1 // SPDX-License-Identifier: GPL-2.0
3 #include <linux/vmacache.h>
4 #include <linux/hugetlb.h>
5 #include <linux/huge_mm.h>
6 #include <linux/mount.h>
7 #include <linux/seq_file.h>
8 #include <linux/highmem.h>
9 #include <linux/ptrace.h>
10 #include <linux/slab.h>
11 #include <linux/pagemap.h>
12 #include <linux/mempolicy.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/sched/mm.h>
16 #include <linux/swapops.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/page_idle.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/uaccess.h>
21 #include <linux/pkeys.h>
25 #include <asm/tlbflush.h>
28 #define SEQ_PUT_DEC(str, val) \
29 seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
30 void task_mem(struct seq_file
*m
, struct mm_struct
*mm
)
32 unsigned long text
, lib
, swap
, anon
, file
, shmem
;
33 unsigned long hiwater_vm
, total_vm
, hiwater_rss
, total_rss
;
35 anon
= get_mm_counter(mm
, MM_ANONPAGES
);
36 file
= get_mm_counter(mm
, MM_FILEPAGES
);
37 shmem
= get_mm_counter(mm
, MM_SHMEMPAGES
);
40 * Note: to minimize their overhead, mm maintains hiwater_vm and
41 * hiwater_rss only when about to *lower* total_vm or rss. Any
42 * collector of these hiwater stats must therefore get total_vm
43 * and rss too, which will usually be the higher. Barriers? not
44 * worth the effort, such snapshots can always be inconsistent.
46 hiwater_vm
= total_vm
= mm
->total_vm
;
47 if (hiwater_vm
< mm
->hiwater_vm
)
48 hiwater_vm
= mm
->hiwater_vm
;
49 hiwater_rss
= total_rss
= anon
+ file
+ shmem
;
50 if (hiwater_rss
< mm
->hiwater_rss
)
51 hiwater_rss
= mm
->hiwater_rss
;
53 /* split executable areas between text and lib */
54 text
= PAGE_ALIGN(mm
->end_code
) - (mm
->start_code
& PAGE_MASK
);
55 text
= min(text
, mm
->exec_vm
<< PAGE_SHIFT
);
56 lib
= (mm
->exec_vm
<< PAGE_SHIFT
) - text
;
58 swap
= get_mm_counter(mm
, MM_SWAPENTS
);
59 SEQ_PUT_DEC("VmPeak:\t", hiwater_vm
);
60 SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm
);
61 SEQ_PUT_DEC(" kB\nVmLck:\t", mm
->locked_vm
);
62 SEQ_PUT_DEC(" kB\nVmPin:\t", mm
->pinned_vm
);
63 SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss
);
64 SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss
);
65 SEQ_PUT_DEC(" kB\nRssAnon:\t", anon
);
66 SEQ_PUT_DEC(" kB\nRssFile:\t", file
);
67 SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem
);
68 SEQ_PUT_DEC(" kB\nVmData:\t", mm
->data_vm
);
69 SEQ_PUT_DEC(" kB\nVmStk:\t", mm
->stack_vm
);
70 seq_put_decimal_ull_width(m
,
71 " kB\nVmExe:\t", text
>> 10, 8);
72 seq_put_decimal_ull_width(m
,
73 " kB\nVmLib:\t", lib
>> 10, 8);
74 seq_put_decimal_ull_width(m
,
75 " kB\nVmPTE:\t", mm_pgtables_bytes(mm
) >> 10, 8);
76 SEQ_PUT_DEC(" kB\nVmSwap:\t", swap
);
78 hugetlb_report_usage(m
, mm
);
82 unsigned long task_vsize(struct mm_struct
*mm
)
84 return PAGE_SIZE
* mm
->total_vm
;
87 unsigned long task_statm(struct mm_struct
*mm
,
88 unsigned long *shared
, unsigned long *text
,
89 unsigned long *data
, unsigned long *resident
)
91 *shared
= get_mm_counter(mm
, MM_FILEPAGES
) +
92 get_mm_counter(mm
, MM_SHMEMPAGES
);
93 *text
= (PAGE_ALIGN(mm
->end_code
) - (mm
->start_code
& PAGE_MASK
))
95 *data
= mm
->data_vm
+ mm
->stack_vm
;
96 *resident
= *shared
+ get_mm_counter(mm
, MM_ANONPAGES
);
102 * Save get_task_policy() for show_numa_map().
104 static void hold_task_mempolicy(struct proc_maps_private
*priv
)
106 struct task_struct
*task
= priv
->task
;
109 priv
->task_mempolicy
= get_task_policy(task
);
110 mpol_get(priv
->task_mempolicy
);
113 static void release_task_mempolicy(struct proc_maps_private
*priv
)
115 mpol_put(priv
->task_mempolicy
);
118 static void hold_task_mempolicy(struct proc_maps_private
*priv
)
121 static void release_task_mempolicy(struct proc_maps_private
*priv
)
126 static void vma_stop(struct proc_maps_private
*priv
)
128 struct mm_struct
*mm
= priv
->mm
;
130 release_task_mempolicy(priv
);
131 up_read(&mm
->mmap_sem
);
135 static struct vm_area_struct
*
136 m_next_vma(struct proc_maps_private
*priv
, struct vm_area_struct
*vma
)
138 if (vma
== priv
->tail_vma
)
140 return vma
->vm_next
?: priv
->tail_vma
;
143 static void m_cache_vma(struct seq_file
*m
, struct vm_area_struct
*vma
)
145 if (m
->count
< m
->size
) /* vma is copied successfully */
146 m
->version
= m_next_vma(m
->private, vma
) ? vma
->vm_end
: -1UL;
149 static void *m_start(struct seq_file
*m
, loff_t
*ppos
)
151 struct proc_maps_private
*priv
= m
->private;
152 unsigned long last_addr
= m
->version
;
153 struct mm_struct
*mm
;
154 struct vm_area_struct
*vma
;
155 unsigned int pos
= *ppos
;
157 /* See m_cache_vma(). Zero at the start or after lseek. */
158 if (last_addr
== -1UL)
161 priv
->task
= get_proc_task(priv
->inode
);
163 return ERR_PTR(-ESRCH
);
166 if (!mm
|| !mmget_not_zero(mm
))
169 down_read(&mm
->mmap_sem
);
170 hold_task_mempolicy(priv
);
171 priv
->tail_vma
= get_gate_vma(mm
);
174 vma
= find_vma(mm
, last_addr
- 1);
175 if (vma
&& vma
->vm_start
<= last_addr
)
176 vma
= m_next_vma(priv
, vma
);
182 if (pos
< mm
->map_count
) {
183 for (vma
= mm
->mmap
; pos
; pos
--) {
184 m
->version
= vma
->vm_start
;
190 /* we do not bother to update m->version in this case */
191 if (pos
== mm
->map_count
&& priv
->tail_vma
)
192 return priv
->tail_vma
;
198 static void *m_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
200 struct proc_maps_private
*priv
= m
->private;
201 struct vm_area_struct
*next
;
204 next
= m_next_vma(priv
, v
);
210 static void m_stop(struct seq_file
*m
, void *v
)
212 struct proc_maps_private
*priv
= m
->private;
214 if (!IS_ERR_OR_NULL(v
))
217 put_task_struct(priv
->task
);
222 static int proc_maps_open(struct inode
*inode
, struct file
*file
,
223 const struct seq_operations
*ops
, int psize
)
225 struct proc_maps_private
*priv
= __seq_open_private(file
, ops
, psize
);
231 priv
->mm
= proc_mem_open(inode
, PTRACE_MODE_READ
);
232 if (IS_ERR(priv
->mm
)) {
233 int err
= PTR_ERR(priv
->mm
);
235 seq_release_private(inode
, file
);
242 static int proc_map_release(struct inode
*inode
, struct file
*file
)
244 struct seq_file
*seq
= file
->private_data
;
245 struct proc_maps_private
*priv
= seq
->private;
250 return seq_release_private(inode
, file
);
253 static int do_maps_open(struct inode
*inode
, struct file
*file
,
254 const struct seq_operations
*ops
)
256 return proc_maps_open(inode
, file
, ops
,
257 sizeof(struct proc_maps_private
));
261 * Indicate if the VMA is a stack for the given task; for
262 * /proc/PID/maps that is the stack of the main task.
264 static int is_stack(struct vm_area_struct
*vma
)
267 * We make no effort to guess what a given thread considers to be
268 * its "stack". It's not even well-defined for programs written
271 return vma
->vm_start
<= vma
->vm_mm
->start_stack
&&
272 vma
->vm_end
>= vma
->vm_mm
->start_stack
;
275 static void show_vma_header_prefix(struct seq_file
*m
,
276 unsigned long start
, unsigned long end
,
277 vm_flags_t flags
, unsigned long long pgoff
,
278 dev_t dev
, unsigned long ino
)
280 seq_setwidth(m
, 25 + sizeof(void *) * 6 - 1);
281 seq_put_hex_ll(m
, NULL
, start
, 8);
282 seq_put_hex_ll(m
, "-", end
, 8);
284 seq_putc(m
, flags
& VM_READ
? 'r' : '-');
285 seq_putc(m
, flags
& VM_WRITE
? 'w' : '-');
286 seq_putc(m
, flags
& VM_EXEC
? 'x' : '-');
287 seq_putc(m
, flags
& VM_MAYSHARE
? 's' : 'p');
288 seq_put_hex_ll(m
, " ", pgoff
, 8);
289 seq_put_hex_ll(m
, " ", MAJOR(dev
), 2);
290 seq_put_hex_ll(m
, ":", MINOR(dev
), 2);
291 seq_put_decimal_ull(m
, " ", ino
);
296 show_map_vma(struct seq_file
*m
, struct vm_area_struct
*vma
)
298 struct mm_struct
*mm
= vma
->vm_mm
;
299 struct file
*file
= vma
->vm_file
;
300 vm_flags_t flags
= vma
->vm_flags
;
301 unsigned long ino
= 0;
302 unsigned long long pgoff
= 0;
303 unsigned long start
, end
;
305 const char *name
= NULL
;
308 struct inode
*inode
= file_inode(vma
->vm_file
);
309 dev
= inode
->i_sb
->s_dev
;
311 pgoff
= ((loff_t
)vma
->vm_pgoff
) << PAGE_SHIFT
;
314 start
= vma
->vm_start
;
316 show_vma_header_prefix(m
, start
, end
, flags
, pgoff
, dev
, ino
);
319 * Print the dentry name for named mappings, and a
320 * special [heap] marker for the heap:
324 seq_file_path(m
, file
, "\n");
328 if (vma
->vm_ops
&& vma
->vm_ops
->name
) {
329 name
= vma
->vm_ops
->name(vma
);
334 name
= arch_vma_name(vma
);
341 if (vma
->vm_start
<= mm
->brk
&&
342 vma
->vm_end
>= mm
->start_brk
) {
359 static int show_map(struct seq_file
*m
, void *v
)
366 static const struct seq_operations proc_pid_maps_op
= {
373 static int pid_maps_open(struct inode
*inode
, struct file
*file
)
375 return do_maps_open(inode
, file
, &proc_pid_maps_op
);
378 const struct file_operations proc_pid_maps_operations
= {
379 .open
= pid_maps_open
,
382 .release
= proc_map_release
,
386 * Proportional Set Size(PSS): my share of RSS.
388 * PSS of a process is the count of pages it has in memory, where each
389 * page is divided by the number of processes sharing it. So if a
390 * process has 1000 pages all to itself, and 1000 shared with one other
391 * process, its PSS will be 1500.
393 * To keep (accumulated) division errors low, we adopt a 64bit
394 * fixed-point pss counter to minimize division errors. So (pss >>
395 * PSS_SHIFT) would be the real byte count.
397 * A shift of 12 before division means (assuming 4K page size):
398 * - 1M 3-user-pages add up to 8KB errors;
399 * - supports mapcount up to 2^24, or 16M;
400 * - supports PSS up to 2^52 bytes, or 4PB.
404 #ifdef CONFIG_PROC_PAGE_MONITOR
405 struct mem_size_stats
{
406 unsigned long resident
;
407 unsigned long shared_clean
;
408 unsigned long shared_dirty
;
409 unsigned long private_clean
;
410 unsigned long private_dirty
;
411 unsigned long referenced
;
412 unsigned long anonymous
;
413 unsigned long lazyfree
;
414 unsigned long anonymous_thp
;
415 unsigned long shmem_thp
;
417 unsigned long shared_hugetlb
;
418 unsigned long private_hugetlb
;
422 bool check_shmem_swap
;
425 static void smaps_account(struct mem_size_stats
*mss
, struct page
*page
,
426 bool compound
, bool young
, bool dirty
)
428 int i
, nr
= compound
? 1 << compound_order(page
) : 1;
429 unsigned long size
= nr
* PAGE_SIZE
;
431 if (PageAnon(page
)) {
432 mss
->anonymous
+= size
;
433 if (!PageSwapBacked(page
) && !dirty
&& !PageDirty(page
))
434 mss
->lazyfree
+= size
;
437 mss
->resident
+= size
;
438 /* Accumulate the size in pages that have been accessed. */
439 if (young
|| page_is_young(page
) || PageReferenced(page
))
440 mss
->referenced
+= size
;
443 * page_count(page) == 1 guarantees the page is mapped exactly once.
444 * If any subpage of the compound page mapped with PTE it would elevate
447 if (page_count(page
) == 1) {
448 if (dirty
|| PageDirty(page
))
449 mss
->private_dirty
+= size
;
451 mss
->private_clean
+= size
;
452 mss
->pss
+= (u64
)size
<< PSS_SHIFT
;
456 for (i
= 0; i
< nr
; i
++, page
++) {
457 int mapcount
= page_mapcount(page
);
460 if (dirty
|| PageDirty(page
))
461 mss
->shared_dirty
+= PAGE_SIZE
;
463 mss
->shared_clean
+= PAGE_SIZE
;
464 mss
->pss
+= (PAGE_SIZE
<< PSS_SHIFT
) / mapcount
;
466 if (dirty
|| PageDirty(page
))
467 mss
->private_dirty
+= PAGE_SIZE
;
469 mss
->private_clean
+= PAGE_SIZE
;
470 mss
->pss
+= PAGE_SIZE
<< PSS_SHIFT
;
476 static int smaps_pte_hole(unsigned long addr
, unsigned long end
,
477 struct mm_walk
*walk
)
479 struct mem_size_stats
*mss
= walk
->private;
481 mss
->swap
+= shmem_partial_swap_usage(
482 walk
->vma
->vm_file
->f_mapping
, addr
, end
);
488 static void smaps_pte_entry(pte_t
*pte
, unsigned long addr
,
489 struct mm_walk
*walk
)
491 struct mem_size_stats
*mss
= walk
->private;
492 struct vm_area_struct
*vma
= walk
->vma
;
493 struct page
*page
= NULL
;
495 if (pte_present(*pte
)) {
496 page
= vm_normal_page(vma
, addr
, *pte
);
497 } else if (is_swap_pte(*pte
)) {
498 swp_entry_t swpent
= pte_to_swp_entry(*pte
);
500 if (!non_swap_entry(swpent
)) {
503 mss
->swap
+= PAGE_SIZE
;
504 mapcount
= swp_swapcount(swpent
);
506 u64 pss_delta
= (u64
)PAGE_SIZE
<< PSS_SHIFT
;
508 do_div(pss_delta
, mapcount
);
509 mss
->swap_pss
+= pss_delta
;
511 mss
->swap_pss
+= (u64
)PAGE_SIZE
<< PSS_SHIFT
;
513 } else if (is_migration_entry(swpent
))
514 page
= migration_entry_to_page(swpent
);
515 else if (is_device_private_entry(swpent
))
516 page
= device_private_entry_to_page(swpent
);
517 } else if (unlikely(IS_ENABLED(CONFIG_SHMEM
) && mss
->check_shmem_swap
518 && pte_none(*pte
))) {
519 page
= find_get_entry(vma
->vm_file
->f_mapping
,
520 linear_page_index(vma
, addr
));
524 if (radix_tree_exceptional_entry(page
))
525 mss
->swap
+= PAGE_SIZE
;
535 smaps_account(mss
, page
, false, pte_young(*pte
), pte_dirty(*pte
));
538 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
539 static void smaps_pmd_entry(pmd_t
*pmd
, unsigned long addr
,
540 struct mm_walk
*walk
)
542 struct mem_size_stats
*mss
= walk
->private;
543 struct vm_area_struct
*vma
= walk
->vma
;
546 /* FOLL_DUMP will return -EFAULT on huge zero page */
547 page
= follow_trans_huge_pmd(vma
, addr
, pmd
, FOLL_DUMP
);
548 if (IS_ERR_OR_NULL(page
))
551 mss
->anonymous_thp
+= HPAGE_PMD_SIZE
;
552 else if (PageSwapBacked(page
))
553 mss
->shmem_thp
+= HPAGE_PMD_SIZE
;
554 else if (is_zone_device_page(page
))
557 VM_BUG_ON_PAGE(1, page
);
558 smaps_account(mss
, page
, true, pmd_young(*pmd
), pmd_dirty(*pmd
));
561 static void smaps_pmd_entry(pmd_t
*pmd
, unsigned long addr
,
562 struct mm_walk
*walk
)
567 static int smaps_pte_range(pmd_t
*pmd
, unsigned long addr
, unsigned long end
,
568 struct mm_walk
*walk
)
570 struct vm_area_struct
*vma
= walk
->vma
;
574 ptl
= pmd_trans_huge_lock(pmd
, vma
);
576 if (pmd_present(*pmd
))
577 smaps_pmd_entry(pmd
, addr
, walk
);
582 if (pmd_trans_unstable(pmd
))
585 * The mmap_sem held all the way back in m_start() is what
586 * keeps khugepaged out of here and from collapsing things
589 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
590 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
)
591 smaps_pte_entry(pte
, addr
, walk
);
592 pte_unmap_unlock(pte
- 1, ptl
);
598 static void show_smap_vma_flags(struct seq_file
*m
, struct vm_area_struct
*vma
)
601 * Don't forget to update Documentation/ on changes.
603 static const char mnemonics
[BITS_PER_LONG
][2] = {
605 * In case if we meet a flag we don't know about.
607 [0 ... (BITS_PER_LONG
-1)] = "??",
609 [ilog2(VM_READ
)] = "rd",
610 [ilog2(VM_WRITE
)] = "wr",
611 [ilog2(VM_EXEC
)] = "ex",
612 [ilog2(VM_SHARED
)] = "sh",
613 [ilog2(VM_MAYREAD
)] = "mr",
614 [ilog2(VM_MAYWRITE
)] = "mw",
615 [ilog2(VM_MAYEXEC
)] = "me",
616 [ilog2(VM_MAYSHARE
)] = "ms",
617 [ilog2(VM_GROWSDOWN
)] = "gd",
618 [ilog2(VM_PFNMAP
)] = "pf",
619 [ilog2(VM_DENYWRITE
)] = "dw",
620 #ifdef CONFIG_X86_INTEL_MPX
621 [ilog2(VM_MPX
)] = "mp",
623 [ilog2(VM_LOCKED
)] = "lo",
624 [ilog2(VM_IO
)] = "io",
625 [ilog2(VM_SEQ_READ
)] = "sr",
626 [ilog2(VM_RAND_READ
)] = "rr",
627 [ilog2(VM_DONTCOPY
)] = "dc",
628 [ilog2(VM_DONTEXPAND
)] = "de",
629 [ilog2(VM_ACCOUNT
)] = "ac",
630 [ilog2(VM_NORESERVE
)] = "nr",
631 [ilog2(VM_HUGETLB
)] = "ht",
632 [ilog2(VM_SYNC
)] = "sf",
633 [ilog2(VM_ARCH_1
)] = "ar",
634 [ilog2(VM_WIPEONFORK
)] = "wf",
635 [ilog2(VM_DONTDUMP
)] = "dd",
636 #ifdef CONFIG_MEM_SOFT_DIRTY
637 [ilog2(VM_SOFTDIRTY
)] = "sd",
639 [ilog2(VM_MIXEDMAP
)] = "mm",
640 [ilog2(VM_HUGEPAGE
)] = "hg",
641 [ilog2(VM_NOHUGEPAGE
)] = "nh",
642 [ilog2(VM_MERGEABLE
)] = "mg",
643 [ilog2(VM_UFFD_MISSING
)]= "um",
644 [ilog2(VM_UFFD_WP
)] = "uw",
645 #ifdef CONFIG_ARCH_HAS_PKEYS
646 /* These come out via ProtectionKey: */
647 [ilog2(VM_PKEY_BIT0
)] = "",
648 [ilog2(VM_PKEY_BIT1
)] = "",
649 [ilog2(VM_PKEY_BIT2
)] = "",
650 [ilog2(VM_PKEY_BIT3
)] = "",
652 [ilog2(VM_PKEY_BIT4
)] = "",
654 #endif /* CONFIG_ARCH_HAS_PKEYS */
658 seq_puts(m
, "VmFlags: ");
659 for (i
= 0; i
< BITS_PER_LONG
; i
++) {
660 if (!mnemonics
[i
][0])
662 if (vma
->vm_flags
& (1UL << i
)) {
663 seq_putc(m
, mnemonics
[i
][0]);
664 seq_putc(m
, mnemonics
[i
][1]);
671 #ifdef CONFIG_HUGETLB_PAGE
672 static int smaps_hugetlb_range(pte_t
*pte
, unsigned long hmask
,
673 unsigned long addr
, unsigned long end
,
674 struct mm_walk
*walk
)
676 struct mem_size_stats
*mss
= walk
->private;
677 struct vm_area_struct
*vma
= walk
->vma
;
678 struct page
*page
= NULL
;
680 if (pte_present(*pte
)) {
681 page
= vm_normal_page(vma
, addr
, *pte
);
682 } else if (is_swap_pte(*pte
)) {
683 swp_entry_t swpent
= pte_to_swp_entry(*pte
);
685 if (is_migration_entry(swpent
))
686 page
= migration_entry_to_page(swpent
);
687 else if (is_device_private_entry(swpent
))
688 page
= device_private_entry_to_page(swpent
);
691 int mapcount
= page_mapcount(page
);
694 mss
->shared_hugetlb
+= huge_page_size(hstate_vma(vma
));
696 mss
->private_hugetlb
+= huge_page_size(hstate_vma(vma
));
700 #endif /* HUGETLB_PAGE */
702 static void smap_gather_stats(struct vm_area_struct
*vma
,
703 struct mem_size_stats
*mss
)
705 struct mm_walk smaps_walk
= {
706 .pmd_entry
= smaps_pte_range
,
707 #ifdef CONFIG_HUGETLB_PAGE
708 .hugetlb_entry
= smaps_hugetlb_range
,
713 smaps_walk
.private = mss
;
716 if (vma
->vm_file
&& shmem_mapping(vma
->vm_file
->f_mapping
)) {
718 * For shared or readonly shmem mappings we know that all
719 * swapped out pages belong to the shmem object, and we can
720 * obtain the swap value much more efficiently. For private
721 * writable mappings, we might have COW pages that are
722 * not affected by the parent swapped out pages of the shmem
723 * object, so we have to distinguish them during the page walk.
724 * Unless we know that the shmem object (or the part mapped by
725 * our VMA) has no swapped out pages at all.
727 unsigned long shmem_swapped
= shmem_swap_usage(vma
);
729 if (!shmem_swapped
|| (vma
->vm_flags
& VM_SHARED
) ||
730 !(vma
->vm_flags
& VM_WRITE
)) {
731 mss
->swap
= shmem_swapped
;
733 mss
->check_shmem_swap
= true;
734 smaps_walk
.pte_hole
= smaps_pte_hole
;
739 /* mmap_sem is held in m_start */
740 walk_page_vma(vma
, &smaps_walk
);
741 if (vma
->vm_flags
& VM_LOCKED
)
742 mss
->pss_locked
+= mss
->pss
;
745 #define SEQ_PUT_DEC(str, val) \
746 seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
748 /* Show the contents common for smaps and smaps_rollup */
749 static void __show_smap(struct seq_file
*m
, const struct mem_size_stats
*mss
)
751 SEQ_PUT_DEC("Rss: ", mss
->resident
);
752 SEQ_PUT_DEC(" kB\nPss: ", mss
->pss
>> PSS_SHIFT
);
753 SEQ_PUT_DEC(" kB\nShared_Clean: ", mss
->shared_clean
);
754 SEQ_PUT_DEC(" kB\nShared_Dirty: ", mss
->shared_dirty
);
755 SEQ_PUT_DEC(" kB\nPrivate_Clean: ", mss
->private_clean
);
756 SEQ_PUT_DEC(" kB\nPrivate_Dirty: ", mss
->private_dirty
);
757 SEQ_PUT_DEC(" kB\nReferenced: ", mss
->referenced
);
758 SEQ_PUT_DEC(" kB\nAnonymous: ", mss
->anonymous
);
759 SEQ_PUT_DEC(" kB\nLazyFree: ", mss
->lazyfree
);
760 SEQ_PUT_DEC(" kB\nAnonHugePages: ", mss
->anonymous_thp
);
761 SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss
->shmem_thp
);
762 SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss
->shared_hugetlb
);
763 seq_put_decimal_ull_width(m
, " kB\nPrivate_Hugetlb: ",
764 mss
->private_hugetlb
>> 10, 7);
765 SEQ_PUT_DEC(" kB\nSwap: ", mss
->swap
);
766 SEQ_PUT_DEC(" kB\nSwapPss: ",
767 mss
->swap_pss
>> PSS_SHIFT
);
768 SEQ_PUT_DEC(" kB\nLocked: ",
769 mss
->pss_locked
>> PSS_SHIFT
);
770 seq_puts(m
, " kB\n");
773 static int show_smap(struct seq_file
*m
, void *v
)
775 struct vm_area_struct
*vma
= v
;
776 struct mem_size_stats mss
;
778 memset(&mss
, 0, sizeof(mss
));
780 smap_gather_stats(vma
, &mss
);
782 show_map_vma(m
, vma
);
784 SEQ_PUT_DEC("Size: ", vma
->vm_end
- vma
->vm_start
);
785 SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma
));
786 SEQ_PUT_DEC(" kB\nMMUPageSize: ", vma_mmu_pagesize(vma
));
787 seq_puts(m
, " kB\n");
789 __show_smap(m
, &mss
);
791 if (arch_pkeys_enabled())
792 seq_printf(m
, "ProtectionKey: %8u\n", vma_pkey(vma
));
793 show_smap_vma_flags(m
, vma
);
800 static int show_smaps_rollup(struct seq_file
*m
, void *v
)
802 struct proc_maps_private
*priv
= m
->private;
803 struct mem_size_stats mss
;
804 struct mm_struct
*mm
;
805 struct vm_area_struct
*vma
;
806 unsigned long last_vma_end
= 0;
809 priv
->task
= get_proc_task(priv
->inode
);
814 if (!mm
|| !mmget_not_zero(mm
)) {
819 memset(&mss
, 0, sizeof(mss
));
821 down_read(&mm
->mmap_sem
);
822 hold_task_mempolicy(priv
);
824 for (vma
= priv
->mm
->mmap
; vma
; vma
= vma
->vm_next
) {
825 smap_gather_stats(vma
, &mss
);
826 last_vma_end
= vma
->vm_end
;
829 show_vma_header_prefix(m
, priv
->mm
->mmap
->vm_start
,
830 last_vma_end
, 0, 0, 0, 0);
832 seq_puts(m
, "[rollup]\n");
834 __show_smap(m
, &mss
);
836 release_task_mempolicy(priv
);
837 up_read(&mm
->mmap_sem
);
841 put_task_struct(priv
->task
);
848 static const struct seq_operations proc_pid_smaps_op
= {
855 static int pid_smaps_open(struct inode
*inode
, struct file
*file
)
857 return do_maps_open(inode
, file
, &proc_pid_smaps_op
);
860 static int smaps_rollup_open(struct inode
*inode
, struct file
*file
)
863 struct proc_maps_private
*priv
;
865 priv
= kzalloc(sizeof(*priv
), GFP_KERNEL_ACCOUNT
);
869 ret
= single_open(file
, show_smaps_rollup
, priv
);
874 priv
->mm
= proc_mem_open(inode
, PTRACE_MODE_READ
);
875 if (IS_ERR(priv
->mm
)) {
876 ret
= PTR_ERR(priv
->mm
);
878 single_release(inode
, file
);
889 static int smaps_rollup_release(struct inode
*inode
, struct file
*file
)
891 struct seq_file
*seq
= file
->private_data
;
892 struct proc_maps_private
*priv
= seq
->private;
898 return single_release(inode
, file
);
901 const struct file_operations proc_pid_smaps_operations
= {
902 .open
= pid_smaps_open
,
905 .release
= proc_map_release
,
908 const struct file_operations proc_pid_smaps_rollup_operations
= {
909 .open
= smaps_rollup_open
,
912 .release
= smaps_rollup_release
,
915 enum clear_refs_types
{
919 CLEAR_REFS_SOFT_DIRTY
,
920 CLEAR_REFS_MM_HIWATER_RSS
,
924 struct clear_refs_private
{
925 enum clear_refs_types type
;
928 #ifdef CONFIG_MEM_SOFT_DIRTY
929 static inline void clear_soft_dirty(struct vm_area_struct
*vma
,
930 unsigned long addr
, pte_t
*pte
)
933 * The soft-dirty tracker uses #PF-s to catch writes
934 * to pages, so write-protect the pte as well. See the
935 * Documentation/admin-guide/mm/soft-dirty.rst for full description
936 * of how soft-dirty works.
940 if (pte_present(ptent
)) {
941 ptent
= ptep_modify_prot_start(vma
->vm_mm
, addr
, pte
);
942 ptent
= pte_wrprotect(ptent
);
943 ptent
= pte_clear_soft_dirty(ptent
);
944 ptep_modify_prot_commit(vma
->vm_mm
, addr
, pte
, ptent
);
945 } else if (is_swap_pte(ptent
)) {
946 ptent
= pte_swp_clear_soft_dirty(ptent
);
947 set_pte_at(vma
->vm_mm
, addr
, pte
, ptent
);
951 static inline void clear_soft_dirty(struct vm_area_struct
*vma
,
952 unsigned long addr
, pte_t
*pte
)
957 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
958 static inline void clear_soft_dirty_pmd(struct vm_area_struct
*vma
,
959 unsigned long addr
, pmd_t
*pmdp
)
961 pmd_t old
, pmd
= *pmdp
;
963 if (pmd_present(pmd
)) {
964 /* See comment in change_huge_pmd() */
965 old
= pmdp_invalidate(vma
, addr
, pmdp
);
967 pmd
= pmd_mkdirty(pmd
);
969 pmd
= pmd_mkyoung(pmd
);
971 pmd
= pmd_wrprotect(pmd
);
972 pmd
= pmd_clear_soft_dirty(pmd
);
974 set_pmd_at(vma
->vm_mm
, addr
, pmdp
, pmd
);
975 } else if (is_migration_entry(pmd_to_swp_entry(pmd
))) {
976 pmd
= pmd_swp_clear_soft_dirty(pmd
);
977 set_pmd_at(vma
->vm_mm
, addr
, pmdp
, pmd
);
981 static inline void clear_soft_dirty_pmd(struct vm_area_struct
*vma
,
982 unsigned long addr
, pmd_t
*pmdp
)
987 static int clear_refs_pte_range(pmd_t
*pmd
, unsigned long addr
,
988 unsigned long end
, struct mm_walk
*walk
)
990 struct clear_refs_private
*cp
= walk
->private;
991 struct vm_area_struct
*vma
= walk
->vma
;
996 ptl
= pmd_trans_huge_lock(pmd
, vma
);
998 if (cp
->type
== CLEAR_REFS_SOFT_DIRTY
) {
999 clear_soft_dirty_pmd(vma
, addr
, pmd
);
1003 if (!pmd_present(*pmd
))
1006 page
= pmd_page(*pmd
);
1008 /* Clear accessed and referenced bits. */
1009 pmdp_test_and_clear_young(vma
, addr
, pmd
);
1010 test_and_clear_page_young(page
);
1011 ClearPageReferenced(page
);
1017 if (pmd_trans_unstable(pmd
))
1020 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
1021 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
) {
1024 if (cp
->type
== CLEAR_REFS_SOFT_DIRTY
) {
1025 clear_soft_dirty(vma
, addr
, pte
);
1029 if (!pte_present(ptent
))
1032 page
= vm_normal_page(vma
, addr
, ptent
);
1036 /* Clear accessed and referenced bits. */
1037 ptep_test_and_clear_young(vma
, addr
, pte
);
1038 test_and_clear_page_young(page
);
1039 ClearPageReferenced(page
);
1041 pte_unmap_unlock(pte
- 1, ptl
);
1046 static int clear_refs_test_walk(unsigned long start
, unsigned long end
,
1047 struct mm_walk
*walk
)
1049 struct clear_refs_private
*cp
= walk
->private;
1050 struct vm_area_struct
*vma
= walk
->vma
;
1052 if (vma
->vm_flags
& VM_PFNMAP
)
1056 * Writing 1 to /proc/pid/clear_refs affects all pages.
1057 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1058 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1059 * Writing 4 to /proc/pid/clear_refs affects all pages.
1061 if (cp
->type
== CLEAR_REFS_ANON
&& vma
->vm_file
)
1063 if (cp
->type
== CLEAR_REFS_MAPPED
&& !vma
->vm_file
)
1068 static ssize_t
clear_refs_write(struct file
*file
, const char __user
*buf
,
1069 size_t count
, loff_t
*ppos
)
1071 struct task_struct
*task
;
1072 char buffer
[PROC_NUMBUF
];
1073 struct mm_struct
*mm
;
1074 struct vm_area_struct
*vma
;
1075 enum clear_refs_types type
;
1076 struct mmu_gather tlb
;
1080 memset(buffer
, 0, sizeof(buffer
));
1081 if (count
> sizeof(buffer
) - 1)
1082 count
= sizeof(buffer
) - 1;
1083 if (copy_from_user(buffer
, buf
, count
))
1085 rv
= kstrtoint(strstrip(buffer
), 10, &itype
);
1088 type
= (enum clear_refs_types
)itype
;
1089 if (type
< CLEAR_REFS_ALL
|| type
>= CLEAR_REFS_LAST
)
1092 task
= get_proc_task(file_inode(file
));
1095 mm
= get_task_mm(task
);
1097 struct clear_refs_private cp
= {
1100 struct mm_walk clear_refs_walk
= {
1101 .pmd_entry
= clear_refs_pte_range
,
1102 .test_walk
= clear_refs_test_walk
,
1107 if (type
== CLEAR_REFS_MM_HIWATER_RSS
) {
1108 if (down_write_killable(&mm
->mmap_sem
)) {
1114 * Writing 5 to /proc/pid/clear_refs resets the peak
1115 * resident set size to this mm's current rss value.
1117 reset_mm_hiwater_rss(mm
);
1118 up_write(&mm
->mmap_sem
);
1122 down_read(&mm
->mmap_sem
);
1123 tlb_gather_mmu(&tlb
, mm
, 0, -1);
1124 if (type
== CLEAR_REFS_SOFT_DIRTY
) {
1125 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
1126 if (!(vma
->vm_flags
& VM_SOFTDIRTY
))
1128 up_read(&mm
->mmap_sem
);
1129 if (down_write_killable(&mm
->mmap_sem
)) {
1133 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
1134 vma
->vm_flags
&= ~VM_SOFTDIRTY
;
1135 vma_set_page_prot(vma
);
1137 downgrade_write(&mm
->mmap_sem
);
1140 mmu_notifier_invalidate_range_start(mm
, 0, -1);
1142 walk_page_range(0, mm
->highest_vm_end
, &clear_refs_walk
);
1143 if (type
== CLEAR_REFS_SOFT_DIRTY
)
1144 mmu_notifier_invalidate_range_end(mm
, 0, -1);
1145 tlb_finish_mmu(&tlb
, 0, -1);
1146 up_read(&mm
->mmap_sem
);
1150 put_task_struct(task
);
1155 const struct file_operations proc_clear_refs_operations
= {
1156 .write
= clear_refs_write
,
1157 .llseek
= noop_llseek
,
1164 struct pagemapread
{
1165 int pos
, len
; /* units: PM_ENTRY_BYTES, not bytes */
1166 pagemap_entry_t
*buffer
;
1170 #define PAGEMAP_WALK_SIZE (PMD_SIZE)
1171 #define PAGEMAP_WALK_MASK (PMD_MASK)
1173 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
1174 #define PM_PFRAME_BITS 55
1175 #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1176 #define PM_SOFT_DIRTY BIT_ULL(55)
1177 #define PM_MMAP_EXCLUSIVE BIT_ULL(56)
1178 #define PM_FILE BIT_ULL(61)
1179 #define PM_SWAP BIT_ULL(62)
1180 #define PM_PRESENT BIT_ULL(63)
1182 #define PM_END_OF_BUFFER 1
1184 static inline pagemap_entry_t
make_pme(u64 frame
, u64 flags
)
1186 return (pagemap_entry_t
) { .pme
= (frame
& PM_PFRAME_MASK
) | flags
};
1189 static int add_to_pagemap(unsigned long addr
, pagemap_entry_t
*pme
,
1190 struct pagemapread
*pm
)
1192 pm
->buffer
[pm
->pos
++] = *pme
;
1193 if (pm
->pos
>= pm
->len
)
1194 return PM_END_OF_BUFFER
;
1198 static int pagemap_pte_hole(unsigned long start
, unsigned long end
,
1199 struct mm_walk
*walk
)
1201 struct pagemapread
*pm
= walk
->private;
1202 unsigned long addr
= start
;
1205 while (addr
< end
) {
1206 struct vm_area_struct
*vma
= find_vma(walk
->mm
, addr
);
1207 pagemap_entry_t pme
= make_pme(0, 0);
1208 /* End of address space hole, which we mark as non-present. */
1209 unsigned long hole_end
;
1212 hole_end
= min(end
, vma
->vm_start
);
1216 for (; addr
< hole_end
; addr
+= PAGE_SIZE
) {
1217 err
= add_to_pagemap(addr
, &pme
, pm
);
1225 /* Addresses in the VMA. */
1226 if (vma
->vm_flags
& VM_SOFTDIRTY
)
1227 pme
= make_pme(0, PM_SOFT_DIRTY
);
1228 for (; addr
< min(end
, vma
->vm_end
); addr
+= PAGE_SIZE
) {
1229 err
= add_to_pagemap(addr
, &pme
, pm
);
1238 static pagemap_entry_t
pte_to_pagemap_entry(struct pagemapread
*pm
,
1239 struct vm_area_struct
*vma
, unsigned long addr
, pte_t pte
)
1241 u64 frame
= 0, flags
= 0;
1242 struct page
*page
= NULL
;
1244 if (pte_present(pte
)) {
1246 frame
= pte_pfn(pte
);
1247 flags
|= PM_PRESENT
;
1248 page
= _vm_normal_page(vma
, addr
, pte
, true);
1249 if (pte_soft_dirty(pte
))
1250 flags
|= PM_SOFT_DIRTY
;
1251 } else if (is_swap_pte(pte
)) {
1253 if (pte_swp_soft_dirty(pte
))
1254 flags
|= PM_SOFT_DIRTY
;
1255 entry
= pte_to_swp_entry(pte
);
1257 frame
= swp_type(entry
) |
1258 (swp_offset(entry
) << MAX_SWAPFILES_SHIFT
);
1260 if (is_migration_entry(entry
))
1261 page
= migration_entry_to_page(entry
);
1263 if (is_device_private_entry(entry
))
1264 page
= device_private_entry_to_page(entry
);
1267 if (page
&& !PageAnon(page
))
1269 if (page
&& page_mapcount(page
) == 1)
1270 flags
|= PM_MMAP_EXCLUSIVE
;
1271 if (vma
->vm_flags
& VM_SOFTDIRTY
)
1272 flags
|= PM_SOFT_DIRTY
;
1274 return make_pme(frame
, flags
);
1277 static int pagemap_pmd_range(pmd_t
*pmdp
, unsigned long addr
, unsigned long end
,
1278 struct mm_walk
*walk
)
1280 struct vm_area_struct
*vma
= walk
->vma
;
1281 struct pagemapread
*pm
= walk
->private;
1283 pte_t
*pte
, *orig_pte
;
1286 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1287 ptl
= pmd_trans_huge_lock(pmdp
, vma
);
1289 u64 flags
= 0, frame
= 0;
1291 struct page
*page
= NULL
;
1293 if (vma
->vm_flags
& VM_SOFTDIRTY
)
1294 flags
|= PM_SOFT_DIRTY
;
1296 if (pmd_present(pmd
)) {
1297 page
= pmd_page(pmd
);
1299 flags
|= PM_PRESENT
;
1300 if (pmd_soft_dirty(pmd
))
1301 flags
|= PM_SOFT_DIRTY
;
1303 frame
= pmd_pfn(pmd
) +
1304 ((addr
& ~PMD_MASK
) >> PAGE_SHIFT
);
1306 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1307 else if (is_swap_pmd(pmd
)) {
1308 swp_entry_t entry
= pmd_to_swp_entry(pmd
);
1309 unsigned long offset
;
1312 offset
= swp_offset(entry
) +
1313 ((addr
& ~PMD_MASK
) >> PAGE_SHIFT
);
1314 frame
= swp_type(entry
) |
1315 (offset
<< MAX_SWAPFILES_SHIFT
);
1318 if (pmd_swp_soft_dirty(pmd
))
1319 flags
|= PM_SOFT_DIRTY
;
1320 VM_BUG_ON(!is_pmd_migration_entry(pmd
));
1321 page
= migration_entry_to_page(entry
);
1325 if (page
&& page_mapcount(page
) == 1)
1326 flags
|= PM_MMAP_EXCLUSIVE
;
1328 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
1329 pagemap_entry_t pme
= make_pme(frame
, flags
);
1331 err
= add_to_pagemap(addr
, &pme
, pm
);
1335 if (flags
& PM_PRESENT
)
1337 else if (flags
& PM_SWAP
)
1338 frame
+= (1 << MAX_SWAPFILES_SHIFT
);
1345 if (pmd_trans_unstable(pmdp
))
1347 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1350 * We can assume that @vma always points to a valid one and @end never
1351 * goes beyond vma->vm_end.
1353 orig_pte
= pte
= pte_offset_map_lock(walk
->mm
, pmdp
, addr
, &ptl
);
1354 for (; addr
< end
; pte
++, addr
+= PAGE_SIZE
) {
1355 pagemap_entry_t pme
;
1357 pme
= pte_to_pagemap_entry(pm
, vma
, addr
, *pte
);
1358 err
= add_to_pagemap(addr
, &pme
, pm
);
1362 pte_unmap_unlock(orig_pte
, ptl
);
1369 #ifdef CONFIG_HUGETLB_PAGE
1370 /* This function walks within one hugetlb entry in the single call */
1371 static int pagemap_hugetlb_range(pte_t
*ptep
, unsigned long hmask
,
1372 unsigned long addr
, unsigned long end
,
1373 struct mm_walk
*walk
)
1375 struct pagemapread
*pm
= walk
->private;
1376 struct vm_area_struct
*vma
= walk
->vma
;
1377 u64 flags
= 0, frame
= 0;
1381 if (vma
->vm_flags
& VM_SOFTDIRTY
)
1382 flags
|= PM_SOFT_DIRTY
;
1384 pte
= huge_ptep_get(ptep
);
1385 if (pte_present(pte
)) {
1386 struct page
*page
= pte_page(pte
);
1388 if (!PageAnon(page
))
1391 if (page_mapcount(page
) == 1)
1392 flags
|= PM_MMAP_EXCLUSIVE
;
1394 flags
|= PM_PRESENT
;
1396 frame
= pte_pfn(pte
) +
1397 ((addr
& ~hmask
) >> PAGE_SHIFT
);
1400 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
1401 pagemap_entry_t pme
= make_pme(frame
, flags
);
1403 err
= add_to_pagemap(addr
, &pme
, pm
);
1406 if (pm
->show_pfn
&& (flags
& PM_PRESENT
))
1414 #endif /* HUGETLB_PAGE */
1417 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1419 * For each page in the address space, this file contains one 64-bit entry
1420 * consisting of the following:
1422 * Bits 0-54 page frame number (PFN) if present
1423 * Bits 0-4 swap type if swapped
1424 * Bits 5-54 swap offset if swapped
1425 * Bit 55 pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1426 * Bit 56 page exclusively mapped
1428 * Bit 61 page is file-page or shared-anon
1429 * Bit 62 page swapped
1430 * Bit 63 page present
1432 * If the page is not present but in swap, then the PFN contains an
1433 * encoding of the swap file number and the page's offset into the
1434 * swap. Unmapped pages return a null PFN. This allows determining
1435 * precisely which pages are mapped (or in swap) and comparing mapped
1436 * pages between processes.
1438 * Efficient users of this interface will use /proc/pid/maps to
1439 * determine which areas of memory are actually mapped and llseek to
1440 * skip over unmapped regions.
1442 static ssize_t
pagemap_read(struct file
*file
, char __user
*buf
,
1443 size_t count
, loff_t
*ppos
)
1445 struct mm_struct
*mm
= file
->private_data
;
1446 struct pagemapread pm
;
1447 struct mm_walk pagemap_walk
= {};
1449 unsigned long svpfn
;
1450 unsigned long start_vaddr
;
1451 unsigned long end_vaddr
;
1452 int ret
= 0, copied
= 0;
1454 if (!mm
|| !mmget_not_zero(mm
))
1458 /* file position must be aligned */
1459 if ((*ppos
% PM_ENTRY_BYTES
) || (count
% PM_ENTRY_BYTES
))
1466 /* do not disclose physical addresses: attack vector */
1467 pm
.show_pfn
= file_ns_capable(file
, &init_user_ns
, CAP_SYS_ADMIN
);
1469 pm
.len
= (PAGEMAP_WALK_SIZE
>> PAGE_SHIFT
);
1470 pm
.buffer
= kmalloc_array(pm
.len
, PM_ENTRY_BYTES
, GFP_KERNEL
);
1475 pagemap_walk
.pmd_entry
= pagemap_pmd_range
;
1476 pagemap_walk
.pte_hole
= pagemap_pte_hole
;
1477 #ifdef CONFIG_HUGETLB_PAGE
1478 pagemap_walk
.hugetlb_entry
= pagemap_hugetlb_range
;
1480 pagemap_walk
.mm
= mm
;
1481 pagemap_walk
.private = &pm
;
1484 svpfn
= src
/ PM_ENTRY_BYTES
;
1485 start_vaddr
= svpfn
<< PAGE_SHIFT
;
1486 end_vaddr
= mm
->task_size
;
1488 /* watch out for wraparound */
1489 if (svpfn
> mm
->task_size
>> PAGE_SHIFT
)
1490 start_vaddr
= end_vaddr
;
1493 * The odds are that this will stop walking way
1494 * before end_vaddr, because the length of the
1495 * user buffer is tracked in "pm", and the walk
1496 * will stop when we hit the end of the buffer.
1499 while (count
&& (start_vaddr
< end_vaddr
)) {
1504 end
= (start_vaddr
+ PAGEMAP_WALK_SIZE
) & PAGEMAP_WALK_MASK
;
1506 if (end
< start_vaddr
|| end
> end_vaddr
)
1508 down_read(&mm
->mmap_sem
);
1509 ret
= walk_page_range(start_vaddr
, end
, &pagemap_walk
);
1510 up_read(&mm
->mmap_sem
);
1513 len
= min(count
, PM_ENTRY_BYTES
* pm
.pos
);
1514 if (copy_to_user(buf
, pm
.buffer
, len
)) {
1523 if (!ret
|| ret
== PM_END_OF_BUFFER
)
1534 static int pagemap_open(struct inode
*inode
, struct file
*file
)
1536 struct mm_struct
*mm
;
1538 mm
= proc_mem_open(inode
, PTRACE_MODE_READ
);
1541 file
->private_data
= mm
;
1545 static int pagemap_release(struct inode
*inode
, struct file
*file
)
1547 struct mm_struct
*mm
= file
->private_data
;
1554 const struct file_operations proc_pagemap_operations
= {
1555 .llseek
= mem_lseek
, /* borrow this */
1556 .read
= pagemap_read
,
1557 .open
= pagemap_open
,
1558 .release
= pagemap_release
,
1560 #endif /* CONFIG_PROC_PAGE_MONITOR */
1565 unsigned long pages
;
1567 unsigned long active
;
1568 unsigned long writeback
;
1569 unsigned long mapcount_max
;
1570 unsigned long dirty
;
1571 unsigned long swapcache
;
1572 unsigned long node
[MAX_NUMNODES
];
1575 struct numa_maps_private
{
1576 struct proc_maps_private proc_maps
;
1577 struct numa_maps md
;
1580 static void gather_stats(struct page
*page
, struct numa_maps
*md
, int pte_dirty
,
1581 unsigned long nr_pages
)
1583 int count
= page_mapcount(page
);
1585 md
->pages
+= nr_pages
;
1586 if (pte_dirty
|| PageDirty(page
))
1587 md
->dirty
+= nr_pages
;
1589 if (PageSwapCache(page
))
1590 md
->swapcache
+= nr_pages
;
1592 if (PageActive(page
) || PageUnevictable(page
))
1593 md
->active
+= nr_pages
;
1595 if (PageWriteback(page
))
1596 md
->writeback
+= nr_pages
;
1599 md
->anon
+= nr_pages
;
1601 if (count
> md
->mapcount_max
)
1602 md
->mapcount_max
= count
;
1604 md
->node
[page_to_nid(page
)] += nr_pages
;
1607 static struct page
*can_gather_numa_stats(pte_t pte
, struct vm_area_struct
*vma
,
1613 if (!pte_present(pte
))
1616 page
= vm_normal_page(vma
, addr
, pte
);
1620 if (PageReserved(page
))
1623 nid
= page_to_nid(page
);
1624 if (!node_isset(nid
, node_states
[N_MEMORY
]))
1630 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1631 static struct page
*can_gather_numa_stats_pmd(pmd_t pmd
,
1632 struct vm_area_struct
*vma
,
1638 if (!pmd_present(pmd
))
1641 page
= vm_normal_page_pmd(vma
, addr
, pmd
);
1645 if (PageReserved(page
))
1648 nid
= page_to_nid(page
);
1649 if (!node_isset(nid
, node_states
[N_MEMORY
]))
1656 static int gather_pte_stats(pmd_t
*pmd
, unsigned long addr
,
1657 unsigned long end
, struct mm_walk
*walk
)
1659 struct numa_maps
*md
= walk
->private;
1660 struct vm_area_struct
*vma
= walk
->vma
;
1665 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1666 ptl
= pmd_trans_huge_lock(pmd
, vma
);
1670 page
= can_gather_numa_stats_pmd(*pmd
, vma
, addr
);
1672 gather_stats(page
, md
, pmd_dirty(*pmd
),
1673 HPAGE_PMD_SIZE
/PAGE_SIZE
);
1678 if (pmd_trans_unstable(pmd
))
1681 orig_pte
= pte
= pte_offset_map_lock(walk
->mm
, pmd
, addr
, &ptl
);
1683 struct page
*page
= can_gather_numa_stats(*pte
, vma
, addr
);
1686 gather_stats(page
, md
, pte_dirty(*pte
), 1);
1688 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1689 pte_unmap_unlock(orig_pte
, ptl
);
1693 #ifdef CONFIG_HUGETLB_PAGE
1694 static int gather_hugetlb_stats(pte_t
*pte
, unsigned long hmask
,
1695 unsigned long addr
, unsigned long end
, struct mm_walk
*walk
)
1697 pte_t huge_pte
= huge_ptep_get(pte
);
1698 struct numa_maps
*md
;
1701 if (!pte_present(huge_pte
))
1704 page
= pte_page(huge_pte
);
1709 gather_stats(page
, md
, pte_dirty(huge_pte
), 1);
1714 static int gather_hugetlb_stats(pte_t
*pte
, unsigned long hmask
,
1715 unsigned long addr
, unsigned long end
, struct mm_walk
*walk
)
1722 * Display pages allocated per node and memory policy via /proc.
1724 static int show_numa_map(struct seq_file
*m
, void *v
)
1726 struct numa_maps_private
*numa_priv
= m
->private;
1727 struct proc_maps_private
*proc_priv
= &numa_priv
->proc_maps
;
1728 struct vm_area_struct
*vma
= v
;
1729 struct numa_maps
*md
= &numa_priv
->md
;
1730 struct file
*file
= vma
->vm_file
;
1731 struct mm_struct
*mm
= vma
->vm_mm
;
1732 struct mm_walk walk
= {
1733 .hugetlb_entry
= gather_hugetlb_stats
,
1734 .pmd_entry
= gather_pte_stats
,
1738 struct mempolicy
*pol
;
1745 /* Ensure we start with an empty set of numa_maps statistics. */
1746 memset(md
, 0, sizeof(*md
));
1748 pol
= __get_vma_policy(vma
, vma
->vm_start
);
1750 mpol_to_str(buffer
, sizeof(buffer
), pol
);
1753 mpol_to_str(buffer
, sizeof(buffer
), proc_priv
->task_mempolicy
);
1756 seq_printf(m
, "%08lx %s", vma
->vm_start
, buffer
);
1759 seq_puts(m
, " file=");
1760 seq_file_path(m
, file
, "\n\t= ");
1761 } else if (vma
->vm_start
<= mm
->brk
&& vma
->vm_end
>= mm
->start_brk
) {
1762 seq_puts(m
, " heap");
1763 } else if (is_stack(vma
)) {
1764 seq_puts(m
, " stack");
1767 if (is_vm_hugetlb_page(vma
))
1768 seq_puts(m
, " huge");
1770 /* mmap_sem is held by m_start */
1771 walk_page_vma(vma
, &walk
);
1777 seq_printf(m
, " anon=%lu", md
->anon
);
1780 seq_printf(m
, " dirty=%lu", md
->dirty
);
1782 if (md
->pages
!= md
->anon
&& md
->pages
!= md
->dirty
)
1783 seq_printf(m
, " mapped=%lu", md
->pages
);
1785 if (md
->mapcount_max
> 1)
1786 seq_printf(m
, " mapmax=%lu", md
->mapcount_max
);
1789 seq_printf(m
, " swapcache=%lu", md
->swapcache
);
1791 if (md
->active
< md
->pages
&& !is_vm_hugetlb_page(vma
))
1792 seq_printf(m
, " active=%lu", md
->active
);
1795 seq_printf(m
, " writeback=%lu", md
->writeback
);
1797 for_each_node_state(nid
, N_MEMORY
)
1799 seq_printf(m
, " N%d=%lu", nid
, md
->node
[nid
]);
1801 seq_printf(m
, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma
) >> 10);
1804 m_cache_vma(m
, vma
);
1808 static const struct seq_operations proc_pid_numa_maps_op
= {
1812 .show
= show_numa_map
,
1815 static int pid_numa_maps_open(struct inode
*inode
, struct file
*file
)
1817 return proc_maps_open(inode
, file
, &proc_pid_numa_maps_op
,
1818 sizeof(struct numa_maps_private
));
1821 const struct file_operations proc_pid_numa_maps_operations
= {
1822 .open
= pid_numa_maps_open
,
1824 .llseek
= seq_lseek
,
1825 .release
= proc_map_release
,
1828 #endif /* CONFIG_NUMA */