2 * User-space Probes (UProbes)
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright (C) IBM Corporation, 2008-2012
22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h> /* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/export.h>
31 #include <linux/rmap.h> /* anon_vma_prepare */
32 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
33 #include <linux/swap.h> /* try_to_free_swap */
34 #include <linux/ptrace.h> /* user_enable_single_step */
35 #include <linux/kdebug.h> /* notifier mechanism */
36 #include "../../mm/internal.h" /* munlock_vma_page */
37 #include <linux/percpu-rwsem.h>
38 #include <linux/task_work.h>
39 #include <linux/shmem_fs.h>
41 #include <linux/uprobes.h>
43 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
44 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
46 static struct rb_root uprobes_tree
= RB_ROOT
;
48 * allows us to skip the uprobe_mmap if there are no uprobe events active
49 * at this time. Probably a fine grained per inode count is better?
51 #define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree)
53 static DEFINE_SPINLOCK(uprobes_treelock
); /* serialize rbtree access */
55 #define UPROBES_HASH_SZ 13
56 /* serialize uprobe->pending_list */
57 static struct mutex uprobes_mmap_mutex
[UPROBES_HASH_SZ
];
58 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
60 static struct percpu_rw_semaphore dup_mmap_sem
;
62 /* Have a copy of original instruction */
63 #define UPROBE_COPY_INSN 0
66 struct rb_node rb_node
; /* node in the rb tree */
68 struct rw_semaphore register_rwsem
;
69 struct rw_semaphore consumer_rwsem
;
70 struct list_head pending_list
;
71 struct uprobe_consumer
*consumers
;
72 struct inode
*inode
; /* Also hold a ref to inode */
77 * The generic code assumes that it has two members of unknown type
78 * owned by the arch-specific code:
80 * insn - copy_insn() saves the original instruction here for
81 * arch_uprobe_analyze_insn().
83 * ixol - potentially modified instruction to execute out of
84 * line, copied to xol_area by xol_get_insn_slot().
86 struct arch_uprobe arch
;
89 struct return_instance
{
90 struct uprobe
*uprobe
;
92 unsigned long orig_ret_vaddr
; /* original return address */
93 bool chained
; /* true, if instance is nested */
95 struct return_instance
*next
; /* keep as stack */
99 * Execute out of line area: anonymous executable mapping installed
100 * by the probed task to execute the copy of the original instruction
101 * mangled by set_swbp().
103 * On a breakpoint hit, thread contests for a slot. It frees the
104 * slot after singlestep. Currently a fixed number of slots are
108 wait_queue_head_t wq
; /* if all slots are busy */
109 atomic_t slot_count
; /* number of in-use slots */
110 unsigned long *bitmap
; /* 0 = free slot */
114 * We keep the vma's vm_start rather than a pointer to the vma
115 * itself. The probed process or a naughty kernel module could make
116 * the vma go away, and we must handle that reasonably gracefully.
118 unsigned long vaddr
; /* Page(s) of instruction slots */
122 * valid_vma: Verify if the specified vma is an executable vma
123 * Relax restrictions while unregistering: vm_flags might have
124 * changed after breakpoint was inserted.
125 * - is_register: indicates if we are in register context.
126 * - Return 1 if the specified virtual address is in an
129 static bool valid_vma(struct vm_area_struct
*vma
, bool is_register
)
131 vm_flags_t flags
= VM_HUGETLB
| VM_MAYEXEC
| VM_MAYSHARE
;
136 return vma
->vm_file
&& (vma
->vm_flags
& flags
) == VM_MAYEXEC
;
139 static unsigned long offset_to_vaddr(struct vm_area_struct
*vma
, loff_t offset
)
141 return vma
->vm_start
+ offset
- ((loff_t
)vma
->vm_pgoff
<< PAGE_SHIFT
);
144 static loff_t
vaddr_to_offset(struct vm_area_struct
*vma
, unsigned long vaddr
)
146 return ((loff_t
)vma
->vm_pgoff
<< PAGE_SHIFT
) + (vaddr
- vma
->vm_start
);
150 * __replace_page - replace page in vma by new page.
151 * based on replace_page in mm/ksm.c
153 * @vma: vma that holds the pte pointing to page
154 * @addr: address the old @page is mapped at
155 * @page: the cowed page we are replacing by kpage
156 * @kpage: the modified page we replace page by
158 * Returns 0 on success, -EFAULT on failure.
160 static int __replace_page(struct vm_area_struct
*vma
, unsigned long addr
,
161 struct page
*page
, struct page
*kpage
)
163 struct mm_struct
*mm
= vma
->vm_mm
;
167 /* For mmu_notifiers */
168 const unsigned long mmun_start
= addr
;
169 const unsigned long mmun_end
= addr
+ PAGE_SIZE
;
171 /* For try_to_free_swap() and munlock_vma_page() below */
174 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
176 ptep
= page_check_address(page
, mm
, addr
, &ptl
, 0);
181 page_add_new_anon_rmap(kpage
, vma
, addr
);
183 if (!PageAnon(page
)) {
184 dec_mm_counter(mm
, MM_FILEPAGES
);
185 inc_mm_counter(mm
, MM_ANONPAGES
);
188 flush_cache_page(vma
, addr
, pte_pfn(*ptep
));
189 ptep_clear_flush(vma
, addr
, ptep
);
190 set_pte_at_notify(mm
, addr
, ptep
, mk_pte(kpage
, vma
->vm_page_prot
));
192 page_remove_rmap(page
);
193 if (!page_mapped(page
))
194 try_to_free_swap(page
);
195 pte_unmap_unlock(ptep
, ptl
);
197 if (vma
->vm_flags
& VM_LOCKED
)
198 munlock_vma_page(page
);
203 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
209 * is_swbp_insn - check if instruction is breakpoint instruction.
210 * @insn: instruction to be checked.
211 * Default implementation of is_swbp_insn
212 * Returns true if @insn is a breakpoint instruction.
214 bool __weak
is_swbp_insn(uprobe_opcode_t
*insn
)
216 return *insn
== UPROBE_SWBP_INSN
;
220 * is_trap_insn - check if instruction is breakpoint instruction.
221 * @insn: instruction to be checked.
222 * Default implementation of is_trap_insn
223 * Returns true if @insn is a breakpoint instruction.
225 * This function is needed for the case where an architecture has multiple
226 * trap instructions (like powerpc).
228 bool __weak
is_trap_insn(uprobe_opcode_t
*insn
)
230 return is_swbp_insn(insn
);
233 static void copy_from_page(struct page
*page
, unsigned long vaddr
, void *dst
, int len
)
235 void *kaddr
= kmap_atomic(page
);
236 memcpy(dst
, kaddr
+ (vaddr
& ~PAGE_MASK
), len
);
237 kunmap_atomic(kaddr
);
240 static void copy_to_page(struct page
*page
, unsigned long vaddr
, const void *src
, int len
)
242 void *kaddr
= kmap_atomic(page
);
243 memcpy(kaddr
+ (vaddr
& ~PAGE_MASK
), src
, len
);
244 kunmap_atomic(kaddr
);
247 static int verify_opcode(struct page
*page
, unsigned long vaddr
, uprobe_opcode_t
*new_opcode
)
249 uprobe_opcode_t old_opcode
;
253 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
254 * We do not check if it is any other 'trap variant' which could
255 * be conditional trap instruction such as the one powerpc supports.
257 * The logic is that we do not care if the underlying instruction
258 * is a trap variant; uprobes always wins over any other (gdb)
261 copy_from_page(page
, vaddr
, &old_opcode
, UPROBE_SWBP_INSN_SIZE
);
262 is_swbp
= is_swbp_insn(&old_opcode
);
264 if (is_swbp_insn(new_opcode
)) {
265 if (is_swbp
) /* register: already installed? */
268 if (!is_swbp
) /* unregister: was it changed by us? */
277 * Expect the breakpoint instruction to be the smallest size instruction for
278 * the architecture. If an arch has variable length instruction and the
279 * breakpoint instruction is not of the smallest length instruction
280 * supported by that architecture then we need to modify is_trap_at_addr and
281 * uprobe_write_opcode accordingly. This would never be a problem for archs
282 * that have fixed length instructions.
284 * uprobe_write_opcode - write the opcode at a given virtual address.
285 * @mm: the probed process address space.
286 * @vaddr: the virtual address to store the opcode.
287 * @opcode: opcode to be written at @vaddr.
289 * Called with mm->mmap_sem held for write.
290 * Return 0 (success) or a negative errno.
292 int uprobe_write_opcode(struct mm_struct
*mm
, unsigned long vaddr
,
293 uprobe_opcode_t opcode
)
295 struct page
*old_page
, *new_page
;
296 struct vm_area_struct
*vma
;
300 /* Read the page with vaddr into memory */
301 ret
= get_user_pages(NULL
, mm
, vaddr
, 1, 0, 1, &old_page
, &vma
);
305 ret
= verify_opcode(old_page
, vaddr
, &opcode
);
309 ret
= anon_vma_prepare(vma
);
314 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, vaddr
);
318 if (mem_cgroup_charge_anon(new_page
, mm
, GFP_KERNEL
))
321 __SetPageUptodate(new_page
);
322 copy_highpage(new_page
, old_page
);
323 copy_to_page(new_page
, vaddr
, &opcode
, UPROBE_SWBP_INSN_SIZE
);
325 ret
= __replace_page(vma
, vaddr
, old_page
, new_page
);
327 mem_cgroup_uncharge_page(new_page
);
330 page_cache_release(new_page
);
334 if (unlikely(ret
== -EAGAIN
))
340 * set_swbp - store breakpoint at a given address.
341 * @auprobe: arch specific probepoint information.
342 * @mm: the probed process address space.
343 * @vaddr: the virtual address to insert the opcode.
345 * For mm @mm, store the breakpoint instruction at @vaddr.
346 * Return 0 (success) or a negative errno.
348 int __weak
set_swbp(struct arch_uprobe
*auprobe
, struct mm_struct
*mm
, unsigned long vaddr
)
350 return uprobe_write_opcode(mm
, vaddr
, UPROBE_SWBP_INSN
);
354 * set_orig_insn - Restore the original instruction.
355 * @mm: the probed process address space.
356 * @auprobe: arch specific probepoint information.
357 * @vaddr: the virtual address to insert the opcode.
359 * For mm @mm, restore the original opcode (opcode) at @vaddr.
360 * Return 0 (success) or a negative errno.
363 set_orig_insn(struct arch_uprobe
*auprobe
, struct mm_struct
*mm
, unsigned long vaddr
)
365 return uprobe_write_opcode(mm
, vaddr
, *(uprobe_opcode_t
*)&auprobe
->insn
);
368 static int match_uprobe(struct uprobe
*l
, struct uprobe
*r
)
370 if (l
->inode
< r
->inode
)
373 if (l
->inode
> r
->inode
)
376 if (l
->offset
< r
->offset
)
379 if (l
->offset
> r
->offset
)
385 static struct uprobe
*__find_uprobe(struct inode
*inode
, loff_t offset
)
387 struct uprobe u
= { .inode
= inode
, .offset
= offset
};
388 struct rb_node
*n
= uprobes_tree
.rb_node
;
389 struct uprobe
*uprobe
;
393 uprobe
= rb_entry(n
, struct uprobe
, rb_node
);
394 match
= match_uprobe(&u
, uprobe
);
396 atomic_inc(&uprobe
->ref
);
409 * Find a uprobe corresponding to a given inode:offset
410 * Acquires uprobes_treelock
412 static struct uprobe
*find_uprobe(struct inode
*inode
, loff_t offset
)
414 struct uprobe
*uprobe
;
416 spin_lock(&uprobes_treelock
);
417 uprobe
= __find_uprobe(inode
, offset
);
418 spin_unlock(&uprobes_treelock
);
423 static struct uprobe
*__insert_uprobe(struct uprobe
*uprobe
)
425 struct rb_node
**p
= &uprobes_tree
.rb_node
;
426 struct rb_node
*parent
= NULL
;
432 u
= rb_entry(parent
, struct uprobe
, rb_node
);
433 match
= match_uprobe(uprobe
, u
);
440 p
= &parent
->rb_left
;
442 p
= &parent
->rb_right
;
447 rb_link_node(&uprobe
->rb_node
, parent
, p
);
448 rb_insert_color(&uprobe
->rb_node
, &uprobes_tree
);
449 /* get access + creation ref */
450 atomic_set(&uprobe
->ref
, 2);
456 * Acquire uprobes_treelock.
457 * Matching uprobe already exists in rbtree;
458 * increment (access refcount) and return the matching uprobe.
460 * No matching uprobe; insert the uprobe in rb_tree;
461 * get a double refcount (access + creation) and return NULL.
463 static struct uprobe
*insert_uprobe(struct uprobe
*uprobe
)
467 spin_lock(&uprobes_treelock
);
468 u
= __insert_uprobe(uprobe
);
469 spin_unlock(&uprobes_treelock
);
474 static void put_uprobe(struct uprobe
*uprobe
)
476 if (atomic_dec_and_test(&uprobe
->ref
))
480 static struct uprobe
*alloc_uprobe(struct inode
*inode
, loff_t offset
)
482 struct uprobe
*uprobe
, *cur_uprobe
;
484 uprobe
= kzalloc(sizeof(struct uprobe
), GFP_KERNEL
);
488 uprobe
->inode
= igrab(inode
);
489 uprobe
->offset
= offset
;
490 init_rwsem(&uprobe
->register_rwsem
);
491 init_rwsem(&uprobe
->consumer_rwsem
);
493 /* add to uprobes_tree, sorted on inode:offset */
494 cur_uprobe
= insert_uprobe(uprobe
);
495 /* a uprobe exists for this inode:offset combination */
505 static void consumer_add(struct uprobe
*uprobe
, struct uprobe_consumer
*uc
)
507 down_write(&uprobe
->consumer_rwsem
);
508 uc
->next
= uprobe
->consumers
;
509 uprobe
->consumers
= uc
;
510 up_write(&uprobe
->consumer_rwsem
);
514 * For uprobe @uprobe, delete the consumer @uc.
515 * Return true if the @uc is deleted successfully
518 static bool consumer_del(struct uprobe
*uprobe
, struct uprobe_consumer
*uc
)
520 struct uprobe_consumer
**con
;
523 down_write(&uprobe
->consumer_rwsem
);
524 for (con
= &uprobe
->consumers
; *con
; con
= &(*con
)->next
) {
531 up_write(&uprobe
->consumer_rwsem
);
536 static int __copy_insn(struct address_space
*mapping
, struct file
*filp
,
537 void *insn
, int nbytes
, loff_t offset
)
541 * Ensure that the page that has the original instruction is populated
542 * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
543 * see uprobe_register().
545 if (mapping
->a_ops
->readpage
)
546 page
= read_mapping_page(mapping
, offset
>> PAGE_CACHE_SHIFT
, filp
);
548 page
= shmem_read_mapping_page(mapping
, offset
>> PAGE_CACHE_SHIFT
);
550 return PTR_ERR(page
);
552 copy_from_page(page
, offset
, insn
, nbytes
);
553 page_cache_release(page
);
558 static int copy_insn(struct uprobe
*uprobe
, struct file
*filp
)
560 struct address_space
*mapping
= uprobe
->inode
->i_mapping
;
561 loff_t offs
= uprobe
->offset
;
562 void *insn
= &uprobe
->arch
.insn
;
563 int size
= sizeof(uprobe
->arch
.insn
);
566 /* Copy only available bytes, -EIO if nothing was read */
568 if (offs
>= i_size_read(uprobe
->inode
))
571 len
= min_t(int, size
, PAGE_SIZE
- (offs
& ~PAGE_MASK
));
572 err
= __copy_insn(mapping
, filp
, insn
, len
, offs
);
584 static int prepare_uprobe(struct uprobe
*uprobe
, struct file
*file
,
585 struct mm_struct
*mm
, unsigned long vaddr
)
589 if (test_bit(UPROBE_COPY_INSN
, &uprobe
->flags
))
592 /* TODO: move this into _register, until then we abuse this sem. */
593 down_write(&uprobe
->consumer_rwsem
);
594 if (test_bit(UPROBE_COPY_INSN
, &uprobe
->flags
))
597 ret
= copy_insn(uprobe
, file
);
602 if (is_trap_insn((uprobe_opcode_t
*)&uprobe
->arch
.insn
))
605 ret
= arch_uprobe_analyze_insn(&uprobe
->arch
, mm
, vaddr
);
609 /* uprobe_write_opcode() assumes we don't cross page boundary */
610 BUG_ON((uprobe
->offset
& ~PAGE_MASK
) +
611 UPROBE_SWBP_INSN_SIZE
> PAGE_SIZE
);
613 smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
614 set_bit(UPROBE_COPY_INSN
, &uprobe
->flags
);
617 up_write(&uprobe
->consumer_rwsem
);
622 static inline bool consumer_filter(struct uprobe_consumer
*uc
,
623 enum uprobe_filter_ctx ctx
, struct mm_struct
*mm
)
625 return !uc
->filter
|| uc
->filter(uc
, ctx
, mm
);
628 static bool filter_chain(struct uprobe
*uprobe
,
629 enum uprobe_filter_ctx ctx
, struct mm_struct
*mm
)
631 struct uprobe_consumer
*uc
;
634 down_read(&uprobe
->consumer_rwsem
);
635 for (uc
= uprobe
->consumers
; uc
; uc
= uc
->next
) {
636 ret
= consumer_filter(uc
, ctx
, mm
);
640 up_read(&uprobe
->consumer_rwsem
);
646 install_breakpoint(struct uprobe
*uprobe
, struct mm_struct
*mm
,
647 struct vm_area_struct
*vma
, unsigned long vaddr
)
652 ret
= prepare_uprobe(uprobe
, vma
->vm_file
, mm
, vaddr
);
657 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
658 * the task can hit this breakpoint right after __replace_page().
660 first_uprobe
= !test_bit(MMF_HAS_UPROBES
, &mm
->flags
);
662 set_bit(MMF_HAS_UPROBES
, &mm
->flags
);
664 ret
= set_swbp(&uprobe
->arch
, mm
, vaddr
);
666 clear_bit(MMF_RECALC_UPROBES
, &mm
->flags
);
667 else if (first_uprobe
)
668 clear_bit(MMF_HAS_UPROBES
, &mm
->flags
);
674 remove_breakpoint(struct uprobe
*uprobe
, struct mm_struct
*mm
, unsigned long vaddr
)
676 set_bit(MMF_RECALC_UPROBES
, &mm
->flags
);
677 return set_orig_insn(&uprobe
->arch
, mm
, vaddr
);
680 static inline bool uprobe_is_active(struct uprobe
*uprobe
)
682 return !RB_EMPTY_NODE(&uprobe
->rb_node
);
685 * There could be threads that have already hit the breakpoint. They
686 * will recheck the current insn and restart if find_uprobe() fails.
687 * See find_active_uprobe().
689 static void delete_uprobe(struct uprobe
*uprobe
)
691 if (WARN_ON(!uprobe_is_active(uprobe
)))
694 spin_lock(&uprobes_treelock
);
695 rb_erase(&uprobe
->rb_node
, &uprobes_tree
);
696 spin_unlock(&uprobes_treelock
);
697 RB_CLEAR_NODE(&uprobe
->rb_node
); /* for uprobe_is_active() */
703 struct map_info
*next
;
704 struct mm_struct
*mm
;
708 static inline struct map_info
*free_map_info(struct map_info
*info
)
710 struct map_info
*next
= info
->next
;
715 static struct map_info
*
716 build_map_info(struct address_space
*mapping
, loff_t offset
, bool is_register
)
718 unsigned long pgoff
= offset
>> PAGE_SHIFT
;
719 struct vm_area_struct
*vma
;
720 struct map_info
*curr
= NULL
;
721 struct map_info
*prev
= NULL
;
722 struct map_info
*info
;
726 mutex_lock(&mapping
->i_mmap_mutex
);
727 vma_interval_tree_foreach(vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
728 if (!valid_vma(vma
, is_register
))
731 if (!prev
&& !more
) {
733 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
734 * reclaim. This is optimistic, no harm done if it fails.
736 prev
= kmalloc(sizeof(struct map_info
),
737 GFP_NOWAIT
| __GFP_NOMEMALLOC
| __GFP_NOWARN
);
746 if (!atomic_inc_not_zero(&vma
->vm_mm
->mm_users
))
754 info
->mm
= vma
->vm_mm
;
755 info
->vaddr
= offset_to_vaddr(vma
, offset
);
757 mutex_unlock(&mapping
->i_mmap_mutex
);
769 info
= kmalloc(sizeof(struct map_info
), GFP_KERNEL
);
771 curr
= ERR_PTR(-ENOMEM
);
781 prev
= free_map_info(prev
);
786 register_for_each_vma(struct uprobe
*uprobe
, struct uprobe_consumer
*new)
788 bool is_register
= !!new;
789 struct map_info
*info
;
792 percpu_down_write(&dup_mmap_sem
);
793 info
= build_map_info(uprobe
->inode
->i_mapping
,
794 uprobe
->offset
, is_register
);
801 struct mm_struct
*mm
= info
->mm
;
802 struct vm_area_struct
*vma
;
804 if (err
&& is_register
)
807 down_write(&mm
->mmap_sem
);
808 vma
= find_vma(mm
, info
->vaddr
);
809 if (!vma
|| !valid_vma(vma
, is_register
) ||
810 file_inode(vma
->vm_file
) != uprobe
->inode
)
813 if (vma
->vm_start
> info
->vaddr
||
814 vaddr_to_offset(vma
, info
->vaddr
) != uprobe
->offset
)
818 /* consult only the "caller", new consumer. */
819 if (consumer_filter(new,
820 UPROBE_FILTER_REGISTER
, mm
))
821 err
= install_breakpoint(uprobe
, mm
, vma
, info
->vaddr
);
822 } else if (test_bit(MMF_HAS_UPROBES
, &mm
->flags
)) {
823 if (!filter_chain(uprobe
,
824 UPROBE_FILTER_UNREGISTER
, mm
))
825 err
|= remove_breakpoint(uprobe
, mm
, info
->vaddr
);
829 up_write(&mm
->mmap_sem
);
832 info
= free_map_info(info
);
835 percpu_up_write(&dup_mmap_sem
);
839 static int __uprobe_register(struct uprobe
*uprobe
, struct uprobe_consumer
*uc
)
841 consumer_add(uprobe
, uc
);
842 return register_for_each_vma(uprobe
, uc
);
845 static void __uprobe_unregister(struct uprobe
*uprobe
, struct uprobe_consumer
*uc
)
849 if (WARN_ON(!consumer_del(uprobe
, uc
)))
852 err
= register_for_each_vma(uprobe
, NULL
);
853 /* TODO : cant unregister? schedule a worker thread */
854 if (!uprobe
->consumers
&& !err
)
855 delete_uprobe(uprobe
);
859 * uprobe_register - register a probe
860 * @inode: the file in which the probe has to be placed.
861 * @offset: offset from the start of the file.
862 * @uc: information on howto handle the probe..
864 * Apart from the access refcount, uprobe_register() takes a creation
865 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
866 * inserted into the rbtree (i.e first consumer for a @inode:@offset
867 * tuple). Creation refcount stops uprobe_unregister from freeing the
868 * @uprobe even before the register operation is complete. Creation
869 * refcount is released when the last @uc for the @uprobe
872 * Return errno if it cannot successully install probes
873 * else return 0 (success)
875 int uprobe_register(struct inode
*inode
, loff_t offset
, struct uprobe_consumer
*uc
)
877 struct uprobe
*uprobe
;
880 /* Uprobe must have at least one set consumer */
881 if (!uc
->handler
&& !uc
->ret_handler
)
884 /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
885 if (!inode
->i_mapping
->a_ops
->readpage
&& !shmem_mapping(inode
->i_mapping
))
887 /* Racy, just to catch the obvious mistakes */
888 if (offset
> i_size_read(inode
))
892 uprobe
= alloc_uprobe(inode
, offset
);
896 * We can race with uprobe_unregister()->delete_uprobe().
897 * Check uprobe_is_active() and retry if it is false.
899 down_write(&uprobe
->register_rwsem
);
901 if (likely(uprobe_is_active(uprobe
))) {
902 ret
= __uprobe_register(uprobe
, uc
);
904 __uprobe_unregister(uprobe
, uc
);
906 up_write(&uprobe
->register_rwsem
);
909 if (unlikely(ret
== -EAGAIN
))
913 EXPORT_SYMBOL_GPL(uprobe_register
);
916 * uprobe_apply - unregister a already registered probe.
917 * @inode: the file in which the probe has to be removed.
918 * @offset: offset from the start of the file.
919 * @uc: consumer which wants to add more or remove some breakpoints
920 * @add: add or remove the breakpoints
922 int uprobe_apply(struct inode
*inode
, loff_t offset
,
923 struct uprobe_consumer
*uc
, bool add
)
925 struct uprobe
*uprobe
;
926 struct uprobe_consumer
*con
;
929 uprobe
= find_uprobe(inode
, offset
);
930 if (WARN_ON(!uprobe
))
933 down_write(&uprobe
->register_rwsem
);
934 for (con
= uprobe
->consumers
; con
&& con
!= uc
; con
= con
->next
)
937 ret
= register_for_each_vma(uprobe
, add
? uc
: NULL
);
938 up_write(&uprobe
->register_rwsem
);
945 * uprobe_unregister - unregister a already registered probe.
946 * @inode: the file in which the probe has to be removed.
947 * @offset: offset from the start of the file.
948 * @uc: identify which probe if multiple probes are colocated.
950 void uprobe_unregister(struct inode
*inode
, loff_t offset
, struct uprobe_consumer
*uc
)
952 struct uprobe
*uprobe
;
954 uprobe
= find_uprobe(inode
, offset
);
955 if (WARN_ON(!uprobe
))
958 down_write(&uprobe
->register_rwsem
);
959 __uprobe_unregister(uprobe
, uc
);
960 up_write(&uprobe
->register_rwsem
);
963 EXPORT_SYMBOL_GPL(uprobe_unregister
);
965 static int unapply_uprobe(struct uprobe
*uprobe
, struct mm_struct
*mm
)
967 struct vm_area_struct
*vma
;
970 down_read(&mm
->mmap_sem
);
971 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
975 if (!valid_vma(vma
, false) ||
976 file_inode(vma
->vm_file
) != uprobe
->inode
)
979 offset
= (loff_t
)vma
->vm_pgoff
<< PAGE_SHIFT
;
980 if (uprobe
->offset
< offset
||
981 uprobe
->offset
>= offset
+ vma
->vm_end
- vma
->vm_start
)
984 vaddr
= offset_to_vaddr(vma
, uprobe
->offset
);
985 err
|= remove_breakpoint(uprobe
, mm
, vaddr
);
987 up_read(&mm
->mmap_sem
);
992 static struct rb_node
*
993 find_node_in_range(struct inode
*inode
, loff_t min
, loff_t max
)
995 struct rb_node
*n
= uprobes_tree
.rb_node
;
998 struct uprobe
*u
= rb_entry(n
, struct uprobe
, rb_node
);
1000 if (inode
< u
->inode
) {
1002 } else if (inode
> u
->inode
) {
1005 if (max
< u
->offset
)
1007 else if (min
> u
->offset
)
1018 * For a given range in vma, build a list of probes that need to be inserted.
1020 static void build_probe_list(struct inode
*inode
,
1021 struct vm_area_struct
*vma
,
1022 unsigned long start
, unsigned long end
,
1023 struct list_head
*head
)
1026 struct rb_node
*n
, *t
;
1029 INIT_LIST_HEAD(head
);
1030 min
= vaddr_to_offset(vma
, start
);
1031 max
= min
+ (end
- start
) - 1;
1033 spin_lock(&uprobes_treelock
);
1034 n
= find_node_in_range(inode
, min
, max
);
1036 for (t
= n
; t
; t
= rb_prev(t
)) {
1037 u
= rb_entry(t
, struct uprobe
, rb_node
);
1038 if (u
->inode
!= inode
|| u
->offset
< min
)
1040 list_add(&u
->pending_list
, head
);
1041 atomic_inc(&u
->ref
);
1043 for (t
= n
; (t
= rb_next(t
)); ) {
1044 u
= rb_entry(t
, struct uprobe
, rb_node
);
1045 if (u
->inode
!= inode
|| u
->offset
> max
)
1047 list_add(&u
->pending_list
, head
);
1048 atomic_inc(&u
->ref
);
1051 spin_unlock(&uprobes_treelock
);
1055 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1057 * Currently we ignore all errors and always return 0, the callers
1058 * can't handle the failure anyway.
1060 int uprobe_mmap(struct vm_area_struct
*vma
)
1062 struct list_head tmp_list
;
1063 struct uprobe
*uprobe
, *u
;
1064 struct inode
*inode
;
1066 if (no_uprobe_events() || !valid_vma(vma
, true))
1069 inode
= file_inode(vma
->vm_file
);
1073 mutex_lock(uprobes_mmap_hash(inode
));
1074 build_probe_list(inode
, vma
, vma
->vm_start
, vma
->vm_end
, &tmp_list
);
1076 * We can race with uprobe_unregister(), this uprobe can be already
1077 * removed. But in this case filter_chain() must return false, all
1078 * consumers have gone away.
1080 list_for_each_entry_safe(uprobe
, u
, &tmp_list
, pending_list
) {
1081 if (!fatal_signal_pending(current
) &&
1082 filter_chain(uprobe
, UPROBE_FILTER_MMAP
, vma
->vm_mm
)) {
1083 unsigned long vaddr
= offset_to_vaddr(vma
, uprobe
->offset
);
1084 install_breakpoint(uprobe
, vma
->vm_mm
, vma
, vaddr
);
1088 mutex_unlock(uprobes_mmap_hash(inode
));
1094 vma_has_uprobes(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
)
1097 struct inode
*inode
;
1100 inode
= file_inode(vma
->vm_file
);
1102 min
= vaddr_to_offset(vma
, start
);
1103 max
= min
+ (end
- start
) - 1;
1105 spin_lock(&uprobes_treelock
);
1106 n
= find_node_in_range(inode
, min
, max
);
1107 spin_unlock(&uprobes_treelock
);
1113 * Called in context of a munmap of a vma.
1115 void uprobe_munmap(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
)
1117 if (no_uprobe_events() || !valid_vma(vma
, false))
1120 if (!atomic_read(&vma
->vm_mm
->mm_users
)) /* called by mmput() ? */
1123 if (!test_bit(MMF_HAS_UPROBES
, &vma
->vm_mm
->flags
) ||
1124 test_bit(MMF_RECALC_UPROBES
, &vma
->vm_mm
->flags
))
1127 if (vma_has_uprobes(vma
, start
, end
))
1128 set_bit(MMF_RECALC_UPROBES
, &vma
->vm_mm
->flags
);
1131 /* Slot allocation for XOL */
1132 static int xol_add_vma(struct mm_struct
*mm
, struct xol_area
*area
)
1134 int ret
= -EALREADY
;
1136 down_write(&mm
->mmap_sem
);
1137 if (mm
->uprobes_state
.xol_area
)
1141 /* Try to map as high as possible, this is only a hint. */
1142 area
->vaddr
= get_unmapped_area(NULL
, TASK_SIZE
- PAGE_SIZE
,
1144 if (area
->vaddr
& ~PAGE_MASK
) {
1150 ret
= install_special_mapping(mm
, area
->vaddr
, PAGE_SIZE
,
1151 VM_EXEC
|VM_MAYEXEC
|VM_DONTCOPY
|VM_IO
, &area
->page
);
1155 smp_wmb(); /* pairs with get_xol_area() */
1156 mm
->uprobes_state
.xol_area
= area
;
1158 up_write(&mm
->mmap_sem
);
1163 static struct xol_area
*__create_xol_area(unsigned long vaddr
)
1165 struct mm_struct
*mm
= current
->mm
;
1166 uprobe_opcode_t insn
= UPROBE_SWBP_INSN
;
1167 struct xol_area
*area
;
1169 area
= kmalloc(sizeof(*area
), GFP_KERNEL
);
1170 if (unlikely(!area
))
1173 area
->bitmap
= kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE
) * sizeof(long), GFP_KERNEL
);
1177 area
->page
= alloc_page(GFP_HIGHUSER
);
1181 area
->vaddr
= vaddr
;
1182 init_waitqueue_head(&area
->wq
);
1183 /* Reserve the 1st slot for get_trampoline_vaddr() */
1184 set_bit(0, area
->bitmap
);
1185 atomic_set(&area
->slot_count
, 1);
1186 copy_to_page(area
->page
, 0, &insn
, UPROBE_SWBP_INSN_SIZE
);
1188 if (!xol_add_vma(mm
, area
))
1191 __free_page(area
->page
);
1193 kfree(area
->bitmap
);
1201 * get_xol_area - Allocate process's xol_area if necessary.
1202 * This area will be used for storing instructions for execution out of line.
1204 * Returns the allocated area or NULL.
1206 static struct xol_area
*get_xol_area(void)
1208 struct mm_struct
*mm
= current
->mm
;
1209 struct xol_area
*area
;
1211 if (!mm
->uprobes_state
.xol_area
)
1212 __create_xol_area(0);
1214 area
= mm
->uprobes_state
.xol_area
;
1215 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */
1220 * uprobe_clear_state - Free the area allocated for slots.
1222 void uprobe_clear_state(struct mm_struct
*mm
)
1224 struct xol_area
*area
= mm
->uprobes_state
.xol_area
;
1229 put_page(area
->page
);
1230 kfree(area
->bitmap
);
1234 void uprobe_start_dup_mmap(void)
1236 percpu_down_read(&dup_mmap_sem
);
1239 void uprobe_end_dup_mmap(void)
1241 percpu_up_read(&dup_mmap_sem
);
1244 void uprobe_dup_mmap(struct mm_struct
*oldmm
, struct mm_struct
*newmm
)
1246 newmm
->uprobes_state
.xol_area
= NULL
;
1248 if (test_bit(MMF_HAS_UPROBES
, &oldmm
->flags
)) {
1249 set_bit(MMF_HAS_UPROBES
, &newmm
->flags
);
1250 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1251 set_bit(MMF_RECALC_UPROBES
, &newmm
->flags
);
1256 * - search for a free slot.
1258 static unsigned long xol_take_insn_slot(struct xol_area
*area
)
1260 unsigned long slot_addr
;
1264 slot_nr
= find_first_zero_bit(area
->bitmap
, UINSNS_PER_PAGE
);
1265 if (slot_nr
< UINSNS_PER_PAGE
) {
1266 if (!test_and_set_bit(slot_nr
, area
->bitmap
))
1269 slot_nr
= UINSNS_PER_PAGE
;
1272 wait_event(area
->wq
, (atomic_read(&area
->slot_count
) < UINSNS_PER_PAGE
));
1273 } while (slot_nr
>= UINSNS_PER_PAGE
);
1275 slot_addr
= area
->vaddr
+ (slot_nr
* UPROBE_XOL_SLOT_BYTES
);
1276 atomic_inc(&area
->slot_count
);
1282 * xol_get_insn_slot - allocate a slot for xol.
1283 * Returns the allocated slot address or 0.
1285 static unsigned long xol_get_insn_slot(struct uprobe
*uprobe
)
1287 struct xol_area
*area
;
1288 unsigned long xol_vaddr
;
1290 area
= get_xol_area();
1294 xol_vaddr
= xol_take_insn_slot(area
);
1295 if (unlikely(!xol_vaddr
))
1298 arch_uprobe_copy_ixol(area
->page
, xol_vaddr
,
1299 &uprobe
->arch
.ixol
, sizeof(uprobe
->arch
.ixol
));
1305 * xol_free_insn_slot - If slot was earlier allocated by
1306 * @xol_get_insn_slot(), make the slot available for
1307 * subsequent requests.
1309 static void xol_free_insn_slot(struct task_struct
*tsk
)
1311 struct xol_area
*area
;
1312 unsigned long vma_end
;
1313 unsigned long slot_addr
;
1315 if (!tsk
->mm
|| !tsk
->mm
->uprobes_state
.xol_area
|| !tsk
->utask
)
1318 slot_addr
= tsk
->utask
->xol_vaddr
;
1319 if (unlikely(!slot_addr
))
1322 area
= tsk
->mm
->uprobes_state
.xol_area
;
1323 vma_end
= area
->vaddr
+ PAGE_SIZE
;
1324 if (area
->vaddr
<= slot_addr
&& slot_addr
< vma_end
) {
1325 unsigned long offset
;
1328 offset
= slot_addr
- area
->vaddr
;
1329 slot_nr
= offset
/ UPROBE_XOL_SLOT_BYTES
;
1330 if (slot_nr
>= UINSNS_PER_PAGE
)
1333 clear_bit(slot_nr
, area
->bitmap
);
1334 atomic_dec(&area
->slot_count
);
1335 if (waitqueue_active(&area
->wq
))
1338 tsk
->utask
->xol_vaddr
= 0;
1342 void __weak
arch_uprobe_copy_ixol(struct page
*page
, unsigned long vaddr
,
1343 void *src
, unsigned long len
)
1345 /* Initialize the slot */
1346 copy_to_page(page
, vaddr
, src
, len
);
1349 * We probably need flush_icache_user_range() but it needs vma.
1350 * This should work on most of architectures by default. If
1351 * architecture needs to do something different it can define
1352 * its own version of the function.
1354 flush_dcache_page(page
);
1358 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1359 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1361 * Return the address of the breakpoint instruction.
1363 unsigned long __weak
uprobe_get_swbp_addr(struct pt_regs
*regs
)
1365 return instruction_pointer(regs
) - UPROBE_SWBP_INSN_SIZE
;
1368 unsigned long uprobe_get_trap_addr(struct pt_regs
*regs
)
1370 struct uprobe_task
*utask
= current
->utask
;
1372 if (unlikely(utask
&& utask
->active_uprobe
))
1373 return utask
->vaddr
;
1375 return instruction_pointer(regs
);
1379 * Called with no locks held.
1380 * Called in context of a exiting or a exec-ing thread.
1382 void uprobe_free_utask(struct task_struct
*t
)
1384 struct uprobe_task
*utask
= t
->utask
;
1385 struct return_instance
*ri
, *tmp
;
1390 if (utask
->active_uprobe
)
1391 put_uprobe(utask
->active_uprobe
);
1393 ri
= utask
->return_instances
;
1398 put_uprobe(tmp
->uprobe
);
1402 xol_free_insn_slot(t
);
1408 * Allocate a uprobe_task object for the task if if necessary.
1409 * Called when the thread hits a breakpoint.
1412 * - pointer to new uprobe_task on success
1415 static struct uprobe_task
*get_utask(void)
1417 if (!current
->utask
)
1418 current
->utask
= kzalloc(sizeof(struct uprobe_task
), GFP_KERNEL
);
1419 return current
->utask
;
1422 static int dup_utask(struct task_struct
*t
, struct uprobe_task
*o_utask
)
1424 struct uprobe_task
*n_utask
;
1425 struct return_instance
**p
, *o
, *n
;
1427 n_utask
= kzalloc(sizeof(struct uprobe_task
), GFP_KERNEL
);
1432 p
= &n_utask
->return_instances
;
1433 for (o
= o_utask
->return_instances
; o
; o
= o
->next
) {
1434 n
= kmalloc(sizeof(struct return_instance
), GFP_KERNEL
);
1439 atomic_inc(&n
->uprobe
->ref
);
1450 static void uprobe_warn(struct task_struct
*t
, const char *msg
)
1452 pr_warn("uprobe: %s:%d failed to %s\n",
1453 current
->comm
, current
->pid
, msg
);
1456 static void dup_xol_work(struct callback_head
*work
)
1458 if (current
->flags
& PF_EXITING
)
1461 if (!__create_xol_area(current
->utask
->dup_xol_addr
))
1462 uprobe_warn(current
, "dup xol area");
1466 * Called in context of a new clone/fork from copy_process.
1468 void uprobe_copy_process(struct task_struct
*t
, unsigned long flags
)
1470 struct uprobe_task
*utask
= current
->utask
;
1471 struct mm_struct
*mm
= current
->mm
;
1472 struct xol_area
*area
;
1476 if (!utask
|| !utask
->return_instances
)
1479 if (mm
== t
->mm
&& !(flags
& CLONE_VFORK
))
1482 if (dup_utask(t
, utask
))
1483 return uprobe_warn(t
, "dup ret instances");
1485 /* The task can fork() after dup_xol_work() fails */
1486 area
= mm
->uprobes_state
.xol_area
;
1488 return uprobe_warn(t
, "dup xol area");
1493 t
->utask
->dup_xol_addr
= area
->vaddr
;
1494 init_task_work(&t
->utask
->dup_xol_work
, dup_xol_work
);
1495 task_work_add(t
, &t
->utask
->dup_xol_work
, true);
1499 * Current area->vaddr notion assume the trampoline address is always
1500 * equal area->vaddr.
1502 * Returns -1 in case the xol_area is not allocated.
1504 static unsigned long get_trampoline_vaddr(void)
1506 struct xol_area
*area
;
1507 unsigned long trampoline_vaddr
= -1;
1509 area
= current
->mm
->uprobes_state
.xol_area
;
1510 smp_read_barrier_depends();
1512 trampoline_vaddr
= area
->vaddr
;
1514 return trampoline_vaddr
;
1517 static void prepare_uretprobe(struct uprobe
*uprobe
, struct pt_regs
*regs
)
1519 struct return_instance
*ri
;
1520 struct uprobe_task
*utask
;
1521 unsigned long orig_ret_vaddr
, trampoline_vaddr
;
1522 bool chained
= false;
1524 if (!get_xol_area())
1527 utask
= get_utask();
1531 if (utask
->depth
>= MAX_URETPROBE_DEPTH
) {
1532 printk_ratelimited(KERN_INFO
"uprobe: omit uretprobe due to"
1533 " nestedness limit pid/tgid=%d/%d\n",
1534 current
->pid
, current
->tgid
);
1538 ri
= kzalloc(sizeof(struct return_instance
), GFP_KERNEL
);
1542 trampoline_vaddr
= get_trampoline_vaddr();
1543 orig_ret_vaddr
= arch_uretprobe_hijack_return_addr(trampoline_vaddr
, regs
);
1544 if (orig_ret_vaddr
== -1)
1548 * We don't want to keep trampoline address in stack, rather keep the
1549 * original return address of first caller thru all the consequent
1550 * instances. This also makes breakpoint unwrapping easier.
1552 if (orig_ret_vaddr
== trampoline_vaddr
) {
1553 if (!utask
->return_instances
) {
1555 * This situation is not possible. Likely we have an
1556 * attack from user-space.
1558 pr_warn("uprobe: unable to set uretprobe pid/tgid=%d/%d\n",
1559 current
->pid
, current
->tgid
);
1564 orig_ret_vaddr
= utask
->return_instances
->orig_ret_vaddr
;
1567 atomic_inc(&uprobe
->ref
);
1568 ri
->uprobe
= uprobe
;
1569 ri
->func
= instruction_pointer(regs
);
1570 ri
->orig_ret_vaddr
= orig_ret_vaddr
;
1571 ri
->chained
= chained
;
1575 /* add instance to the stack */
1576 ri
->next
= utask
->return_instances
;
1577 utask
->return_instances
= ri
;
1585 /* Prepare to single-step probed instruction out of line. */
1587 pre_ssout(struct uprobe
*uprobe
, struct pt_regs
*regs
, unsigned long bp_vaddr
)
1589 struct uprobe_task
*utask
;
1590 unsigned long xol_vaddr
;
1593 utask
= get_utask();
1597 xol_vaddr
= xol_get_insn_slot(uprobe
);
1601 utask
->xol_vaddr
= xol_vaddr
;
1602 utask
->vaddr
= bp_vaddr
;
1604 err
= arch_uprobe_pre_xol(&uprobe
->arch
, regs
);
1605 if (unlikely(err
)) {
1606 xol_free_insn_slot(current
);
1610 utask
->active_uprobe
= uprobe
;
1611 utask
->state
= UTASK_SSTEP
;
1616 * If we are singlestepping, then ensure this thread is not connected to
1617 * non-fatal signals until completion of singlestep. When xol insn itself
1618 * triggers the signal, restart the original insn even if the task is
1619 * already SIGKILL'ed (since coredump should report the correct ip). This
1620 * is even more important if the task has a handler for SIGSEGV/etc, The
1621 * _same_ instruction should be repeated again after return from the signal
1622 * handler, and SSTEP can never finish in this case.
1624 bool uprobe_deny_signal(void)
1626 struct task_struct
*t
= current
;
1627 struct uprobe_task
*utask
= t
->utask
;
1629 if (likely(!utask
|| !utask
->active_uprobe
))
1632 WARN_ON_ONCE(utask
->state
!= UTASK_SSTEP
);
1634 if (signal_pending(t
)) {
1635 spin_lock_irq(&t
->sighand
->siglock
);
1636 clear_tsk_thread_flag(t
, TIF_SIGPENDING
);
1637 spin_unlock_irq(&t
->sighand
->siglock
);
1639 if (__fatal_signal_pending(t
) || arch_uprobe_xol_was_trapped(t
)) {
1640 utask
->state
= UTASK_SSTEP_TRAPPED
;
1641 set_tsk_thread_flag(t
, TIF_UPROBE
);
1642 set_tsk_thread_flag(t
, TIF_NOTIFY_RESUME
);
1649 static void mmf_recalc_uprobes(struct mm_struct
*mm
)
1651 struct vm_area_struct
*vma
;
1653 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
1654 if (!valid_vma(vma
, false))
1657 * This is not strictly accurate, we can race with
1658 * uprobe_unregister() and see the already removed
1659 * uprobe if delete_uprobe() was not yet called.
1660 * Or this uprobe can be filtered out.
1662 if (vma_has_uprobes(vma
, vma
->vm_start
, vma
->vm_end
))
1666 clear_bit(MMF_HAS_UPROBES
, &mm
->flags
);
1669 static int is_trap_at_addr(struct mm_struct
*mm
, unsigned long vaddr
)
1672 uprobe_opcode_t opcode
;
1675 pagefault_disable();
1676 result
= __copy_from_user_inatomic(&opcode
, (void __user
*)vaddr
,
1680 if (likely(result
== 0))
1683 result
= get_user_pages(NULL
, mm
, vaddr
, 1, 0, 1, &page
, NULL
);
1687 copy_from_page(page
, vaddr
, &opcode
, UPROBE_SWBP_INSN_SIZE
);
1690 /* This needs to return true for any variant of the trap insn */
1691 return is_trap_insn(&opcode
);
1694 static struct uprobe
*find_active_uprobe(unsigned long bp_vaddr
, int *is_swbp
)
1696 struct mm_struct
*mm
= current
->mm
;
1697 struct uprobe
*uprobe
= NULL
;
1698 struct vm_area_struct
*vma
;
1700 down_read(&mm
->mmap_sem
);
1701 vma
= find_vma(mm
, bp_vaddr
);
1702 if (vma
&& vma
->vm_start
<= bp_vaddr
) {
1703 if (valid_vma(vma
, false)) {
1704 struct inode
*inode
= file_inode(vma
->vm_file
);
1705 loff_t offset
= vaddr_to_offset(vma
, bp_vaddr
);
1707 uprobe
= find_uprobe(inode
, offset
);
1711 *is_swbp
= is_trap_at_addr(mm
, bp_vaddr
);
1716 if (!uprobe
&& test_and_clear_bit(MMF_RECALC_UPROBES
, &mm
->flags
))
1717 mmf_recalc_uprobes(mm
);
1718 up_read(&mm
->mmap_sem
);
1723 static void handler_chain(struct uprobe
*uprobe
, struct pt_regs
*regs
)
1725 struct uprobe_consumer
*uc
;
1726 int remove
= UPROBE_HANDLER_REMOVE
;
1727 bool need_prep
= false; /* prepare return uprobe, when needed */
1729 down_read(&uprobe
->register_rwsem
);
1730 for (uc
= uprobe
->consumers
; uc
; uc
= uc
->next
) {
1734 rc
= uc
->handler(uc
, regs
);
1735 WARN(rc
& ~UPROBE_HANDLER_MASK
,
1736 "bad rc=0x%x from %pf()\n", rc
, uc
->handler
);
1739 if (uc
->ret_handler
)
1745 if (need_prep
&& !remove
)
1746 prepare_uretprobe(uprobe
, regs
); /* put bp at return */
1748 if (remove
&& uprobe
->consumers
) {
1749 WARN_ON(!uprobe_is_active(uprobe
));
1750 unapply_uprobe(uprobe
, current
->mm
);
1752 up_read(&uprobe
->register_rwsem
);
1756 handle_uretprobe_chain(struct return_instance
*ri
, struct pt_regs
*regs
)
1758 struct uprobe
*uprobe
= ri
->uprobe
;
1759 struct uprobe_consumer
*uc
;
1761 down_read(&uprobe
->register_rwsem
);
1762 for (uc
= uprobe
->consumers
; uc
; uc
= uc
->next
) {
1763 if (uc
->ret_handler
)
1764 uc
->ret_handler(uc
, ri
->func
, regs
);
1766 up_read(&uprobe
->register_rwsem
);
1769 static bool handle_trampoline(struct pt_regs
*regs
)
1771 struct uprobe_task
*utask
;
1772 struct return_instance
*ri
, *tmp
;
1775 utask
= current
->utask
;
1779 ri
= utask
->return_instances
;
1784 * TODO: we should throw out return_instance's invalidated by
1785 * longjmp(), currently we assume that the probed function always
1788 instruction_pointer_set(regs
, ri
->orig_ret_vaddr
);
1791 handle_uretprobe_chain(ri
, regs
);
1793 chained
= ri
->chained
;
1794 put_uprobe(ri
->uprobe
);
1806 utask
->return_instances
= ri
;
1811 bool __weak
arch_uprobe_ignore(struct arch_uprobe
*aup
, struct pt_regs
*regs
)
1817 * Run handler and ask thread to singlestep.
1818 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1820 static void handle_swbp(struct pt_regs
*regs
)
1822 struct uprobe
*uprobe
;
1823 unsigned long bp_vaddr
;
1824 int uninitialized_var(is_swbp
);
1826 bp_vaddr
= uprobe_get_swbp_addr(regs
);
1827 if (bp_vaddr
== get_trampoline_vaddr()) {
1828 if (handle_trampoline(regs
))
1831 pr_warn("uprobe: unable to handle uretprobe pid/tgid=%d/%d\n",
1832 current
->pid
, current
->tgid
);
1835 uprobe
= find_active_uprobe(bp_vaddr
, &is_swbp
);
1838 /* No matching uprobe; signal SIGTRAP. */
1839 send_sig(SIGTRAP
, current
, 0);
1842 * Either we raced with uprobe_unregister() or we can't
1843 * access this memory. The latter is only possible if
1844 * another thread plays with our ->mm. In both cases
1845 * we can simply restart. If this vma was unmapped we
1846 * can pretend this insn was not executed yet and get
1847 * the (correct) SIGSEGV after restart.
1849 instruction_pointer_set(regs
, bp_vaddr
);
1854 /* change it in advance for ->handler() and restart */
1855 instruction_pointer_set(regs
, bp_vaddr
);
1858 * TODO: move copy_insn/etc into _register and remove this hack.
1859 * After we hit the bp, _unregister + _register can install the
1860 * new and not-yet-analyzed uprobe at the same address, restart.
1862 smp_rmb(); /* pairs with wmb() in install_breakpoint() */
1863 if (unlikely(!test_bit(UPROBE_COPY_INSN
, &uprobe
->flags
)))
1866 /* Tracing handlers use ->utask to communicate with fetch methods */
1870 if (arch_uprobe_ignore(&uprobe
->arch
, regs
))
1873 handler_chain(uprobe
, regs
);
1875 if (arch_uprobe_skip_sstep(&uprobe
->arch
, regs
))
1878 if (!pre_ssout(uprobe
, regs
, bp_vaddr
))
1881 /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
1887 * Perform required fix-ups and disable singlestep.
1888 * Allow pending signals to take effect.
1890 static void handle_singlestep(struct uprobe_task
*utask
, struct pt_regs
*regs
)
1892 struct uprobe
*uprobe
;
1895 uprobe
= utask
->active_uprobe
;
1896 if (utask
->state
== UTASK_SSTEP_ACK
)
1897 err
= arch_uprobe_post_xol(&uprobe
->arch
, regs
);
1898 else if (utask
->state
== UTASK_SSTEP_TRAPPED
)
1899 arch_uprobe_abort_xol(&uprobe
->arch
, regs
);
1904 utask
->active_uprobe
= NULL
;
1905 utask
->state
= UTASK_RUNNING
;
1906 xol_free_insn_slot(current
);
1908 spin_lock_irq(¤t
->sighand
->siglock
);
1909 recalc_sigpending(); /* see uprobe_deny_signal() */
1910 spin_unlock_irq(¤t
->sighand
->siglock
);
1912 if (unlikely(err
)) {
1913 uprobe_warn(current
, "execute the probed insn, sending SIGILL.");
1914 force_sig_info(SIGILL
, SEND_SIG_FORCED
, current
);
1919 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1920 * allows the thread to return from interrupt. After that handle_swbp()
1921 * sets utask->active_uprobe.
1923 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1924 * and allows the thread to return from interrupt.
1926 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1927 * uprobe_notify_resume().
1929 void uprobe_notify_resume(struct pt_regs
*regs
)
1931 struct uprobe_task
*utask
;
1933 clear_thread_flag(TIF_UPROBE
);
1935 utask
= current
->utask
;
1936 if (utask
&& utask
->active_uprobe
)
1937 handle_singlestep(utask
, regs
);
1943 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1944 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1946 int uprobe_pre_sstep_notifier(struct pt_regs
*regs
)
1951 if (!test_bit(MMF_HAS_UPROBES
, ¤t
->mm
->flags
) &&
1952 (!current
->utask
|| !current
->utask
->return_instances
))
1955 set_thread_flag(TIF_UPROBE
);
1960 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1961 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1963 int uprobe_post_sstep_notifier(struct pt_regs
*regs
)
1965 struct uprobe_task
*utask
= current
->utask
;
1967 if (!current
->mm
|| !utask
|| !utask
->active_uprobe
)
1968 /* task is currently not uprobed */
1971 utask
->state
= UTASK_SSTEP_ACK
;
1972 set_thread_flag(TIF_UPROBE
);
1976 static struct notifier_block uprobe_exception_nb
= {
1977 .notifier_call
= arch_uprobe_exception_notify
,
1978 .priority
= INT_MAX
-1, /* notified after kprobes, kgdb */
1981 static int __init
init_uprobes(void)
1985 for (i
= 0; i
< UPROBES_HASH_SZ
; i
++)
1986 mutex_init(&uprobes_mmap_mutex
[i
]);
1988 if (percpu_init_rwsem(&dup_mmap_sem
))
1991 return register_die_notifier(&uprobe_exception_nb
);
1993 __initcall(init_uprobes
);