4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
21 #include <linux/kernel.h>
22 #include <linux/sched/signal.h>
23 #include <linux/syscalls.h>
25 #include <linux/iomap.h>
27 #include <linux/percpu.h>
28 #include <linux/slab.h>
29 #include <linux/capability.h>
30 #include <linux/blkdev.h>
31 #include <linux/file.h>
32 #include <linux/quotaops.h>
33 #include <linux/highmem.h>
34 #include <linux/export.h>
35 #include <linux/backing-dev.h>
36 #include <linux/writeback.h>
37 #include <linux/hash.h>
38 #include <linux/suspend.h>
39 #include <linux/buffer_head.h>
40 #include <linux/task_io_accounting_ops.h>
41 #include <linux/bio.h>
42 #include <linux/notifier.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <trace/events/block.h>
50 static int fsync_buffers_list(spinlock_t
*lock
, struct list_head
*list
);
51 static int submit_bh_wbc(int op
, int op_flags
, struct buffer_head
*bh
,
52 enum rw_hint hint
, struct writeback_control
*wbc
);
54 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
56 inline void touch_buffer(struct buffer_head
*bh
)
58 trace_block_touch_buffer(bh
);
59 mark_page_accessed(bh
->b_page
);
61 EXPORT_SYMBOL(touch_buffer
);
63 void __lock_buffer(struct buffer_head
*bh
)
65 wait_on_bit_lock_io(&bh
->b_state
, BH_Lock
, TASK_UNINTERRUPTIBLE
);
67 EXPORT_SYMBOL(__lock_buffer
);
69 void unlock_buffer(struct buffer_head
*bh
)
71 clear_bit_unlock(BH_Lock
, &bh
->b_state
);
72 smp_mb__after_atomic();
73 wake_up_bit(&bh
->b_state
, BH_Lock
);
75 EXPORT_SYMBOL(unlock_buffer
);
78 * Returns if the page has dirty or writeback buffers. If all the buffers
79 * are unlocked and clean then the PageDirty information is stale. If
80 * any of the pages are locked, it is assumed they are locked for IO.
82 void buffer_check_dirty_writeback(struct page
*page
,
83 bool *dirty
, bool *writeback
)
85 struct buffer_head
*head
, *bh
;
89 BUG_ON(!PageLocked(page
));
91 if (!page_has_buffers(page
))
94 if (PageWriteback(page
))
97 head
= page_buffers(page
);
100 if (buffer_locked(bh
))
103 if (buffer_dirty(bh
))
106 bh
= bh
->b_this_page
;
107 } while (bh
!= head
);
109 EXPORT_SYMBOL(buffer_check_dirty_writeback
);
112 * Block until a buffer comes unlocked. This doesn't stop it
113 * from becoming locked again - you have to lock it yourself
114 * if you want to preserve its state.
116 void __wait_on_buffer(struct buffer_head
* bh
)
118 wait_on_bit_io(&bh
->b_state
, BH_Lock
, TASK_UNINTERRUPTIBLE
);
120 EXPORT_SYMBOL(__wait_on_buffer
);
123 __clear_page_buffers(struct page
*page
)
125 ClearPagePrivate(page
);
126 set_page_private(page
, 0);
130 static void buffer_io_error(struct buffer_head
*bh
, char *msg
)
132 if (!test_bit(BH_Quiet
, &bh
->b_state
))
133 printk_ratelimited(KERN_ERR
134 "Buffer I/O error on dev %pg, logical block %llu%s\n",
135 bh
->b_bdev
, (unsigned long long)bh
->b_blocknr
, msg
);
139 * End-of-IO handler helper function which does not touch the bh after
141 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
142 * a race there is benign: unlock_buffer() only use the bh's address for
143 * hashing after unlocking the buffer, so it doesn't actually touch the bh
146 static void __end_buffer_read_notouch(struct buffer_head
*bh
, int uptodate
)
149 set_buffer_uptodate(bh
);
151 /* This happens, due to failed read-ahead attempts. */
152 clear_buffer_uptodate(bh
);
158 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
159 * unlock the buffer. This is what ll_rw_block uses too.
161 void end_buffer_read_sync(struct buffer_head
*bh
, int uptodate
)
163 __end_buffer_read_notouch(bh
, uptodate
);
166 EXPORT_SYMBOL(end_buffer_read_sync
);
168 void end_buffer_write_sync(struct buffer_head
*bh
, int uptodate
)
171 set_buffer_uptodate(bh
);
173 buffer_io_error(bh
, ", lost sync page write");
174 mark_buffer_write_io_error(bh
);
175 clear_buffer_uptodate(bh
);
180 EXPORT_SYMBOL(end_buffer_write_sync
);
183 * Various filesystems appear to want __find_get_block to be non-blocking.
184 * But it's the page lock which protects the buffers. To get around this,
185 * we get exclusion from try_to_free_buffers with the blockdev mapping's
188 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
189 * may be quite high. This code could TryLock the page, and if that
190 * succeeds, there is no need to take private_lock. (But if
191 * private_lock is contended then so is mapping->tree_lock).
193 static struct buffer_head
*
194 __find_get_block_slow(struct block_device
*bdev
, sector_t block
)
196 struct inode
*bd_inode
= bdev
->bd_inode
;
197 struct address_space
*bd_mapping
= bd_inode
->i_mapping
;
198 struct buffer_head
*ret
= NULL
;
200 struct buffer_head
*bh
;
201 struct buffer_head
*head
;
205 index
= block
>> (PAGE_SHIFT
- bd_inode
->i_blkbits
);
206 page
= find_get_page_flags(bd_mapping
, index
, FGP_ACCESSED
);
210 spin_lock(&bd_mapping
->private_lock
);
211 if (!page_has_buffers(page
))
213 head
= page_buffers(page
);
216 if (!buffer_mapped(bh
))
218 else if (bh
->b_blocknr
== block
) {
223 bh
= bh
->b_this_page
;
224 } while (bh
!= head
);
226 /* we might be here because some of the buffers on this page are
227 * not mapped. This is due to various races between
228 * file io on the block device and getblk. It gets dealt with
229 * elsewhere, don't buffer_error if we had some unmapped buffers
232 printk("__find_get_block_slow() failed. "
233 "block=%llu, b_blocknr=%llu\n",
234 (unsigned long long)block
,
235 (unsigned long long)bh
->b_blocknr
);
236 printk("b_state=0x%08lx, b_size=%zu\n",
237 bh
->b_state
, bh
->b_size
);
238 printk("device %pg blocksize: %d\n", bdev
,
239 1 << bd_inode
->i_blkbits
);
242 spin_unlock(&bd_mapping
->private_lock
);
249 * I/O completion handler for block_read_full_page() - pages
250 * which come unlocked at the end of I/O.
252 static void end_buffer_async_read(struct buffer_head
*bh
, int uptodate
)
255 struct buffer_head
*first
;
256 struct buffer_head
*tmp
;
258 int page_uptodate
= 1;
260 BUG_ON(!buffer_async_read(bh
));
264 set_buffer_uptodate(bh
);
266 clear_buffer_uptodate(bh
);
267 buffer_io_error(bh
, ", async page read");
272 * Be _very_ careful from here on. Bad things can happen if
273 * two buffer heads end IO at almost the same time and both
274 * decide that the page is now completely done.
276 first
= page_buffers(page
);
277 local_irq_save(flags
);
278 bit_spin_lock(BH_Uptodate_Lock
, &first
->b_state
);
279 clear_buffer_async_read(bh
);
283 if (!buffer_uptodate(tmp
))
285 if (buffer_async_read(tmp
)) {
286 BUG_ON(!buffer_locked(tmp
));
289 tmp
= tmp
->b_this_page
;
291 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
292 local_irq_restore(flags
);
295 * If none of the buffers had errors and they are all
296 * uptodate then we can set the page uptodate.
298 if (page_uptodate
&& !PageError(page
))
299 SetPageUptodate(page
);
304 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
305 local_irq_restore(flags
);
310 * Completion handler for block_write_full_page() - pages which are unlocked
311 * during I/O, and which have PageWriteback cleared upon I/O completion.
313 void end_buffer_async_write(struct buffer_head
*bh
, int uptodate
)
316 struct buffer_head
*first
;
317 struct buffer_head
*tmp
;
320 BUG_ON(!buffer_async_write(bh
));
324 set_buffer_uptodate(bh
);
326 buffer_io_error(bh
, ", lost async page write");
327 mark_buffer_write_io_error(bh
);
328 clear_buffer_uptodate(bh
);
332 first
= page_buffers(page
);
333 local_irq_save(flags
);
334 bit_spin_lock(BH_Uptodate_Lock
, &first
->b_state
);
336 clear_buffer_async_write(bh
);
338 tmp
= bh
->b_this_page
;
340 if (buffer_async_write(tmp
)) {
341 BUG_ON(!buffer_locked(tmp
));
344 tmp
= tmp
->b_this_page
;
346 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
347 local_irq_restore(flags
);
348 end_page_writeback(page
);
352 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
353 local_irq_restore(flags
);
356 EXPORT_SYMBOL(end_buffer_async_write
);
359 * If a page's buffers are under async readin (end_buffer_async_read
360 * completion) then there is a possibility that another thread of
361 * control could lock one of the buffers after it has completed
362 * but while some of the other buffers have not completed. This
363 * locked buffer would confuse end_buffer_async_read() into not unlocking
364 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
365 * that this buffer is not under async I/O.
367 * The page comes unlocked when it has no locked buffer_async buffers
370 * PageLocked prevents anyone starting new async I/O reads any of
373 * PageWriteback is used to prevent simultaneous writeout of the same
376 * PageLocked prevents anyone from starting writeback of a page which is
377 * under read I/O (PageWriteback is only ever set against a locked page).
379 static void mark_buffer_async_read(struct buffer_head
*bh
)
381 bh
->b_end_io
= end_buffer_async_read
;
382 set_buffer_async_read(bh
);
385 static void mark_buffer_async_write_endio(struct buffer_head
*bh
,
386 bh_end_io_t
*handler
)
388 bh
->b_end_io
= handler
;
389 set_buffer_async_write(bh
);
392 void mark_buffer_async_write(struct buffer_head
*bh
)
394 mark_buffer_async_write_endio(bh
, end_buffer_async_write
);
396 EXPORT_SYMBOL(mark_buffer_async_write
);
400 * fs/buffer.c contains helper functions for buffer-backed address space's
401 * fsync functions. A common requirement for buffer-based filesystems is
402 * that certain data from the backing blockdev needs to be written out for
403 * a successful fsync(). For example, ext2 indirect blocks need to be
404 * written back and waited upon before fsync() returns.
406 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
407 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
408 * management of a list of dependent buffers at ->i_mapping->private_list.
410 * Locking is a little subtle: try_to_free_buffers() will remove buffers
411 * from their controlling inode's queue when they are being freed. But
412 * try_to_free_buffers() will be operating against the *blockdev* mapping
413 * at the time, not against the S_ISREG file which depends on those buffers.
414 * So the locking for private_list is via the private_lock in the address_space
415 * which backs the buffers. Which is different from the address_space
416 * against which the buffers are listed. So for a particular address_space,
417 * mapping->private_lock does *not* protect mapping->private_list! In fact,
418 * mapping->private_list will always be protected by the backing blockdev's
421 * Which introduces a requirement: all buffers on an address_space's
422 * ->private_list must be from the same address_space: the blockdev's.
424 * address_spaces which do not place buffers at ->private_list via these
425 * utility functions are free to use private_lock and private_list for
426 * whatever they want. The only requirement is that list_empty(private_list)
427 * be true at clear_inode() time.
429 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
430 * filesystems should do that. invalidate_inode_buffers() should just go
431 * BUG_ON(!list_empty).
433 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
434 * take an address_space, not an inode. And it should be called
435 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
438 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
439 * list if it is already on a list. Because if the buffer is on a list,
440 * it *must* already be on the right one. If not, the filesystem is being
441 * silly. This will save a ton of locking. But first we have to ensure
442 * that buffers are taken *off* the old inode's list when they are freed
443 * (presumably in truncate). That requires careful auditing of all
444 * filesystems (do it inside bforget()). It could also be done by bringing
449 * The buffer's backing address_space's private_lock must be held
451 static void __remove_assoc_queue(struct buffer_head
*bh
)
453 list_del_init(&bh
->b_assoc_buffers
);
454 WARN_ON(!bh
->b_assoc_map
);
455 bh
->b_assoc_map
= NULL
;
458 int inode_has_buffers(struct inode
*inode
)
460 return !list_empty(&inode
->i_data
.private_list
);
464 * osync is designed to support O_SYNC io. It waits synchronously for
465 * all already-submitted IO to complete, but does not queue any new
466 * writes to the disk.
468 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
469 * you dirty the buffers, and then use osync_inode_buffers to wait for
470 * completion. Any other dirty buffers which are not yet queued for
471 * write will not be flushed to disk by the osync.
473 static int osync_buffers_list(spinlock_t
*lock
, struct list_head
*list
)
475 struct buffer_head
*bh
;
481 list_for_each_prev(p
, list
) {
483 if (buffer_locked(bh
)) {
487 if (!buffer_uptodate(bh
))
498 static void do_thaw_one(struct super_block
*sb
, void *unused
)
500 while (sb
->s_bdev
&& !thaw_bdev(sb
->s_bdev
, sb
))
501 printk(KERN_WARNING
"Emergency Thaw on %pg\n", sb
->s_bdev
);
504 static void do_thaw_all(struct work_struct
*work
)
506 iterate_supers(do_thaw_one
, NULL
);
508 printk(KERN_WARNING
"Emergency Thaw complete\n");
512 * emergency_thaw_all -- forcibly thaw every frozen filesystem
514 * Used for emergency unfreeze of all filesystems via SysRq
516 void emergency_thaw_all(void)
518 struct work_struct
*work
;
520 work
= kmalloc(sizeof(*work
), GFP_ATOMIC
);
522 INIT_WORK(work
, do_thaw_all
);
528 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
529 * @mapping: the mapping which wants those buffers written
531 * Starts I/O against the buffers at mapping->private_list, and waits upon
534 * Basically, this is a convenience function for fsync().
535 * @mapping is a file or directory which needs those buffers to be written for
536 * a successful fsync().
538 int sync_mapping_buffers(struct address_space
*mapping
)
540 struct address_space
*buffer_mapping
= mapping
->private_data
;
542 if (buffer_mapping
== NULL
|| list_empty(&mapping
->private_list
))
545 return fsync_buffers_list(&buffer_mapping
->private_lock
,
546 &mapping
->private_list
);
548 EXPORT_SYMBOL(sync_mapping_buffers
);
551 * Called when we've recently written block `bblock', and it is known that
552 * `bblock' was for a buffer_boundary() buffer. This means that the block at
553 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
554 * dirty, schedule it for IO. So that indirects merge nicely with their data.
556 void write_boundary_block(struct block_device
*bdev
,
557 sector_t bblock
, unsigned blocksize
)
559 struct buffer_head
*bh
= __find_get_block(bdev
, bblock
+ 1, blocksize
);
561 if (buffer_dirty(bh
))
562 ll_rw_block(REQ_OP_WRITE
, 0, 1, &bh
);
567 void mark_buffer_dirty_inode(struct buffer_head
*bh
, struct inode
*inode
)
569 struct address_space
*mapping
= inode
->i_mapping
;
570 struct address_space
*buffer_mapping
= bh
->b_page
->mapping
;
572 mark_buffer_dirty(bh
);
573 if (!mapping
->private_data
) {
574 mapping
->private_data
= buffer_mapping
;
576 BUG_ON(mapping
->private_data
!= buffer_mapping
);
578 if (!bh
->b_assoc_map
) {
579 spin_lock(&buffer_mapping
->private_lock
);
580 list_move_tail(&bh
->b_assoc_buffers
,
581 &mapping
->private_list
);
582 bh
->b_assoc_map
= mapping
;
583 spin_unlock(&buffer_mapping
->private_lock
);
586 EXPORT_SYMBOL(mark_buffer_dirty_inode
);
589 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
592 * If warn is true, then emit a warning if the page is not uptodate and has
593 * not been truncated.
595 * The caller must hold lock_page_memcg().
597 static void __set_page_dirty(struct page
*page
, struct address_space
*mapping
,
602 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
603 if (page
->mapping
) { /* Race with truncate? */
604 WARN_ON_ONCE(warn
&& !PageUptodate(page
));
605 account_page_dirtied(page
, mapping
);
606 radix_tree_tag_set(&mapping
->page_tree
,
607 page_index(page
), PAGECACHE_TAG_DIRTY
);
609 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
613 * Add a page to the dirty page list.
615 * It is a sad fact of life that this function is called from several places
616 * deeply under spinlocking. It may not sleep.
618 * If the page has buffers, the uptodate buffers are set dirty, to preserve
619 * dirty-state coherency between the page and the buffers. It the page does
620 * not have buffers then when they are later attached they will all be set
623 * The buffers are dirtied before the page is dirtied. There's a small race
624 * window in which a writepage caller may see the page cleanness but not the
625 * buffer dirtiness. That's fine. If this code were to set the page dirty
626 * before the buffers, a concurrent writepage caller could clear the page dirty
627 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
628 * page on the dirty page list.
630 * We use private_lock to lock against try_to_free_buffers while using the
631 * page's buffer list. Also use this to protect against clean buffers being
632 * added to the page after it was set dirty.
634 * FIXME: may need to call ->reservepage here as well. That's rather up to the
635 * address_space though.
637 int __set_page_dirty_buffers(struct page
*page
)
640 struct address_space
*mapping
= page_mapping(page
);
642 if (unlikely(!mapping
))
643 return !TestSetPageDirty(page
);
645 spin_lock(&mapping
->private_lock
);
646 if (page_has_buffers(page
)) {
647 struct buffer_head
*head
= page_buffers(page
);
648 struct buffer_head
*bh
= head
;
651 set_buffer_dirty(bh
);
652 bh
= bh
->b_this_page
;
653 } while (bh
!= head
);
656 * Lock out page->mem_cgroup migration to keep PageDirty
657 * synchronized with per-memcg dirty page counters.
659 lock_page_memcg(page
);
660 newly_dirty
= !TestSetPageDirty(page
);
661 spin_unlock(&mapping
->private_lock
);
664 __set_page_dirty(page
, mapping
, 1);
666 unlock_page_memcg(page
);
669 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
673 EXPORT_SYMBOL(__set_page_dirty_buffers
);
676 * Write out and wait upon a list of buffers.
678 * We have conflicting pressures: we want to make sure that all
679 * initially dirty buffers get waited on, but that any subsequently
680 * dirtied buffers don't. After all, we don't want fsync to last
681 * forever if somebody is actively writing to the file.
683 * Do this in two main stages: first we copy dirty buffers to a
684 * temporary inode list, queueing the writes as we go. Then we clean
685 * up, waiting for those writes to complete.
687 * During this second stage, any subsequent updates to the file may end
688 * up refiling the buffer on the original inode's dirty list again, so
689 * there is a chance we will end up with a buffer queued for write but
690 * not yet completed on that list. So, as a final cleanup we go through
691 * the osync code to catch these locked, dirty buffers without requeuing
692 * any newly dirty buffers for write.
694 static int fsync_buffers_list(spinlock_t
*lock
, struct list_head
*list
)
696 struct buffer_head
*bh
;
697 struct list_head tmp
;
698 struct address_space
*mapping
;
700 struct blk_plug plug
;
702 INIT_LIST_HEAD(&tmp
);
703 blk_start_plug(&plug
);
706 while (!list_empty(list
)) {
707 bh
= BH_ENTRY(list
->next
);
708 mapping
= bh
->b_assoc_map
;
709 __remove_assoc_queue(bh
);
710 /* Avoid race with mark_buffer_dirty_inode() which does
711 * a lockless check and we rely on seeing the dirty bit */
713 if (buffer_dirty(bh
) || buffer_locked(bh
)) {
714 list_add(&bh
->b_assoc_buffers
, &tmp
);
715 bh
->b_assoc_map
= mapping
;
716 if (buffer_dirty(bh
)) {
720 * Ensure any pending I/O completes so that
721 * write_dirty_buffer() actually writes the
722 * current contents - it is a noop if I/O is
723 * still in flight on potentially older
726 write_dirty_buffer(bh
, REQ_SYNC
);
729 * Kick off IO for the previous mapping. Note
730 * that we will not run the very last mapping,
731 * wait_on_buffer() will do that for us
732 * through sync_buffer().
741 blk_finish_plug(&plug
);
744 while (!list_empty(&tmp
)) {
745 bh
= BH_ENTRY(tmp
.prev
);
747 mapping
= bh
->b_assoc_map
;
748 __remove_assoc_queue(bh
);
749 /* Avoid race with mark_buffer_dirty_inode() which does
750 * a lockless check and we rely on seeing the dirty bit */
752 if (buffer_dirty(bh
)) {
753 list_add(&bh
->b_assoc_buffers
,
754 &mapping
->private_list
);
755 bh
->b_assoc_map
= mapping
;
759 if (!buffer_uptodate(bh
))
766 err2
= osync_buffers_list(lock
, list
);
774 * Invalidate any and all dirty buffers on a given inode. We are
775 * probably unmounting the fs, but that doesn't mean we have already
776 * done a sync(). Just drop the buffers from the inode list.
778 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
779 * assumes that all the buffers are against the blockdev. Not true
782 void invalidate_inode_buffers(struct inode
*inode
)
784 if (inode_has_buffers(inode
)) {
785 struct address_space
*mapping
= &inode
->i_data
;
786 struct list_head
*list
= &mapping
->private_list
;
787 struct address_space
*buffer_mapping
= mapping
->private_data
;
789 spin_lock(&buffer_mapping
->private_lock
);
790 while (!list_empty(list
))
791 __remove_assoc_queue(BH_ENTRY(list
->next
));
792 spin_unlock(&buffer_mapping
->private_lock
);
795 EXPORT_SYMBOL(invalidate_inode_buffers
);
798 * Remove any clean buffers from the inode's buffer list. This is called
799 * when we're trying to free the inode itself. Those buffers can pin it.
801 * Returns true if all buffers were removed.
803 int remove_inode_buffers(struct inode
*inode
)
807 if (inode_has_buffers(inode
)) {
808 struct address_space
*mapping
= &inode
->i_data
;
809 struct list_head
*list
= &mapping
->private_list
;
810 struct address_space
*buffer_mapping
= mapping
->private_data
;
812 spin_lock(&buffer_mapping
->private_lock
);
813 while (!list_empty(list
)) {
814 struct buffer_head
*bh
= BH_ENTRY(list
->next
);
815 if (buffer_dirty(bh
)) {
819 __remove_assoc_queue(bh
);
821 spin_unlock(&buffer_mapping
->private_lock
);
827 * Create the appropriate buffers when given a page for data area and
828 * the size of each buffer.. Use the bh->b_this_page linked list to
829 * follow the buffers created. Return NULL if unable to create more
832 * The retry flag is used to differentiate async IO (paging, swapping)
833 * which may not fail from ordinary buffer allocations.
835 struct buffer_head
*alloc_page_buffers(struct page
*page
, unsigned long size
,
838 struct buffer_head
*bh
, *head
;
839 gfp_t gfp
= GFP_NOFS
;
847 while ((offset
-= size
) >= 0) {
848 bh
= alloc_buffer_head(gfp
);
852 bh
->b_this_page
= head
;
858 /* Link the buffer to its page */
859 set_bh_page(bh
, page
, offset
);
863 * In case anything failed, we just free everything we got.
869 head
= head
->b_this_page
;
870 free_buffer_head(bh
);
876 EXPORT_SYMBOL_GPL(alloc_page_buffers
);
879 link_dev_buffers(struct page
*page
, struct buffer_head
*head
)
881 struct buffer_head
*bh
, *tail
;
886 bh
= bh
->b_this_page
;
888 tail
->b_this_page
= head
;
889 attach_page_buffers(page
, head
);
892 static sector_t
blkdev_max_block(struct block_device
*bdev
, unsigned int size
)
894 sector_t retval
= ~((sector_t
)0);
895 loff_t sz
= i_size_read(bdev
->bd_inode
);
898 unsigned int sizebits
= blksize_bits(size
);
899 retval
= (sz
>> sizebits
);
905 * Initialise the state of a blockdev page's buffers.
908 init_page_buffers(struct page
*page
, struct block_device
*bdev
,
909 sector_t block
, int size
)
911 struct buffer_head
*head
= page_buffers(page
);
912 struct buffer_head
*bh
= head
;
913 int uptodate
= PageUptodate(page
);
914 sector_t end_block
= blkdev_max_block(I_BDEV(bdev
->bd_inode
), size
);
917 if (!buffer_mapped(bh
)) {
919 bh
->b_private
= NULL
;
921 bh
->b_blocknr
= block
;
923 set_buffer_uptodate(bh
);
924 if (block
< end_block
)
925 set_buffer_mapped(bh
);
928 bh
= bh
->b_this_page
;
929 } while (bh
!= head
);
932 * Caller needs to validate requested block against end of device.
938 * Create the page-cache page that contains the requested block.
940 * This is used purely for blockdev mappings.
943 grow_dev_page(struct block_device
*bdev
, sector_t block
,
944 pgoff_t index
, int size
, int sizebits
, gfp_t gfp
)
946 struct inode
*inode
= bdev
->bd_inode
;
948 struct buffer_head
*bh
;
950 int ret
= 0; /* Will call free_more_memory() */
953 gfp_mask
= mapping_gfp_constraint(inode
->i_mapping
, ~__GFP_FS
) | gfp
;
956 * XXX: __getblk_slow() can not really deal with failure and
957 * will endlessly loop on improvised global reclaim. Prefer
958 * looping in the allocator rather than here, at least that
959 * code knows what it's doing.
961 gfp_mask
|= __GFP_NOFAIL
;
963 page
= find_or_create_page(inode
->i_mapping
, index
, gfp_mask
);
965 BUG_ON(!PageLocked(page
));
967 if (page_has_buffers(page
)) {
968 bh
= page_buffers(page
);
969 if (bh
->b_size
== size
) {
970 end_block
= init_page_buffers(page
, bdev
,
971 (sector_t
)index
<< sizebits
,
975 if (!try_to_free_buffers(page
))
980 * Allocate some buffers for this page
982 bh
= alloc_page_buffers(page
, size
, true);
985 * Link the page to the buffers and initialise them. Take the
986 * lock to be atomic wrt __find_get_block(), which does not
987 * run under the page lock.
989 spin_lock(&inode
->i_mapping
->private_lock
);
990 link_dev_buffers(page
, bh
);
991 end_block
= init_page_buffers(page
, bdev
, (sector_t
)index
<< sizebits
,
993 spin_unlock(&inode
->i_mapping
->private_lock
);
995 ret
= (block
< end_block
) ? 1 : -ENXIO
;
1003 * Create buffers for the specified block device block's page. If
1004 * that page was dirty, the buffers are set dirty also.
1007 grow_buffers(struct block_device
*bdev
, sector_t block
, int size
, gfp_t gfp
)
1015 } while ((size
<< sizebits
) < PAGE_SIZE
);
1017 index
= block
>> sizebits
;
1020 * Check for a block which wants to lie outside our maximum possible
1021 * pagecache index. (this comparison is done using sector_t types).
1023 if (unlikely(index
!= block
>> sizebits
)) {
1024 printk(KERN_ERR
"%s: requested out-of-range block %llu for "
1026 __func__
, (unsigned long long)block
,
1031 /* Create a page with the proper size buffers.. */
1032 return grow_dev_page(bdev
, block
, index
, size
, sizebits
, gfp
);
1035 static struct buffer_head
*
1036 __getblk_slow(struct block_device
*bdev
, sector_t block
,
1037 unsigned size
, gfp_t gfp
)
1039 /* Size must be multiple of hard sectorsize */
1040 if (unlikely(size
& (bdev_logical_block_size(bdev
)-1) ||
1041 (size
< 512 || size
> PAGE_SIZE
))) {
1042 printk(KERN_ERR
"getblk(): invalid block size %d requested\n",
1044 printk(KERN_ERR
"logical block size: %d\n",
1045 bdev_logical_block_size(bdev
));
1052 struct buffer_head
*bh
;
1055 bh
= __find_get_block(bdev
, block
, size
);
1059 ret
= grow_buffers(bdev
, block
, size
, gfp
);
1066 * The relationship between dirty buffers and dirty pages:
1068 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1069 * the page is tagged dirty in its radix tree.
1071 * At all times, the dirtiness of the buffers represents the dirtiness of
1072 * subsections of the page. If the page has buffers, the page dirty bit is
1073 * merely a hint about the true dirty state.
1075 * When a page is set dirty in its entirety, all its buffers are marked dirty
1076 * (if the page has buffers).
1078 * When a buffer is marked dirty, its page is dirtied, but the page's other
1081 * Also. When blockdev buffers are explicitly read with bread(), they
1082 * individually become uptodate. But their backing page remains not
1083 * uptodate - even if all of its buffers are uptodate. A subsequent
1084 * block_read_full_page() against that page will discover all the uptodate
1085 * buffers, will set the page uptodate and will perform no I/O.
1089 * mark_buffer_dirty - mark a buffer_head as needing writeout
1090 * @bh: the buffer_head to mark dirty
1092 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1093 * backing page dirty, then tag the page as dirty in its address_space's radix
1094 * tree and then attach the address_space's inode to its superblock's dirty
1097 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1098 * mapping->tree_lock and mapping->host->i_lock.
1100 void mark_buffer_dirty(struct buffer_head
*bh
)
1102 WARN_ON_ONCE(!buffer_uptodate(bh
));
1104 trace_block_dirty_buffer(bh
);
1107 * Very *carefully* optimize the it-is-already-dirty case.
1109 * Don't let the final "is it dirty" escape to before we
1110 * perhaps modified the buffer.
1112 if (buffer_dirty(bh
)) {
1114 if (buffer_dirty(bh
))
1118 if (!test_set_buffer_dirty(bh
)) {
1119 struct page
*page
= bh
->b_page
;
1120 struct address_space
*mapping
= NULL
;
1122 lock_page_memcg(page
);
1123 if (!TestSetPageDirty(page
)) {
1124 mapping
= page_mapping(page
);
1126 __set_page_dirty(page
, mapping
, 0);
1128 unlock_page_memcg(page
);
1130 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
1133 EXPORT_SYMBOL(mark_buffer_dirty
);
1135 void mark_buffer_write_io_error(struct buffer_head
*bh
)
1137 set_buffer_write_io_error(bh
);
1138 /* FIXME: do we need to set this in both places? */
1139 if (bh
->b_page
&& bh
->b_page
->mapping
)
1140 mapping_set_error(bh
->b_page
->mapping
, -EIO
);
1141 if (bh
->b_assoc_map
)
1142 mapping_set_error(bh
->b_assoc_map
, -EIO
);
1144 EXPORT_SYMBOL(mark_buffer_write_io_error
);
1147 * Decrement a buffer_head's reference count. If all buffers against a page
1148 * have zero reference count, are clean and unlocked, and if the page is clean
1149 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1150 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1151 * a page but it ends up not being freed, and buffers may later be reattached).
1153 void __brelse(struct buffer_head
* buf
)
1155 if (atomic_read(&buf
->b_count
)) {
1159 WARN(1, KERN_ERR
"VFS: brelse: Trying to free free buffer\n");
1161 EXPORT_SYMBOL(__brelse
);
1164 * bforget() is like brelse(), except it discards any
1165 * potentially dirty data.
1167 void __bforget(struct buffer_head
*bh
)
1169 clear_buffer_dirty(bh
);
1170 if (bh
->b_assoc_map
) {
1171 struct address_space
*buffer_mapping
= bh
->b_page
->mapping
;
1173 spin_lock(&buffer_mapping
->private_lock
);
1174 list_del_init(&bh
->b_assoc_buffers
);
1175 bh
->b_assoc_map
= NULL
;
1176 spin_unlock(&buffer_mapping
->private_lock
);
1180 EXPORT_SYMBOL(__bforget
);
1182 static struct buffer_head
*__bread_slow(struct buffer_head
*bh
)
1185 if (buffer_uptodate(bh
)) {
1190 bh
->b_end_io
= end_buffer_read_sync
;
1191 submit_bh(REQ_OP_READ
, 0, bh
);
1193 if (buffer_uptodate(bh
))
1201 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1202 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1203 * refcount elevated by one when they're in an LRU. A buffer can only appear
1204 * once in a particular CPU's LRU. A single buffer can be present in multiple
1205 * CPU's LRUs at the same time.
1207 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1208 * sb_find_get_block().
1210 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1211 * a local interrupt disable for that.
1214 #define BH_LRU_SIZE 16
1217 struct buffer_head
*bhs
[BH_LRU_SIZE
];
1220 static DEFINE_PER_CPU(struct bh_lru
, bh_lrus
) = {{ NULL
}};
1223 #define bh_lru_lock() local_irq_disable()
1224 #define bh_lru_unlock() local_irq_enable()
1226 #define bh_lru_lock() preempt_disable()
1227 #define bh_lru_unlock() preempt_enable()
1230 static inline void check_irqs_on(void)
1232 #ifdef irqs_disabled
1233 BUG_ON(irqs_disabled());
1238 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is
1239 * inserted at the front, and the buffer_head at the back if any is evicted.
1240 * Or, if already in the LRU it is moved to the front.
1242 static void bh_lru_install(struct buffer_head
*bh
)
1244 struct buffer_head
*evictee
= bh
;
1251 b
= this_cpu_ptr(&bh_lrus
);
1252 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1253 swap(evictee
, b
->bhs
[i
]);
1254 if (evictee
== bh
) {
1266 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1268 static struct buffer_head
*
1269 lookup_bh_lru(struct block_device
*bdev
, sector_t block
, unsigned size
)
1271 struct buffer_head
*ret
= NULL
;
1276 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1277 struct buffer_head
*bh
= __this_cpu_read(bh_lrus
.bhs
[i
]);
1279 if (bh
&& bh
->b_blocknr
== block
&& bh
->b_bdev
== bdev
&&
1280 bh
->b_size
== size
) {
1283 __this_cpu_write(bh_lrus
.bhs
[i
],
1284 __this_cpu_read(bh_lrus
.bhs
[i
- 1]));
1287 __this_cpu_write(bh_lrus
.bhs
[0], bh
);
1299 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1300 * it in the LRU and mark it as accessed. If it is not present then return
1303 struct buffer_head
*
1304 __find_get_block(struct block_device
*bdev
, sector_t block
, unsigned size
)
1306 struct buffer_head
*bh
= lookup_bh_lru(bdev
, block
, size
);
1309 /* __find_get_block_slow will mark the page accessed */
1310 bh
= __find_get_block_slow(bdev
, block
);
1318 EXPORT_SYMBOL(__find_get_block
);
1321 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1322 * which corresponds to the passed block_device, block and size. The
1323 * returned buffer has its reference count incremented.
1325 * __getblk_gfp() will lock up the machine if grow_dev_page's
1326 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1328 struct buffer_head
*
1329 __getblk_gfp(struct block_device
*bdev
, sector_t block
,
1330 unsigned size
, gfp_t gfp
)
1332 struct buffer_head
*bh
= __find_get_block(bdev
, block
, size
);
1336 bh
= __getblk_slow(bdev
, block
, size
, gfp
);
1339 EXPORT_SYMBOL(__getblk_gfp
);
1342 * Do async read-ahead on a buffer..
1344 void __breadahead(struct block_device
*bdev
, sector_t block
, unsigned size
)
1346 struct buffer_head
*bh
= __getblk(bdev
, block
, size
);
1348 ll_rw_block(REQ_OP_READ
, REQ_RAHEAD
, 1, &bh
);
1352 EXPORT_SYMBOL(__breadahead
);
1355 * __bread_gfp() - reads a specified block and returns the bh
1356 * @bdev: the block_device to read from
1357 * @block: number of block
1358 * @size: size (in bytes) to read
1359 * @gfp: page allocation flag
1361 * Reads a specified block, and returns buffer head that contains it.
1362 * The page cache can be allocated from non-movable area
1363 * not to prevent page migration if you set gfp to zero.
1364 * It returns NULL if the block was unreadable.
1366 struct buffer_head
*
1367 __bread_gfp(struct block_device
*bdev
, sector_t block
,
1368 unsigned size
, gfp_t gfp
)
1370 struct buffer_head
*bh
= __getblk_gfp(bdev
, block
, size
, gfp
);
1372 if (likely(bh
) && !buffer_uptodate(bh
))
1373 bh
= __bread_slow(bh
);
1376 EXPORT_SYMBOL(__bread_gfp
);
1379 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1380 * This doesn't race because it runs in each cpu either in irq
1381 * or with preempt disabled.
1383 static void invalidate_bh_lru(void *arg
)
1385 struct bh_lru
*b
= &get_cpu_var(bh_lrus
);
1388 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1392 put_cpu_var(bh_lrus
);
1395 static bool has_bh_in_lru(int cpu
, void *dummy
)
1397 struct bh_lru
*b
= per_cpu_ptr(&bh_lrus
, cpu
);
1400 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1408 void invalidate_bh_lrus(void)
1410 on_each_cpu_cond(has_bh_in_lru
, invalidate_bh_lru
, NULL
, 1, GFP_KERNEL
);
1412 EXPORT_SYMBOL_GPL(invalidate_bh_lrus
);
1414 void set_bh_page(struct buffer_head
*bh
,
1415 struct page
*page
, unsigned long offset
)
1418 BUG_ON(offset
>= PAGE_SIZE
);
1419 if (PageHighMem(page
))
1421 * This catches illegal uses and preserves the offset:
1423 bh
->b_data
= (char *)(0 + offset
);
1425 bh
->b_data
= page_address(page
) + offset
;
1427 EXPORT_SYMBOL(set_bh_page
);
1430 * Called when truncating a buffer on a page completely.
1433 /* Bits that are cleared during an invalidate */
1434 #define BUFFER_FLAGS_DISCARD \
1435 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1436 1 << BH_Delay | 1 << BH_Unwritten)
1438 static void discard_buffer(struct buffer_head
* bh
)
1440 unsigned long b_state
, b_state_old
;
1443 clear_buffer_dirty(bh
);
1445 b_state
= bh
->b_state
;
1447 b_state_old
= cmpxchg(&bh
->b_state
, b_state
,
1448 (b_state
& ~BUFFER_FLAGS_DISCARD
));
1449 if (b_state_old
== b_state
)
1451 b_state
= b_state_old
;
1457 * block_invalidatepage - invalidate part or all of a buffer-backed page
1459 * @page: the page which is affected
1460 * @offset: start of the range to invalidate
1461 * @length: length of the range to invalidate
1463 * block_invalidatepage() is called when all or part of the page has become
1464 * invalidated by a truncate operation.
1466 * block_invalidatepage() does not have to release all buffers, but it must
1467 * ensure that no dirty buffer is left outside @offset and that no I/O
1468 * is underway against any of the blocks which are outside the truncation
1469 * point. Because the caller is about to free (and possibly reuse) those
1472 void block_invalidatepage(struct page
*page
, unsigned int offset
,
1473 unsigned int length
)
1475 struct buffer_head
*head
, *bh
, *next
;
1476 unsigned int curr_off
= 0;
1477 unsigned int stop
= length
+ offset
;
1479 BUG_ON(!PageLocked(page
));
1480 if (!page_has_buffers(page
))
1484 * Check for overflow
1486 BUG_ON(stop
> PAGE_SIZE
|| stop
< length
);
1488 head
= page_buffers(page
);
1491 unsigned int next_off
= curr_off
+ bh
->b_size
;
1492 next
= bh
->b_this_page
;
1495 * Are we still fully in range ?
1497 if (next_off
> stop
)
1501 * is this block fully invalidated?
1503 if (offset
<= curr_off
)
1505 curr_off
= next_off
;
1507 } while (bh
!= head
);
1510 * We release buffers only if the entire page is being invalidated.
1511 * The get_block cached value has been unconditionally invalidated,
1512 * so real IO is not possible anymore.
1515 try_to_release_page(page
, 0);
1519 EXPORT_SYMBOL(block_invalidatepage
);
1523 * We attach and possibly dirty the buffers atomically wrt
1524 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1525 * is already excluded via the page lock.
1527 void create_empty_buffers(struct page
*page
,
1528 unsigned long blocksize
, unsigned long b_state
)
1530 struct buffer_head
*bh
, *head
, *tail
;
1532 head
= alloc_page_buffers(page
, blocksize
, true);
1535 bh
->b_state
|= b_state
;
1537 bh
= bh
->b_this_page
;
1539 tail
->b_this_page
= head
;
1541 spin_lock(&page
->mapping
->private_lock
);
1542 if (PageUptodate(page
) || PageDirty(page
)) {
1545 if (PageDirty(page
))
1546 set_buffer_dirty(bh
);
1547 if (PageUptodate(page
))
1548 set_buffer_uptodate(bh
);
1549 bh
= bh
->b_this_page
;
1550 } while (bh
!= head
);
1552 attach_page_buffers(page
, head
);
1553 spin_unlock(&page
->mapping
->private_lock
);
1555 EXPORT_SYMBOL(create_empty_buffers
);
1558 * clean_bdev_aliases: clean a range of buffers in block device
1559 * @bdev: Block device to clean buffers in
1560 * @block: Start of a range of blocks to clean
1561 * @len: Number of blocks to clean
1563 * We are taking a range of blocks for data and we don't want writeback of any
1564 * buffer-cache aliases starting from return from this function and until the
1565 * moment when something will explicitly mark the buffer dirty (hopefully that
1566 * will not happen until we will free that block ;-) We don't even need to mark
1567 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1568 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1569 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1570 * would confuse anyone who might pick it with bread() afterwards...
1572 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1573 * writeout I/O going on against recently-freed buffers. We don't wait on that
1574 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1575 * need to. That happens here.
1577 void clean_bdev_aliases(struct block_device
*bdev
, sector_t block
, sector_t len
)
1579 struct inode
*bd_inode
= bdev
->bd_inode
;
1580 struct address_space
*bd_mapping
= bd_inode
->i_mapping
;
1581 struct pagevec pvec
;
1582 pgoff_t index
= block
>> (PAGE_SHIFT
- bd_inode
->i_blkbits
);
1585 struct buffer_head
*bh
;
1586 struct buffer_head
*head
;
1588 end
= (block
+ len
- 1) >> (PAGE_SHIFT
- bd_inode
->i_blkbits
);
1589 pagevec_init(&pvec
);
1590 while (pagevec_lookup_range(&pvec
, bd_mapping
, &index
, end
)) {
1591 count
= pagevec_count(&pvec
);
1592 for (i
= 0; i
< count
; i
++) {
1593 struct page
*page
= pvec
.pages
[i
];
1595 if (!page_has_buffers(page
))
1598 * We use page lock instead of bd_mapping->private_lock
1599 * to pin buffers here since we can afford to sleep and
1600 * it scales better than a global spinlock lock.
1603 /* Recheck when the page is locked which pins bhs */
1604 if (!page_has_buffers(page
))
1606 head
= page_buffers(page
);
1609 if (!buffer_mapped(bh
) || (bh
->b_blocknr
< block
))
1611 if (bh
->b_blocknr
>= block
+ len
)
1613 clear_buffer_dirty(bh
);
1615 clear_buffer_req(bh
);
1617 bh
= bh
->b_this_page
;
1618 } while (bh
!= head
);
1622 pagevec_release(&pvec
);
1624 /* End of range already reached? */
1625 if (index
> end
|| !index
)
1629 EXPORT_SYMBOL(clean_bdev_aliases
);
1632 * Size is a power-of-two in the range 512..PAGE_SIZE,
1633 * and the case we care about most is PAGE_SIZE.
1635 * So this *could* possibly be written with those
1636 * constraints in mind (relevant mostly if some
1637 * architecture has a slow bit-scan instruction)
1639 static inline int block_size_bits(unsigned int blocksize
)
1641 return ilog2(blocksize
);
1644 static struct buffer_head
*create_page_buffers(struct page
*page
, struct inode
*inode
, unsigned int b_state
)
1646 BUG_ON(!PageLocked(page
));
1648 if (!page_has_buffers(page
))
1649 create_empty_buffers(page
, 1 << READ_ONCE(inode
->i_blkbits
),
1651 return page_buffers(page
);
1655 * NOTE! All mapped/uptodate combinations are valid:
1657 * Mapped Uptodate Meaning
1659 * No No "unknown" - must do get_block()
1660 * No Yes "hole" - zero-filled
1661 * Yes No "allocated" - allocated on disk, not read in
1662 * Yes Yes "valid" - allocated and up-to-date in memory.
1664 * "Dirty" is valid only with the last case (mapped+uptodate).
1668 * While block_write_full_page is writing back the dirty buffers under
1669 * the page lock, whoever dirtied the buffers may decide to clean them
1670 * again at any time. We handle that by only looking at the buffer
1671 * state inside lock_buffer().
1673 * If block_write_full_page() is called for regular writeback
1674 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1675 * locked buffer. This only can happen if someone has written the buffer
1676 * directly, with submit_bh(). At the address_space level PageWriteback
1677 * prevents this contention from occurring.
1679 * If block_write_full_page() is called with wbc->sync_mode ==
1680 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1681 * causes the writes to be flagged as synchronous writes.
1683 int __block_write_full_page(struct inode
*inode
, struct page
*page
,
1684 get_block_t
*get_block
, struct writeback_control
*wbc
,
1685 bh_end_io_t
*handler
)
1689 sector_t last_block
;
1690 struct buffer_head
*bh
, *head
;
1691 unsigned int blocksize
, bbits
;
1692 int nr_underway
= 0;
1693 int write_flags
= wbc_to_write_flags(wbc
);
1695 head
= create_page_buffers(page
, inode
,
1696 (1 << BH_Dirty
)|(1 << BH_Uptodate
));
1699 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1700 * here, and the (potentially unmapped) buffers may become dirty at
1701 * any time. If a buffer becomes dirty here after we've inspected it
1702 * then we just miss that fact, and the page stays dirty.
1704 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1705 * handle that here by just cleaning them.
1709 blocksize
= bh
->b_size
;
1710 bbits
= block_size_bits(blocksize
);
1712 block
= (sector_t
)page
->index
<< (PAGE_SHIFT
- bbits
);
1713 last_block
= (i_size_read(inode
) - 1) >> bbits
;
1716 * Get all the dirty buffers mapped to disk addresses and
1717 * handle any aliases from the underlying blockdev's mapping.
1720 if (block
> last_block
) {
1722 * mapped buffers outside i_size will occur, because
1723 * this page can be outside i_size when there is a
1724 * truncate in progress.
1727 * The buffer was zeroed by block_write_full_page()
1729 clear_buffer_dirty(bh
);
1730 set_buffer_uptodate(bh
);
1731 } else if ((!buffer_mapped(bh
) || buffer_delay(bh
)) &&
1733 WARN_ON(bh
->b_size
!= blocksize
);
1734 err
= get_block(inode
, block
, bh
, 1);
1737 clear_buffer_delay(bh
);
1738 if (buffer_new(bh
)) {
1739 /* blockdev mappings never come here */
1740 clear_buffer_new(bh
);
1741 clean_bdev_bh_alias(bh
);
1744 bh
= bh
->b_this_page
;
1746 } while (bh
!= head
);
1749 if (!buffer_mapped(bh
))
1752 * If it's a fully non-blocking write attempt and we cannot
1753 * lock the buffer then redirty the page. Note that this can
1754 * potentially cause a busy-wait loop from writeback threads
1755 * and kswapd activity, but those code paths have their own
1756 * higher-level throttling.
1758 if (wbc
->sync_mode
!= WB_SYNC_NONE
) {
1760 } else if (!trylock_buffer(bh
)) {
1761 redirty_page_for_writepage(wbc
, page
);
1764 if (test_clear_buffer_dirty(bh
)) {
1765 mark_buffer_async_write_endio(bh
, handler
);
1769 } while ((bh
= bh
->b_this_page
) != head
);
1772 * The page and its buffers are protected by PageWriteback(), so we can
1773 * drop the bh refcounts early.
1775 BUG_ON(PageWriteback(page
));
1776 set_page_writeback(page
);
1779 struct buffer_head
*next
= bh
->b_this_page
;
1780 if (buffer_async_write(bh
)) {
1781 submit_bh_wbc(REQ_OP_WRITE
, write_flags
, bh
,
1782 inode
->i_write_hint
, wbc
);
1786 } while (bh
!= head
);
1791 if (nr_underway
== 0) {
1793 * The page was marked dirty, but the buffers were
1794 * clean. Someone wrote them back by hand with
1795 * ll_rw_block/submit_bh. A rare case.
1797 end_page_writeback(page
);
1800 * The page and buffer_heads can be released at any time from
1808 * ENOSPC, or some other error. We may already have added some
1809 * blocks to the file, so we need to write these out to avoid
1810 * exposing stale data.
1811 * The page is currently locked and not marked for writeback
1814 /* Recovery: lock and submit the mapped buffers */
1816 if (buffer_mapped(bh
) && buffer_dirty(bh
) &&
1817 !buffer_delay(bh
)) {
1819 mark_buffer_async_write_endio(bh
, handler
);
1822 * The buffer may have been set dirty during
1823 * attachment to a dirty page.
1825 clear_buffer_dirty(bh
);
1827 } while ((bh
= bh
->b_this_page
) != head
);
1829 BUG_ON(PageWriteback(page
));
1830 mapping_set_error(page
->mapping
, err
);
1831 set_page_writeback(page
);
1833 struct buffer_head
*next
= bh
->b_this_page
;
1834 if (buffer_async_write(bh
)) {
1835 clear_buffer_dirty(bh
);
1836 submit_bh_wbc(REQ_OP_WRITE
, write_flags
, bh
,
1837 inode
->i_write_hint
, wbc
);
1841 } while (bh
!= head
);
1845 EXPORT_SYMBOL(__block_write_full_page
);
1848 * If a page has any new buffers, zero them out here, and mark them uptodate
1849 * and dirty so they'll be written out (in order to prevent uninitialised
1850 * block data from leaking). And clear the new bit.
1852 void page_zero_new_buffers(struct page
*page
, unsigned from
, unsigned to
)
1854 unsigned int block_start
, block_end
;
1855 struct buffer_head
*head
, *bh
;
1857 BUG_ON(!PageLocked(page
));
1858 if (!page_has_buffers(page
))
1861 bh
= head
= page_buffers(page
);
1864 block_end
= block_start
+ bh
->b_size
;
1866 if (buffer_new(bh
)) {
1867 if (block_end
> from
&& block_start
< to
) {
1868 if (!PageUptodate(page
)) {
1869 unsigned start
, size
;
1871 start
= max(from
, block_start
);
1872 size
= min(to
, block_end
) - start
;
1874 zero_user(page
, start
, size
);
1875 set_buffer_uptodate(bh
);
1878 clear_buffer_new(bh
);
1879 mark_buffer_dirty(bh
);
1883 block_start
= block_end
;
1884 bh
= bh
->b_this_page
;
1885 } while (bh
!= head
);
1887 EXPORT_SYMBOL(page_zero_new_buffers
);
1890 iomap_to_bh(struct inode
*inode
, sector_t block
, struct buffer_head
*bh
,
1891 struct iomap
*iomap
)
1893 loff_t offset
= block
<< inode
->i_blkbits
;
1895 bh
->b_bdev
= iomap
->bdev
;
1898 * Block points to offset in file we need to map, iomap contains
1899 * the offset at which the map starts. If the map ends before the
1900 * current block, then do not map the buffer and let the caller
1903 BUG_ON(offset
>= iomap
->offset
+ iomap
->length
);
1905 switch (iomap
->type
) {
1908 * If the buffer is not up to date or beyond the current EOF,
1909 * we need to mark it as new to ensure sub-block zeroing is
1910 * executed if necessary.
1912 if (!buffer_uptodate(bh
) ||
1913 (offset
>= i_size_read(inode
)))
1916 case IOMAP_DELALLOC
:
1917 if (!buffer_uptodate(bh
) ||
1918 (offset
>= i_size_read(inode
)))
1920 set_buffer_uptodate(bh
);
1921 set_buffer_mapped(bh
);
1922 set_buffer_delay(bh
);
1924 case IOMAP_UNWRITTEN
:
1926 * For unwritten regions, we always need to ensure that
1927 * sub-block writes cause the regions in the block we are not
1928 * writing to are zeroed. Set the buffer as new to ensure this.
1931 set_buffer_unwritten(bh
);
1934 if (offset
>= i_size_read(inode
))
1936 bh
->b_blocknr
= (iomap
->addr
+ offset
- iomap
->offset
) >>
1938 set_buffer_mapped(bh
);
1943 int __block_write_begin_int(struct page
*page
, loff_t pos
, unsigned len
,
1944 get_block_t
*get_block
, struct iomap
*iomap
)
1946 unsigned from
= pos
& (PAGE_SIZE
- 1);
1947 unsigned to
= from
+ len
;
1948 struct inode
*inode
= page
->mapping
->host
;
1949 unsigned block_start
, block_end
;
1952 unsigned blocksize
, bbits
;
1953 struct buffer_head
*bh
, *head
, *wait
[2], **wait_bh
=wait
;
1955 BUG_ON(!PageLocked(page
));
1956 BUG_ON(from
> PAGE_SIZE
);
1957 BUG_ON(to
> PAGE_SIZE
);
1960 head
= create_page_buffers(page
, inode
, 0);
1961 blocksize
= head
->b_size
;
1962 bbits
= block_size_bits(blocksize
);
1964 block
= (sector_t
)page
->index
<< (PAGE_SHIFT
- bbits
);
1966 for(bh
= head
, block_start
= 0; bh
!= head
|| !block_start
;
1967 block
++, block_start
=block_end
, bh
= bh
->b_this_page
) {
1968 block_end
= block_start
+ blocksize
;
1969 if (block_end
<= from
|| block_start
>= to
) {
1970 if (PageUptodate(page
)) {
1971 if (!buffer_uptodate(bh
))
1972 set_buffer_uptodate(bh
);
1977 clear_buffer_new(bh
);
1978 if (!buffer_mapped(bh
)) {
1979 WARN_ON(bh
->b_size
!= blocksize
);
1981 err
= get_block(inode
, block
, bh
, 1);
1985 iomap_to_bh(inode
, block
, bh
, iomap
);
1988 if (buffer_new(bh
)) {
1989 clean_bdev_bh_alias(bh
);
1990 if (PageUptodate(page
)) {
1991 clear_buffer_new(bh
);
1992 set_buffer_uptodate(bh
);
1993 mark_buffer_dirty(bh
);
1996 if (block_end
> to
|| block_start
< from
)
1997 zero_user_segments(page
,
2003 if (PageUptodate(page
)) {
2004 if (!buffer_uptodate(bh
))
2005 set_buffer_uptodate(bh
);
2008 if (!buffer_uptodate(bh
) && !buffer_delay(bh
) &&
2009 !buffer_unwritten(bh
) &&
2010 (block_start
< from
|| block_end
> to
)) {
2011 ll_rw_block(REQ_OP_READ
, 0, 1, &bh
);
2016 * If we issued read requests - let them complete.
2018 while(wait_bh
> wait
) {
2019 wait_on_buffer(*--wait_bh
);
2020 if (!buffer_uptodate(*wait_bh
))
2024 page_zero_new_buffers(page
, from
, to
);
2028 int __block_write_begin(struct page
*page
, loff_t pos
, unsigned len
,
2029 get_block_t
*get_block
)
2031 return __block_write_begin_int(page
, pos
, len
, get_block
, NULL
);
2033 EXPORT_SYMBOL(__block_write_begin
);
2035 static int __block_commit_write(struct inode
*inode
, struct page
*page
,
2036 unsigned from
, unsigned to
)
2038 unsigned block_start
, block_end
;
2041 struct buffer_head
*bh
, *head
;
2043 bh
= head
= page_buffers(page
);
2044 blocksize
= bh
->b_size
;
2048 block_end
= block_start
+ blocksize
;
2049 if (block_end
<= from
|| block_start
>= to
) {
2050 if (!buffer_uptodate(bh
))
2053 set_buffer_uptodate(bh
);
2054 mark_buffer_dirty(bh
);
2056 clear_buffer_new(bh
);
2058 block_start
= block_end
;
2059 bh
= bh
->b_this_page
;
2060 } while (bh
!= head
);
2063 * If this is a partial write which happened to make all buffers
2064 * uptodate then we can optimize away a bogus readpage() for
2065 * the next read(). Here we 'discover' whether the page went
2066 * uptodate as a result of this (potentially partial) write.
2069 SetPageUptodate(page
);
2074 * block_write_begin takes care of the basic task of block allocation and
2075 * bringing partial write blocks uptodate first.
2077 * The filesystem needs to handle block truncation upon failure.
2079 int block_write_begin(struct address_space
*mapping
, loff_t pos
, unsigned len
,
2080 unsigned flags
, struct page
**pagep
, get_block_t
*get_block
)
2082 pgoff_t index
= pos
>> PAGE_SHIFT
;
2086 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
2090 status
= __block_write_begin(page
, pos
, len
, get_block
);
2091 if (unlikely(status
)) {
2100 EXPORT_SYMBOL(block_write_begin
);
2102 int block_write_end(struct file
*file
, struct address_space
*mapping
,
2103 loff_t pos
, unsigned len
, unsigned copied
,
2104 struct page
*page
, void *fsdata
)
2106 struct inode
*inode
= mapping
->host
;
2109 start
= pos
& (PAGE_SIZE
- 1);
2111 if (unlikely(copied
< len
)) {
2113 * The buffers that were written will now be uptodate, so we
2114 * don't have to worry about a readpage reading them and
2115 * overwriting a partial write. However if we have encountered
2116 * a short write and only partially written into a buffer, it
2117 * will not be marked uptodate, so a readpage might come in and
2118 * destroy our partial write.
2120 * Do the simplest thing, and just treat any short write to a
2121 * non uptodate page as a zero-length write, and force the
2122 * caller to redo the whole thing.
2124 if (!PageUptodate(page
))
2127 page_zero_new_buffers(page
, start
+copied
, start
+len
);
2129 flush_dcache_page(page
);
2131 /* This could be a short (even 0-length) commit */
2132 __block_commit_write(inode
, page
, start
, start
+copied
);
2136 EXPORT_SYMBOL(block_write_end
);
2138 int generic_write_end(struct file
*file
, struct address_space
*mapping
,
2139 loff_t pos
, unsigned len
, unsigned copied
,
2140 struct page
*page
, void *fsdata
)
2142 struct inode
*inode
= mapping
->host
;
2143 loff_t old_size
= inode
->i_size
;
2144 int i_size_changed
= 0;
2146 copied
= block_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
2149 * No need to use i_size_read() here, the i_size
2150 * cannot change under us because we hold i_mutex.
2152 * But it's important to update i_size while still holding page lock:
2153 * page writeout could otherwise come in and zero beyond i_size.
2155 if (pos
+copied
> inode
->i_size
) {
2156 i_size_write(inode
, pos
+copied
);
2164 pagecache_isize_extended(inode
, old_size
, pos
);
2166 * Don't mark the inode dirty under page lock. First, it unnecessarily
2167 * makes the holding time of page lock longer. Second, it forces lock
2168 * ordering of page lock and transaction start for journaling
2172 mark_inode_dirty(inode
);
2176 EXPORT_SYMBOL(generic_write_end
);
2179 * block_is_partially_uptodate checks whether buffers within a page are
2182 * Returns true if all buffers which correspond to a file portion
2183 * we want to read are uptodate.
2185 int block_is_partially_uptodate(struct page
*page
, unsigned long from
,
2186 unsigned long count
)
2188 unsigned block_start
, block_end
, blocksize
;
2190 struct buffer_head
*bh
, *head
;
2193 if (!page_has_buffers(page
))
2196 head
= page_buffers(page
);
2197 blocksize
= head
->b_size
;
2198 to
= min_t(unsigned, PAGE_SIZE
- from
, count
);
2200 if (from
< blocksize
&& to
> PAGE_SIZE
- blocksize
)
2206 block_end
= block_start
+ blocksize
;
2207 if (block_end
> from
&& block_start
< to
) {
2208 if (!buffer_uptodate(bh
)) {
2212 if (block_end
>= to
)
2215 block_start
= block_end
;
2216 bh
= bh
->b_this_page
;
2217 } while (bh
!= head
);
2221 EXPORT_SYMBOL(block_is_partially_uptodate
);
2224 * Generic "read page" function for block devices that have the normal
2225 * get_block functionality. This is most of the block device filesystems.
2226 * Reads the page asynchronously --- the unlock_buffer() and
2227 * set/clear_buffer_uptodate() functions propagate buffer state into the
2228 * page struct once IO has completed.
2230 int block_read_full_page(struct page
*page
, get_block_t
*get_block
)
2232 struct inode
*inode
= page
->mapping
->host
;
2233 sector_t iblock
, lblock
;
2234 struct buffer_head
*bh
, *head
, *arr
[MAX_BUF_PER_PAGE
];
2235 unsigned int blocksize
, bbits
;
2237 int fully_mapped
= 1;
2239 head
= create_page_buffers(page
, inode
, 0);
2240 blocksize
= head
->b_size
;
2241 bbits
= block_size_bits(blocksize
);
2243 iblock
= (sector_t
)page
->index
<< (PAGE_SHIFT
- bbits
);
2244 lblock
= (i_size_read(inode
)+blocksize
-1) >> bbits
;
2250 if (buffer_uptodate(bh
))
2253 if (!buffer_mapped(bh
)) {
2257 if (iblock
< lblock
) {
2258 WARN_ON(bh
->b_size
!= blocksize
);
2259 err
= get_block(inode
, iblock
, bh
, 0);
2263 if (!buffer_mapped(bh
)) {
2264 zero_user(page
, i
* blocksize
, blocksize
);
2266 set_buffer_uptodate(bh
);
2270 * get_block() might have updated the buffer
2273 if (buffer_uptodate(bh
))
2277 } while (i
++, iblock
++, (bh
= bh
->b_this_page
) != head
);
2280 SetPageMappedToDisk(page
);
2284 * All buffers are uptodate - we can set the page uptodate
2285 * as well. But not if get_block() returned an error.
2287 if (!PageError(page
))
2288 SetPageUptodate(page
);
2293 /* Stage two: lock the buffers */
2294 for (i
= 0; i
< nr
; i
++) {
2297 mark_buffer_async_read(bh
);
2301 * Stage 3: start the IO. Check for uptodateness
2302 * inside the buffer lock in case another process reading
2303 * the underlying blockdev brought it uptodate (the sct fix).
2305 for (i
= 0; i
< nr
; i
++) {
2307 if (buffer_uptodate(bh
))
2308 end_buffer_async_read(bh
, 1);
2310 submit_bh(REQ_OP_READ
, 0, bh
);
2314 EXPORT_SYMBOL(block_read_full_page
);
2316 /* utility function for filesystems that need to do work on expanding
2317 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2318 * deal with the hole.
2320 int generic_cont_expand_simple(struct inode
*inode
, loff_t size
)
2322 struct address_space
*mapping
= inode
->i_mapping
;
2327 err
= inode_newsize_ok(inode
, size
);
2331 err
= pagecache_write_begin(NULL
, mapping
, size
, 0,
2332 AOP_FLAG_CONT_EXPAND
, &page
, &fsdata
);
2336 err
= pagecache_write_end(NULL
, mapping
, size
, 0, 0, page
, fsdata
);
2342 EXPORT_SYMBOL(generic_cont_expand_simple
);
2344 static int cont_expand_zero(struct file
*file
, struct address_space
*mapping
,
2345 loff_t pos
, loff_t
*bytes
)
2347 struct inode
*inode
= mapping
->host
;
2348 unsigned int blocksize
= i_blocksize(inode
);
2351 pgoff_t index
, curidx
;
2353 unsigned zerofrom
, offset
, len
;
2356 index
= pos
>> PAGE_SHIFT
;
2357 offset
= pos
& ~PAGE_MASK
;
2359 while (index
> (curidx
= (curpos
= *bytes
)>>PAGE_SHIFT
)) {
2360 zerofrom
= curpos
& ~PAGE_MASK
;
2361 if (zerofrom
& (blocksize
-1)) {
2362 *bytes
|= (blocksize
-1);
2365 len
= PAGE_SIZE
- zerofrom
;
2367 err
= pagecache_write_begin(file
, mapping
, curpos
, len
, 0,
2371 zero_user(page
, zerofrom
, len
);
2372 err
= pagecache_write_end(file
, mapping
, curpos
, len
, len
,
2379 balance_dirty_pages_ratelimited(mapping
);
2381 if (unlikely(fatal_signal_pending(current
))) {
2387 /* page covers the boundary, find the boundary offset */
2388 if (index
== curidx
) {
2389 zerofrom
= curpos
& ~PAGE_MASK
;
2390 /* if we will expand the thing last block will be filled */
2391 if (offset
<= zerofrom
) {
2394 if (zerofrom
& (blocksize
-1)) {
2395 *bytes
|= (blocksize
-1);
2398 len
= offset
- zerofrom
;
2400 err
= pagecache_write_begin(file
, mapping
, curpos
, len
, 0,
2404 zero_user(page
, zerofrom
, len
);
2405 err
= pagecache_write_end(file
, mapping
, curpos
, len
, len
,
2417 * For moronic filesystems that do not allow holes in file.
2418 * We may have to extend the file.
2420 int cont_write_begin(struct file
*file
, struct address_space
*mapping
,
2421 loff_t pos
, unsigned len
, unsigned flags
,
2422 struct page
**pagep
, void **fsdata
,
2423 get_block_t
*get_block
, loff_t
*bytes
)
2425 struct inode
*inode
= mapping
->host
;
2426 unsigned int blocksize
= i_blocksize(inode
);
2427 unsigned int zerofrom
;
2430 err
= cont_expand_zero(file
, mapping
, pos
, bytes
);
2434 zerofrom
= *bytes
& ~PAGE_MASK
;
2435 if (pos
+len
> *bytes
&& zerofrom
& (blocksize
-1)) {
2436 *bytes
|= (blocksize
-1);
2440 return block_write_begin(mapping
, pos
, len
, flags
, pagep
, get_block
);
2442 EXPORT_SYMBOL(cont_write_begin
);
2444 int block_commit_write(struct page
*page
, unsigned from
, unsigned to
)
2446 struct inode
*inode
= page
->mapping
->host
;
2447 __block_commit_write(inode
,page
,from
,to
);
2450 EXPORT_SYMBOL(block_commit_write
);
2453 * block_page_mkwrite() is not allowed to change the file size as it gets
2454 * called from a page fault handler when a page is first dirtied. Hence we must
2455 * be careful to check for EOF conditions here. We set the page up correctly
2456 * for a written page which means we get ENOSPC checking when writing into
2457 * holes and correct delalloc and unwritten extent mapping on filesystems that
2458 * support these features.
2460 * We are not allowed to take the i_mutex here so we have to play games to
2461 * protect against truncate races as the page could now be beyond EOF. Because
2462 * truncate writes the inode size before removing pages, once we have the
2463 * page lock we can determine safely if the page is beyond EOF. If it is not
2464 * beyond EOF, then the page is guaranteed safe against truncation until we
2467 * Direct callers of this function should protect against filesystem freezing
2468 * using sb_start_pagefault() - sb_end_pagefault() functions.
2470 int block_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
,
2471 get_block_t get_block
)
2473 struct page
*page
= vmf
->page
;
2474 struct inode
*inode
= file_inode(vma
->vm_file
);
2480 size
= i_size_read(inode
);
2481 if ((page
->mapping
!= inode
->i_mapping
) ||
2482 (page_offset(page
) > size
)) {
2483 /* We overload EFAULT to mean page got truncated */
2488 /* page is wholly or partially inside EOF */
2489 if (((page
->index
+ 1) << PAGE_SHIFT
) > size
)
2490 end
= size
& ~PAGE_MASK
;
2494 ret
= __block_write_begin(page
, 0, end
, get_block
);
2496 ret
= block_commit_write(page
, 0, end
);
2498 if (unlikely(ret
< 0))
2500 set_page_dirty(page
);
2501 wait_for_stable_page(page
);
2507 EXPORT_SYMBOL(block_page_mkwrite
);
2510 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2511 * immediately, while under the page lock. So it needs a special end_io
2512 * handler which does not touch the bh after unlocking it.
2514 static void end_buffer_read_nobh(struct buffer_head
*bh
, int uptodate
)
2516 __end_buffer_read_notouch(bh
, uptodate
);
2520 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2521 * the page (converting it to circular linked list and taking care of page
2524 static void attach_nobh_buffers(struct page
*page
, struct buffer_head
*head
)
2526 struct buffer_head
*bh
;
2528 BUG_ON(!PageLocked(page
));
2530 spin_lock(&page
->mapping
->private_lock
);
2533 if (PageDirty(page
))
2534 set_buffer_dirty(bh
);
2535 if (!bh
->b_this_page
)
2536 bh
->b_this_page
= head
;
2537 bh
= bh
->b_this_page
;
2538 } while (bh
!= head
);
2539 attach_page_buffers(page
, head
);
2540 spin_unlock(&page
->mapping
->private_lock
);
2544 * On entry, the page is fully not uptodate.
2545 * On exit the page is fully uptodate in the areas outside (from,to)
2546 * The filesystem needs to handle block truncation upon failure.
2548 int nobh_write_begin(struct address_space
*mapping
,
2549 loff_t pos
, unsigned len
, unsigned flags
,
2550 struct page
**pagep
, void **fsdata
,
2551 get_block_t
*get_block
)
2553 struct inode
*inode
= mapping
->host
;
2554 const unsigned blkbits
= inode
->i_blkbits
;
2555 const unsigned blocksize
= 1 << blkbits
;
2556 struct buffer_head
*head
, *bh
;
2560 unsigned block_in_page
;
2561 unsigned block_start
, block_end
;
2562 sector_t block_in_file
;
2565 int is_mapped_to_disk
= 1;
2567 index
= pos
>> PAGE_SHIFT
;
2568 from
= pos
& (PAGE_SIZE
- 1);
2571 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
2577 if (page_has_buffers(page
)) {
2578 ret
= __block_write_begin(page
, pos
, len
, get_block
);
2584 if (PageMappedToDisk(page
))
2588 * Allocate buffers so that we can keep track of state, and potentially
2589 * attach them to the page if an error occurs. In the common case of
2590 * no error, they will just be freed again without ever being attached
2591 * to the page (which is all OK, because we're under the page lock).
2593 * Be careful: the buffer linked list is a NULL terminated one, rather
2594 * than the circular one we're used to.
2596 head
= alloc_page_buffers(page
, blocksize
, false);
2602 block_in_file
= (sector_t
)page
->index
<< (PAGE_SHIFT
- blkbits
);
2605 * We loop across all blocks in the page, whether or not they are
2606 * part of the affected region. This is so we can discover if the
2607 * page is fully mapped-to-disk.
2609 for (block_start
= 0, block_in_page
= 0, bh
= head
;
2610 block_start
< PAGE_SIZE
;
2611 block_in_page
++, block_start
+= blocksize
, bh
= bh
->b_this_page
) {
2614 block_end
= block_start
+ blocksize
;
2617 if (block_start
>= to
)
2619 ret
= get_block(inode
, block_in_file
+ block_in_page
,
2623 if (!buffer_mapped(bh
))
2624 is_mapped_to_disk
= 0;
2626 clean_bdev_bh_alias(bh
);
2627 if (PageUptodate(page
)) {
2628 set_buffer_uptodate(bh
);
2631 if (buffer_new(bh
) || !buffer_mapped(bh
)) {
2632 zero_user_segments(page
, block_start
, from
,
2636 if (buffer_uptodate(bh
))
2637 continue; /* reiserfs does this */
2638 if (block_start
< from
|| block_end
> to
) {
2640 bh
->b_end_io
= end_buffer_read_nobh
;
2641 submit_bh(REQ_OP_READ
, 0, bh
);
2648 * The page is locked, so these buffers are protected from
2649 * any VM or truncate activity. Hence we don't need to care
2650 * for the buffer_head refcounts.
2652 for (bh
= head
; bh
; bh
= bh
->b_this_page
) {
2654 if (!buffer_uptodate(bh
))
2661 if (is_mapped_to_disk
)
2662 SetPageMappedToDisk(page
);
2664 *fsdata
= head
; /* to be released by nobh_write_end */
2671 * Error recovery is a bit difficult. We need to zero out blocks that
2672 * were newly allocated, and dirty them to ensure they get written out.
2673 * Buffers need to be attached to the page at this point, otherwise
2674 * the handling of potential IO errors during writeout would be hard
2675 * (could try doing synchronous writeout, but what if that fails too?)
2677 attach_nobh_buffers(page
, head
);
2678 page_zero_new_buffers(page
, from
, to
);
2687 EXPORT_SYMBOL(nobh_write_begin
);
2689 int nobh_write_end(struct file
*file
, struct address_space
*mapping
,
2690 loff_t pos
, unsigned len
, unsigned copied
,
2691 struct page
*page
, void *fsdata
)
2693 struct inode
*inode
= page
->mapping
->host
;
2694 struct buffer_head
*head
= fsdata
;
2695 struct buffer_head
*bh
;
2696 BUG_ON(fsdata
!= NULL
&& page_has_buffers(page
));
2698 if (unlikely(copied
< len
) && head
)
2699 attach_nobh_buffers(page
, head
);
2700 if (page_has_buffers(page
))
2701 return generic_write_end(file
, mapping
, pos
, len
,
2702 copied
, page
, fsdata
);
2704 SetPageUptodate(page
);
2705 set_page_dirty(page
);
2706 if (pos
+copied
> inode
->i_size
) {
2707 i_size_write(inode
, pos
+copied
);
2708 mark_inode_dirty(inode
);
2716 head
= head
->b_this_page
;
2717 free_buffer_head(bh
);
2722 EXPORT_SYMBOL(nobh_write_end
);
2725 * nobh_writepage() - based on block_full_write_page() except
2726 * that it tries to operate without attaching bufferheads to
2729 int nobh_writepage(struct page
*page
, get_block_t
*get_block
,
2730 struct writeback_control
*wbc
)
2732 struct inode
* const inode
= page
->mapping
->host
;
2733 loff_t i_size
= i_size_read(inode
);
2734 const pgoff_t end_index
= i_size
>> PAGE_SHIFT
;
2738 /* Is the page fully inside i_size? */
2739 if (page
->index
< end_index
)
2742 /* Is the page fully outside i_size? (truncate in progress) */
2743 offset
= i_size
& (PAGE_SIZE
-1);
2744 if (page
->index
>= end_index
+1 || !offset
) {
2746 * The page may have dirty, unmapped buffers. For example,
2747 * they may have been added in ext3_writepage(). Make them
2748 * freeable here, so the page does not leak.
2751 /* Not really sure about this - do we need this ? */
2752 if (page
->mapping
->a_ops
->invalidatepage
)
2753 page
->mapping
->a_ops
->invalidatepage(page
, offset
);
2756 return 0; /* don't care */
2760 * The page straddles i_size. It must be zeroed out on each and every
2761 * writepage invocation because it may be mmapped. "A file is mapped
2762 * in multiples of the page size. For a file that is not a multiple of
2763 * the page size, the remaining memory is zeroed when mapped, and
2764 * writes to that region are not written out to the file."
2766 zero_user_segment(page
, offset
, PAGE_SIZE
);
2768 ret
= mpage_writepage(page
, get_block
, wbc
);
2770 ret
= __block_write_full_page(inode
, page
, get_block
, wbc
,
2771 end_buffer_async_write
);
2774 EXPORT_SYMBOL(nobh_writepage
);
2776 int nobh_truncate_page(struct address_space
*mapping
,
2777 loff_t from
, get_block_t
*get_block
)
2779 pgoff_t index
= from
>> PAGE_SHIFT
;
2780 unsigned offset
= from
& (PAGE_SIZE
-1);
2783 unsigned length
, pos
;
2784 struct inode
*inode
= mapping
->host
;
2786 struct buffer_head map_bh
;
2789 blocksize
= i_blocksize(inode
);
2790 length
= offset
& (blocksize
- 1);
2792 /* Block boundary? Nothing to do */
2796 length
= blocksize
- length
;
2797 iblock
= (sector_t
)index
<< (PAGE_SHIFT
- inode
->i_blkbits
);
2799 page
= grab_cache_page(mapping
, index
);
2804 if (page_has_buffers(page
)) {
2808 return block_truncate_page(mapping
, from
, get_block
);
2811 /* Find the buffer that contains "offset" */
2813 while (offset
>= pos
) {
2818 map_bh
.b_size
= blocksize
;
2820 err
= get_block(inode
, iblock
, &map_bh
, 0);
2823 /* unmapped? It's a hole - nothing to do */
2824 if (!buffer_mapped(&map_bh
))
2827 /* Ok, it's mapped. Make sure it's up-to-date */
2828 if (!PageUptodate(page
)) {
2829 err
= mapping
->a_ops
->readpage(NULL
, page
);
2835 if (!PageUptodate(page
)) {
2839 if (page_has_buffers(page
))
2842 zero_user(page
, offset
, length
);
2843 set_page_dirty(page
);
2852 EXPORT_SYMBOL(nobh_truncate_page
);
2854 int block_truncate_page(struct address_space
*mapping
,
2855 loff_t from
, get_block_t
*get_block
)
2857 pgoff_t index
= from
>> PAGE_SHIFT
;
2858 unsigned offset
= from
& (PAGE_SIZE
-1);
2861 unsigned length
, pos
;
2862 struct inode
*inode
= mapping
->host
;
2864 struct buffer_head
*bh
;
2867 blocksize
= i_blocksize(inode
);
2868 length
= offset
& (blocksize
- 1);
2870 /* Block boundary? Nothing to do */
2874 length
= blocksize
- length
;
2875 iblock
= (sector_t
)index
<< (PAGE_SHIFT
- inode
->i_blkbits
);
2877 page
= grab_cache_page(mapping
, index
);
2882 if (!page_has_buffers(page
))
2883 create_empty_buffers(page
, blocksize
, 0);
2885 /* Find the buffer that contains "offset" */
2886 bh
= page_buffers(page
);
2888 while (offset
>= pos
) {
2889 bh
= bh
->b_this_page
;
2895 if (!buffer_mapped(bh
)) {
2896 WARN_ON(bh
->b_size
!= blocksize
);
2897 err
= get_block(inode
, iblock
, bh
, 0);
2900 /* unmapped? It's a hole - nothing to do */
2901 if (!buffer_mapped(bh
))
2905 /* Ok, it's mapped. Make sure it's up-to-date */
2906 if (PageUptodate(page
))
2907 set_buffer_uptodate(bh
);
2909 if (!buffer_uptodate(bh
) && !buffer_delay(bh
) && !buffer_unwritten(bh
)) {
2911 ll_rw_block(REQ_OP_READ
, 0, 1, &bh
);
2913 /* Uhhuh. Read error. Complain and punt. */
2914 if (!buffer_uptodate(bh
))
2918 zero_user(page
, offset
, length
);
2919 mark_buffer_dirty(bh
);
2928 EXPORT_SYMBOL(block_truncate_page
);
2931 * The generic ->writepage function for buffer-backed address_spaces
2933 int block_write_full_page(struct page
*page
, get_block_t
*get_block
,
2934 struct writeback_control
*wbc
)
2936 struct inode
* const inode
= page
->mapping
->host
;
2937 loff_t i_size
= i_size_read(inode
);
2938 const pgoff_t end_index
= i_size
>> PAGE_SHIFT
;
2941 /* Is the page fully inside i_size? */
2942 if (page
->index
< end_index
)
2943 return __block_write_full_page(inode
, page
, get_block
, wbc
,
2944 end_buffer_async_write
);
2946 /* Is the page fully outside i_size? (truncate in progress) */
2947 offset
= i_size
& (PAGE_SIZE
-1);
2948 if (page
->index
>= end_index
+1 || !offset
) {
2950 * The page may have dirty, unmapped buffers. For example,
2951 * they may have been added in ext3_writepage(). Make them
2952 * freeable here, so the page does not leak.
2954 do_invalidatepage(page
, 0, PAGE_SIZE
);
2956 return 0; /* don't care */
2960 * The page straddles i_size. It must be zeroed out on each and every
2961 * writepage invocation because it may be mmapped. "A file is mapped
2962 * in multiples of the page size. For a file that is not a multiple of
2963 * the page size, the remaining memory is zeroed when mapped, and
2964 * writes to that region are not written out to the file."
2966 zero_user_segment(page
, offset
, PAGE_SIZE
);
2967 return __block_write_full_page(inode
, page
, get_block
, wbc
,
2968 end_buffer_async_write
);
2970 EXPORT_SYMBOL(block_write_full_page
);
2972 sector_t
generic_block_bmap(struct address_space
*mapping
, sector_t block
,
2973 get_block_t
*get_block
)
2975 struct inode
*inode
= mapping
->host
;
2976 struct buffer_head tmp
= {
2977 .b_size
= i_blocksize(inode
),
2980 get_block(inode
, block
, &tmp
, 0);
2981 return tmp
.b_blocknr
;
2983 EXPORT_SYMBOL(generic_block_bmap
);
2985 static void end_bio_bh_io_sync(struct bio
*bio
)
2987 struct buffer_head
*bh
= bio
->bi_private
;
2989 if (unlikely(bio_flagged(bio
, BIO_QUIET
)))
2990 set_bit(BH_Quiet
, &bh
->b_state
);
2992 bh
->b_end_io(bh
, !bio
->bi_status
);
2997 * This allows us to do IO even on the odd last sectors
2998 * of a device, even if the block size is some multiple
2999 * of the physical sector size.
3001 * We'll just truncate the bio to the size of the device,
3002 * and clear the end of the buffer head manually.
3004 * Truly out-of-range accesses will turn into actual IO
3005 * errors, this only handles the "we need to be able to
3006 * do IO at the final sector" case.
3008 void guard_bio_eod(int op
, struct bio
*bio
)
3011 struct bio_vec
*bvec
= bio_last_bvec_all(bio
);
3012 unsigned truncated_bytes
;
3013 struct hd_struct
*part
;
3016 part
= __disk_get_part(bio
->bi_disk
, bio
->bi_partno
);
3018 maxsector
= part_nr_sects_read(part
);
3020 maxsector
= get_capacity(bio
->bi_disk
);
3027 * If the *whole* IO is past the end of the device,
3028 * let it through, and the IO layer will turn it into
3031 if (unlikely(bio
->bi_iter
.bi_sector
>= maxsector
))
3034 maxsector
-= bio
->bi_iter
.bi_sector
;
3035 if (likely((bio
->bi_iter
.bi_size
>> 9) <= maxsector
))
3038 /* Uhhuh. We've got a bio that straddles the device size! */
3039 truncated_bytes
= bio
->bi_iter
.bi_size
- (maxsector
<< 9);
3041 /* Truncate the bio.. */
3042 bio
->bi_iter
.bi_size
-= truncated_bytes
;
3043 bvec
->bv_len
-= truncated_bytes
;
3045 /* ..and clear the end of the buffer for reads */
3046 if (op
== REQ_OP_READ
) {
3047 zero_user(bvec
->bv_page
, bvec
->bv_offset
+ bvec
->bv_len
,
3052 static int submit_bh_wbc(int op
, int op_flags
, struct buffer_head
*bh
,
3053 enum rw_hint write_hint
, struct writeback_control
*wbc
)
3057 BUG_ON(!buffer_locked(bh
));
3058 BUG_ON(!buffer_mapped(bh
));
3059 BUG_ON(!bh
->b_end_io
);
3060 BUG_ON(buffer_delay(bh
));
3061 BUG_ON(buffer_unwritten(bh
));
3064 * Only clear out a write error when rewriting
3066 if (test_set_buffer_req(bh
) && (op
== REQ_OP_WRITE
))
3067 clear_buffer_write_io_error(bh
);
3070 * from here on down, it's all bio -- do the initial mapping,
3071 * submit_bio -> generic_make_request may further map this bio around
3073 bio
= bio_alloc(GFP_NOIO
, 1);
3076 wbc_init_bio(wbc
, bio
);
3077 wbc_account_io(wbc
, bh
->b_page
, bh
->b_size
);
3080 bio
->bi_iter
.bi_sector
= bh
->b_blocknr
* (bh
->b_size
>> 9);
3081 bio_set_dev(bio
, bh
->b_bdev
);
3082 bio
->bi_write_hint
= write_hint
;
3084 bio_add_page(bio
, bh
->b_page
, bh
->b_size
, bh_offset(bh
));
3085 BUG_ON(bio
->bi_iter
.bi_size
!= bh
->b_size
);
3087 bio
->bi_end_io
= end_bio_bh_io_sync
;
3088 bio
->bi_private
= bh
;
3090 /* Take care of bh's that straddle the end of the device */
3091 guard_bio_eod(op
, bio
);
3093 if (buffer_meta(bh
))
3094 op_flags
|= REQ_META
;
3095 if (buffer_prio(bh
))
3096 op_flags
|= REQ_PRIO
;
3097 bio_set_op_attrs(bio
, op
, op_flags
);
3103 int submit_bh(int op
, int op_flags
, struct buffer_head
*bh
)
3105 return submit_bh_wbc(op
, op_flags
, bh
, 0, NULL
);
3107 EXPORT_SYMBOL(submit_bh
);
3110 * ll_rw_block: low-level access to block devices (DEPRECATED)
3111 * @op: whether to %READ or %WRITE
3112 * @op_flags: req_flag_bits
3113 * @nr: number of &struct buffer_heads in the array
3114 * @bhs: array of pointers to &struct buffer_head
3116 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3117 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3118 * @op_flags contains flags modifying the detailed I/O behavior, most notably
3121 * This function drops any buffer that it cannot get a lock on (with the
3122 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3123 * request, and any buffer that appears to be up-to-date when doing read
3124 * request. Further it marks as clean buffers that are processed for
3125 * writing (the buffer cache won't assume that they are actually clean
3126 * until the buffer gets unlocked).
3128 * ll_rw_block sets b_end_io to simple completion handler that marks
3129 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3132 * All of the buffers must be for the same device, and must also be a
3133 * multiple of the current approved size for the device.
3135 void ll_rw_block(int op
, int op_flags
, int nr
, struct buffer_head
*bhs
[])
3139 for (i
= 0; i
< nr
; i
++) {
3140 struct buffer_head
*bh
= bhs
[i
];
3142 if (!trylock_buffer(bh
))
3145 if (test_clear_buffer_dirty(bh
)) {
3146 bh
->b_end_io
= end_buffer_write_sync
;
3148 submit_bh(op
, op_flags
, bh
);
3152 if (!buffer_uptodate(bh
)) {
3153 bh
->b_end_io
= end_buffer_read_sync
;
3155 submit_bh(op
, op_flags
, bh
);
3162 EXPORT_SYMBOL(ll_rw_block
);
3164 void write_dirty_buffer(struct buffer_head
*bh
, int op_flags
)
3167 if (!test_clear_buffer_dirty(bh
)) {
3171 bh
->b_end_io
= end_buffer_write_sync
;
3173 submit_bh(REQ_OP_WRITE
, op_flags
, bh
);
3175 EXPORT_SYMBOL(write_dirty_buffer
);
3178 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3179 * and then start new I/O and then wait upon it. The caller must have a ref on
3182 int __sync_dirty_buffer(struct buffer_head
*bh
, int op_flags
)
3186 WARN_ON(atomic_read(&bh
->b_count
) < 1);
3188 if (test_clear_buffer_dirty(bh
)) {
3190 bh
->b_end_io
= end_buffer_write_sync
;
3191 ret
= submit_bh(REQ_OP_WRITE
, op_flags
, bh
);
3193 if (!ret
&& !buffer_uptodate(bh
))
3200 EXPORT_SYMBOL(__sync_dirty_buffer
);
3202 int sync_dirty_buffer(struct buffer_head
*bh
)
3204 return __sync_dirty_buffer(bh
, REQ_SYNC
);
3206 EXPORT_SYMBOL(sync_dirty_buffer
);
3209 * try_to_free_buffers() checks if all the buffers on this particular page
3210 * are unused, and releases them if so.
3212 * Exclusion against try_to_free_buffers may be obtained by either
3213 * locking the page or by holding its mapping's private_lock.
3215 * If the page is dirty but all the buffers are clean then we need to
3216 * be sure to mark the page clean as well. This is because the page
3217 * may be against a block device, and a later reattachment of buffers
3218 * to a dirty page will set *all* buffers dirty. Which would corrupt
3219 * filesystem data on the same device.
3221 * The same applies to regular filesystem pages: if all the buffers are
3222 * clean then we set the page clean and proceed. To do that, we require
3223 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3226 * try_to_free_buffers() is non-blocking.
3228 static inline int buffer_busy(struct buffer_head
*bh
)
3230 return atomic_read(&bh
->b_count
) |
3231 (bh
->b_state
& ((1 << BH_Dirty
) | (1 << BH_Lock
)));
3235 drop_buffers(struct page
*page
, struct buffer_head
**buffers_to_free
)
3237 struct buffer_head
*head
= page_buffers(page
);
3238 struct buffer_head
*bh
;
3242 if (buffer_busy(bh
))
3244 bh
= bh
->b_this_page
;
3245 } while (bh
!= head
);
3248 struct buffer_head
*next
= bh
->b_this_page
;
3250 if (bh
->b_assoc_map
)
3251 __remove_assoc_queue(bh
);
3253 } while (bh
!= head
);
3254 *buffers_to_free
= head
;
3255 __clear_page_buffers(page
);
3261 int try_to_free_buffers(struct page
*page
)
3263 struct address_space
* const mapping
= page
->mapping
;
3264 struct buffer_head
*buffers_to_free
= NULL
;
3267 BUG_ON(!PageLocked(page
));
3268 if (PageWriteback(page
))
3271 if (mapping
== NULL
) { /* can this still happen? */
3272 ret
= drop_buffers(page
, &buffers_to_free
);
3276 spin_lock(&mapping
->private_lock
);
3277 ret
= drop_buffers(page
, &buffers_to_free
);
3280 * If the filesystem writes its buffers by hand (eg ext3)
3281 * then we can have clean buffers against a dirty page. We
3282 * clean the page here; otherwise the VM will never notice
3283 * that the filesystem did any IO at all.
3285 * Also, during truncate, discard_buffer will have marked all
3286 * the page's buffers clean. We discover that here and clean
3289 * private_lock must be held over this entire operation in order
3290 * to synchronise against __set_page_dirty_buffers and prevent the
3291 * dirty bit from being lost.
3294 cancel_dirty_page(page
);
3295 spin_unlock(&mapping
->private_lock
);
3297 if (buffers_to_free
) {
3298 struct buffer_head
*bh
= buffers_to_free
;
3301 struct buffer_head
*next
= bh
->b_this_page
;
3302 free_buffer_head(bh
);
3304 } while (bh
!= buffers_to_free
);
3308 EXPORT_SYMBOL(try_to_free_buffers
);
3311 * There are no bdflush tunables left. But distributions are
3312 * still running obsolete flush daemons, so we terminate them here.
3314 * Use of bdflush() is deprecated and will be removed in a future kernel.
3315 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3317 SYSCALL_DEFINE2(bdflush
, int, func
, long, data
)
3319 static int msg_count
;
3321 if (!capable(CAP_SYS_ADMIN
))
3324 if (msg_count
< 5) {
3327 "warning: process `%s' used the obsolete bdflush"
3328 " system call\n", current
->comm
);
3329 printk(KERN_INFO
"Fix your initscripts?\n");
3338 * Buffer-head allocation
3340 static struct kmem_cache
*bh_cachep __read_mostly
;
3343 * Once the number of bh's in the machine exceeds this level, we start
3344 * stripping them in writeback.
3346 static unsigned long max_buffer_heads
;
3348 int buffer_heads_over_limit
;
3350 struct bh_accounting
{
3351 int nr
; /* Number of live bh's */
3352 int ratelimit
; /* Limit cacheline bouncing */
3355 static DEFINE_PER_CPU(struct bh_accounting
, bh_accounting
) = {0, 0};
3357 static void recalc_bh_state(void)
3362 if (__this_cpu_inc_return(bh_accounting
.ratelimit
) - 1 < 4096)
3364 __this_cpu_write(bh_accounting
.ratelimit
, 0);
3365 for_each_online_cpu(i
)
3366 tot
+= per_cpu(bh_accounting
, i
).nr
;
3367 buffer_heads_over_limit
= (tot
> max_buffer_heads
);
3370 struct buffer_head
*alloc_buffer_head(gfp_t gfp_flags
)
3372 struct buffer_head
*ret
= kmem_cache_zalloc(bh_cachep
, gfp_flags
);
3374 INIT_LIST_HEAD(&ret
->b_assoc_buffers
);
3376 __this_cpu_inc(bh_accounting
.nr
);
3382 EXPORT_SYMBOL(alloc_buffer_head
);
3384 void free_buffer_head(struct buffer_head
*bh
)
3386 BUG_ON(!list_empty(&bh
->b_assoc_buffers
));
3387 kmem_cache_free(bh_cachep
, bh
);
3389 __this_cpu_dec(bh_accounting
.nr
);
3393 EXPORT_SYMBOL(free_buffer_head
);
3395 static int buffer_exit_cpu_dead(unsigned int cpu
)
3398 struct bh_lru
*b
= &per_cpu(bh_lrus
, cpu
);
3400 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
3404 this_cpu_add(bh_accounting
.nr
, per_cpu(bh_accounting
, cpu
).nr
);
3405 per_cpu(bh_accounting
, cpu
).nr
= 0;
3410 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3411 * @bh: struct buffer_head
3413 * Return true if the buffer is up-to-date and false,
3414 * with the buffer locked, if not.
3416 int bh_uptodate_or_lock(struct buffer_head
*bh
)
3418 if (!buffer_uptodate(bh
)) {
3420 if (!buffer_uptodate(bh
))
3426 EXPORT_SYMBOL(bh_uptodate_or_lock
);
3429 * bh_submit_read - Submit a locked buffer for reading
3430 * @bh: struct buffer_head
3432 * Returns zero on success and -EIO on error.
3434 int bh_submit_read(struct buffer_head
*bh
)
3436 BUG_ON(!buffer_locked(bh
));
3438 if (buffer_uptodate(bh
)) {
3444 bh
->b_end_io
= end_buffer_read_sync
;
3445 submit_bh(REQ_OP_READ
, 0, bh
);
3447 if (buffer_uptodate(bh
))
3451 EXPORT_SYMBOL(bh_submit_read
);
3454 * Seek for SEEK_DATA / SEEK_HOLE within @page, starting at @lastoff.
3456 * Returns the offset within the file on success, and -ENOENT otherwise.
3459 page_seek_hole_data(struct page
*page
, loff_t lastoff
, int whence
)
3461 loff_t offset
= page_offset(page
);
3462 struct buffer_head
*bh
, *head
;
3463 bool seek_data
= whence
== SEEK_DATA
;
3465 if (lastoff
< offset
)
3468 bh
= head
= page_buffers(page
);
3470 offset
+= bh
->b_size
;
3471 if (lastoff
>= offset
)
3475 * Unwritten extents that have data in the page cache covering
3476 * them can be identified by the BH_Unwritten state flag.
3477 * Pages with multiple buffers might have a mix of holes, data
3478 * and unwritten extents - any buffer with valid data in it
3479 * should have BH_Uptodate flag set on it.
3482 if ((buffer_unwritten(bh
) || buffer_uptodate(bh
)) == seek_data
)
3486 } while ((bh
= bh
->b_this_page
) != head
);
3491 * Seek for SEEK_DATA / SEEK_HOLE in the page cache.
3493 * Within unwritten extents, the page cache determines which parts are holes
3494 * and which are data: unwritten and uptodate buffer heads count as data;
3495 * everything else counts as a hole.
3497 * Returns the resulting offset on successs, and -ENOENT otherwise.
3500 page_cache_seek_hole_data(struct inode
*inode
, loff_t offset
, loff_t length
,
3503 pgoff_t index
= offset
>> PAGE_SHIFT
;
3504 pgoff_t end
= DIV_ROUND_UP(offset
+ length
, PAGE_SIZE
);
3505 loff_t lastoff
= offset
;
3506 struct pagevec pvec
;
3511 pagevec_init(&pvec
);
3514 unsigned nr_pages
, i
;
3516 nr_pages
= pagevec_lookup_range(&pvec
, inode
->i_mapping
, &index
,
3521 for (i
= 0; i
< nr_pages
; i
++) {
3522 struct page
*page
= pvec
.pages
[i
];
3525 * At this point, the page may be truncated or
3526 * invalidated (changing page->mapping to NULL), or
3527 * even swizzled back from swapper_space to tmpfs file
3528 * mapping. However, page->index will not change
3529 * because we have a reference on the page.
3531 * If current page offset is beyond where we've ended,
3532 * we've found a hole.
3534 if (whence
== SEEK_HOLE
&&
3535 lastoff
< page_offset(page
))
3539 if (likely(page
->mapping
== inode
->i_mapping
) &&
3540 page_has_buffers(page
)) {
3541 lastoff
= page_seek_hole_data(page
, lastoff
, whence
);
3548 lastoff
= page_offset(page
) + PAGE_SIZE
;
3550 pagevec_release(&pvec
);
3551 } while (index
< end
);
3553 /* When no page at lastoff and we are not done, we found a hole. */
3554 if (whence
!= SEEK_HOLE
)
3558 if (lastoff
< offset
+ length
)
3563 pagevec_release(&pvec
);
3567 void __init
buffer_init(void)
3569 unsigned long nrpages
;
3572 bh_cachep
= kmem_cache_create("buffer_head",
3573 sizeof(struct buffer_head
), 0,
3574 (SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|
3579 * Limit the bh occupancy to 10% of ZONE_NORMAL
3581 nrpages
= (nr_free_buffer_pages() * 10) / 100;
3582 max_buffer_heads
= nrpages
* (PAGE_SIZE
/ sizeof(struct buffer_head
));
3583 ret
= cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD
, "fs/buffer:dead",
3584 NULL
, buffer_exit_cpu_dead
);