2 * Synopsys DesignWare Multimedia Card Interface driver
3 * (Based on NXP driver for lpc 31xx)
5 * Copyright (C) 2009 NXP Semiconductors
6 * Copyright (C) 2009, 2010 Imagination Technologies Ltd.
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
14 #include <linux/blkdev.h>
15 #include <linux/clk.h>
16 #include <linux/debugfs.h>
17 #include <linux/device.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/err.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/iopoll.h>
23 #include <linux/ioport.h>
24 #include <linux/module.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/seq_file.h>
28 #include <linux/slab.h>
29 #include <linux/stat.h>
30 #include <linux/delay.h>
31 #include <linux/irq.h>
32 #include <linux/mmc/card.h>
33 #include <linux/mmc/host.h>
34 #include <linux/mmc/mmc.h>
35 #include <linux/mmc/sd.h>
36 #include <linux/mmc/sdio.h>
37 #include <linux/bitops.h>
38 #include <linux/regulator/consumer.h>
40 #include <linux/of_gpio.h>
41 #include <linux/mmc/slot-gpio.h>
45 /* Common flag combinations */
46 #define DW_MCI_DATA_ERROR_FLAGS (SDMMC_INT_DRTO | SDMMC_INT_DCRC | \
47 SDMMC_INT_HTO | SDMMC_INT_SBE | \
48 SDMMC_INT_EBE | SDMMC_INT_HLE)
49 #define DW_MCI_CMD_ERROR_FLAGS (SDMMC_INT_RTO | SDMMC_INT_RCRC | \
50 SDMMC_INT_RESP_ERR | SDMMC_INT_HLE)
51 #define DW_MCI_ERROR_FLAGS (DW_MCI_DATA_ERROR_FLAGS | \
52 DW_MCI_CMD_ERROR_FLAGS)
53 #define DW_MCI_SEND_STATUS 1
54 #define DW_MCI_RECV_STATUS 2
55 #define DW_MCI_DMA_THRESHOLD 16
57 #define DW_MCI_FREQ_MAX 200000000 /* unit: HZ */
58 #define DW_MCI_FREQ_MIN 100000 /* unit: HZ */
60 #define IDMAC_INT_CLR (SDMMC_IDMAC_INT_AI | SDMMC_IDMAC_INT_NI | \
61 SDMMC_IDMAC_INT_CES | SDMMC_IDMAC_INT_DU | \
62 SDMMC_IDMAC_INT_FBE | SDMMC_IDMAC_INT_RI | \
65 #define DESC_RING_BUF_SZ PAGE_SIZE
67 struct idmac_desc_64addr
{
68 u32 des0
; /* Control Descriptor */
69 #define IDMAC_OWN_CLR64(x) \
70 !((x) & cpu_to_le32(IDMAC_DES0_OWN))
72 u32 des1
; /* Reserved */
74 u32 des2
; /*Buffer sizes */
75 #define IDMAC_64ADDR_SET_BUFFER1_SIZE(d, s) \
76 ((d)->des2 = ((d)->des2 & cpu_to_le32(0x03ffe000)) | \
77 ((cpu_to_le32(s)) & cpu_to_le32(0x1fff)))
79 u32 des3
; /* Reserved */
81 u32 des4
; /* Lower 32-bits of Buffer Address Pointer 1*/
82 u32 des5
; /* Upper 32-bits of Buffer Address Pointer 1*/
84 u32 des6
; /* Lower 32-bits of Next Descriptor Address */
85 u32 des7
; /* Upper 32-bits of Next Descriptor Address */
89 __le32 des0
; /* Control Descriptor */
90 #define IDMAC_DES0_DIC BIT(1)
91 #define IDMAC_DES0_LD BIT(2)
92 #define IDMAC_DES0_FD BIT(3)
93 #define IDMAC_DES0_CH BIT(4)
94 #define IDMAC_DES0_ER BIT(5)
95 #define IDMAC_DES0_CES BIT(30)
96 #define IDMAC_DES0_OWN BIT(31)
98 __le32 des1
; /* Buffer sizes */
99 #define IDMAC_SET_BUFFER1_SIZE(d, s) \
100 ((d)->des1 = ((d)->des1 & cpu_to_le32(0x03ffe000)) | (cpu_to_le32((s) & 0x1fff)))
102 __le32 des2
; /* buffer 1 physical address */
104 __le32 des3
; /* buffer 2 physical address */
107 /* Each descriptor can transfer up to 4KB of data in chained mode */
108 #define DW_MCI_DESC_DATA_LENGTH 0x1000
110 #if defined(CONFIG_DEBUG_FS)
111 static int dw_mci_req_show(struct seq_file
*s
, void *v
)
113 struct dw_mci_slot
*slot
= s
->private;
114 struct mmc_request
*mrq
;
115 struct mmc_command
*cmd
;
116 struct mmc_command
*stop
;
117 struct mmc_data
*data
;
119 /* Make sure we get a consistent snapshot */
120 spin_lock_bh(&slot
->host
->lock
);
130 "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
131 cmd
->opcode
, cmd
->arg
, cmd
->flags
,
132 cmd
->resp
[0], cmd
->resp
[1], cmd
->resp
[2],
133 cmd
->resp
[2], cmd
->error
);
135 seq_printf(s
, "DATA %u / %u * %u flg %x err %d\n",
136 data
->bytes_xfered
, data
->blocks
,
137 data
->blksz
, data
->flags
, data
->error
);
140 "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
141 stop
->opcode
, stop
->arg
, stop
->flags
,
142 stop
->resp
[0], stop
->resp
[1], stop
->resp
[2],
143 stop
->resp
[2], stop
->error
);
146 spin_unlock_bh(&slot
->host
->lock
);
150 DEFINE_SHOW_ATTRIBUTE(dw_mci_req
);
152 static int dw_mci_regs_show(struct seq_file
*s
, void *v
)
154 struct dw_mci
*host
= s
->private;
156 pm_runtime_get_sync(host
->dev
);
158 seq_printf(s
, "STATUS:\t0x%08x\n", mci_readl(host
, STATUS
));
159 seq_printf(s
, "RINTSTS:\t0x%08x\n", mci_readl(host
, RINTSTS
));
160 seq_printf(s
, "CMD:\t0x%08x\n", mci_readl(host
, CMD
));
161 seq_printf(s
, "CTRL:\t0x%08x\n", mci_readl(host
, CTRL
));
162 seq_printf(s
, "INTMASK:\t0x%08x\n", mci_readl(host
, INTMASK
));
163 seq_printf(s
, "CLKENA:\t0x%08x\n", mci_readl(host
, CLKENA
));
165 pm_runtime_put_autosuspend(host
->dev
);
169 DEFINE_SHOW_ATTRIBUTE(dw_mci_regs
);
171 static void dw_mci_init_debugfs(struct dw_mci_slot
*slot
)
173 struct mmc_host
*mmc
= slot
->mmc
;
174 struct dw_mci
*host
= slot
->host
;
178 root
= mmc
->debugfs_root
;
182 node
= debugfs_create_file("regs", S_IRUSR
, root
, host
,
187 node
= debugfs_create_file("req", S_IRUSR
, root
, slot
,
192 node
= debugfs_create_u32("state", S_IRUSR
, root
, (u32
*)&host
->state
);
196 node
= debugfs_create_x32("pending_events", S_IRUSR
, root
,
197 (u32
*)&host
->pending_events
);
201 node
= debugfs_create_x32("completed_events", S_IRUSR
, root
,
202 (u32
*)&host
->completed_events
);
209 dev_err(&mmc
->class_dev
, "failed to initialize debugfs for slot\n");
211 #endif /* defined(CONFIG_DEBUG_FS) */
213 static bool dw_mci_ctrl_reset(struct dw_mci
*host
, u32 reset
)
217 ctrl
= mci_readl(host
, CTRL
);
219 mci_writel(host
, CTRL
, ctrl
);
221 /* wait till resets clear */
222 if (readl_poll_timeout_atomic(host
->regs
+ SDMMC_CTRL
, ctrl
,
224 1, 500 * USEC_PER_MSEC
)) {
226 "Timeout resetting block (ctrl reset %#x)\n",
234 static void dw_mci_wait_while_busy(struct dw_mci
*host
, u32 cmd_flags
)
239 * Databook says that before issuing a new data transfer command
240 * we need to check to see if the card is busy. Data transfer commands
241 * all have SDMMC_CMD_PRV_DAT_WAIT set, so we'll key off that.
243 * ...also allow sending for SDMMC_CMD_VOLT_SWITCH where busy is
246 if ((cmd_flags
& SDMMC_CMD_PRV_DAT_WAIT
) &&
247 !(cmd_flags
& SDMMC_CMD_VOLT_SWITCH
)) {
248 if (readl_poll_timeout_atomic(host
->regs
+ SDMMC_STATUS
,
250 !(status
& SDMMC_STATUS_BUSY
),
251 10, 500 * USEC_PER_MSEC
))
252 dev_err(host
->dev
, "Busy; trying anyway\n");
256 static void mci_send_cmd(struct dw_mci_slot
*slot
, u32 cmd
, u32 arg
)
258 struct dw_mci
*host
= slot
->host
;
259 unsigned int cmd_status
= 0;
261 mci_writel(host
, CMDARG
, arg
);
262 wmb(); /* drain writebuffer */
263 dw_mci_wait_while_busy(host
, cmd
);
264 mci_writel(host
, CMD
, SDMMC_CMD_START
| cmd
);
266 if (readl_poll_timeout_atomic(host
->regs
+ SDMMC_CMD
, cmd_status
,
267 !(cmd_status
& SDMMC_CMD_START
),
268 1, 500 * USEC_PER_MSEC
))
269 dev_err(&slot
->mmc
->class_dev
,
270 "Timeout sending command (cmd %#x arg %#x status %#x)\n",
271 cmd
, arg
, cmd_status
);
274 static u32
dw_mci_prepare_command(struct mmc_host
*mmc
, struct mmc_command
*cmd
)
276 struct dw_mci_slot
*slot
= mmc_priv(mmc
);
277 struct dw_mci
*host
= slot
->host
;
280 cmd
->error
= -EINPROGRESS
;
283 if (cmd
->opcode
== MMC_STOP_TRANSMISSION
||
284 cmd
->opcode
== MMC_GO_IDLE_STATE
||
285 cmd
->opcode
== MMC_GO_INACTIVE_STATE
||
286 (cmd
->opcode
== SD_IO_RW_DIRECT
&&
287 ((cmd
->arg
>> 9) & 0x1FFFF) == SDIO_CCCR_ABORT
))
288 cmdr
|= SDMMC_CMD_STOP
;
289 else if (cmd
->opcode
!= MMC_SEND_STATUS
&& cmd
->data
)
290 cmdr
|= SDMMC_CMD_PRV_DAT_WAIT
;
292 if (cmd
->opcode
== SD_SWITCH_VOLTAGE
) {
295 /* Special bit makes CMD11 not die */
296 cmdr
|= SDMMC_CMD_VOLT_SWITCH
;
298 /* Change state to continue to handle CMD11 weirdness */
299 WARN_ON(slot
->host
->state
!= STATE_SENDING_CMD
);
300 slot
->host
->state
= STATE_SENDING_CMD11
;
303 * We need to disable low power mode (automatic clock stop)
304 * while doing voltage switch so we don't confuse the card,
305 * since stopping the clock is a specific part of the UHS
306 * voltage change dance.
308 * Note that low power mode (SDMMC_CLKEN_LOW_PWR) will be
309 * unconditionally turned back on in dw_mci_setup_bus() if it's
310 * ever called with a non-zero clock. That shouldn't happen
311 * until the voltage change is all done.
313 clk_en_a
= mci_readl(host
, CLKENA
);
314 clk_en_a
&= ~(SDMMC_CLKEN_LOW_PWR
<< slot
->id
);
315 mci_writel(host
, CLKENA
, clk_en_a
);
316 mci_send_cmd(slot
, SDMMC_CMD_UPD_CLK
|
317 SDMMC_CMD_PRV_DAT_WAIT
, 0);
320 if (cmd
->flags
& MMC_RSP_PRESENT
) {
321 /* We expect a response, so set this bit */
322 cmdr
|= SDMMC_CMD_RESP_EXP
;
323 if (cmd
->flags
& MMC_RSP_136
)
324 cmdr
|= SDMMC_CMD_RESP_LONG
;
327 if (cmd
->flags
& MMC_RSP_CRC
)
328 cmdr
|= SDMMC_CMD_RESP_CRC
;
331 cmdr
|= SDMMC_CMD_DAT_EXP
;
332 if (cmd
->data
->flags
& MMC_DATA_WRITE
)
333 cmdr
|= SDMMC_CMD_DAT_WR
;
336 if (!test_bit(DW_MMC_CARD_NO_USE_HOLD
, &slot
->flags
))
337 cmdr
|= SDMMC_CMD_USE_HOLD_REG
;
342 static u32
dw_mci_prep_stop_abort(struct dw_mci
*host
, struct mmc_command
*cmd
)
344 struct mmc_command
*stop
;
350 stop
= &host
->stop_abort
;
352 memset(stop
, 0, sizeof(struct mmc_command
));
354 if (cmdr
== MMC_READ_SINGLE_BLOCK
||
355 cmdr
== MMC_READ_MULTIPLE_BLOCK
||
356 cmdr
== MMC_WRITE_BLOCK
||
357 cmdr
== MMC_WRITE_MULTIPLE_BLOCK
||
358 cmdr
== MMC_SEND_TUNING_BLOCK
||
359 cmdr
== MMC_SEND_TUNING_BLOCK_HS200
) {
360 stop
->opcode
= MMC_STOP_TRANSMISSION
;
362 stop
->flags
= MMC_RSP_R1B
| MMC_CMD_AC
;
363 } else if (cmdr
== SD_IO_RW_EXTENDED
) {
364 stop
->opcode
= SD_IO_RW_DIRECT
;
365 stop
->arg
|= (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT
<< 9) |
366 ((cmd
->arg
>> 28) & 0x7);
367 stop
->flags
= MMC_RSP_SPI_R5
| MMC_RSP_R5
| MMC_CMD_AC
;
372 cmdr
= stop
->opcode
| SDMMC_CMD_STOP
|
373 SDMMC_CMD_RESP_CRC
| SDMMC_CMD_RESP_EXP
;
375 if (!test_bit(DW_MMC_CARD_NO_USE_HOLD
, &host
->slot
->flags
))
376 cmdr
|= SDMMC_CMD_USE_HOLD_REG
;
381 static inline void dw_mci_set_cto(struct dw_mci
*host
)
383 unsigned int cto_clks
;
384 unsigned int cto_div
;
386 unsigned long irqflags
;
388 cto_clks
= mci_readl(host
, TMOUT
) & 0xff;
389 cto_div
= (mci_readl(host
, CLKDIV
) & 0xff) * 2;
393 cto_ms
= DIV_ROUND_UP_ULL((u64
)MSEC_PER_SEC
* cto_clks
* cto_div
,
396 /* add a bit spare time */
400 * The durations we're working with are fairly short so we have to be
401 * extra careful about synchronization here. Specifically in hardware a
402 * command timeout is _at most_ 5.1 ms, so that means we expect an
403 * interrupt (either command done or timeout) to come rather quickly
404 * after the mci_writel. ...but just in case we have a long interrupt
405 * latency let's add a bit of paranoia.
407 * In general we'll assume that at least an interrupt will be asserted
408 * in hardware by the time the cto_timer runs. ...and if it hasn't
409 * been asserted in hardware by that time then we'll assume it'll never
412 spin_lock_irqsave(&host
->irq_lock
, irqflags
);
413 if (!test_bit(EVENT_CMD_COMPLETE
, &host
->pending_events
))
414 mod_timer(&host
->cto_timer
,
415 jiffies
+ msecs_to_jiffies(cto_ms
) + 1);
416 spin_unlock_irqrestore(&host
->irq_lock
, irqflags
);
419 static void dw_mci_start_command(struct dw_mci
*host
,
420 struct mmc_command
*cmd
, u32 cmd_flags
)
424 "start command: ARGR=0x%08x CMDR=0x%08x\n",
425 cmd
->arg
, cmd_flags
);
427 mci_writel(host
, CMDARG
, cmd
->arg
);
428 wmb(); /* drain writebuffer */
429 dw_mci_wait_while_busy(host
, cmd_flags
);
431 mci_writel(host
, CMD
, cmd_flags
| SDMMC_CMD_START
);
433 /* response expected command only */
434 if (cmd_flags
& SDMMC_CMD_RESP_EXP
)
435 dw_mci_set_cto(host
);
438 static inline void send_stop_abort(struct dw_mci
*host
, struct mmc_data
*data
)
440 struct mmc_command
*stop
= &host
->stop_abort
;
442 dw_mci_start_command(host
, stop
, host
->stop_cmdr
);
445 /* DMA interface functions */
446 static void dw_mci_stop_dma(struct dw_mci
*host
)
448 if (host
->using_dma
) {
449 host
->dma_ops
->stop(host
);
450 host
->dma_ops
->cleanup(host
);
453 /* Data transfer was stopped by the interrupt handler */
454 set_bit(EVENT_XFER_COMPLETE
, &host
->pending_events
);
457 static void dw_mci_dma_cleanup(struct dw_mci
*host
)
459 struct mmc_data
*data
= host
->data
;
461 if (data
&& data
->host_cookie
== COOKIE_MAPPED
) {
462 dma_unmap_sg(host
->dev
,
465 mmc_get_dma_dir(data
));
466 data
->host_cookie
= COOKIE_UNMAPPED
;
470 static void dw_mci_idmac_reset(struct dw_mci
*host
)
472 u32 bmod
= mci_readl(host
, BMOD
);
473 /* Software reset of DMA */
474 bmod
|= SDMMC_IDMAC_SWRESET
;
475 mci_writel(host
, BMOD
, bmod
);
478 static void dw_mci_idmac_stop_dma(struct dw_mci
*host
)
482 /* Disable and reset the IDMAC interface */
483 temp
= mci_readl(host
, CTRL
);
484 temp
&= ~SDMMC_CTRL_USE_IDMAC
;
485 temp
|= SDMMC_CTRL_DMA_RESET
;
486 mci_writel(host
, CTRL
, temp
);
488 /* Stop the IDMAC running */
489 temp
= mci_readl(host
, BMOD
);
490 temp
&= ~(SDMMC_IDMAC_ENABLE
| SDMMC_IDMAC_FB
);
491 temp
|= SDMMC_IDMAC_SWRESET
;
492 mci_writel(host
, BMOD
, temp
);
495 static void dw_mci_dmac_complete_dma(void *arg
)
497 struct dw_mci
*host
= arg
;
498 struct mmc_data
*data
= host
->data
;
500 dev_vdbg(host
->dev
, "DMA complete\n");
502 if ((host
->use_dma
== TRANS_MODE_EDMAC
) &&
503 data
&& (data
->flags
& MMC_DATA_READ
))
504 /* Invalidate cache after read */
505 dma_sync_sg_for_cpu(mmc_dev(host
->slot
->mmc
),
510 host
->dma_ops
->cleanup(host
);
513 * If the card was removed, data will be NULL. No point in trying to
514 * send the stop command or waiting for NBUSY in this case.
517 set_bit(EVENT_XFER_COMPLETE
, &host
->pending_events
);
518 tasklet_schedule(&host
->tasklet
);
522 static int dw_mci_idmac_init(struct dw_mci
*host
)
526 if (host
->dma_64bit_address
== 1) {
527 struct idmac_desc_64addr
*p
;
528 /* Number of descriptors in the ring buffer */
530 DESC_RING_BUF_SZ
/ sizeof(struct idmac_desc_64addr
);
532 /* Forward link the descriptor list */
533 for (i
= 0, p
= host
->sg_cpu
; i
< host
->ring_size
- 1;
535 p
->des6
= (host
->sg_dma
+
536 (sizeof(struct idmac_desc_64addr
) *
537 (i
+ 1))) & 0xffffffff;
539 p
->des7
= (u64
)(host
->sg_dma
+
540 (sizeof(struct idmac_desc_64addr
) *
542 /* Initialize reserved and buffer size fields to "0" */
549 /* Set the last descriptor as the end-of-ring descriptor */
550 p
->des6
= host
->sg_dma
& 0xffffffff;
551 p
->des7
= (u64
)host
->sg_dma
>> 32;
552 p
->des0
= IDMAC_DES0_ER
;
555 struct idmac_desc
*p
;
556 /* Number of descriptors in the ring buffer */
558 DESC_RING_BUF_SZ
/ sizeof(struct idmac_desc
);
560 /* Forward link the descriptor list */
561 for (i
= 0, p
= host
->sg_cpu
;
562 i
< host
->ring_size
- 1;
564 p
->des3
= cpu_to_le32(host
->sg_dma
+
565 (sizeof(struct idmac_desc
) * (i
+ 1)));
570 /* Set the last descriptor as the end-of-ring descriptor */
571 p
->des3
= cpu_to_le32(host
->sg_dma
);
572 p
->des0
= cpu_to_le32(IDMAC_DES0_ER
);
575 dw_mci_idmac_reset(host
);
577 if (host
->dma_64bit_address
== 1) {
578 /* Mask out interrupts - get Tx & Rx complete only */
579 mci_writel(host
, IDSTS64
, IDMAC_INT_CLR
);
580 mci_writel(host
, IDINTEN64
, SDMMC_IDMAC_INT_NI
|
581 SDMMC_IDMAC_INT_RI
| SDMMC_IDMAC_INT_TI
);
583 /* Set the descriptor base address */
584 mci_writel(host
, DBADDRL
, host
->sg_dma
& 0xffffffff);
585 mci_writel(host
, DBADDRU
, (u64
)host
->sg_dma
>> 32);
588 /* Mask out interrupts - get Tx & Rx complete only */
589 mci_writel(host
, IDSTS
, IDMAC_INT_CLR
);
590 mci_writel(host
, IDINTEN
, SDMMC_IDMAC_INT_NI
|
591 SDMMC_IDMAC_INT_RI
| SDMMC_IDMAC_INT_TI
);
593 /* Set the descriptor base address */
594 mci_writel(host
, DBADDR
, host
->sg_dma
);
600 static inline int dw_mci_prepare_desc64(struct dw_mci
*host
,
601 struct mmc_data
*data
,
604 unsigned int desc_len
;
605 struct idmac_desc_64addr
*desc_first
, *desc_last
, *desc
;
609 desc_first
= desc_last
= desc
= host
->sg_cpu
;
611 for (i
= 0; i
< sg_len
; i
++) {
612 unsigned int length
= sg_dma_len(&data
->sg
[i
]);
614 u64 mem_addr
= sg_dma_address(&data
->sg
[i
]);
616 for ( ; length
; desc
++) {
617 desc_len
= (length
<= DW_MCI_DESC_DATA_LENGTH
) ?
618 length
: DW_MCI_DESC_DATA_LENGTH
;
623 * Wait for the former clear OWN bit operation
624 * of IDMAC to make sure that this descriptor
625 * isn't still owned by IDMAC as IDMAC's write
626 * ops and CPU's read ops are asynchronous.
628 if (readl_poll_timeout_atomic(&desc
->des0
, val
,
629 !(val
& IDMAC_DES0_OWN
),
630 10, 100 * USEC_PER_MSEC
))
634 * Set the OWN bit and disable interrupts
635 * for this descriptor
637 desc
->des0
= IDMAC_DES0_OWN
| IDMAC_DES0_DIC
|
641 IDMAC_64ADDR_SET_BUFFER1_SIZE(desc
, desc_len
);
643 /* Physical address to DMA to/from */
644 desc
->des4
= mem_addr
& 0xffffffff;
645 desc
->des5
= mem_addr
>> 32;
647 /* Update physical address for the next desc */
648 mem_addr
+= desc_len
;
650 /* Save pointer to the last descriptor */
655 /* Set first descriptor */
656 desc_first
->des0
|= IDMAC_DES0_FD
;
658 /* Set last descriptor */
659 desc_last
->des0
&= ~(IDMAC_DES0_CH
| IDMAC_DES0_DIC
);
660 desc_last
->des0
|= IDMAC_DES0_LD
;
664 /* restore the descriptor chain as it's polluted */
665 dev_dbg(host
->dev
, "descriptor is still owned by IDMAC.\n");
666 memset(host
->sg_cpu
, 0, DESC_RING_BUF_SZ
);
667 dw_mci_idmac_init(host
);
672 static inline int dw_mci_prepare_desc32(struct dw_mci
*host
,
673 struct mmc_data
*data
,
676 unsigned int desc_len
;
677 struct idmac_desc
*desc_first
, *desc_last
, *desc
;
681 desc_first
= desc_last
= desc
= host
->sg_cpu
;
683 for (i
= 0; i
< sg_len
; i
++) {
684 unsigned int length
= sg_dma_len(&data
->sg
[i
]);
686 u32 mem_addr
= sg_dma_address(&data
->sg
[i
]);
688 for ( ; length
; desc
++) {
689 desc_len
= (length
<= DW_MCI_DESC_DATA_LENGTH
) ?
690 length
: DW_MCI_DESC_DATA_LENGTH
;
695 * Wait for the former clear OWN bit operation
696 * of IDMAC to make sure that this descriptor
697 * isn't still owned by IDMAC as IDMAC's write
698 * ops and CPU's read ops are asynchronous.
700 if (readl_poll_timeout_atomic(&desc
->des0
, val
,
701 IDMAC_OWN_CLR64(val
),
703 100 * USEC_PER_MSEC
))
707 * Set the OWN bit and disable interrupts
708 * for this descriptor
710 desc
->des0
= cpu_to_le32(IDMAC_DES0_OWN
|
715 IDMAC_SET_BUFFER1_SIZE(desc
, desc_len
);
717 /* Physical address to DMA to/from */
718 desc
->des2
= cpu_to_le32(mem_addr
);
720 /* Update physical address for the next desc */
721 mem_addr
+= desc_len
;
723 /* Save pointer to the last descriptor */
728 /* Set first descriptor */
729 desc_first
->des0
|= cpu_to_le32(IDMAC_DES0_FD
);
731 /* Set last descriptor */
732 desc_last
->des0
&= cpu_to_le32(~(IDMAC_DES0_CH
|
734 desc_last
->des0
|= cpu_to_le32(IDMAC_DES0_LD
);
738 /* restore the descriptor chain as it's polluted */
739 dev_dbg(host
->dev
, "descriptor is still owned by IDMAC.\n");
740 memset(host
->sg_cpu
, 0, DESC_RING_BUF_SZ
);
741 dw_mci_idmac_init(host
);
745 static int dw_mci_idmac_start_dma(struct dw_mci
*host
, unsigned int sg_len
)
750 if (host
->dma_64bit_address
== 1)
751 ret
= dw_mci_prepare_desc64(host
, host
->data
, sg_len
);
753 ret
= dw_mci_prepare_desc32(host
, host
->data
, sg_len
);
758 /* drain writebuffer */
761 /* Make sure to reset DMA in case we did PIO before this */
762 dw_mci_ctrl_reset(host
, SDMMC_CTRL_DMA_RESET
);
763 dw_mci_idmac_reset(host
);
765 /* Select IDMAC interface */
766 temp
= mci_readl(host
, CTRL
);
767 temp
|= SDMMC_CTRL_USE_IDMAC
;
768 mci_writel(host
, CTRL
, temp
);
770 /* drain writebuffer */
773 /* Enable the IDMAC */
774 temp
= mci_readl(host
, BMOD
);
775 temp
|= SDMMC_IDMAC_ENABLE
| SDMMC_IDMAC_FB
;
776 mci_writel(host
, BMOD
, temp
);
778 /* Start it running */
779 mci_writel(host
, PLDMND
, 1);
785 static const struct dw_mci_dma_ops dw_mci_idmac_ops
= {
786 .init
= dw_mci_idmac_init
,
787 .start
= dw_mci_idmac_start_dma
,
788 .stop
= dw_mci_idmac_stop_dma
,
789 .complete
= dw_mci_dmac_complete_dma
,
790 .cleanup
= dw_mci_dma_cleanup
,
793 static void dw_mci_edmac_stop_dma(struct dw_mci
*host
)
795 dmaengine_terminate_async(host
->dms
->ch
);
798 static int dw_mci_edmac_start_dma(struct dw_mci
*host
,
801 struct dma_slave_config cfg
;
802 struct dma_async_tx_descriptor
*desc
= NULL
;
803 struct scatterlist
*sgl
= host
->data
->sg
;
804 static const u32 mszs
[] = {1, 4, 8, 16, 32, 64, 128, 256};
805 u32 sg_elems
= host
->data
->sg_len
;
807 u32 fifo_offset
= host
->fifo_reg
- host
->regs
;
810 /* Set external dma config: burst size, burst width */
811 cfg
.dst_addr
= host
->phy_regs
+ fifo_offset
;
812 cfg
.src_addr
= cfg
.dst_addr
;
813 cfg
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
814 cfg
.src_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
816 /* Match burst msize with external dma config */
817 fifoth_val
= mci_readl(host
, FIFOTH
);
818 cfg
.dst_maxburst
= mszs
[(fifoth_val
>> 28) & 0x7];
819 cfg
.src_maxburst
= cfg
.dst_maxburst
;
821 if (host
->data
->flags
& MMC_DATA_WRITE
)
822 cfg
.direction
= DMA_MEM_TO_DEV
;
824 cfg
.direction
= DMA_DEV_TO_MEM
;
826 ret
= dmaengine_slave_config(host
->dms
->ch
, &cfg
);
828 dev_err(host
->dev
, "Failed to config edmac.\n");
832 desc
= dmaengine_prep_slave_sg(host
->dms
->ch
, sgl
,
833 sg_len
, cfg
.direction
,
834 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
836 dev_err(host
->dev
, "Can't prepare slave sg.\n");
840 /* Set dw_mci_dmac_complete_dma as callback */
841 desc
->callback
= dw_mci_dmac_complete_dma
;
842 desc
->callback_param
= (void *)host
;
843 dmaengine_submit(desc
);
845 /* Flush cache before write */
846 if (host
->data
->flags
& MMC_DATA_WRITE
)
847 dma_sync_sg_for_device(mmc_dev(host
->slot
->mmc
), sgl
,
848 sg_elems
, DMA_TO_DEVICE
);
850 dma_async_issue_pending(host
->dms
->ch
);
855 static int dw_mci_edmac_init(struct dw_mci
*host
)
857 /* Request external dma channel */
858 host
->dms
= kzalloc(sizeof(struct dw_mci_dma_slave
), GFP_KERNEL
);
862 host
->dms
->ch
= dma_request_slave_channel(host
->dev
, "rx-tx");
863 if (!host
->dms
->ch
) {
864 dev_err(host
->dev
, "Failed to get external DMA channel.\n");
873 static void dw_mci_edmac_exit(struct dw_mci
*host
)
877 dma_release_channel(host
->dms
->ch
);
878 host
->dms
->ch
= NULL
;
885 static const struct dw_mci_dma_ops dw_mci_edmac_ops
= {
886 .init
= dw_mci_edmac_init
,
887 .exit
= dw_mci_edmac_exit
,
888 .start
= dw_mci_edmac_start_dma
,
889 .stop
= dw_mci_edmac_stop_dma
,
890 .complete
= dw_mci_dmac_complete_dma
,
891 .cleanup
= dw_mci_dma_cleanup
,
894 static int dw_mci_pre_dma_transfer(struct dw_mci
*host
,
895 struct mmc_data
*data
,
898 struct scatterlist
*sg
;
899 unsigned int i
, sg_len
;
901 if (data
->host_cookie
== COOKIE_PRE_MAPPED
)
905 * We don't do DMA on "complex" transfers, i.e. with
906 * non-word-aligned buffers or lengths. Also, we don't bother
907 * with all the DMA setup overhead for short transfers.
909 if (data
->blocks
* data
->blksz
< DW_MCI_DMA_THRESHOLD
)
915 for_each_sg(data
->sg
, sg
, data
->sg_len
, i
) {
916 if (sg
->offset
& 3 || sg
->length
& 3)
920 sg_len
= dma_map_sg(host
->dev
,
923 mmc_get_dma_dir(data
));
927 data
->host_cookie
= cookie
;
932 static void dw_mci_pre_req(struct mmc_host
*mmc
,
933 struct mmc_request
*mrq
)
935 struct dw_mci_slot
*slot
= mmc_priv(mmc
);
936 struct mmc_data
*data
= mrq
->data
;
938 if (!slot
->host
->use_dma
|| !data
)
941 /* This data might be unmapped at this time */
942 data
->host_cookie
= COOKIE_UNMAPPED
;
944 if (dw_mci_pre_dma_transfer(slot
->host
, mrq
->data
,
945 COOKIE_PRE_MAPPED
) < 0)
946 data
->host_cookie
= COOKIE_UNMAPPED
;
949 static void dw_mci_post_req(struct mmc_host
*mmc
,
950 struct mmc_request
*mrq
,
953 struct dw_mci_slot
*slot
= mmc_priv(mmc
);
954 struct mmc_data
*data
= mrq
->data
;
956 if (!slot
->host
->use_dma
|| !data
)
959 if (data
->host_cookie
!= COOKIE_UNMAPPED
)
960 dma_unmap_sg(slot
->host
->dev
,
963 mmc_get_dma_dir(data
));
964 data
->host_cookie
= COOKIE_UNMAPPED
;
967 static int dw_mci_get_cd(struct mmc_host
*mmc
)
970 struct dw_mci_slot
*slot
= mmc_priv(mmc
);
971 struct dw_mci
*host
= slot
->host
;
972 int gpio_cd
= mmc_gpio_get_cd(mmc
);
974 /* Use platform get_cd function, else try onboard card detect */
975 if (((mmc
->caps
& MMC_CAP_NEEDS_POLL
)
976 || !mmc_card_is_removable(mmc
))) {
979 if (!test_bit(DW_MMC_CARD_PRESENT
, &slot
->flags
)) {
980 if (mmc
->caps
& MMC_CAP_NEEDS_POLL
) {
981 dev_info(&mmc
->class_dev
,
982 "card is polling.\n");
984 dev_info(&mmc
->class_dev
,
985 "card is non-removable.\n");
987 set_bit(DW_MMC_CARD_PRESENT
, &slot
->flags
);
991 } else if (gpio_cd
>= 0)
994 present
= (mci_readl(slot
->host
, CDETECT
) & (1 << slot
->id
))
997 spin_lock_bh(&host
->lock
);
998 if (present
&& !test_and_set_bit(DW_MMC_CARD_PRESENT
, &slot
->flags
))
999 dev_dbg(&mmc
->class_dev
, "card is present\n");
1000 else if (!present
&&
1001 !test_and_clear_bit(DW_MMC_CARD_PRESENT
, &slot
->flags
))
1002 dev_dbg(&mmc
->class_dev
, "card is not present\n");
1003 spin_unlock_bh(&host
->lock
);
1008 static void dw_mci_adjust_fifoth(struct dw_mci
*host
, struct mmc_data
*data
)
1010 unsigned int blksz
= data
->blksz
;
1011 static const u32 mszs
[] = {1, 4, 8, 16, 32, 64, 128, 256};
1012 u32 fifo_width
= 1 << host
->data_shift
;
1013 u32 blksz_depth
= blksz
/ fifo_width
, fifoth_val
;
1014 u32 msize
= 0, rx_wmark
= 1, tx_wmark
, tx_wmark_invers
;
1015 int idx
= ARRAY_SIZE(mszs
) - 1;
1017 /* pio should ship this scenario */
1021 tx_wmark
= (host
->fifo_depth
) / 2;
1022 tx_wmark_invers
= host
->fifo_depth
- tx_wmark
;
1026 * if blksz is not a multiple of the FIFO width
1028 if (blksz
% fifo_width
)
1032 if (!((blksz_depth
% mszs
[idx
]) ||
1033 (tx_wmark_invers
% mszs
[idx
]))) {
1035 rx_wmark
= mszs
[idx
] - 1;
1038 } while (--idx
> 0);
1040 * If idx is '0', it won't be tried
1041 * Thus, initial values are uesed
1044 fifoth_val
= SDMMC_SET_FIFOTH(msize
, rx_wmark
, tx_wmark
);
1045 mci_writel(host
, FIFOTH
, fifoth_val
);
1048 static void dw_mci_ctrl_thld(struct dw_mci
*host
, struct mmc_data
*data
)
1050 unsigned int blksz
= data
->blksz
;
1051 u32 blksz_depth
, fifo_depth
;
1056 * CDTHRCTL doesn't exist prior to 240A (in fact that register offset is
1057 * in the FIFO region, so we really shouldn't access it).
1059 if (host
->verid
< DW_MMC_240A
||
1060 (host
->verid
< DW_MMC_280A
&& data
->flags
& MMC_DATA_WRITE
))
1064 * Card write Threshold is introduced since 2.80a
1065 * It's used when HS400 mode is enabled.
1067 if (data
->flags
& MMC_DATA_WRITE
&&
1068 host
->timing
!= MMC_TIMING_MMC_HS400
)
1071 if (data
->flags
& MMC_DATA_WRITE
)
1072 enable
= SDMMC_CARD_WR_THR_EN
;
1074 enable
= SDMMC_CARD_RD_THR_EN
;
1076 if (host
->timing
!= MMC_TIMING_MMC_HS200
&&
1077 host
->timing
!= MMC_TIMING_UHS_SDR104
&&
1078 host
->timing
!= MMC_TIMING_MMC_HS400
)
1081 blksz_depth
= blksz
/ (1 << host
->data_shift
);
1082 fifo_depth
= host
->fifo_depth
;
1084 if (blksz_depth
> fifo_depth
)
1088 * If (blksz_depth) >= (fifo_depth >> 1), should be 'thld_size <= blksz'
1089 * If (blksz_depth) < (fifo_depth >> 1), should be thld_size = blksz
1090 * Currently just choose blksz.
1093 mci_writel(host
, CDTHRCTL
, SDMMC_SET_THLD(thld_size
, enable
));
1097 mci_writel(host
, CDTHRCTL
, 0);
1100 static int dw_mci_submit_data_dma(struct dw_mci
*host
, struct mmc_data
*data
)
1102 unsigned long irqflags
;
1106 host
->using_dma
= 0;
1108 /* If we don't have a channel, we can't do DMA */
1112 sg_len
= dw_mci_pre_dma_transfer(host
, data
, COOKIE_MAPPED
);
1114 host
->dma_ops
->stop(host
);
1118 host
->using_dma
= 1;
1120 if (host
->use_dma
== TRANS_MODE_IDMAC
)
1122 "sd sg_cpu: %#lx sg_dma: %#lx sg_len: %d\n",
1123 (unsigned long)host
->sg_cpu
,
1124 (unsigned long)host
->sg_dma
,
1128 * Decide the MSIZE and RX/TX Watermark.
1129 * If current block size is same with previous size,
1130 * no need to update fifoth.
1132 if (host
->prev_blksz
!= data
->blksz
)
1133 dw_mci_adjust_fifoth(host
, data
);
1135 /* Enable the DMA interface */
1136 temp
= mci_readl(host
, CTRL
);
1137 temp
|= SDMMC_CTRL_DMA_ENABLE
;
1138 mci_writel(host
, CTRL
, temp
);
1140 /* Disable RX/TX IRQs, let DMA handle it */
1141 spin_lock_irqsave(&host
->irq_lock
, irqflags
);
1142 temp
= mci_readl(host
, INTMASK
);
1143 temp
&= ~(SDMMC_INT_RXDR
| SDMMC_INT_TXDR
);
1144 mci_writel(host
, INTMASK
, temp
);
1145 spin_unlock_irqrestore(&host
->irq_lock
, irqflags
);
1147 if (host
->dma_ops
->start(host
, sg_len
)) {
1148 host
->dma_ops
->stop(host
);
1149 /* We can't do DMA, try PIO for this one */
1151 "%s: fall back to PIO mode for current transfer\n",
1159 static void dw_mci_submit_data(struct dw_mci
*host
, struct mmc_data
*data
)
1161 unsigned long irqflags
;
1162 int flags
= SG_MITER_ATOMIC
;
1165 data
->error
= -EINPROGRESS
;
1167 WARN_ON(host
->data
);
1171 if (data
->flags
& MMC_DATA_READ
)
1172 host
->dir_status
= DW_MCI_RECV_STATUS
;
1174 host
->dir_status
= DW_MCI_SEND_STATUS
;
1176 dw_mci_ctrl_thld(host
, data
);
1178 if (dw_mci_submit_data_dma(host
, data
)) {
1179 if (host
->data
->flags
& MMC_DATA_READ
)
1180 flags
|= SG_MITER_TO_SG
;
1182 flags
|= SG_MITER_FROM_SG
;
1184 sg_miter_start(&host
->sg_miter
, data
->sg
, data
->sg_len
, flags
);
1185 host
->sg
= data
->sg
;
1186 host
->part_buf_start
= 0;
1187 host
->part_buf_count
= 0;
1189 mci_writel(host
, RINTSTS
, SDMMC_INT_TXDR
| SDMMC_INT_RXDR
);
1191 spin_lock_irqsave(&host
->irq_lock
, irqflags
);
1192 temp
= mci_readl(host
, INTMASK
);
1193 temp
|= SDMMC_INT_TXDR
| SDMMC_INT_RXDR
;
1194 mci_writel(host
, INTMASK
, temp
);
1195 spin_unlock_irqrestore(&host
->irq_lock
, irqflags
);
1197 temp
= mci_readl(host
, CTRL
);
1198 temp
&= ~SDMMC_CTRL_DMA_ENABLE
;
1199 mci_writel(host
, CTRL
, temp
);
1202 * Use the initial fifoth_val for PIO mode. If wm_algined
1203 * is set, we set watermark same as data size.
1204 * If next issued data may be transfered by DMA mode,
1205 * prev_blksz should be invalidated.
1207 if (host
->wm_aligned
)
1208 dw_mci_adjust_fifoth(host
, data
);
1210 mci_writel(host
, FIFOTH
, host
->fifoth_val
);
1211 host
->prev_blksz
= 0;
1214 * Keep the current block size.
1215 * It will be used to decide whether to update
1216 * fifoth register next time.
1218 host
->prev_blksz
= data
->blksz
;
1222 static void dw_mci_setup_bus(struct dw_mci_slot
*slot
, bool force_clkinit
)
1224 struct dw_mci
*host
= slot
->host
;
1225 unsigned int clock
= slot
->clock
;
1228 u32 sdmmc_cmd_bits
= SDMMC_CMD_UPD_CLK
| SDMMC_CMD_PRV_DAT_WAIT
;
1230 /* We must continue to set bit 28 in CMD until the change is complete */
1231 if (host
->state
== STATE_WAITING_CMD11_DONE
)
1232 sdmmc_cmd_bits
|= SDMMC_CMD_VOLT_SWITCH
;
1234 slot
->mmc
->actual_clock
= 0;
1237 mci_writel(host
, CLKENA
, 0);
1238 mci_send_cmd(slot
, sdmmc_cmd_bits
, 0);
1239 } else if (clock
!= host
->current_speed
|| force_clkinit
) {
1240 div
= host
->bus_hz
/ clock
;
1241 if (host
->bus_hz
% clock
&& host
->bus_hz
> clock
)
1243 * move the + 1 after the divide to prevent
1244 * over-clocking the card.
1248 div
= (host
->bus_hz
!= clock
) ? DIV_ROUND_UP(div
, 2) : 0;
1250 if ((clock
!= slot
->__clk_old
&&
1251 !test_bit(DW_MMC_CARD_NEEDS_POLL
, &slot
->flags
)) ||
1253 /* Silent the verbose log if calling from PM context */
1255 dev_info(&slot
->mmc
->class_dev
,
1256 "Bus speed (slot %d) = %dHz (slot req %dHz, actual %dHZ div = %d)\n",
1257 slot
->id
, host
->bus_hz
, clock
,
1258 div
? ((host
->bus_hz
/ div
) >> 1) :
1262 * If card is polling, display the message only
1263 * one time at boot time.
1265 if (slot
->mmc
->caps
& MMC_CAP_NEEDS_POLL
&&
1266 slot
->mmc
->f_min
== clock
)
1267 set_bit(DW_MMC_CARD_NEEDS_POLL
, &slot
->flags
);
1271 mci_writel(host
, CLKENA
, 0);
1272 mci_writel(host
, CLKSRC
, 0);
1275 mci_send_cmd(slot
, sdmmc_cmd_bits
, 0);
1277 /* set clock to desired speed */
1278 mci_writel(host
, CLKDIV
, div
);
1281 mci_send_cmd(slot
, sdmmc_cmd_bits
, 0);
1283 /* enable clock; only low power if no SDIO */
1284 clk_en_a
= SDMMC_CLKEN_ENABLE
<< slot
->id
;
1285 if (!test_bit(DW_MMC_CARD_NO_LOW_PWR
, &slot
->flags
))
1286 clk_en_a
|= SDMMC_CLKEN_LOW_PWR
<< slot
->id
;
1287 mci_writel(host
, CLKENA
, clk_en_a
);
1290 mci_send_cmd(slot
, sdmmc_cmd_bits
, 0);
1292 /* keep the last clock value that was requested from core */
1293 slot
->__clk_old
= clock
;
1294 slot
->mmc
->actual_clock
= div
? ((host
->bus_hz
/ div
) >> 1) :
1298 host
->current_speed
= clock
;
1300 /* Set the current slot bus width */
1301 mci_writel(host
, CTYPE
, (slot
->ctype
<< slot
->id
));
1304 static void __dw_mci_start_request(struct dw_mci
*host
,
1305 struct dw_mci_slot
*slot
,
1306 struct mmc_command
*cmd
)
1308 struct mmc_request
*mrq
;
1309 struct mmc_data
*data
;
1316 host
->pending_events
= 0;
1317 host
->completed_events
= 0;
1318 host
->cmd_status
= 0;
1319 host
->data_status
= 0;
1320 host
->dir_status
= 0;
1324 mci_writel(host
, TMOUT
, 0xFFFFFFFF);
1325 mci_writel(host
, BYTCNT
, data
->blksz
*data
->blocks
);
1326 mci_writel(host
, BLKSIZ
, data
->blksz
);
1329 cmdflags
= dw_mci_prepare_command(slot
->mmc
, cmd
);
1331 /* this is the first command, send the initialization clock */
1332 if (test_and_clear_bit(DW_MMC_CARD_NEED_INIT
, &slot
->flags
))
1333 cmdflags
|= SDMMC_CMD_INIT
;
1336 dw_mci_submit_data(host
, data
);
1337 wmb(); /* drain writebuffer */
1340 dw_mci_start_command(host
, cmd
, cmdflags
);
1342 if (cmd
->opcode
== SD_SWITCH_VOLTAGE
) {
1343 unsigned long irqflags
;
1346 * Databook says to fail after 2ms w/ no response, but evidence
1347 * shows that sometimes the cmd11 interrupt takes over 130ms.
1348 * We'll set to 500ms, plus an extra jiffy just in case jiffies
1349 * is just about to roll over.
1351 * We do this whole thing under spinlock and only if the
1352 * command hasn't already completed (indicating the the irq
1353 * already ran so we don't want the timeout).
1355 spin_lock_irqsave(&host
->irq_lock
, irqflags
);
1356 if (!test_bit(EVENT_CMD_COMPLETE
, &host
->pending_events
))
1357 mod_timer(&host
->cmd11_timer
,
1358 jiffies
+ msecs_to_jiffies(500) + 1);
1359 spin_unlock_irqrestore(&host
->irq_lock
, irqflags
);
1362 host
->stop_cmdr
= dw_mci_prep_stop_abort(host
, cmd
);
1365 static void dw_mci_start_request(struct dw_mci
*host
,
1366 struct dw_mci_slot
*slot
)
1368 struct mmc_request
*mrq
= slot
->mrq
;
1369 struct mmc_command
*cmd
;
1371 cmd
= mrq
->sbc
? mrq
->sbc
: mrq
->cmd
;
1372 __dw_mci_start_request(host
, slot
, cmd
);
1375 /* must be called with host->lock held */
1376 static void dw_mci_queue_request(struct dw_mci
*host
, struct dw_mci_slot
*slot
,
1377 struct mmc_request
*mrq
)
1379 dev_vdbg(&slot
->mmc
->class_dev
, "queue request: state=%d\n",
1384 if (host
->state
== STATE_WAITING_CMD11_DONE
) {
1385 dev_warn(&slot
->mmc
->class_dev
,
1386 "Voltage change didn't complete\n");
1388 * this case isn't expected to happen, so we can
1389 * either crash here or just try to continue on
1390 * in the closest possible state
1392 host
->state
= STATE_IDLE
;
1395 if (host
->state
== STATE_IDLE
) {
1396 host
->state
= STATE_SENDING_CMD
;
1397 dw_mci_start_request(host
, slot
);
1399 list_add_tail(&slot
->queue_node
, &host
->queue
);
1403 static void dw_mci_request(struct mmc_host
*mmc
, struct mmc_request
*mrq
)
1405 struct dw_mci_slot
*slot
= mmc_priv(mmc
);
1406 struct dw_mci
*host
= slot
->host
;
1411 * The check for card presence and queueing of the request must be
1412 * atomic, otherwise the card could be removed in between and the
1413 * request wouldn't fail until another card was inserted.
1416 if (!dw_mci_get_cd(mmc
)) {
1417 mrq
->cmd
->error
= -ENOMEDIUM
;
1418 mmc_request_done(mmc
, mrq
);
1422 spin_lock_bh(&host
->lock
);
1424 dw_mci_queue_request(host
, slot
, mrq
);
1426 spin_unlock_bh(&host
->lock
);
1429 static void dw_mci_set_ios(struct mmc_host
*mmc
, struct mmc_ios
*ios
)
1431 struct dw_mci_slot
*slot
= mmc_priv(mmc
);
1432 const struct dw_mci_drv_data
*drv_data
= slot
->host
->drv_data
;
1436 switch (ios
->bus_width
) {
1437 case MMC_BUS_WIDTH_4
:
1438 slot
->ctype
= SDMMC_CTYPE_4BIT
;
1440 case MMC_BUS_WIDTH_8
:
1441 slot
->ctype
= SDMMC_CTYPE_8BIT
;
1444 /* set default 1 bit mode */
1445 slot
->ctype
= SDMMC_CTYPE_1BIT
;
1448 regs
= mci_readl(slot
->host
, UHS_REG
);
1451 if (ios
->timing
== MMC_TIMING_MMC_DDR52
||
1452 ios
->timing
== MMC_TIMING_UHS_DDR50
||
1453 ios
->timing
== MMC_TIMING_MMC_HS400
)
1454 regs
|= ((0x1 << slot
->id
) << 16);
1456 regs
&= ~((0x1 << slot
->id
) << 16);
1458 mci_writel(slot
->host
, UHS_REG
, regs
);
1459 slot
->host
->timing
= ios
->timing
;
1462 * Use mirror of ios->clock to prevent race with mmc
1463 * core ios update when finding the minimum.
1465 slot
->clock
= ios
->clock
;
1467 if (drv_data
&& drv_data
->set_ios
)
1468 drv_data
->set_ios(slot
->host
, ios
);
1470 switch (ios
->power_mode
) {
1472 if (!IS_ERR(mmc
->supply
.vmmc
)) {
1473 ret
= mmc_regulator_set_ocr(mmc
, mmc
->supply
.vmmc
,
1476 dev_err(slot
->host
->dev
,
1477 "failed to enable vmmc regulator\n");
1478 /*return, if failed turn on vmmc*/
1482 set_bit(DW_MMC_CARD_NEED_INIT
, &slot
->flags
);
1483 regs
= mci_readl(slot
->host
, PWREN
);
1484 regs
|= (1 << slot
->id
);
1485 mci_writel(slot
->host
, PWREN
, regs
);
1488 if (!slot
->host
->vqmmc_enabled
) {
1489 if (!IS_ERR(mmc
->supply
.vqmmc
)) {
1490 ret
= regulator_enable(mmc
->supply
.vqmmc
);
1492 dev_err(slot
->host
->dev
,
1493 "failed to enable vqmmc\n");
1495 slot
->host
->vqmmc_enabled
= true;
1498 /* Keep track so we don't reset again */
1499 slot
->host
->vqmmc_enabled
= true;
1502 /* Reset our state machine after powering on */
1503 dw_mci_ctrl_reset(slot
->host
,
1504 SDMMC_CTRL_ALL_RESET_FLAGS
);
1507 /* Adjust clock / bus width after power is up */
1508 dw_mci_setup_bus(slot
, false);
1512 /* Turn clock off before power goes down */
1513 dw_mci_setup_bus(slot
, false);
1515 if (!IS_ERR(mmc
->supply
.vmmc
))
1516 mmc_regulator_set_ocr(mmc
, mmc
->supply
.vmmc
, 0);
1518 if (!IS_ERR(mmc
->supply
.vqmmc
) && slot
->host
->vqmmc_enabled
)
1519 regulator_disable(mmc
->supply
.vqmmc
);
1520 slot
->host
->vqmmc_enabled
= false;
1522 regs
= mci_readl(slot
->host
, PWREN
);
1523 regs
&= ~(1 << slot
->id
);
1524 mci_writel(slot
->host
, PWREN
, regs
);
1530 if (slot
->host
->state
== STATE_WAITING_CMD11_DONE
&& ios
->clock
!= 0)
1531 slot
->host
->state
= STATE_IDLE
;
1534 static int dw_mci_card_busy(struct mmc_host
*mmc
)
1536 struct dw_mci_slot
*slot
= mmc_priv(mmc
);
1540 * Check the busy bit which is low when DAT[3:0]
1541 * (the data lines) are 0000
1543 status
= mci_readl(slot
->host
, STATUS
);
1545 return !!(status
& SDMMC_STATUS_BUSY
);
1548 static int dw_mci_switch_voltage(struct mmc_host
*mmc
, struct mmc_ios
*ios
)
1550 struct dw_mci_slot
*slot
= mmc_priv(mmc
);
1551 struct dw_mci
*host
= slot
->host
;
1552 const struct dw_mci_drv_data
*drv_data
= host
->drv_data
;
1554 u32 v18
= SDMMC_UHS_18V
<< slot
->id
;
1557 if (drv_data
&& drv_data
->switch_voltage
)
1558 return drv_data
->switch_voltage(mmc
, ios
);
1561 * Program the voltage. Note that some instances of dw_mmc may use
1562 * the UHS_REG for this. For other instances (like exynos) the UHS_REG
1563 * does no harm but you need to set the regulator directly. Try both.
1565 uhs
= mci_readl(host
, UHS_REG
);
1566 if (ios
->signal_voltage
== MMC_SIGNAL_VOLTAGE_330
)
1571 if (!IS_ERR(mmc
->supply
.vqmmc
)) {
1572 ret
= mmc_regulator_set_vqmmc(mmc
, ios
);
1575 dev_dbg(&mmc
->class_dev
,
1576 "Regulator set error %d - %s V\n",
1577 ret
, uhs
& v18
? "1.8" : "3.3");
1581 mci_writel(host
, UHS_REG
, uhs
);
1586 static int dw_mci_get_ro(struct mmc_host
*mmc
)
1589 struct dw_mci_slot
*slot
= mmc_priv(mmc
);
1590 int gpio_ro
= mmc_gpio_get_ro(mmc
);
1592 /* Use platform get_ro function, else try on board write protect */
1594 read_only
= gpio_ro
;
1597 mci_readl(slot
->host
, WRTPRT
) & (1 << slot
->id
) ? 1 : 0;
1599 dev_dbg(&mmc
->class_dev
, "card is %s\n",
1600 read_only
? "read-only" : "read-write");
1605 static void dw_mci_hw_reset(struct mmc_host
*mmc
)
1607 struct dw_mci_slot
*slot
= mmc_priv(mmc
);
1608 struct dw_mci
*host
= slot
->host
;
1611 if (host
->use_dma
== TRANS_MODE_IDMAC
)
1612 dw_mci_idmac_reset(host
);
1614 if (!dw_mci_ctrl_reset(host
, SDMMC_CTRL_DMA_RESET
|
1615 SDMMC_CTRL_FIFO_RESET
))
1619 * According to eMMC spec, card reset procedure:
1620 * tRstW >= 1us: RST_n pulse width
1621 * tRSCA >= 200us: RST_n to Command time
1622 * tRSTH >= 1us: RST_n high period
1624 reset
= mci_readl(host
, RST_N
);
1625 reset
&= ~(SDMMC_RST_HWACTIVE
<< slot
->id
);
1626 mci_writel(host
, RST_N
, reset
);
1628 reset
|= SDMMC_RST_HWACTIVE
<< slot
->id
;
1629 mci_writel(host
, RST_N
, reset
);
1630 usleep_range(200, 300);
1633 static void dw_mci_init_card(struct mmc_host
*mmc
, struct mmc_card
*card
)
1635 struct dw_mci_slot
*slot
= mmc_priv(mmc
);
1636 struct dw_mci
*host
= slot
->host
;
1639 * Low power mode will stop the card clock when idle. According to the
1640 * description of the CLKENA register we should disable low power mode
1641 * for SDIO cards if we need SDIO interrupts to work.
1643 if (mmc
->caps
& MMC_CAP_SDIO_IRQ
) {
1644 const u32 clken_low_pwr
= SDMMC_CLKEN_LOW_PWR
<< slot
->id
;
1648 clk_en_a_old
= mci_readl(host
, CLKENA
);
1650 if (card
->type
== MMC_TYPE_SDIO
||
1651 card
->type
== MMC_TYPE_SD_COMBO
) {
1652 set_bit(DW_MMC_CARD_NO_LOW_PWR
, &slot
->flags
);
1653 clk_en_a
= clk_en_a_old
& ~clken_low_pwr
;
1655 clear_bit(DW_MMC_CARD_NO_LOW_PWR
, &slot
->flags
);
1656 clk_en_a
= clk_en_a_old
| clken_low_pwr
;
1659 if (clk_en_a
!= clk_en_a_old
) {
1660 mci_writel(host
, CLKENA
, clk_en_a
);
1661 mci_send_cmd(slot
, SDMMC_CMD_UPD_CLK
|
1662 SDMMC_CMD_PRV_DAT_WAIT
, 0);
1667 static void __dw_mci_enable_sdio_irq(struct dw_mci_slot
*slot
, int enb
)
1669 struct dw_mci
*host
= slot
->host
;
1670 unsigned long irqflags
;
1673 spin_lock_irqsave(&host
->irq_lock
, irqflags
);
1675 /* Enable/disable Slot Specific SDIO interrupt */
1676 int_mask
= mci_readl(host
, INTMASK
);
1678 int_mask
|= SDMMC_INT_SDIO(slot
->sdio_id
);
1680 int_mask
&= ~SDMMC_INT_SDIO(slot
->sdio_id
);
1681 mci_writel(host
, INTMASK
, int_mask
);
1683 spin_unlock_irqrestore(&host
->irq_lock
, irqflags
);
1686 static void dw_mci_enable_sdio_irq(struct mmc_host
*mmc
, int enb
)
1688 struct dw_mci_slot
*slot
= mmc_priv(mmc
);
1689 struct dw_mci
*host
= slot
->host
;
1691 __dw_mci_enable_sdio_irq(slot
, enb
);
1693 /* Avoid runtime suspending the device when SDIO IRQ is enabled */
1695 pm_runtime_get_noresume(host
->dev
);
1697 pm_runtime_put_noidle(host
->dev
);
1700 static void dw_mci_ack_sdio_irq(struct mmc_host
*mmc
)
1702 struct dw_mci_slot
*slot
= mmc_priv(mmc
);
1704 __dw_mci_enable_sdio_irq(slot
, 1);
1707 static int dw_mci_execute_tuning(struct mmc_host
*mmc
, u32 opcode
)
1709 struct dw_mci_slot
*slot
= mmc_priv(mmc
);
1710 struct dw_mci
*host
= slot
->host
;
1711 const struct dw_mci_drv_data
*drv_data
= host
->drv_data
;
1714 if (drv_data
&& drv_data
->execute_tuning
)
1715 err
= drv_data
->execute_tuning(slot
, opcode
);
1719 static int dw_mci_prepare_hs400_tuning(struct mmc_host
*mmc
,
1720 struct mmc_ios
*ios
)
1722 struct dw_mci_slot
*slot
= mmc_priv(mmc
);
1723 struct dw_mci
*host
= slot
->host
;
1724 const struct dw_mci_drv_data
*drv_data
= host
->drv_data
;
1726 if (drv_data
&& drv_data
->prepare_hs400_tuning
)
1727 return drv_data
->prepare_hs400_tuning(host
, ios
);
1732 static bool dw_mci_reset(struct dw_mci
*host
)
1734 u32 flags
= SDMMC_CTRL_RESET
| SDMMC_CTRL_FIFO_RESET
;
1739 * Resetting generates a block interrupt, hence setting
1740 * the scatter-gather pointer to NULL.
1743 sg_miter_stop(&host
->sg_miter
);
1748 flags
|= SDMMC_CTRL_DMA_RESET
;
1750 if (dw_mci_ctrl_reset(host
, flags
)) {
1752 * In all cases we clear the RAWINTS
1753 * register to clear any interrupts.
1755 mci_writel(host
, RINTSTS
, 0xFFFFFFFF);
1757 if (!host
->use_dma
) {
1762 /* Wait for dma_req to be cleared */
1763 if (readl_poll_timeout_atomic(host
->regs
+ SDMMC_STATUS
,
1765 !(status
& SDMMC_STATUS_DMA_REQ
),
1766 1, 500 * USEC_PER_MSEC
)) {
1768 "%s: Timeout waiting for dma_req to be cleared\n",
1773 /* when using DMA next we reset the fifo again */
1774 if (!dw_mci_ctrl_reset(host
, SDMMC_CTRL_FIFO_RESET
))
1777 /* if the controller reset bit did clear, then set clock regs */
1778 if (!(mci_readl(host
, CTRL
) & SDMMC_CTRL_RESET
)) {
1780 "%s: fifo/dma reset bits didn't clear but ciu was reset, doing clock update\n",
1786 if (host
->use_dma
== TRANS_MODE_IDMAC
)
1787 /* It is also required that we reinit idmac */
1788 dw_mci_idmac_init(host
);
1793 /* After a CTRL reset we need to have CIU set clock registers */
1794 mci_send_cmd(host
->slot
, SDMMC_CMD_UPD_CLK
, 0);
1799 static const struct mmc_host_ops dw_mci_ops
= {
1800 .request
= dw_mci_request
,
1801 .pre_req
= dw_mci_pre_req
,
1802 .post_req
= dw_mci_post_req
,
1803 .set_ios
= dw_mci_set_ios
,
1804 .get_ro
= dw_mci_get_ro
,
1805 .get_cd
= dw_mci_get_cd
,
1806 .hw_reset
= dw_mci_hw_reset
,
1807 .enable_sdio_irq
= dw_mci_enable_sdio_irq
,
1808 .ack_sdio_irq
= dw_mci_ack_sdio_irq
,
1809 .execute_tuning
= dw_mci_execute_tuning
,
1810 .card_busy
= dw_mci_card_busy
,
1811 .start_signal_voltage_switch
= dw_mci_switch_voltage
,
1812 .init_card
= dw_mci_init_card
,
1813 .prepare_hs400_tuning
= dw_mci_prepare_hs400_tuning
,
1816 static void dw_mci_request_end(struct dw_mci
*host
, struct mmc_request
*mrq
)
1817 __releases(&host
->lock
)
1818 __acquires(&host
->lock
)
1820 struct dw_mci_slot
*slot
;
1821 struct mmc_host
*prev_mmc
= host
->slot
->mmc
;
1823 WARN_ON(host
->cmd
|| host
->data
);
1825 host
->slot
->mrq
= NULL
;
1827 if (!list_empty(&host
->queue
)) {
1828 slot
= list_entry(host
->queue
.next
,
1829 struct dw_mci_slot
, queue_node
);
1830 list_del(&slot
->queue_node
);
1831 dev_vdbg(host
->dev
, "list not empty: %s is next\n",
1832 mmc_hostname(slot
->mmc
));
1833 host
->state
= STATE_SENDING_CMD
;
1834 dw_mci_start_request(host
, slot
);
1836 dev_vdbg(host
->dev
, "list empty\n");
1838 if (host
->state
== STATE_SENDING_CMD11
)
1839 host
->state
= STATE_WAITING_CMD11_DONE
;
1841 host
->state
= STATE_IDLE
;
1844 spin_unlock(&host
->lock
);
1845 mmc_request_done(prev_mmc
, mrq
);
1846 spin_lock(&host
->lock
);
1849 static int dw_mci_command_complete(struct dw_mci
*host
, struct mmc_command
*cmd
)
1851 u32 status
= host
->cmd_status
;
1853 host
->cmd_status
= 0;
1855 /* Read the response from the card (up to 16 bytes) */
1856 if (cmd
->flags
& MMC_RSP_PRESENT
) {
1857 if (cmd
->flags
& MMC_RSP_136
) {
1858 cmd
->resp
[3] = mci_readl(host
, RESP0
);
1859 cmd
->resp
[2] = mci_readl(host
, RESP1
);
1860 cmd
->resp
[1] = mci_readl(host
, RESP2
);
1861 cmd
->resp
[0] = mci_readl(host
, RESP3
);
1863 cmd
->resp
[0] = mci_readl(host
, RESP0
);
1870 if (status
& SDMMC_INT_RTO
)
1871 cmd
->error
= -ETIMEDOUT
;
1872 else if ((cmd
->flags
& MMC_RSP_CRC
) && (status
& SDMMC_INT_RCRC
))
1873 cmd
->error
= -EILSEQ
;
1874 else if (status
& SDMMC_INT_RESP_ERR
)
1882 static int dw_mci_data_complete(struct dw_mci
*host
, struct mmc_data
*data
)
1884 u32 status
= host
->data_status
;
1886 if (status
& DW_MCI_DATA_ERROR_FLAGS
) {
1887 if (status
& SDMMC_INT_DRTO
) {
1888 data
->error
= -ETIMEDOUT
;
1889 } else if (status
& SDMMC_INT_DCRC
) {
1890 data
->error
= -EILSEQ
;
1891 } else if (status
& SDMMC_INT_EBE
) {
1892 if (host
->dir_status
==
1893 DW_MCI_SEND_STATUS
) {
1895 * No data CRC status was returned.
1896 * The number of bytes transferred
1897 * will be exaggerated in PIO mode.
1899 data
->bytes_xfered
= 0;
1900 data
->error
= -ETIMEDOUT
;
1901 } else if (host
->dir_status
==
1902 DW_MCI_RECV_STATUS
) {
1903 data
->error
= -EILSEQ
;
1906 /* SDMMC_INT_SBE is included */
1907 data
->error
= -EILSEQ
;
1910 dev_dbg(host
->dev
, "data error, status 0x%08x\n", status
);
1913 * After an error, there may be data lingering
1918 data
->bytes_xfered
= data
->blocks
* data
->blksz
;
1925 static void dw_mci_set_drto(struct dw_mci
*host
)
1927 unsigned int drto_clks
;
1928 unsigned int drto_div
;
1929 unsigned int drto_ms
;
1930 unsigned long irqflags
;
1932 drto_clks
= mci_readl(host
, TMOUT
) >> 8;
1933 drto_div
= (mci_readl(host
, CLKDIV
) & 0xff) * 2;
1937 drto_ms
= DIV_ROUND_UP_ULL((u64
)MSEC_PER_SEC
* drto_clks
* drto_div
,
1940 /* add a bit spare time */
1943 spin_lock_irqsave(&host
->irq_lock
, irqflags
);
1944 if (!test_bit(EVENT_DATA_COMPLETE
, &host
->pending_events
))
1945 mod_timer(&host
->dto_timer
,
1946 jiffies
+ msecs_to_jiffies(drto_ms
));
1947 spin_unlock_irqrestore(&host
->irq_lock
, irqflags
);
1950 static bool dw_mci_clear_pending_cmd_complete(struct dw_mci
*host
)
1952 if (!test_bit(EVENT_CMD_COMPLETE
, &host
->pending_events
))
1956 * Really be certain that the timer has stopped. This is a bit of
1957 * paranoia and could only really happen if we had really bad
1958 * interrupt latency and the interrupt routine and timeout were
1959 * running concurrently so that the del_timer() in the interrupt
1960 * handler couldn't run.
1962 WARN_ON(del_timer_sync(&host
->cto_timer
));
1963 clear_bit(EVENT_CMD_COMPLETE
, &host
->pending_events
);
1968 static bool dw_mci_clear_pending_data_complete(struct dw_mci
*host
)
1970 if (!test_bit(EVENT_DATA_COMPLETE
, &host
->pending_events
))
1973 /* Extra paranoia just like dw_mci_clear_pending_cmd_complete() */
1974 WARN_ON(del_timer_sync(&host
->dto_timer
));
1975 clear_bit(EVENT_DATA_COMPLETE
, &host
->pending_events
);
1980 static void dw_mci_tasklet_func(unsigned long priv
)
1982 struct dw_mci
*host
= (struct dw_mci
*)priv
;
1983 struct mmc_data
*data
;
1984 struct mmc_command
*cmd
;
1985 struct mmc_request
*mrq
;
1986 enum dw_mci_state state
;
1987 enum dw_mci_state prev_state
;
1990 spin_lock(&host
->lock
);
1992 state
= host
->state
;
2001 case STATE_WAITING_CMD11_DONE
:
2004 case STATE_SENDING_CMD11
:
2005 case STATE_SENDING_CMD
:
2006 if (!dw_mci_clear_pending_cmd_complete(host
))
2011 set_bit(EVENT_CMD_COMPLETE
, &host
->completed_events
);
2012 err
= dw_mci_command_complete(host
, cmd
);
2013 if (cmd
== mrq
->sbc
&& !err
) {
2014 __dw_mci_start_request(host
, host
->slot
,
2019 if (cmd
->data
&& err
) {
2021 * During UHS tuning sequence, sending the stop
2022 * command after the response CRC error would
2023 * throw the system into a confused state
2024 * causing all future tuning phases to report
2027 * In such case controller will move into a data
2028 * transfer state after a response error or
2029 * response CRC error. Let's let that finish
2030 * before trying to send a stop, so we'll go to
2031 * STATE_SENDING_DATA.
2033 * Although letting the data transfer take place
2034 * will waste a bit of time (we already know
2035 * the command was bad), it can't cause any
2036 * errors since it's possible it would have
2037 * taken place anyway if this tasklet got
2038 * delayed. Allowing the transfer to take place
2039 * avoids races and keeps things simple.
2041 if ((err
!= -ETIMEDOUT
) &&
2042 (cmd
->opcode
== MMC_SEND_TUNING_BLOCK
)) {
2043 state
= STATE_SENDING_DATA
;
2047 dw_mci_stop_dma(host
);
2048 send_stop_abort(host
, data
);
2049 state
= STATE_SENDING_STOP
;
2053 if (!cmd
->data
|| err
) {
2054 dw_mci_request_end(host
, mrq
);
2058 prev_state
= state
= STATE_SENDING_DATA
;
2061 case STATE_SENDING_DATA
:
2063 * We could get a data error and never a transfer
2064 * complete so we'd better check for it here.
2066 * Note that we don't really care if we also got a
2067 * transfer complete; stopping the DMA and sending an
2070 if (test_and_clear_bit(EVENT_DATA_ERROR
,
2071 &host
->pending_events
)) {
2072 dw_mci_stop_dma(host
);
2073 if (!(host
->data_status
& (SDMMC_INT_DRTO
|
2075 send_stop_abort(host
, data
);
2076 state
= STATE_DATA_ERROR
;
2080 if (!test_and_clear_bit(EVENT_XFER_COMPLETE
,
2081 &host
->pending_events
)) {
2083 * If all data-related interrupts don't come
2084 * within the given time in reading data state.
2086 if (host
->dir_status
== DW_MCI_RECV_STATUS
)
2087 dw_mci_set_drto(host
);
2091 set_bit(EVENT_XFER_COMPLETE
, &host
->completed_events
);
2094 * Handle an EVENT_DATA_ERROR that might have shown up
2095 * before the transfer completed. This might not have
2096 * been caught by the check above because the interrupt
2097 * could have gone off between the previous check and
2098 * the check for transfer complete.
2100 * Technically this ought not be needed assuming we
2101 * get a DATA_COMPLETE eventually (we'll notice the
2102 * error and end the request), but it shouldn't hurt.
2104 * This has the advantage of sending the stop command.
2106 if (test_and_clear_bit(EVENT_DATA_ERROR
,
2107 &host
->pending_events
)) {
2108 dw_mci_stop_dma(host
);
2109 if (!(host
->data_status
& (SDMMC_INT_DRTO
|
2111 send_stop_abort(host
, data
);
2112 state
= STATE_DATA_ERROR
;
2115 prev_state
= state
= STATE_DATA_BUSY
;
2119 case STATE_DATA_BUSY
:
2120 if (!dw_mci_clear_pending_data_complete(host
)) {
2122 * If data error interrupt comes but data over
2123 * interrupt doesn't come within the given time.
2124 * in reading data state.
2126 if (host
->dir_status
== DW_MCI_RECV_STATUS
)
2127 dw_mci_set_drto(host
);
2132 set_bit(EVENT_DATA_COMPLETE
, &host
->completed_events
);
2133 err
= dw_mci_data_complete(host
, data
);
2136 if (!data
->stop
|| mrq
->sbc
) {
2137 if (mrq
->sbc
&& data
->stop
)
2138 data
->stop
->error
= 0;
2139 dw_mci_request_end(host
, mrq
);
2143 /* stop command for open-ended transfer*/
2145 send_stop_abort(host
, data
);
2148 * If we don't have a command complete now we'll
2149 * never get one since we just reset everything;
2150 * better end the request.
2152 * If we do have a command complete we'll fall
2153 * through to the SENDING_STOP command and
2154 * everything will be peachy keen.
2156 if (!test_bit(EVENT_CMD_COMPLETE
,
2157 &host
->pending_events
)) {
2159 dw_mci_request_end(host
, mrq
);
2165 * If err has non-zero,
2166 * stop-abort command has been already issued.
2168 prev_state
= state
= STATE_SENDING_STOP
;
2172 case STATE_SENDING_STOP
:
2173 if (!dw_mci_clear_pending_cmd_complete(host
))
2176 /* CMD error in data command */
2177 if (mrq
->cmd
->error
&& mrq
->data
)
2183 if (!mrq
->sbc
&& mrq
->stop
)
2184 dw_mci_command_complete(host
, mrq
->stop
);
2186 host
->cmd_status
= 0;
2188 dw_mci_request_end(host
, mrq
);
2191 case STATE_DATA_ERROR
:
2192 if (!test_and_clear_bit(EVENT_XFER_COMPLETE
,
2193 &host
->pending_events
))
2196 state
= STATE_DATA_BUSY
;
2199 } while (state
!= prev_state
);
2201 host
->state
= state
;
2203 spin_unlock(&host
->lock
);
2207 /* push final bytes to part_buf, only use during push */
2208 static void dw_mci_set_part_bytes(struct dw_mci
*host
, void *buf
, int cnt
)
2210 memcpy((void *)&host
->part_buf
, buf
, cnt
);
2211 host
->part_buf_count
= cnt
;
2214 /* append bytes to part_buf, only use during push */
2215 static int dw_mci_push_part_bytes(struct dw_mci
*host
, void *buf
, int cnt
)
2217 cnt
= min(cnt
, (1 << host
->data_shift
) - host
->part_buf_count
);
2218 memcpy((void *)&host
->part_buf
+ host
->part_buf_count
, buf
, cnt
);
2219 host
->part_buf_count
+= cnt
;
2223 /* pull first bytes from part_buf, only use during pull */
2224 static int dw_mci_pull_part_bytes(struct dw_mci
*host
, void *buf
, int cnt
)
2226 cnt
= min_t(int, cnt
, host
->part_buf_count
);
2228 memcpy(buf
, (void *)&host
->part_buf
+ host
->part_buf_start
,
2230 host
->part_buf_count
-= cnt
;
2231 host
->part_buf_start
+= cnt
;
2236 /* pull final bytes from the part_buf, assuming it's just been filled */
2237 static void dw_mci_pull_final_bytes(struct dw_mci
*host
, void *buf
, int cnt
)
2239 memcpy(buf
, &host
->part_buf
, cnt
);
2240 host
->part_buf_start
= cnt
;
2241 host
->part_buf_count
= (1 << host
->data_shift
) - cnt
;
2244 static void dw_mci_push_data16(struct dw_mci
*host
, void *buf
, int cnt
)
2246 struct mmc_data
*data
= host
->data
;
2249 /* try and push anything in the part_buf */
2250 if (unlikely(host
->part_buf_count
)) {
2251 int len
= dw_mci_push_part_bytes(host
, buf
, cnt
);
2255 if (host
->part_buf_count
== 2) {
2256 mci_fifo_writew(host
->fifo_reg
, host
->part_buf16
);
2257 host
->part_buf_count
= 0;
2260 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2261 if (unlikely((unsigned long)buf
& 0x1)) {
2263 u16 aligned_buf
[64];
2264 int len
= min(cnt
& -2, (int)sizeof(aligned_buf
));
2265 int items
= len
>> 1;
2267 /* memcpy from input buffer into aligned buffer */
2268 memcpy(aligned_buf
, buf
, len
);
2271 /* push data from aligned buffer into fifo */
2272 for (i
= 0; i
< items
; ++i
)
2273 mci_fifo_writew(host
->fifo_reg
, aligned_buf
[i
]);
2280 for (; cnt
>= 2; cnt
-= 2)
2281 mci_fifo_writew(host
->fifo_reg
, *pdata
++);
2284 /* put anything remaining in the part_buf */
2286 dw_mci_set_part_bytes(host
, buf
, cnt
);
2287 /* Push data if we have reached the expected data length */
2288 if ((data
->bytes_xfered
+ init_cnt
) ==
2289 (data
->blksz
* data
->blocks
))
2290 mci_fifo_writew(host
->fifo_reg
, host
->part_buf16
);
2294 static void dw_mci_pull_data16(struct dw_mci
*host
, void *buf
, int cnt
)
2296 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2297 if (unlikely((unsigned long)buf
& 0x1)) {
2299 /* pull data from fifo into aligned buffer */
2300 u16 aligned_buf
[64];
2301 int len
= min(cnt
& -2, (int)sizeof(aligned_buf
));
2302 int items
= len
>> 1;
2305 for (i
= 0; i
< items
; ++i
)
2306 aligned_buf
[i
] = mci_fifo_readw(host
->fifo_reg
);
2307 /* memcpy from aligned buffer into output buffer */
2308 memcpy(buf
, aligned_buf
, len
);
2317 for (; cnt
>= 2; cnt
-= 2)
2318 *pdata
++ = mci_fifo_readw(host
->fifo_reg
);
2322 host
->part_buf16
= mci_fifo_readw(host
->fifo_reg
);
2323 dw_mci_pull_final_bytes(host
, buf
, cnt
);
2327 static void dw_mci_push_data32(struct dw_mci
*host
, void *buf
, int cnt
)
2329 struct mmc_data
*data
= host
->data
;
2332 /* try and push anything in the part_buf */
2333 if (unlikely(host
->part_buf_count
)) {
2334 int len
= dw_mci_push_part_bytes(host
, buf
, cnt
);
2338 if (host
->part_buf_count
== 4) {
2339 mci_fifo_writel(host
->fifo_reg
, host
->part_buf32
);
2340 host
->part_buf_count
= 0;
2343 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2344 if (unlikely((unsigned long)buf
& 0x3)) {
2346 u32 aligned_buf
[32];
2347 int len
= min(cnt
& -4, (int)sizeof(aligned_buf
));
2348 int items
= len
>> 2;
2350 /* memcpy from input buffer into aligned buffer */
2351 memcpy(aligned_buf
, buf
, len
);
2354 /* push data from aligned buffer into fifo */
2355 for (i
= 0; i
< items
; ++i
)
2356 mci_fifo_writel(host
->fifo_reg
, aligned_buf
[i
]);
2363 for (; cnt
>= 4; cnt
-= 4)
2364 mci_fifo_writel(host
->fifo_reg
, *pdata
++);
2367 /* put anything remaining in the part_buf */
2369 dw_mci_set_part_bytes(host
, buf
, cnt
);
2370 /* Push data if we have reached the expected data length */
2371 if ((data
->bytes_xfered
+ init_cnt
) ==
2372 (data
->blksz
* data
->blocks
))
2373 mci_fifo_writel(host
->fifo_reg
, host
->part_buf32
);
2377 static void dw_mci_pull_data32(struct dw_mci
*host
, void *buf
, int cnt
)
2379 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2380 if (unlikely((unsigned long)buf
& 0x3)) {
2382 /* pull data from fifo into aligned buffer */
2383 u32 aligned_buf
[32];
2384 int len
= min(cnt
& -4, (int)sizeof(aligned_buf
));
2385 int items
= len
>> 2;
2388 for (i
= 0; i
< items
; ++i
)
2389 aligned_buf
[i
] = mci_fifo_readl(host
->fifo_reg
);
2390 /* memcpy from aligned buffer into output buffer */
2391 memcpy(buf
, aligned_buf
, len
);
2400 for (; cnt
>= 4; cnt
-= 4)
2401 *pdata
++ = mci_fifo_readl(host
->fifo_reg
);
2405 host
->part_buf32
= mci_fifo_readl(host
->fifo_reg
);
2406 dw_mci_pull_final_bytes(host
, buf
, cnt
);
2410 static void dw_mci_push_data64(struct dw_mci
*host
, void *buf
, int cnt
)
2412 struct mmc_data
*data
= host
->data
;
2415 /* try and push anything in the part_buf */
2416 if (unlikely(host
->part_buf_count
)) {
2417 int len
= dw_mci_push_part_bytes(host
, buf
, cnt
);
2422 if (host
->part_buf_count
== 8) {
2423 mci_fifo_writeq(host
->fifo_reg
, host
->part_buf
);
2424 host
->part_buf_count
= 0;
2427 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2428 if (unlikely((unsigned long)buf
& 0x7)) {
2430 u64 aligned_buf
[16];
2431 int len
= min(cnt
& -8, (int)sizeof(aligned_buf
));
2432 int items
= len
>> 3;
2434 /* memcpy from input buffer into aligned buffer */
2435 memcpy(aligned_buf
, buf
, len
);
2438 /* push data from aligned buffer into fifo */
2439 for (i
= 0; i
< items
; ++i
)
2440 mci_fifo_writeq(host
->fifo_reg
, aligned_buf
[i
]);
2447 for (; cnt
>= 8; cnt
-= 8)
2448 mci_fifo_writeq(host
->fifo_reg
, *pdata
++);
2451 /* put anything remaining in the part_buf */
2453 dw_mci_set_part_bytes(host
, buf
, cnt
);
2454 /* Push data if we have reached the expected data length */
2455 if ((data
->bytes_xfered
+ init_cnt
) ==
2456 (data
->blksz
* data
->blocks
))
2457 mci_fifo_writeq(host
->fifo_reg
, host
->part_buf
);
2461 static void dw_mci_pull_data64(struct dw_mci
*host
, void *buf
, int cnt
)
2463 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2464 if (unlikely((unsigned long)buf
& 0x7)) {
2466 /* pull data from fifo into aligned buffer */
2467 u64 aligned_buf
[16];
2468 int len
= min(cnt
& -8, (int)sizeof(aligned_buf
));
2469 int items
= len
>> 3;
2472 for (i
= 0; i
< items
; ++i
)
2473 aligned_buf
[i
] = mci_fifo_readq(host
->fifo_reg
);
2475 /* memcpy from aligned buffer into output buffer */
2476 memcpy(buf
, aligned_buf
, len
);
2485 for (; cnt
>= 8; cnt
-= 8)
2486 *pdata
++ = mci_fifo_readq(host
->fifo_reg
);
2490 host
->part_buf
= mci_fifo_readq(host
->fifo_reg
);
2491 dw_mci_pull_final_bytes(host
, buf
, cnt
);
2495 static void dw_mci_pull_data(struct dw_mci
*host
, void *buf
, int cnt
)
2499 /* get remaining partial bytes */
2500 len
= dw_mci_pull_part_bytes(host
, buf
, cnt
);
2501 if (unlikely(len
== cnt
))
2506 /* get the rest of the data */
2507 host
->pull_data(host
, buf
, cnt
);
2510 static void dw_mci_read_data_pio(struct dw_mci
*host
, bool dto
)
2512 struct sg_mapping_iter
*sg_miter
= &host
->sg_miter
;
2514 unsigned int offset
;
2515 struct mmc_data
*data
= host
->data
;
2516 int shift
= host
->data_shift
;
2519 unsigned int remain
, fcnt
;
2522 if (!sg_miter_next(sg_miter
))
2525 host
->sg
= sg_miter
->piter
.sg
;
2526 buf
= sg_miter
->addr
;
2527 remain
= sg_miter
->length
;
2531 fcnt
= (SDMMC_GET_FCNT(mci_readl(host
, STATUS
))
2532 << shift
) + host
->part_buf_count
;
2533 len
= min(remain
, fcnt
);
2536 dw_mci_pull_data(host
, (void *)(buf
+ offset
), len
);
2537 data
->bytes_xfered
+= len
;
2542 sg_miter
->consumed
= offset
;
2543 status
= mci_readl(host
, MINTSTS
);
2544 mci_writel(host
, RINTSTS
, SDMMC_INT_RXDR
);
2545 /* if the RXDR is ready read again */
2546 } while ((status
& SDMMC_INT_RXDR
) ||
2547 (dto
&& SDMMC_GET_FCNT(mci_readl(host
, STATUS
))));
2550 if (!sg_miter_next(sg_miter
))
2552 sg_miter
->consumed
= 0;
2554 sg_miter_stop(sg_miter
);
2558 sg_miter_stop(sg_miter
);
2560 smp_wmb(); /* drain writebuffer */
2561 set_bit(EVENT_XFER_COMPLETE
, &host
->pending_events
);
2564 static void dw_mci_write_data_pio(struct dw_mci
*host
)
2566 struct sg_mapping_iter
*sg_miter
= &host
->sg_miter
;
2568 unsigned int offset
;
2569 struct mmc_data
*data
= host
->data
;
2570 int shift
= host
->data_shift
;
2573 unsigned int fifo_depth
= host
->fifo_depth
;
2574 unsigned int remain
, fcnt
;
2577 if (!sg_miter_next(sg_miter
))
2580 host
->sg
= sg_miter
->piter
.sg
;
2581 buf
= sg_miter
->addr
;
2582 remain
= sg_miter
->length
;
2586 fcnt
= ((fifo_depth
-
2587 SDMMC_GET_FCNT(mci_readl(host
, STATUS
)))
2588 << shift
) - host
->part_buf_count
;
2589 len
= min(remain
, fcnt
);
2592 host
->push_data(host
, (void *)(buf
+ offset
), len
);
2593 data
->bytes_xfered
+= len
;
2598 sg_miter
->consumed
= offset
;
2599 status
= mci_readl(host
, MINTSTS
);
2600 mci_writel(host
, RINTSTS
, SDMMC_INT_TXDR
);
2601 } while (status
& SDMMC_INT_TXDR
); /* if TXDR write again */
2604 if (!sg_miter_next(sg_miter
))
2606 sg_miter
->consumed
= 0;
2608 sg_miter_stop(sg_miter
);
2612 sg_miter_stop(sg_miter
);
2614 smp_wmb(); /* drain writebuffer */
2615 set_bit(EVENT_XFER_COMPLETE
, &host
->pending_events
);
2618 static void dw_mci_cmd_interrupt(struct dw_mci
*host
, u32 status
)
2620 del_timer(&host
->cto_timer
);
2622 if (!host
->cmd_status
)
2623 host
->cmd_status
= status
;
2625 smp_wmb(); /* drain writebuffer */
2627 set_bit(EVENT_CMD_COMPLETE
, &host
->pending_events
);
2628 tasklet_schedule(&host
->tasklet
);
2631 static void dw_mci_handle_cd(struct dw_mci
*host
)
2633 struct dw_mci_slot
*slot
= host
->slot
;
2635 if (slot
->mmc
->ops
->card_event
)
2636 slot
->mmc
->ops
->card_event(slot
->mmc
);
2637 mmc_detect_change(slot
->mmc
,
2638 msecs_to_jiffies(host
->pdata
->detect_delay_ms
));
2641 static irqreturn_t
dw_mci_interrupt(int irq
, void *dev_id
)
2643 struct dw_mci
*host
= dev_id
;
2645 struct dw_mci_slot
*slot
= host
->slot
;
2646 unsigned long irqflags
;
2648 pending
= mci_readl(host
, MINTSTS
); /* read-only mask reg */
2651 /* Check volt switch first, since it can look like an error */
2652 if ((host
->state
== STATE_SENDING_CMD11
) &&
2653 (pending
& SDMMC_INT_VOLT_SWITCH
)) {
2654 mci_writel(host
, RINTSTS
, SDMMC_INT_VOLT_SWITCH
);
2655 pending
&= ~SDMMC_INT_VOLT_SWITCH
;
2658 * Hold the lock; we know cmd11_timer can't be kicked
2659 * off after the lock is released, so safe to delete.
2661 spin_lock_irqsave(&host
->irq_lock
, irqflags
);
2662 dw_mci_cmd_interrupt(host
, pending
);
2663 spin_unlock_irqrestore(&host
->irq_lock
, irqflags
);
2665 del_timer(&host
->cmd11_timer
);
2668 if (pending
& DW_MCI_CMD_ERROR_FLAGS
) {
2669 spin_lock_irqsave(&host
->irq_lock
, irqflags
);
2671 del_timer(&host
->cto_timer
);
2672 mci_writel(host
, RINTSTS
, DW_MCI_CMD_ERROR_FLAGS
);
2673 host
->cmd_status
= pending
;
2674 smp_wmb(); /* drain writebuffer */
2675 set_bit(EVENT_CMD_COMPLETE
, &host
->pending_events
);
2677 spin_unlock_irqrestore(&host
->irq_lock
, irqflags
);
2680 if (pending
& DW_MCI_DATA_ERROR_FLAGS
) {
2681 /* if there is an error report DATA_ERROR */
2682 mci_writel(host
, RINTSTS
, DW_MCI_DATA_ERROR_FLAGS
);
2683 host
->data_status
= pending
;
2684 smp_wmb(); /* drain writebuffer */
2685 set_bit(EVENT_DATA_ERROR
, &host
->pending_events
);
2686 tasklet_schedule(&host
->tasklet
);
2689 if (pending
& SDMMC_INT_DATA_OVER
) {
2690 spin_lock_irqsave(&host
->irq_lock
, irqflags
);
2692 del_timer(&host
->dto_timer
);
2694 mci_writel(host
, RINTSTS
, SDMMC_INT_DATA_OVER
);
2695 if (!host
->data_status
)
2696 host
->data_status
= pending
;
2697 smp_wmb(); /* drain writebuffer */
2698 if (host
->dir_status
== DW_MCI_RECV_STATUS
) {
2699 if (host
->sg
!= NULL
)
2700 dw_mci_read_data_pio(host
, true);
2702 set_bit(EVENT_DATA_COMPLETE
, &host
->pending_events
);
2703 tasklet_schedule(&host
->tasklet
);
2705 spin_unlock_irqrestore(&host
->irq_lock
, irqflags
);
2708 if (pending
& SDMMC_INT_RXDR
) {
2709 mci_writel(host
, RINTSTS
, SDMMC_INT_RXDR
);
2710 if (host
->dir_status
== DW_MCI_RECV_STATUS
&& host
->sg
)
2711 dw_mci_read_data_pio(host
, false);
2714 if (pending
& SDMMC_INT_TXDR
) {
2715 mci_writel(host
, RINTSTS
, SDMMC_INT_TXDR
);
2716 if (host
->dir_status
== DW_MCI_SEND_STATUS
&& host
->sg
)
2717 dw_mci_write_data_pio(host
);
2720 if (pending
& SDMMC_INT_CMD_DONE
) {
2721 spin_lock_irqsave(&host
->irq_lock
, irqflags
);
2723 mci_writel(host
, RINTSTS
, SDMMC_INT_CMD_DONE
);
2724 dw_mci_cmd_interrupt(host
, pending
);
2726 spin_unlock_irqrestore(&host
->irq_lock
, irqflags
);
2729 if (pending
& SDMMC_INT_CD
) {
2730 mci_writel(host
, RINTSTS
, SDMMC_INT_CD
);
2731 dw_mci_handle_cd(host
);
2734 if (pending
& SDMMC_INT_SDIO(slot
->sdio_id
)) {
2735 mci_writel(host
, RINTSTS
,
2736 SDMMC_INT_SDIO(slot
->sdio_id
));
2737 __dw_mci_enable_sdio_irq(slot
, 0);
2738 sdio_signal_irq(slot
->mmc
);
2743 if (host
->use_dma
!= TRANS_MODE_IDMAC
)
2746 /* Handle IDMA interrupts */
2747 if (host
->dma_64bit_address
== 1) {
2748 pending
= mci_readl(host
, IDSTS64
);
2749 if (pending
& (SDMMC_IDMAC_INT_TI
| SDMMC_IDMAC_INT_RI
)) {
2750 mci_writel(host
, IDSTS64
, SDMMC_IDMAC_INT_TI
|
2751 SDMMC_IDMAC_INT_RI
);
2752 mci_writel(host
, IDSTS64
, SDMMC_IDMAC_INT_NI
);
2753 if (!test_bit(EVENT_DATA_ERROR
, &host
->pending_events
))
2754 host
->dma_ops
->complete((void *)host
);
2757 pending
= mci_readl(host
, IDSTS
);
2758 if (pending
& (SDMMC_IDMAC_INT_TI
| SDMMC_IDMAC_INT_RI
)) {
2759 mci_writel(host
, IDSTS
, SDMMC_IDMAC_INT_TI
|
2760 SDMMC_IDMAC_INT_RI
);
2761 mci_writel(host
, IDSTS
, SDMMC_IDMAC_INT_NI
);
2762 if (!test_bit(EVENT_DATA_ERROR
, &host
->pending_events
))
2763 host
->dma_ops
->complete((void *)host
);
2770 static int dw_mci_init_slot_caps(struct dw_mci_slot
*slot
)
2772 struct dw_mci
*host
= slot
->host
;
2773 const struct dw_mci_drv_data
*drv_data
= host
->drv_data
;
2774 struct mmc_host
*mmc
= slot
->mmc
;
2777 if (host
->pdata
->caps
)
2778 mmc
->caps
= host
->pdata
->caps
;
2781 * Support MMC_CAP_ERASE by default.
2782 * It needs to use trim/discard/erase commands.
2784 mmc
->caps
|= MMC_CAP_ERASE
;
2786 if (host
->pdata
->pm_caps
)
2787 mmc
->pm_caps
= host
->pdata
->pm_caps
;
2789 if (host
->dev
->of_node
) {
2790 ctrl_id
= of_alias_get_id(host
->dev
->of_node
, "mshc");
2794 ctrl_id
= to_platform_device(host
->dev
)->id
;
2797 if (drv_data
&& drv_data
->caps
) {
2798 if (ctrl_id
>= drv_data
->num_caps
) {
2799 dev_err(host
->dev
, "invalid controller id %d\n",
2803 mmc
->caps
|= drv_data
->caps
[ctrl_id
];
2806 if (host
->pdata
->caps2
)
2807 mmc
->caps2
= host
->pdata
->caps2
;
2809 mmc
->f_min
= DW_MCI_FREQ_MIN
;
2811 mmc
->f_max
= DW_MCI_FREQ_MAX
;
2813 /* Process SDIO IRQs through the sdio_irq_work. */
2814 if (mmc
->caps
& MMC_CAP_SDIO_IRQ
)
2815 mmc
->caps2
|= MMC_CAP2_SDIO_IRQ_NOTHREAD
;
2820 static int dw_mci_init_slot(struct dw_mci
*host
)
2822 struct mmc_host
*mmc
;
2823 struct dw_mci_slot
*slot
;
2826 mmc
= mmc_alloc_host(sizeof(struct dw_mci_slot
), host
->dev
);
2830 slot
= mmc_priv(mmc
);
2832 slot
->sdio_id
= host
->sdio_id0
+ slot
->id
;
2837 mmc
->ops
= &dw_mci_ops
;
2839 /*if there are external regulators, get them*/
2840 ret
= mmc_regulator_get_supply(mmc
);
2842 goto err_host_allocated
;
2844 if (!mmc
->ocr_avail
)
2845 mmc
->ocr_avail
= MMC_VDD_32_33
| MMC_VDD_33_34
;
2847 ret
= mmc_of_parse(mmc
);
2849 goto err_host_allocated
;
2851 ret
= dw_mci_init_slot_caps(slot
);
2853 goto err_host_allocated
;
2855 /* Useful defaults if platform data is unset. */
2856 if (host
->use_dma
== TRANS_MODE_IDMAC
) {
2857 mmc
->max_segs
= host
->ring_size
;
2858 mmc
->max_blk_size
= 65535;
2859 mmc
->max_seg_size
= 0x1000;
2860 mmc
->max_req_size
= mmc
->max_seg_size
* host
->ring_size
;
2861 mmc
->max_blk_count
= mmc
->max_req_size
/ 512;
2862 } else if (host
->use_dma
== TRANS_MODE_EDMAC
) {
2864 mmc
->max_blk_size
= 65535;
2865 mmc
->max_blk_count
= 65535;
2867 mmc
->max_blk_size
* mmc
->max_blk_count
;
2868 mmc
->max_seg_size
= mmc
->max_req_size
;
2870 /* TRANS_MODE_PIO */
2872 mmc
->max_blk_size
= 65535; /* BLKSIZ is 16 bits */
2873 mmc
->max_blk_count
= 512;
2874 mmc
->max_req_size
= mmc
->max_blk_size
*
2876 mmc
->max_seg_size
= mmc
->max_req_size
;
2881 ret
= mmc_add_host(mmc
);
2883 goto err_host_allocated
;
2885 #if defined(CONFIG_DEBUG_FS)
2886 dw_mci_init_debugfs(slot
);
2896 static void dw_mci_cleanup_slot(struct dw_mci_slot
*slot
)
2898 /* Debugfs stuff is cleaned up by mmc core */
2899 mmc_remove_host(slot
->mmc
);
2900 slot
->host
->slot
= NULL
;
2901 mmc_free_host(slot
->mmc
);
2904 static void dw_mci_init_dma(struct dw_mci
*host
)
2907 struct device
*dev
= host
->dev
;
2910 * Check tansfer mode from HCON[17:16]
2911 * Clear the ambiguous description of dw_mmc databook:
2912 * 2b'00: No DMA Interface -> Actually means using Internal DMA block
2913 * 2b'01: DesignWare DMA Interface -> Synopsys DW-DMA block
2914 * 2b'10: Generic DMA Interface -> non-Synopsys generic DMA block
2915 * 2b'11: Non DW DMA Interface -> pio only
2916 * Compared to DesignWare DMA Interface, Generic DMA Interface has a
2917 * simpler request/acknowledge handshake mechanism and both of them
2918 * are regarded as external dma master for dw_mmc.
2920 host
->use_dma
= SDMMC_GET_TRANS_MODE(mci_readl(host
, HCON
));
2921 if (host
->use_dma
== DMA_INTERFACE_IDMA
) {
2922 host
->use_dma
= TRANS_MODE_IDMAC
;
2923 } else if (host
->use_dma
== DMA_INTERFACE_DWDMA
||
2924 host
->use_dma
== DMA_INTERFACE_GDMA
) {
2925 host
->use_dma
= TRANS_MODE_EDMAC
;
2930 /* Determine which DMA interface to use */
2931 if (host
->use_dma
== TRANS_MODE_IDMAC
) {
2933 * Check ADDR_CONFIG bit in HCON to find
2934 * IDMAC address bus width
2936 addr_config
= SDMMC_GET_ADDR_CONFIG(mci_readl(host
, HCON
));
2938 if (addr_config
== 1) {
2939 /* host supports IDMAC in 64-bit address mode */
2940 host
->dma_64bit_address
= 1;
2942 "IDMAC supports 64-bit address mode.\n");
2943 if (!dma_set_mask(host
->dev
, DMA_BIT_MASK(64)))
2944 dma_set_coherent_mask(host
->dev
,
2947 /* host supports IDMAC in 32-bit address mode */
2948 host
->dma_64bit_address
= 0;
2950 "IDMAC supports 32-bit address mode.\n");
2953 /* Alloc memory for sg translation */
2954 host
->sg_cpu
= dmam_alloc_coherent(host
->dev
,
2956 &host
->sg_dma
, GFP_KERNEL
);
2957 if (!host
->sg_cpu
) {
2959 "%s: could not alloc DMA memory\n",
2964 host
->dma_ops
= &dw_mci_idmac_ops
;
2965 dev_info(host
->dev
, "Using internal DMA controller.\n");
2967 /* TRANS_MODE_EDMAC: check dma bindings again */
2968 if ((device_property_read_string_array(dev
, "dma-names",
2970 !device_property_present(dev
, "dmas")) {
2973 host
->dma_ops
= &dw_mci_edmac_ops
;
2974 dev_info(host
->dev
, "Using external DMA controller.\n");
2977 if (host
->dma_ops
->init
&& host
->dma_ops
->start
&&
2978 host
->dma_ops
->stop
&& host
->dma_ops
->cleanup
) {
2979 if (host
->dma_ops
->init(host
)) {
2980 dev_err(host
->dev
, "%s: Unable to initialize DMA Controller.\n",
2985 dev_err(host
->dev
, "DMA initialization not found.\n");
2992 dev_info(host
->dev
, "Using PIO mode.\n");
2993 host
->use_dma
= TRANS_MODE_PIO
;
2996 static void dw_mci_cmd11_timer(struct timer_list
*t
)
2998 struct dw_mci
*host
= from_timer(host
, t
, cmd11_timer
);
3000 if (host
->state
!= STATE_SENDING_CMD11
) {
3001 dev_warn(host
->dev
, "Unexpected CMD11 timeout\n");
3005 host
->cmd_status
= SDMMC_INT_RTO
;
3006 set_bit(EVENT_CMD_COMPLETE
, &host
->pending_events
);
3007 tasklet_schedule(&host
->tasklet
);
3010 static void dw_mci_cto_timer(struct timer_list
*t
)
3012 struct dw_mci
*host
= from_timer(host
, t
, cto_timer
);
3013 unsigned long irqflags
;
3016 spin_lock_irqsave(&host
->irq_lock
, irqflags
);
3019 * If somehow we have very bad interrupt latency it's remotely possible
3020 * that the timer could fire while the interrupt is still pending or
3021 * while the interrupt is midway through running. Let's be paranoid
3022 * and detect those two cases. Note that this is paranoia is somewhat
3023 * justified because in this function we don't actually cancel the
3024 * pending command in the controller--we just assume it will never come.
3026 pending
= mci_readl(host
, MINTSTS
); /* read-only mask reg */
3027 if (pending
& (DW_MCI_CMD_ERROR_FLAGS
| SDMMC_INT_CMD_DONE
)) {
3028 /* The interrupt should fire; no need to act but we can warn */
3029 dev_warn(host
->dev
, "Unexpected interrupt latency\n");
3032 if (test_bit(EVENT_CMD_COMPLETE
, &host
->pending_events
)) {
3033 /* Presumably interrupt handler couldn't delete the timer */
3034 dev_warn(host
->dev
, "CTO timeout when already completed\n");
3039 * Continued paranoia to make sure we're in the state we expect.
3040 * This paranoia isn't really justified but it seems good to be safe.
3042 switch (host
->state
) {
3043 case STATE_SENDING_CMD11
:
3044 case STATE_SENDING_CMD
:
3045 case STATE_SENDING_STOP
:
3047 * If CMD_DONE interrupt does NOT come in sending command
3048 * state, we should notify the driver to terminate current
3049 * transfer and report a command timeout to the core.
3051 host
->cmd_status
= SDMMC_INT_RTO
;
3052 set_bit(EVENT_CMD_COMPLETE
, &host
->pending_events
);
3053 tasklet_schedule(&host
->tasklet
);
3056 dev_warn(host
->dev
, "Unexpected command timeout, state %d\n",
3062 spin_unlock_irqrestore(&host
->irq_lock
, irqflags
);
3065 static void dw_mci_dto_timer(struct timer_list
*t
)
3067 struct dw_mci
*host
= from_timer(host
, t
, dto_timer
);
3068 unsigned long irqflags
;
3071 spin_lock_irqsave(&host
->irq_lock
, irqflags
);
3074 * The DTO timer is much longer than the CTO timer, so it's even less
3075 * likely that we'll these cases, but it pays to be paranoid.
3077 pending
= mci_readl(host
, MINTSTS
); /* read-only mask reg */
3078 if (pending
& SDMMC_INT_DATA_OVER
) {
3079 /* The interrupt should fire; no need to act but we can warn */
3080 dev_warn(host
->dev
, "Unexpected data interrupt latency\n");
3083 if (test_bit(EVENT_DATA_COMPLETE
, &host
->pending_events
)) {
3084 /* Presumably interrupt handler couldn't delete the timer */
3085 dev_warn(host
->dev
, "DTO timeout when already completed\n");
3090 * Continued paranoia to make sure we're in the state we expect.
3091 * This paranoia isn't really justified but it seems good to be safe.
3093 switch (host
->state
) {
3094 case STATE_SENDING_DATA
:
3095 case STATE_DATA_BUSY
:
3097 * If DTO interrupt does NOT come in sending data state,
3098 * we should notify the driver to terminate current transfer
3099 * and report a data timeout to the core.
3101 host
->data_status
= SDMMC_INT_DRTO
;
3102 set_bit(EVENT_DATA_ERROR
, &host
->pending_events
);
3103 set_bit(EVENT_DATA_COMPLETE
, &host
->pending_events
);
3104 tasklet_schedule(&host
->tasklet
);
3107 dev_warn(host
->dev
, "Unexpected data timeout, state %d\n",
3113 spin_unlock_irqrestore(&host
->irq_lock
, irqflags
);
3117 static struct dw_mci_board
*dw_mci_parse_dt(struct dw_mci
*host
)
3119 struct dw_mci_board
*pdata
;
3120 struct device
*dev
= host
->dev
;
3121 const struct dw_mci_drv_data
*drv_data
= host
->drv_data
;
3123 u32 clock_frequency
;
3125 pdata
= devm_kzalloc(dev
, sizeof(*pdata
), GFP_KERNEL
);
3127 return ERR_PTR(-ENOMEM
);
3129 /* find reset controller when exist */
3130 pdata
->rstc
= devm_reset_control_get_optional_exclusive(dev
, "reset");
3131 if (IS_ERR(pdata
->rstc
)) {
3132 if (PTR_ERR(pdata
->rstc
) == -EPROBE_DEFER
)
3133 return ERR_PTR(-EPROBE_DEFER
);
3136 if (device_property_read_u32(dev
, "fifo-depth", &pdata
->fifo_depth
))
3138 "fifo-depth property not found, using value of FIFOTH register as default\n");
3140 device_property_read_u32(dev
, "card-detect-delay",
3141 &pdata
->detect_delay_ms
);
3143 device_property_read_u32(dev
, "data-addr", &host
->data_addr_override
);
3145 if (device_property_present(dev
, "fifo-watermark-aligned"))
3146 host
->wm_aligned
= true;
3148 if (!device_property_read_u32(dev
, "clock-frequency", &clock_frequency
))
3149 pdata
->bus_hz
= clock_frequency
;
3151 if (drv_data
&& drv_data
->parse_dt
) {
3152 ret
= drv_data
->parse_dt(host
);
3154 return ERR_PTR(ret
);
3160 #else /* CONFIG_OF */
3161 static struct dw_mci_board
*dw_mci_parse_dt(struct dw_mci
*host
)
3163 return ERR_PTR(-EINVAL
);
3165 #endif /* CONFIG_OF */
3167 static void dw_mci_enable_cd(struct dw_mci
*host
)
3169 unsigned long irqflags
;
3173 * No need for CD if all slots have a non-error GPIO
3174 * as well as broken card detection is found.
3176 if (host
->slot
->mmc
->caps
& MMC_CAP_NEEDS_POLL
)
3179 if (mmc_gpio_get_cd(host
->slot
->mmc
) < 0) {
3180 spin_lock_irqsave(&host
->irq_lock
, irqflags
);
3181 temp
= mci_readl(host
, INTMASK
);
3182 temp
|= SDMMC_INT_CD
;
3183 mci_writel(host
, INTMASK
, temp
);
3184 spin_unlock_irqrestore(&host
->irq_lock
, irqflags
);
3188 int dw_mci_probe(struct dw_mci
*host
)
3190 const struct dw_mci_drv_data
*drv_data
= host
->drv_data
;
3191 int width
, i
, ret
= 0;
3195 host
->pdata
= dw_mci_parse_dt(host
);
3196 if (PTR_ERR(host
->pdata
) == -EPROBE_DEFER
) {
3197 return -EPROBE_DEFER
;
3198 } else if (IS_ERR(host
->pdata
)) {
3199 dev_err(host
->dev
, "platform data not available\n");
3204 host
->biu_clk
= devm_clk_get(host
->dev
, "biu");
3205 if (IS_ERR(host
->biu_clk
)) {
3206 dev_dbg(host
->dev
, "biu clock not available\n");
3208 ret
= clk_prepare_enable(host
->biu_clk
);
3210 dev_err(host
->dev
, "failed to enable biu clock\n");
3215 host
->ciu_clk
= devm_clk_get(host
->dev
, "ciu");
3216 if (IS_ERR(host
->ciu_clk
)) {
3217 dev_dbg(host
->dev
, "ciu clock not available\n");
3218 host
->bus_hz
= host
->pdata
->bus_hz
;
3220 ret
= clk_prepare_enable(host
->ciu_clk
);
3222 dev_err(host
->dev
, "failed to enable ciu clock\n");
3226 if (host
->pdata
->bus_hz
) {
3227 ret
= clk_set_rate(host
->ciu_clk
, host
->pdata
->bus_hz
);
3230 "Unable to set bus rate to %uHz\n",
3231 host
->pdata
->bus_hz
);
3233 host
->bus_hz
= clk_get_rate(host
->ciu_clk
);
3236 if (!host
->bus_hz
) {
3238 "Platform data must supply bus speed\n");
3243 if (!IS_ERR(host
->pdata
->rstc
)) {
3244 reset_control_assert(host
->pdata
->rstc
);
3245 usleep_range(10, 50);
3246 reset_control_deassert(host
->pdata
->rstc
);
3249 if (drv_data
&& drv_data
->init
) {
3250 ret
= drv_data
->init(host
);
3253 "implementation specific init failed\n");
3258 timer_setup(&host
->cmd11_timer
, dw_mci_cmd11_timer
, 0);
3259 timer_setup(&host
->cto_timer
, dw_mci_cto_timer
, 0);
3260 timer_setup(&host
->dto_timer
, dw_mci_dto_timer
, 0);
3262 spin_lock_init(&host
->lock
);
3263 spin_lock_init(&host
->irq_lock
);
3264 INIT_LIST_HEAD(&host
->queue
);
3267 * Get the host data width - this assumes that HCON has been set with
3268 * the correct values.
3270 i
= SDMMC_GET_HDATA_WIDTH(mci_readl(host
, HCON
));
3272 host
->push_data
= dw_mci_push_data16
;
3273 host
->pull_data
= dw_mci_pull_data16
;
3275 host
->data_shift
= 1;
3276 } else if (i
== 2) {
3277 host
->push_data
= dw_mci_push_data64
;
3278 host
->pull_data
= dw_mci_pull_data64
;
3280 host
->data_shift
= 3;
3282 /* Check for a reserved value, and warn if it is */
3284 "HCON reports a reserved host data width!\n"
3285 "Defaulting to 32-bit access.\n");
3286 host
->push_data
= dw_mci_push_data32
;
3287 host
->pull_data
= dw_mci_pull_data32
;
3289 host
->data_shift
= 2;
3292 /* Reset all blocks */
3293 if (!dw_mci_ctrl_reset(host
, SDMMC_CTRL_ALL_RESET_FLAGS
)) {
3298 host
->dma_ops
= host
->pdata
->dma_ops
;
3299 dw_mci_init_dma(host
);
3301 /* Clear the interrupts for the host controller */
3302 mci_writel(host
, RINTSTS
, 0xFFFFFFFF);
3303 mci_writel(host
, INTMASK
, 0); /* disable all mmc interrupt first */
3305 /* Put in max timeout */
3306 mci_writel(host
, TMOUT
, 0xFFFFFFFF);
3309 * FIFO threshold settings RxMark = fifo_size / 2 - 1,
3310 * Tx Mark = fifo_size / 2 DMA Size = 8
3312 if (!host
->pdata
->fifo_depth
) {
3314 * Power-on value of RX_WMark is FIFO_DEPTH-1, but this may
3315 * have been overwritten by the bootloader, just like we're
3316 * about to do, so if you know the value for your hardware, you
3317 * should put it in the platform data.
3319 fifo_size
= mci_readl(host
, FIFOTH
);
3320 fifo_size
= 1 + ((fifo_size
>> 16) & 0xfff);
3322 fifo_size
= host
->pdata
->fifo_depth
;
3324 host
->fifo_depth
= fifo_size
;
3326 SDMMC_SET_FIFOTH(0x2, fifo_size
/ 2 - 1, fifo_size
/ 2);
3327 mci_writel(host
, FIFOTH
, host
->fifoth_val
);
3329 /* disable clock to CIU */
3330 mci_writel(host
, CLKENA
, 0);
3331 mci_writel(host
, CLKSRC
, 0);
3334 * In 2.40a spec, Data offset is changed.
3335 * Need to check the version-id and set data-offset for DATA register.
3337 host
->verid
= SDMMC_GET_VERID(mci_readl(host
, VERID
));
3338 dev_info(host
->dev
, "Version ID is %04x\n", host
->verid
);
3340 if (host
->data_addr_override
)
3341 host
->fifo_reg
= host
->regs
+ host
->data_addr_override
;
3342 else if (host
->verid
< DW_MMC_240A
)
3343 host
->fifo_reg
= host
->regs
+ DATA_OFFSET
;
3345 host
->fifo_reg
= host
->regs
+ DATA_240A_OFFSET
;
3347 tasklet_init(&host
->tasklet
, dw_mci_tasklet_func
, (unsigned long)host
);
3348 ret
= devm_request_irq(host
->dev
, host
->irq
, dw_mci_interrupt
,
3349 host
->irq_flags
, "dw-mci", host
);
3354 * Enable interrupts for command done, data over, data empty,
3355 * receive ready and error such as transmit, receive timeout, crc error
3357 mci_writel(host
, INTMASK
, SDMMC_INT_CMD_DONE
| SDMMC_INT_DATA_OVER
|
3358 SDMMC_INT_TXDR
| SDMMC_INT_RXDR
|
3359 DW_MCI_ERROR_FLAGS
);
3360 /* Enable mci interrupt */
3361 mci_writel(host
, CTRL
, SDMMC_CTRL_INT_ENABLE
);
3364 "DW MMC controller at irq %d,%d bit host data width,%u deep fifo\n",
3365 host
->irq
, width
, fifo_size
);
3367 /* We need at least one slot to succeed */
3368 ret
= dw_mci_init_slot(host
);
3370 dev_dbg(host
->dev
, "slot %d init failed\n", i
);
3374 /* Now that slots are all setup, we can enable card detect */
3375 dw_mci_enable_cd(host
);
3380 if (host
->use_dma
&& host
->dma_ops
->exit
)
3381 host
->dma_ops
->exit(host
);
3383 if (!IS_ERR(host
->pdata
->rstc
))
3384 reset_control_assert(host
->pdata
->rstc
);
3387 clk_disable_unprepare(host
->ciu_clk
);
3390 clk_disable_unprepare(host
->biu_clk
);
3394 EXPORT_SYMBOL(dw_mci_probe
);
3396 void dw_mci_remove(struct dw_mci
*host
)
3398 dev_dbg(host
->dev
, "remove slot\n");
3400 dw_mci_cleanup_slot(host
->slot
);
3402 mci_writel(host
, RINTSTS
, 0xFFFFFFFF);
3403 mci_writel(host
, INTMASK
, 0); /* disable all mmc interrupt first */
3405 /* disable clock to CIU */
3406 mci_writel(host
, CLKENA
, 0);
3407 mci_writel(host
, CLKSRC
, 0);
3409 if (host
->use_dma
&& host
->dma_ops
->exit
)
3410 host
->dma_ops
->exit(host
);
3412 if (!IS_ERR(host
->pdata
->rstc
))
3413 reset_control_assert(host
->pdata
->rstc
);
3415 clk_disable_unprepare(host
->ciu_clk
);
3416 clk_disable_unprepare(host
->biu_clk
);
3418 EXPORT_SYMBOL(dw_mci_remove
);
3423 int dw_mci_runtime_suspend(struct device
*dev
)
3425 struct dw_mci
*host
= dev_get_drvdata(dev
);
3427 if (host
->use_dma
&& host
->dma_ops
->exit
)
3428 host
->dma_ops
->exit(host
);
3430 clk_disable_unprepare(host
->ciu_clk
);
3433 (mmc_can_gpio_cd(host
->slot
->mmc
) ||
3434 !mmc_card_is_removable(host
->slot
->mmc
)))
3435 clk_disable_unprepare(host
->biu_clk
);
3439 EXPORT_SYMBOL(dw_mci_runtime_suspend
);
3441 int dw_mci_runtime_resume(struct device
*dev
)
3444 struct dw_mci
*host
= dev_get_drvdata(dev
);
3447 (mmc_can_gpio_cd(host
->slot
->mmc
) ||
3448 !mmc_card_is_removable(host
->slot
->mmc
))) {
3449 ret
= clk_prepare_enable(host
->biu_clk
);
3454 ret
= clk_prepare_enable(host
->ciu_clk
);
3458 if (!dw_mci_ctrl_reset(host
, SDMMC_CTRL_ALL_RESET_FLAGS
)) {
3459 clk_disable_unprepare(host
->ciu_clk
);
3464 if (host
->use_dma
&& host
->dma_ops
->init
)
3465 host
->dma_ops
->init(host
);
3468 * Restore the initial value at FIFOTH register
3469 * And Invalidate the prev_blksz with zero
3471 mci_writel(host
, FIFOTH
, host
->fifoth_val
);
3472 host
->prev_blksz
= 0;
3474 /* Put in max timeout */
3475 mci_writel(host
, TMOUT
, 0xFFFFFFFF);
3477 mci_writel(host
, RINTSTS
, 0xFFFFFFFF);
3478 mci_writel(host
, INTMASK
, SDMMC_INT_CMD_DONE
| SDMMC_INT_DATA_OVER
|
3479 SDMMC_INT_TXDR
| SDMMC_INT_RXDR
|
3480 DW_MCI_ERROR_FLAGS
);
3481 mci_writel(host
, CTRL
, SDMMC_CTRL_INT_ENABLE
);
3484 if (host
->slot
->mmc
->pm_flags
& MMC_PM_KEEP_POWER
)
3485 dw_mci_set_ios(host
->slot
->mmc
, &host
->slot
->mmc
->ios
);
3487 /* Force setup bus to guarantee available clock output */
3488 dw_mci_setup_bus(host
->slot
, true);
3490 /* Now that slots are all setup, we can enable card detect */
3491 dw_mci_enable_cd(host
);
3497 (mmc_can_gpio_cd(host
->slot
->mmc
) ||
3498 !mmc_card_is_removable(host
->slot
->mmc
)))
3499 clk_disable_unprepare(host
->biu_clk
);
3503 EXPORT_SYMBOL(dw_mci_runtime_resume
);
3504 #endif /* CONFIG_PM */
3506 static int __init
dw_mci_init(void)
3508 pr_info("Synopsys Designware Multimedia Card Interface Driver\n");
3512 static void __exit
dw_mci_exit(void)
3516 module_init(dw_mci_init
);
3517 module_exit(dw_mci_exit
);
3519 MODULE_DESCRIPTION("DW Multimedia Card Interface driver");
3520 MODULE_AUTHOR("NXP Semiconductor VietNam");
3521 MODULE_AUTHOR("Imagination Technologies Ltd");
3522 MODULE_LICENSE("GPL v2");