drm/i915: Make mmio flip wait for seqno in the work function
[linux/fpc-iii.git] / drivers / dma / nbpfaxi.c
blob5aeada56a442673d9c07d03ff325cd23c0eeee10
1 /*
2 * Copyright (C) 2013-2014 Renesas Electronics Europe Ltd.
3 * Author: Guennadi Liakhovetski <g.liakhovetski@gmx.de>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of version 2 of the GNU General Public License as
7 * published by the Free Software Foundation.
8 */
10 #include <linux/bitmap.h>
11 #include <linux/bitops.h>
12 #include <linux/clk.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/err.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/log2.h>
19 #include <linux/module.h>
20 #include <linux/of.h>
21 #include <linux/of_device.h>
22 #include <linux/of_dma.h>
23 #include <linux/platform_device.h>
24 #include <linux/slab.h>
26 #include <dt-bindings/dma/nbpfaxi.h>
28 #include "dmaengine.h"
30 #define NBPF_REG_CHAN_OFFSET 0
31 #define NBPF_REG_CHAN_SIZE 0x40
33 /* Channel Current Transaction Byte register */
34 #define NBPF_CHAN_CUR_TR_BYTE 0x20
36 /* Channel Status register */
37 #define NBPF_CHAN_STAT 0x24
38 #define NBPF_CHAN_STAT_EN 1
39 #define NBPF_CHAN_STAT_TACT 4
40 #define NBPF_CHAN_STAT_ERR 0x10
41 #define NBPF_CHAN_STAT_END 0x20
42 #define NBPF_CHAN_STAT_TC 0x40
43 #define NBPF_CHAN_STAT_DER 0x400
45 /* Channel Control register */
46 #define NBPF_CHAN_CTRL 0x28
47 #define NBPF_CHAN_CTRL_SETEN 1
48 #define NBPF_CHAN_CTRL_CLREN 2
49 #define NBPF_CHAN_CTRL_STG 4
50 #define NBPF_CHAN_CTRL_SWRST 8
51 #define NBPF_CHAN_CTRL_CLRRQ 0x10
52 #define NBPF_CHAN_CTRL_CLREND 0x20
53 #define NBPF_CHAN_CTRL_CLRTC 0x40
54 #define NBPF_CHAN_CTRL_SETSUS 0x100
55 #define NBPF_CHAN_CTRL_CLRSUS 0x200
57 /* Channel Configuration register */
58 #define NBPF_CHAN_CFG 0x2c
59 #define NBPF_CHAN_CFG_SEL 7 /* terminal SELect: 0..7 */
60 #define NBPF_CHAN_CFG_REQD 8 /* REQuest Direction: DMAREQ is 0: input, 1: output */
61 #define NBPF_CHAN_CFG_LOEN 0x10 /* LOw ENable: low DMA request line is: 0: inactive, 1: active */
62 #define NBPF_CHAN_CFG_HIEN 0x20 /* HIgh ENable: high DMA request line is: 0: inactive, 1: active */
63 #define NBPF_CHAN_CFG_LVL 0x40 /* LeVeL: DMA request line is sensed as 0: edge, 1: level */
64 #define NBPF_CHAN_CFG_AM 0x700 /* ACK Mode: 0: Pulse mode, 1: Level mode, b'1x: Bus Cycle */
65 #define NBPF_CHAN_CFG_SDS 0xf000 /* Source Data Size: 0: 8 bits,... , 7: 1024 bits */
66 #define NBPF_CHAN_CFG_DDS 0xf0000 /* Destination Data Size: as above */
67 #define NBPF_CHAN_CFG_SAD 0x100000 /* Source ADdress counting: 0: increment, 1: fixed */
68 #define NBPF_CHAN_CFG_DAD 0x200000 /* Destination ADdress counting: 0: increment, 1: fixed */
69 #define NBPF_CHAN_CFG_TM 0x400000 /* Transfer Mode: 0: single, 1: block TM */
70 #define NBPF_CHAN_CFG_DEM 0x1000000 /* DMAEND interrupt Mask */
71 #define NBPF_CHAN_CFG_TCM 0x2000000 /* DMATCO interrupt Mask */
72 #define NBPF_CHAN_CFG_SBE 0x8000000 /* Sweep Buffer Enable */
73 #define NBPF_CHAN_CFG_RSEL 0x10000000 /* RM: Register Set sELect */
74 #define NBPF_CHAN_CFG_RSW 0x20000000 /* RM: Register Select sWitch */
75 #define NBPF_CHAN_CFG_REN 0x40000000 /* RM: Register Set Enable */
76 #define NBPF_CHAN_CFG_DMS 0x80000000 /* 0: register mode (RM), 1: link mode (LM) */
78 #define NBPF_CHAN_NXLA 0x38
79 #define NBPF_CHAN_CRLA 0x3c
81 /* Link Header field */
82 #define NBPF_HEADER_LV 1
83 #define NBPF_HEADER_LE 2
84 #define NBPF_HEADER_WBD 4
85 #define NBPF_HEADER_DIM 8
87 #define NBPF_CTRL 0x300
88 #define NBPF_CTRL_PR 1 /* 0: fixed priority, 1: round robin */
89 #define NBPF_CTRL_LVINT 2 /* DMAEND and DMAERR signalling: 0: pulse, 1: level */
91 #define NBPF_DSTAT_ER 0x314
92 #define NBPF_DSTAT_END 0x318
94 #define NBPF_DMA_BUSWIDTHS \
95 (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
96 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
97 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
98 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
99 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))
101 struct nbpf_config {
102 int num_channels;
103 int buffer_size;
107 * We've got 3 types of objects, used to describe DMA transfers:
108 * 1. high-level descriptor, containing a struct dma_async_tx_descriptor object
109 * in it, used to communicate with the user
110 * 2. hardware DMA link descriptors, that we pass to DMAC for DMA transfer
111 * queuing, these must be DMAable, using either the streaming DMA API or
112 * allocated from coherent memory - one per SG segment
113 * 3. one per SG segment descriptors, used to manage HW link descriptors from
114 * (2). They do not have to be DMAable. They can either be (a) allocated
115 * together with link descriptors as mixed (DMA / CPU) objects, or (b)
116 * separately. Even if allocated separately it would be best to link them
117 * to link descriptors once during channel resource allocation and always
118 * use them as a single object.
119 * Therefore for both cases (a) and (b) at run-time objects (2) and (3) shall be
120 * treated as a single SG segment descriptor.
123 struct nbpf_link_reg {
124 u32 header;
125 u32 src_addr;
126 u32 dst_addr;
127 u32 transaction_size;
128 u32 config;
129 u32 interval;
130 u32 extension;
131 u32 next;
132 } __packed;
134 struct nbpf_device;
135 struct nbpf_channel;
136 struct nbpf_desc;
138 struct nbpf_link_desc {
139 struct nbpf_link_reg *hwdesc;
140 dma_addr_t hwdesc_dma_addr;
141 struct nbpf_desc *desc;
142 struct list_head node;
146 * struct nbpf_desc - DMA transfer descriptor
147 * @async_tx: dmaengine object
148 * @user_wait: waiting for a user ack
149 * @length: total transfer length
150 * @sg: list of hardware descriptors, represented by struct nbpf_link_desc
151 * @node: member in channel descriptor lists
153 struct nbpf_desc {
154 struct dma_async_tx_descriptor async_tx;
155 bool user_wait;
156 size_t length;
157 struct nbpf_channel *chan;
158 struct list_head sg;
159 struct list_head node;
162 /* Take a wild guess: allocate 4 segments per descriptor */
163 #define NBPF_SEGMENTS_PER_DESC 4
164 #define NBPF_DESCS_PER_PAGE ((PAGE_SIZE - sizeof(struct list_head)) / \
165 (sizeof(struct nbpf_desc) + \
166 NBPF_SEGMENTS_PER_DESC * \
167 (sizeof(struct nbpf_link_desc) + sizeof(struct nbpf_link_reg))))
168 #define NBPF_SEGMENTS_PER_PAGE (NBPF_SEGMENTS_PER_DESC * NBPF_DESCS_PER_PAGE)
170 struct nbpf_desc_page {
171 struct list_head node;
172 struct nbpf_desc desc[NBPF_DESCS_PER_PAGE];
173 struct nbpf_link_desc ldesc[NBPF_SEGMENTS_PER_PAGE];
174 struct nbpf_link_reg hwdesc[NBPF_SEGMENTS_PER_PAGE];
178 * struct nbpf_channel - one DMAC channel
179 * @dma_chan: standard dmaengine channel object
180 * @base: register address base
181 * @nbpf: DMAC
182 * @name: IRQ name
183 * @irq: IRQ number
184 * @slave_addr: address for slave DMA
185 * @slave_width:slave data size in bytes
186 * @slave_burst:maximum slave burst size in bytes
187 * @terminal: DMA terminal, assigned to this channel
188 * @dmarq_cfg: DMA request line configuration - high / low, edge / level for NBPF_CHAN_CFG
189 * @flags: configuration flags from DT
190 * @lock: protect descriptor lists
191 * @free_links: list of free link descriptors
192 * @free: list of free descriptors
193 * @queued: list of queued descriptors
194 * @active: list of descriptors, scheduled for processing
195 * @done: list of completed descriptors, waiting post-processing
196 * @desc_page: list of additionally allocated descriptor pages - if any
198 struct nbpf_channel {
199 struct dma_chan dma_chan;
200 struct tasklet_struct tasklet;
201 void __iomem *base;
202 struct nbpf_device *nbpf;
203 char name[16];
204 int irq;
205 dma_addr_t slave_src_addr;
206 size_t slave_src_width;
207 size_t slave_src_burst;
208 dma_addr_t slave_dst_addr;
209 size_t slave_dst_width;
210 size_t slave_dst_burst;
211 unsigned int terminal;
212 u32 dmarq_cfg;
213 unsigned long flags;
214 spinlock_t lock;
215 struct list_head free_links;
216 struct list_head free;
217 struct list_head queued;
218 struct list_head active;
219 struct list_head done;
220 struct list_head desc_page;
221 struct nbpf_desc *running;
222 bool paused;
225 struct nbpf_device {
226 struct dma_device dma_dev;
227 void __iomem *base;
228 struct clk *clk;
229 const struct nbpf_config *config;
230 struct nbpf_channel chan[];
233 enum nbpf_model {
234 NBPF1B4,
235 NBPF1B8,
236 NBPF1B16,
237 NBPF4B4,
238 NBPF4B8,
239 NBPF4B16,
240 NBPF8B4,
241 NBPF8B8,
242 NBPF8B16,
245 static struct nbpf_config nbpf_cfg[] = {
246 [NBPF1B4] = {
247 .num_channels = 1,
248 .buffer_size = 4,
250 [NBPF1B8] = {
251 .num_channels = 1,
252 .buffer_size = 8,
254 [NBPF1B16] = {
255 .num_channels = 1,
256 .buffer_size = 16,
258 [NBPF4B4] = {
259 .num_channels = 4,
260 .buffer_size = 4,
262 [NBPF4B8] = {
263 .num_channels = 4,
264 .buffer_size = 8,
266 [NBPF4B16] = {
267 .num_channels = 4,
268 .buffer_size = 16,
270 [NBPF8B4] = {
271 .num_channels = 8,
272 .buffer_size = 4,
274 [NBPF8B8] = {
275 .num_channels = 8,
276 .buffer_size = 8,
278 [NBPF8B16] = {
279 .num_channels = 8,
280 .buffer_size = 16,
284 #define nbpf_to_chan(d) container_of(d, struct nbpf_channel, dma_chan)
287 * dmaengine drivers seem to have a lot in common and instead of sharing more
288 * code, they reimplement those common algorithms independently. In this driver
289 * we try to separate the hardware-specific part from the (largely) generic
290 * part. This improves code readability and makes it possible in the future to
291 * reuse the generic code in form of a helper library. That generic code should
292 * be suitable for various DMA controllers, using transfer descriptors in RAM
293 * and pushing one SG list at a time to the DMA controller.
296 /* Hardware-specific part */
298 static inline u32 nbpf_chan_read(struct nbpf_channel *chan,
299 unsigned int offset)
301 u32 data = ioread32(chan->base + offset);
302 dev_dbg(chan->dma_chan.device->dev, "%s(0x%p + 0x%x) = 0x%x\n",
303 __func__, chan->base, offset, data);
304 return data;
307 static inline void nbpf_chan_write(struct nbpf_channel *chan,
308 unsigned int offset, u32 data)
310 iowrite32(data, chan->base + offset);
311 dev_dbg(chan->dma_chan.device->dev, "%s(0x%p + 0x%x) = 0x%x\n",
312 __func__, chan->base, offset, data);
315 static inline u32 nbpf_read(struct nbpf_device *nbpf,
316 unsigned int offset)
318 u32 data = ioread32(nbpf->base + offset);
319 dev_dbg(nbpf->dma_dev.dev, "%s(0x%p + 0x%x) = 0x%x\n",
320 __func__, nbpf->base, offset, data);
321 return data;
324 static inline void nbpf_write(struct nbpf_device *nbpf,
325 unsigned int offset, u32 data)
327 iowrite32(data, nbpf->base + offset);
328 dev_dbg(nbpf->dma_dev.dev, "%s(0x%p + 0x%x) = 0x%x\n",
329 __func__, nbpf->base, offset, data);
332 static void nbpf_chan_halt(struct nbpf_channel *chan)
334 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREN);
337 static bool nbpf_status_get(struct nbpf_channel *chan)
339 u32 status = nbpf_read(chan->nbpf, NBPF_DSTAT_END);
341 return status & BIT(chan - chan->nbpf->chan);
344 static void nbpf_status_ack(struct nbpf_channel *chan)
346 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREND);
349 static u32 nbpf_error_get(struct nbpf_device *nbpf)
351 return nbpf_read(nbpf, NBPF_DSTAT_ER);
354 static struct nbpf_channel *nbpf_error_get_channel(struct nbpf_device *nbpf, u32 error)
356 return nbpf->chan + __ffs(error);
359 static void nbpf_error_clear(struct nbpf_channel *chan)
361 u32 status;
362 int i;
364 /* Stop the channel, make sure DMA has been aborted */
365 nbpf_chan_halt(chan);
367 for (i = 1000; i; i--) {
368 status = nbpf_chan_read(chan, NBPF_CHAN_STAT);
369 if (!(status & NBPF_CHAN_STAT_TACT))
370 break;
371 cpu_relax();
374 if (!i)
375 dev_err(chan->dma_chan.device->dev,
376 "%s(): abort timeout, channel status 0x%x\n", __func__, status);
378 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SWRST);
381 static int nbpf_start(struct nbpf_desc *desc)
383 struct nbpf_channel *chan = desc->chan;
384 struct nbpf_link_desc *ldesc = list_first_entry(&desc->sg, struct nbpf_link_desc, node);
386 nbpf_chan_write(chan, NBPF_CHAN_NXLA, (u32)ldesc->hwdesc_dma_addr);
387 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SETEN | NBPF_CHAN_CTRL_CLRSUS);
388 chan->paused = false;
390 /* Software trigger MEMCPY - only MEMCPY uses the block mode */
391 if (ldesc->hwdesc->config & NBPF_CHAN_CFG_TM)
392 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_STG);
394 dev_dbg(chan->nbpf->dma_dev.dev, "%s(): next 0x%x, cur 0x%x\n", __func__,
395 nbpf_chan_read(chan, NBPF_CHAN_NXLA), nbpf_chan_read(chan, NBPF_CHAN_CRLA));
397 return 0;
400 static void nbpf_chan_prepare(struct nbpf_channel *chan)
402 chan->dmarq_cfg = (chan->flags & NBPF_SLAVE_RQ_HIGH ? NBPF_CHAN_CFG_HIEN : 0) |
403 (chan->flags & NBPF_SLAVE_RQ_LOW ? NBPF_CHAN_CFG_LOEN : 0) |
404 (chan->flags & NBPF_SLAVE_RQ_LEVEL ?
405 NBPF_CHAN_CFG_LVL | (NBPF_CHAN_CFG_AM & 0x200) : 0) |
406 chan->terminal;
409 static void nbpf_chan_prepare_default(struct nbpf_channel *chan)
411 /* Don't output DMAACK */
412 chan->dmarq_cfg = NBPF_CHAN_CFG_AM & 0x400;
413 chan->terminal = 0;
414 chan->flags = 0;
417 static void nbpf_chan_configure(struct nbpf_channel *chan)
420 * We assume, that only the link mode and DMA request line configuration
421 * have to be set in the configuration register manually. Dynamic
422 * per-transfer configuration will be loaded from transfer descriptors.
424 nbpf_chan_write(chan, NBPF_CHAN_CFG, NBPF_CHAN_CFG_DMS | chan->dmarq_cfg);
427 static u32 nbpf_xfer_ds(struct nbpf_device *nbpf, size_t size)
429 /* Maximum supported bursts depend on the buffer size */
430 return min_t(int, __ffs(size), ilog2(nbpf->config->buffer_size * 8));
433 static size_t nbpf_xfer_size(struct nbpf_device *nbpf,
434 enum dma_slave_buswidth width, u32 burst)
436 size_t size;
438 if (!burst)
439 burst = 1;
441 switch (width) {
442 case DMA_SLAVE_BUSWIDTH_8_BYTES:
443 size = 8 * burst;
444 break;
446 case DMA_SLAVE_BUSWIDTH_4_BYTES:
447 size = 4 * burst;
448 break;
450 case DMA_SLAVE_BUSWIDTH_2_BYTES:
451 size = 2 * burst;
452 break;
454 default:
455 pr_warn("%s(): invalid bus width %u\n", __func__, width);
456 case DMA_SLAVE_BUSWIDTH_1_BYTE:
457 size = burst;
460 return nbpf_xfer_ds(nbpf, size);
464 * We need a way to recognise slaves, whose data is sent "raw" over the bus,
465 * i.e. it isn't known in advance how many bytes will be received. Therefore
466 * the slave driver has to provide a "large enough" buffer and either read the
467 * buffer, when it is full, or detect, that some data has arrived, then wait for
468 * a timeout, if no more data arrives - receive what's already there. We want to
469 * handle such slaves in a special way to allow an optimised mode for other
470 * users, for whom the amount of data is known in advance. So far there's no way
471 * to recognise such slaves. We use a data-width check to distinguish between
472 * the SD host and the PL011 UART.
475 static int nbpf_prep_one(struct nbpf_link_desc *ldesc,
476 enum dma_transfer_direction direction,
477 dma_addr_t src, dma_addr_t dst, size_t size, bool last)
479 struct nbpf_link_reg *hwdesc = ldesc->hwdesc;
480 struct nbpf_desc *desc = ldesc->desc;
481 struct nbpf_channel *chan = desc->chan;
482 struct device *dev = chan->dma_chan.device->dev;
483 size_t mem_xfer, slave_xfer;
484 bool can_burst;
486 hwdesc->header = NBPF_HEADER_WBD | NBPF_HEADER_LV |
487 (last ? NBPF_HEADER_LE : 0);
489 hwdesc->src_addr = src;
490 hwdesc->dst_addr = dst;
491 hwdesc->transaction_size = size;
494 * set config: SAD, DAD, DDS, SDS, etc.
495 * Note on transfer sizes: the DMAC can perform unaligned DMA transfers,
496 * but it is important to have transaction size a multiple of both
497 * receiver and transmitter transfer sizes. It is also possible to use
498 * different RAM and device transfer sizes, and it does work well with
499 * some devices, e.g. with V08R07S01E SD host controllers, which can use
500 * 128 byte transfers. But this doesn't work with other devices,
501 * especially when the transaction size is unknown. This is the case,
502 * e.g. with serial drivers like amba-pl011.c. For reception it sets up
503 * the transaction size of 4K and if fewer bytes are received, it
504 * pauses DMA and reads out data received via DMA as well as those left
505 * in the Rx FIFO. For this to work with the RAM side using burst
506 * transfers we enable the SBE bit and terminate the transfer in our
507 * DMA_PAUSE handler.
509 mem_xfer = nbpf_xfer_ds(chan->nbpf, size);
511 switch (direction) {
512 case DMA_DEV_TO_MEM:
513 can_burst = chan->slave_src_width >= 3;
514 slave_xfer = min(mem_xfer, can_burst ?
515 chan->slave_src_burst : chan->slave_src_width);
517 * Is the slave narrower than 64 bits, i.e. isn't using the full
518 * bus width and cannot use bursts?
520 if (mem_xfer > chan->slave_src_burst && !can_burst)
521 mem_xfer = chan->slave_src_burst;
522 /* Device-to-RAM DMA is unreliable without REQD set */
523 hwdesc->config = NBPF_CHAN_CFG_SAD | (NBPF_CHAN_CFG_DDS & (mem_xfer << 16)) |
524 (NBPF_CHAN_CFG_SDS & (slave_xfer << 12)) | NBPF_CHAN_CFG_REQD |
525 NBPF_CHAN_CFG_SBE;
526 break;
528 case DMA_MEM_TO_DEV:
529 slave_xfer = min(mem_xfer, chan->slave_dst_width >= 3 ?
530 chan->slave_dst_burst : chan->slave_dst_width);
531 hwdesc->config = NBPF_CHAN_CFG_DAD | (NBPF_CHAN_CFG_SDS & (mem_xfer << 12)) |
532 (NBPF_CHAN_CFG_DDS & (slave_xfer << 16)) | NBPF_CHAN_CFG_REQD;
533 break;
535 case DMA_MEM_TO_MEM:
536 hwdesc->config = NBPF_CHAN_CFG_TCM | NBPF_CHAN_CFG_TM |
537 (NBPF_CHAN_CFG_SDS & (mem_xfer << 12)) |
538 (NBPF_CHAN_CFG_DDS & (mem_xfer << 16));
539 break;
541 default:
542 return -EINVAL;
545 hwdesc->config |= chan->dmarq_cfg | (last ? 0 : NBPF_CHAN_CFG_DEM) |
546 NBPF_CHAN_CFG_DMS;
548 dev_dbg(dev, "%s(): desc @ %pad: hdr 0x%x, cfg 0x%x, %zu @ %pad -> %pad\n",
549 __func__, &ldesc->hwdesc_dma_addr, hwdesc->header,
550 hwdesc->config, size, &src, &dst);
552 dma_sync_single_for_device(dev, ldesc->hwdesc_dma_addr, sizeof(*hwdesc),
553 DMA_TO_DEVICE);
555 return 0;
558 static size_t nbpf_bytes_left(struct nbpf_channel *chan)
560 return nbpf_chan_read(chan, NBPF_CHAN_CUR_TR_BYTE);
563 static void nbpf_configure(struct nbpf_device *nbpf)
565 nbpf_write(nbpf, NBPF_CTRL, NBPF_CTRL_LVINT);
568 static void nbpf_pause(struct nbpf_channel *chan)
570 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SETSUS);
571 /* See comment in nbpf_prep_one() */
572 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREN);
575 /* Generic part */
577 /* DMA ENGINE functions */
578 static void nbpf_issue_pending(struct dma_chan *dchan)
580 struct nbpf_channel *chan = nbpf_to_chan(dchan);
581 unsigned long flags;
583 dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
585 spin_lock_irqsave(&chan->lock, flags);
586 if (list_empty(&chan->queued))
587 goto unlock;
589 list_splice_tail_init(&chan->queued, &chan->active);
591 if (!chan->running) {
592 struct nbpf_desc *desc = list_first_entry(&chan->active,
593 struct nbpf_desc, node);
594 if (!nbpf_start(desc))
595 chan->running = desc;
598 unlock:
599 spin_unlock_irqrestore(&chan->lock, flags);
602 static enum dma_status nbpf_tx_status(struct dma_chan *dchan,
603 dma_cookie_t cookie, struct dma_tx_state *state)
605 struct nbpf_channel *chan = nbpf_to_chan(dchan);
606 enum dma_status status = dma_cookie_status(dchan, cookie, state);
608 if (state) {
609 dma_cookie_t running;
610 unsigned long flags;
612 spin_lock_irqsave(&chan->lock, flags);
613 running = chan->running ? chan->running->async_tx.cookie : -EINVAL;
615 if (cookie == running) {
616 state->residue = nbpf_bytes_left(chan);
617 dev_dbg(dchan->device->dev, "%s(): residue %u\n", __func__,
618 state->residue);
619 } else if (status == DMA_IN_PROGRESS) {
620 struct nbpf_desc *desc;
621 bool found = false;
623 list_for_each_entry(desc, &chan->active, node)
624 if (desc->async_tx.cookie == cookie) {
625 found = true;
626 break;
629 if (!found)
630 list_for_each_entry(desc, &chan->queued, node)
631 if (desc->async_tx.cookie == cookie) {
632 found = true;
633 break;
637 state->residue = found ? desc->length : 0;
640 spin_unlock_irqrestore(&chan->lock, flags);
643 if (chan->paused)
644 status = DMA_PAUSED;
646 return status;
649 static dma_cookie_t nbpf_tx_submit(struct dma_async_tx_descriptor *tx)
651 struct nbpf_desc *desc = container_of(tx, struct nbpf_desc, async_tx);
652 struct nbpf_channel *chan = desc->chan;
653 unsigned long flags;
654 dma_cookie_t cookie;
656 spin_lock_irqsave(&chan->lock, flags);
657 cookie = dma_cookie_assign(tx);
658 list_add_tail(&desc->node, &chan->queued);
659 spin_unlock_irqrestore(&chan->lock, flags);
661 dev_dbg(chan->dma_chan.device->dev, "Entry %s(%d)\n", __func__, cookie);
663 return cookie;
666 static int nbpf_desc_page_alloc(struct nbpf_channel *chan)
668 struct dma_chan *dchan = &chan->dma_chan;
669 struct nbpf_desc_page *dpage = (void *)get_zeroed_page(GFP_KERNEL | GFP_DMA);
670 struct nbpf_link_desc *ldesc;
671 struct nbpf_link_reg *hwdesc;
672 struct nbpf_desc *desc;
673 LIST_HEAD(head);
674 LIST_HEAD(lhead);
675 int i;
676 struct device *dev = dchan->device->dev;
678 if (!dpage)
679 return -ENOMEM;
681 dev_dbg(dev, "%s(): alloc %lu descriptors, %lu segments, total alloc %zu\n",
682 __func__, NBPF_DESCS_PER_PAGE, NBPF_SEGMENTS_PER_PAGE, sizeof(*dpage));
684 for (i = 0, ldesc = dpage->ldesc, hwdesc = dpage->hwdesc;
685 i < ARRAY_SIZE(dpage->ldesc);
686 i++, ldesc++, hwdesc++) {
687 ldesc->hwdesc = hwdesc;
688 list_add_tail(&ldesc->node, &lhead);
689 ldesc->hwdesc_dma_addr = dma_map_single(dchan->device->dev,
690 hwdesc, sizeof(*hwdesc), DMA_TO_DEVICE);
692 dev_dbg(dev, "%s(): mapped 0x%p to %pad\n", __func__,
693 hwdesc, &ldesc->hwdesc_dma_addr);
696 for (i = 0, desc = dpage->desc;
697 i < ARRAY_SIZE(dpage->desc);
698 i++, desc++) {
699 dma_async_tx_descriptor_init(&desc->async_tx, dchan);
700 desc->async_tx.tx_submit = nbpf_tx_submit;
701 desc->chan = chan;
702 INIT_LIST_HEAD(&desc->sg);
703 list_add_tail(&desc->node, &head);
707 * This function cannot be called from interrupt context, so, no need to
708 * save flags
710 spin_lock_irq(&chan->lock);
711 list_splice_tail(&lhead, &chan->free_links);
712 list_splice_tail(&head, &chan->free);
713 list_add(&dpage->node, &chan->desc_page);
714 spin_unlock_irq(&chan->lock);
716 return ARRAY_SIZE(dpage->desc);
719 static void nbpf_desc_put(struct nbpf_desc *desc)
721 struct nbpf_channel *chan = desc->chan;
722 struct nbpf_link_desc *ldesc, *tmp;
723 unsigned long flags;
725 spin_lock_irqsave(&chan->lock, flags);
726 list_for_each_entry_safe(ldesc, tmp, &desc->sg, node)
727 list_move(&ldesc->node, &chan->free_links);
729 list_add(&desc->node, &chan->free);
730 spin_unlock_irqrestore(&chan->lock, flags);
733 static void nbpf_scan_acked(struct nbpf_channel *chan)
735 struct nbpf_desc *desc, *tmp;
736 unsigned long flags;
737 LIST_HEAD(head);
739 spin_lock_irqsave(&chan->lock, flags);
740 list_for_each_entry_safe(desc, tmp, &chan->done, node)
741 if (async_tx_test_ack(&desc->async_tx) && desc->user_wait) {
742 list_move(&desc->node, &head);
743 desc->user_wait = false;
745 spin_unlock_irqrestore(&chan->lock, flags);
747 list_for_each_entry_safe(desc, tmp, &head, node) {
748 list_del(&desc->node);
749 nbpf_desc_put(desc);
754 * We have to allocate descriptors with the channel lock dropped. This means,
755 * before we re-acquire the lock buffers can be taken already, so we have to
756 * re-check after re-acquiring the lock and possibly retry, if buffers are gone
757 * again.
759 static struct nbpf_desc *nbpf_desc_get(struct nbpf_channel *chan, size_t len)
761 struct nbpf_desc *desc = NULL;
762 struct nbpf_link_desc *ldesc, *prev = NULL;
764 nbpf_scan_acked(chan);
766 spin_lock_irq(&chan->lock);
768 do {
769 int i = 0, ret;
771 if (list_empty(&chan->free)) {
772 /* No more free descriptors */
773 spin_unlock_irq(&chan->lock);
774 ret = nbpf_desc_page_alloc(chan);
775 if (ret < 0)
776 return NULL;
777 spin_lock_irq(&chan->lock);
778 continue;
780 desc = list_first_entry(&chan->free, struct nbpf_desc, node);
781 list_del(&desc->node);
783 do {
784 if (list_empty(&chan->free_links)) {
785 /* No more free link descriptors */
786 spin_unlock_irq(&chan->lock);
787 ret = nbpf_desc_page_alloc(chan);
788 if (ret < 0) {
789 nbpf_desc_put(desc);
790 return NULL;
792 spin_lock_irq(&chan->lock);
793 continue;
796 ldesc = list_first_entry(&chan->free_links,
797 struct nbpf_link_desc, node);
798 ldesc->desc = desc;
799 if (prev)
800 prev->hwdesc->next = (u32)ldesc->hwdesc_dma_addr;
802 prev = ldesc;
803 list_move_tail(&ldesc->node, &desc->sg);
805 i++;
806 } while (i < len);
807 } while (!desc);
809 prev->hwdesc->next = 0;
811 spin_unlock_irq(&chan->lock);
813 return desc;
816 static void nbpf_chan_idle(struct nbpf_channel *chan)
818 struct nbpf_desc *desc, *tmp;
819 unsigned long flags;
820 LIST_HEAD(head);
822 spin_lock_irqsave(&chan->lock, flags);
824 list_splice_init(&chan->done, &head);
825 list_splice_init(&chan->active, &head);
826 list_splice_init(&chan->queued, &head);
828 chan->running = NULL;
830 spin_unlock_irqrestore(&chan->lock, flags);
832 list_for_each_entry_safe(desc, tmp, &head, node) {
833 dev_dbg(chan->nbpf->dma_dev.dev, "%s(): force-free desc %p cookie %d\n",
834 __func__, desc, desc->async_tx.cookie);
835 list_del(&desc->node);
836 nbpf_desc_put(desc);
840 static int nbpf_control(struct dma_chan *dchan, enum dma_ctrl_cmd cmd,
841 unsigned long arg)
843 struct nbpf_channel *chan = nbpf_to_chan(dchan);
844 struct dma_slave_config *config;
846 dev_dbg(dchan->device->dev, "Entry %s(%d)\n", __func__, cmd);
848 switch (cmd) {
849 case DMA_TERMINATE_ALL:
850 dev_dbg(dchan->device->dev, "Terminating\n");
851 nbpf_chan_halt(chan);
852 nbpf_chan_idle(chan);
853 break;
855 case DMA_SLAVE_CONFIG:
856 if (!arg)
857 return -EINVAL;
858 config = (struct dma_slave_config *)arg;
861 * We could check config->slave_id to match chan->terminal here,
862 * but with DT they would be coming from the same source, so
863 * such a check would be superflous
866 chan->slave_dst_addr = config->dst_addr;
867 chan->slave_dst_width = nbpf_xfer_size(chan->nbpf,
868 config->dst_addr_width, 1);
869 chan->slave_dst_burst = nbpf_xfer_size(chan->nbpf,
870 config->dst_addr_width,
871 config->dst_maxburst);
872 chan->slave_src_addr = config->src_addr;
873 chan->slave_src_width = nbpf_xfer_size(chan->nbpf,
874 config->src_addr_width, 1);
875 chan->slave_src_burst = nbpf_xfer_size(chan->nbpf,
876 config->src_addr_width,
877 config->src_maxburst);
878 break;
880 case DMA_PAUSE:
881 chan->paused = true;
882 nbpf_pause(chan);
883 break;
885 default:
886 return -ENXIO;
889 return 0;
892 static struct dma_async_tx_descriptor *nbpf_prep_sg(struct nbpf_channel *chan,
893 struct scatterlist *src_sg, struct scatterlist *dst_sg,
894 size_t len, enum dma_transfer_direction direction,
895 unsigned long flags)
897 struct nbpf_link_desc *ldesc;
898 struct scatterlist *mem_sg;
899 struct nbpf_desc *desc;
900 bool inc_src, inc_dst;
901 size_t data_len = 0;
902 int i = 0;
904 switch (direction) {
905 case DMA_DEV_TO_MEM:
906 mem_sg = dst_sg;
907 inc_src = false;
908 inc_dst = true;
909 break;
911 case DMA_MEM_TO_DEV:
912 mem_sg = src_sg;
913 inc_src = true;
914 inc_dst = false;
915 break;
917 default:
918 case DMA_MEM_TO_MEM:
919 mem_sg = src_sg;
920 inc_src = true;
921 inc_dst = true;
924 desc = nbpf_desc_get(chan, len);
925 if (!desc)
926 return NULL;
928 desc->async_tx.flags = flags;
929 desc->async_tx.cookie = -EBUSY;
930 desc->user_wait = false;
933 * This is a private descriptor list, and we own the descriptor. No need
934 * to lock.
936 list_for_each_entry(ldesc, &desc->sg, node) {
937 int ret = nbpf_prep_one(ldesc, direction,
938 sg_dma_address(src_sg),
939 sg_dma_address(dst_sg),
940 sg_dma_len(mem_sg),
941 i == len - 1);
942 if (ret < 0) {
943 nbpf_desc_put(desc);
944 return NULL;
946 data_len += sg_dma_len(mem_sg);
947 if (inc_src)
948 src_sg = sg_next(src_sg);
949 if (inc_dst)
950 dst_sg = sg_next(dst_sg);
951 mem_sg = direction == DMA_DEV_TO_MEM ? dst_sg : src_sg;
952 i++;
955 desc->length = data_len;
957 /* The user has to return the descriptor to us ASAP via .tx_submit() */
958 return &desc->async_tx;
961 static struct dma_async_tx_descriptor *nbpf_prep_memcpy(
962 struct dma_chan *dchan, dma_addr_t dst, dma_addr_t src,
963 size_t len, unsigned long flags)
965 struct nbpf_channel *chan = nbpf_to_chan(dchan);
966 struct scatterlist dst_sg;
967 struct scatterlist src_sg;
969 sg_init_table(&dst_sg, 1);
970 sg_init_table(&src_sg, 1);
972 sg_dma_address(&dst_sg) = dst;
973 sg_dma_address(&src_sg) = src;
975 sg_dma_len(&dst_sg) = len;
976 sg_dma_len(&src_sg) = len;
978 dev_dbg(dchan->device->dev, "%s(): %zu @ %pad -> %pad\n",
979 __func__, len, &src, &dst);
981 return nbpf_prep_sg(chan, &src_sg, &dst_sg, 1,
982 DMA_MEM_TO_MEM, flags);
985 static struct dma_async_tx_descriptor *nbpf_prep_memcpy_sg(
986 struct dma_chan *dchan,
987 struct scatterlist *dst_sg, unsigned int dst_nents,
988 struct scatterlist *src_sg, unsigned int src_nents,
989 unsigned long flags)
991 struct nbpf_channel *chan = nbpf_to_chan(dchan);
993 if (dst_nents != src_nents)
994 return NULL;
996 return nbpf_prep_sg(chan, src_sg, dst_sg, src_nents,
997 DMA_MEM_TO_MEM, flags);
1000 static struct dma_async_tx_descriptor *nbpf_prep_slave_sg(
1001 struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len,
1002 enum dma_transfer_direction direction, unsigned long flags, void *context)
1004 struct nbpf_channel *chan = nbpf_to_chan(dchan);
1005 struct scatterlist slave_sg;
1007 dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
1009 sg_init_table(&slave_sg, 1);
1011 switch (direction) {
1012 case DMA_MEM_TO_DEV:
1013 sg_dma_address(&slave_sg) = chan->slave_dst_addr;
1014 return nbpf_prep_sg(chan, sgl, &slave_sg, sg_len,
1015 direction, flags);
1017 case DMA_DEV_TO_MEM:
1018 sg_dma_address(&slave_sg) = chan->slave_src_addr;
1019 return nbpf_prep_sg(chan, &slave_sg, sgl, sg_len,
1020 direction, flags);
1022 default:
1023 return NULL;
1027 static int nbpf_alloc_chan_resources(struct dma_chan *dchan)
1029 struct nbpf_channel *chan = nbpf_to_chan(dchan);
1030 int ret;
1032 INIT_LIST_HEAD(&chan->free);
1033 INIT_LIST_HEAD(&chan->free_links);
1034 INIT_LIST_HEAD(&chan->queued);
1035 INIT_LIST_HEAD(&chan->active);
1036 INIT_LIST_HEAD(&chan->done);
1038 ret = nbpf_desc_page_alloc(chan);
1039 if (ret < 0)
1040 return ret;
1042 dev_dbg(dchan->device->dev, "Entry %s(): terminal %u\n", __func__,
1043 chan->terminal);
1045 nbpf_chan_configure(chan);
1047 return ret;
1050 static void nbpf_free_chan_resources(struct dma_chan *dchan)
1052 struct nbpf_channel *chan = nbpf_to_chan(dchan);
1053 struct nbpf_desc_page *dpage, *tmp;
1055 dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
1057 nbpf_chan_halt(chan);
1058 nbpf_chan_idle(chan);
1059 /* Clean up for if a channel is re-used for MEMCPY after slave DMA */
1060 nbpf_chan_prepare_default(chan);
1062 list_for_each_entry_safe(dpage, tmp, &chan->desc_page, node) {
1063 struct nbpf_link_desc *ldesc;
1064 int i;
1065 list_del(&dpage->node);
1066 for (i = 0, ldesc = dpage->ldesc;
1067 i < ARRAY_SIZE(dpage->ldesc);
1068 i++, ldesc++)
1069 dma_unmap_single(dchan->device->dev, ldesc->hwdesc_dma_addr,
1070 sizeof(*ldesc->hwdesc), DMA_TO_DEVICE);
1071 free_page((unsigned long)dpage);
1075 static int nbpf_slave_caps(struct dma_chan *dchan,
1076 struct dma_slave_caps *caps)
1078 caps->src_addr_widths = NBPF_DMA_BUSWIDTHS;
1079 caps->dstn_addr_widths = NBPF_DMA_BUSWIDTHS;
1080 caps->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1081 caps->cmd_pause = false;
1082 caps->cmd_terminate = true;
1084 return 0;
1087 static struct dma_chan *nbpf_of_xlate(struct of_phandle_args *dma_spec,
1088 struct of_dma *ofdma)
1090 struct nbpf_device *nbpf = ofdma->of_dma_data;
1091 struct dma_chan *dchan;
1092 struct nbpf_channel *chan;
1094 if (dma_spec->args_count != 2)
1095 return NULL;
1097 dchan = dma_get_any_slave_channel(&nbpf->dma_dev);
1098 if (!dchan)
1099 return NULL;
1101 dev_dbg(dchan->device->dev, "Entry %s(%s)\n", __func__,
1102 dma_spec->np->name);
1104 chan = nbpf_to_chan(dchan);
1106 chan->terminal = dma_spec->args[0];
1107 chan->flags = dma_spec->args[1];
1109 nbpf_chan_prepare(chan);
1110 nbpf_chan_configure(chan);
1112 return dchan;
1115 static void nbpf_chan_tasklet(unsigned long data)
1117 struct nbpf_channel *chan = (struct nbpf_channel *)data;
1118 struct nbpf_desc *desc, *tmp;
1119 dma_async_tx_callback callback;
1120 void *param;
1122 while (!list_empty(&chan->done)) {
1123 bool found = false, must_put, recycling = false;
1125 spin_lock_irq(&chan->lock);
1127 list_for_each_entry_safe(desc, tmp, &chan->done, node) {
1128 if (!desc->user_wait) {
1129 /* Newly completed descriptor, have to process */
1130 found = true;
1131 break;
1132 } else if (async_tx_test_ack(&desc->async_tx)) {
1134 * This descriptor was waiting for a user ACK,
1135 * it can be recycled now.
1137 list_del(&desc->node);
1138 spin_unlock_irq(&chan->lock);
1139 nbpf_desc_put(desc);
1140 recycling = true;
1141 break;
1145 if (recycling)
1146 continue;
1148 if (!found) {
1149 /* This can happen if TERMINATE_ALL has been called */
1150 spin_unlock_irq(&chan->lock);
1151 break;
1154 dma_cookie_complete(&desc->async_tx);
1157 * With released lock we cannot dereference desc, maybe it's
1158 * still on the "done" list
1160 if (async_tx_test_ack(&desc->async_tx)) {
1161 list_del(&desc->node);
1162 must_put = true;
1163 } else {
1164 desc->user_wait = true;
1165 must_put = false;
1168 callback = desc->async_tx.callback;
1169 param = desc->async_tx.callback_param;
1171 /* ack and callback completed descriptor */
1172 spin_unlock_irq(&chan->lock);
1174 if (callback)
1175 callback(param);
1177 if (must_put)
1178 nbpf_desc_put(desc);
1182 static irqreturn_t nbpf_chan_irq(int irq, void *dev)
1184 struct nbpf_channel *chan = dev;
1185 bool done = nbpf_status_get(chan);
1186 struct nbpf_desc *desc;
1187 irqreturn_t ret;
1188 bool bh = false;
1190 if (!done)
1191 return IRQ_NONE;
1193 nbpf_status_ack(chan);
1195 dev_dbg(&chan->dma_chan.dev->device, "%s()\n", __func__);
1197 spin_lock(&chan->lock);
1198 desc = chan->running;
1199 if (WARN_ON(!desc)) {
1200 ret = IRQ_NONE;
1201 goto unlock;
1202 } else {
1203 ret = IRQ_HANDLED;
1204 bh = true;
1207 list_move_tail(&desc->node, &chan->done);
1208 chan->running = NULL;
1210 if (!list_empty(&chan->active)) {
1211 desc = list_first_entry(&chan->active,
1212 struct nbpf_desc, node);
1213 if (!nbpf_start(desc))
1214 chan->running = desc;
1217 unlock:
1218 spin_unlock(&chan->lock);
1220 if (bh)
1221 tasklet_schedule(&chan->tasklet);
1223 return ret;
1226 static irqreturn_t nbpf_err_irq(int irq, void *dev)
1228 struct nbpf_device *nbpf = dev;
1229 u32 error = nbpf_error_get(nbpf);
1231 dev_warn(nbpf->dma_dev.dev, "DMA error IRQ %u\n", irq);
1233 if (!error)
1234 return IRQ_NONE;
1236 do {
1237 struct nbpf_channel *chan = nbpf_error_get_channel(nbpf, error);
1238 /* On error: abort all queued transfers, no callback */
1239 nbpf_error_clear(chan);
1240 nbpf_chan_idle(chan);
1241 error = nbpf_error_get(nbpf);
1242 } while (error);
1244 return IRQ_HANDLED;
1247 static int nbpf_chan_probe(struct nbpf_device *nbpf, int n)
1249 struct dma_device *dma_dev = &nbpf->dma_dev;
1250 struct nbpf_channel *chan = nbpf->chan + n;
1251 int ret;
1253 chan->nbpf = nbpf;
1254 chan->base = nbpf->base + NBPF_REG_CHAN_OFFSET + NBPF_REG_CHAN_SIZE * n;
1255 INIT_LIST_HEAD(&chan->desc_page);
1256 spin_lock_init(&chan->lock);
1257 chan->dma_chan.device = dma_dev;
1258 dma_cookie_init(&chan->dma_chan);
1259 nbpf_chan_prepare_default(chan);
1261 dev_dbg(dma_dev->dev, "%s(): channel %d: -> %p\n", __func__, n, chan->base);
1263 snprintf(chan->name, sizeof(chan->name), "nbpf %d", n);
1265 tasklet_init(&chan->tasklet, nbpf_chan_tasklet, (unsigned long)chan);
1266 ret = devm_request_irq(dma_dev->dev, chan->irq,
1267 nbpf_chan_irq, IRQF_SHARED,
1268 chan->name, chan);
1269 if (ret < 0)
1270 return ret;
1272 /* Add the channel to DMA device channel list */
1273 list_add_tail(&chan->dma_chan.device_node,
1274 &dma_dev->channels);
1276 return 0;
1279 static const struct of_device_id nbpf_match[] = {
1280 {.compatible = "renesas,nbpfaxi64dmac1b4", .data = &nbpf_cfg[NBPF1B4]},
1281 {.compatible = "renesas,nbpfaxi64dmac1b8", .data = &nbpf_cfg[NBPF1B8]},
1282 {.compatible = "renesas,nbpfaxi64dmac1b16", .data = &nbpf_cfg[NBPF1B16]},
1283 {.compatible = "renesas,nbpfaxi64dmac4b4", .data = &nbpf_cfg[NBPF4B4]},
1284 {.compatible = "renesas,nbpfaxi64dmac4b8", .data = &nbpf_cfg[NBPF4B8]},
1285 {.compatible = "renesas,nbpfaxi64dmac4b16", .data = &nbpf_cfg[NBPF4B16]},
1286 {.compatible = "renesas,nbpfaxi64dmac8b4", .data = &nbpf_cfg[NBPF8B4]},
1287 {.compatible = "renesas,nbpfaxi64dmac8b8", .data = &nbpf_cfg[NBPF8B8]},
1288 {.compatible = "renesas,nbpfaxi64dmac8b16", .data = &nbpf_cfg[NBPF8B16]},
1291 MODULE_DEVICE_TABLE(of, nbpf_match);
1293 static int nbpf_probe(struct platform_device *pdev)
1295 struct device *dev = &pdev->dev;
1296 const struct of_device_id *of_id = of_match_device(nbpf_match, dev);
1297 struct device_node *np = dev->of_node;
1298 struct nbpf_device *nbpf;
1299 struct dma_device *dma_dev;
1300 struct resource *iomem, *irq_res;
1301 const struct nbpf_config *cfg;
1302 int num_channels;
1303 int ret, irq, eirq, i;
1304 int irqbuf[9] /* maximum 8 channels + error IRQ */;
1305 unsigned int irqs = 0;
1307 BUILD_BUG_ON(sizeof(struct nbpf_desc_page) > PAGE_SIZE);
1309 /* DT only */
1310 if (!np || !of_id || !of_id->data)
1311 return -ENODEV;
1313 cfg = of_id->data;
1314 num_channels = cfg->num_channels;
1316 nbpf = devm_kzalloc(dev, sizeof(*nbpf) + num_channels *
1317 sizeof(nbpf->chan[0]), GFP_KERNEL);
1318 if (!nbpf) {
1319 dev_err(dev, "Memory allocation failed\n");
1320 return -ENOMEM;
1322 dma_dev = &nbpf->dma_dev;
1323 dma_dev->dev = dev;
1325 iomem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1326 nbpf->base = devm_ioremap_resource(dev, iomem);
1327 if (IS_ERR(nbpf->base))
1328 return PTR_ERR(nbpf->base);
1330 nbpf->clk = devm_clk_get(dev, NULL);
1331 if (IS_ERR(nbpf->clk))
1332 return PTR_ERR(nbpf->clk);
1334 nbpf->config = cfg;
1336 for (i = 0; irqs < ARRAY_SIZE(irqbuf); i++) {
1337 irq_res = platform_get_resource(pdev, IORESOURCE_IRQ, i);
1338 if (!irq_res)
1339 break;
1341 for (irq = irq_res->start; irq <= irq_res->end;
1342 irq++, irqs++)
1343 irqbuf[irqs] = irq;
1347 * 3 IRQ resource schemes are supported:
1348 * 1. 1 shared IRQ for error and all channels
1349 * 2. 2 IRQs: one for error and one shared for all channels
1350 * 3. 1 IRQ for error and an own IRQ for each channel
1352 if (irqs != 1 && irqs != 2 && irqs != num_channels + 1)
1353 return -ENXIO;
1355 if (irqs == 1) {
1356 eirq = irqbuf[0];
1358 for (i = 0; i <= num_channels; i++)
1359 nbpf->chan[i].irq = irqbuf[0];
1360 } else {
1361 eirq = platform_get_irq_byname(pdev, "error");
1362 if (eirq < 0)
1363 return eirq;
1365 if (irqs == num_channels + 1) {
1366 struct nbpf_channel *chan;
1368 for (i = 0, chan = nbpf->chan; i <= num_channels;
1369 i++, chan++) {
1370 /* Skip the error IRQ */
1371 if (irqbuf[i] == eirq)
1372 i++;
1373 chan->irq = irqbuf[i];
1376 if (chan != nbpf->chan + num_channels)
1377 return -EINVAL;
1378 } else {
1379 /* 2 IRQs and more than one channel */
1380 if (irqbuf[0] == eirq)
1381 irq = irqbuf[1];
1382 else
1383 irq = irqbuf[0];
1385 for (i = 0; i <= num_channels; i++)
1386 nbpf->chan[i].irq = irq;
1390 ret = devm_request_irq(dev, eirq, nbpf_err_irq,
1391 IRQF_SHARED, "dma error", nbpf);
1392 if (ret < 0)
1393 return ret;
1395 INIT_LIST_HEAD(&dma_dev->channels);
1397 /* Create DMA Channel */
1398 for (i = 0; i < num_channels; i++) {
1399 ret = nbpf_chan_probe(nbpf, i);
1400 if (ret < 0)
1401 return ret;
1404 dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
1405 dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
1406 dma_cap_set(DMA_PRIVATE, dma_dev->cap_mask);
1407 dma_cap_set(DMA_SG, dma_dev->cap_mask);
1409 /* Common and MEMCPY operations */
1410 dma_dev->device_alloc_chan_resources
1411 = nbpf_alloc_chan_resources;
1412 dma_dev->device_free_chan_resources = nbpf_free_chan_resources;
1413 dma_dev->device_prep_dma_sg = nbpf_prep_memcpy_sg;
1414 dma_dev->device_prep_dma_memcpy = nbpf_prep_memcpy;
1415 dma_dev->device_tx_status = nbpf_tx_status;
1416 dma_dev->device_issue_pending = nbpf_issue_pending;
1417 dma_dev->device_slave_caps = nbpf_slave_caps;
1420 * If we drop support for unaligned MEMCPY buffer addresses and / or
1421 * lengths by setting
1422 * dma_dev->copy_align = 4;
1423 * then we can set transfer length to 4 bytes in nbpf_prep_one() for
1424 * DMA_MEM_TO_MEM
1427 /* Compulsory for DMA_SLAVE fields */
1428 dma_dev->device_prep_slave_sg = nbpf_prep_slave_sg;
1429 dma_dev->device_control = nbpf_control;
1431 platform_set_drvdata(pdev, nbpf);
1433 ret = clk_prepare_enable(nbpf->clk);
1434 if (ret < 0)
1435 return ret;
1437 nbpf_configure(nbpf);
1439 ret = dma_async_device_register(dma_dev);
1440 if (ret < 0)
1441 goto e_clk_off;
1443 ret = of_dma_controller_register(np, nbpf_of_xlate, nbpf);
1444 if (ret < 0)
1445 goto e_dma_dev_unreg;
1447 return 0;
1449 e_dma_dev_unreg:
1450 dma_async_device_unregister(dma_dev);
1451 e_clk_off:
1452 clk_disable_unprepare(nbpf->clk);
1454 return ret;
1457 static int nbpf_remove(struct platform_device *pdev)
1459 struct nbpf_device *nbpf = platform_get_drvdata(pdev);
1461 of_dma_controller_free(pdev->dev.of_node);
1462 dma_async_device_unregister(&nbpf->dma_dev);
1463 clk_disable_unprepare(nbpf->clk);
1465 return 0;
1468 static struct platform_device_id nbpf_ids[] = {
1469 {"nbpfaxi64dmac1b4", (kernel_ulong_t)&nbpf_cfg[NBPF1B4]},
1470 {"nbpfaxi64dmac1b8", (kernel_ulong_t)&nbpf_cfg[NBPF1B8]},
1471 {"nbpfaxi64dmac1b16", (kernel_ulong_t)&nbpf_cfg[NBPF1B16]},
1472 {"nbpfaxi64dmac4b4", (kernel_ulong_t)&nbpf_cfg[NBPF4B4]},
1473 {"nbpfaxi64dmac4b8", (kernel_ulong_t)&nbpf_cfg[NBPF4B8]},
1474 {"nbpfaxi64dmac4b16", (kernel_ulong_t)&nbpf_cfg[NBPF4B16]},
1475 {"nbpfaxi64dmac8b4", (kernel_ulong_t)&nbpf_cfg[NBPF8B4]},
1476 {"nbpfaxi64dmac8b8", (kernel_ulong_t)&nbpf_cfg[NBPF8B8]},
1477 {"nbpfaxi64dmac8b16", (kernel_ulong_t)&nbpf_cfg[NBPF8B16]},
1480 MODULE_DEVICE_TABLE(platform, nbpf_ids);
1482 #ifdef CONFIG_PM_RUNTIME
1483 static int nbpf_runtime_suspend(struct device *dev)
1485 struct nbpf_device *nbpf = platform_get_drvdata(to_platform_device(dev));
1486 clk_disable_unprepare(nbpf->clk);
1487 return 0;
1490 static int nbpf_runtime_resume(struct device *dev)
1492 struct nbpf_device *nbpf = platform_get_drvdata(to_platform_device(dev));
1493 return clk_prepare_enable(nbpf->clk);
1495 #endif
1497 static const struct dev_pm_ops nbpf_pm_ops = {
1498 SET_RUNTIME_PM_OPS(nbpf_runtime_suspend, nbpf_runtime_resume, NULL)
1501 static struct platform_driver nbpf_driver = {
1502 .driver = {
1503 .owner = THIS_MODULE,
1504 .name = "dma-nbpf",
1505 .of_match_table = nbpf_match,
1506 .pm = &nbpf_pm_ops,
1508 .id_table = nbpf_ids,
1509 .probe = nbpf_probe,
1510 .remove = nbpf_remove,
1513 module_platform_driver(nbpf_driver);
1515 MODULE_AUTHOR("Guennadi Liakhovetski <g.liakhovetski@gmx.de>");
1516 MODULE_DESCRIPTION("dmaengine driver for NBPFAXI64* DMACs");
1517 MODULE_LICENSE("GPL v2");