Merge tag 'phy-for-5.6_v2' of git://git.kernel.org/pub/scm/linux/kernel/git/kishon...
[linux/fpc-iii.git] / mm / memory-failure.c
blob41c634f45d4576b1eaa991ee2cfcdd0a915ead71
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2008, 2009 Intel Corporation
4 * Authors: Andi Kleen, Fengguang Wu
6 * High level machine check handler. Handles pages reported by the
7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8 * failure.
9 *
10 * In addition there is a "soft offline" entry point that allows stop using
11 * not-yet-corrupted-by-suspicious pages without killing anything.
13 * Handles page cache pages in various states. The tricky part
14 * here is that we can access any page asynchronously in respect to
15 * other VM users, because memory failures could happen anytime and
16 * anywhere. This could violate some of their assumptions. This is why
17 * this code has to be extremely careful. Generally it tries to use
18 * normal locking rules, as in get the standard locks, even if that means
19 * the error handling takes potentially a long time.
21 * It can be very tempting to add handling for obscure cases here.
22 * In general any code for handling new cases should only be added iff:
23 * - You know how to test it.
24 * - You have a test that can be added to mce-test
25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26 * - The case actually shows up as a frequent (top 10) page state in
27 * tools/vm/page-types when running a real workload.
29 * There are several operations here with exponential complexity because
30 * of unsuitable VM data structures. For example the operation to map back
31 * from RMAP chains to processes has to walk the complete process list and
32 * has non linear complexity with the number. But since memory corruptions
33 * are rare we hope to get away with this. This avoids impacting the core
34 * VM.
36 #include <linux/kernel.h>
37 #include <linux/mm.h>
38 #include <linux/page-flags.h>
39 #include <linux/kernel-page-flags.h>
40 #include <linux/sched/signal.h>
41 #include <linux/sched/task.h>
42 #include <linux/ksm.h>
43 #include <linux/rmap.h>
44 #include <linux/export.h>
45 #include <linux/pagemap.h>
46 #include <linux/swap.h>
47 #include <linux/backing-dev.h>
48 #include <linux/migrate.h>
49 #include <linux/suspend.h>
50 #include <linux/slab.h>
51 #include <linux/swapops.h>
52 #include <linux/hugetlb.h>
53 #include <linux/memory_hotplug.h>
54 #include <linux/mm_inline.h>
55 #include <linux/memremap.h>
56 #include <linux/kfifo.h>
57 #include <linux/ratelimit.h>
58 #include <linux/page-isolation.h>
59 #include "internal.h"
60 #include "ras/ras_event.h"
62 int sysctl_memory_failure_early_kill __read_mostly = 0;
64 int sysctl_memory_failure_recovery __read_mostly = 1;
66 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
68 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
70 u32 hwpoison_filter_enable = 0;
71 u32 hwpoison_filter_dev_major = ~0U;
72 u32 hwpoison_filter_dev_minor = ~0U;
73 u64 hwpoison_filter_flags_mask;
74 u64 hwpoison_filter_flags_value;
75 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
76 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
77 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
78 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
79 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
81 static int hwpoison_filter_dev(struct page *p)
83 struct address_space *mapping;
84 dev_t dev;
86 if (hwpoison_filter_dev_major == ~0U &&
87 hwpoison_filter_dev_minor == ~0U)
88 return 0;
91 * page_mapping() does not accept slab pages.
93 if (PageSlab(p))
94 return -EINVAL;
96 mapping = page_mapping(p);
97 if (mapping == NULL || mapping->host == NULL)
98 return -EINVAL;
100 dev = mapping->host->i_sb->s_dev;
101 if (hwpoison_filter_dev_major != ~0U &&
102 hwpoison_filter_dev_major != MAJOR(dev))
103 return -EINVAL;
104 if (hwpoison_filter_dev_minor != ~0U &&
105 hwpoison_filter_dev_minor != MINOR(dev))
106 return -EINVAL;
108 return 0;
111 static int hwpoison_filter_flags(struct page *p)
113 if (!hwpoison_filter_flags_mask)
114 return 0;
116 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
117 hwpoison_filter_flags_value)
118 return 0;
119 else
120 return -EINVAL;
124 * This allows stress tests to limit test scope to a collection of tasks
125 * by putting them under some memcg. This prevents killing unrelated/important
126 * processes such as /sbin/init. Note that the target task may share clean
127 * pages with init (eg. libc text), which is harmless. If the target task
128 * share _dirty_ pages with another task B, the test scheme must make sure B
129 * is also included in the memcg. At last, due to race conditions this filter
130 * can only guarantee that the page either belongs to the memcg tasks, or is
131 * a freed page.
133 #ifdef CONFIG_MEMCG
134 u64 hwpoison_filter_memcg;
135 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
136 static int hwpoison_filter_task(struct page *p)
138 if (!hwpoison_filter_memcg)
139 return 0;
141 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
142 return -EINVAL;
144 return 0;
146 #else
147 static int hwpoison_filter_task(struct page *p) { return 0; }
148 #endif
150 int hwpoison_filter(struct page *p)
152 if (!hwpoison_filter_enable)
153 return 0;
155 if (hwpoison_filter_dev(p))
156 return -EINVAL;
158 if (hwpoison_filter_flags(p))
159 return -EINVAL;
161 if (hwpoison_filter_task(p))
162 return -EINVAL;
164 return 0;
166 #else
167 int hwpoison_filter(struct page *p)
169 return 0;
171 #endif
173 EXPORT_SYMBOL_GPL(hwpoison_filter);
176 * Kill all processes that have a poisoned page mapped and then isolate
177 * the page.
179 * General strategy:
180 * Find all processes having the page mapped and kill them.
181 * But we keep a page reference around so that the page is not
182 * actually freed yet.
183 * Then stash the page away
185 * There's no convenient way to get back to mapped processes
186 * from the VMAs. So do a brute-force search over all
187 * running processes.
189 * Remember that machine checks are not common (or rather
190 * if they are common you have other problems), so this shouldn't
191 * be a performance issue.
193 * Also there are some races possible while we get from the
194 * error detection to actually handle it.
197 struct to_kill {
198 struct list_head nd;
199 struct task_struct *tsk;
200 unsigned long addr;
201 short size_shift;
205 * Send all the processes who have the page mapped a signal.
206 * ``action optional'' if they are not immediately affected by the error
207 * ``action required'' if error happened in current execution context
209 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
211 struct task_struct *t = tk->tsk;
212 short addr_lsb = tk->size_shift;
213 int ret;
215 pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
216 pfn, t->comm, t->pid);
218 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
219 ret = force_sig_mceerr(BUS_MCEERR_AR, (void __user *)tk->addr,
220 addr_lsb);
221 } else {
223 * Don't use force here, it's convenient if the signal
224 * can be temporarily blocked.
225 * This could cause a loop when the user sets SIGBUS
226 * to SIG_IGN, but hopefully no one will do that?
228 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
229 addr_lsb, t); /* synchronous? */
231 if (ret < 0)
232 pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
233 t->comm, t->pid, ret);
234 return ret;
238 * When a unknown page type is encountered drain as many buffers as possible
239 * in the hope to turn the page into a LRU or free page, which we can handle.
241 void shake_page(struct page *p, int access)
243 if (PageHuge(p))
244 return;
246 if (!PageSlab(p)) {
247 lru_add_drain_all();
248 if (PageLRU(p))
249 return;
250 drain_all_pages(page_zone(p));
251 if (PageLRU(p) || is_free_buddy_page(p))
252 return;
256 * Only call shrink_node_slabs here (which would also shrink
257 * other caches) if access is not potentially fatal.
259 if (access)
260 drop_slab_node(page_to_nid(p));
262 EXPORT_SYMBOL_GPL(shake_page);
264 static unsigned long dev_pagemap_mapping_shift(struct page *page,
265 struct vm_area_struct *vma)
267 unsigned long address = vma_address(page, vma);
268 pgd_t *pgd;
269 p4d_t *p4d;
270 pud_t *pud;
271 pmd_t *pmd;
272 pte_t *pte;
274 pgd = pgd_offset(vma->vm_mm, address);
275 if (!pgd_present(*pgd))
276 return 0;
277 p4d = p4d_offset(pgd, address);
278 if (!p4d_present(*p4d))
279 return 0;
280 pud = pud_offset(p4d, address);
281 if (!pud_present(*pud))
282 return 0;
283 if (pud_devmap(*pud))
284 return PUD_SHIFT;
285 pmd = pmd_offset(pud, address);
286 if (!pmd_present(*pmd))
287 return 0;
288 if (pmd_devmap(*pmd))
289 return PMD_SHIFT;
290 pte = pte_offset_map(pmd, address);
291 if (!pte_present(*pte))
292 return 0;
293 if (pte_devmap(*pte))
294 return PAGE_SHIFT;
295 return 0;
299 * Failure handling: if we can't find or can't kill a process there's
300 * not much we can do. We just print a message and ignore otherwise.
304 * Schedule a process for later kill.
305 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
307 static void add_to_kill(struct task_struct *tsk, struct page *p,
308 struct vm_area_struct *vma,
309 struct list_head *to_kill)
311 struct to_kill *tk;
313 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
314 if (!tk) {
315 pr_err("Memory failure: Out of memory while machine check handling\n");
316 return;
319 tk->addr = page_address_in_vma(p, vma);
320 if (is_zone_device_page(p))
321 tk->size_shift = dev_pagemap_mapping_shift(p, vma);
322 else
323 tk->size_shift = page_shift(compound_head(p));
326 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
327 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
328 * so "tk->size_shift == 0" effectively checks no mapping on
329 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
330 * to a process' address space, it's possible not all N VMAs
331 * contain mappings for the page, but at least one VMA does.
332 * Only deliver SIGBUS with payload derived from the VMA that
333 * has a mapping for the page.
335 if (tk->addr == -EFAULT) {
336 pr_info("Memory failure: Unable to find user space address %lx in %s\n",
337 page_to_pfn(p), tsk->comm);
338 } else if (tk->size_shift == 0) {
339 kfree(tk);
340 return;
343 get_task_struct(tsk);
344 tk->tsk = tsk;
345 list_add_tail(&tk->nd, to_kill);
349 * Kill the processes that have been collected earlier.
351 * Only do anything when DOIT is set, otherwise just free the list
352 * (this is used for clean pages which do not need killing)
353 * Also when FAIL is set do a force kill because something went
354 * wrong earlier.
356 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
357 unsigned long pfn, int flags)
359 struct to_kill *tk, *next;
361 list_for_each_entry_safe (tk, next, to_kill, nd) {
362 if (forcekill) {
364 * In case something went wrong with munmapping
365 * make sure the process doesn't catch the
366 * signal and then access the memory. Just kill it.
368 if (fail || tk->addr == -EFAULT) {
369 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
370 pfn, tk->tsk->comm, tk->tsk->pid);
371 do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
372 tk->tsk, PIDTYPE_PID);
376 * In theory the process could have mapped
377 * something else on the address in-between. We could
378 * check for that, but we need to tell the
379 * process anyways.
381 else if (kill_proc(tk, pfn, flags) < 0)
382 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
383 pfn, tk->tsk->comm, tk->tsk->pid);
385 put_task_struct(tk->tsk);
386 kfree(tk);
391 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
392 * on behalf of the thread group. Return task_struct of the (first found)
393 * dedicated thread if found, and return NULL otherwise.
395 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
396 * have to call rcu_read_lock/unlock() in this function.
398 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
400 struct task_struct *t;
402 for_each_thread(tsk, t)
403 if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
404 return t;
405 return NULL;
409 * Determine whether a given process is "early kill" process which expects
410 * to be signaled when some page under the process is hwpoisoned.
411 * Return task_struct of the dedicated thread (main thread unless explicitly
412 * specified) if the process is "early kill," and otherwise returns NULL.
414 static struct task_struct *task_early_kill(struct task_struct *tsk,
415 int force_early)
417 struct task_struct *t;
418 if (!tsk->mm)
419 return NULL;
420 if (force_early)
421 return tsk;
422 t = find_early_kill_thread(tsk);
423 if (t)
424 return t;
425 if (sysctl_memory_failure_early_kill)
426 return tsk;
427 return NULL;
431 * Collect processes when the error hit an anonymous page.
433 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
434 int force_early)
436 struct vm_area_struct *vma;
437 struct task_struct *tsk;
438 struct anon_vma *av;
439 pgoff_t pgoff;
441 av = page_lock_anon_vma_read(page);
442 if (av == NULL) /* Not actually mapped anymore */
443 return;
445 pgoff = page_to_pgoff(page);
446 read_lock(&tasklist_lock);
447 for_each_process (tsk) {
448 struct anon_vma_chain *vmac;
449 struct task_struct *t = task_early_kill(tsk, force_early);
451 if (!t)
452 continue;
453 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
454 pgoff, pgoff) {
455 vma = vmac->vma;
456 if (!page_mapped_in_vma(page, vma))
457 continue;
458 if (vma->vm_mm == t->mm)
459 add_to_kill(t, page, vma, to_kill);
462 read_unlock(&tasklist_lock);
463 page_unlock_anon_vma_read(av);
467 * Collect processes when the error hit a file mapped page.
469 static void collect_procs_file(struct page *page, struct list_head *to_kill,
470 int force_early)
472 struct vm_area_struct *vma;
473 struct task_struct *tsk;
474 struct address_space *mapping = page->mapping;
476 i_mmap_lock_read(mapping);
477 read_lock(&tasklist_lock);
478 for_each_process(tsk) {
479 pgoff_t pgoff = page_to_pgoff(page);
480 struct task_struct *t = task_early_kill(tsk, force_early);
482 if (!t)
483 continue;
484 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
485 pgoff) {
487 * Send early kill signal to tasks where a vma covers
488 * the page but the corrupted page is not necessarily
489 * mapped it in its pte.
490 * Assume applications who requested early kill want
491 * to be informed of all such data corruptions.
493 if (vma->vm_mm == t->mm)
494 add_to_kill(t, page, vma, to_kill);
497 read_unlock(&tasklist_lock);
498 i_mmap_unlock_read(mapping);
502 * Collect the processes who have the corrupted page mapped to kill.
504 static void collect_procs(struct page *page, struct list_head *tokill,
505 int force_early)
507 if (!page->mapping)
508 return;
510 if (PageAnon(page))
511 collect_procs_anon(page, tokill, force_early);
512 else
513 collect_procs_file(page, tokill, force_early);
516 static const char *action_name[] = {
517 [MF_IGNORED] = "Ignored",
518 [MF_FAILED] = "Failed",
519 [MF_DELAYED] = "Delayed",
520 [MF_RECOVERED] = "Recovered",
523 static const char * const action_page_types[] = {
524 [MF_MSG_KERNEL] = "reserved kernel page",
525 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
526 [MF_MSG_SLAB] = "kernel slab page",
527 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
528 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned",
529 [MF_MSG_HUGE] = "huge page",
530 [MF_MSG_FREE_HUGE] = "free huge page",
531 [MF_MSG_NON_PMD_HUGE] = "non-pmd-sized huge page",
532 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
533 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
534 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
535 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
536 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
537 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
538 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
539 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
540 [MF_MSG_CLEAN_LRU] = "clean LRU page",
541 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
542 [MF_MSG_BUDDY] = "free buddy page",
543 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)",
544 [MF_MSG_DAX] = "dax page",
545 [MF_MSG_UNKNOWN] = "unknown page",
549 * XXX: It is possible that a page is isolated from LRU cache,
550 * and then kept in swap cache or failed to remove from page cache.
551 * The page count will stop it from being freed by unpoison.
552 * Stress tests should be aware of this memory leak problem.
554 static int delete_from_lru_cache(struct page *p)
556 if (!isolate_lru_page(p)) {
558 * Clear sensible page flags, so that the buddy system won't
559 * complain when the page is unpoison-and-freed.
561 ClearPageActive(p);
562 ClearPageUnevictable(p);
565 * Poisoned page might never drop its ref count to 0 so we have
566 * to uncharge it manually from its memcg.
568 mem_cgroup_uncharge(p);
571 * drop the page count elevated by isolate_lru_page()
573 put_page(p);
574 return 0;
576 return -EIO;
579 static int truncate_error_page(struct page *p, unsigned long pfn,
580 struct address_space *mapping)
582 int ret = MF_FAILED;
584 if (mapping->a_ops->error_remove_page) {
585 int err = mapping->a_ops->error_remove_page(mapping, p);
587 if (err != 0) {
588 pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
589 pfn, err);
590 } else if (page_has_private(p) &&
591 !try_to_release_page(p, GFP_NOIO)) {
592 pr_info("Memory failure: %#lx: failed to release buffers\n",
593 pfn);
594 } else {
595 ret = MF_RECOVERED;
597 } else {
599 * If the file system doesn't support it just invalidate
600 * This fails on dirty or anything with private pages
602 if (invalidate_inode_page(p))
603 ret = MF_RECOVERED;
604 else
605 pr_info("Memory failure: %#lx: Failed to invalidate\n",
606 pfn);
609 return ret;
613 * Error hit kernel page.
614 * Do nothing, try to be lucky and not touch this instead. For a few cases we
615 * could be more sophisticated.
617 static int me_kernel(struct page *p, unsigned long pfn)
619 return MF_IGNORED;
623 * Page in unknown state. Do nothing.
625 static int me_unknown(struct page *p, unsigned long pfn)
627 pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
628 return MF_FAILED;
632 * Clean (or cleaned) page cache page.
634 static int me_pagecache_clean(struct page *p, unsigned long pfn)
636 struct address_space *mapping;
638 delete_from_lru_cache(p);
641 * For anonymous pages we're done the only reference left
642 * should be the one m_f() holds.
644 if (PageAnon(p))
645 return MF_RECOVERED;
648 * Now truncate the page in the page cache. This is really
649 * more like a "temporary hole punch"
650 * Don't do this for block devices when someone else
651 * has a reference, because it could be file system metadata
652 * and that's not safe to truncate.
654 mapping = page_mapping(p);
655 if (!mapping) {
657 * Page has been teared down in the meanwhile
659 return MF_FAILED;
663 * Truncation is a bit tricky. Enable it per file system for now.
665 * Open: to take i_mutex or not for this? Right now we don't.
667 return truncate_error_page(p, pfn, mapping);
671 * Dirty pagecache page
672 * Issues: when the error hit a hole page the error is not properly
673 * propagated.
675 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
677 struct address_space *mapping = page_mapping(p);
679 SetPageError(p);
680 /* TBD: print more information about the file. */
681 if (mapping) {
683 * IO error will be reported by write(), fsync(), etc.
684 * who check the mapping.
685 * This way the application knows that something went
686 * wrong with its dirty file data.
688 * There's one open issue:
690 * The EIO will be only reported on the next IO
691 * operation and then cleared through the IO map.
692 * Normally Linux has two mechanisms to pass IO error
693 * first through the AS_EIO flag in the address space
694 * and then through the PageError flag in the page.
695 * Since we drop pages on memory failure handling the
696 * only mechanism open to use is through AS_AIO.
698 * This has the disadvantage that it gets cleared on
699 * the first operation that returns an error, while
700 * the PageError bit is more sticky and only cleared
701 * when the page is reread or dropped. If an
702 * application assumes it will always get error on
703 * fsync, but does other operations on the fd before
704 * and the page is dropped between then the error
705 * will not be properly reported.
707 * This can already happen even without hwpoisoned
708 * pages: first on metadata IO errors (which only
709 * report through AS_EIO) or when the page is dropped
710 * at the wrong time.
712 * So right now we assume that the application DTRT on
713 * the first EIO, but we're not worse than other parts
714 * of the kernel.
716 mapping_set_error(mapping, -EIO);
719 return me_pagecache_clean(p, pfn);
723 * Clean and dirty swap cache.
725 * Dirty swap cache page is tricky to handle. The page could live both in page
726 * cache and swap cache(ie. page is freshly swapped in). So it could be
727 * referenced concurrently by 2 types of PTEs:
728 * normal PTEs and swap PTEs. We try to handle them consistently by calling
729 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
730 * and then
731 * - clear dirty bit to prevent IO
732 * - remove from LRU
733 * - but keep in the swap cache, so that when we return to it on
734 * a later page fault, we know the application is accessing
735 * corrupted data and shall be killed (we installed simple
736 * interception code in do_swap_page to catch it).
738 * Clean swap cache pages can be directly isolated. A later page fault will
739 * bring in the known good data from disk.
741 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
743 ClearPageDirty(p);
744 /* Trigger EIO in shmem: */
745 ClearPageUptodate(p);
747 if (!delete_from_lru_cache(p))
748 return MF_DELAYED;
749 else
750 return MF_FAILED;
753 static int me_swapcache_clean(struct page *p, unsigned long pfn)
755 delete_from_swap_cache(p);
757 if (!delete_from_lru_cache(p))
758 return MF_RECOVERED;
759 else
760 return MF_FAILED;
764 * Huge pages. Needs work.
765 * Issues:
766 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
767 * To narrow down kill region to one page, we need to break up pmd.
769 static int me_huge_page(struct page *p, unsigned long pfn)
771 int res = 0;
772 struct page *hpage = compound_head(p);
773 struct address_space *mapping;
775 if (!PageHuge(hpage))
776 return MF_DELAYED;
778 mapping = page_mapping(hpage);
779 if (mapping) {
780 res = truncate_error_page(hpage, pfn, mapping);
781 } else {
782 unlock_page(hpage);
784 * migration entry prevents later access on error anonymous
785 * hugepage, so we can free and dissolve it into buddy to
786 * save healthy subpages.
788 if (PageAnon(hpage))
789 put_page(hpage);
790 dissolve_free_huge_page(p);
791 res = MF_RECOVERED;
792 lock_page(hpage);
795 return res;
799 * Various page states we can handle.
801 * A page state is defined by its current page->flags bits.
802 * The table matches them in order and calls the right handler.
804 * This is quite tricky because we can access page at any time
805 * in its live cycle, so all accesses have to be extremely careful.
807 * This is not complete. More states could be added.
808 * For any missing state don't attempt recovery.
811 #define dirty (1UL << PG_dirty)
812 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
813 #define unevict (1UL << PG_unevictable)
814 #define mlock (1UL << PG_mlocked)
815 #define writeback (1UL << PG_writeback)
816 #define lru (1UL << PG_lru)
817 #define head (1UL << PG_head)
818 #define slab (1UL << PG_slab)
819 #define reserved (1UL << PG_reserved)
821 static struct page_state {
822 unsigned long mask;
823 unsigned long res;
824 enum mf_action_page_type type;
825 int (*action)(struct page *p, unsigned long pfn);
826 } error_states[] = {
827 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
829 * free pages are specially detected outside this table:
830 * PG_buddy pages only make a small fraction of all free pages.
834 * Could in theory check if slab page is free or if we can drop
835 * currently unused objects without touching them. But just
836 * treat it as standard kernel for now.
838 { slab, slab, MF_MSG_SLAB, me_kernel },
840 { head, head, MF_MSG_HUGE, me_huge_page },
842 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
843 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
845 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
846 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
848 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
849 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
851 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
852 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
855 * Catchall entry: must be at end.
857 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
860 #undef dirty
861 #undef sc
862 #undef unevict
863 #undef mlock
864 #undef writeback
865 #undef lru
866 #undef head
867 #undef slab
868 #undef reserved
871 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
872 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
874 static void action_result(unsigned long pfn, enum mf_action_page_type type,
875 enum mf_result result)
877 trace_memory_failure_event(pfn, type, result);
879 pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
880 pfn, action_page_types[type], action_name[result]);
883 static int page_action(struct page_state *ps, struct page *p,
884 unsigned long pfn)
886 int result;
887 int count;
889 result = ps->action(p, pfn);
891 count = page_count(p) - 1;
892 if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
893 count--;
894 if (count > 0) {
895 pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
896 pfn, action_page_types[ps->type], count);
897 result = MF_FAILED;
899 action_result(pfn, ps->type, result);
901 /* Could do more checks here if page looks ok */
903 * Could adjust zone counters here to correct for the missing page.
906 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
910 * get_hwpoison_page() - Get refcount for memory error handling:
911 * @page: raw error page (hit by memory error)
913 * Return: return 0 if failed to grab the refcount, otherwise true (some
914 * non-zero value.)
916 int get_hwpoison_page(struct page *page)
918 struct page *head = compound_head(page);
920 if (!PageHuge(head) && PageTransHuge(head)) {
922 * Non anonymous thp exists only in allocation/free time. We
923 * can't handle such a case correctly, so let's give it up.
924 * This should be better than triggering BUG_ON when kernel
925 * tries to touch the "partially handled" page.
927 if (!PageAnon(head)) {
928 pr_err("Memory failure: %#lx: non anonymous thp\n",
929 page_to_pfn(page));
930 return 0;
934 if (get_page_unless_zero(head)) {
935 if (head == compound_head(page))
936 return 1;
938 pr_info("Memory failure: %#lx cannot catch tail\n",
939 page_to_pfn(page));
940 put_page(head);
943 return 0;
945 EXPORT_SYMBOL_GPL(get_hwpoison_page);
948 * Do all that is necessary to remove user space mappings. Unmap
949 * the pages and send SIGBUS to the processes if the data was dirty.
951 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
952 int flags, struct page **hpagep)
954 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
955 struct address_space *mapping;
956 LIST_HEAD(tokill);
957 bool unmap_success;
958 int kill = 1, forcekill;
959 struct page *hpage = *hpagep;
960 bool mlocked = PageMlocked(hpage);
963 * Here we are interested only in user-mapped pages, so skip any
964 * other types of pages.
966 if (PageReserved(p) || PageSlab(p))
967 return true;
968 if (!(PageLRU(hpage) || PageHuge(p)))
969 return true;
972 * This check implies we don't kill processes if their pages
973 * are in the swap cache early. Those are always late kills.
975 if (!page_mapped(hpage))
976 return true;
978 if (PageKsm(p)) {
979 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
980 return false;
983 if (PageSwapCache(p)) {
984 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
985 pfn);
986 ttu |= TTU_IGNORE_HWPOISON;
990 * Propagate the dirty bit from PTEs to struct page first, because we
991 * need this to decide if we should kill or just drop the page.
992 * XXX: the dirty test could be racy: set_page_dirty() may not always
993 * be called inside page lock (it's recommended but not enforced).
995 mapping = page_mapping(hpage);
996 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
997 mapping_cap_writeback_dirty(mapping)) {
998 if (page_mkclean(hpage)) {
999 SetPageDirty(hpage);
1000 } else {
1001 kill = 0;
1002 ttu |= TTU_IGNORE_HWPOISON;
1003 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1004 pfn);
1009 * First collect all the processes that have the page
1010 * mapped in dirty form. This has to be done before try_to_unmap,
1011 * because ttu takes the rmap data structures down.
1013 * Error handling: We ignore errors here because
1014 * there's nothing that can be done.
1016 if (kill)
1017 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1019 unmap_success = try_to_unmap(hpage, ttu);
1020 if (!unmap_success)
1021 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1022 pfn, page_mapcount(hpage));
1025 * try_to_unmap() might put mlocked page in lru cache, so call
1026 * shake_page() again to ensure that it's flushed.
1028 if (mlocked)
1029 shake_page(hpage, 0);
1032 * Now that the dirty bit has been propagated to the
1033 * struct page and all unmaps done we can decide if
1034 * killing is needed or not. Only kill when the page
1035 * was dirty or the process is not restartable,
1036 * otherwise the tokill list is merely
1037 * freed. When there was a problem unmapping earlier
1038 * use a more force-full uncatchable kill to prevent
1039 * any accesses to the poisoned memory.
1041 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1042 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1044 return unmap_success;
1047 static int identify_page_state(unsigned long pfn, struct page *p,
1048 unsigned long page_flags)
1050 struct page_state *ps;
1053 * The first check uses the current page flags which may not have any
1054 * relevant information. The second check with the saved page flags is
1055 * carried out only if the first check can't determine the page status.
1057 for (ps = error_states;; ps++)
1058 if ((p->flags & ps->mask) == ps->res)
1059 break;
1061 page_flags |= (p->flags & (1UL << PG_dirty));
1063 if (!ps->mask)
1064 for (ps = error_states;; ps++)
1065 if ((page_flags & ps->mask) == ps->res)
1066 break;
1067 return page_action(ps, p, pfn);
1070 static int memory_failure_hugetlb(unsigned long pfn, int flags)
1072 struct page *p = pfn_to_page(pfn);
1073 struct page *head = compound_head(p);
1074 int res;
1075 unsigned long page_flags;
1077 if (TestSetPageHWPoison(head)) {
1078 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1079 pfn);
1080 return 0;
1083 num_poisoned_pages_inc();
1085 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1087 * Check "filter hit" and "race with other subpage."
1089 lock_page(head);
1090 if (PageHWPoison(head)) {
1091 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1092 || (p != head && TestSetPageHWPoison(head))) {
1093 num_poisoned_pages_dec();
1094 unlock_page(head);
1095 return 0;
1098 unlock_page(head);
1099 dissolve_free_huge_page(p);
1100 action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED);
1101 return 0;
1104 lock_page(head);
1105 page_flags = head->flags;
1107 if (!PageHWPoison(head)) {
1108 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1109 num_poisoned_pages_dec();
1110 unlock_page(head);
1111 put_hwpoison_page(head);
1112 return 0;
1116 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1117 * simply disable it. In order to make it work properly, we need
1118 * make sure that:
1119 * - conversion of a pud that maps an error hugetlb into hwpoison
1120 * entry properly works, and
1121 * - other mm code walking over page table is aware of pud-aligned
1122 * hwpoison entries.
1124 if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1125 action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1126 res = -EBUSY;
1127 goto out;
1130 if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
1131 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1132 res = -EBUSY;
1133 goto out;
1136 res = identify_page_state(pfn, p, page_flags);
1137 out:
1138 unlock_page(head);
1139 return res;
1142 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1143 struct dev_pagemap *pgmap)
1145 struct page *page = pfn_to_page(pfn);
1146 const bool unmap_success = true;
1147 unsigned long size = 0;
1148 struct to_kill *tk;
1149 LIST_HEAD(tokill);
1150 int rc = -EBUSY;
1151 loff_t start;
1152 dax_entry_t cookie;
1155 * Prevent the inode from being freed while we are interrogating
1156 * the address_space, typically this would be handled by
1157 * lock_page(), but dax pages do not use the page lock. This
1158 * also prevents changes to the mapping of this pfn until
1159 * poison signaling is complete.
1161 cookie = dax_lock_page(page);
1162 if (!cookie)
1163 goto out;
1165 if (hwpoison_filter(page)) {
1166 rc = 0;
1167 goto unlock;
1170 if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
1172 * TODO: Handle HMM pages which may need coordination
1173 * with device-side memory.
1175 goto unlock;
1179 * Use this flag as an indication that the dax page has been
1180 * remapped UC to prevent speculative consumption of poison.
1182 SetPageHWPoison(page);
1185 * Unlike System-RAM there is no possibility to swap in a
1186 * different physical page at a given virtual address, so all
1187 * userspace consumption of ZONE_DEVICE memory necessitates
1188 * SIGBUS (i.e. MF_MUST_KILL)
1190 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1191 collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);
1193 list_for_each_entry(tk, &tokill, nd)
1194 if (tk->size_shift)
1195 size = max(size, 1UL << tk->size_shift);
1196 if (size) {
1198 * Unmap the largest mapping to avoid breaking up
1199 * device-dax mappings which are constant size. The
1200 * actual size of the mapping being torn down is
1201 * communicated in siginfo, see kill_proc()
1203 start = (page->index << PAGE_SHIFT) & ~(size - 1);
1204 unmap_mapping_range(page->mapping, start, start + size, 0);
1206 kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags);
1207 rc = 0;
1208 unlock:
1209 dax_unlock_page(page, cookie);
1210 out:
1211 /* drop pgmap ref acquired in caller */
1212 put_dev_pagemap(pgmap);
1213 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1214 return rc;
1218 * memory_failure - Handle memory failure of a page.
1219 * @pfn: Page Number of the corrupted page
1220 * @flags: fine tune action taken
1222 * This function is called by the low level machine check code
1223 * of an architecture when it detects hardware memory corruption
1224 * of a page. It tries its best to recover, which includes
1225 * dropping pages, killing processes etc.
1227 * The function is primarily of use for corruptions that
1228 * happen outside the current execution context (e.g. when
1229 * detected by a background scrubber)
1231 * Must run in process context (e.g. a work queue) with interrupts
1232 * enabled and no spinlocks hold.
1234 int memory_failure(unsigned long pfn, int flags)
1236 struct page *p;
1237 struct page *hpage;
1238 struct page *orig_head;
1239 struct dev_pagemap *pgmap;
1240 int res;
1241 unsigned long page_flags;
1243 if (!sysctl_memory_failure_recovery)
1244 panic("Memory failure on page %lx", pfn);
1246 p = pfn_to_online_page(pfn);
1247 if (!p) {
1248 if (pfn_valid(pfn)) {
1249 pgmap = get_dev_pagemap(pfn, NULL);
1250 if (pgmap)
1251 return memory_failure_dev_pagemap(pfn, flags,
1252 pgmap);
1254 pr_err("Memory failure: %#lx: memory outside kernel control\n",
1255 pfn);
1256 return -ENXIO;
1259 if (PageHuge(p))
1260 return memory_failure_hugetlb(pfn, flags);
1261 if (TestSetPageHWPoison(p)) {
1262 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1263 pfn);
1264 return 0;
1267 orig_head = hpage = compound_head(p);
1268 num_poisoned_pages_inc();
1271 * We need/can do nothing about count=0 pages.
1272 * 1) it's a free page, and therefore in safe hand:
1273 * prep_new_page() will be the gate keeper.
1274 * 2) it's part of a non-compound high order page.
1275 * Implies some kernel user: cannot stop them from
1276 * R/W the page; let's pray that the page has been
1277 * used and will be freed some time later.
1278 * In fact it's dangerous to directly bump up page count from 0,
1279 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1281 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1282 if (is_free_buddy_page(p)) {
1283 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1284 return 0;
1285 } else {
1286 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1287 return -EBUSY;
1291 if (PageTransHuge(hpage)) {
1292 lock_page(p);
1293 if (!PageAnon(p) || unlikely(split_huge_page(p))) {
1294 unlock_page(p);
1295 if (!PageAnon(p))
1296 pr_err("Memory failure: %#lx: non anonymous thp\n",
1297 pfn);
1298 else
1299 pr_err("Memory failure: %#lx: thp split failed\n",
1300 pfn);
1301 if (TestClearPageHWPoison(p))
1302 num_poisoned_pages_dec();
1303 put_hwpoison_page(p);
1304 return -EBUSY;
1306 unlock_page(p);
1307 VM_BUG_ON_PAGE(!page_count(p), p);
1308 hpage = compound_head(p);
1312 * We ignore non-LRU pages for good reasons.
1313 * - PG_locked is only well defined for LRU pages and a few others
1314 * - to avoid races with __SetPageLocked()
1315 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1316 * The check (unnecessarily) ignores LRU pages being isolated and
1317 * walked by the page reclaim code, however that's not a big loss.
1319 shake_page(p, 0);
1320 /* shake_page could have turned it free. */
1321 if (!PageLRU(p) && is_free_buddy_page(p)) {
1322 if (flags & MF_COUNT_INCREASED)
1323 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1324 else
1325 action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
1326 return 0;
1329 lock_page(p);
1332 * The page could have changed compound pages during the locking.
1333 * If this happens just bail out.
1335 if (PageCompound(p) && compound_head(p) != orig_head) {
1336 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1337 res = -EBUSY;
1338 goto out;
1342 * We use page flags to determine what action should be taken, but
1343 * the flags can be modified by the error containment action. One
1344 * example is an mlocked page, where PG_mlocked is cleared by
1345 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1346 * correctly, we save a copy of the page flags at this time.
1348 if (PageHuge(p))
1349 page_flags = hpage->flags;
1350 else
1351 page_flags = p->flags;
1354 * unpoison always clear PG_hwpoison inside page lock
1356 if (!PageHWPoison(p)) {
1357 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1358 num_poisoned_pages_dec();
1359 unlock_page(p);
1360 put_hwpoison_page(p);
1361 return 0;
1363 if (hwpoison_filter(p)) {
1364 if (TestClearPageHWPoison(p))
1365 num_poisoned_pages_dec();
1366 unlock_page(p);
1367 put_hwpoison_page(p);
1368 return 0;
1371 if (!PageTransTail(p) && !PageLRU(p))
1372 goto identify_page_state;
1375 * It's very difficult to mess with pages currently under IO
1376 * and in many cases impossible, so we just avoid it here.
1378 wait_on_page_writeback(p);
1381 * Now take care of user space mappings.
1382 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1384 * When the raw error page is thp tail page, hpage points to the raw
1385 * page after thp split.
1387 if (!hwpoison_user_mappings(p, pfn, flags, &hpage)) {
1388 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1389 res = -EBUSY;
1390 goto out;
1394 * Torn down by someone else?
1396 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1397 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1398 res = -EBUSY;
1399 goto out;
1402 identify_page_state:
1403 res = identify_page_state(pfn, p, page_flags);
1404 out:
1405 unlock_page(p);
1406 return res;
1408 EXPORT_SYMBOL_GPL(memory_failure);
1410 #define MEMORY_FAILURE_FIFO_ORDER 4
1411 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1413 struct memory_failure_entry {
1414 unsigned long pfn;
1415 int flags;
1418 struct memory_failure_cpu {
1419 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1420 MEMORY_FAILURE_FIFO_SIZE);
1421 spinlock_t lock;
1422 struct work_struct work;
1425 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1428 * memory_failure_queue - Schedule handling memory failure of a page.
1429 * @pfn: Page Number of the corrupted page
1430 * @flags: Flags for memory failure handling
1432 * This function is called by the low level hardware error handler
1433 * when it detects hardware memory corruption of a page. It schedules
1434 * the recovering of error page, including dropping pages, killing
1435 * processes etc.
1437 * The function is primarily of use for corruptions that
1438 * happen outside the current execution context (e.g. when
1439 * detected by a background scrubber)
1441 * Can run in IRQ context.
1443 void memory_failure_queue(unsigned long pfn, int flags)
1445 struct memory_failure_cpu *mf_cpu;
1446 unsigned long proc_flags;
1447 struct memory_failure_entry entry = {
1448 .pfn = pfn,
1449 .flags = flags,
1452 mf_cpu = &get_cpu_var(memory_failure_cpu);
1453 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1454 if (kfifo_put(&mf_cpu->fifo, entry))
1455 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1456 else
1457 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1458 pfn);
1459 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1460 put_cpu_var(memory_failure_cpu);
1462 EXPORT_SYMBOL_GPL(memory_failure_queue);
1464 static void memory_failure_work_func(struct work_struct *work)
1466 struct memory_failure_cpu *mf_cpu;
1467 struct memory_failure_entry entry = { 0, };
1468 unsigned long proc_flags;
1469 int gotten;
1471 mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1472 for (;;) {
1473 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1474 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1475 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1476 if (!gotten)
1477 break;
1478 if (entry.flags & MF_SOFT_OFFLINE)
1479 soft_offline_page(entry.pfn, entry.flags);
1480 else
1481 memory_failure(entry.pfn, entry.flags);
1485 static int __init memory_failure_init(void)
1487 struct memory_failure_cpu *mf_cpu;
1488 int cpu;
1490 for_each_possible_cpu(cpu) {
1491 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1492 spin_lock_init(&mf_cpu->lock);
1493 INIT_KFIFO(mf_cpu->fifo);
1494 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1497 return 0;
1499 core_initcall(memory_failure_init);
1501 #define unpoison_pr_info(fmt, pfn, rs) \
1502 ({ \
1503 if (__ratelimit(rs)) \
1504 pr_info(fmt, pfn); \
1508 * unpoison_memory - Unpoison a previously poisoned page
1509 * @pfn: Page number of the to be unpoisoned page
1511 * Software-unpoison a page that has been poisoned by
1512 * memory_failure() earlier.
1514 * This is only done on the software-level, so it only works
1515 * for linux injected failures, not real hardware failures
1517 * Returns 0 for success, otherwise -errno.
1519 int unpoison_memory(unsigned long pfn)
1521 struct page *page;
1522 struct page *p;
1523 int freeit = 0;
1524 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1525 DEFAULT_RATELIMIT_BURST);
1527 if (!pfn_valid(pfn))
1528 return -ENXIO;
1530 p = pfn_to_page(pfn);
1531 page = compound_head(p);
1533 if (!PageHWPoison(p)) {
1534 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1535 pfn, &unpoison_rs);
1536 return 0;
1539 if (page_count(page) > 1) {
1540 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1541 pfn, &unpoison_rs);
1542 return 0;
1545 if (page_mapped(page)) {
1546 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1547 pfn, &unpoison_rs);
1548 return 0;
1551 if (page_mapping(page)) {
1552 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1553 pfn, &unpoison_rs);
1554 return 0;
1558 * unpoison_memory() can encounter thp only when the thp is being
1559 * worked by memory_failure() and the page lock is not held yet.
1560 * In such case, we yield to memory_failure() and make unpoison fail.
1562 if (!PageHuge(page) && PageTransHuge(page)) {
1563 unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1564 pfn, &unpoison_rs);
1565 return 0;
1568 if (!get_hwpoison_page(p)) {
1569 if (TestClearPageHWPoison(p))
1570 num_poisoned_pages_dec();
1571 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1572 pfn, &unpoison_rs);
1573 return 0;
1576 lock_page(page);
1578 * This test is racy because PG_hwpoison is set outside of page lock.
1579 * That's acceptable because that won't trigger kernel panic. Instead,
1580 * the PG_hwpoison page will be caught and isolated on the entrance to
1581 * the free buddy page pool.
1583 if (TestClearPageHWPoison(page)) {
1584 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1585 pfn, &unpoison_rs);
1586 num_poisoned_pages_dec();
1587 freeit = 1;
1589 unlock_page(page);
1591 put_hwpoison_page(page);
1592 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1593 put_hwpoison_page(page);
1595 return 0;
1597 EXPORT_SYMBOL(unpoison_memory);
1599 static struct page *new_page(struct page *p, unsigned long private)
1601 int nid = page_to_nid(p);
1603 return new_page_nodemask(p, nid, &node_states[N_MEMORY]);
1607 * Safely get reference count of an arbitrary page.
1608 * Returns 0 for a free page, -EIO for a zero refcount page
1609 * that is not free, and 1 for any other page type.
1610 * For 1 the page is returned with increased page count, otherwise not.
1612 static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1614 int ret;
1616 if (flags & MF_COUNT_INCREASED)
1617 return 1;
1620 * When the target page is a free hugepage, just remove it
1621 * from free hugepage list.
1623 if (!get_hwpoison_page(p)) {
1624 if (PageHuge(p)) {
1625 pr_info("%s: %#lx free huge page\n", __func__, pfn);
1626 ret = 0;
1627 } else if (is_free_buddy_page(p)) {
1628 pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1629 ret = 0;
1630 } else {
1631 pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1632 __func__, pfn, p->flags);
1633 ret = -EIO;
1635 } else {
1636 /* Not a free page */
1637 ret = 1;
1639 return ret;
1642 static int get_any_page(struct page *page, unsigned long pfn, int flags)
1644 int ret = __get_any_page(page, pfn, flags);
1646 if (ret == 1 && !PageHuge(page) &&
1647 !PageLRU(page) && !__PageMovable(page)) {
1649 * Try to free it.
1651 put_hwpoison_page(page);
1652 shake_page(page, 1);
1655 * Did it turn free?
1657 ret = __get_any_page(page, pfn, 0);
1658 if (ret == 1 && !PageLRU(page)) {
1659 /* Drop page reference which is from __get_any_page() */
1660 put_hwpoison_page(page);
1661 pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
1662 pfn, page->flags, &page->flags);
1663 return -EIO;
1666 return ret;
1669 static int soft_offline_huge_page(struct page *page, int flags)
1671 int ret;
1672 unsigned long pfn = page_to_pfn(page);
1673 struct page *hpage = compound_head(page);
1674 LIST_HEAD(pagelist);
1677 * This double-check of PageHWPoison is to avoid the race with
1678 * memory_failure(). See also comment in __soft_offline_page().
1680 lock_page(hpage);
1681 if (PageHWPoison(hpage)) {
1682 unlock_page(hpage);
1683 put_hwpoison_page(hpage);
1684 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1685 return -EBUSY;
1687 unlock_page(hpage);
1689 ret = isolate_huge_page(hpage, &pagelist);
1691 * get_any_page() and isolate_huge_page() takes a refcount each,
1692 * so need to drop one here.
1694 put_hwpoison_page(hpage);
1695 if (!ret) {
1696 pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1697 return -EBUSY;
1700 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1701 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1702 if (ret) {
1703 pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n",
1704 pfn, ret, page->flags, &page->flags);
1705 if (!list_empty(&pagelist))
1706 putback_movable_pages(&pagelist);
1707 if (ret > 0)
1708 ret = -EIO;
1709 } else {
1711 * We set PG_hwpoison only when the migration source hugepage
1712 * was successfully dissolved, because otherwise hwpoisoned
1713 * hugepage remains on free hugepage list, then userspace will
1714 * find it as SIGBUS by allocation failure. That's not expected
1715 * in soft-offlining.
1717 ret = dissolve_free_huge_page(page);
1718 if (!ret) {
1719 if (set_hwpoison_free_buddy_page(page))
1720 num_poisoned_pages_inc();
1721 else
1722 ret = -EBUSY;
1725 return ret;
1728 static int __soft_offline_page(struct page *page, int flags)
1730 int ret;
1731 unsigned long pfn = page_to_pfn(page);
1734 * Check PageHWPoison again inside page lock because PageHWPoison
1735 * is set by memory_failure() outside page lock. Note that
1736 * memory_failure() also double-checks PageHWPoison inside page lock,
1737 * so there's no race between soft_offline_page() and memory_failure().
1739 lock_page(page);
1740 wait_on_page_writeback(page);
1741 if (PageHWPoison(page)) {
1742 unlock_page(page);
1743 put_hwpoison_page(page);
1744 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1745 return -EBUSY;
1748 * Try to invalidate first. This should work for
1749 * non dirty unmapped page cache pages.
1751 ret = invalidate_inode_page(page);
1752 unlock_page(page);
1754 * RED-PEN would be better to keep it isolated here, but we
1755 * would need to fix isolation locking first.
1757 if (ret == 1) {
1758 put_hwpoison_page(page);
1759 pr_info("soft_offline: %#lx: invalidated\n", pfn);
1760 SetPageHWPoison(page);
1761 num_poisoned_pages_inc();
1762 return 0;
1766 * Simple invalidation didn't work.
1767 * Try to migrate to a new page instead. migrate.c
1768 * handles a large number of cases for us.
1770 if (PageLRU(page))
1771 ret = isolate_lru_page(page);
1772 else
1773 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1775 * Drop page reference which is came from get_any_page()
1776 * successful isolate_lru_page() already took another one.
1778 put_hwpoison_page(page);
1779 if (!ret) {
1780 LIST_HEAD(pagelist);
1782 * After isolated lru page, the PageLRU will be cleared,
1783 * so use !__PageMovable instead for LRU page's mapping
1784 * cannot have PAGE_MAPPING_MOVABLE.
1786 if (!__PageMovable(page))
1787 inc_node_page_state(page, NR_ISOLATED_ANON +
1788 page_is_file_cache(page));
1789 list_add(&page->lru, &pagelist);
1790 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1791 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1792 if (ret) {
1793 if (!list_empty(&pagelist))
1794 putback_movable_pages(&pagelist);
1796 pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
1797 pfn, ret, page->flags, &page->flags);
1798 if (ret > 0)
1799 ret = -EIO;
1801 } else {
1802 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
1803 pfn, ret, page_count(page), page->flags, &page->flags);
1805 return ret;
1808 static int soft_offline_in_use_page(struct page *page, int flags)
1810 int ret;
1811 int mt;
1812 struct page *hpage = compound_head(page);
1814 if (!PageHuge(page) && PageTransHuge(hpage)) {
1815 lock_page(page);
1816 if (!PageAnon(page) || unlikely(split_huge_page(page))) {
1817 unlock_page(page);
1818 if (!PageAnon(page))
1819 pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
1820 else
1821 pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1822 put_hwpoison_page(page);
1823 return -EBUSY;
1825 unlock_page(page);
1829 * Setting MIGRATE_ISOLATE here ensures that the page will be linked
1830 * to free list immediately (not via pcplist) when released after
1831 * successful page migration. Otherwise we can't guarantee that the
1832 * page is really free after put_page() returns, so
1833 * set_hwpoison_free_buddy_page() highly likely fails.
1835 mt = get_pageblock_migratetype(page);
1836 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
1837 if (PageHuge(page))
1838 ret = soft_offline_huge_page(page, flags);
1839 else
1840 ret = __soft_offline_page(page, flags);
1841 set_pageblock_migratetype(page, mt);
1842 return ret;
1845 static int soft_offline_free_page(struct page *page)
1847 int rc = dissolve_free_huge_page(page);
1849 if (!rc) {
1850 if (set_hwpoison_free_buddy_page(page))
1851 num_poisoned_pages_inc();
1852 else
1853 rc = -EBUSY;
1855 return rc;
1859 * soft_offline_page - Soft offline a page.
1860 * @pfn: pfn to soft-offline
1861 * @flags: flags. Same as memory_failure().
1863 * Returns 0 on success, otherwise negated errno.
1865 * Soft offline a page, by migration or invalidation,
1866 * without killing anything. This is for the case when
1867 * a page is not corrupted yet (so it's still valid to access),
1868 * but has had a number of corrected errors and is better taken
1869 * out.
1871 * The actual policy on when to do that is maintained by
1872 * user space.
1874 * This should never impact any application or cause data loss,
1875 * however it might take some time.
1877 * This is not a 100% solution for all memory, but tries to be
1878 * ``good enough'' for the majority of memory.
1880 int soft_offline_page(unsigned long pfn, int flags)
1882 int ret;
1883 struct page *page;
1885 if (!pfn_valid(pfn))
1886 return -ENXIO;
1887 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
1888 page = pfn_to_online_page(pfn);
1889 if (!page)
1890 return -EIO;
1892 if (PageHWPoison(page)) {
1893 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1894 if (flags & MF_COUNT_INCREASED)
1895 put_hwpoison_page(page);
1896 return -EBUSY;
1899 get_online_mems();
1900 ret = get_any_page(page, pfn, flags);
1901 put_online_mems();
1903 if (ret > 0)
1904 ret = soft_offline_in_use_page(page, flags);
1905 else if (ret == 0)
1906 ret = soft_offline_free_page(page);
1908 return ret;