4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/blkdev.h>
12 #include <linux/backing-dev.h>
15 #define NULL_SEGNO ((unsigned int)(~0))
16 #define NULL_SECNO ((unsigned int)(~0))
18 #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */
19 #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS 4096 /* 8GB in maximum */
21 #define F2FS_MIN_SEGMENTS 9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
23 /* L: Logical segment # in volume, R: Relative segment # in main area */
24 #define GET_L2R_SEGNO(free_i, segno) ((segno) - (free_i)->start_segno)
25 #define GET_R2L_SEGNO(free_i, segno) ((segno) + (free_i)->start_segno)
27 #define IS_DATASEG(t) ((t) <= CURSEG_COLD_DATA)
28 #define IS_NODESEG(t) ((t) >= CURSEG_HOT_NODE)
30 #define IS_HOT(t) ((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA)
31 #define IS_WARM(t) ((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA)
32 #define IS_COLD(t) ((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA)
34 #define IS_CURSEG(sbi, seg) \
35 (((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \
36 ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \
37 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \
38 ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \
39 ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \
40 ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
42 #define IS_CURSEC(sbi, secno) \
43 (((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \
44 (sbi)->segs_per_sec) || \
45 ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \
46 (sbi)->segs_per_sec) || \
47 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \
48 (sbi)->segs_per_sec) || \
49 ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \
50 (sbi)->segs_per_sec) || \
51 ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \
52 (sbi)->segs_per_sec) || \
53 ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \
54 (sbi)->segs_per_sec)) \
56 #define MAIN_BLKADDR(sbi) \
57 (SM_I(sbi) ? SM_I(sbi)->main_blkaddr : \
58 le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
59 #define SEG0_BLKADDR(sbi) \
60 (SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : \
61 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
63 #define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments)
64 #define MAIN_SECS(sbi) ((sbi)->total_sections)
66 #define TOTAL_SEGS(sbi) \
67 (SM_I(sbi) ? SM_I(sbi)->segment_count : \
68 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count))
69 #define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg)
71 #define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
72 #define SEGMENT_SIZE(sbi) (1ULL << ((sbi)->log_blocksize + \
73 (sbi)->log_blocks_per_seg))
75 #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \
76 (GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg))
78 #define NEXT_FREE_BLKADDR(sbi, curseg) \
79 (START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
81 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi))
82 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
83 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg)
84 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \
85 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & ((sbi)->blocks_per_seg - 1))
87 #define GET_SEGNO(sbi, blk_addr) \
88 ((!is_valid_data_blkaddr(sbi, blk_addr)) ? \
89 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \
90 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
91 #define BLKS_PER_SEC(sbi) \
92 ((sbi)->segs_per_sec * (sbi)->blocks_per_seg)
93 #define GET_SEC_FROM_SEG(sbi, segno) \
94 ((segno) / (sbi)->segs_per_sec)
95 #define GET_SEG_FROM_SEC(sbi, secno) \
96 ((secno) * (sbi)->segs_per_sec)
97 #define GET_ZONE_FROM_SEC(sbi, secno) \
98 ((secno) / (sbi)->secs_per_zone)
99 #define GET_ZONE_FROM_SEG(sbi, segno) \
100 GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
102 #define GET_SUM_BLOCK(sbi, segno) \
103 ((sbi)->sm_info->ssa_blkaddr + (segno))
105 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
106 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
108 #define SIT_ENTRY_OFFSET(sit_i, segno) \
109 ((segno) % (sit_i)->sents_per_block)
110 #define SIT_BLOCK_OFFSET(segno) \
111 ((segno) / SIT_ENTRY_PER_BLOCK)
112 #define START_SEGNO(segno) \
113 (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
114 #define SIT_BLK_CNT(sbi) \
115 ((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
116 #define f2fs_bitmap_size(nr) \
117 (BITS_TO_LONGS(nr) * sizeof(unsigned long))
119 #define SECTOR_FROM_BLOCK(blk_addr) \
120 (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
121 #define SECTOR_TO_BLOCK(sectors) \
122 ((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
125 * indicate a block allocation direction: RIGHT and LEFT.
126 * RIGHT means allocating new sections towards the end of volume.
127 * LEFT means the opposite direction.
135 * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
136 * LFS writes data sequentially with cleaning operations.
137 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
145 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
146 * GC_CB is based on cost-benefit algorithm.
147 * GC_GREEDY is based on greedy algorithm.
158 * BG_GC means the background cleaning job.
159 * FG_GC means the on-demand cleaning job.
160 * FORCE_FG_GC means on-demand cleaning job in background.
168 /* for a function parameter to select a victim segment */
169 struct victim_sel_policy
{
170 int alloc_mode
; /* LFS or SSR */
171 int gc_mode
; /* GC_CB or GC_GREEDY */
172 unsigned long *dirty_segmap
; /* dirty segment bitmap */
173 unsigned int max_search
; /* maximum # of segments to search */
174 unsigned int offset
; /* last scanned bitmap offset */
175 unsigned int ofs_unit
; /* bitmap search unit */
176 unsigned int min_cost
; /* minimum cost */
177 unsigned int min_segno
; /* segment # having min. cost */
181 unsigned int type
:6; /* segment type like CURSEG_XXX_TYPE */
182 unsigned int valid_blocks
:10; /* # of valid blocks */
183 unsigned int ckpt_valid_blocks
:10; /* # of valid blocks last cp */
184 unsigned int padding
:6; /* padding */
185 unsigned char *cur_valid_map
; /* validity bitmap of blocks */
186 #ifdef CONFIG_F2FS_CHECK_FS
187 unsigned char *cur_valid_map_mir
; /* mirror of current valid bitmap */
190 * # of valid blocks and the validity bitmap stored in the the last
191 * checkpoint pack. This information is used by the SSR mode.
193 unsigned char *ckpt_valid_map
; /* validity bitmap of blocks last cp */
194 unsigned char *discard_map
;
195 unsigned long long mtime
; /* modification time of the segment */
199 unsigned int valid_blocks
; /* # of valid blocks in a section */
202 struct segment_allocation
{
203 void (*allocate_segment
)(struct f2fs_sb_info
*, int, bool);
207 * this value is set in page as a private data which indicate that
208 * the page is atomically written, and it is in inmem_pages list.
210 #define ATOMIC_WRITTEN_PAGE ((unsigned long)-1)
211 #define DUMMY_WRITTEN_PAGE ((unsigned long)-2)
213 #define IS_ATOMIC_WRITTEN_PAGE(page) \
214 (page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE)
215 #define IS_DUMMY_WRITTEN_PAGE(page) \
216 (page_private(page) == (unsigned long)DUMMY_WRITTEN_PAGE)
218 #define MAX_SKIP_GC_COUNT 16
221 struct list_head list
;
223 block_t old_addr
; /* for revoking when fail to commit */
227 const struct segment_allocation
*s_ops
;
229 block_t sit_base_addr
; /* start block address of SIT area */
230 block_t sit_blocks
; /* # of blocks used by SIT area */
231 block_t written_valid_blocks
; /* # of valid blocks in main area */
232 char *sit_bitmap
; /* SIT bitmap pointer */
233 #ifdef CONFIG_F2FS_CHECK_FS
234 char *sit_bitmap_mir
; /* SIT bitmap mirror */
236 unsigned int bitmap_size
; /* SIT bitmap size */
238 unsigned long *tmp_map
; /* bitmap for temporal use */
239 unsigned long *dirty_sentries_bitmap
; /* bitmap for dirty sentries */
240 unsigned int dirty_sentries
; /* # of dirty sentries */
241 unsigned int sents_per_block
; /* # of SIT entries per block */
242 struct rw_semaphore sentry_lock
; /* to protect SIT cache */
243 struct seg_entry
*sentries
; /* SIT segment-level cache */
244 struct sec_entry
*sec_entries
; /* SIT section-level cache */
246 /* for cost-benefit algorithm in cleaning procedure */
247 unsigned long long elapsed_time
; /* elapsed time after mount */
248 unsigned long long mounted_time
; /* mount time */
249 unsigned long long min_mtime
; /* min. modification time */
250 unsigned long long max_mtime
; /* max. modification time */
252 unsigned int last_victim
[MAX_GC_POLICY
]; /* last victim segment # */
255 struct free_segmap_info
{
256 unsigned int start_segno
; /* start segment number logically */
257 unsigned int free_segments
; /* # of free segments */
258 unsigned int free_sections
; /* # of free sections */
259 spinlock_t segmap_lock
; /* free segmap lock */
260 unsigned long *free_segmap
; /* free segment bitmap */
261 unsigned long *free_secmap
; /* free section bitmap */
264 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
266 DIRTY_HOT_DATA
, /* dirty segments assigned as hot data logs */
267 DIRTY_WARM_DATA
, /* dirty segments assigned as warm data logs */
268 DIRTY_COLD_DATA
, /* dirty segments assigned as cold data logs */
269 DIRTY_HOT_NODE
, /* dirty segments assigned as hot node logs */
270 DIRTY_WARM_NODE
, /* dirty segments assigned as warm node logs */
271 DIRTY_COLD_NODE
, /* dirty segments assigned as cold node logs */
272 DIRTY
, /* to count # of dirty segments */
273 PRE
, /* to count # of entirely obsolete segments */
277 struct dirty_seglist_info
{
278 const struct victim_selection
*v_ops
; /* victim selction operation */
279 unsigned long *dirty_segmap
[NR_DIRTY_TYPE
];
280 struct mutex seglist_lock
; /* lock for segment bitmaps */
281 int nr_dirty
[NR_DIRTY_TYPE
]; /* # of dirty segments */
282 unsigned long *victim_secmap
; /* background GC victims */
285 /* victim selection function for cleaning and SSR */
286 struct victim_selection
{
287 int (*get_victim
)(struct f2fs_sb_info
*, unsigned int *,
291 /* for active log information */
293 struct mutex curseg_mutex
; /* lock for consistency */
294 struct f2fs_summary_block
*sum_blk
; /* cached summary block */
295 struct rw_semaphore journal_rwsem
; /* protect journal area */
296 struct f2fs_journal
*journal
; /* cached journal info */
297 unsigned char alloc_type
; /* current allocation type */
298 unsigned int segno
; /* current segment number */
299 unsigned short next_blkoff
; /* next block offset to write */
300 unsigned int zone
; /* current zone number */
301 unsigned int next_segno
; /* preallocated segment */
304 struct sit_entry_set
{
305 struct list_head set_list
; /* link with all sit sets */
306 unsigned int start_segno
; /* start segno of sits in set */
307 unsigned int entry_cnt
; /* the # of sit entries in set */
313 static inline struct curseg_info
*CURSEG_I(struct f2fs_sb_info
*sbi
, int type
)
315 return (struct curseg_info
*)(SM_I(sbi
)->curseg_array
+ type
);
318 static inline struct seg_entry
*get_seg_entry(struct f2fs_sb_info
*sbi
,
321 struct sit_info
*sit_i
= SIT_I(sbi
);
322 return &sit_i
->sentries
[segno
];
325 static inline struct sec_entry
*get_sec_entry(struct f2fs_sb_info
*sbi
,
328 struct sit_info
*sit_i
= SIT_I(sbi
);
329 return &sit_i
->sec_entries
[GET_SEC_FROM_SEG(sbi
, segno
)];
332 static inline unsigned int get_valid_blocks(struct f2fs_sb_info
*sbi
,
333 unsigned int segno
, bool use_section
)
336 * In order to get # of valid blocks in a section instantly from many
337 * segments, f2fs manages two counting structures separately.
339 if (use_section
&& sbi
->segs_per_sec
> 1)
340 return get_sec_entry(sbi
, segno
)->valid_blocks
;
342 return get_seg_entry(sbi
, segno
)->valid_blocks
;
345 static inline void seg_info_from_raw_sit(struct seg_entry
*se
,
346 struct f2fs_sit_entry
*rs
)
348 se
->valid_blocks
= GET_SIT_VBLOCKS(rs
);
349 se
->ckpt_valid_blocks
= GET_SIT_VBLOCKS(rs
);
350 memcpy(se
->cur_valid_map
, rs
->valid_map
, SIT_VBLOCK_MAP_SIZE
);
351 memcpy(se
->ckpt_valid_map
, rs
->valid_map
, SIT_VBLOCK_MAP_SIZE
);
352 #ifdef CONFIG_F2FS_CHECK_FS
353 memcpy(se
->cur_valid_map_mir
, rs
->valid_map
, SIT_VBLOCK_MAP_SIZE
);
355 se
->type
= GET_SIT_TYPE(rs
);
356 se
->mtime
= le64_to_cpu(rs
->mtime
);
359 static inline void __seg_info_to_raw_sit(struct seg_entry
*se
,
360 struct f2fs_sit_entry
*rs
)
362 unsigned short raw_vblocks
= (se
->type
<< SIT_VBLOCKS_SHIFT
) |
364 rs
->vblocks
= cpu_to_le16(raw_vblocks
);
365 memcpy(rs
->valid_map
, se
->cur_valid_map
, SIT_VBLOCK_MAP_SIZE
);
366 rs
->mtime
= cpu_to_le64(se
->mtime
);
369 static inline void seg_info_to_sit_page(struct f2fs_sb_info
*sbi
,
370 struct page
*page
, unsigned int start
)
372 struct f2fs_sit_block
*raw_sit
;
373 struct seg_entry
*se
;
374 struct f2fs_sit_entry
*rs
;
375 unsigned int end
= min(start
+ SIT_ENTRY_PER_BLOCK
,
376 (unsigned long)MAIN_SEGS(sbi
));
379 raw_sit
= (struct f2fs_sit_block
*)page_address(page
);
380 memset(raw_sit
, 0, PAGE_SIZE
);
381 for (i
= 0; i
< end
- start
; i
++) {
382 rs
= &raw_sit
->entries
[i
];
383 se
= get_seg_entry(sbi
, start
+ i
);
384 __seg_info_to_raw_sit(se
, rs
);
388 static inline void seg_info_to_raw_sit(struct seg_entry
*se
,
389 struct f2fs_sit_entry
*rs
)
391 __seg_info_to_raw_sit(se
, rs
);
393 memcpy(se
->ckpt_valid_map
, rs
->valid_map
, SIT_VBLOCK_MAP_SIZE
);
394 se
->ckpt_valid_blocks
= se
->valid_blocks
;
397 static inline unsigned int find_next_inuse(struct free_segmap_info
*free_i
,
398 unsigned int max
, unsigned int segno
)
401 spin_lock(&free_i
->segmap_lock
);
402 ret
= find_next_bit(free_i
->free_segmap
, max
, segno
);
403 spin_unlock(&free_i
->segmap_lock
);
407 static inline void __set_free(struct f2fs_sb_info
*sbi
, unsigned int segno
)
409 struct free_segmap_info
*free_i
= FREE_I(sbi
);
410 unsigned int secno
= GET_SEC_FROM_SEG(sbi
, segno
);
411 unsigned int start_segno
= GET_SEG_FROM_SEC(sbi
, secno
);
414 spin_lock(&free_i
->segmap_lock
);
415 clear_bit(segno
, free_i
->free_segmap
);
416 free_i
->free_segments
++;
418 next
= find_next_bit(free_i
->free_segmap
,
419 start_segno
+ sbi
->segs_per_sec
, start_segno
);
420 if (next
>= start_segno
+ sbi
->segs_per_sec
) {
421 clear_bit(secno
, free_i
->free_secmap
);
422 free_i
->free_sections
++;
424 spin_unlock(&free_i
->segmap_lock
);
427 static inline void __set_inuse(struct f2fs_sb_info
*sbi
,
430 struct free_segmap_info
*free_i
= FREE_I(sbi
);
431 unsigned int secno
= GET_SEC_FROM_SEG(sbi
, segno
);
433 set_bit(segno
, free_i
->free_segmap
);
434 free_i
->free_segments
--;
435 if (!test_and_set_bit(secno
, free_i
->free_secmap
))
436 free_i
->free_sections
--;
439 static inline void __set_test_and_free(struct f2fs_sb_info
*sbi
,
442 struct free_segmap_info
*free_i
= FREE_I(sbi
);
443 unsigned int secno
= GET_SEC_FROM_SEG(sbi
, segno
);
444 unsigned int start_segno
= GET_SEG_FROM_SEC(sbi
, secno
);
447 spin_lock(&free_i
->segmap_lock
);
448 if (test_and_clear_bit(segno
, free_i
->free_segmap
)) {
449 free_i
->free_segments
++;
451 if (IS_CURSEC(sbi
, secno
))
453 next
= find_next_bit(free_i
->free_segmap
,
454 start_segno
+ sbi
->segs_per_sec
, start_segno
);
455 if (next
>= start_segno
+ sbi
->segs_per_sec
) {
456 if (test_and_clear_bit(secno
, free_i
->free_secmap
))
457 free_i
->free_sections
++;
461 spin_unlock(&free_i
->segmap_lock
);
464 static inline void __set_test_and_inuse(struct f2fs_sb_info
*sbi
,
467 struct free_segmap_info
*free_i
= FREE_I(sbi
);
468 unsigned int secno
= GET_SEC_FROM_SEG(sbi
, segno
);
470 spin_lock(&free_i
->segmap_lock
);
471 if (!test_and_set_bit(segno
, free_i
->free_segmap
)) {
472 free_i
->free_segments
--;
473 if (!test_and_set_bit(secno
, free_i
->free_secmap
))
474 free_i
->free_sections
--;
476 spin_unlock(&free_i
->segmap_lock
);
479 static inline void get_sit_bitmap(struct f2fs_sb_info
*sbi
,
482 struct sit_info
*sit_i
= SIT_I(sbi
);
484 #ifdef CONFIG_F2FS_CHECK_FS
485 if (memcmp(sit_i
->sit_bitmap
, sit_i
->sit_bitmap_mir
,
489 memcpy(dst_addr
, sit_i
->sit_bitmap
, sit_i
->bitmap_size
);
492 static inline block_t
written_block_count(struct f2fs_sb_info
*sbi
)
494 return SIT_I(sbi
)->written_valid_blocks
;
497 static inline unsigned int free_segments(struct f2fs_sb_info
*sbi
)
499 return FREE_I(sbi
)->free_segments
;
502 static inline int reserved_segments(struct f2fs_sb_info
*sbi
)
504 return SM_I(sbi
)->reserved_segments
;
507 static inline unsigned int free_sections(struct f2fs_sb_info
*sbi
)
509 return FREE_I(sbi
)->free_sections
;
512 static inline unsigned int prefree_segments(struct f2fs_sb_info
*sbi
)
514 return DIRTY_I(sbi
)->nr_dirty
[PRE
];
517 static inline unsigned int dirty_segments(struct f2fs_sb_info
*sbi
)
519 return DIRTY_I(sbi
)->nr_dirty
[DIRTY_HOT_DATA
] +
520 DIRTY_I(sbi
)->nr_dirty
[DIRTY_WARM_DATA
] +
521 DIRTY_I(sbi
)->nr_dirty
[DIRTY_COLD_DATA
] +
522 DIRTY_I(sbi
)->nr_dirty
[DIRTY_HOT_NODE
] +
523 DIRTY_I(sbi
)->nr_dirty
[DIRTY_WARM_NODE
] +
524 DIRTY_I(sbi
)->nr_dirty
[DIRTY_COLD_NODE
];
527 static inline int overprovision_segments(struct f2fs_sb_info
*sbi
)
529 return SM_I(sbi
)->ovp_segments
;
532 static inline int reserved_sections(struct f2fs_sb_info
*sbi
)
534 return GET_SEC_FROM_SEG(sbi
, (unsigned int)reserved_segments(sbi
));
537 static inline bool has_curseg_enough_space(struct f2fs_sb_info
*sbi
)
539 unsigned int node_blocks
= get_pages(sbi
, F2FS_DIRTY_NODES
) +
540 get_pages(sbi
, F2FS_DIRTY_DENTS
);
541 unsigned int dent_blocks
= get_pages(sbi
, F2FS_DIRTY_DENTS
);
542 unsigned int segno
, left_blocks
;
545 /* check current node segment */
546 for (i
= CURSEG_HOT_NODE
; i
<= CURSEG_COLD_NODE
; i
++) {
547 segno
= CURSEG_I(sbi
, i
)->segno
;
548 left_blocks
= sbi
->blocks_per_seg
-
549 get_seg_entry(sbi
, segno
)->ckpt_valid_blocks
;
551 if (node_blocks
> left_blocks
)
555 /* check current data segment */
556 segno
= CURSEG_I(sbi
, CURSEG_HOT_DATA
)->segno
;
557 left_blocks
= sbi
->blocks_per_seg
-
558 get_seg_entry(sbi
, segno
)->ckpt_valid_blocks
;
559 if (dent_blocks
> left_blocks
)
564 static inline bool has_not_enough_free_secs(struct f2fs_sb_info
*sbi
,
565 int freed
, int needed
)
567 int node_secs
= get_blocktype_secs(sbi
, F2FS_DIRTY_NODES
);
568 int dent_secs
= get_blocktype_secs(sbi
, F2FS_DIRTY_DENTS
);
569 int imeta_secs
= get_blocktype_secs(sbi
, F2FS_DIRTY_IMETA
);
571 if (unlikely(is_sbi_flag_set(sbi
, SBI_POR_DOING
)))
574 if (free_sections(sbi
) + freed
== reserved_sections(sbi
) + needed
&&
575 has_curseg_enough_space(sbi
))
577 return (free_sections(sbi
) + freed
) <=
578 (node_secs
+ 2 * dent_secs
+ imeta_secs
+
579 reserved_sections(sbi
) + needed
);
582 static inline bool excess_prefree_segs(struct f2fs_sb_info
*sbi
)
584 return prefree_segments(sbi
) > SM_I(sbi
)->rec_prefree_segments
;
587 static inline int utilization(struct f2fs_sb_info
*sbi
)
589 return div_u64((u64
)valid_user_blocks(sbi
) * 100,
590 sbi
->user_block_count
);
594 * Sometimes f2fs may be better to drop out-of-place update policy.
595 * And, users can control the policy through sysfs entries.
596 * There are five policies with triggering conditions as follows.
597 * F2FS_IPU_FORCE - all the time,
598 * F2FS_IPU_SSR - if SSR mode is activated,
599 * F2FS_IPU_UTIL - if FS utilization is over threashold,
600 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
602 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
603 * storages. IPU will be triggered only if the # of dirty
604 * pages over min_fsync_blocks.
605 * F2FS_IPUT_DISABLE - disable IPU. (=default option)
607 #define DEF_MIN_IPU_UTIL 70
608 #define DEF_MIN_FSYNC_BLOCKS 8
609 #define DEF_MIN_HOT_BLOCKS 16
611 #define SMALL_VOLUME_SEGMENTS (16 * 512) /* 16GB */
622 static inline unsigned int curseg_segno(struct f2fs_sb_info
*sbi
,
625 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
626 return curseg
->segno
;
629 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info
*sbi
,
632 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
633 return curseg
->alloc_type
;
636 static inline unsigned short curseg_blkoff(struct f2fs_sb_info
*sbi
, int type
)
638 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
639 return curseg
->next_blkoff
;
642 static inline void check_seg_range(struct f2fs_sb_info
*sbi
, unsigned int segno
)
644 f2fs_bug_on(sbi
, segno
> TOTAL_SEGS(sbi
) - 1);
647 static inline void verify_block_addr(struct f2fs_io_info
*fio
, block_t blk_addr
)
649 struct f2fs_sb_info
*sbi
= fio
->sbi
;
651 if (__is_meta_io(fio
))
652 verify_blkaddr(sbi
, blk_addr
, META_GENERIC
);
654 verify_blkaddr(sbi
, blk_addr
, DATA_GENERIC
);
658 * Summary block is always treated as an invalid block
660 static inline int check_block_count(struct f2fs_sb_info
*sbi
,
661 int segno
, struct f2fs_sit_entry
*raw_sit
)
663 #ifdef CONFIG_F2FS_CHECK_FS
664 bool is_valid
= test_bit_le(0, raw_sit
->valid_map
) ? true : false;
665 int valid_blocks
= 0;
666 int cur_pos
= 0, next_pos
;
668 /* check bitmap with valid block count */
671 next_pos
= find_next_zero_bit_le(&raw_sit
->valid_map
,
674 valid_blocks
+= next_pos
- cur_pos
;
676 next_pos
= find_next_bit_le(&raw_sit
->valid_map
,
680 is_valid
= !is_valid
;
681 } while (cur_pos
< sbi
->blocks_per_seg
);
683 if (unlikely(GET_SIT_VBLOCKS(raw_sit
) != valid_blocks
)) {
684 f2fs_msg(sbi
->sb
, KERN_ERR
,
685 "Mismatch valid blocks %d vs. %d",
686 GET_SIT_VBLOCKS(raw_sit
), valid_blocks
);
687 set_sbi_flag(sbi
, SBI_NEED_FSCK
);
691 /* check segment usage, and check boundary of a given segment number */
692 if (unlikely(GET_SIT_VBLOCKS(raw_sit
) > sbi
->blocks_per_seg
693 || segno
> TOTAL_SEGS(sbi
) - 1)) {
694 f2fs_msg(sbi
->sb
, KERN_ERR
,
695 "Wrong valid blocks %d or segno %u",
696 GET_SIT_VBLOCKS(raw_sit
), segno
);
697 set_sbi_flag(sbi
, SBI_NEED_FSCK
);
703 static inline pgoff_t
current_sit_addr(struct f2fs_sb_info
*sbi
,
706 struct sit_info
*sit_i
= SIT_I(sbi
);
707 unsigned int offset
= SIT_BLOCK_OFFSET(start
);
708 block_t blk_addr
= sit_i
->sit_base_addr
+ offset
;
710 check_seg_range(sbi
, start
);
712 #ifdef CONFIG_F2FS_CHECK_FS
713 if (f2fs_test_bit(offset
, sit_i
->sit_bitmap
) !=
714 f2fs_test_bit(offset
, sit_i
->sit_bitmap_mir
))
718 /* calculate sit block address */
719 if (f2fs_test_bit(offset
, sit_i
->sit_bitmap
))
720 blk_addr
+= sit_i
->sit_blocks
;
725 static inline pgoff_t
next_sit_addr(struct f2fs_sb_info
*sbi
,
728 struct sit_info
*sit_i
= SIT_I(sbi
);
729 block_addr
-= sit_i
->sit_base_addr
;
730 if (block_addr
< sit_i
->sit_blocks
)
731 block_addr
+= sit_i
->sit_blocks
;
733 block_addr
-= sit_i
->sit_blocks
;
735 return block_addr
+ sit_i
->sit_base_addr
;
738 static inline void set_to_next_sit(struct sit_info
*sit_i
, unsigned int start
)
740 unsigned int block_off
= SIT_BLOCK_OFFSET(start
);
742 f2fs_change_bit(block_off
, sit_i
->sit_bitmap
);
743 #ifdef CONFIG_F2FS_CHECK_FS
744 f2fs_change_bit(block_off
, sit_i
->sit_bitmap_mir
);
748 static inline unsigned long long get_mtime(struct f2fs_sb_info
*sbi
,
751 struct sit_info
*sit_i
= SIT_I(sbi
);
752 time64_t diff
, now
= ktime_get_real_seconds();
754 if (now
>= sit_i
->mounted_time
)
755 return sit_i
->elapsed_time
+ now
- sit_i
->mounted_time
;
757 /* system time is set to the past */
759 diff
= sit_i
->mounted_time
- now
;
760 if (sit_i
->elapsed_time
>= diff
)
761 return sit_i
->elapsed_time
- diff
;
764 return sit_i
->elapsed_time
;
767 static inline void set_summary(struct f2fs_summary
*sum
, nid_t nid
,
768 unsigned int ofs_in_node
, unsigned char version
)
770 sum
->nid
= cpu_to_le32(nid
);
771 sum
->ofs_in_node
= cpu_to_le16(ofs_in_node
);
772 sum
->version
= version
;
775 static inline block_t
start_sum_block(struct f2fs_sb_info
*sbi
)
777 return __start_cp_addr(sbi
) +
778 le32_to_cpu(F2FS_CKPT(sbi
)->cp_pack_start_sum
);
781 static inline block_t
sum_blk_addr(struct f2fs_sb_info
*sbi
, int base
, int type
)
783 return __start_cp_addr(sbi
) +
784 le32_to_cpu(F2FS_CKPT(sbi
)->cp_pack_total_block_count
)
788 static inline bool sec_usage_check(struct f2fs_sb_info
*sbi
, unsigned int secno
)
790 if (IS_CURSEC(sbi
, secno
) || (sbi
->cur_victim_sec
== secno
))
796 * It is very important to gather dirty pages and write at once, so that we can
797 * submit a big bio without interfering other data writes.
798 * By default, 512 pages for directory data,
799 * 512 pages (2MB) * 8 for nodes, and
800 * 256 pages * 8 for meta are set.
802 static inline int nr_pages_to_skip(struct f2fs_sb_info
*sbi
, int type
)
804 if (sbi
->sb
->s_bdi
->wb
.dirty_exceeded
)
808 return sbi
->blocks_per_seg
;
809 else if (type
== NODE
)
810 return 8 * sbi
->blocks_per_seg
;
811 else if (type
== META
)
812 return 8 * BIO_MAX_PAGES
;
818 * When writing pages, it'd better align nr_to_write for segment size.
820 static inline long nr_pages_to_write(struct f2fs_sb_info
*sbi
, int type
,
821 struct writeback_control
*wbc
)
823 long nr_to_write
, desired
;
825 if (wbc
->sync_mode
!= WB_SYNC_NONE
)
828 nr_to_write
= wbc
->nr_to_write
;
829 desired
= BIO_MAX_PAGES
;
833 wbc
->nr_to_write
= desired
;
834 return desired
- nr_to_write
;
837 static inline void wake_up_discard_thread(struct f2fs_sb_info
*sbi
, bool force
)
839 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
846 mutex_lock(&dcc
->cmd_lock
);
847 for (i
= MAX_PLIST_NUM
- 1; i
>= 0; i
--) {
848 if (i
+ 1 < dcc
->discard_granularity
)
850 if (!list_empty(&dcc
->pend_list
[i
])) {
855 mutex_unlock(&dcc
->cmd_lock
);
859 dcc
->discard_wake
= 1;
860 wake_up_interruptible_all(&dcc
->discard_wait_queue
);