem_cgroup
*memcg
)
1506 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1507 K((u64
)page_counter_read(&memcg
->memory
)),
1508 K((u64
)memcg
->memory
.max
), memcg
->memory
.failcnt
);
1509 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
1510 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1511 K((u64
)page_counter_read(&memcg
->swap
)),
1512 K((u64
)memcg
->swap
.max
), memcg
->swap
.failcnt
);
1514 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1515 K((u64
)page_counter_read(&memcg
->memsw
)),
1516 K((u64
)memcg
->memsw
.max
), memcg
->memsw
.failcnt
);
1517 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1518 K((u64
)page_counter_read(&memcg
->kmem
)),
1519 K((u64
)memcg
->kmem
.max
), memcg
->kmem
.failcnt
);
1522 pr_info("Memory cgroup stats for ");
1523 pr_cont_cgroup_path(memcg
->css
.cgroup
);
1525 buf
= memory_stat_format(memcg
);
1533 * Return the memory (and swap, if configured) limit for a memcg.
1535 unsigned long mem_cgroup_get_max(struct mem_cgroup
*memcg
)
1539 max
= memcg
->memory
.max
;
1540 if (mem_cgroup_swappiness(memcg
)) {
1541 unsigned long memsw_max
;
1542 unsigned long swap_max
;
1544 memsw_max
= memcg
->memsw
.max
;
1545 swap_max
= memcg
->swap
.max
;
1546 swap_max
= min(swap_max
, (unsigned long)total_swap_pages
);
1547 max
= min(max
+ swap_max
, memsw_max
);
1552 unsigned long mem_cgroup_size(struct mem_cgroup
*memcg
)
1554 return page_counter_read(&memcg
->memory
);
1557 static bool mem_cgroup_out_of_memory(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
1560 struct oom_control oc
= {
1564 .gfp_mask
= gfp_mask
,
1569 if (mutex_lock_killable(&oom_lock
))
1572 * A few threads which were not waiting at mutex_lock_killable() can
1573 * fail to bail out. Therefore, check again after holding oom_lock.
1575 ret
= should_force_charge() || out_of_memory(&oc
);
1576 mutex_unlock(&oom_lock
);
1580 static int mem_cgroup_soft_reclaim(struct mem_cgroup
*root_memcg
,
1583 unsigned long *total_scanned
)
1585 struct mem_cgroup
*victim
= NULL
;
1588 unsigned long excess
;
1589 unsigned long nr_scanned
;
1590 struct mem_cgroup_reclaim_cookie reclaim
= {
1594 excess
= soft_limit_excess(root_memcg
);
1597 victim
= mem_cgroup_iter(root_memcg
, victim
, &reclaim
);
1602 * If we have not been able to reclaim
1603 * anything, it might because there are
1604 * no reclaimable pages under this hierarchy
1609 * We want to do more targeted reclaim.
1610 * excess >> 2 is not to excessive so as to
1611 * reclaim too much, nor too less that we keep
1612 * coming back to reclaim from this cgroup
1614 if (total
>= (excess
>> 2) ||
1615 (loop
> MEM_CGROUP_MAX_RECLAIM_LOOPS
))
1620 total
+= mem_cgroup_shrink_node(victim
, gfp_mask
, false,
1621 pgdat
, &nr_scanned
);
1622 *total_scanned
+= nr_scanned
;
1623 if (!soft_limit_excess(root_memcg
))
1626 mem_cgroup_iter_break(root_memcg
, victim
);
1630 #ifdef CONFIG_LOCKDEP
1631 static struct lockdep_map memcg_oom_lock_dep_map
= {
1632 .name
= "memcg_oom_lock",
1636 static DEFINE_SPINLOCK(memcg_oom_lock
);
1639 * Check OOM-Killer is already running under our hierarchy.
1640 * If someone is running, return false.
1642 static bool mem_cgroup_oom_trylock(struct mem_cgroup
*memcg
)
1644 struct mem_cgroup
*iter
, *failed
= NULL
;
1646 spin_lock(&memcg_oom_lock
);
1648 for_each_mem_cgroup_tree(iter
, memcg
) {
1649 if (iter
->oom_lock
) {
1651 * this subtree of our hierarchy is already locked
1652 * so we cannot give a lock.
1655 mem_cgroup_iter_break(memcg
, iter
);
1658 iter
->oom_lock
= true;
1663 * OK, we failed to lock the whole subtree so we have
1664 * to clean up what we set up to the failing subtree
1666 for_each_mem_cgroup_tree(iter
, memcg
) {
1667 if (iter
== failed
) {
1668 mem_cgroup_iter_break(memcg
, iter
);
1671 iter
->oom_lock
= false;
1674 mutex_acquire(&memcg_oom_lock_dep_map
, 0, 1, _RET_IP_
);
1676 spin_unlock(&memcg_oom_lock
);
1681 static void mem_cgroup_oom_unlock(struct mem_cgroup
*memcg
)
1683 struct mem_cgroup
*iter
;
1685 spin_lock(&memcg_oom_lock
);
1686 mutex_release(&memcg_oom_lock_dep_map
, _RET_IP_
);
1687 for_each_mem_cgroup_tree(iter
, memcg
)
1688 iter
->oom_lock
= false;
1689 spin_unlock(&memcg_oom_lock
);
1692 static void mem_cgroup_mark_under_oom(struct mem_cgroup
*memcg
)
1694 struct mem_cgroup
*iter
;
1696 spin_lock(&memcg_oom_lock
);
1697 for_each_mem_cgroup_tree(iter
, memcg
)
1699 spin_unlock(&memcg_oom_lock
);
1702 static void mem_cgroup_unmark_under_oom(struct mem_cgroup
*memcg
)
1704 struct mem_cgroup
*iter
;
1707 * When a new child is created while the hierarchy is under oom,
1708 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1710 spin_lock(&memcg_oom_lock
);
1711 for_each_mem_cgroup_tree(iter
, memcg
)
1712 if (iter
->under_oom
> 0)
1714 spin_unlock(&memcg_oom_lock
);
1717 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq
);
1719 struct oom_wait_info
{
1720 struct mem_cgroup
*memcg
;
1721 wait_queue_entry_t wait
;
1724 static int memcg_oom_wake_function(wait_queue_entry_t
*wait
,
1725 unsigned mode
, int sync
, void *arg
)
1727 struct mem_cgroup
*wake_memcg
= (struct mem_cgroup
*)arg
;
1728 struct mem_cgroup
*oom_wait_memcg
;
1729 struct oom_wait_info
*oom_wait_info
;
1731 oom_wait_info
= container_of(wait
, struct oom_wait_info
, wait
);
1732 oom_wait_memcg
= oom_wait_info
->memcg
;
1734 if (!mem_cgroup_is_descendant(wake_memcg
, oom_wait_memcg
) &&
1735 !mem_cgroup_is_descendant(oom_wait_memcg
, wake_memcg
))
1737 return autoremove_wake_function(wait
, mode
, sync
, arg
);
1740 static void memcg_oom_recover(struct mem_cgroup
*memcg
)
1743 * For the following lockless ->under_oom test, the only required
1744 * guarantee is that it must see the state asserted by an OOM when
1745 * this function is called as a result of userland actions
1746 * triggered by the notification of the OOM. This is trivially
1747 * achieved by invoking mem_cgroup_mark_under_oom() before
1748 * triggering notification.
1750 if (memcg
&& memcg
->under_oom
)
1751 __wake_up(&memcg_oom_waitq
, TASK_NORMAL
, 0, memcg
);
1761 static enum oom_status
mem_cgroup_oom(struct mem_cgroup
*memcg
, gfp_t mask
, int order
)
1763 enum oom_status ret
;
1766 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
1769 memcg_memory_event(memcg
, MEMCG_OOM
);
1772 * We are in the middle of the charge context here, so we
1773 * don't want to block when potentially sitting on a callstack
1774 * that holds all kinds of filesystem and mm locks.
1776 * cgroup1 allows disabling the OOM killer and waiting for outside
1777 * handling until the charge can succeed; remember the context and put
1778 * the task to sleep at the end of the page fault when all locks are
1781 * On the other hand, in-kernel OOM killer allows for an async victim
1782 * memory reclaim (oom_reaper) and that means that we are not solely
1783 * relying on the oom victim to make a forward progress and we can
1784 * invoke the oom killer here.
1786 * Please note that mem_cgroup_out_of_memory might fail to find a
1787 * victim and then we have to bail out from the charge path.
1789 if (memcg
->oom_kill_disable
) {
1790 if (!current
->in_user_fault
)
1792 css_get(&memcg
->css
);
1793 current
->memcg_in_oom
= memcg
;
1794 current
->memcg_oom_gfp_mask
= mask
;
1795 current
->memcg_oom_order
= order
;
1800 mem_cgroup_mark_under_oom(memcg
);
1802 locked
= mem_cgroup_oom_trylock(memcg
);
1805 mem_cgroup_oom_notify(memcg
);
1807 mem_cgroup_unmark_under_oom(memcg
);
1808 if (mem_cgroup_out_of_memory(memcg
, mask
, order
))
1814 mem_cgroup_oom_unlock(memcg
);
1820 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1821 * @handle: actually kill/wait or just clean up the OOM state
1823 * This has to be called at the end of a page fault if the memcg OOM
1824 * handler was enabled.
1826 * Memcg supports userspace OOM handling where failed allocations must
1827 * sleep on a waitqueue until the userspace task resolves the
1828 * situation. Sleeping directly in the charge context with all kinds
1829 * of locks held is not a good idea, instead we remember an OOM state
1830 * in the task and mem_cgroup_oom_synchronize() has to be called at
1831 * the end of the page fault to complete the OOM handling.
1833 * Returns %true if an ongoing memcg OOM situation was detected and
1834 * completed, %false otherwise.
1836 bool mem_cgroup_oom_synchronize(bool handle
)
1838 struct mem_cgroup
*memcg
= current
->memcg_in_oom
;
1839 struct oom_wait_info owait
;
1842 /* OOM is global, do not handle */
1849 owait
.memcg
= memcg
;
1850 owait
.wait
.flags
= 0;
1851 owait
.wait
.func
= memcg_oom_wake_function
;
1852 owait
.wait
.private = current
;
1853 INIT_LIST_HEAD(&owait
.wait
.entry
);
1855 prepare_to_wait(&memcg_oom_waitq
, &owait
.wait
, TASK_KILLABLE
);
1856 mem_cgroup_mark_under_oom(memcg
);
1858 locked
= mem_cgroup_oom_trylock(memcg
);
1861 mem_cgroup_oom_notify(memcg
);
1863 if (locked
&& !memcg
->oom_kill_disable
) {
1864 mem_cgroup_unmark_under_oom(memcg
);
1865 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1866 mem_cgroup_out_of_memory(memcg
, current
->memcg_oom_gfp_mask
,
1867 current
->memcg_oom_order
);
1870 mem_cgroup_unmark_under_oom(memcg
);
1871 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1875 mem_cgroup_oom_unlock(memcg
);
1877 * There is no guarantee that an OOM-lock contender
1878 * sees the wakeups triggered by the OOM kill
1879 * uncharges. Wake any sleepers explicitely.
1881 memcg_oom_recover(memcg
);
1884 current
->memcg_in_oom
= NULL
;
1885 css_put(&memcg
->css
);
1890 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1891 * @victim: task to be killed by the OOM killer
1892 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1894 * Returns a pointer to a memory cgroup, which has to be cleaned up
1895 * by killing all belonging OOM-killable tasks.
1897 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1899 struct mem_cgroup
*mem_cgroup_get_oom_group(struct task_struct
*victim
,
1900 struct mem_cgroup
*oom_domain
)
1902 struct mem_cgroup
*oom_group
= NULL
;
1903 struct mem_cgroup
*memcg
;
1905 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
))
1909 oom_domain
= root_mem_cgroup
;
1913 memcg
= mem_cgroup_from_task(victim
);
1914 if (memcg
== root_mem_cgroup
)
1918 * Traverse the memory cgroup hierarchy from the victim task's
1919 * cgroup up to the OOMing cgroup (or root) to find the
1920 * highest-level memory cgroup with oom.group set.
1922 for (; memcg
; memcg
= parent_mem_cgroup(memcg
)) {
1923 if (memcg
->oom_group
)
1926 if (memcg
== oom_domain
)
1931 css_get(&oom_group
->css
);
1938 void mem_cgroup_print_oom_group(struct mem_cgroup
*memcg
)
1940 pr_info("Tasks in ");
1941 pr_cont_cgroup_path(memcg
->css
.cgroup
);
1942 pr_cont(" are going to be killed due to memory.oom.group set\n");
1946 * lock_page_memcg - lock a page->mem_cgroup binding
1949 * This function protects unlocked LRU pages from being moved to
1952 * It ensures lifetime of the returned memcg. Caller is responsible
1953 * for the lifetime of the page; __unlock_page_memcg() is available
1954 * when @page might get freed inside the locked section.
1956 struct mem_cgroup
*lock_page_memcg(struct page
*page
)
1958 struct mem_cgroup
*memcg
;
1959 unsigned long flags
;
1962 * The RCU lock is held throughout the transaction. The fast
1963 * path can get away without acquiring the memcg->move_lock
1964 * because page moving starts with an RCU grace period.
1966 * The RCU lock also protects the memcg from being freed when
1967 * the page state that is going to change is the only thing
1968 * preventing the page itself from being freed. E.g. writeback
1969 * doesn't hold a page reference and relies on PG_writeback to
1970 * keep off truncation, migration and so forth.
1974 if (mem_cgroup_disabled())
1977 memcg
= page
->mem_cgroup
;
1978 if (unlikely(!memcg
))
1981 if (atomic_read(&memcg
->moving_account
) <= 0)
1984 spin_lock_irqsave(&memcg
->move_lock
, flags
);
1985 if (memcg
!= page
->mem_cgroup
) {
1986 spin_unlock_irqrestore(&memcg
->move_lock
, flags
);
1991 * When charge migration first begins, we can have locked and
1992 * unlocked page stat updates happening concurrently. Track
1993 * the task who has the lock for unlock_page_memcg().
1995 memcg
->move_lock_task
= current
;
1996 memcg
->move_lock_flags
= flags
;
2000 EXPORT_SYMBOL(lock_page_memcg
);
2003 * __unlock_page_memcg - unlock and unpin a memcg
2006 * Unlock and unpin a memcg returned by lock_page_memcg().
2008 void __unlock_page_memcg(struct mem_cgroup
*memcg
)
2010 if (memcg
&& memcg
->move_lock_task
== current
) {
2011 unsigned long flags
= memcg
->move_lock_flags
;
2013 memcg
->move_lock_task
= NULL
;
2014 memcg
->move_lock_flags
= 0;
2016 spin_unlock_irqrestore(&memcg
->move_lock
, flags
);
2023 * unlock_page_memcg - unlock a page->mem_cgroup binding
2026 void unlock_page_memcg(struct page
*page
)
2028 __unlock_page_memcg(page
->mem_cgroup
);
2030 EXPORT_SYMBOL(unlock_page_memcg
);
2032 struct memcg_stock_pcp
{
2033 struct mem_cgroup
*cached
; /* this never be root cgroup */
2034 unsigned int nr_pages
;
2035 struct work_struct work
;
2036 unsigned long flags
;
2037 #define FLUSHING_CACHED_CHARGE 0
2039 static DEFINE_PER_CPU(struct memcg_stock_pcp
, memcg_stock
);
2040 static DEFINE_MUTEX(percpu_charge_mutex
);
2043 * consume_stock: Try to consume stocked charge on this cpu.
2044 * @memcg: memcg to consume from.
2045 * @nr_pages: how many pages to charge.
2047 * The charges will only happen if @memcg matches the current cpu's memcg
2048 * stock, and at least @nr_pages are available in that stock. Failure to
2049 * service an allocation will refill the stock.
2051 * returns true if successful, false otherwise.
2053 static bool consume_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
2055 struct memcg_stock_pcp
*stock
;
2056 unsigned long flags
;
2059 if (nr_pages
> MEMCG_CHARGE_BATCH
)
2062 local_irq_save(flags
);
2064 stock
= this_cpu_ptr(&memcg_stock
);
2065 if (memcg
== stock
->cached
&& stock
->nr_pages
>= nr_pages
) {
2066 stock
->nr_pages
-= nr_pages
;
2070 local_irq_restore(flags
);
2076 * Returns stocks cached in percpu and reset cached information.
2078 static void drain_stock(struct memcg_stock_pcp
*stock
)
2080 struct mem_cgroup
*old
= stock
->cached
;
2082 if (stock
->nr_pages
) {
2083 page_counter_uncharge(&old
->memory
, stock
->nr_pages
);
2084 if (do_memsw_account())
2085 page_counter_uncharge(&old
->memsw
, stock
->nr_pages
);
2086 css_put_many(&old
->css
, stock
->nr_pages
);
2087 stock
->nr_pages
= 0;
2089 stock
->cached
= NULL
;
2092 static void drain_local_stock(struct work_struct
*dummy
)
2094 struct memcg_stock_pcp
*stock
;
2095 unsigned long flags
;
2098 * The only protection from memory hotplug vs. drain_stock races is
2099 * that we always operate on local CPU stock here with IRQ disabled
2101 local_irq_save(flags
);
2103 stock
= this_cpu_ptr(&memcg_stock
);
2105 clear_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
);
2107 local_irq_restore(flags
);
2111 * Cache charges(val) to local per_cpu area.
2112 * This will be consumed by consume_stock() function, later.
2114 static void refill_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
2116 struct memcg_stock_pcp
*stock
;
2117 unsigned long flags
;
2119 local_irq_save(flags
);
2121 stock
= this_cpu_ptr(&memcg_stock
);
2122 if (stock
->cached
!= memcg
) { /* reset if necessary */
2124 stock
->cached
= memcg
;
2126 stock
->nr_pages
+= nr_pages
;
2128 if (stock
->nr_pages
> MEMCG_CHARGE_BATCH
)
2131 local_irq_restore(flags
);
2135 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2136 * of the hierarchy under it.
2138 static void drain_all_stock(struct mem_cgroup
*root_memcg
)
2142 /* If someone's already draining, avoid adding running more workers. */
2143 if (!mutex_trylock(&percpu_charge_mutex
))
2146 * Notify other cpus that system-wide "drain" is running
2147 * We do not care about races with the cpu hotplug because cpu down
2148 * as well as workers from this path always operate on the local
2149 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2152 for_each_online_cpu(cpu
) {
2153 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
2154 struct mem_cgroup
*memcg
;
2158 memcg
= stock
->cached
;
2159 if (memcg
&& stock
->nr_pages
&&
2160 mem_cgroup_is_descendant(memcg
, root_memcg
))
2165 !test_and_set_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
)) {
2167 drain_local_stock(&stock
->work
);
2169 schedule_work_on(cpu
, &stock
->work
);
2173 mutex_unlock(&percpu_charge_mutex
);
2176 static int memcg_hotplug_cpu_dead(unsigned int cpu
)
2178 struct memcg_stock_pcp
*stock
;
2179 struct mem_cgroup
*memcg
, *mi
;
2181 stock
= &per_cpu(memcg_stock
, cpu
);
2184 for_each_mem_cgroup(memcg
) {
2187 for (i
= 0; i
< MEMCG_NR_STAT
; i
++) {
2191 x
= this_cpu_xchg(memcg
->vmstats_percpu
->stat
[i
], 0);
2193 for (mi
= memcg
; mi
; mi
= parent_mem_cgroup(mi
))
2194 atomic_long_add(x
, &memcg
->vmstats
[i
]);
2196 if (i
>= NR_VM_NODE_STAT_ITEMS
)
2199 for_each_node(nid
) {
2200 struct mem_cgroup_per_node
*pn
;
2202 pn
= mem_cgroup_nodeinfo(memcg
, nid
);
2203 x
= this_cpu_xchg(pn
->lruvec_stat_cpu
->count
[i
], 0);
2206 atomic_long_add(x
, &pn
->lruvec_stat
[i
]);
2207 } while ((pn
= parent_nodeinfo(pn
, nid
)));
2211 for (i
= 0; i
< NR_VM_EVENT_ITEMS
; i
++) {
2214 x
= this_cpu_xchg(memcg
->vmstats_percpu
->events
[i
], 0);
2216 for (mi
= memcg
; mi
; mi
= parent_mem_cgroup(mi
))
2217 atomic_long_add(x
, &memcg
->vmevents
[i
]);
2224 static void reclaim_high(struct mem_cgroup
*memcg
,
2225 unsigned int nr_pages
,
2229 if (page_counter_read(&memcg
->memory
) <= memcg
->high
)
2231 memcg_memory_event(memcg
, MEMCG_HIGH
);
2232 try_to_free_mem_cgroup_pages(memcg
, nr_pages
, gfp_mask
, true);
2233 } while ((memcg
= parent_mem_cgroup(memcg
)));
2236 static void high_work_func(struct work_struct
*work
)
2238 struct mem_cgroup
*memcg
;
2240 memcg
= container_of(work
, struct mem_cgroup
, high_work
);
2241 reclaim_high(memcg
, MEMCG_CHARGE_BATCH
, GFP_KERNEL
);
2245 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2246 * enough to still cause a significant slowdown in most cases, while still
2247 * allowing diagnostics and tracing to proceed without becoming stuck.
2249 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2252 * When calculating the delay, we use these either side of the exponentiation to
2253 * maintain precision and scale to a reasonable number of jiffies (see the table
2256 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2257 * overage ratio to a delay.
2258 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
2259 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2260 * to produce a reasonable delay curve.
2262 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2263 * reasonable delay curve compared to precision-adjusted overage, not
2264 * penalising heavily at first, but still making sure that growth beyond the
2265 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2266 * example, with a high of 100 megabytes:
2268 * +-------+------------------------+
2269 * | usage | time to allocate in ms |
2270 * +-------+------------------------+
2292 * +-------+------------------------+
2294 #define MEMCG_DELAY_PRECISION_SHIFT 20
2295 #define MEMCG_DELAY_SCALING_SHIFT 14
2298 * Scheduled by try_charge() to be executed from the userland return path
2299 * and reclaims memory over the high limit.
2301 void mem_cgroup_handle_over_high(void)
2303 unsigned long usage
, high
, clamped_high
;
2304 unsigned long pflags
;
2305 unsigned long penalty_jiffies
, overage
;
2306 unsigned int nr_pages
= current
->memcg_nr_pages_over_high
;
2307 struct mem_cgroup
*memcg
;
2309 if (likely(!nr_pages
))
2312 memcg
= get_mem_cgroup_from_mm(current
->mm
);
2313 reclaim_high(memcg
, nr_pages
, GFP_KERNEL
);
2314 current
->memcg_nr_pages_over_high
= 0;
2317 * memory.high is breached and reclaim is unable to keep up. Throttle
2318 * allocators proactively to slow down excessive growth.
2320 * We use overage compared to memory.high to calculate the number of
2321 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2322 * fairly lenient on small overages, and increasingly harsh when the
2323 * memcg in question makes it clear that it has no intention of stopping
2324 * its crazy behaviour, so we exponentially increase the delay based on
2328 usage
= page_counter_read(&memcg
->memory
);
2329 high
= READ_ONCE(memcg
->high
);
2335 * Prevent division by 0 in overage calculation by acting as if it was a
2336 * threshold of 1 page
2338 clamped_high
= max(high
, 1UL);
2340 overage
= div_u64((u64
)(usage
- high
) << MEMCG_DELAY_PRECISION_SHIFT
,
2343 penalty_jiffies
= ((u64
)overage
* overage
* HZ
)
2344 >> (MEMCG_DELAY_PRECISION_SHIFT
+ MEMCG_DELAY_SCALING_SHIFT
);
2347 * Factor in the task's own contribution to the overage, such that four
2348 * N-sized allocations are throttled approximately the same as one
2349 * 4N-sized allocation.
2351 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2352 * larger the current charge patch is than that.
2354 penalty_jiffies
= penalty_jiffies
* nr_pages
/ MEMCG_CHARGE_BATCH
;
2357 * Clamp the max delay per usermode return so as to still keep the
2358 * application moving forwards and also permit diagnostics, albeit
2361 penalty_jiffies
= min(penalty_jiffies
, MEMCG_MAX_HIGH_DELAY_JIFFIES
);
2364 * Don't sleep if the amount of jiffies this memcg owes us is so low
2365 * that it's not even worth doing, in an attempt to be nice to those who
2366 * go only a small amount over their memory.high value and maybe haven't
2367 * been aggressively reclaimed enough yet.
2369 if (penalty_jiffies
<= HZ
/ 100)
2373 * If we exit early, we're guaranteed to die (since
2374 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2375 * need to account for any ill-begotten jiffies to pay them off later.
2377 psi_memstall_enter(&pflags
);
2378 schedule_timeout_killable(penalty_jiffies
);
2379 psi_memstall_leave(&pflags
);
2382 css_put(&memcg
->css
);
2385 static int try_charge(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
2386 unsigned int nr_pages
)
2388 unsigned int batch
= max(MEMCG_CHARGE_BATCH
, nr_pages
);
2389 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2390 struct mem_cgroup
*mem_over_limit
;
2391 struct page_counter
*counter
;
2392 unsigned long nr_reclaimed
;
2393 bool may_swap
= true;
2394 bool drained
= false;
2395 enum oom_status oom_status
;
2397 if (mem_cgroup_is_root(memcg
))
2400 if (consume_stock(memcg
, nr_pages
))
2403 if (!do_memsw_account() ||
2404 page_counter_try_charge(&memcg
->memsw
, batch
, &counter
)) {
2405 if (page_counter_try_charge(&memcg
->memory
, batch
, &counter
))
2407 if (do_memsw_account())
2408 page_counter_uncharge(&memcg
->memsw
, batch
);
2409 mem_over_limit
= mem_cgroup_from_counter(counter
, memory
);
2411 mem_over_limit
= mem_cgroup_from_counter(counter
, memsw
);
2415 if (batch
> nr_pages
) {
2421 * Memcg doesn't have a dedicated reserve for atomic
2422 * allocations. But like the global atomic pool, we need to
2423 * put the burden of reclaim on regular allocation requests
2424 * and let these go through as privileged allocations.
2426 if (gfp_mask
& __GFP_ATOMIC
)
2430 * Unlike in global OOM situations, memcg is not in a physical
2431 * memory shortage. Allow dying and OOM-killed tasks to
2432 * bypass the last charges so that they can exit quickly and
2433 * free their memory.
2435 if (unlikely(should_force_charge()))
2439 * Prevent unbounded recursion when reclaim operations need to
2440 * allocate memory. This might exceed the limits temporarily,
2441 * but we prefer facilitating memory reclaim and getting back
2442 * under the limit over triggering OOM kills in these cases.
2444 if (unlikely(current
->flags
& PF_MEMALLOC
))
2447 if (unlikely(task_in_memcg_oom(current
)))
2450 if (!gfpflags_allow_blocking(gfp_mask
))
2453 memcg_memory_event(mem_over_limit
, MEMCG_MAX
);
2455 nr_reclaimed
= try_to_free_mem_cgroup_pages(mem_over_limit
, nr_pages
,
2456 gfp_mask
, may_swap
);
2458 if (mem_cgroup_margin(mem_over_limit
) >= nr_pages
)
2462 drain_all_stock(mem_over_limit
);
2467 if (gfp_mask
& __GFP_NORETRY
)
2470 * Even though the limit is exceeded at this point, reclaim
2471 * may have been able to free some pages. Retry the charge
2472 * before killing the task.
2474 * Only for regular pages, though: huge pages are rather
2475 * unlikely to succeed so close to the limit, and we fall back
2476 * to regular pages anyway in case of failure.
2478 if (nr_reclaimed
&& nr_pages
<= (1 << PAGE_ALLOC_COSTLY_ORDER
))
2481 * At task move, charge accounts can be doubly counted. So, it's
2482 * better to wait until the end of task_move if something is going on.
2484 if (mem_cgroup_wait_acct_move(mem_over_limit
))
2490 if (gfp_mask
& __GFP_RETRY_MAYFAIL
)
2493 if (gfp_mask
& __GFP_NOFAIL
)
2496 if (fatal_signal_pending(current
))
2500 * keep retrying as long as the memcg oom killer is able to make
2501 * a forward progress or bypass the charge if the oom killer
2502 * couldn't make any progress.
2504 oom_status
= mem_cgroup_oom(mem_over_limit
, gfp_mask
,
2505 get_order(nr_pages
* PAGE_SIZE
));
2506 switch (oom_status
) {
2508 nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2516 if (!(gfp_mask
& __GFP_NOFAIL
))
2520 * The allocation either can't fail or will lead to more memory
2521 * being freed very soon. Allow memory usage go over the limit
2522 * temporarily by force charging it.
2524 page_counter_charge(&memcg
->memory
, nr_pages
);
2525 if (do_memsw_account())
2526 page_counter_charge(&memcg
->memsw
, nr_pages
);
2527 css_get_many(&memcg
->css
, nr_pages
);
2532 css_get_many(&memcg
->css
, batch
);
2533 if (batch
> nr_pages
)
2534 refill_stock(memcg
, batch
- nr_pages
);
2537 * If the hierarchy is above the normal consumption range, schedule
2538 * reclaim on returning to userland. We can perform reclaim here
2539 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2540 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2541 * not recorded as it most likely matches current's and won't
2542 * change in the meantime. As high limit is checked again before
2543 * reclaim, the cost of mismatch is negligible.
2546 if (page_counter_read(&memcg
->memory
) > memcg
->high
) {
2547 /* Don't bother a random interrupted task */
2548 if (in_interrupt()) {
2549 schedule_work(&memcg
->high_work
);
2552 current
->memcg_nr_pages_over_high
+= batch
;
2553 set_notify_resume(current
);
2556 } while ((memcg
= parent_mem_cgroup(memcg
)));
2561 static void cancel_charge(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
2563 if (mem_cgroup_is_root(memcg
))
2566 page_counter_uncharge(&memcg
->memory
, nr_pages
);
2567 if (do_memsw_account())
2568 page_counter_uncharge(&memcg
->memsw
, nr_pages
);
2570 css_put_many(&memcg
->css
, nr_pages
);
2573 static void lock_page_lru(struct page
*page
, int *isolated
)
2575 pg_data_t
*pgdat
= page_pgdat(page
);
2577 spin_lock_irq(&pgdat
->lru_lock
);
2578 if (PageLRU(page
)) {
2579 struct lruvec
*lruvec
;
2581 lruvec
= mem_cgroup_page_lruvec(page
, pgdat
);
2583 del_page_from_lru_list(page
, lruvec
, page_lru(page
));
2589 static void unlock_page_lru(struct page
*page
, int isolated
)
2591 pg_data_t
*pgdat
= page_pgdat(page
);
2594 struct lruvec
*lruvec
;
2596 lruvec
= mem_cgroup_page_lruvec(page
, pgdat
);
2597 VM_BUG_ON_PAGE(PageLRU(page
), page
);
2599 add_page_to_lru_list(page
, lruvec
, page_lru(page
));
2601 spin_unlock_irq(&pgdat
->lru_lock
);
2604 static void commit_charge(struct page
*page
, struct mem_cgroup
*memcg
,
2609 VM_BUG_ON_PAGE(page
->mem_cgroup
, page
);
2612 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2613 * may already be on some other mem_cgroup's LRU. Take care of it.
2616 lock_page_lru(page
, &isolated
);
2619 * Nobody should be changing or seriously looking at
2620 * page->mem_cgroup at this point:
2622 * - the page is uncharged
2624 * - the page is off-LRU
2626 * - an anonymous fault has exclusive page access, except for
2627 * a locked page table
2629 * - a page cache insertion, a swapin fault, or a migration
2630 * have the page locked
2632 page
->mem_cgroup
= memcg
;
2635 unlock_page_lru(page
, isolated
);
2638 #ifdef CONFIG_MEMCG_KMEM
2639 static int memcg_alloc_cache_id(void)
2644 id
= ida_simple_get(&memcg_cache_ida
,
2645 0, MEMCG_CACHES_MAX_SIZE
, GFP_KERNEL
);
2649 if (id
< memcg_nr_cache_ids
)
2653 * There's no space for the new id in memcg_caches arrays,
2654 * so we have to grow them.
2656 down_write(&memcg_cache_ids_sem
);
2658 size
= 2 * (id
+ 1);
2659 if (size
< MEMCG_CACHES_MIN_SIZE
)
2660 size
= MEMCG_CACHES_MIN_SIZE
;
2661 else if (size
> MEMCG_CACHES_MAX_SIZE
)
2662 size
= MEMCG_CACHES_MAX_SIZE
;
2664 err
= memcg_update_all_caches(size
);
2666 err
= memcg_update_all_list_lrus(size
);
2668 memcg_nr_cache_ids
= size
;
2670 up_write(&memcg_cache_ids_sem
);
2673 ida_simple_remove(&memcg_cache_ida
, id
);
2679 static void memcg_free_cache_id(int id
)
2681 ida_simple_remove(&memcg_cache_ida
, id
);
2684 struct memcg_kmem_cache_create_work
{
2685 struct mem_cgroup
*memcg
;
2686 struct kmem_cache
*cachep
;
2687 struct work_struct work
;
2690 static void memcg_kmem_cache_create_func(struct work_struct
*w
)
2692 struct memcg_kmem_cache_create_work
*cw
=
2693 container_of(w
, struct memcg_kmem_cache_create_work
, work
);
2694 struct mem_cgroup
*memcg
= cw
->memcg
;
2695 struct kmem_cache
*cachep
= cw
->cachep
;
2697 memcg_create_kmem_cache(memcg
, cachep
);
2699 css_put(&memcg
->css
);
2704 * Enqueue the creation of a per-memcg kmem_cache.
2706 static void memcg_schedule_kmem_cache_create(struct mem_cgroup
*memcg
,
2707 struct kmem_cache
*cachep
)
2709 struct memcg_kmem_cache_create_work
*cw
;
2711 if (!css_tryget_online(&memcg
->css
))
2714 cw
= kmalloc(sizeof(*cw
), GFP_NOWAIT
| __GFP_NOWARN
);
2719 cw
->cachep
= cachep
;
2720 INIT_WORK(&cw
->work
, memcg_kmem_cache_create_func
);
2722 queue_work(memcg_kmem_cache_wq
, &cw
->work
);
2725 static inline bool memcg_kmem_bypass(void)
2727 if (in_interrupt() || !current
->mm
|| (current
->flags
& PF_KTHREAD
))
2733 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2734 * @cachep: the original global kmem cache
2736 * Return the kmem_cache we're supposed to use for a slab allocation.
2737 * We try to use the current memcg's version of the cache.
2739 * If the cache does not exist yet, if we are the first user of it, we
2740 * create it asynchronously in a workqueue and let the current allocation
2741 * go through with the original cache.
2743 * This function takes a reference to the cache it returns to assure it
2744 * won't get destroyed while we are working with it. Once the caller is
2745 * done with it, memcg_kmem_put_cache() must be called to release the
2748 struct kmem_cache
*memcg_kmem_get_cache(struct kmem_cache
*cachep
)
2750 struct mem_cgroup
*memcg
;
2751 struct kmem_cache
*memcg_cachep
;
2752 struct memcg_cache_array
*arr
;
2755 VM_BUG_ON(!is_root_cache(cachep
));
2757 if (memcg_kmem_bypass())
2762 if (unlikely(current
->active_memcg
))
2763 memcg
= current
->active_memcg
;
2765 memcg
= mem_cgroup_from_task(current
);
2767 if (!memcg
|| memcg
== root_mem_cgroup
)
2770 kmemcg_id
= READ_ONCE(memcg
->kmemcg_id
);
2774 arr
= rcu_dereference(cachep
->memcg_params
.memcg_caches
);
2777 * Make sure we will access the up-to-date value. The code updating
2778 * memcg_caches issues a write barrier to match the data dependency
2779 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
2781 memcg_cachep
= READ_ONCE(arr
->entries
[kmemcg_id
]);
2784 * If we are in a safe context (can wait, and not in interrupt
2785 * context), we could be be predictable and return right away.
2786 * This would guarantee that the allocation being performed
2787 * already belongs in the new cache.
2789 * However, there are some clashes that can arrive from locking.
2790 * For instance, because we acquire the slab_mutex while doing
2791 * memcg_create_kmem_cache, this means no further allocation
2792 * could happen with the slab_mutex held. So it's better to
2795 * If the memcg is dying or memcg_cache is about to be released,
2796 * don't bother creating new kmem_caches. Because memcg_cachep
2797 * is ZEROed as the fist step of kmem offlining, we don't need
2798 * percpu_ref_tryget_live() here. css_tryget_online() check in
2799 * memcg_schedule_kmem_cache_create() will prevent us from
2800 * creation of a new kmem_cache.
2802 if (unlikely(!memcg_cachep
))
2803 memcg_schedule_kmem_cache_create(memcg
, cachep
);
2804 else if (percpu_ref_tryget(&memcg_cachep
->memcg_params
.refcnt
))
2805 cachep
= memcg_cachep
;
2812 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2813 * @cachep: the cache returned by memcg_kmem_get_cache
2815 void memcg_kmem_put_cache(struct kmem_cache
*cachep
)
2817 if (!is_root_cache(cachep
))
2818 percpu_ref_put(&cachep
->memcg_params
.refcnt
);
2822 * __memcg_kmem_charge_memcg: charge a kmem page
2823 * @page: page to charge
2824 * @gfp: reclaim mode
2825 * @order: allocation order
2826 * @memcg: memory cgroup to charge
2828 * Returns 0 on success, an error code on failure.
2830 int __memcg_kmem_charge_memcg(struct page
*page
, gfp_t gfp
, int order
,
2831 struct mem_cgroup
*memcg
)
2833 unsigned int nr_pages
= 1 << order
;
2834 struct page_counter
*counter
;
2837 ret
= try_charge(memcg
, gfp
, nr_pages
);
2841 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) &&
2842 !page_counter_try_charge(&memcg
->kmem
, nr_pages
, &counter
)) {
2845 * Enforce __GFP_NOFAIL allocation because callers are not
2846 * prepared to see failures and likely do not have any failure
2849 if (gfp
& __GFP_NOFAIL
) {
2850 page_counter_charge(&memcg
->kmem
, nr_pages
);
2853 cancel_charge(memcg
, nr_pages
);
2860 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
2861 * @page: page to charge
2862 * @gfp: reclaim mode
2863 * @order: allocation order
2865 * Returns 0 on success, an error code on failure.
2867 int __memcg_kmem_charge(struct page
*page
, gfp_t gfp
, int order
)
2869 struct mem_cgroup
*memcg
;
2872 if (memcg_kmem_bypass())
2875 memcg
= get_mem_cgroup_from_current();
2876 if (!mem_cgroup_is_root(memcg
)) {
2877 ret
= __memcg_kmem_charge_memcg(page
, gfp
, order
, memcg
);
2879 page
->mem_cgroup
= memcg
;
2880 __SetPageKmemcg(page
);
2883 css_put(&memcg
->css
);
2888 * __memcg_kmem_uncharge_memcg: uncharge a kmem page
2889 * @memcg: memcg to uncharge
2890 * @nr_pages: number of pages to uncharge
2892 void __memcg_kmem_uncharge_memcg(struct mem_cgroup
*memcg
,
2893 unsigned int nr_pages
)
2895 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
))
2896 page_counter_uncharge(&memcg
->kmem
, nr_pages
);
2898 page_counter_uncharge(&memcg
->memory
, nr_pages
);
2899 if (do_memsw_account())
2900 page_counter_uncharge(&memcg
->memsw
, nr_pages
);
2903 * __memcg_kmem_uncharge: uncharge a kmem page
2904 * @page: page to uncharge
2905 * @order: allocation order
2907 void __memcg_kmem_uncharge(struct page
*page
, int order
)
2909 struct mem_cgroup
*memcg
= page
->mem_cgroup
;
2910 unsigned int nr_pages
= 1 << order
;
2915 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg
), page
);
2916 __memcg_kmem_uncharge_memcg(memcg
, nr_pages
);
2917 page
->mem_cgroup
= NULL
;
2919 /* slab pages do not have PageKmemcg flag set */
2920 if (PageKmemcg(page
))
2921 __ClearPageKmemcg(page
);
2923 css_put_many(&memcg
->css
, nr_pages
);
2925 #endif /* CONFIG_MEMCG_KMEM */
2927 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2930 * Because tail pages are not marked as "used", set it. We're under
2931 * pgdat->lru_lock and migration entries setup in all page mappings.
2933 void mem_cgroup_split_huge_fixup(struct page
*head
)
2937 if (mem_cgroup_disabled())
2940 for (i
= 1; i
< HPAGE_PMD_NR
; i
++)
2941 head
[i
].mem_cgroup
= head
->mem_cgroup
;
2943 __mod_memcg_state(head
->mem_cgroup
, MEMCG_RSS_HUGE
, -HPAGE_PMD_NR
);
2945 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2947 #ifdef CONFIG_MEMCG_SWAP
2949 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2950 * @entry: swap entry to be moved
2951 * @from: mem_cgroup which the entry is moved from
2952 * @to: mem_cgroup which the entry is moved to
2954 * It succeeds only when the swap_cgroup's record for this entry is the same
2955 * as the mem_cgroup's id of @from.
2957 * Returns 0 on success, -EINVAL on failure.
2959 * The caller must have charged to @to, IOW, called page_counter_charge() about
2960 * both res and memsw, and called css_get().
2962 static int mem_cgroup_move_swap_account(swp_entry_t entry
,
2963 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
2965 unsigned short old_id
, new_id
;
2967 old_id
= mem_cgroup_id(from
);
2968 new_id
= mem_cgroup_id(to
);
2970 if (swap_cgroup_cmpxchg(entry
, old_id
, new_id
) == old_id
) {
2971 mod_memcg_state(from
, MEMCG_SWAP
, -1);
2972 mod_memcg_state(to
, MEMCG_SWAP
, 1);
2978 static inline int mem_cgroup_move_swap_account(swp_entry_t entry
,
2979 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
2985 static DEFINE_MUTEX(memcg_max_mutex
);
2987 static int mem_cgroup_resize_max(struct mem_cgroup
*memcg
,
2988 unsigned long max
, bool memsw
)
2990 bool enlarge
= false;
2991 bool drained
= false;
2993 bool limits_invariant
;
2994 struct page_counter
*counter
= memsw
? &memcg
->memsw
: &memcg
->memory
;
2997 if (signal_pending(current
)) {
3002 mutex_lock(&memcg_max_mutex
);
3004 * Make sure that the new limit (memsw or memory limit) doesn't
3005 * break our basic invariant rule memory.max <= memsw.max.
3007 limits_invariant
= memsw
? max
>= memcg
->memory
.max
:
3008 max
<= memcg
->memsw
.max
;
3009 if (!limits_invariant
) {
3010 mutex_unlock(&memcg_max_mutex
);
3014 if (max
> counter
->max
)
3016 ret
= page_counter_set_max(counter
, max
);
3017 mutex_unlock(&memcg_max_mutex
);
3023 drain_all_stock(memcg
);
3028 if (!try_to_free_mem_cgroup_pages(memcg
, 1,
3029 GFP_KERNEL
, !memsw
)) {
3035 if (!ret
&& enlarge
)
3036 memcg_oom_recover(memcg
);
3041 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t
*pgdat
, int order
,
3043 unsigned long *total_scanned
)
3045 unsigned long nr_reclaimed
= 0;
3046 struct mem_cgroup_per_node
*mz
, *next_mz
= NULL
;
3047 unsigned long reclaimed
;
3049 struct mem_cgroup_tree_per_node
*mctz
;
3050 unsigned long excess
;
3051 unsigned long nr_scanned
;
3056 mctz
= soft_limit_tree_node(pgdat
->node_id
);
3059 * Do not even bother to check the largest node if the root
3060 * is empty. Do it lockless to prevent lock bouncing. Races
3061 * are acceptable as soft limit is best effort anyway.
3063 if (!mctz
|| RB_EMPTY_ROOT(&mctz
->rb_root
))
3067 * This loop can run a while, specially if mem_cgroup's continuously
3068 * keep exceeding their soft limit and putting the system under
3075 mz
= mem_cgroup_largest_soft_limit_node(mctz
);
3080 reclaimed
= mem_cgroup_soft_reclaim(mz
->memcg
, pgdat
,
3081 gfp_mask
, &nr_scanned
);
3082 nr_reclaimed
+= reclaimed
;
3083 *total_scanned
+= nr_scanned
;
3084 spin_lock_irq(&mctz
->lock
);
3085 __mem_cgroup_remove_exceeded(mz
, mctz
);
3088 * If we failed to reclaim anything from this memory cgroup
3089 * it is time to move on to the next cgroup
3093 next_mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
3095 excess
= soft_limit_excess(mz
->memcg
);
3097 * One school of thought says that we should not add
3098 * back the node to the tree if reclaim returns 0.
3099 * But our reclaim could return 0, simply because due
3100 * to priority we are exposing a smaller subset of
3101 * memory to reclaim from. Consider this as a longer
3104 /* If excess == 0, no tree ops */
3105 __mem_cgroup_insert_exceeded(mz
, mctz
, excess
);
3106 spin_unlock_irq(&mctz
->lock
);
3107 css_put(&mz
->memcg
->css
);
3110 * Could not reclaim anything and there are no more
3111 * mem cgroups to try or we seem to be looping without
3112 * reclaiming anything.
3114 if (!nr_reclaimed
&&
3116 loop
> MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS
))
3118 } while (!nr_reclaimed
);
3120 css_put(&next_mz
->memcg
->css
);
3121 return nr_reclaimed
;
3125 * Test whether @memcg has children, dead or alive. Note that this
3126 * function doesn't care whether @memcg has use_hierarchy enabled and
3127 * returns %true if there are child csses according to the cgroup
3128 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3130 static inline bool memcg_has_children(struct mem_cgroup
*memcg
)
3135 ret
= css_next_child(NULL
, &memcg
->css
);
3141 * Reclaims as many pages from the given memcg as possible.
3143 * Caller is responsible for holding css reference for memcg.
3145 static int mem_cgroup_force_empty(struct mem_cgroup
*memcg
)
3147 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
3149 /* we call try-to-free pages for make this cgroup empty */
3150 lru_add_drain_all();
3152 drain_all_stock(memcg
);
3154 /* try to free all pages in this cgroup */
3155 while (nr_retries
&& page_counter_read(&memcg
->memory
)) {
3158 if (signal_pending(current
))
3161 progress
= try_to_free_mem_cgroup_pages(memcg
, 1,
3165 /* maybe some writeback is necessary */
3166 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
3174 static ssize_t
mem_cgroup_force_empty_write(struct kernfs_open_file
*of
,
3175 char *buf
, size_t nbytes
,
3178 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
3180 if (mem_cgroup_is_root(memcg
))
3182 return mem_cgroup_force_empty(memcg
) ?: nbytes
;
3185 static u64
mem_cgroup_hierarchy_read(struct cgroup_subsys_state
*css
,
3188 return mem_cgroup_from_css(css
)->use_hierarchy
;
3191 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state
*css
,
3192 struct cftype
*cft
, u64 val
)
3195 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3196 struct mem_cgroup
*parent_memcg
= mem_cgroup_from_css(memcg
->css
.parent
);
3198 if (memcg
->use_hierarchy
== val
)
3202 * If parent's use_hierarchy is set, we can't make any modifications
3203 * in the child subtrees. If it is unset, then the change can
3204 * occur, provided the current cgroup has no children.
3206 * For the root cgroup, parent_mem is NULL, we allow value to be
3207 * set if there are no children.
3209 if ((!parent_memcg
|| !parent_memcg
->use_hierarchy
) &&
3210 (val
== 1 || val
== 0)) {
3211 if (!memcg_has_children(memcg
))
3212 memcg
->use_hierarchy
= val
;
3221 static unsigned long mem_cgroup_usage(struct mem_cgroup
*memcg
, bool swap
)
3225 if (mem_cgroup_is_root(memcg
)) {
3226 val
= memcg_page_state(memcg
, MEMCG_CACHE
) +
3227 memcg_page_state(memcg
, MEMCG_RSS
);
3229 val
+= memcg_page_state(memcg
, MEMCG_SWAP
);
3232 val
= page_counter_read(&memcg
->memory
);
3234 val
= page_counter_read(&memcg
->memsw
);
3247 static u64
mem_cgroup_read_u64(struct cgroup_subsys_state
*css
,
3250 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3251 struct page_counter
*counter
;
3253 switch (MEMFILE_TYPE(cft
->private)) {
3255 counter
= &memcg
->memory
;
3258 counter
= &memcg
->memsw
;
3261 counter
= &memcg
->kmem
;
3264 counter
= &memcg
->tcpmem
;
3270 switch (MEMFILE_ATTR(cft
->private)) {
3272 if (counter
== &memcg
->memory
)
3273 return (u64
)mem_cgroup_usage(memcg
, false) * PAGE_SIZE
;
3274 if (counter
== &memcg
->memsw
)
3275 return (u64
)mem_cgroup_usage(memcg
, true) * PAGE_SIZE
;
3276 return (u64
)page_counter_read(counter
) * PAGE_SIZE
;
3278 return (u64
)counter
->max
* PAGE_SIZE
;
3280 return (u64
)counter
->watermark
* PAGE_SIZE
;
3282 return counter
->failcnt
;
3283 case RES_SOFT_LIMIT
:
3284 return (u64
)memcg
->soft_limit
* PAGE_SIZE
;
3290 static void memcg_flush_percpu_vmstats(struct mem_cgroup
*memcg
, bool slab_only
)
3292 unsigned long stat
[MEMCG_NR_STAT
];
3293 struct mem_cgroup
*mi
;
3295 int min_idx
, max_idx
;
3298 min_idx
= NR_SLAB_RECLAIMABLE
;
3299 max_idx
= NR_SLAB_UNRECLAIMABLE
;
3302 max_idx
= MEMCG_NR_STAT
;
3305 for (i
= min_idx
; i
< max_idx
; i
++)
3308 for_each_online_cpu(cpu
)
3309 for (i
= min_idx
; i
< max_idx
; i
++)
3310 stat
[i
] += per_cpu(memcg
->vmstats_percpu
->stat
[i
], cpu
);
3312 for (mi
= memcg
; mi
; mi
= parent_mem_cgroup(mi
))
3313 for (i
= min_idx
; i
< max_idx
; i
++)
3314 atomic_long_add(stat
[i
], &mi
->vmstats
[i
]);
3317 max_idx
= NR_VM_NODE_STAT_ITEMS
;
3319 for_each_node(node
) {
3320 struct mem_cgroup_per_node
*pn
= memcg
->nodeinfo
[node
];
3321 struct mem_cgroup_per_node
*pi
;
3323 for (i
= min_idx
; i
< max_idx
; i
++)
3326 for_each_online_cpu(cpu
)
3327 for (i
= min_idx
; i
< max_idx
; i
++)
3329 pn
->lruvec_stat_cpu
->count
[i
], cpu
);
3331 for (pi
= pn
; pi
; pi
= parent_nodeinfo(pi
, node
))
3332 for (i
= min_idx
; i
< max_idx
; i
++)
3333 atomic_long_add(stat
[i
], &pi
->lruvec_stat
[i
]);
3337 static void memcg_flush_percpu_vmevents(struct mem_cgroup
*memcg
)
3339 unsigned long events
[NR_VM_EVENT_ITEMS
];
3340 struct mem_cgroup
*mi
;
3343 for (i
= 0; i
< NR_VM_EVENT_ITEMS
; i
++)
3346 for_each_online_cpu(cpu
)
3347 for (i
= 0; i
< NR_VM_EVENT_ITEMS
; i
++)
3348 events
[i
] += per_cpu(memcg
->vmstats_percpu
->events
[i
],
3351 for (mi
= memcg
; mi
; mi
= parent_mem_cgroup(mi
))
3352 for (i
= 0; i
< NR_VM_EVENT_ITEMS
; i
++)
3353 atomic_long_add(events
[i
], &mi
->vmevents
[i
]);
3356 #ifdef CONFIG_MEMCG_KMEM
3357 static int memcg_online_kmem(struct mem_cgroup
*memcg
)
3361 if (cgroup_memory_nokmem
)
3364 BUG_ON(memcg
->kmemcg_id
>= 0);
3365 BUG_ON(memcg
->kmem_state
);
3367 memcg_id
= memcg_alloc_cache_id();
3371 static_branch_inc(&memcg_kmem_enabled_key
);
3373 * A memory cgroup is considered kmem-online as soon as it gets
3374 * kmemcg_id. Setting the id after enabling static branching will
3375 * guarantee no one starts accounting before all call sites are
3378 memcg
->kmemcg_id
= memcg_id
;
3379 memcg
->kmem_state
= KMEM_ONLINE
;
3380 INIT_LIST_HEAD(&memcg
->kmem_caches
);
3385 static void memcg_offline_kmem(struct mem_cgroup
*memcg
)
3387 struct cgroup_subsys_state
*css
;
3388 struct mem_cgroup
*parent
, *child
;
3391 if (memcg
->kmem_state
!= KMEM_ONLINE
)
3394 * Clear the online state before clearing memcg_caches array
3395 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3396 * guarantees that no cache will be created for this cgroup
3397 * after we are done (see memcg_create_kmem_cache()).
3399 memcg
->kmem_state
= KMEM_ALLOCATED
;
3401 parent
= parent_mem_cgroup(memcg
);
3403 parent
= root_mem_cgroup
;
3406 * Deactivate and reparent kmem_caches. Then flush percpu
3407 * slab statistics to have precise values at the parent and
3408 * all ancestor levels. It's required to keep slab stats
3409 * accurate after the reparenting of kmem_caches.
3411 memcg_deactivate_kmem_caches(memcg
, parent
);
3412 memcg_flush_percpu_vmstats(memcg
, true);
3414 kmemcg_id
= memcg
->kmemcg_id
;
3415 BUG_ON(kmemcg_id
< 0);
3418 * Change kmemcg_id of this cgroup and all its descendants to the
3419 * parent's id, and then move all entries from this cgroup's list_lrus
3420 * to ones of the parent. After we have finished, all list_lrus
3421 * corresponding to this cgroup are guaranteed to remain empty. The
3422 * ordering is imposed by list_lru_node->lock taken by
3423 * memcg_drain_all_list_lrus().
3425 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3426 css_for_each_descendant_pre(css
, &memcg
->css
) {
3427 child
= mem_cgroup_from_css(css
);
3428 BUG_ON(child
->kmemcg_id
!= kmemcg_id
);
3429 child
->kmemcg_id
= parent
->kmemcg_id
;
3430 if (!memcg
->use_hierarchy
)
3435 memcg_drain_all_list_lrus(kmemcg_id
, parent
);
3437 memcg_free_cache_id(kmemcg_id
);
3440 static void memcg_free_kmem(struct mem_cgroup
*memcg
)
3442 /* css_alloc() failed, offlining didn't happen */
3443 if (unlikely(memcg
->kmem_state
== KMEM_ONLINE
))
3444 memcg_offline_kmem(memcg
);
3446 if (memcg
->kmem_state
== KMEM_ALLOCATED
) {
3447 WARN_ON(!list_empty(&memcg
->kmem_caches
));
3448 static_branch_dec(&memcg_kmem_enabled_key
);
3452 static int memcg_online_kmem(struct mem_cgroup
*memcg
)
3456 static void memcg_offline_kmem(struct mem_cgroup
*memcg
)
3459 static void memcg_free_kmem(struct mem_cgroup
*memcg
)
3462 #endif /* CONFIG_MEMCG_KMEM */
3464 static int memcg_update_kmem_max(struct mem_cgroup
*memcg
,
3469 mutex_lock(&memcg_max_mutex
);
3470 ret
= page_counter_set_max(&memcg
->kmem
, max
);
3471 mutex_unlock(&memcg_max_mutex
);
3475 static int memcg_update_tcp_max(struct mem_cgroup
*memcg
, unsigned long max
)
3479 mutex_lock(&memcg_max_mutex
);
3481 ret
= page_counter_set_max(&memcg
->tcpmem
, max
);
3485 if (!memcg
->tcpmem_active
) {
3487 * The active flag needs to be written after the static_key
3488 * update. This is what guarantees that the socket activation
3489 * function is the last one to run. See mem_cgroup_sk_alloc()
3490 * for details, and note that we don't mark any socket as
3491 * belonging to this memcg until that flag is up.
3493 * We need to do this, because static_keys will span multiple
3494 * sites, but we can't control their order. If we mark a socket
3495 * as accounted, but the accounting functions are not patched in
3496 * yet, we'll lose accounting.
3498 * We never race with the readers in mem_cgroup_sk_alloc(),
3499 * because when this value change, the code to process it is not
3502 static_branch_inc(&memcg_sockets_enabled_key
);
3503 memcg
->tcpmem_active
= true;
3506 mutex_unlock(&memcg_max_mutex
);
3511 * The user of this function is...
3514 static ssize_t
mem_cgroup_write(struct kernfs_open_file
*of
,
3515 char *buf
, size_t nbytes
, loff_t off
)
3517 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
3518 unsigned long nr_pages
;
3521 buf
= strstrip(buf
);
3522 ret
= page_counter_memparse(buf
, "-1", &nr_pages
);
3526 switch (MEMFILE_ATTR(of_cft(of
)->private)) {
3528 if (mem_cgroup_is_root(memcg
)) { /* Can't set limit on root */
3532 switch (MEMFILE_TYPE(of_cft(of
)->private)) {
3534 ret
= mem_cgroup_resize_max(memcg
, nr_pages
, false);
3537 ret
= mem_cgroup_resize_max(memcg
, nr_pages
, true);
3540 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3541 "Please report your usecase to linux-mm@kvack.org if you "
3542 "depend on this functionality.\n");
3543 ret
= memcg_update_kmem_max(memcg
, nr_pages
);
3546 ret
= memcg_update_tcp_max(memcg
, nr_pages
);
3550 case RES_SOFT_LIMIT
:
3551 memcg
->soft_limit
= nr_pages
;
3555 return ret
?: nbytes
;
3558 static ssize_t
mem_cgroup_reset(struct kernfs_open_file
*of
, char *buf
,
3559 size_t nbytes
, loff_t off
)
3561 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
3562 struct page_counter
*counter
;
3564 switch (MEMFILE_TYPE(of_cft(of
)->private)) {
3566 counter
= &memcg
->memory
;
3569 counter
= &memcg
->memsw
;
3572 counter
= &memcg
->kmem
;
3575 counter
= &memcg
->tcpmem
;
3581 switch (MEMFILE_ATTR(of_cft(of
)->private)) {
3583 page_counter_reset_watermark(counter
);
3586 counter
->failcnt
= 0;
3595 static u64
mem_cgroup_move_charge_read(struct cgroup_subsys_state
*css
,
3598 return mem_cgroup_from_css(css
)->move_charge_at_immigrate
;
3602 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state
*css
,
3603 struct cftype
*cft
, u64 val
)
3605 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3607 if (val
& ~MOVE_MASK
)
3611 * No kind of locking is needed in here, because ->can_attach() will
3612 * check this value once in the beginning of the process, and then carry
3613 * on with stale data. This means that changes to this value will only
3614 * affect task migrations starting after the change.
3616 memcg
->move_charge_at_immigrate
= val
;
3620 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state
*css
,
3621 struct cftype
*cft
, u64 val
)
3629 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3630 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3631 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3633 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup
*memcg
,
3634 int nid
, unsigned int lru_mask
)
3636 struct lruvec
*lruvec
= mem_cgroup_lruvec(memcg
, NODE_DATA(nid
));
3637 unsigned long nr
= 0;
3640 VM_BUG_ON((unsigned)nid
>= nr_node_ids
);
3643 if (!(BIT(lru
) & lru_mask
))
3645 nr
+= lruvec_page_state_local(lruvec
, NR_LRU_BASE
+ lru
);
3650 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup
*memcg
,
3651 unsigned int lru_mask
)
3653 unsigned long nr
= 0;
3657 if (!(BIT(lru
) & lru_mask
))
3659 nr
+= memcg_page_state_local(memcg
, NR_LRU_BASE
+ lru
);
3664 static int memcg_numa_stat_show(struct seq_file
*m
, void *v
)
3668 unsigned int lru_mask
;
3671 static const struct numa_stat stats
[] = {
3672 { "total", LRU_ALL
},
3673 { "file", LRU_ALL_FILE
},
3674 { "anon", LRU_ALL_ANON
},
3675 { "unevictable", BIT(LRU_UNEVICTABLE
) },
3677 const struct numa_stat
*stat
;
3680 struct mem_cgroup
*memcg
= mem_cgroup_from_seq(m
);
3682 for (stat
= stats
; stat
< stats
+ ARRAY_SIZE(stats
); stat
++) {
3683 nr
= mem_cgroup_nr_lru_pages(memcg
, stat
->lru_mask
);
3684 seq_printf(m
, "%s=%lu", stat
->name
, nr
);
3685 for_each_node_state(nid
, N_MEMORY
) {
3686 nr
= mem_cgroup_node_nr_lru_pages(memcg
, nid
,
3688 seq_printf(m
, " N%d=%lu", nid
, nr
);
3693 for (stat
= stats
; stat
< stats
+ ARRAY_SIZE(stats
); stat
++) {
3694 struct mem_cgroup
*iter
;
3697 for_each_mem_cgroup_tree(iter
, memcg
)
3698 nr
+= mem_cgroup_nr_lru_pages(iter
, stat
->lru_mask
);
3699 seq_printf(m
, "hierarchical_%s=%lu", stat
->name
, nr
);
3700 for_each_node_state(nid
, N_MEMORY
) {
3702 for_each_mem_cgroup_tree(iter
, memcg
)
3703 nr
+= mem_cgroup_node_nr_lru_pages(
3704 iter
, nid
, stat
->lru_mask
);
3705 seq_printf(m
, " N%d=%lu", nid
, nr
);
3712 #endif /* CONFIG_NUMA */
3714 static const unsigned int memcg1_stats
[] = {
3725 static const char *const memcg1_stat_names
[] = {
3736 /* Universal VM events cgroup1 shows, original sort order */
3737 static const unsigned int memcg1_events
[] = {
3744 static int memcg_stat_show(struct seq_file
*m
, void *v
)
3746 struct mem_cgroup
*memcg
= mem_cgroup_from_seq(m
);
3747 unsigned long memory
, memsw
;
3748 struct mem_cgroup
*mi
;
3751 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names
) != ARRAY_SIZE(memcg1_stats
));
3753 for (i
= 0; i
< ARRAY_SIZE(memcg1_stats
); i
++) {
3754 if (memcg1_stats
[i
] == MEMCG_SWAP
&& !do_memsw_account())
3756 seq_printf(m
, "%s %lu\n", memcg1_stat_names
[i
],
3757 memcg_page_state_local(memcg
, memcg1_stats
[i
]) *
3761 for (i
= 0; i
< ARRAY_SIZE(memcg1_events
); i
++)
3762 seq_printf(m
, "%s %lu\n", vm_event_name(memcg1_events
[i
]),
3763 memcg_events_local(memcg
, memcg1_events
[i
]));
3765 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
3766 seq_printf(m
, "%s %lu\n", lru_list_name(i
),
3767 memcg_page_state_local(memcg
, NR_LRU_BASE
+ i
) *
3770 /* Hierarchical information */
3771 memory
= memsw
= PAGE_COUNTER_MAX
;
3772 for (mi
= memcg
; mi
; mi
= parent_mem_cgroup(mi
)) {
3773 memory
= min(memory
, mi
->memory
.max
);
3774 memsw
= min(memsw
, mi
->memsw
.max
);
3776 seq_printf(m
, "hierarchical_memory_limit %llu\n",
3777 (u64
)memory
* PAGE_SIZE
);
3778 if (do_memsw_account())
3779 seq_printf(m
, "hierarchical_memsw_limit %llu\n",
3780 (u64
)memsw
* PAGE_SIZE
);
3782 for (i
= 0; i
< ARRAY_SIZE(memcg1_stats
); i
++) {
3783 if (memcg1_stats
[i
] == MEMCG_SWAP
&& !do_memsw_account())
3785 seq_printf(m
, "total_%s %llu\n", memcg1_stat_names
[i
],
3786 (u64
)memcg_page_state(memcg
, memcg1_stats
[i
]) *
3790 for (i
= 0; i
< ARRAY_SIZE(memcg1_events
); i
++)
3791 seq_printf(m
, "total_%s %llu\n",
3792 vm_event_name(memcg1_events
[i
]),
3793 (u64
)memcg_events(memcg
, memcg1_events
[i
]));
3795 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
3796 seq_printf(m
, "total_%s %llu\n", lru_list_name(i
),
3797 (u64
)memcg_page_state(memcg
, NR_LRU_BASE
+ i
) *
3800 #ifdef CONFIG_DEBUG_VM
3803 struct mem_cgroup_per_node
*mz
;
3804 struct zone_reclaim_stat
*rstat
;
3805 unsigned long recent_rotated
[2] = {0, 0};
3806 unsigned long recent_scanned
[2] = {0, 0};
3808 for_each_online_pgdat(pgdat
) {
3809 mz
= mem_cgroup_nodeinfo(memcg
, pgdat
->node_id
);
3810 rstat
= &mz
->lruvec
.reclaim_stat
;
3812 recent_rotated
[0] += rstat
->recent_rotated
[0];
3813 recent_rotated
[1] += rstat
->recent_rotated
[1];
3814 recent_scanned
[0] += rstat
->recent_scanned
[0];
3815 recent_scanned
[1] += rstat
->recent_scanned
[1];
3817 seq_printf(m
, "recent_rotated_anon %lu\n", recent_rotated
[0]);
3818 seq_printf(m
, "recent_rotated_file %lu\n", recent_rotated
[1]);
3819 seq_printf(m
, "recent_scanned_anon %lu\n", recent_scanned
[0]);
3820 seq_printf(m
, "recent_scanned_file %lu\n", recent_scanned
[1]);
3827 static u64
mem_cgroup_swappiness_read(struct cgroup_subsys_state
*css
,
3830 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3832 return mem_cgroup_swappiness(memcg
);
3835 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state
*css
,
3836 struct cftype
*cft
, u64 val
)
3838 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3844 memcg
->swappiness
= val
;
3846 vm_swappiness
= val
;
3851 static void __mem_cgroup_threshold(struct mem_cgroup
*memcg
, bool swap
)
3853 struct mem_cgroup_threshold_ary
*t
;
3854 unsigned long usage
;
3859 t
= rcu_dereference(memcg
->thresholds
.primary
);
3861 t
= rcu_dereference(memcg
->memsw_thresholds
.primary
);
3866 usage
= mem_cgroup_usage(memcg
, swap
);
3869 * current_threshold points to threshold just below or equal to usage.
3870 * If it's not true, a threshold was crossed after last
3871 * call of __mem_cgroup_threshold().
3873 i
= t
->current_threshold
;
3876 * Iterate backward over array of thresholds starting from
3877 * current_threshold and check if a threshold is crossed.
3878 * If none of thresholds below usage is crossed, we read
3879 * only one element of the array here.
3881 for (; i
>= 0 && unlikely(t
->entries
[i
].threshold
> usage
); i
--)
3882 eventfd_signal(t
->entries
[i
].eventfd
, 1);
3884 /* i = current_threshold + 1 */
3888 * Iterate forward over array of thresholds starting from
3889 * current_threshold+1 and check if a threshold is crossed.
3890 * If none of thresholds above usage is crossed, we read
3891 * only one element of the array here.
3893 for (; i
< t
->size
&& unlikely(t
->entries
[i
].threshold
<= usage
); i
++)
3894 eventfd_signal(t
->entries
[i
].eventfd
, 1);
3896 /* Update current_threshold */
3897 t
->current_threshold
= i
- 1;
3902 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
)
3905 __mem_cgroup_threshold(memcg
, false);
3906 if (do_memsw_account())
3907 __mem_cgroup_threshold(memcg
, true);
3909 memcg
= parent_mem_cgroup(memcg
);
3913 static int compare_thresholds(const void *a
, const void *b
)
3915 const struct mem_cgroup_threshold
*_a
= a
;
3916 const struct mem_cgroup_threshold
*_b
= b
;
3918 if (_a
->threshold
> _b
->threshold
)
3921 if (_a
->threshold
< _b
->threshold
)
3927 static int mem_cgroup_oom_notify_cb(struct mem_cgroup
*memcg
)
3929 struct mem_cgroup_eventfd_list
*ev
;
3931 spin_lock(&memcg_oom_lock
);
3933 list_for_each_entry(ev
, &memcg
->oom_notify
, list
)
3934 eventfd_signal(ev
->eventfd
, 1);
3936 spin_unlock(&memcg_oom_lock
);
3940 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
)
3942 struct mem_cgroup
*iter
;
3944 for_each_mem_cgroup_tree(iter
, memcg
)
3945 mem_cgroup_oom_notify_cb(iter
);
3948 static int __mem_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
3949 struct eventfd_ctx
*eventfd
, const char *args
, enum res_type type
)
3951 struct mem_cgroup_thresholds
*thresholds
;
3952 struct mem_cgroup_threshold_ary
*new;
3953 unsigned long threshold
;
3954 unsigned long usage
;
3957 ret
= page_counter_memparse(args
, "-1", &threshold
);
3961 mutex_lock(&memcg
->thresholds_lock
);
3964 thresholds
= &memcg
->thresholds
;
3965 usage
= mem_cgroup_usage(memcg
, false);
3966 } else if (type
== _MEMSWAP
) {
3967 thresholds
= &memcg
->memsw_thresholds
;
3968 usage
= mem_cgroup_usage(memcg
, true);
3972 /* Check if a threshold crossed before adding a new one */
3973 if (thresholds
->primary
)
3974 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
3976 size
= thresholds
->primary
? thresholds
->primary
->size
+ 1 : 1;
3978 /* Allocate memory for new array of thresholds */
3979 new = kmalloc(struct_size(new, entries
, size
), GFP_KERNEL
);
3986 /* Copy thresholds (if any) to new array */
3987 if (thresholds
->primary
) {
3988 memcpy(new->entries
, thresholds
->primary
->entries
, (size
- 1) *
3989 sizeof(struct mem_cgroup_threshold
));
3992 /* Add new threshold */
3993 new->entries
[size
- 1].eventfd
= eventfd
;
3994 new->entries
[size
- 1].threshold
= threshold
;
3996 /* Sort thresholds. Registering of new threshold isn't time-critical */
3997 sort(new->entries
, size
, sizeof(struct mem_cgroup_threshold
),
3998 compare_thresholds
, NULL
);
4000 /* Find current threshold */
4001 new->current_threshold
= -1;
4002 for (i
= 0; i
< size
; i
++) {
4003 if (new->entries
[i
].threshold
<= usage
) {
4005 * new->current_threshold will not be used until
4006 * rcu_assign_pointer(), so it's safe to increment
4009 ++new->current_threshold
;
4014 /* Free old spare buffer and save old primary buffer as spare */
4015 kfree(thresholds
->spare
);
4016 thresholds
->spare
= thresholds
->primary
;
4018 rcu_assign_pointer(thresholds
->primary
, new);
4020 /* To be sure that nobody uses thresholds */
4024 mutex_unlock(&memcg
->thresholds_lock
);
4029 static int mem_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
4030 struct eventfd_ctx
*eventfd
, const char *args
)
4032 return __mem_cgroup_usage_register_event(memcg
, eventfd
, args
, _MEM
);
4035 static int memsw_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
4036 struct eventfd_ctx
*eventfd
, const char *args
)
4038 return __mem_cgroup_usage_register_event(memcg
, eventfd
, args
, _MEMSWAP
);
4041 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
4042 struct eventfd_ctx
*eventfd
, enum res_type type
)
4044 struct mem_cgroup_thresholds
*thresholds
;
4045 struct mem_cgroup_threshold_ary
*new;
4046 unsigned long usage
;
4049 mutex_lock(&memcg
->thresholds_lock
);
4052 thresholds
= &memcg
->thresholds
;
4053 usage
= mem_cgroup_usage(memcg
, false);
4054 } else if (type
== _MEMSWAP
) {
4055 thresholds
= &memcg
->memsw_thresholds
;
4056 usage
= mem_cgroup_usage(memcg
, true);
4060 if (!thresholds
->primary
)
4063 /* Check if a threshold crossed before removing */
4064 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
4066 /* Calculate new number of threshold */
4068 for (i
= 0; i
< thresholds
->primary
->size
; i
++) {
4069 if (thresholds
->primary
->entries
[i
].eventfd
!= eventfd
)
4073 new = thresholds
->spare
;
4075 /* Set thresholds array to NULL if we don't have thresholds */
4084 /* Copy thresholds and find current threshold */
4085 new->current_threshold
= -1;
4086 for (i
= 0, j
= 0; i
< thresholds
->primary
->size
; i
++) {
4087 if (thresholds
->primary
->entries
[i
].eventfd
== eventfd
)
4090 new->entries
[j
] = thresholds
->primary
->entries
[i
];
4091 if (new->entries
[j
].threshold
<= usage
) {
4093 * new->current_threshold will not be used
4094 * until rcu_assign_pointer(), so it's safe to increment
4097 ++new->current_threshold
;
4103 /* Swap primary and spare array */
4104 thresholds
->spare
= thresholds
->primary
;
4106 rcu_assign_pointer(thresholds
->primary
, new);
4108 /* To be sure that nobody uses thresholds */
4111 /* If all events are unregistered, free the spare array */
4113 kfree(thresholds
->spare
);
4114 thresholds
->spare
= NULL
;
4117 mutex_unlock(&memcg
->thresholds_lock
);
4120 static void mem_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
4121 struct eventfd_ctx
*eventfd
)
4123 return __mem_cgroup_usage_unregister_event(memcg
, eventfd
, _MEM
);
4126 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
4127 struct eventfd_ctx
*eventfd
)
4129 return __mem_cgroup_usage_unregister_event(memcg
, eventfd
, _MEMSWAP
);
4132 static int mem_cgroup_oom_register_event(struct mem_cgroup
*memcg
,
4133 struct eventfd_ctx
*eventfd
, const char *args
)
4135 struct mem_cgroup_eventfd_list
*event
;
4137 event
= kmalloc(sizeof(*event
), GFP_KERNEL
);
4141 spin_lock(&memcg_oom_lock
);
4143 event
->eventfd
= eventfd
;
4144 list_add(&event
->list
, &memcg
->oom_notify
);
4146 /* already in OOM ? */
4147 if (memcg
->under_oom
)
4148 eventfd_signal(eventfd
, 1);
4149 spin_unlock(&memcg_oom_lock
);
4154 static void mem_cgroup_oom_unregister_event(struct mem_cgroup
*memcg
,
4155 struct eventfd_ctx
*eventfd
)
4157 struct mem_cgroup_eventfd_list
*ev
, *tmp
;
4159 spin_lock(&memcg_oom_lock
);
4161 list_for_each_entry_safe(ev
, tmp
, &memcg
->oom_notify
, list
) {
4162 if (ev
->eventfd
== eventfd
) {
4163 list_del(&ev
->list
);
4168 spin_unlock(&memcg_oom_lock
);
4171 static int mem_cgroup_oom_control_read(struct seq_file
*sf
, void *v
)
4173 struct mem_cgroup
*memcg
= mem_cgroup_from_seq(sf
);
4175 seq_printf(sf
, "oom_kill_disable %d\n", memcg
->oom_kill_disable
);
4176 seq_printf(sf
, "under_oom %d\n", (bool)memcg
->under_oom
);
4177 seq_printf(sf
, "oom_kill %lu\n",
4178 atomic_long_read(&memcg
->memory_events
[MEMCG_OOM_KILL
]));
4182 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state
*css
,
4183 struct cftype
*cft
, u64 val
)
4185 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4187 /* cannot set to root cgroup and only 0 and 1 are allowed */
4188 if (!css
->parent
|| !((val
== 0) || (val
== 1)))
4191 memcg
->oom_kill_disable
= val
;
4193 memcg_oom_recover(memcg
);
4198 #ifdef CONFIG_CGROUP_WRITEBACK
4200 #include <trace/events/writeback.h>
4202 static int memcg_wb_domain_init(struct mem_cgroup
*memcg
, gfp_t gfp
)
4204 return wb_domain_init(&memcg
->cgwb_domain
, gfp
);
4207 static void memcg_wb_domain_exit(struct mem_cgroup
*memcg
)
4209 wb_domain_exit(&memcg
->cgwb_domain
);
4212 static void memcg_wb_domain_size_changed(struct mem_cgroup
*memcg
)
4214 wb_domain_size_changed(&memcg
->cgwb_domain
);
4217 struct wb_domain
*mem_cgroup_wb_domain(struct bdi_writeback
*wb
)
4219 struct mem_cgroup
*memcg
= mem_cgroup_from_css(wb
->memcg_css
);
4221 if (!memcg
->css
.parent
)
4224 return &memcg
->cgwb_domain
;
4228 * idx can be of type enum memcg_stat_item or node_stat_item.
4229 * Keep in sync with memcg_exact_page().
4231 static unsigned long memcg_exact_page_state(struct mem_cgroup
*memcg
, int idx
)
4233 long x
= atomic_long_read(&memcg
->vmstats
[idx
]);
4236 for_each_online_cpu(cpu
)
4237 x
+= per_cpu_ptr(memcg
->vmstats_percpu
, cpu
)->stat
[idx
];
4244 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4245 * @wb: bdi_writeback in question
4246 * @pfilepages: out parameter for number of file pages
4247 * @pheadroom: out parameter for number of allocatable pages according to memcg
4248 * @pdirty: out parameter for number of dirty pages
4249 * @pwriteback: out parameter for number of pages under writeback
4251 * Determine the numbers of file, headroom, dirty, and writeback pages in
4252 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4253 * is a bit more involved.
4255 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4256 * headroom is calculated as the lowest headroom of itself and the
4257 * ancestors. Note that this doesn't consider the actual amount of
4258 * available memory in the system. The caller should further cap
4259 * *@pheadroom accordingly.
4261 void mem_cgroup_wb_stats(struct bdi_writeback
*wb
, unsigned long *pfilepages
,
4262 unsigned long *pheadroom
, unsigned long *pdirty
,
4263 unsigned long *pwriteback
)
4265 struct mem_cgroup
*memcg
= mem_cgroup_from_css(wb
->memcg_css
);
4266 struct mem_cgroup
*parent
;
4268 *pdirty
= memcg_exact_page_state(memcg
, NR_FILE_DIRTY
);
4270 /* this should eventually include NR_UNSTABLE_NFS */
4271 *pwriteback
= memcg_exact_page_state(memcg
, NR_WRITEBACK
);
4272 *pfilepages
= memcg_exact_page_state(memcg
, NR_INACTIVE_FILE
) +
4273 memcg_exact_page_state(memcg
, NR_ACTIVE_FILE
);
4274 *pheadroom
= PAGE_COUNTER_MAX
;
4276 while ((parent
= parent_mem_cgroup(memcg
))) {
4277 unsigned long ceiling
= min(memcg
->memory
.max
, memcg
->high
);
4278 unsigned long used
= page_counter_read(&memcg
->memory
);
4280 *pheadroom
= min(*pheadroom
, ceiling
- min(ceiling
, used
));
4286 * Foreign dirty flushing
4288 * There's an inherent mismatch between memcg and writeback. The former
4289 * trackes ownership per-page while the latter per-inode. This was a
4290 * deliberate design decision because honoring per-page ownership in the
4291 * writeback path is complicated, may lead to higher CPU and IO overheads
4292 * and deemed unnecessary given that write-sharing an inode across
4293 * different cgroups isn't a common use-case.
4295 * Combined with inode majority-writer ownership switching, this works well
4296 * enough in most cases but there are some pathological cases. For
4297 * example, let's say there are two cgroups A and B which keep writing to
4298 * different but confined parts of the same inode. B owns the inode and
4299 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4300 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4301 * triggering background writeback. A will be slowed down without a way to
4302 * make writeback of the dirty pages happen.
4304 * Conditions like the above can lead to a cgroup getting repatedly and
4305 * severely throttled after making some progress after each
4306 * dirty_expire_interval while the underyling IO device is almost
4309 * Solving this problem completely requires matching the ownership tracking
4310 * granularities between memcg and writeback in either direction. However,
4311 * the more egregious behaviors can be avoided by simply remembering the
4312 * most recent foreign dirtying events and initiating remote flushes on
4313 * them when local writeback isn't enough to keep the memory clean enough.
4315 * The following two functions implement such mechanism. When a foreign
4316 * page - a page whose memcg and writeback ownerships don't match - is
4317 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4318 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4319 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4320 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4321 * foreign bdi_writebacks which haven't expired. Both the numbers of
4322 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4323 * limited to MEMCG_CGWB_FRN_CNT.
4325 * The mechanism only remembers IDs and doesn't hold any object references.
4326 * As being wrong occasionally doesn't matter, updates and accesses to the
4327 * records are lockless and racy.
4329 void mem_cgroup_track_foreign_dirty_slowpath(struct page
*page
,
4330 struct bdi_writeback
*wb
)
4332 struct mem_cgroup
*memcg
= page
->mem_cgroup
;
4333 struct memcg_cgwb_frn
*frn
;
4334 u64 now
= get_jiffies_64();
4335 u64 oldest_at
= now
;
4339 trace_track_foreign_dirty(page
, wb
);
4342 * Pick the slot to use. If there is already a slot for @wb, keep
4343 * using it. If not replace the oldest one which isn't being
4346 for (i
= 0; i
< MEMCG_CGWB_FRN_CNT
; i
++) {
4347 frn
= &memcg
->cgwb_frn
[i
];
4348 if (frn
->bdi_id
== wb
->bdi
->id
&&
4349 frn
->memcg_id
== wb
->memcg_css
->id
)
4351 if (time_before64(frn
->at
, oldest_at
) &&
4352 atomic_read(&frn
->done
.cnt
) == 1) {
4354 oldest_at
= frn
->at
;
4358 if (i
< MEMCG_CGWB_FRN_CNT
) {
4360 * Re-using an existing one. Update timestamp lazily to
4361 * avoid making the cacheline hot. We want them to be
4362 * reasonably up-to-date and significantly shorter than
4363 * dirty_expire_interval as that's what expires the record.
4364 * Use the shorter of 1s and dirty_expire_interval / 8.
4366 unsigned long update_intv
=
4367 min_t(unsigned long, HZ
,
4368 msecs_to_jiffies(dirty_expire_interval
* 10) / 8);
4370 if (time_before64(frn
->at
, now
- update_intv
))
4372 } else if (oldest
>= 0) {
4373 /* replace the oldest free one */
4374 frn
= &memcg
->cgwb_frn
[oldest
];
4375 frn
->bdi_id
= wb
->bdi
->id
;
4376 frn
->memcg_id
= wb
->memcg_css
->id
;
4381 /* issue foreign writeback flushes for recorded foreign dirtying events */
4382 void mem_cgroup_flush_foreign(struct bdi_writeback
*wb
)
4384 struct mem_cgroup
*memcg
= mem_cgroup_from_css(wb
->memcg_css
);
4385 unsigned long intv
= msecs_to_jiffies(dirty_expire_interval
* 10);
4386 u64 now
= jiffies_64
;
4389 for (i
= 0; i
< MEMCG_CGWB_FRN_CNT
; i
++) {
4390 struct memcg_cgwb_frn
*frn
= &memcg
->cgwb_frn
[i
];
4393 * If the record is older than dirty_expire_interval,
4394 * writeback on it has already started. No need to kick it
4395 * off again. Also, don't start a new one if there's
4396 * already one in flight.
4398 if (time_after64(frn
->at
, now
- intv
) &&
4399 atomic_read(&frn
->done
.cnt
) == 1) {
4401 trace_flush_foreign(wb
, frn
->bdi_id
, frn
->memcg_id
);
4402 cgroup_writeback_by_id(frn
->bdi_id
, frn
->memcg_id
, 0,
4403 WB_REASON_FOREIGN_FLUSH
,
4409 #else /* CONFIG_CGROUP_WRITEBACK */
4411 static int memcg_wb_domain_init(struct mem_cgroup
*memcg
, gfp_t gfp
)
4416 static void memcg_wb_domain_exit(struct mem_cgroup
*memcg
)
4420 static void memcg_wb_domain_size_changed(struct mem_cgroup
*memcg
)
4424 #endif /* CONFIG_CGROUP_WRITEBACK */
4427 * DO NOT USE IN NEW FILES.
4429 * "cgroup.event_control" implementation.
4431 * This is way over-engineered. It tries to support fully configurable
4432 * events for each user. Such level of flexibility is completely
4433 * unnecessary especially in the light of the planned unified hierarchy.
4435 * Please deprecate this and replace with something simpler if at all
4440 * Unregister event and free resources.
4442 * Gets called from workqueue.
4444 static void memcg_event_remove(struct work_struct
*work
)
4446 struct mem_cgroup_event
*event
=
4447 container_of(work
, struct mem_cgroup_event
, remove
);
4448 struct mem_cgroup
*memcg
= event
->memcg
;
4450 remove_wait_queue(event
->wqh
, &event
->wait
);
4452 event
->unregister_event(memcg
, event
->eventfd
);
4454 /* Notify userspace the event is going away. */
4455 eventfd_signal(event
->eventfd
, 1);
4457 eventfd_ctx_put(event
->eventfd
);
4459 css_put(&memcg
->css
);
4463 * Gets called on EPOLLHUP on eventfd when user closes it.
4465 * Called with wqh->lock held and interrupts disabled.
4467 static int memcg_event_wake(wait_queue_entry_t
*wait
, unsigned mode
,
4468 int sync
, void *key
)
4470 struct mem_cgroup_event
*event
=
4471 container_of(wait
, struct mem_cgroup_event
, wait
);
4472 struct mem_cgroup
*memcg
= event
->memcg
;
4473 __poll_t flags
= key_to_poll(key
);
4475 if (flags
& EPOLLHUP
) {
4477 * If the event has been detached at cgroup removal, we
4478 * can simply return knowing the other side will cleanup
4481 * We can't race against event freeing since the other
4482 * side will require wqh->lock via remove_wait_queue(),
4485 spin_lock(&memcg
->event_list_lock
);
4486 if (!list_empty(&event
->list
)) {
4487 list_del_init(&event
->list
);
4489 * We are in atomic context, but cgroup_event_remove()
4490 * may sleep, so we have to call it in workqueue.
4492 schedule_work(&event
->remove
);
4494 spin_unlock(&memcg
->event_list_lock
);
4500 static void memcg_event_ptable_queue_proc(struct file
*file
,
4501 wait_queue_head_t
*wqh
, poll_table
*pt
)
4503 struct mem_cgroup_event
*event
=
4504 container_of(pt
, struct mem_cgroup_event
, pt
);
4507 add_wait_queue(wqh
, &event
->wait
);
4511 * DO NOT USE IN NEW FILES.
4513 * Parse input and register new cgroup event handler.
4515 * Input must be in format '<event_fd> <control_fd> <args>'.
4516 * Interpretation of args is defined by control file implementation.
4518 static ssize_t
memcg_write_event_control(struct kernfs_open_file
*of
,
4519 char *buf
, size_t nbytes
, loff_t off
)
4521 struct cgroup_subsys_state
*css
= of_css(of
);
4522 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4523 struct mem_cgroup_event
*event
;
4524 struct cgroup_subsys_state
*cfile_css
;
4525 unsigned int efd
, cfd
;
4532 buf
= strstrip(buf
);
4534 efd
= simple_strtoul(buf
, &endp
, 10);
4539 cfd
= simple_strtoul(buf
, &endp
, 10);
4540 if ((*endp
!= ' ') && (*endp
!= '\0'))
4544 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
4548 event
->memcg
= memcg
;
4549 INIT_LIST_HEAD(&event
->list
);
4550 init_poll_funcptr(&event
->pt
, memcg_event_ptable_queue_proc
);
4551 init_waitqueue_func_entry(&event
->wait
, memcg_event_wake
);
4552 INIT_WORK(&event
->remove
, memcg_event_remove
);
4560 event
->eventfd
= eventfd_ctx_fileget(efile
.file
);
4561 if (IS_ERR(event
->eventfd
)) {
4562 ret
= PTR_ERR(event
->eventfd
);
4569 goto out_put_eventfd
;
4572 /* the process need read permission on control file */
4573 /* AV: shouldn't we check that it's been opened for read instead? */
4574 ret
= inode_permission(file_inode(cfile
.file
), MAY_READ
);
4579 * Determine the event callbacks and set them in @event. This used
4580 * to be done via struct cftype but cgroup core no longer knows
4581 * about these events. The following is crude but the whole thing
4582 * is for compatibility anyway.
4584 * DO NOT ADD NEW FILES.
4586 name
= cfile
.file
->f_path
.dentry
->d_name
.name
;
4588 if (!strcmp(name
, "memory.usage_in_bytes")) {
4589 event
->register_event
= mem_cgroup_usage_register_event
;
4590 event
->unregister_event
= mem_cgroup_usage_unregister_event
;
4591 } else if (!strcmp(name
, "memory.oom_control")) {
4592 event
->register_event
= mem_cgroup_oom_register_event
;
4593 event
->unregister_event
= mem_cgroup_oom_unregister_event
;
4594 } else if (!strcmp(name
, "memory.pressure_level")) {
4595 event
->register_event
= vmpressure_register_event
;
4596 event
->unregister_event
= vmpressure_unregister_event
;
4597 } else if (!strcmp(name
, "memory.memsw.usage_in_bytes")) {
4598 event
->register_event
= memsw_cgroup_usage_register_event
;
4599 event
->unregister_event
= memsw_cgroup_usage_unregister_event
;
4606 * Verify @cfile should belong to @css. Also, remaining events are
4607 * automatically removed on cgroup destruction but the removal is
4608 * asynchronous, so take an extra ref on @css.
4610 cfile_css
= css_tryget_online_from_dir(cfile
.file
->f_path
.dentry
->d_parent
,
4611 &memory_cgrp_subsys
);
4613 if (IS_ERR(cfile_css
))
4615 if (cfile_css
!= css
) {
4620 ret
= event
->register_event(memcg
, event
->eventfd
, buf
);
4624 vfs_poll(efile
.file
, &event
->pt
);
4626 spin_lock(&memcg
->event_list_lock
);
4627 list_add(&event
->list
, &memcg
->event_list
);
4628 spin_unlock(&memcg
->event_list_lock
);
4640 eventfd_ctx_put(event
->eventfd
);
4649 static struct cftype mem_cgroup_legacy_files
[] = {
4651 .name
= "usage_in_bytes",
4652 .private = MEMFILE_PRIVATE(_MEM
, RES_USAGE
),
4653 .read_u64
= mem_cgroup_read_u64
,
4656 .name
= "max_usage_in_bytes",
4657 .private = MEMFILE_PRIVATE(_MEM
, RES_MAX_USAGE
),
4658 .write
= mem_cgroup_reset
,
4659 .read_u64
= mem_cgroup_read_u64
,
4662 .name
= "limit_in_bytes",
4663 .private = MEMFILE_PRIVATE(_MEM
, RES_LIMIT
),
4664 .write
= mem_cgroup_write
,
4665 .read_u64
= mem_cgroup_read_u64
,
4668 .name
= "soft_limit_in_bytes",
4669 .private = MEMFILE_PRIVATE(_MEM
, RES_SOFT_LIMIT
),
4670 .write
= mem_cgroup_write
,
4671 .read_u64
= mem_cgroup_read_u64
,
4675 .private = MEMFILE_PRIVATE(_MEM
, RES_FAILCNT
),
4676 .write
= mem_cgroup_reset
,
4677 .read_u64
= mem_cgroup_read_u64
,
4681 .seq_show
= memcg_stat_show
,
4684 .name
= "force_empty",
4685 .write
= mem_cgroup_force_empty_write
,
4688 .name
= "use_hierarchy",
4689 .write_u64
= mem_cgroup_hierarchy_write
,
4690 .read_u64
= mem_cgroup_hierarchy_read
,
4693 .name
= "cgroup.event_control", /* XXX: for compat */
4694 .write
= memcg_write_event_control
,
4695 .flags
= CFTYPE_NO_PREFIX
| CFTYPE_WORLD_WRITABLE
,
4698 .name
= "swappiness",
4699 .read_u64
= mem_cgroup_swappiness_read
,
4700 .write_u64
= mem_cgroup_swappiness_write
,
4703 .name
= "move_charge_at_immigrate",
4704 .read_u64
= mem_cgroup_move_charge_read
,
4705 .write_u64
= mem_cgroup_move_charge_write
,
4708 .name
= "oom_control",
4709 .seq_show
= mem_cgroup_oom_control_read
,
4710 .write_u64
= mem_cgroup_oom_control_write
,
4711 .private = MEMFILE_PRIVATE(_OOM_TYPE
, OOM_CONTROL
),
4714 .name
= "pressure_level",
4718 .name
= "numa_stat",
4719 .seq_show
= memcg_numa_stat_show
,
4723 .name
= "kmem.limit_in_bytes",
4724 .private = MEMFILE_PRIVATE(_KMEM
, RES_LIMIT
),
4725 .write
= mem_cgroup_write
,
4726 .read_u64
= mem_cgroup_read_u64
,
4729 .name
= "kmem.usage_in_bytes",
4730 .private = MEMFILE_PRIVATE(_KMEM
, RES_USAGE
),
4731 .read_u64
= mem_cgroup_read_u64
,
4734 .name
= "kmem.failcnt",
4735 .private = MEMFILE_PRIVATE(_KMEM
, RES_FAILCNT
),
4736 .write
= mem_cgroup_reset
,
4737 .read_u64
= mem_cgroup_read_u64
,
4740 .name
= "kmem.max_usage_in_bytes",
4741 .private = MEMFILE_PRIVATE(_KMEM
, RES_MAX_USAGE
),
4742 .write
= mem_cgroup_reset
,
4743 .read_u64
= mem_cgroup_read_u64
,
4745 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4747 .name
= "kmem.slabinfo",
4748 .seq_start
= memcg_slab_start
,
4749 .seq_next
= memcg_slab_next
,
4750 .seq_stop
= memcg_slab_stop
,
4751 .seq_show
= memcg_slab_show
,
4755 .name
= "kmem.tcp.limit_in_bytes",
4756 .private = MEMFILE_PRIVATE(_TCP
, RES_LIMIT
),
4757 .write
= mem_cgroup_write
,
4758 .read_u64
= mem_cgroup_read_u64
,
4761 .name
= "kmem.tcp.usage_in_bytes",
4762 .private = MEMFILE_PRIVATE(_TCP
, RES_USAGE
),
4763 .read_u64
= mem_cgroup_read_u64
,
4766 .name
= "kmem.tcp.failcnt",
4767 .private = MEMFILE_PRIVATE(_TCP
, RES_FAILCNT
),
4768 .write
= mem_cgroup_reset
,
4769 .read_u64
= mem_cgroup_read_u64
,
4772 .name
= "kmem.tcp.max_usage_in_bytes",
4773 .private = MEMFILE_PRIVATE(_TCP
, RES_MAX_USAGE
),
4774 .write
= mem_cgroup_reset
,
4775 .read_u64
= mem_cgroup_read_u64
,
4777 { }, /* terminate */
4781 * Private memory cgroup IDR
4783 * Swap-out records and page cache shadow entries need to store memcg
4784 * references in constrained space, so we maintain an ID space that is
4785 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4786 * memory-controlled cgroups to 64k.
4788 * However, there usually are many references to the oflline CSS after
4789 * the cgroup has been destroyed, such as page cache or reclaimable
4790 * slab objects, that don't need to hang on to the ID. We want to keep
4791 * those dead CSS from occupying IDs, or we might quickly exhaust the
4792 * relatively small ID space and prevent the creation of new cgroups
4793 * even when there are much fewer than 64k cgroups - possibly none.
4795 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4796 * be freed and recycled when it's no longer needed, which is usually
4797 * when the CSS is offlined.
4799 * The only exception to that are records of swapped out tmpfs/shmem
4800 * pages that need to be attributed to live ancestors on swapin. But
4801 * those references are manageable from userspace.
4804 static DEFINE_IDR(mem_cgroup_idr
);
4806 static void mem_cgroup_id_remove(struct mem_cgroup
*memcg
)
4808 if (memcg
->id
.id
> 0) {
4809 idr_remove(&mem_cgroup_idr
, memcg
->id
.id
);
4814 static void mem_cgroup_id_get_many(struct mem_cgroup
*memcg
, unsigned int n
)
4816 refcount_add(n
, &memcg
->id
.ref
);
4819 static void mem_cgroup_id_put_many(struct mem_cgroup
*memcg
, unsigned int n
)
4821 if (refcount_sub_and_test(n
, &memcg
->id
.ref
)) {
4822 mem_cgroup_id_remove(memcg
);
4824 /* Memcg ID pins CSS */
4825 css_put(&memcg
->css
);
4829 static inline void mem_cgroup_id_put(struct mem_cgroup
*memcg
)
4831 mem_cgroup_id_put_many(memcg
, 1);
4835 * mem_cgroup_from_id - look up a memcg from a memcg id
4836 * @id: the memcg id to look up
4838 * Caller must hold rcu_read_lock().
4840 struct mem_cgroup
*mem_cgroup_from_id(unsigned short id
)
4842 WARN_ON_ONCE(!rcu_read_lock_held());
4843 return idr_find(&mem_cgroup_idr
, id
);
4846 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup
*memcg
, int node
)
4848 struct mem_cgroup_per_node
*pn
;
4851 * This routine is called against possible nodes.
4852 * But it's BUG to call kmalloc() against offline node.
4854 * TODO: this routine can waste much memory for nodes which will
4855 * never be onlined. It's better to use memory hotplug callback
4858 if (!node_state(node
, N_NORMAL_MEMORY
))
4860 pn
= kzalloc_node(sizeof(*pn
), GFP_KERNEL
, tmp
);
4864 pn
->lruvec_stat_local
= alloc_percpu(struct lruvec_stat
);
4865 if (!pn
->lruvec_stat_local
) {
4870 pn
->lruvec_stat_cpu
= alloc_percpu(struct lruvec_stat
);
4871 if (!pn
->lruvec_stat_cpu
) {
4872 free_percpu(pn
->lruvec_stat_local
);
4877 lruvec_init(&pn
->lruvec
);
4878 pn
->usage_in_excess
= 0;
4879 pn
->on_tree
= false;
4882 memcg
->nodeinfo
[node
] = pn
;
4886 static void free_mem_cgroup_per_node_info(struct mem_cgroup
*memcg
, int node
)
4888 struct mem_cgroup_per_node
*pn
= memcg
->nodeinfo
[node
];
4893 free_percpu(pn
->lruvec_stat_cpu
);
4894 free_percpu(pn
->lruvec_stat_local
);
4898 static void __mem_cgroup_free(struct mem_cgroup
*memcg
)
4903 free_mem_cgroup_per_node_info(memcg
, node
);
4904 free_percpu(memcg
->vmstats_percpu
);
4905 free_percpu(memcg
->vmstats_local
);
4909 static void mem_cgroup_free(struct mem_cgroup
*memcg
)
4911 memcg_wb_domain_exit(memcg
);
4913 * Flush percpu vmstats and vmevents to guarantee the value correctness
4914 * on parent's and all ancestor levels.
4916 memcg_flush_percpu_vmstats(memcg
, false);
4917 memcg_flush_percpu_vmevents(memcg
);
4918 __mem_cgroup_free(memcg
);
4921 static struct mem_cgroup
*mem_cgroup_alloc(void)
4923 struct mem_cgroup
*memcg
;
4926 int __maybe_unused i
;
4928 size
= sizeof(struct mem_cgroup
);
4929 size
+= nr_node_ids
* sizeof(struct mem_cgroup_per_node
*);
4931 memcg
= kzalloc(size
, GFP_KERNEL
);
4935 memcg
->id
.id
= idr_alloc(&mem_cgroup_idr
, NULL
,
4936 1, MEM_CGROUP_ID_MAX
,
4938 if (memcg
->id
.id
< 0)
4941 memcg
->vmstats_local
= alloc_percpu(struct memcg_vmstats_percpu
);
4942 if (!memcg
->vmstats_local
)
4945 memcg
->vmstats_percpu
= alloc_percpu(struct memcg_vmstats_percpu
);
4946 if (!memcg
->vmstats_percpu
)
4950 if (alloc_mem_cgroup_per_node_info(memcg
, node
))
4953 if (memcg_wb_domain_init(memcg
, GFP_KERNEL
))
4956 INIT_WORK(&memcg
->high_work
, high_work_func
);
4957 INIT_LIST_HEAD(&memcg
->oom_notify
);
4958 mutex_init(&memcg
->thresholds_lock
);
4959 spin_lock_init(&memcg
->move_lock
);
4960 vmpressure_init(&memcg
->vmpressure
);
4961 INIT_LIST_HEAD(&memcg
->event_list
);
4962 spin_lock_init(&memcg
->event_list_lock
);
4963 memcg
->socket_pressure
= jiffies
;
4964 #ifdef CONFIG_MEMCG_KMEM
4965 memcg
->kmemcg_id
= -1;
4967 #ifdef CONFIG_CGROUP_WRITEBACK
4968 INIT_LIST_HEAD(&memcg
->cgwb_list
);
4969 for (i
= 0; i
< MEMCG_CGWB_FRN_CNT
; i
++)
4970 memcg
->cgwb_frn
[i
].done
=
4971 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq
);
4973 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4974 spin_lock_init(&memcg
->deferred_split_queue
.split_queue_lock
);
4975 INIT_LIST_HEAD(&memcg
->deferred_split_queue
.split_queue
);
4976 memcg
->deferred_split_queue
.split_queue_len
= 0;
4978 idr_replace(&mem_cgroup_idr
, memcg
, memcg
->id
.id
);
4981 mem_cgroup_id_remove(memcg
);
4982 __mem_cgroup_free(memcg
);
4986 static struct cgroup_subsys_state
* __ref
4987 mem_cgroup_css_alloc(struct cgroup_subsys_state
*parent_css
)
4989 struct mem_cgroup
*parent
= mem_cgroup_from_css(parent_css
);
4990 struct mem_cgroup
*memcg
;
4991 long error
= -ENOMEM
;
4993 memcg
= mem_cgroup_alloc();
4995 return ERR_PTR(error
);
4997 memcg
->high
= PAGE_COUNTER_MAX
;
4998 memcg
->soft_limit
= PAGE_COUNTER_MAX
;
5000 memcg
->swappiness
= mem_cgroup_swappiness(parent
);
5001 memcg
->oom_kill_disable
= parent
->oom_kill_disable
;
5003 if (parent
&& parent
->use_hierarchy
) {
5004 memcg
->use_hierarchy
= true;
5005 page_counter_init(&memcg
->memory
, &parent
->memory
);
5006 page_counter_init(&memcg
->swap
, &parent
->swap
);
5007 page_counter_init(&memcg
->memsw
, &parent
->memsw
);
5008 page_counter_init(&memcg
->kmem
, &parent
->kmem
);
5009 page_counter_init(&memcg
->tcpmem
, &parent
->tcpmem
);
5011 page_counter_init(&memcg
->memory
, NULL
);
5012 page_counter_init(&memcg
->swap
, NULL
);
5013 page_counter_init(&memcg
->memsw
, NULL
);
5014 page_counter_init(&memcg
->kmem
, NULL
);
5015 page_counter_init(&memcg
->tcpmem
, NULL
);
5017 * Deeper hierachy with use_hierarchy == false doesn't make
5018 * much sense so let cgroup subsystem know about this
5019 * unfortunate state in our controller.
5021 if (parent
!= root_mem_cgroup
)
5022 memory_cgrp_subsys
.broken_hierarchy
= true;
5025 /* The following stuff does not apply to the root */
5027 #ifdef CONFIG_MEMCG_KMEM
5028 INIT_LIST_HEAD(&memcg
->kmem_caches
);
5030 root_mem_cgroup
= memcg
;
5034 error
= memcg_online_kmem(memcg
);
5038 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
) && !cgroup_memory_nosocket
)
5039 static_branch_inc(&memcg_sockets_enabled_key
);
5043 mem_cgroup_id_remove(memcg
);
5044 mem_cgroup_free(memcg
);
5045 return ERR_PTR(-ENOMEM
);
5048 static int mem_cgroup_css_online(struct cgroup_subsys_state
*css
)
5050 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5053 * A memcg must be visible for memcg_expand_shrinker_maps()
5054 * by the time the maps are allocated. So, we allocate maps
5055 * here, when for_each_mem_cgroup() can't skip it.
5057 if (memcg_alloc_shrinker_maps(memcg
)) {
5058 mem_cgroup_id_remove(memcg
);
5062 /* Online state pins memcg ID, memcg ID pins CSS */
5063 refcount_set(&memcg
->id
.ref
, 1);
5068 static void mem_cgroup_css_offline(struct cgroup_subsys_state
*css
)
5070 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5071 struct mem_cgroup_event
*event
, *tmp
;
5074 * Unregister events and notify userspace.
5075 * Notify userspace about cgroup removing only after rmdir of cgroup
5076 * directory to avoid race between userspace and kernelspace.
5078 spin_lock(&memcg
->event_list_lock
);
5079 list_for_each_entry_safe(event
, tmp
, &memcg
->event_list
, list
) {
5080 list_del_init(&event
->list
);
5081 schedule_work(&event
->remove
);
5083 spin_unlock(&memcg
->event_list_lock
);
5085 page_counter_set_min(&memcg
->memory
, 0);
5086 page_counter_set_low(&memcg
->memory
, 0);
5088 memcg_offline_kmem(memcg
);
5089 wb_memcg_offline(memcg
);
5091 drain_all_stock(memcg
);
5093 mem_cgroup_id_put(memcg
);
5096 static void mem_cgroup_css_released(struct cgroup_subsys_state
*css
)
5098 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5100 invalidate_reclaim_iterators(memcg
);
5103 static void mem_cgroup_css_free(struct cgroup_subsys_state
*css
)
5105 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5106 int __maybe_unused i
;
5108 #ifdef CONFIG_CGROUP_WRITEBACK
5109 for (i
= 0; i
< MEMCG_CGWB_FRN_CNT
; i
++)
5110 wb_wait_for_completion(&memcg
->cgwb_frn
[i
].done
);
5112 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
) && !cgroup_memory_nosocket
)
5113 static_branch_dec(&memcg_sockets_enabled_key
);
5115 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) && memcg
->tcpmem_active
)
5116 static_branch_dec(&memcg_sockets_enabled_key
);
5118 vmpressure_cleanup(&memcg
->vmpressure
);
5119 cancel_work_sync(&memcg
->high_work
);
5120 mem_cgroup_remove_from_trees(memcg
);
5121 memcg_free_shrinker_maps(memcg
);
5122 memcg_free_kmem(memcg
);
5123 mem_cgroup_free(memcg
);
5127 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5128 * @css: the target css
5130 * Reset the states of the mem_cgroup associated with @css. This is
5131 * invoked when the userland requests disabling on the default hierarchy
5132 * but the memcg is pinned through dependency. The memcg should stop
5133 * applying policies and should revert to the vanilla state as it may be
5134 * made visible again.
5136 * The current implementation only resets the essential configurations.
5137 * This needs to be expanded to cover all the visible parts.
5139 static void mem_cgroup_css_reset(struct cgroup_subsys_state
*css
)
5141 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5143 page_counter_set_max(&memcg
->memory
, PAGE_COUNTER_MAX
);
5144 page_counter_set_max(&memcg
->swap
, PAGE_COUNTER_MAX
);
5145 page_counter_set_max(&memcg
->memsw
, PAGE_COUNTER_MAX
);
5146 page_counter_set_max(&memcg
->kmem
, PAGE_COUNTER_MAX
);
5147 page_counter_set_max(&memcg
->tcpmem
, PAGE_COUNTER_MAX
);
5148 page_counter_set_min(&memcg
->memory
, 0);
5149 page_counter_set_low(&memcg
->memory
, 0);
5150 memcg
->high
= PAGE_COUNTER_MAX
;
5151 memcg
->soft_limit
= PAGE_COUNTER_MAX
;
5152 memcg_wb_domain_size_changed(memcg
);
5156 /* Handlers for move charge at task migration. */
5157 static int mem_cgroup_do_precharge(unsigned long count
)
5161 /* Try a single bulk charge without reclaim first, kswapd may wake */
5162 ret
= try_charge(mc
.to
, GFP_KERNEL
& ~__GFP_DIRECT_RECLAIM
, count
);
5164 mc
.precharge
+= count
;
5168 /* Try charges one by one with reclaim, but do not retry */
5170 ret
= try_charge(mc
.to
, GFP_KERNEL
| __GFP_NORETRY
, 1);
5184 enum mc_target_type
{
5191 static struct page
*mc_handle_present_pte(struct vm_area_struct
*vma
,
5192 unsigned long addr
, pte_t ptent
)
5194 struct page
*page
= vm_normal_page(vma
, addr
, ptent
);
5196 if (!page
|| !page_mapped(page
))
5198 if (PageAnon(page
)) {
5199 if (!(mc
.flags
& MOVE_ANON
))
5202 if (!(mc
.flags
& MOVE_FILE
))
5205 if (!get_page_unless_zero(page
))
5211 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5212 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
5213 pte_t ptent
, swp_entry_t
*entry
)
5215 struct page
*page
= NULL
;
5216 swp_entry_t ent
= pte_to_swp_entry(ptent
);
5218 if (!(mc
.flags
& MOVE_ANON
) || non_swap_entry(ent
))
5222 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5223 * a device and because they are not accessible by CPU they are store
5224 * as special swap entry in the CPU page table.
5226 if (is_device_private_entry(ent
)) {
5227 page
= device_private_entry_to_page(ent
);
5229 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5230 * a refcount of 1 when free (unlike normal page)
5232 if (!page_ref_add_unless(page
, 1, 1))
5238 * Because lookup_swap_cache() updates some statistics counter,
5239 * we call find_get_page() with swapper_space directly.
5241 page
= find_get_page(swap_address_space(ent
), swp_offset(ent
));
5242 if (do_memsw_account())
5243 entry
->val
= ent
.val
;
5248 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
5249 pte_t ptent
, swp_entry_t
*entry
)
5255 static struct page
*mc_handle_file_pte(struct vm_area_struct
*vma
,
5256 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
5258 struct page
*page
= NULL
;
5259 struct address_space
*mapping
;
5262 if (!vma
->vm_file
) /* anonymous vma */
5264 if (!(mc
.flags
& MOVE_FILE
))
5267 mapping
= vma
->vm_file
->f_mapping
;
5268 pgoff
= linear_page_index(vma
, addr
);
5270 /* page is moved even if it's not RSS of this task(page-faulted). */
5272 /* shmem/tmpfs may report page out on swap: account for that too. */
5273 if (shmem_mapping(mapping
)) {
5274 page
= find_get_entry(mapping
, pgoff
);
5275 if (xa_is_value(page
)) {
5276 swp_entry_t swp
= radix_to_swp_entry(page
);
5277 if (do_memsw_account())
5279 page
= find_get_page(swap_address_space(swp
),
5283 page
= find_get_page(mapping
, pgoff
);
5285 page
= find_get_page(mapping
, pgoff
);
5291 * mem_cgroup_move_account - move account of the page
5293 * @compound: charge the page as compound or small page
5294 * @from: mem_cgroup which the page is moved from.
5295 * @to: mem_cgroup which the page is moved to. @from != @to.
5297 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5299 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5302 static int mem_cgroup_move_account(struct page
*page
,
5304 struct mem_cgroup
*from
,
5305 struct mem_cgroup
*to
)
5307 struct lruvec
*from_vec
, *to_vec
;
5308 struct pglist_data
*pgdat
;
5309 unsigned long flags
;
5310 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
5314 VM_BUG_ON(from
== to
);
5315 VM_BUG_ON_PAGE(PageLRU(page
), page
);
5316 VM_BUG_ON(compound
&& !PageTransHuge(page
));
5319 * Prevent mem_cgroup_migrate() from looking at
5320 * page->mem_cgroup of its source page while we change it.
5323 if (!trylock_page(page
))
5327 if (page
->mem_cgroup
!= from
)
5330 anon
= PageAnon(page
);
5332 pgdat
= page_pgdat(page
);
5333 from_vec
= mem_cgroup_lruvec(from
, pgdat
);
5334 to_vec
= mem_cgroup_lruvec(to
, pgdat
);
5336 spin_lock_irqsave(&from
->move_lock
, flags
);
5338 if (!anon
&& page_mapped(page
)) {
5339 __mod_lruvec_state(from_vec
, NR_FILE_MAPPED
, -nr_pages
);
5340 __mod_lruvec_state(to_vec
, NR_FILE_MAPPED
, nr_pages
);
5344 * move_lock grabbed above and caller set from->moving_account, so
5345 * mod_memcg_page_state will serialize updates to PageDirty.
5346 * So mapping should be stable for dirty pages.
5348 if (!anon
&& PageDirty(page
)) {
5349 struct address_space
*mapping
= page_mapping(page
);
5351 if (mapping_cap_account_dirty(mapping
)) {
5352 __mod_lruvec_state(from_vec
, NR_FILE_DIRTY
, -nr_pages
);
5353 __mod_lruvec_state(to_vec
, NR_FILE_DIRTY
, nr_pages
);
5357 if (PageWriteback(page
)) {
5358 __mod_lruvec_state(from_vec
, NR_WRITEBACK
, -nr_pages
);
5359 __mod_lruvec_state(to_vec
, NR_WRITEBACK
, nr_pages
);
5362 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5363 if (compound
&& !list_empty(page_deferred_list(page
))) {
5364 spin_lock(&from
->deferred_split_queue
.split_queue_lock
);
5365 list_del_init(page_deferred_list(page
));
5366 from
->deferred_split_queue
.split_queue_len
--;
5367 spin_unlock(&from
->deferred_split_queue
.split_queue_lock
);
5371 * It is safe to change page->mem_cgroup here because the page
5372 * is referenced, charged, and isolated - we can't race with
5373 * uncharging, charging, migration, or LRU putback.
5376 /* caller should have done css_get */
5377 page
->mem_cgroup
= to
;
5379 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5380 if (compound
&& list_empty(page_deferred_list(page
))) {
5381 spin_lock(&to
->deferred_split_queue
.split_queue_lock
);
5382 list_add_tail(page_deferred_list(page
),
5383 &to
->deferred_split_queue
.split_queue
);
5384 to
->deferred_split_queue
.split_queue_len
++;
5385 spin_unlock(&to
->deferred_split_queue
.split_queue_lock
);
5389 spin_unlock_irqrestore(&from
->move_lock
, flags
);
5393 local_irq_disable();
5394 mem_cgroup_charge_statistics(to
, page
, compound
, nr_pages
);
5395 memcg_check_events(to
, page
);
5396 mem_cgroup_charge_statistics(from
, page
, compound
, -nr_pages
);
5397 memcg_check_events(from
, page
);
5406 * get_mctgt_type - get target type of moving charge
5407 * @vma: the vma the pte to be checked belongs
5408 * @addr: the address corresponding to the pte to be checked
5409 * @ptent: the pte to be checked
5410 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5413 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5414 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5415 * move charge. if @target is not NULL, the page is stored in target->page
5416 * with extra refcnt got(Callers should handle it).
5417 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5418 * target for charge migration. if @target is not NULL, the entry is stored
5420 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5421 * (so ZONE_DEVICE page and thus not on the lru).
5422 * For now we such page is charge like a regular page would be as for all
5423 * intent and purposes it is just special memory taking the place of a
5426 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5428 * Called with pte lock held.
5431 static enum mc_target_type
get_mctgt_type(struct vm_area_struct
*vma
,
5432 unsigned long addr
, pte_t ptent
, union mc_target
*target
)
5434 struct page
*page
= NULL
;
5435 enum mc_target_type ret
= MC_TARGET_NONE
;
5436 swp_entry_t ent
= { .val
= 0 };
5438 if (pte_present(ptent
))
5439 page
= mc_handle_present_pte(vma
, addr
, ptent
);
5440 else if (is_swap_pte(ptent
))
5441 page
= mc_handle_swap_pte(vma
, ptent
, &ent
);
5442 else if (pte_none(ptent
))
5443 page
= mc_handle_file_pte(vma
, addr
, ptent
, &ent
);
5445 if (!page
&& !ent
.val
)
5449 * Do only loose check w/o serialization.
5450 * mem_cgroup_move_account() checks the page is valid or
5451 * not under LRU exclusion.
5453 if (page
->mem_cgroup
== mc
.from
) {
5454 ret
= MC_TARGET_PAGE
;
5455 if (is_device_private_page(page
))
5456 ret
= MC_TARGET_DEVICE
;
5458 target
->page
= page
;
5460 if (!ret
|| !target
)
5464 * There is a swap entry and a page doesn't exist or isn't charged.
5465 * But we cannot move a tail-page in a THP.
5467 if (ent
.val
&& !ret
&& (!page
|| !PageTransCompound(page
)) &&
5468 mem_cgroup_id(mc
.from
) == lookup_swap_cgroup_id(ent
)) {
5469 ret
= MC_TARGET_SWAP
;
5476 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5478 * We don't consider PMD mapped swapping or file mapped pages because THP does
5479 * not support them for now.
5480 * Caller should make sure that pmd_trans_huge(pmd) is true.
5482 static enum mc_target_type
get_mctgt_type_thp(struct vm_area_struct
*vma
,
5483 unsigned long addr
, pmd_t pmd
, union mc_target
*target
)
5485 struct page
*page
= NULL
;
5486 enum mc_target_type ret
= MC_TARGET_NONE
;
5488 if (unlikely(is_swap_pmd(pmd
))) {
5489 VM_BUG_ON(thp_migration_supported() &&
5490 !is_pmd_migration_entry(pmd
));
5493 page
= pmd_page(pmd
);
5494 VM_BUG_ON_PAGE(!page
|| !PageHead(page
), page
);
5495 if (!(mc
.flags
& MOVE_ANON
))
5497 if (page
->mem_cgroup
== mc
.from
) {
5498 ret
= MC_TARGET_PAGE
;
5501 target
->page
= page
;
5507 static inline enum mc_target_type
get_mctgt_type_thp(struct vm_area_struct
*vma
,
5508 unsigned long addr
, pmd_t pmd
, union mc_target
*target
)
5510 return MC_TARGET_NONE
;
5514 static int mem_cgroup_count_precharge_pte_range(pmd_t
*pmd
,
5515 unsigned long addr
, unsigned long end
,
5516 struct mm_walk
*walk
)
5518 struct vm_area_struct
*vma
= walk
->vma
;
5522 ptl
= pmd_trans_huge_lock(pmd
, vma
);
5525 * Note their can not be MC_TARGET_DEVICE for now as we do not
5526 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5527 * this might change.
5529 if (get_mctgt_type_thp(vma
, addr
, *pmd
, NULL
) == MC_TARGET_PAGE
)
5530 mc
.precharge
+= HPAGE_PMD_NR
;
5535 if (pmd_trans_unstable(pmd
))
5537 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
5538 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
)
5539 if (get_mctgt_type(vma
, addr
, *pte
, NULL
))
5540 mc
.precharge
++; /* increment precharge temporarily */
5541 pte_unmap_unlock(pte
- 1, ptl
);
5547 static const struct mm_walk_ops precharge_walk_ops
= {
5548 .pmd_entry
= mem_cgroup_count_precharge_pte_range
,
5551 static unsigned long mem_cgroup_count_precharge(struct mm_struct
*mm
)
5553 unsigned long precharge
;
5555 down_read(&mm
->mmap_sem
);
5556 walk_page_range(mm
, 0, mm
->highest_vm_end
, &precharge_walk_ops
, NULL
);
5557 up_read(&mm
->mmap_sem
);
5559 precharge
= mc
.precharge
;
5565 static int mem_cgroup_precharge_mc(struct mm_struct
*mm
)
5567 unsigned long precharge
= mem_cgroup_count_precharge(mm
);
5569 VM_BUG_ON(mc
.moving_task
);
5570 mc
.moving_task
= current
;
5571 return mem_cgroup_do_precharge(precharge
);
5574 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5575 static void __mem_cgroup_clear_mc(void)
5577 struct mem_cgroup
*from
= mc
.from
;
5578 struct mem_cgroup
*to
= mc
.to
;
5580 /* we must uncharge all the leftover precharges from mc.to */
5582 cancel_charge(mc
.to
, mc
.precharge
);
5586 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5587 * we must uncharge here.
5589 if (mc
.moved_charge
) {
5590 cancel_charge(mc
.from
, mc
.moved_charge
);
5591 mc
.moved_charge
= 0;
5593 /* we must fixup refcnts and charges */
5594 if (mc
.moved_swap
) {
5595 /* uncharge swap account from the old cgroup */
5596 if (!mem_cgroup_is_root(mc
.from
))
5597 page_counter_uncharge(&mc
.from
->memsw
, mc
.moved_swap
);
5599 mem_cgroup_id_put_many(mc
.from
, mc
.moved_swap
);
5602 * we charged both to->memory and to->memsw, so we
5603 * should uncharge to->memory.
5605 if (!mem_cgroup_is_root(mc
.to
))
5606 page_counter_uncharge(&mc
.to
->memory
, mc
.moved_swap
);
5608 mem_cgroup_id_get_many(mc
.to
, mc
.moved_swap
);
5609 css_put_many(&mc
.to
->css
, mc
.moved_swap
);
5613 memcg_oom_recover(from
);
5614 memcg_oom_recover(to
);
5615 wake_up_all(&mc
.waitq
);
5618 static void mem_cgroup_clear_mc(void)
5620 struct mm_struct
*mm
= mc
.mm
;
5623 * we must clear moving_task before waking up waiters at the end of
5626 mc
.moving_task
= NULL
;
5627 __mem_cgroup_clear_mc();
5628 spin_lock(&mc
.lock
);
5632 spin_unlock(&mc
.lock
);
5637 static int mem_cgroup_can_attach(struct cgroup_taskset
*tset
)
5639 struct cgroup_subsys_state
*css
;
5640 struct mem_cgroup
*memcg
= NULL
; /* unneeded init to make gcc happy */
5641 struct mem_cgroup
*from
;
5642 struct task_struct
*leader
, *p
;
5643 struct mm_struct
*mm
;
5644 unsigned long move_flags
;
5647 /* charge immigration isn't supported on the default hierarchy */
5648 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
5652 * Multi-process migrations only happen on the default hierarchy
5653 * where charge immigration is not used. Perform charge
5654 * immigration if @tset contains a leader and whine if there are
5658 cgroup_taskset_for_each_leader(leader
, css
, tset
) {
5661 memcg
= mem_cgroup_from_css(css
);
5667 * We are now commited to this value whatever it is. Changes in this
5668 * tunable will only affect upcoming migrations, not the current one.
5669 * So we need to save it, and keep it going.
5671 move_flags
= READ_ONCE(memcg
->move_charge_at_immigrate
);
5675 from
= mem_cgroup_from_task(p
);
5677 VM_BUG_ON(from
== memcg
);
5679 mm
= get_task_mm(p
);
5682 /* We move charges only when we move a owner of the mm */
5683 if (mm
->owner
== p
) {
5686 VM_BUG_ON(mc
.precharge
);
5687 VM_BUG_ON(mc
.moved_charge
);
5688 VM_BUG_ON(mc
.moved_swap
);
5690 spin_lock(&mc
.lock
);
5694 mc
.flags
= move_flags
;
5695 spin_unlock(&mc
.lock
);
5696 /* We set mc.moving_task later */
5698 ret
= mem_cgroup_precharge_mc(mm
);
5700 mem_cgroup_clear_mc();
5707 static void mem_cgroup_cancel_attach(struct cgroup_taskset
*tset
)
5710 mem_cgroup_clear_mc();
5713 static int mem_cgroup_move_charge_pte_range(pmd_t
*pmd
,
5714 unsigned long addr
, unsigned long end
,
5715 struct mm_walk
*walk
)
5718 struct vm_area_struct
*vma
= walk
->vma
;
5721 enum mc_target_type target_type
;
5722 union mc_target target
;
5725 ptl
= pmd_trans_huge_lock(pmd
, vma
);
5727 if (mc
.precharge
< HPAGE_PMD_NR
) {
5731 target_type
= get_mctgt_type_thp(vma
, addr
, *pmd
, &target
);
5732 if (target_type
== MC_TARGET_PAGE
) {
5734 if (!isolate_lru_page(page
)) {
5735 if (!mem_cgroup_move_account(page
, true,
5737 mc
.precharge
-= HPAGE_PMD_NR
;
5738 mc
.moved_charge
+= HPAGE_PMD_NR
;
5740 putback_lru_page(page
);
5743 } else if (target_type
== MC_TARGET_DEVICE
) {
5745 if (!mem_cgroup_move_account(page
, true,
5747 mc
.precharge
-= HPAGE_PMD_NR
;
5748 mc
.moved_charge
+= HPAGE_PMD_NR
;
5756 if (pmd_trans_unstable(pmd
))
5759 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
5760 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
5761 pte_t ptent
= *(pte
++);
5762 bool device
= false;
5768 switch (get_mctgt_type(vma
, addr
, ptent
, &target
)) {
5769 case MC_TARGET_DEVICE
:
5772 case MC_TARGET_PAGE
:
5775 * We can have a part of the split pmd here. Moving it
5776 * can be done but it would be too convoluted so simply
5777 * ignore such a partial THP and keep it in original
5778 * memcg. There should be somebody mapping the head.
5780 if (PageTransCompound(page
))
5782 if (!device
&& isolate_lru_page(page
))
5784 if (!mem_cgroup_move_account(page
, false,
5787 /* we uncharge from mc.from later. */
5791 putback_lru_page(page
);
5792 put
: /* get_mctgt_type() gets the page */
5795 case MC_TARGET_SWAP
:
5797 if (!mem_cgroup_move_swap_account(ent
, mc
.from
, mc
.to
)) {
5799 /* we fixup refcnts and charges later. */
5807 pte_unmap_unlock(pte
- 1, ptl
);
5812 * We have consumed all precharges we got in can_attach().
5813 * We try charge one by one, but don't do any additional
5814 * charges to mc.to if we have failed in charge once in attach()
5817 ret
= mem_cgroup_do_precharge(1);
5825 static const struct mm_walk_ops charge_walk_ops
= {
5826 .pmd_entry
= mem_cgroup_move_charge_pte_range
,
5829 static void mem_cgroup_move_charge(void)
5831 lru_add_drain_all();
5833 * Signal lock_page_memcg() to take the memcg's move_lock
5834 * while we're moving its pages to another memcg. Then wait
5835 * for already started RCU-only updates to finish.
5837 atomic_inc(&mc
.from
->moving_account
);
5840 if (unlikely(!down_read_trylock(&mc
.mm
->mmap_sem
))) {
5842 * Someone who are holding the mmap_sem might be waiting in
5843 * waitq. So we cancel all extra charges, wake up all waiters,
5844 * and retry. Because we cancel precharges, we might not be able
5845 * to move enough charges, but moving charge is a best-effort
5846 * feature anyway, so it wouldn't be a big problem.
5848 __mem_cgroup_clear_mc();
5853 * When we have consumed all precharges and failed in doing
5854 * additional charge, the page walk just aborts.
5856 walk_page_range(mc
.mm
, 0, mc
.mm
->highest_vm_end
, &charge_walk_ops
,
5859 up_read(&mc
.mm
->mmap_sem
);
5860 atomic_dec(&mc
.from
->moving_account
);
5863 static void mem_cgroup_move_task(void)
5866 mem_cgroup_move_charge();
5867 mem_cgroup_clear_mc();
5870 #else /* !CONFIG_MMU */
5871 static int mem_cgroup_can_attach(struct cgroup_taskset
*tset
)
5875 static void mem_cgroup_cancel_attach(struct cgroup_taskset
*tset
)
5878 static void mem_cgroup_move_task(void)
5884 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5885 * to verify whether we're attached to the default hierarchy on each mount
5888 static void mem_cgroup_bind(struct cgroup_subsys_state
*root_css
)
5891 * use_hierarchy is forced on the default hierarchy. cgroup core
5892 * guarantees that @root doesn't have any children, so turning it
5893 * on for the root memcg is enough.
5895 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
5896 root_mem_cgroup
->use_hierarchy
= true;
5898 root_mem_cgroup
->use_hierarchy
= false;
5901 static int seq_puts_memcg_tunable(struct seq_file
*m
, unsigned long value
)
5903 if (value
== PAGE_COUNTER_MAX
)
5904 seq_puts(m
, "max\n");
5906 seq_printf(m
, "%llu\n", (u64
)value
* PAGE_SIZE
);
5911 static u64
memory_current_read(struct cgroup_subsys_state
*css
,
5914 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5916 return (u64
)page_counter_read(&memcg
->memory
) * PAGE_SIZE
;
5919 static int memory_min_show(struct seq_file
*m
, void *v
)
5921 return seq_puts_memcg_tunable(m
,
5922 READ_ONCE(mem_cgroup_from_seq(m
)->memory
.min
));
5925 static ssize_t
memory_min_write(struct kernfs_open_file
*of
,
5926 char *buf
, size_t nbytes
, loff_t off
)
5928 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5932 buf
= strstrip(buf
);
5933 err
= page_counter_memparse(buf
, "max", &min
);
5937 page_counter_set_min(&memcg
->memory
, min
);
5942 static int memory_low_show(struct seq_file
*m
, void *v
)
5944 return seq_puts_memcg_tunable(m
,
5945 READ_ONCE(mem_cgroup_from_seq(m
)->memory
.low
));
5948 static ssize_t
memory_low_write(struct kernfs_open_file
*of
,
5949 char *buf
, size_t nbytes
, loff_t off
)
5951 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5955 buf
= strstrip(buf
);
5956 err
= page_counter_memparse(buf
, "max", &low
);
5960 page_counter_set_low(&memcg
->memory
, low
);
5965 static int memory_high_show(struct seq_file
*m
, void *v
)
5967 return seq_puts_memcg_tunable(m
, READ_ONCE(mem_cgroup_from_seq(m
)->high
));
5970 static ssize_t
memory_high_write(struct kernfs_open_file
*of
,
5971 char *buf
, size_t nbytes
, loff_t off
)
5973 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5974 unsigned int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
5975 bool drained
= false;
5979 buf
= strstrip(buf
);
5980 err
= page_counter_memparse(buf
, "max", &high
);
5987 unsigned long nr_pages
= page_counter_read(&memcg
->memory
);
5988 unsigned long reclaimed
;
5990 if (nr_pages
<= high
)
5993 if (signal_pending(current
))
5997 drain_all_stock(memcg
);
6002 reclaimed
= try_to_free_mem_cgroup_pages(memcg
, nr_pages
- high
,
6005 if (!reclaimed
&& !nr_retries
--)
6012 static int memory_max_show(struct seq_file
*m
, void *v
)
6014 return seq_puts_memcg_tunable(m
,
6015 READ_ONCE(mem_cgroup_from_seq(m
)->memory
.max
));
6018 static ssize_t
memory_max_write(struct kernfs_open_file
*of
,
6019 char *buf
, size_t nbytes
, loff_t off
)
6021 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
6022 unsigned int nr_reclaims
= MEM_CGROUP_RECLAIM_RETRIES
;
6023 bool drained
= false;
6027 buf
= strstrip(buf
);
6028 err
= page_counter_memparse(buf
, "max", &max
);
6032 xchg(&memcg
->memory
.max
, max
);
6035 unsigned long nr_pages
= page_counter_read(&memcg
->memory
);
6037 if (nr_pages
<= max
)
6040 if (signal_pending(current
))
6044 drain_all_stock(memcg
);
6050 if (!try_to_free_mem_cgroup_pages(memcg
, nr_pages
- max
,
6056 memcg_memory_event(memcg
, MEMCG_OOM
);
6057 if (!mem_cgroup_out_of_memory(memcg
, GFP_KERNEL
, 0))
6061 memcg_wb_domain_size_changed(memcg
);
6065 static void __memory_events_show(struct seq_file
*m
, atomic_long_t
*events
)
6067 seq_printf(m
, "low %lu\n", atomic_long_read(&events
[MEMCG_LOW
]));
6068 seq_printf(m
, "high %lu\n", atomic_long_read(&events
[MEMCG_HIGH
]));
6069 seq_printf(m
, "max %lu\n", atomic_long_read(&events
[MEMCG_MAX
]));
6070 seq_printf(m
, "oom %lu\n", atomic_long_read(&events
[MEMCG_OOM
]));
6071 seq_printf(m
, "oom_kill %lu\n",
6072 atomic_long_read(&events
[MEMCG_OOM_KILL
]));
6075 static int memory_events_show(struct seq_file
*m
, void *v
)
6077 struct mem_cgroup
*memcg
= mem_cgroup_from_seq(m
);
6079 __memory_events_show(m
, memcg
->memory_events
);
6083 static int memory_events_local_show(struct seq_file
*m
, void *v
)
6085 struct mem_cgroup
*memcg
= mem_cgroup_from_seq(m
);
6087 __memory_events_show(m
, memcg
->memory_events_local
);
6091 static int memory_stat_show(struct seq_file
*m
, void *v
)
6093 struct mem_cgroup
*memcg
= mem_cgroup_from_seq(m
);
6096 buf
= memory_stat_format(memcg
);
6104 static int memory_oom_group_show(struct seq_file
*m
, void *v
)
6106 struct mem_cgroup
*memcg
= mem_cgroup_from_seq(m
);
6108 seq_printf(m
, "%d\n", memcg
->oom_group
);
6113 static ssize_t
memory_oom_group_write(struct kernfs_open_file
*of
,
6114 char *buf
, size_t nbytes
, loff_t off
)
6116 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
6119 buf
= strstrip(buf
);
6123 ret
= kstrtoint(buf
, 0, &oom_group
);
6127 if (oom_group
!= 0 && oom_group
!= 1)
6130 memcg
->oom_group
= oom_group
;
6135 static struct cftype memory_files
[] = {
6138 .flags
= CFTYPE_NOT_ON_ROOT
,
6139 .read_u64
= memory_current_read
,
6143 .flags
= CFTYPE_NOT_ON_ROOT
,
6144 .seq_show
= memory_min_show
,
6145 .write
= memory_min_write
,
6149 .flags
= CFTYPE_NOT_ON_ROOT
,
6150 .seq_show
= memory_low_show
,
6151 .write
= memory_low_write
,
6155 .flags
= CFTYPE_NOT_ON_ROOT
,
6156 .seq_show
= memory_high_show
,
6157 .write
= memory_high_write
,
6161 .flags
= CFTYPE_NOT_ON_ROOT
,
6162 .seq_show
= memory_max_show
,
6163 .write
= memory_max_write
,
6167 .flags
= CFTYPE_NOT_ON_ROOT
,
6168 .file_offset
= offsetof(struct mem_cgroup
, events_file
),
6169 .seq_show
= memory_events_show
,
6172 .name
= "events.local",
6173 .flags
= CFTYPE_NOT_ON_ROOT
,
6174 .file_offset
= offsetof(struct mem_cgroup
, events_local_file
),
6175 .seq_show
= memory_events_local_show
,
6179 .flags
= CFTYPE_NOT_ON_ROOT
,
6180 .seq_show
= memory_stat_show
,
6183 .name
= "oom.group",
6184 .flags
= CFTYPE_NOT_ON_ROOT
| CFTYPE_NS_DELEGATABLE
,
6185 .seq_show
= memory_oom_group_show
,
6186 .write
= memory_oom_group_write
,
6191 struct cgroup_subsys memory_cgrp_subsys
= {
6192 .css_alloc
= mem_cgroup_css_alloc
,
6193 .css_online
= mem_cgroup_css_online
,
6194 .css_offline
= mem_cgroup_css_offline
,
6195 .css_released
= mem_cgroup_css_released
,
6196 .css_free
= mem_cgroup_css_free
,
6197 .css_reset
= mem_cgroup_css_reset
,
6198 .can_attach
= mem_cgroup_can_attach
,
6199 .cancel_attach
= mem_cgroup_cancel_attach
,
6200 .post_attach
= mem_cgroup_move_task
,
6201 .bind
= mem_cgroup_bind
,
6202 .dfl_cftypes
= memory_files
,
6203 .legacy_cftypes
= mem_cgroup_legacy_files
,
6208 * mem_cgroup_protected - check if memory consumption is in the normal range
6209 * @root: the top ancestor of the sub-tree being checked
6210 * @memcg: the memory cgroup to check
6212 * WARNING: This function is not stateless! It can only be used as part
6213 * of a top-down tree iteration, not for isolated queries.
6215 * Returns one of the following:
6216 * MEMCG_PROT_NONE: cgroup memory is not protected
6217 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
6218 * an unprotected supply of reclaimable memory from other cgroups.
6219 * MEMCG_PROT_MIN: cgroup memory is protected
6221 * @root is exclusive; it is never protected when looked at directly
6223 * To provide a proper hierarchical behavior, effective memory.min/low values
6224 * are used. Below is the description of how effective memory.low is calculated.
6225 * Effective memory.min values is calculated in the same way.
6227 * Effective memory.low is always equal or less than the original memory.low.
6228 * If there is no memory.low overcommittment (which is always true for
6229 * top-level memory cgroups), these two values are equal.
6230 * Otherwise, it's a part of parent's effective memory.low,
6231 * calculated as a cgroup's memory.low usage divided by sum of sibling's
6232 * memory.low usages, where memory.low usage is the size of actually
6236 * elow = min( memory.low, parent->elow * ------------------ ),
6237 * siblings_low_usage
6239 * | memory.current, if memory.current < memory.low
6244 * Such definition of the effective memory.low provides the expected
6245 * hierarchical behavior: parent's memory.low value is limiting
6246 * children, unprotected memory is reclaimed first and cgroups,
6247 * which are not using their guarantee do not affect actual memory
6250 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
6252 * A A/memory.low = 2G, A/memory.current = 6G
6254 * BC DE B/memory.low = 3G B/memory.current = 2G
6255 * C/memory.low = 1G C/memory.current = 2G
6256 * D/memory.low = 0 D/memory.current = 2G
6257 * E/memory.low = 10G E/memory.current = 0
6259 * and the memory pressure is applied, the following memory distribution
6260 * is expected (approximately):
6262 * A/memory.current = 2G
6264 * B/memory.current = 1.3G
6265 * C/memory.current = 0.6G
6266 * D/memory.current = 0
6267 * E/memory.current = 0
6269 * These calculations require constant tracking of the actual low usages
6270 * (see propagate_protected_usage()), as well as recursive calculation of
6271 * effective memory.low values. But as we do call mem_cgroup_protected()
6272 * path for each memory cgroup top-down from the reclaim,
6273 * it's possible to optimize this part, and save calculated elow
6274 * for next usage. This part is intentionally racy, but it's ok,
6275 * as memory.low is a best-effort mechanism.
6277 enum mem_cgroup_protection
mem_cgroup_protected(struct mem_cgroup
*root
,
6278 struct mem_cgroup
*memcg
)
6280 struct mem_cgroup
*parent
;
6281 unsigned long emin
, parent_emin
;
6282 unsigned long elow
, parent_elow
;
6283 unsigned long usage
;
6285 if (mem_cgroup_disabled())
6286 return MEMCG_PROT_NONE
;
6289 root
= root_mem_cgroup
;
6291 return MEMCG_PROT_NONE
;
6293 usage
= page_counter_read(&memcg
->memory
);
6295 return MEMCG_PROT_NONE
;
6297 emin
= memcg
->memory
.min
;
6298 elow
= memcg
->memory
.low
;
6300 parent
= parent_mem_cgroup(memcg
);
6301 /* No parent means a non-hierarchical mode on v1 memcg */
6303 return MEMCG_PROT_NONE
;
6308 parent_emin
= READ_ONCE(parent
->memory
.emin
);
6309 emin
= min(emin
, parent_emin
);
6310 if (emin
&& parent_emin
) {
6311 unsigned long min_usage
, siblings_min_usage
;
6313 min_usage
= min(usage
, memcg
->memory
.min
);
6314 siblings_min_usage
= atomic_long_read(
6315 &parent
->memory
.children_min_usage
);
6317 if (min_usage
&& siblings_min_usage
)
6318 emin
= min(emin
, parent_emin
* min_usage
/
6319 siblings_min_usage
);
6322 parent_elow
= READ_ONCE(parent
->memory
.elow
);
6323 elow
= min(elow
, parent_elow
);
6324 if (elow
&& parent_elow
) {
6325 unsigned long low_usage
, siblings_low_usage
;
6327 low_usage
= min(usage
, memcg
->memory
.low
);
6328 siblings_low_usage
= atomic_long_read(
6329 &parent
->memory
.children_low_usage
);
6331 if (low_usage
&& siblings_low_usage
)
6332 elow
= min(elow
, parent_elow
* low_usage
/
6333 siblings_low_usage
);
6337 memcg
->memory
.emin
= emin
;
6338 memcg
->memory
.elow
= elow
;
6341 return MEMCG_PROT_MIN
;
6342 else if (usage
<= elow
)
6343 return MEMCG_PROT_LOW
;
6345 return MEMCG_PROT_NONE
;
6349 * mem_cgroup_try_charge - try charging a page
6350 * @page: page to charge
6351 * @mm: mm context of the victim
6352 * @gfp_mask: reclaim mode
6353 * @memcgp: charged memcg return
6354 * @compound: charge the page as compound or small page
6356 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6357 * pages according to @gfp_mask if necessary.
6359 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6360 * Otherwise, an error code is returned.
6362 * After page->mapping has been set up, the caller must finalize the
6363 * charge with mem_cgroup_commit_charge(). Or abort the transaction
6364 * with mem_cgroup_cancel_charge() in case page instantiation fails.
6366 int mem_cgroup_try_charge(struct page
*page
, struct mm_struct
*mm
,
6367 gfp_t gfp_mask
, struct mem_cgroup
**memcgp
,
6370 struct mem_cgroup
*memcg
= NULL
;
6371 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
6374 if (mem_cgroup_disabled())
6377 if (PageSwapCache(page
)) {
6379 * Every swap fault against a single page tries to charge the
6380 * page, bail as early as possible. shmem_unuse() encounters
6381 * already charged pages, too. The USED bit is protected by
6382 * the page lock, which serializes swap cache removal, which
6383 * in turn serializes uncharging.
6385 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
6386 if (compound_head(page
)->mem_cgroup
)
6389 if (do_swap_account
) {
6390 swp_entry_t ent
= { .val
= page_private(page
), };
6391 unsigned short id
= lookup_swap_cgroup_id(ent
);
6394 memcg
= mem_cgroup_from_id(id
);
6395 if (memcg
&& !css_tryget_online(&memcg
->css
))
6402 memcg
= get_mem_cgroup_from_mm(mm
);
6404 ret
= try_charge(memcg
, gfp_mask
, nr_pages
);
6406 css_put(&memcg
->css
);
6412 int mem_cgroup_try_charge_delay(struct page
*page
, struct mm_struct
*mm
,
6413 gfp_t gfp_mask
, struct mem_cgroup
**memcgp
,
6416 struct mem_cgroup
*memcg
;
6419 ret
= mem_cgroup_try_charge(page
, mm
, gfp_mask
, memcgp
, compound
);
6421 mem_cgroup_throttle_swaprate(memcg
, page_to_nid(page
), gfp_mask
);
6426 * mem_cgroup_commit_charge - commit a page charge
6427 * @page: page to charge
6428 * @memcg: memcg to charge the page to
6429 * @lrucare: page might be on LRU already
6430 * @compound: charge the page as compound or small page
6432 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6433 * after page->mapping has been set up. This must happen atomically
6434 * as part of the page instantiation, i.e. under the page table lock
6435 * for anonymous pages, under the page lock for page and swap cache.
6437 * In addition, the page must not be on the LRU during the commit, to
6438 * prevent racing with task migration. If it might be, use @lrucare.
6440 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6442 void mem_cgroup_commit_charge(struct page
*page
, struct mem_cgroup
*memcg
,
6443 bool lrucare
, bool compound
)
6445 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
6447 VM_BUG_ON_PAGE(!page
->mapping
, page
);
6448 VM_BUG_ON_PAGE(PageLRU(page
) && !lrucare
, page
);
6450 if (mem_cgroup_disabled())
6453 * Swap faults will attempt to charge the same page multiple
6454 * times. But reuse_swap_page() might have removed the page
6455 * from swapcache already, so we can't check PageSwapCache().
6460 commit_charge(page
, memcg
, lrucare
);
6462 local_irq_disable();
6463 mem_cgroup_charge_statistics(memcg
, page
, compound
, nr_pages
);
6464 memcg_check_events(memcg
, page
);
6467 if (do_memsw_account() && PageSwapCache(page
)) {
6468 swp_entry_t entry
= { .val
= page_private(page
) };
6470 * The swap entry might not get freed for a long time,
6471 * let's not wait for it. The page already received a
6472 * memory+swap charge, drop the swap entry duplicate.
6474 mem_cgroup_uncharge_swap(entry
, nr_pages
);
6479 * mem_cgroup_cancel_charge - cancel a page charge
6480 * @page: page to charge
6481 * @memcg: memcg to charge the page to
6482 * @compound: charge the page as compound or small page
6484 * Cancel a charge transaction started by mem_cgroup_try_charge().
6486 void mem_cgroup_cancel_charge(struct page
*page
, struct mem_cgroup
*memcg
,
6489 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
6491 if (mem_cgroup_disabled())
6494 * Swap faults will attempt to charge the same page multiple
6495 * times. But reuse_swap_page() might have removed the page
6496 * from swapcache already, so we can't check PageSwapCache().
6501 cancel_charge(memcg
, nr_pages
);
6504 struct uncharge_gather
{
6505 struct mem_cgroup
*memcg
;
6506 unsigned long pgpgout
;
6507 unsigned long nr_anon
;
6508 unsigned long nr_file
;
6509 unsigned long nr_kmem
;
6510 unsigned long nr_huge
;
6511 unsigned long nr_shmem
;
6512 struct page
*dummy_page
;
6515 static inline void uncharge_gather_clear(struct uncharge_gather
*ug
)
6517 memset(ug
, 0, sizeof(*ug
));
6520 static void uncharge_batch(const struct uncharge_gather
*ug
)
6522 unsigned long nr_pages
= ug
->nr_anon
+ ug
->nr_file
+ ug
->nr_kmem
;
6523 unsigned long flags
;
6525 if (!mem_cgroup_is_root(ug
->memcg
)) {
6526 page_counter_uncharge(&ug
->memcg
->memory
, nr_pages
);
6527 if (do_memsw_account())
6528 page_counter_uncharge(&ug
->memcg
->memsw
, nr_pages
);
6529 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) && ug
->nr_kmem
)
6530 page_counter_uncharge(&ug
->memcg
->kmem
, ug
->nr_kmem
);
6531 memcg_oom_recover(ug
->memcg
);
6534 local_irq_save(flags
);
6535 __mod_memcg_state(ug
->memcg
, MEMCG_RSS
, -ug
->nr_anon
);
6536 __mod_memcg_state(ug
->memcg
, MEMCG_CACHE
, -ug
->nr_file
);
6537 __mod_memcg_state(ug
->memcg
, MEMCG_RSS_HUGE
, -ug
->nr_huge
);
6538 __mod_memcg_state(ug
->memcg
, NR_SHMEM
, -ug
->nr_shmem
);
6539 __count_memcg_events(ug
->memcg
, PGPGOUT
, ug
->pgpgout
);
6540 __this_cpu_add(ug
->memcg
->vmstats_percpu
->nr_page_events
, nr_pages
);
6541 memcg_check_events(ug
->memcg
, ug
->dummy_page
);
6542 local_irq_restore(flags
);
6544 if (!mem_cgroup_is_root(ug
->memcg
))
6545 css_put_many(&ug
->memcg
->css
, nr_pages
);
6548 static void uncharge_page(struct page
*page
, struct uncharge_gather
*ug
)
6550 VM_BUG_ON_PAGE(PageLRU(page
), page
);
6551 VM_BUG_ON_PAGE(page_count(page
) && !is_zone_device_page(page
) &&
6552 !PageHWPoison(page
) , page
);
6554 if (!page
->mem_cgroup
)
6558 * Nobody should be changing or seriously looking at
6559 * page->mem_cgroup at this point, we have fully
6560 * exclusive access to the page.
6563 if (ug
->memcg
!= page
->mem_cgroup
) {
6566 uncharge_gather_clear(ug
);
6568 ug
->memcg
= page
->mem_cgroup
;
6571 if (!PageKmemcg(page
)) {
6572 unsigned int nr_pages
= 1;
6574 if (PageTransHuge(page
)) {
6575 nr_pages
= compound_nr(page
);
6576 ug
->nr_huge
+= nr_pages
;
6579 ug
->nr_anon
+= nr_pages
;
6581 ug
->nr_file
+= nr_pages
;
6582 if (PageSwapBacked(page
))
6583 ug
->nr_shmem
+= nr_pages
;
6587 ug
->nr_kmem
+= compound_nr(page
);
6588 __ClearPageKmemcg(page
);
6591 ug
->dummy_page
= page
;
6592 page
->mem_cgroup
= NULL
;
6595 static void uncharge_list(struct list_head
*page_list
)
6597 struct uncharge_gather ug
;
6598 struct list_head
*next
;
6600 uncharge_gather_clear(&ug
);
6603 * Note that the list can be a single page->lru; hence the
6604 * do-while loop instead of a simple list_for_each_entry().
6606 next
= page_list
->next
;
6610 page
= list_entry(next
, struct page
, lru
);
6611 next
= page
->lru
.next
;
6613 uncharge_page(page
, &ug
);
6614 } while (next
!= page_list
);
6617 uncharge_batch(&ug
);
6621 * mem_cgroup_uncharge - uncharge a page
6622 * @page: page to uncharge
6624 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6625 * mem_cgroup_commit_charge().
6627 void mem_cgroup_uncharge(struct page
*page
)
6629 struct uncharge_gather ug
;
6631 if (mem_cgroup_disabled())
6634 /* Don't touch page->lru of any random page, pre-check: */
6635 if (!page
->mem_cgroup
)
6638 uncharge_gather_clear(&ug
);
6639 uncharge_page(page
, &ug
);
6640 uncharge_batch(&ug
);
6644 * mem_cgroup_uncharge_list - uncharge a list of page
6645 * @page_list: list of pages to uncharge
6647 * Uncharge a list of pages previously charged with
6648 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6650 void mem_cgroup_uncharge_list(struct list_head
*page_list
)
6652 if (mem_cgroup_disabled())
6655 if (!list_empty(page_list
))
6656 uncharge_list(page_list
);
6660 * mem_cgroup_migrate - charge a page's replacement
6661 * @oldpage: currently circulating page
6662 * @newpage: replacement page
6664 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6665 * be uncharged upon free.
6667 * Both pages must be locked, @newpage->mapping must be set up.
6669 void mem_cgroup_migrate(struct page
*oldpage
, struct page
*newpage
)
6671 struct mem_cgroup
*memcg
;
6672 unsigned int nr_pages
;
6674 unsigned long flags
;
6676 VM_BUG_ON_PAGE(!PageLocked(oldpage
), oldpage
);
6677 VM_BUG_ON_PAGE(!PageLocked(newpage
), newpage
);
6678 VM_BUG_ON_PAGE(PageAnon(oldpage
) != PageAnon(newpage
), newpage
);
6679 VM_BUG_ON_PAGE(PageTransHuge(oldpage
) != PageTransHuge(newpage
),
6682 if (mem_cgroup_disabled())
6685 /* Page cache replacement: new page already charged? */
6686 if (newpage
->mem_cgroup
)
6689 /* Swapcache readahead pages can get replaced before being charged */
6690 memcg
= oldpage
->mem_cgroup
;
6694 /* Force-charge the new page. The old one will be freed soon */
6695 compound
= PageTransHuge(newpage
);
6696 nr_pages
= compound
? hpage_nr_pages(newpage
) : 1;
6698 page_counter_charge(&memcg
->memory
, nr_pages
);
6699 if (do_memsw_account())
6700 page_counter_charge(&memcg
->memsw
, nr_pages
);
6701 css_get_many(&memcg
->css
, nr_pages
);
6703 commit_charge(newpage
, memcg
, false);
6705 local_irq_save(flags
);
6706 mem_cgroup_charge_statistics(memcg
, newpage
, compound
, nr_pages
);
6707 memcg_check_events(memcg
, newpage
);
6708 local_irq_restore(flags
);
6711 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key
);
6712 EXPORT_SYMBOL(memcg_sockets_enabled_key
);
6714 void mem_cgroup_sk_alloc(struct sock
*sk
)
6716 struct mem_cgroup
*memcg
;
6718 if (!mem_cgroup_sockets_enabled
)
6722 * Socket cloning can throw us here with sk_memcg already
6723 * filled. It won't however, necessarily happen from
6724 * process context. So the test for root memcg given
6725 * the current task's memcg won't help us in this case.
6727 * Respecting the original socket's memcg is a better
6728 * decision in this case.
6731 css_get(&sk
->sk_memcg
->css
);
6736 memcg
= mem_cgroup_from_task(current
);
6737 if (memcg
== root_mem_cgroup
)
6739 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) && !memcg
->tcpmem_active
)
6741 if (css_tryget_online(&memcg
->css
))
6742 sk
->sk_memcg
= memcg
;
6747 void mem_cgroup_sk_free(struct sock
*sk
)
6750 css_put(&sk
->sk_memcg
->css
);
6754 * mem_cgroup_charge_skmem - charge socket memory
6755 * @memcg: memcg to charge
6756 * @nr_pages: number of pages to charge
6758 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6759 * @memcg's configured limit, %false if the charge had to be forced.
6761 bool mem_cgroup_charge_skmem(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
6763 gfp_t gfp_mask
= GFP_KERNEL
;
6765 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
)) {
6766 struct page_counter
*fail
;
6768 if (page_counter_try_charge(&memcg
->tcpmem
, nr_pages
, &fail
)) {
6769 memcg
->tcpmem_pressure
= 0;
6772 page_counter_charge(&memcg
->tcpmem
, nr_pages
);
6773 memcg
->tcpmem_pressure
= 1;
6777 /* Don't block in the packet receive path */
6779 gfp_mask
= GFP_NOWAIT
;
6781 mod_memcg_state(memcg
, MEMCG_SOCK
, nr_pages
);
6783 if (try_charge(memcg
, gfp_mask
, nr_pages
) == 0)
6786 try_charge(memcg
, gfp_mask
|__GFP_NOFAIL
, nr_pages
);
6791 * mem_cgroup_uncharge_skmem - uncharge socket memory
6792 * @memcg: memcg to uncharge
6793 * @nr_pages: number of pages to uncharge
6795 void mem_cgroup_uncharge_skmem(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
6797 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
)) {
6798 page_counter_uncharge(&memcg
->tcpmem
, nr_pages
);
6802 mod_memcg_state(memcg
, MEMCG_SOCK
, -nr_pages
);
6804 refill_stock(memcg
, nr_pages
);
6807 static int __init
cgroup_memory(char *s
)
6811 while ((token
= strsep(&s
, ",")) != NULL
) {
6814 if (!strcmp(token
, "nosocket"))
6815 cgroup_memory_nosocket
= true;
6816 if (!strcmp(token
, "nokmem"))
6817 cgroup_memory_nokmem
= true;
6821 __setup("cgroup.memory=", cgroup_memory
);
6824 * subsys_initcall() for memory controller.
6826 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6827 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6828 * basically everything that doesn't depend on a specific mem_cgroup structure
6829 * should be initialized from here.
6831 static int __init
mem_cgroup_init(void)
6835 #ifdef CONFIG_MEMCG_KMEM
6837 * Kmem cache creation is mostly done with the slab_mutex held,
6838 * so use a workqueue with limited concurrency to avoid stalling
6839 * all worker threads in case lots of cgroups are created and
6840 * destroyed simultaneously.
6842 memcg_kmem_cache_wq
= alloc_workqueue("memcg_kmem_cache", 0, 1);
6843 BUG_ON(!memcg_kmem_cache_wq
);
6846 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD
, "mm/memctrl:dead", NULL
,
6847 memcg_hotplug_cpu_dead
);
6849 for_each_possible_cpu(cpu
)
6850 INIT_WORK(&per_cpu_ptr(&memcg_stock
, cpu
)->work
,
6853 for_each_node(node
) {
6854 struct mem_cgroup_tree_per_node
*rtpn
;
6856 rtpn
= kzalloc_node(sizeof(*rtpn
), GFP_KERNEL
,
6857 node_online(node
) ? node
: NUMA_NO_NODE
);
6859 rtpn
->rb_root
= RB_ROOT
;
6860 rtpn
->rb_rightmost
= NULL
;
6861 spin_lock_init(&rtpn
->lock
);
6862 soft_limit_tree
.rb_tree_per_node
[node
] = rtpn
;
6867 subsys_initcall(mem_cgroup_init
);
6869 #ifdef CONFIG_MEMCG_SWAP
6870 static struct mem_cgroup
*mem_cgroup_id_get_online(struct mem_cgroup
*memcg
)
6872 while (!refcount_inc_not_zero(&memcg
->id
.ref
)) {
6874 * The root cgroup cannot be destroyed, so it's refcount must
6877 if (WARN_ON_ONCE(memcg
== root_mem_cgroup
)) {
6881 memcg
= parent_mem_cgroup(memcg
);
6883 memcg
= root_mem_cgroup
;
6889 * mem_cgroup_swapout - transfer a memsw charge to swap
6890 * @page: page whose memsw charge to transfer
6891 * @entry: swap entry to move the charge to
6893 * Transfer the memsw charge of @page to @entry.
6895 void mem_cgroup_swapout(struct page
*page
, swp_entry_t entry
)
6897 struct mem_cgroup
*memcg
, *swap_memcg
;
6898 unsigned int nr_entries
;
6899 unsigned short oldid
;
6901 VM_BUG_ON_PAGE(PageLRU(page
), page
);
6902 VM_BUG_ON_PAGE(page_count(page
), page
);
6904 if (!do_memsw_account())
6907 memcg
= page
->mem_cgroup
;
6909 /* Readahead page, never charged */
6914 * In case the memcg owning these pages has been offlined and doesn't
6915 * have an ID allocated to it anymore, charge the closest online
6916 * ancestor for the swap instead and transfer the memory+swap charge.
6918 swap_memcg
= mem_cgroup_id_get_online(memcg
);
6919 nr_entries
= hpage_nr_pages(page
);
6920 /* Get references for the tail pages, too */
6922 mem_cgroup_id_get_many(swap_memcg
, nr_entries
- 1);
6923 oldid
= swap_cgroup_record(entry
, mem_cgroup_id(swap_memcg
),
6925 VM_BUG_ON_PAGE(oldid
, page
);
6926 mod_memcg_state(swap_memcg
, MEMCG_SWAP
, nr_entries
);
6928 page
->mem_cgroup
= NULL
;
6930 if (!mem_cgroup_is_root(memcg
))
6931 page_counter_uncharge(&memcg
->memory
, nr_entries
);
6933 if (memcg
!= swap_memcg
) {
6934 if (!mem_cgroup_is_root(swap_memcg
))
6935 page_counter_charge(&swap_memcg
->memsw
, nr_entries
);
6936 page_counter_uncharge(&memcg
->memsw
, nr_entries
);
6940 * Interrupts should be disabled here because the caller holds the
6941 * i_pages lock which is taken with interrupts-off. It is
6942 * important here to have the interrupts disabled because it is the
6943 * only synchronisation we have for updating the per-CPU variables.
6945 VM_BUG_ON(!irqs_disabled());
6946 mem_cgroup_charge_statistics(memcg
, page
, PageTransHuge(page
),
6948 memcg_check_events(memcg
, page
);
6950 if (!mem_cgroup_is_root(memcg
))
6951 css_put_many(&memcg
->css
, nr_entries
);
6955 * mem_cgroup_try_charge_swap - try charging swap space for a page
6956 * @page: page being added to swap
6957 * @entry: swap entry to charge
6959 * Try to charge @page's memcg for the swap space at @entry.
6961 * Returns 0 on success, -ENOMEM on failure.
6963 int mem_cgroup_try_charge_swap(struct page
*page
, swp_entry_t entry
)
6965 unsigned int nr_pages
= hpage_nr_pages(page
);
6966 struct page_counter
*counter
;
6967 struct mem_cgroup
*memcg
;
6968 unsigned short oldid
;
6970 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) || !do_swap_account
)
6973 memcg
= page
->mem_cgroup
;
6975 /* Readahead page, never charged */
6980 memcg_memory_event(memcg
, MEMCG_SWAP_FAIL
);
6984 memcg
= mem_cgroup_id_get_online(memcg
);
6986 if (!mem_cgroup_is_root(memcg
) &&
6987 !page_counter_try_charge(&memcg
->swap
, nr_pages
, &counter
)) {
6988 memcg_memory_event(memcg
, MEMCG_SWAP_MAX
);
6989 memcg_memory_event(memcg
, MEMCG_SWAP_FAIL
);
6990 mem_cgroup_id_put(memcg
);
6994 /* Get references for the tail pages, too */
6996 mem_cgroup_id_get_many(memcg
, nr_pages
- 1);
6997 oldid
= swap_cgroup_record(entry
, mem_cgroup_id(memcg
), nr_pages
);
6998 VM_BUG_ON_PAGE(oldid
, page
);
6999 mod_memcg_state(memcg
, MEMCG_SWAP
, nr_pages
);
7005 * mem_cgroup_uncharge_swap - uncharge swap space
7006 * @entry: swap entry to uncharge
7007 * @nr_pages: the amount of swap space to uncharge
7009 void mem_cgroup_uncharge_swap(swp_entry_t entry
, unsigned int nr_pages
)
7011 struct mem_cgroup
*memcg
;
7014 if (!do_swap_account
)
7017 id
= swap_cgroup_record(entry
, 0, nr_pages
);
7019 memcg
= mem_cgroup_from_id(id
);
7021 if (!mem_cgroup_is_root(memcg
)) {
7022 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
7023 page_counter_uncharge(&memcg
->swap
, nr_pages
);
7025 page_counter_uncharge(&memcg
->memsw
, nr_pages
);
7027 mod_memcg_state(memcg
, MEMCG_SWAP
, -nr_pages
);
7028 mem_cgroup_id_put_many(memcg
, nr_pages
);
7033 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup
*memcg
)
7035 long nr_swap_pages
= get_nr_swap_pages();
7037 if (!do_swap_account
|| !cgroup_subsys_on_dfl(memory_cgrp_subsys
))
7038 return nr_swap_pages
;
7039 for (; memcg
!= root_mem_cgroup
; memcg
= parent_mem_cgroup(memcg
))
7040 nr_swap_pages
= min_t(long, nr_swap_pages
,
7041 READ_ONCE(memcg
->swap
.max
) -
7042 page_counter_read(&memcg
->swap
));
7043 return nr_swap_pages
;
7046 bool mem_cgroup_swap_full(struct page
*page
)
7048 struct mem_cgroup
*memcg
;
7050 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
7054 if (!do_swap_account
|| !cgroup_subsys_on_dfl(memory_cgrp_subsys
))
7057 memcg
= page
->mem_cgroup
;
7061 for (; memcg
!= root_mem_cgroup
; memcg
= parent_mem_cgroup(memcg
))
7062 if (page_counter_read(&memcg
->swap
) * 2 >= memcg
->swap
.max
)
7068 /* for remember boot option*/
7069 #ifdef CONFIG_MEMCG_SWAP_ENABLED
7070 static int really_do_swap_account __initdata
= 1;
7072 static int really_do_swap_account __initdata
;
7075 static int __init
enable_swap_account(char *s
)
7077 if (!strcmp(s
, "1"))
7078 really_do_swap_account
= 1;
7079 else if (!strcmp(s
, "0"))
7080 really_do_swap_account
= 0;
7083 __setup("swapaccount=", enable_swap_account
);
7085 static u64
swap_current_read(struct cgroup_subsys_state
*css
,
7088 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
7090 return (u64
)page_counter_read(&memcg
->swap
) * PAGE_SIZE
;
7093 static int swap_max_show(struct seq_file
*m
, void *v
)
7095 return seq_puts_memcg_tunable(m
,
7096 READ_ONCE(mem_cgroup_from_seq(m
)->swap
.max
));
7099 static ssize_t
swap_max_write(struct kernfs_open_file
*of
,
7100 char *buf
, size_t nbytes
, loff_t off
)
7102 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
7106 buf
= strstrip(buf
);
7107 err
= page_counter_memparse(buf
, "max", &max
);
7111 xchg(&memcg
->swap
.max
, max
);
7116 static int swap_events_show(struct seq_file
*m
, void *v
)
7118 struct mem_cgroup
*memcg
= mem_cgroup_from_seq(m
);
7120 seq_printf(m
, "max %lu\n",
7121 atomic_long_read(&memcg
->memory_events
[MEMCG_SWAP_MAX
]));
7122 seq_printf(m
, "fail %lu\n",
7123 atomic_long_read(&memcg
->memory_events
[MEMCG_SWAP_FAIL
]));
7128 static struct cftype swap_files
[] = {
7130 .name
= "swap.current",
7131 .flags
= CFTYPE_NOT_ON_ROOT
,
7132 .read_u64
= swap_current_read
,
7136 .flags
= CFTYPE_NOT_ON_ROOT
,
7137 .seq_show
= swap_max_show
,
7138 .write
= swap_max_write
,
7141 .name
= "swap.events",
7142 .flags
= CFTYPE_NOT_ON_ROOT
,
7143 .file_offset
= offsetof(struct mem_cgroup
, swap_events_file
),
7144 .seq_show
= swap_events_show
,
7149 static struct cftype memsw_cgroup_files
[] = {
7151 .name
= "memsw.usage_in_bytes",
7152 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_USAGE
),
7153 .read_u64
= mem_cgroup_read_u64
,
7156 .name
= "memsw.max_usage_in_bytes",
7157 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_MAX_USAGE
),
7158 .write
= mem_cgroup_reset
,
7159 .read_u64
= mem_cgroup_read_u64
,
7162 .name
= "memsw.limit_in_bytes",
7163 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_LIMIT
),
7164 .write
= mem_cgroup_write
,
7165 .read_u64
= mem_cgroup_read_u64
,
7168 .name
= "memsw.failcnt",
7169 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_FAILCNT
),
7170 .write
= mem_cgroup_reset
,
7171 .read_u64
= mem_cgroup_read_u64
,
7173 { }, /* terminate */
7176 static int __init
mem_cgroup_swap_init(void)
7178 if (!mem_cgroup_disabled() && really_do_swap_account
) {
7179 do_swap_account
= 1;
7180 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys
,
7182 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys
,
7183 memsw_cgroup_files
));
7187 subsys_initcall(mem_cgroup_swap_init
);
7189 #endif /* CONFIG_MEMCG_SWAP */